WorldWideScience

Sample records for dendritic cell dc

  1. slan/M-DC8+ cells constitute a distinct subset of dendritic cells in human tonsils.

    Science.gov (United States)

    Micheletti, Alessandra; Finotti, Giulia; Calzetti, Federica; Lonardi, Silvia; Zoratti, Elisa; Bugatti, Mattia; Stefini, Stefania; Vermi, William; Cassatella, Marco A

    2016-01-05

    Human blood dendritic cells (DCs) include three main distinct subsets, namely the CD1c+ and CD141+ myeloid DCs (mDCs) and the CD303+ plasmacytoid DCs (pDCs). More recently, a population of slan/M-DC8+ cells, also known as "slanDCs", has been described in blood and detected even in inflamed secondary lymphoid organs and non-lymphoid tissues. Nevertheless, hallmarks of slan/M-DC8+ cells in tissues are poorly defined. Herein, we report a detailed characterization of the phenotype and function of slan/M-DC8+ cells present in human tonsils. We found that tonsil slan/M-DC8+ cells represent a unique DC cell population, distinct from their circulating counterpart and also from all other tonsil DC and monocyte/macrophage subsets. Phenotypically, slan/M-DC8+ cells in tonsils display a CD11c+HLA-DR+CD14+CD11bdim/negCD16dim/negCX3CR1dim/neg marker repertoire, while functionally they exhibit an efficient antigen presentation capacity and a constitutive secretion of TNFα. Notably, such DC phenotype and functions are substantially reproduced by culturing blood slan/M-DC8+ cells in tonsil-derived conditioned medium (TDCM), further supporting the hypothesis of a full DC-like differentiation program occurring within the tonsil microenvironment. Taken together, our data suggest that blood slan/M-DC8+ cells are immediate precursors of a previously unrecognizedcompetent DC subset in tonsils, and pave the way for further characterization of slan/M-DC8+ cells in other tissues.

  2. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells.

    NARCIS (Netherlands)

    Engering, A.J.; Geijtenbeek, T.B.; Vliet, S.J. van; Wijers-Rouw, M.J.P.; Liempt, E. van; Demaurex, N.; Lanzavecchia, A.; Fransen, J.A.M.; Figdor, C.G.; Piguet, V.; Kooyk, Y. van

    2002-01-01

    Dendritic cells (DCs) capture Ags or viruses in peripheral tissue to transport them to lymphoid organs to induce cellular T cell responses. Recently, a DC-specific C-type lectin was identified, DC-specific ICAM-grabbing non-integrin (DC-SIGN), that functions as cell adhesion receptor mediating both

  3. AM3 modulates dendritic cell pathogen recognition capabilities by targeting DC-SIGN.

    Science.gov (United States)

    Serrano-Gómez, Diego; Martínez-Nuñez, Rocío T; Sierra-Filardi, Elena; Izquierdo, Nuria; Colmenares, María; Pla, Jesús; Rivas, Luis; Martinez-Picado, Javier; Jimenez-Barbero, Jesús; Alonso-Lebrero, José Luis; González, Salvador; Corbí, Angel L

    2007-07-01

    AM3 (Inmunoferon) is an orally effective immunomodulator that influences the regulatory and effector functions of the immune system whose molecular mechanisms of action are mostly unknown. We hypothesized that the polysaccharide moiety of AM3 (IF-S) might affect immune responses by modulating the lectin-dependent pathogen recognition abilities of human dendritic cells. IF-S inhibited binding of viral, fungal, and parasite pathogens by human monocyte-derived dendritic cells in a dose-dependent manner. IF-S specifically impaired the pathogen recognition capabilities of DC-SIGN, as it reduced the attachment of Candida, Aspergillus, and Leishmania to DC-SIGN transfectants. IF-S also inhibited the interaction of DC-SIGN with both its cellular counterreceptor (intercellular adhesion molecule 3) and the human immunodeficiency virus (HIV) type 1 gp120 protein and blocked the DC-SIGN-dependent capture of HIV virions and the HIV trans-infection capability of DC-SIGN transfectants. IF-S promoted DC-SIGN internalization in DCs without affecting mannose receptor expression, and (1)D saturation transfer difference nuclear magnetic resonance demonstrated that IF-S directly interacts with DC-SIGN on the cell surface. Therefore, the polysaccharide moiety of AM3 directly influences pathogen recognition by dendritic cells by interacting with DC-SIGN. Our results indicate that DC-SIGN is the target for an immunomodulator and imply that the adjuvant and immunomodulatory actions of AM3 are mediated, at least in part, by alteration of the DC-SIGN functional activities.

  4. Distribution and lateral mobility of DC-SIGN on immature dendritic cells--implications for pathogen uptake.

    Science.gov (United States)

    Neumann, Aaron K; Thompson, Nancy L; Jacobson, Ken

    2008-03-01

    The receptor C-type lectin DC-SIGN (CD209) is expressed by immature dendritic cells, functioning as an antigen capture receptor and cell adhesion molecule. Various microbes, including HIV-1, can exploit binding to DC-SIGN to gain entry to dendritic cells. DC-SIGN forms discrete nanoscale clusters on immature dendritic cells that are thought to be important for viral binding. We confirmed that these DC-SIGN clusters also exist both in live dendritic cells and in cell lines that ectopically express DC-SIGN. Moreover, DC-SIGN has an unusual polarized lateral distribution in the plasma membrane of dendritic cells and other cells: the receptor is preferentially localized to the leading edge of the dendritic cell lamellipod and largely excluded from the ventral plasma membrane. Colocalization of DC-SIGN clusters with endocytic activity demonstrated that surface DC-SIGN clusters are enriched near the leading edge, whereas endocytosis of these clusters occurred preferentially at lamellar sites posterior to the leading edge. Therefore, we predicted that DC-SIGN clusters move from the leading edge to zones of internalization. Two modes of lateral mobility were evident from the trajectories of DC-SIGN clusters at the leading edge, directed and non-directed mobility. Clusters with directed mobility moved in a highly linear fashion from the leading edge to rearward locations in the lamella at remarkably high velocity (1420+/-260 nm/second). Based on these data, we propose that DC-SIGN clusters move from the leading edge--where the dendritic cell is likely to encounter pathogens in tissue--to a medial lamellar site where clusters enter the cell via endocytosis. Immature dendritic cells may acquire and internalize HIV and other pathogens by this process.

  5. Design of tumour-specific immunotherapies using dendritic cells – analyses of IL15-DC

    OpenAIRE

    Al-Mahdi, Rania Ali Muhsen

    2009-01-01

    Immunotherapy of malignancies aims at activating the patient’s own immune system to fight the tumour affecting the patient. Even though the use of dendritic cells (DC) has shown promising results, the DC vaccination strategy needs improvement, as only few relevant clinical responses could be documented so far. Aim: In this study, the standard protocol to generate monocyte derived DC using GM-CSF and IL-4 was compared to the use of GM-CSF and IL-15. Methods: Monocytes were isolated by plastic ...

  6. Simian virus 40 inhibits differentiation and maturation of rhesus macaque DC-SIGN+-dendritic cells

    Directory of Open Access Journals (Sweden)

    Changyong G

    2010-09-01

    Full Text Available Abstract Dendritic cells (DC are the initiators and modulators of the immune responses. Some species of pathogenic microorganisms have developed immune evasion strategies by controlling antigen presentation function of DC. Simian virus 40 (SV40 is a DNA tumor virus of rhesus monkey origin. It can induce cell transformation and tumorigenesis in many vertebrate species, but often causes no visible effects and persists as a latent infection in rhesus monkeys under natural conditions. To investigate the interaction between SV40 and rhesus monkey DC, rhesus monkey peripheral blood monocyte-derived DC were induced using recombinant human Interleukin-4 (rhIL-4 and infective SV40, the phenotype and function of DC-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN+ DC were analyzed by flow cytometry (FCM and mixed lymphocyte reaction (MLR. Results showed that SV40 can down-regulate the expression of CD83 and CD86 on DC and impair DC-induced activation of T cell proliferation. These findings suggest that SV40 might also cause immune suppression by influencing differentiation and maturation of DC.

  7. DC-SCRIPT regulates glucocorticoid receptor function and expression of its target GILZ in dendritic cells.

    Science.gov (United States)

    Hontelez, Saartje; Karthaus, Nina; Looman, Maaike W; Ansems, Marleen; Adema, Gosse J

    2013-04-01

    Dendritic cells (DCs) play a central role in the immune system; they can induce immunity or tolerance depending on diverse factors in the DC environment. Pathogens, but also tissue damage, hormones, and vitamins, affect DC activation and maturation. In particular, glucocorticoids (GCs) are known for their immunosuppressive effect on DCs, creating tolerogenic DCs. GCs activate the type I nuclear receptor (NR) glucocorticoid receptor (GR), followed by induced expression of the transcription factor glucocorticoid-inducible leucine zipper (GILZ). GILZ has been shown to be necessary and sufficient for GC-induced tolerogenic DC generation. Recently, we have identified the DC-specific transcript (DC-SCRIPT) as an NR coregulator, suppressing type I steroid NRs estrogen receptor and progesterone receptor. In this study, we analyzed the effect of DC-SCRIPT on GR activity. We demonstrate that DC-SCRIPT coexists with GR in protein complexes and functions as a corepressor of GR-mediated transcription. Coexpression of DC-SCRIPT and GR is shown in human monocyte-derived DCs, and DC-SCRIPT knockdown enhances GR-dependent upregulation of GILZ mRNA expression in DCs. This demonstrates that DC-SCRIPT serves an important role in regulating GR function in DCs, corepressing GR-dependent upregulation of the tolerance-inducing transcription factor GILZ. These data imply that by controlling GR function and GILZ expression DC-SCRIPT is potentially involved in the balance between tolerance and immunity.

  8. Role of DC-SIGN in Lassa virus entry into human dendritic cells.

    Science.gov (United States)

    Goncalves, Ana-Rita; Moraz, Marie-Laurence; Pasquato, Antonella; Helenius, Ari; Lozach, Pierre-Yves; Kunz, Stefan

    2013-11-01

    The arenavirus Lassa virus (LASV) causes a severe hemorrhagic fever with high mortality in humans. Antigen-presenting cells, in particular dendritic cells (DCs), are early and preferred targets of LASV, and their productive infection contributes to the virus-induced immunosuppression observed in fatal disease. Here, we characterized the role of the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) in LASV entry into primary human DCs using a chimera of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) expressing the LASV glycoprotein (rLCMV-LASVGP). We found that differentiation of human primary monocytes into DCs enhanced virus attachment and entry, concomitant with the upregulation of DC-SIGN. LASV and rLCMV-LASVGP bound to DC-SIGN via mannose sugars located on the N-terminal GP1 subunit of LASVGP. We provide evidence that DC-SIGN serves as an attachment factor for rLCMV-LASVGP in monocyte-derived immature dendritic cells (MDDC) and can accelerate the capture of free virus. However, in contrast to the phlebovirus Uukuniemi virus (UUKV), which uses DC-SIGN as an authentic entry receptor, productive infection with rLCMV-LASVGP was less dependent on DC-SIGN. In contrast to the DC-SIGN-mediated cell entry of UUKV, entry of rLCMV-LASVGP in MDDC was remarkably slow and depended on actin, indicating the use of different endocytotic pathways. In sum, our data reveal that DC-SIGN can facilitate cell entry of LASV in human MDDC but that its role seems distinct from the function as an authentic entry receptor reported for phleboviruses.

  9. DC3-decorated polyplexes for targeted gene delivery into dendritic cells.

    Science.gov (United States)

    Golani-Armon, Adi; Golan, Moran; Shamay, Yosi; Raviv, Lior; David, Ayelet

    2015-02-18

    Dendritic cells (DCs) are a family of specialized antigen presenting cells (APCs) that detect antigens and initiate a wide spectrum of immune responses against them. These characteristics make them promising candidates for immunotherapy manipulations. In this study we designed and synthesized DC-targeted block copolymers composed of linear polyethylenimine (PEI) conjugated to hydrophilic polyethylene glycol (PEG) installed with a DC-targeting peptide (DC3, primary sequence FYPSYHSTPQRP). Two different conjugation procedures (basic and modified) were employed to synthesize the DC3-PEG-b-PEI and the control SCRM-PEG-b-PEI (with a scrambled DC3 peptide sequence) by one-pot synthesis, in two steps. In the first, basic conjugation procedure, PEG with N-hydroxysuccinimide (NHS) ester and maleimide (MAL) groups (NHS-PEG-MAL, 3.5 kDa) was first coupled to linear PEI (25 kDa) via the NHS group to yield the intermediate MAL-PEG-b-PEI, that was then conjugated to N-terminus-cysteine harboring peptides DC3 or SCRM via the MAL double bond to yield the final DC3-PEG-b-PEI or SCRM-PEG-b-PEI copolymers, respectively. In the second, modified conjugation procedure, Fmoc-cysteine harboring DC3 or SCRM peptides were first conjugated to NHS-PEG-MAL via the MAL group followed by coupling to linear PEI via the NHS functional group. Fmoc cleavage yielded the same final product as in the basic procedure. The modified conjugation procedure was capable of yielding block copolymers richer with peptides, as determined by (1)H NMR analysis. Self-assembly of DC3-PEG-b-PEI copolymers and DNA molecules yielded nanosized polyion complexes (polyplexes), with lower surface charge and limited cytotoxicity when compared to the PEI building block. Significant transfection efficiency of the DC-targeted polyplexes by murine dendritic DC2.4 cells was observed only in DC3-PEG-b-PEI/DNA polyplexes synthesized by the modified conjugation procedure. These polyplexes, with higher peptide-load, showed greater

  10. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells.

    Science.gov (United States)

    Arrighi, Jean-François; Pion, Marjorie; Garcia, Eduardo; Escola, Jean-Michel; van Kooyk, Yvette; Geijtenbeek, Teunis B; Piguet, Vincent

    2004-11-15

    Dendritic cells (DCs) are essential for the early events of human immunodeficiency virus (HIV) infection. Model systems of HIV sexual transmission have shown that DCs expressing the DC-specific C-type lectin DC-SIGN capture and internalize HIV at mucosal surfaces and efficiently transfer HIV to CD4+ T cells in lymph nodes, where viral replication occurs. Upon DC-T cell clustering, internalized HIV accumulates on the DC side at the contact zone (infectious synapse), between DCs and T cells, whereas HIV receptors and coreceptors are enriched on the T cell side. Viral concentration at the infectious synapse may explain, at least in part, why DC transmission of HIV to T cells is so efficient.Here, we have investigated the role of DC-SIGN on primary DCs in X4 HIV-1 capture and transmission using small interfering RNA-expressing lentiviral vectors to specifically knockdown DC-SIGN. We demonstrate that DC-SIGN- DCs internalize X4 HIV-1 as well as DC-SIGN+ DCs, although binding of virions is reduced. Strikingly, DC-SIGN knockdown in DCs selectively impairs infectious synapse formation between DCs and resting CD4+ T cells, but does not prevent the formation of DC-T cells conjugates. Our results demonstrate that DC-SIGN is required downstream from viral capture for the formation of the infectious synapse between DCs and T cells. These findings provide a novel explanation for the role of DC-SIGN in the transfer and enhancement of HIV infection from DCs to T cells, a crucial step for HIV transmission and pathogenesis.

  11. DC-SIGN Facilitates Fusion of Dendritic Cells with Human T-Cell Leukemia Virus Type 1-Infected Cells

    Science.gov (United States)

    Ceccaldi, Pierre-Emmanuel; Delebecque, Frédéric; Prevost, Marie-Christine; Moris, Arnaud; Abastado, Jean-Pierre; Gessain, Antoine; Schwartz, Olivier; Ozden, Simona

    2006-01-01

    Interactions between the oncogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) and dendritic cells (DCs) are poorly characterized. We show here that monocyte-derived DCs form syncytia and are infected upon coculture with HTLV-1-infected lymphocytes. We examined the role of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a C-type lectin expressed in DCs, in HTLV-1-induced syncytium formation. DC-SIGN is known to bind with high affinity to various viral envelope glycoproteins, including human immunodeficiency virus (HIV) and hepatitis C virus, as well as to the cellular receptors ICAM-2 and ICAM-3. After cocultivating DCs and HTLV-1-infected cells, we found that anti-DC-SIGN monoclonal antibodies (MAbs) were able to decrease the number and size of HTLV-1-induced syncytia. Moreover, expression of the lectin in epithelial-cell lines dramatically enhanced the ability to fuse with HTLV-1-positive cells. Interestingly, in contrast to the envelope (Env) glycoproteins of HIV and other viruses, that of HTLV-1 does not bind directly to DC-SIGN. The facilitating role of the lectin in HTLV-1 syncytium formation is mediated by its interaction with ICAM-2 and ICAM-3, as demonstrated by use of MAbs directed against these adhesion molecules. Altogether, our results indicate that DC-SIGN facilitates HTLV-1 infection and fusion of DCs through an ICAM-dependent mechanism. PMID:16641270

  12. Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1.

    NARCIS (Netherlands)

    Geijtenbeek, T.B.; Duijnhoven, G.C.F. van; Vliet, S. van; Krieger, E.; Vriend, G.; Figdor, C.G.; Kooyk, Y. van

    2002-01-01

    The novel dendritic cell (DC)-specific human immunodeficiency virus type 1 (HIV-1) receptor DC-SIGN plays a key role in the dissemination of HIV-1 by DC. DC-SIGN is thought to capture HIV-1 at mucosal sites of entry, facilitating transport to lymphoid tissues, where DC-SIGN efficiently transmits HIV

  13. Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1.

    NARCIS (Netherlands)

    Geijtenbeek, T.B.; Duijnhoven, G.C.F. van; Vliet, S. van; Krieger, E.; Vriend, G.; Figdor, C.G.; Kooyk, Y. van

    2002-01-01

    The novel dendritic cell (DC)-specific human immunodeficiency virus type 1 (HIV-1) receptor DC-SIGN plays a key role in the dissemination of HIV-1 by DC. DC-SIGN is thought to capture HIV-1 at mucosal sites of entry, facilitating transport to lymphoid tissues, where DC-SIGN efficiently transmits HIV

  14. [Dendritic cells (DC) induced from acute myeloid leukemia (AML) cells with cytokine cocktails].

    Science.gov (United States)

    Yan, Kuang-hua; You, Sheng-guo; Bian, Shou-geng; Ma, Guan-jie; Ge, Wei; Ma, Shuang; Liu, Shi-he; Zhao, Chun-hua

    2003-07-01

    To explore the feasibility of DC being in vitro induced from AML cells with cytokine cocktails and their biological properties. AML cells were cultured in either presence or absence of cytokine cocktails. DC were studied for morphology, and cytochemical and immunofluorescent staining. Functions of DC were examined by MLC, FITC-conjugated dextran uptake test, and LDH release assay. RT-PCR and FISH were used to analyze the specific fusion genes of culture-derived DC. Classical DC morphological changes occurred in all 15 cultured AML cells. DC-associated surface molecules such as CD(1a), CD(80), CD(86), CD(106), CD(83) and HLA-DR were upregulated (P AML cells uncultured or cultured in the absence of cytokines (P CTL assay was performed in 5 of the 15 samples. At effector/target ratio of 20:1, auto-T lymphocytes primed with the culture-derived DC exhibited no more killing activity to auto-AML cells than those stimulated by IL-2 or uncultured AML cells. Culture-derived DC presenced the native AML-specific aberrant karyotype and related fusion gene. Cytokine cocktails could in vitro induce AML cells into DC with classical morphology, immunophenotype and function. DC maturity induced by different cytokine cocktails could be variable. Culture-derived DC were originated from the native AML cells. AML cells could make the auto-T lymphocyte anergy.

  15. Killing of naive T cells by CD95L-transfected dendritic cells (DC): in vivo study using killer DC-DC hybrids and CD4(+) T cells from DO11.10 mice.

    Science.gov (United States)

    Kusuhara, Masahiro; Matsue, Keiko; Edelbaum, Dale; Loftus, Julie; Takashima, Akira; Matsue, Hiroyuki

    2002-04-01

    Dendritic cells (DC) play the dual task of initiating cellular immunity against potentially harmful foreign antigens (Ag), while maintaining immunological tolerance to self-Ag and environmental Ag. As an approach to induce Ag-specific suppression, we and others introduced CD95 ligand (L) cDNA into DC. The resulting "killer" DC delivered apoptotic signals, instead of activation signals, to primed CD4(+) T cells in vitro and induced Ag-specific immunosuppression in vivo. To study the impact of killer DC on naive T cells, the fate of Ag-reactive T cells and the extent of their depletion after killer DC treatment, we performed in vitro and in vivo reconstitution experiments using: (a) killer DC-DC hybrids created between CD95L-transduced XS106 DC clone (A/J origin) and splenic DC from BALB/c mice, (b) CD4(+) T cells isolated from DO11.10 transgenic mice (BALB/c background), and (c) OVA(323-339) peptide as relevant Ag. Ovalbumin (OVA)-pulsed killer DC-DC hybrids inhibited DO11.10 T cell activation triggered by conventional DC, instead of inducing their activation. Rapid apoptosis of T cells was observed after co-culture with OVA-pulsed killer DC-DC hybrids, but not with non-pulsed killer DC-DC hybrids or OVA-pulsed control DC-DC hybrids. For in vivo reconstitution, (BALB/cxA/J)F1 mice received subcutaneous administration of killer DC-DC hybrids, followed by intravenous inoculation of DO11.10 T cells. Killer DC-DC hybrids migrated preferentially to draining lymph nodes albeit with relatively low efficiency (0.5-1% recovery) and they induced significant, but incomplete (30-40%) killing of DO11.10 T cells in this location. These results document the abilities of CD95L-transduced DC to trigger apoptosis of naive T cells in an Ag-specific manner, to overrule T cell activation signals delivered by conventional DC, and to reduce local frequencies of Ag-reactive T cells in vivo. Our data also uncover two major limitations (relatively low homing efficiency and incomplete

  16. Lentivirus-Induced Dendritic Cells (iDC for Immune-Regenerative Therapies in Cancer and Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Renata Stripecke

    2014-08-01

    Full Text Available Conventional dendritic cells (cDC are ex vivo differentiated professional antigen presenting cells capable of potently stimulating naïve T cells and with vast potential for immunotherapeutic applications. The manufacture of clinical-grade cDC is relatively complex and requires several days for completion. Clinical trials showed poor trafficking of cDC from subcutaneous injection sites to lymph nodes (LN, where DC can optimally stimulate naïve lymphocytes for long-lasting memory responses. We demonstrated in mouse and human systems that a single overnight ex vivo lentiviral (LV gene transfer into DC precursors for production of combination of cytokines and antigens was capable to induce autonomous self-differentiation of antigen-loaded DC in vitro and in vivo. These highly viable induced DC (iDC effectively migrated from the injected skin to LN, where they effectively activated de novo antigen-specific effector memory T cells. Two iDC modalities were validated in relevant animal models and are now in clinical development: Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors co-expressing GM-CSF/IL-4/TRP2 for melanoma immunotherapy in the autologous setting (SmartDCtrp2, and Self-differentiated Myeloid-derived Lentivirus-induced against human cytomegalovirus as an allogeneic matched adoptive cell after stem cell transplantation (SmyleDCpp65. The lentiviral vector design and packaging methodology has “evolved” continuously in order to simplify and optimize function and biosafety of in vitro and in vivo genetic reprogramming of iDC. Here, we address the challenges seeking for new creations of genetically programmed iDC and integrase-defective LV vaccines for immune regeneration.

  17. Dendritic Cell

    OpenAIRE

    Sevda Söker

    2005-01-01

    Dendritic cells, a member of family of antigen presenting cells, are most effective cells in the primary immune response. Dendritic cells originated from dendron, in mean of tree in the Greek, because of their long and elaborate cytoplasmic branching processes. Dendritic cells constitute approximately 0.1 to 1 percent of the blood’s mononuclear cell. Dendritic cells are widely distributed, and specialized for antigen capture and T cell stimulation. In this article, structures and functions of...

  18. Influence of Skin Epithelial cells and Human Umbilical VEIN CELLS Conditioned Media on Maturation of Type 1 Dendritic Cells(DC1

    Directory of Open Access Journals (Sweden)

    M Ganjybakhsh

    2011-06-01

    Full Text Available Introduction: Dendritic cells have a high potential in presentation of antigens and can be generated and manipulated in invitro culture conditions. Dendritic cells(DC are therefore used in cancer immunotherapy, in prevention of graft rejection, treatment of allergy, autoimmune diseases and certain infectious diseases. Methods: Dendritic cell was generated in two stages. IN the first stage, monocyte cells were converted to immature DC affected GM-CSF and IL-4 .In the second stage, dendritic cells were maturated in the presence of supernatant skin epithelial cells(A375 and human umbilical vein endothelial cells(HUVEC and maturation factors. The ability of phagocytosis, expression phenotype, stimulation of T lymphocytes and cytokines was studied. Results: Mature Dendritic cells decreased their power of phagocytosis and increased expression of their surface markers. The ability of T cells stimulation and cytokine production(IL-12 increased . Conclusion: Mixture condition medium of epithelial cells and human skin umbilical vein endothelium cells induces maturation of monocyte-derived DCs. This condition medium improves their phenotype and their functions. The mentioned condition medium generates DC1 and Th1 in vitro.

  19. Mycobacterium tuberculosis impairs dendritic cell response by altering CD1b, DC-SIGN and MR profile.

    Science.gov (United States)

    Balboa, Luciana; Romero, María Mercedes; Yokobori, Noemí; Schierloh, Pablo; Geffner, Laura; Basile, Juan I; Musella, Rosa M; Abbate, Eduardo; de la Barrera, Silvia; Sasiain, María C; Alemán, Mercedes

    2010-10-01

    During a chronic infection such as tuberculosis, the pool of tissue dendritic cells (DC) must be renewed by recruitment of both circulating DC progenitors and monocytes (Mo). However, the microenvironment of the inflammatory site affects Mo differentiation. As DC are critical for initiating a Mycobacterium tuberculosis-specific T-cell response, we argue that interference of M. tuberculosis with a correct DC generation would signify a mechanism of immune evasion. In this study, we showed that early interaction of γ-irradiated M. tuberculosis with Mo subverts DC differentiation in vitro. We found that irradiated M. tuberculosis effect involves (1) the loss of a significant fraction of monocyte population and (2) an altered differentiation process of the surviving monocyte subpopulation. Moreover, in the absence of irradiated M. tuberculosis, DC consist in a major DC-specific intercellular adhesion molecule 3-grabbing non-integrin receptor (DC-SIGN(high))/CD86(low) and minor DC-SIGN(low)/CD86(high) subpopulations, whereas in the presence of bacteria, there is an enrichment of DC-SIGN(low)/CD86(high) population. Besides, this population enlarged by irradiated M. tuberculosis, which is characterized by a reduced CD1b expression, correlates with a reduced induction of specific T-lymphocyte proliferation. The loss of CD1molecules partially involves toll-like receptors (TLR-2)/p38 MAPK activation. Finally, several features of Mo, which have been differentiated into DC in the presence of irradiated M. tuberculosis, resemble the features of DC obtained from patients with active tuberculosis. In conclusion, we suggest that M. tuberculosis escapes from acquired immune response in tuberculosis may be caused by an altered differentiation into DC leading to a poor M. tuberculosis-specific T-cell response.

  20. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells.

    NARCIS (Netherlands)

    Arrighi, JF; Pion, M; Wiznerowicz, M; Geijtenbeek, T.B.H.; Garcia, E; Abraham, S.; Leuba, F; Dutoit, V; Ducrey-Rundquist, O; Kooijk, van Y.; Trono, D; Piguet, V

    2004-01-01

    In the early events of human immunodeficiency virus type 1 (HIV-1) infection, immature dendritic cells (DCs) expressing the DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) receptor capture small amounts of HIV-1 on mucosal surfaces and spread viral infection to CD4(+) T

  1. The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x.

    NARCIS (Netherlands)

    Die, van I.M.; Vliet, van SJ; Nyame, AK; Cummings, RD; Bank, CM; Appelmelk, B.J.; Geijtenbeek, T.B.H.; Kooijk, van Y.

    2003-01-01

    Schistosoma mansoni soluble egg antigens (SEAs) are crucially involved in modulating the host immune response to infection by S. mansoni. We report that human dendritic cells bind SEAs through the C-type lectin dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN). Monoclonal antibodies agai

  2. DC-SCRIPT Regulates IL-10 Production in Human Dendritic Cells by Modulating NF-κBp65 Activation.

    Science.gov (United States)

    Søndergaard, Jonas Nørskov; Poghosyan, Susanna; Hontelez, Saartje; Louche, Pauline; Looman, Maaike W G; Ansems, Marleen; Adema, Gosse J

    2015-08-15

    The balance between tolerance and immunity is important for the outcome of an infection or cancer, and dendritic cells (DCs) are key regulators of this balance. DC-specific transcript (DC-SCRIPT) is a protein expressed by DCs and has been demonstrated to suppress both TLR-mediated expression of IL-10 and glucocorticoid receptor-mediated transcription of glucocorticoid-induced leucine zipper (GILZ). Because GILZ is known to promote IL-10 production, we investigated whether these two processes are linked. Dual-knockdown and inhibition experiments demonstrated that neither GILZ nor glucocorticoid receptor play a role in TLR-induced IL-10 production after DC-SCRIPT knockdown. The NF-κB pathway is another route involved in IL-10 production after DC activation. Strikingly, inhibition of NF-κB led to a decreased TLR-mediated IL-10 production in DC-SCRIPT knockdown DCs. Moreover, DC-SCRIPT knockdown DCs showed enhanced phosphorylation, acetylation, and IL10 enhancer binding of the NF-κB subunit p65. These data demonstrate that besides nuclear receptor regulation, DC-SCRIPT also modulates activation of NF-κBp65 after TLR activation in human DCs.

  3. Whole inactivated avian Influenza H9N2 viruses induce nasal submucosal dendritic cells to sample luminal viruses via transepithelial dendrites and trigger subsequent DC maturation.

    Science.gov (United States)

    Qin, Tao; Yin, Yinyan; Wang, Xiaoqing; Liu, Haofei; Lin, Jian; Yu, Qinghua; Yang, Qian

    2015-03-10

    Nasal mucosal barrier is a key impediment for the absorption of influenza whole inactivated virus (WIV) intranasal vaccine. Yet it is still unclear how WIV cross the epithelial cells (ECs) in nasal cavity. Here, in vitro, a coculture system was well established, consisting of surrogate nasal ECs (Calu-3) and dendritic cells (DCs). After adding H9N2 WIV on the apical side of ECs, we found that submucosal DCs extended their transepithelial dendrites (TEDs) and sampled luminal viruses. However, ECs were not involved in the transepithelial transport of viruses. Subsequently, the phenotypic and functional maturation of DCs were also enhanced, whereas they were attenuated after blocking of TED formation by anti-JAM1 antibody. In vivo, we confirmed that H9N2 WIV were capable of inducing nasal submucosal DCs to sample luminal viruses via TEDs in the nasal passage but not nasal-associated lymphoid tissue (NALT). CD103(+) and CD103(-) DC subsets participated in this process. Of note, chemokine CCL20, released from the H9N2 WIV-induced ECs, played a vital role in DC recruitment and TED formation. Taken together, our findings indicated that TEDs played a critical role in facilitating viral transport across the epithelial barrier, which may guide the design of novel nasal mucosal vaccine strategies.

  4. Identification of Barramundi (Lates calcarifer) DC-SCRIPT, a Specific Molecular Marker for Dendritic Cells in Fish.

    Science.gov (United States)

    Zoccola, Emmanuelle; Delamare-Deboutteville, Jérôme; Barnes, Andrew C

    2015-01-01

    Antigen presentation is a critical step bridging innate immune recognition and specific immune memory. In mammals, the process is orchestrated by dendritic cells (DCs) in the lymphatic system, which initiate clonal proliferation of antigen-specific lymphocytes. However, fish lack a classical lymphatic system and there are currently no cellular markers for DCs in fish, thus antigen-presentation in fish is poorly understood. Recently, antigen-presenting cells similar in structure and function to mammalian DCs were identified in various fish, including rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). The present study aimed to identify a potential molecular marker for DCs in fish and therefore targeted DC-SCRIPT, a well-conserved zinc finger protein that is preferentially expressed in all sub-types of human DCs. Putative dendritic cells were obtained in culture by maturation of spleen and pronephros-derived monocytes. DC-SCRIPT was identified in barramundi by homology using RACE PCR and genome walking. Specific expression of DC-SCRIPT was detected in barramundi cells by Stellaris mRNA FISH, in combination with MHCII expression when exposed to bacterial derived peptidoglycan, suggesting the presence of DCs in L. calcarifer. Moreover, morphological identification was achieved by light microscopy of cytospins prepared from these cultures. The cultured cells were morphologically similar to mammalian and trout DCs. Migration assays determined that these cells have the ability to move towards pathogens and pathogen associated molecular patterns, with a preference for peptidoglycans over lipopolysaccharides. The cells were also strongly phagocytic, engulfing bacteria and rapidly breaking them down. Barramundi DCs induced significant proliferation of responder populations of T-lymphocytes, supporting their role as antigen presenting cells. DC-SCRIPT expression in head kidney was higher 6 and 24 h following intraperitoneal challenge with peptidoglycan and

  5. TLR4 and DC-SIGN receptors recognized Mycobacterium scrofulaceum promoting semi-activated phenotype on bone marrow dendritic cells.

    Science.gov (United States)

    Cruz-Aguilar, Marisa; Castillo-Rodal, Antonia I; Schcolnik-Cabrera, Alejandro; Bonifaz, Laura C; Molina, Gabriela; López-Vidal, Yolanda

    2016-07-01

    Nontuberculous mycobacteria (NTM) are recognized as emerging pathogens and their immune regulatory mechanisms are not well described yet. From them, Mycobacterium avium is known to be a weak activator of dendritic cells (DCs) that impairs the response induced by BCG vaccine. However, whether other NTM such as Mycobacterium scrofulaceum may modulate the activation of DCs, has not been extensively studied. Here, we exposed bone marrow-derived DCs (BMDCs) to M. scrofulaceum and we analyzed the effect on the activation of DCs. We found that M. scrofulaceum has a comparable ability to induce a semi-mature DC phenotype, which was produced by its interaction with DC-SIGN and TLR4 receptors in a synergic effect. BMDCs exposed to M. scrofulaceum showed high expression of PD-L2 and production of IL-10, as well as low levels of co-stimulatory molecules and pro-inflammatory cytokines. In addition to immunophenotype induced on DCs, changes in morphology, re-organization of cytoskeleton and decreased migratory capacity are consistent with a semi-mature phenotype. However, unlike other pathogenic mycobacteria, the DC-semi-mature phenotype induced by M. scrofulaceum was reversed after re-exposure to BCG, suggesting that modulation mechanisms of DC-activation used by M. scrofulaceum are different to other known pathogenic mycobacteria. This is the first report about the immunophenotypic characterization of DC stimulated by M. scrofulaceum.

  6. Porphyromonas gingivalis Evasion of Autophagy and Intracellular Killing by Human Myeloid Dendritic Cells Involves DC-SIGN-TLR2 Crosstalk

    Science.gov (United States)

    El-Awady, Ahmed R.; Miles, Brodie; Scisci, Elizabeth; Kurago, Zoya B.; Palani, Chithra D.; Arce, Roger M.; Waller, Jennifer L.; Genco, Caroline A.; Slocum, Connie; Manning, Matthew; Schoenlein, Patricia V.; Cutler, Christopher W.

    2015-01-01

    Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs. PMID:25679217

  7. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk.

    Directory of Open Access Journals (Sweden)

    Ahmed R El-Awady

    2015-02-01

    Full Text Available Signaling via pattern recognition receptors (PRRs expressed on professional antigen presenting cells, such as dendritic cells (DCs, is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs. We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs.

  8. [Inflammatory dendritic cells].

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2014-01-01

    Dendritic cells are a rare and heterogeneous population of professional antigen-presenting cells. Several murine dendritic cell subpopulations have been identified that differ in their phenotype and functional properties. In the steady state, committed dendritic cell precursors differentiate into lymphoid organ-resident dendritic cells and migratory tissue dendritic cells. During inflammation appears an additional dendritic cell subpopulation that has been termed « inflammatory dendritic cells ». Inflammatory dendritic cells differentiate in situ from monocytes recruited to the site of inflammation. Here, we discuss how mouse inflammatory dendritic cells differ from macrophages and from other dendritic cell populations. Finally, we review recent work on human inflammatory dendritic cells.

  9. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells.

    Science.gov (United States)

    Arrighi, Jean-François; Pion, Marjorie; Wiznerowicz, Maciej; Geijtenbeek, Teunis B; Garcia, Eduardo; Abraham, Shahnaz; Leuba, Florence; Dutoit, Valérie; Ducrey-Rundquist, Odile; van Kooyk, Yvette; Trono, Didier; Piguet, Vincent

    2004-10-01

    In the early events of human immunodeficiency virus type 1 (HIV-1) infection, immature dendritic cells (DCs) expressing the DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) receptor capture small amounts of HIV-1 on mucosal surfaces and spread viral infection to CD4(+) T cells in lymph nodes (22, 34, 45). RNA interference has emerged as a powerful tool to gain insight into gene function. For this purpose, lentiviral vectors that express short hairpin RNA (shRNA) for the delivery of small interfering RNA (siRNA) into mammalian cells represent a powerful tool to achieve stable gene silencing. In order to interfere with DC-SIGN function, we developed shRNA-expressing lentiviral vectors capable of conditionally suppressing DC-SIGN expression. Selectivity of inhibition of human DC-SIGN and L-SIGN and chimpanzee and rhesus macaque DC-SIGN was obtained by using distinct siRNAs. Suppression of DC-SIGN expression inhibited the attachment of the gp120 envelope glycoprotein of HIV-1 to DC-SIGN transfectants, as well as transfer of HIV-1 to target cells in trans. Furthermore, shRNA-expressing lentiviral vectors were capable of efficiently suppressing DC-SIGN expression in primary human DCs. DC-SIGN-negative DCs were unable to enhance transfer of HIV-1 infectivity to T cells in trans, demonstrating an essential role for the DC-SIGN receptor in transferring infectious viral particles from DCs to T cells. The present system should have broad applications for studying the function of DC-SIGN in the pathogenesis of HIV as well as other pathogens also recognized by this receptor.

  10. Interaction of the capsular polysaccharide A from Bacteroides fragilis with DC-SIGN on human dendritic cells is necessary for its processing and presentation to T cells.

    Directory of Open Access Journals (Sweden)

    Karien eBloem

    2013-05-01

    Full Text Available The zwitterionic capsular polysaccharide A (PSA of Bacteroides fragilis is the first carbohydrate antigen described to be presented in major histocompatibility complex (MHC class II for the induction of CD4+ T cell responses. However, the identity of the receptor mediating binding and internalization of PSA in antigen presenting cells remains elusive. C-type lectins are glycan-binding receptors known for their capacity to target ligands for antigen presentation to T cells. Here, we investigated whether C-type lectins were involved in the internalization of PSA and identified dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN as the main receptor for PSA on human dendritic cells. The induction of PSA-specific T cell proliferation appeared to be completely dependent on DC-SIGN. These data reveal a crucial role for DC-SIGN in the endocytosis and routing of PSA in human dendritic cells for the efficient stimulation of PSA-specific CD4+ T cells.

  11. Interferon γ Stimulates Cellular Maturation of Dendritic Cell Line DC2.4 Leading to Induction of Efficient Cytotoxic T Cell Responses and Antitumor Immunity

    Institute of Scientific and Technical Information of China (English)

    Tianpei He; Chaoke Tang; Shulin Xu; Terence Moyana; Jim Xiang

    2007-01-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) for the initiation of antigen (Ag)-specific immune responses. In most studies, mature DCs are generated from bone marrow cells or peripheral monocytes; in either case, the harvested cells are then cultured in medium containing recombinant GM-CSF, IL-4 and TNF-α for 7-10 days and stimulated with lipopolysaccharide (LPS). However, this approach is time-consuming and expensive. There is another less cost approach of using immobilized DC cell lines, which can easily grow in the medium. A disadvantage with the immobilized DC cell lines, however, is that they are immature DCs and lack expression of MHC class Ⅱ and costimulatory CD40 and CD80 molecules. This, therefore, limits their capacity for inducing efficient antitumor immunity. In the current study, we investigated the possible efficacy of various stimuli (IL-1β,IFN-γ, TNF-α, CpG and LPS) in converting the immature dendritic cell line DC2.4 to mature DCs. Our findings were quite interesting since we demonstrated for the first time that IFN-γ was able to stimulate the maturation of DC2.4 cells. The IFN-γ-activated ovalbumin (OVA)-pulsed DC2.4 cells have capacity to upregulate MHC class Ⅱ,CD40, CD80 and CCR7, and to more efficiently stimulate in vitro and in vivo OVA-specific CD8+ T cell responses and antitumor immunity. Therefore, IFN-γ-activated immortal DC2.4 cells may prove to be useful in the study of DC biology and antitumor immunity.

  12. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells.

    Science.gov (United States)

    Li, Dapeng; Romain, Gabrielle; Flamar, Anne-Laure; Duluc, Dorothée; Dullaers, Melissa; Li, Xiao-Hua; Zurawski, Sandra; Bosquet, Nathalie; Palucka, Anna Karolina; Le Grand, Roger; O'Garra, Anne; Zurawski, Gerard; Banchereau, Jacques; Oh, Sangkon

    2012-01-16

    Dendritic cells (DCs) can initiate and shape host immune responses toward either immunity or tolerance by their effects on antigen-specific CD4(+) T cells. DC-asialoglycoprotein receptor (DC-ASGPR), a lectinlike receptor, is a known scavenger receptor. Here, we report that targeting antigens to human DCs via DC-ASGPR, but not lectin-like oxidized-LDL receptor, Dectin-1, or DC-specific ICAM-3-grabbing nonintegrin favors the generation of antigen-specific suppressive CD4(+) T cells that produce interleukin 10 (IL-10). These findings apply to both self- and foreign antigens, as well as memory and naive CD4(+) T cells. The generation of such IL-10-producing CD4(+) T cells requires p38/extracellular signal-regulated kinase phosphorylation and IL-10 induction in DCs. We further demonstrate that immunization of nonhuman primates with antigens fused to anti-DC-ASGPR monoclonal antibody generates antigen-specific CD4(+) T cells that produce IL-10 in vivo. This study provides a new strategy for the establishment of antigen-specific IL-10-producing suppressive T cells in vivo by targeting whole protein antigens to DCs via DC-ASGPR.

  13. The effects of T-cell conditioned media on the induction of dendritic cell (DC1 maturation for effective tumor immunotherapy

    Directory of Open Access Journals (Sweden)

    Asadi M

    2011-04-01

    Full Text Available "n 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Background: Nowadays, dendritic cells (DC are used for tumor immunotherapy as they can induce immune responses against tumor cells. In this research, we comprehensively studied the maturation stimulus addition, PHA-activated T-cell (PHA-TCM conditioned medium, autologous monocyte-conditioned medium (MCM and TNF-α for their ability to promote uniformly mature dendritic cells that elicit T-cell responses."n"nMethods: Plastic adherent monocytes were cultured with granulocyte-macrophage colony stimulating factor (GM-CSF and interleukin-4 (IL-4 for five days and two days with monocyte-conditioned medium (MCM, tumor necrotizing factor-α (TNF-α without TCM (PHA-activated T-cell conditioned medium. Phenotypic and functional analyses were carried out using anti-CD14, anti-CD80, anti-CD86, anti-CD83 monoclonal antibodies. Phagocytic activity, mixed lymphocyte reaction (MLR and cytokine production were also evaluated."n"nResults: The generated dendritic cells had high expression of surface molecules i.e. CD80, CD83, CD86 and HLA-DR. Moreover, the cells had low phagocytic and high T-lymphocyte stimulating activities. Measurement of the produced cytokines showed the generation of type-1 dendritic cells (DC1 in the study."n"nConclusion: The findings indicated that more efficient maturation of dendritic cells could be achieved by the use of PHA-activated T-lymphocyte conditioned medium in the culture medium. The aforesaid supernatant can be used as a maturation factor for the production of efficient

  14. Natural killer (NK): dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumor antigen-specific T cell immunity.

    Science.gov (United States)

    Lee, Steve C; Srivastava, Raghvendra M; López-Albaitero, Andrés; Ferrone, Soldano; Ferris, Robert L

    2011-08-01

    Tumor antigen (TA)-targeted monoclonal antibodies (mAb), trastuzumab, cetuximab, panitumumab, and rituximab, have been among the most successful new therapies in the present generation. Clinical activity is observed as a single agent, or in combination with radiotherapy or chemotherapy, against metastatic colorectal cancer, head and neck cancer, breast cancer, and follicular lymphoma. However, the activity is seen only in a minority of patients. Thus, an intense need exists to define the mechanism of action of these immunoactive mAb. Here, we discuss some of the likely immunological events that occur in treated patients: antibody-dependent cellular cytotoxicity (ADCC), cross talk among immune cells including NK cells and dendritic cells (DCs), and generation of TA-specific T lymphocyte responses. We present evidence supporting the induction of "NK:DC cross talk," leading to priming of TA-specific cellular immunity. These observations show that mAb-mediated NK cell activation can be greatly enhanced by the action of stimulatory cytokines and surface molecules on maturing DC and that NK:DC interaction facilitates the recruitment of both NK cells and DC to the tumor site(s). The cooperative, reciprocal stimulatory activity of both NK cells and DC can modulate both the innate immune response in the local tumor microenvironment and the adaptive immune response in secondary lymphoid organs. These events likely contribute to clinical activity, as well as provide a potential biomarker of response to mAb therapy.

  15. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jin [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Liu, Qiang [Department of Hematology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yang, Jiandong [Department of Hepatobiliary Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Ren, Qinyou [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Cao, Wei [Department of Interventional Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yang, Jingyue; Yu, Zhaocai [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yu, Fang [Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi' an, Shaanxi (China); Wu, Yanlan [Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Shi, Hengjun [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Liu, Wenchao [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China)

    2012-04-27

    A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells.

  16. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    Directory of Open Access Journals (Sweden)

    Jin Zheng

    2012-06-01

    Full Text Available A dendritic cell (DC-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC maturation. The mean fluorescence intensity (MFI of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells.

  17. Fucose-based PAMPs prime dendritic cells for follicular T helper cell polarization via DC-SIGN-dependent IL-27 production.

    Science.gov (United States)

    Gringhuis, Sonja I; Kaptein, Tanja M; Wevers, Brigitte A; van der Vlist, Michiel; Klaver, Elsenoor J; van Die, Irma; Vriend, Lianne E M; de Jong, Marein A W P; Geijtenbeek, Teunis B H

    2014-10-03

    Dendritic cells (DCs) orchestrate antibody-mediated responses to combat extracellular pathogens including parasites by initiating T helper cell differentiation. Here we demonstrate that carbohydrate-specific signalling by DC-SIGN drives follicular T helper cell (TFH) differentiation via IL-27 expression. Fucose, but not mannose, engagement of DC-SIGN results in activation of IKKε, which collaborates with type I IFNR signalling to induce formation and activation of transcription factor ISGF3. Notably, ISGF3 induces expression of IL-27 subunit p28, and subsequent IL-27 secreted by DC-SIGN-primed DCs is pivotal for the induction of Bcl-6(+)CXCR5(+)PD-1(hi)Foxp1(lo) TFH cells, IL-21 secretion by TFH cells and T-cell-dependent IgG production by B cells. Thus, we have identified an essential role for DC-SIGN-induced ISGF3 by fucose-based PAMPs in driving IL-27 and subsequent TFH polarization, which might be harnessed for vaccination design.

  18. Epitope mapping on the dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) pathogen-attachment factor.

    Science.gov (United States)

    Sierra-Filardi, Elena; Estecha, Ana; Samaniego, Rafael; Fernández-Ruiz, Elena; Colmenares, María; Sánchez-Mateos, Paloma; Steinman, Ralph M; Granelli-Piperno, Angela; Corbí, Angel L

    2010-01-01

    DC-SIGN (dendritic cell-specific ICAM-3-grabbing non-integrin) is a myeloid pathogen-attachment factor C-type lectin which recognizes mannose- and fucose-containing oligosaccharide ligands on clinically relevant pathogens. Intracellular signaling initiated upon ligand engagement of DC-SIGN interferes with TLR-initiated signals, and modulates the T cell activating and polarizing ability of antigen-presenting cells. The C-terminal carbohydrate-recognition domain (CRD) of DC-SIGN is preceded by a neck domain composed of eight 23-residue repeats which mediate molecule multimerization, and whose polymorphism correlates with altered susceptibility to SARS and HIV infection. Naturally occurring isoforms and chimaeric molecules, in combination with established recognition properties, were used to define seven structural and functional epitopes on DC-SIGN. Three epitopes mapped to the CRD, one of which is multimerization-dependent and only exposed on DC-SIGN monomers. Epitopes within the neck domain were conformation-independent and unaltered upon molecule multimerization, but were differentially affected by neck domain truncations. Although neck-specific antibodies exhibited lower function-blocking ability, they were more efficient at inducing molecule internalization. Moreover, crosslinking of the different epitopes resulted in distinct levels of microclustering on the cell surface. The identification of independent epitopes on the DC-SIGN molecule might facilitate the design of reagents that modulate the T cell activating and polarizing ability of DC-SIGN-expressing cells without preventing its antigen- and pathogen-recognition capacities.

  19. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1.

    Directory of Open Access Journals (Sweden)

    Marie-Thérèse Melki

    2010-04-01

    Full Text Available Early stages of Human Immunodeficiency Virus-1 (HIV-1 infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK cells and dendritic cells (DCs. Immature DCs (iDCs capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process" at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL-Death Receptor 4 (DR4 pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV. The escape of DC(HIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP and the cellular inhibitor of apoptosis 2 (c-IAP2, induced by NK-DC(HIV cognate interaction. High-mobility group box 1 (HMGB1, an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV. Finally, we demonstrate that restoration of DC(HIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific

  20. Dendritic cells engineered to secrete anti-DcR3 antibody augment cytotoxic T lymphocyte response against pancreatic cancer in vitro

    Science.gov (United States)

    Chen, Jiang; Guo, Xiao-Zhong; Li, Hong-Yu; Zhao, Jia-Jun; Xu, Wen-Da

    2017-01-01

    AIM To investigate the enhanced cytotoxic T lymphocyte responses against pancreatic cancer (PC) in vitro induced by dendritic cells (DCs) engineered to secrete anti-DcR3 monoclonal antibody (mAb). METHODS DCs, T lymphocytes and primary PC cells were obtained from PC patients. DCs were transfected with a designed humanized anti-DcR3 monoclonal antibody heavy and light chain mRNA and/or total tumor RNA (DC-tumor-anti-DcR3 RNA or DC-total tumor RNA) by using electroporation technology. The identification, concentration and function of anti-DcR3 mAb secreted by DC-tumor-anti-DcR3 RNA were determined by western blotting and enzyme-linked immunosorbent assay. After co-culturing of autologous isolated PC cells with target DCs, the effects of secreting anti-DcR3 mAb on RNA-DCs’ viability and apoptosis were assessed by MTT assay and flow cytometry. Analysis of enhanced antigen-specific immune response against PC induced by anti-DcR3 mAb secreting DCs was performed using a 51Cr releasing test. T cell responses induced by RNA-loaded DCs were analyzed by measuring cytokine levels, including IFN-γ, IL-10, IL4, TNF-α and IL-12. RESULTS The anti-DcR3 mAb secreted by DCs reacted with recombinant human DcR3 protein and generated a band with 35 kDa molecular weight. The secreting mAb was transient, peaking at 24 h and becoming undetectable after 72 h. After co-incubation with DC-tumor-anti-DcR3 RNA for designated times, the DcR3 level in the supernatant of autologous PC cells was significantly down-regulated (P < 0.05). DCs secreting anti-DcR3 mAb could improve cell viability and slow down the apoptosis of RNA-loaded DCs, compared with DC-total tumor RNA (P < 0.01). The anti-DcR3 mAb secreted by DC-tumor-anti-DcR3 RNA could enhance the induction of cytotoxic T lymphocytes (CTLs) activity toward RNA-transfected DCs, primary tumor cells, and PC cell lines, compared with CTLs stimulated by DC-total tumor RNA or control group (P < 0.05). Meanwhile, the antigen-specific CTL responses

  1. A prominent role for DC-SIGN+ dendritic cells in initiation and dissemination of measles virus infection in non-human primates.

    Directory of Open Access Journals (Sweden)

    Annelies W Mesman

    Full Text Available Measles virus (MV is a highly contagious virus that is transmitted by aerosols. During systemic infection, CD150(+ T and B lymphocytes in blood and lymphoid tissues are the main cells infected by pathogenic MV. However, it is unclear which cell types are the primary targets for MV in the lungs and how the virus reaches the lymphoid tissues. In vitro studies have shown that dendritic cell (DC C-type lectin DC-SIGN captures MV, leading to infection of DCs as well as transmission to lymphocytes. However, evidence of DC-SIGN-mediated transmission in vivo has not been established. Here we identified DC-SIGN(hi DCs as first target cells in vivo and demonstrate that macaque DC-SIGN functions as an attachment receptor for MV. Notably, DC-SIGN(hi cells from macaque broncho-alveolar lavage and lymph nodes transmit MV to B lymphocytes, providing in vivo support for an important role for DCs in both initiation and dissemination of MV infection.

  2. Immature Dengue Virus Is Infectious in Human Immature Dendritic Cells via Interaction with the Receptor Molecule DC-SIGN

    NARCIS (Netherlands)

    Richter, Mareike K. S.; Da Silva-Voorham, Júlia M.; Torres Pedraza, Silvia; Hoornweg, Tabitha E.; van de Pol, Denise P. I.; Rodenhuis-Zybert, Izabela A.; Wilschut, Jan; Smit, Jolanda M.

    2014-01-01

    Background: Dengue Virus (DENV) is the most common mosquito-borne viral infection worldwide. Important target cells during DENV infection are macrophages, monocytes, and immature dendritic cells (imDCs). DENV-infected cells are known to secrete a large number of partially immature and fully immature

  3. Dendritic cells star in Vancouver

    OpenAIRE

    Klechevsky, Eynav; Kato, Hiroki; Sponaas, Anne-Marit

    2005-01-01

    The fast-moving field of dendritic cell (DC) biology is hard to keep pace with. Here we report on advances from the recent Keystone Symposium, “Dendritic Cells at the Center of Innate and Adaptive Immunity,” organized in Vancouver, BC on Feb. 1–7, 2005 by Anne O'Garra, Jacques Banchereau, and Alan Sher. New insights into the molecular mechanisms of DC function and their influence on immune regulation, their role in infectious and autoimmune disease, and new clinical applications are highlight...

  4. DC-ATLAS : a systems biology resource to dissect receptor specific signal transduction in dendritic cells

    NARCIS (Netherlands)

    Cavalieri, D.; Rivero, D.; Beltrame, L.; Buschow, S.I.; Calura, E.; Rizzetto, L.; Gessani, S.; Gauzzi, M.C.; Reith, W.; Baur, A.; Bonaiuti, R.; Brandizi, M.; Filippo, C. De; D'Oro, U.; Draghici, S.; Dunand-Sauthier, I.; Gatti, E.; Granucci, F.; Gundel, M.; Kramer, M.; Kuka, M.; Lanyi, A.; Melief, C.J.; Montfoort, N. van; Ostuni, R.; Pierre, P.; Popovici, R.; Rajnavolgyi, E.; Schierer, S.; Schuler, G.; Soumelis, V.; Splendiani, A.; Stefanini, I.; Torcia, M.G.; Zanoni, I.; Zollinger, R.; Figdor, C.G.; Austyn, J.M.

    2010-01-01

    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research,

  5. DC-ATLAS : a systems biology resource to dissect receptor specific signal transduction in dendritic cells

    NARCIS (Netherlands)

    Cavalieri, D.; Rivero, D.; Beltrame, L.; Buschow, S.I.; Calura, E.; Rizzetto, L.; Gessani, S.; Gauzzi, M.C.; Reith, W.; Baur, A.; Bonaiuti, R.; Brandizi, M.; Filippo, C. De; D'Oro, U.; Draghici, S.; Dunand-Sauthier, I.; Gatti, E.; Granucci, F.; Gundel, M.; Kramer, M.; Kuka, M.; Lanyi, A.; Melief, C.J.; Montfoort, N. van; Ostuni, R.; Pierre, P.; Popovici, R.; Rajnavolgyi, E.; Schierer, S.; Schuler, G.; Soumelis, V.; Splendiani, A.; Stefanini, I.; Torcia, M.G.; Zanoni, I.; Zollinger, R.; Figdor, C.G.; Austyn, J.M.

    2010-01-01

    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research,

  6. Dendritic cells are stressed out in tumor.

    Science.gov (United States)

    Maj, Tomasz; Zou, Weiping

    2015-09-01

    A recently paper published in Cell reports that dendritic cells (DCs) are dysfunctional in the tumor environment. Tumor impairs DC function through induction of endoplasmic reticulum stress response and subsequent disruption of lipid metabolic homeostasis.

  7. Detection of plasmacytoid dendritic cell (pDC) content in peripheral blood and renal tissue of children with henoch-schonlein purpura and its clinical value

    Institute of Scientific and Technical Information of China (English)

    Rong-Mei Xiang

    2016-01-01

    Objective:To study the plasmacytoid dendritic cell (pDC) content in peripheral blood and renal tissue of children with henoch-schonlein purpura and its clinical value.Methods:30 cases of henoch-schonlein purpura children with renal damage were enrolled in HSPN group, 30 cases of henoch-schonlein purpura children without renal damage were enrolled in NHSPN group, and 30 cases of healthy volunteers were enrolled in the control group. Then contents of pDC, Th2 cell, IL-4, IL-5, IL-10 and IL-13 in peripheral blood as well as contents of pDC, Th17 cell, IL-17, IL-21 and IL-23 in renal tissue of three groups were detected.Results: (1) pDC contents in peripheral blood of HSPN group and NHSPN group were lower than those of control group and the decrease of pDC contents in peripheral blood of HSPN group was more obvious; CD304 contents in renal tissue of HSPN group and NHSPN group were higher than those of control group and the increase of CD304 contents in renal tissue of HSPN group was more obvious; (2) Th2 cell as well as IL-4, IL-5, IL-10 and IL-13 contents in peripheral blood of HSPN group and NHSPN group were higher than those of control group and the increase of related indexes in peripheral blood of HSPN group was more obvious; Th17 cell as well as IL-17, IL-21 and IL-23 contents in kidney tissue of HSPN group were higher than those of NHSPN group; (3) in peripheral blood, pDC content was negatively correlated with Th2 cell level as well as IL-4, IL-5, IL-10 and IL-13 contents, and in renal tissue, pDC content was positively correlated with Th17 cell level as well as IL-17, IL-21 and IL-23 contents. Conclusions:Abnormal pDC content correlates with the pathogenesis of henoch-schonlein purpura, pDC content decreases in peripheral blood and will result in enhancement of Th2 cell function, and pDC content increases in kidney and will result in enhancement of Th17 cell function.

  8. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  9. Natural IgM switches the function of LPS activated murine bone marrow dendritic cells (BMDC) to a “regulatory” DC that suppresses innate inflammation1

    OpenAIRE

    Lobo, Peter I.; Schlegel, Kailo H.; Bajwa, Amandeep; Huang, Liping; Kurmaeva, Elvira; Wang, Binru; Ye, Hong; Tedder, Thomas F.; Kinsey, Gilbert R.; Okusa, Mark D.

    2015-01-01

    We have previously shown that polyclonal natural IgM protects mice from renal IRI by inhibiting the reperfusion inflammatory response. We hypothesized that a potential mechanism involved IgM modulation of dendritic cells as we observed high IgM binding to splenic DC. To test this hypothesis, we pre-treated BMDC with polyclonal murine or human IgM prior to LPS activation and demonstrate that 0.5 × 106 IgM/LPS pretreated BMDC, when injected into WT-B6 mice, 24 hours before renal ischemia, prote...

  10. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  11. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins

    NARCIS (Netherlands)

    Bax, Marieke; Garcia-Vallejo, Juan J.; Jang-Lee, Jihye; North, Simon J.; Gilmartin, Tim J.; Hernandez, Gilberto; Crocker, Paul R.; Leffler, Hakon; Head, Steven R.; Haslam, Stuart M.; Dell, Anne; van Kooyk, Yvette

    2007-01-01

    Dendritic cells (DC) are the most potent APC in the organism. Immature dendritic cells (iDC) reside in the tissue where they capture pathogens whereas mature dendritic cells (mDC) are able to activate T cells in the lymph node. This dramatic functional change is mediated by an important genetic repr

  12. Modulation of tolerogenic dendritic cells and autoimmunity.

    Science.gov (United States)

    Kim, Sun Jung; Diamond, Betty

    2015-05-01

    A key function of dendritic cells (DCs) is to induce either immune tolerance or immune activation. Many new DC subsets are being recognized, and it is now clear that each DC subset has a specialized function. For example, different DC subsets may express different cell surface molecules and respond differently to activation by secretion of a unique cytokine profile. Apart from intrinsic differences among DC subsets, various immune modulators in the microenvironment may influence DC function; inappropriate DC function is closely related to the development of immune disorders. The most exciting recent advance in DC biology is appreciation of human DC subsets. In this review, we discuss functionally different mouse and human DC subsets both in lymphoid organs and non-lymphoid organs, the molecules that regulate DC function, and the emerging understanding of the contribution of DCs to autoimmune diseases.

  13. Targeting vaccines to dendritic cells.

    Science.gov (United States)

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-03-01

    Dendritic cells (DC) are specialized antigen presenting cells (APC) with a remarkable ability to take up antigens and stimulate major histocompatibility complex (MHC)-restricted specific immune responses. Recent discoveries have shown that their role in initiating primary immune responses seems to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC are considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC.

  14. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Aleksandar Dakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors,some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse.

  15. Characterization of CD8+ T-Cell Responses in the Peripheral Blood and Skin Injection Sites of Melanoma Patients Treated with mRNA Electroporated Autologous Dendritic Cells (TriMixDC-MEL

    Directory of Open Access Journals (Sweden)

    Daphné Benteyn

    2013-01-01

    Full Text Available Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL stimulates T-cell responses against the presented tumor-associated antigens (TAAs. In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8+ T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71% patients screened, CD8+ T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8+ T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8+ T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8+ T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.

  16. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    LiWu; AleksandarDakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived calls. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Fit3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118.

  17. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC derived-exosomes: results of thefirst phase I clinical trial

    Directory of Open Access Journals (Sweden)

    Piperno Sophie

    2005-03-01

    Full Text Available Abstract Background DC derived-exosomes are nanomeric vesicles harboring functional MHC/peptide complexes capable of promoting T cell immune responses and tumor rejection. Here we report the feasability and safety of the first Phase I clinical trial using autologous exosomes pulsed with MAGE 3 peptides for the immunization of stage III/IV melanoma patients. Secondary endpoints were the monitoring of T cell responses and the clinical outcome. Patients and methods Exosomes were purified from day 7 autologous monocyte derived-DC cultures. Fifteen patients fullfilling the inclusion criteria (stage IIIB and IV, HLA-A1+, or -B35+ and HLA-DPO4+ leukocyte phenotype, tumor expressing MAGE3 antigen were enrolled from 2000 to 2002 and received four exosome vaccinations. Two dose levels of either MHC class II molecules (0.13 versus 0.40 × 1014 molecules or peptides (10 versus 100 μg/ml were tested. Evaluations were performed before and 2 weeks after immunization. A continuation treatment was performed in 4 cases of non progression. Results The GMP process allowed to harvest about 5 × 1014 exosomal MHC class II molecules allowing inclusion of all 15 patients. There was no grade II toxicity and the maximal tolerated dose was not achieved. One patient exhibited a partial response according to the RECIST criteria. This HLA-B35+/A2+ patient vaccinated with A1/B35 defined CTL epitopes developed halo of depigmentation around naevi, a MART1-specific HLA-A2 restricted T cell response in the tumor bed associated with progressive loss of HLA-A2 and HLA-BC molecules on tumor cells during therapy with exosomes. In addition, one minor, two stable and one mixed responses were observed in skin and lymph node sites. MAGE3 specific CD4+ and CD8+ T cell responses could not be detected in peripheral blood. Conclusion The first exosome Phase I trial highlighted the feasibility of large scale exosome production and the safety of exosome administration.

  18. Fate mapping of dendritic cells

    Directory of Open Access Journals (Sweden)

    Barbara Ursula Schraml

    2015-05-01

    Full Text Available Dendritic cells (DCs are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification.

  19. Detecting Danger: The Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Cayzer, Steve

    2010-01-01

    The Dendritic Cell Algorithm (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, and abstract model of DC behaviour is developed and subsequently used to form an algorithm, the DCA. The abstraction process was facilitated through close collaboration with laboratory- based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population based algorithm, with each agent in the system represented as an 'artificial DC'. Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of p...

  20. Phenotypical and functional characterization of clinical-grade dendritic cells.

    NARCIS (Netherlands)

    Vries, I.J.M. de; Adema, G.J.; Punt, C.J.A.; Figdor, C.G.

    2005-01-01

    Dendritic cells (DC) are the most potent antigen-presenting cells and form a promising new treatment modality. Fully activated DC loaded with antigen are very useful in stimulating immune responses, in particular those to combat cancer. Immature DC can either cause immunological tolerance or induce

  1. CD56 marks human dendritic cell subsets with cytotoxic potential

    NARCIS (Netherlands)

    Roothans, D.; Smits, E.; Lion, E.; Tel, J.; Anguille, S.

    2013-01-01

    Human plasmacytoid and myeloid dendritic cells (DCs), when appropriately stimulated, can express the archetypal natural killer (NK)-cell surface marker CD56. In addition to classical DC functions, CD56+ DCs are endowed with an unconventional cytotoxic capacity.

  2. Dendritic Cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui Wan; Marcel Dupasquier

    2005-01-01

    Dendritic cells (DC) are crucial cells of the immune system, and bridged the essential connection between innate and adaptive immunity. They reside in the periphery as sentinels where they take up antigens. Upon activation,they migrate to lymphoid organs and present there the processed antigens to T cells, thereby activating them and eliciting a potent immune response. Dendritic cells are bone marrow-derived cells, still big controversies exist about their in vivo development. In vitro, DC can be generated from multiple precursor cells, among them lymphoid and myeloid committed progenitors. Although it remains unknown how DC are generated in vivo,studying the functions of in vitro generated DC results in fundamental knowledge of the DC biology with promising applications for future medicine. Therefore, in this review, we present current protocols for the generation of DC from precursors in vitro. We will do this for the mouse system, where most research occurs and for the human system, where research concentrates on implementing DC biology in disease treatments.

  3. Dendritic Cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    HuiWan; MarcelDupasquier

    2005-01-01

    Dendritic cells (DC) are crucial cells of the immune system, and bridged the essential connection between innate and adaptive immunity. They reside in the periphery as sentinels where they take up antigens. Upon activation, they migrate to lymphoid organs and present there the processed antigens to T cells, thereby activating them and eliciting a potent immune response. Dendritic cells are bone marrow-derived cells, still big controversies exist about their in vivo development. In vitro, DC can be generated from multiple precursor cells, among them lymphoid and myeloid committed progenitors. Although it remains unknown how DC are generated in vivo, studying the functions of in vitro generated DC results in fundamental knowledge of the DC biology with promising applications for future medicine. Therefore, in this review, we present current protocols for the generation of DC from precursors in vitro. We will do this for the mouse system, where most research occurs and for the human system, where research concentrates on implementing DC biology in disease treatments. Cellular & Molecular Immunology. 2005;2(1):28-35.

  4. Deficiency of lymph node-resident dendritic cells (DCs) and dysregulation of DC chemoattractants in a malnourished mouse model of Leishmania donovani infection.

    Science.gov (United States)

    Ibrahim, Marwa K; Barnes, Jeffrey L; Osorio, E Yaneth; Anstead, Gregory M; Jimenez, Fabio; Osterholzer, John J; Travi, Bruno L; Ahuja, Seema S; White, A Clinton; Melby, Peter C

    2014-08-01

    Malnutrition is thought to contribute to more than one-third of all childhood deaths via increased susceptibility to infection. Malnutrition is a significant risk factor for the development of visceral leishmaniasis, which results from skin inoculation of the intracellular protozoan Leishmania donovani. We previously established a murine model of childhood malnutrition and found that malnutrition decreased the lymph node barrier function and increased the early dissemination of L. donovani. In the present study, we found reduced numbers of resident dendritic cells (conventional and monocyte derived) but not migratory dermal dendritic cells in the skin-draining lymph nodes of L. donovani-infected malnourished mice. Expression of chemokines and their receptors involved in trafficking of dendritic cells and their progenitors to the lymph nodes was dysregulated. C-C chemokine receptor type 2 (CCR2) and its ligands (CCL2 and CCL7) were reduced in the lymph nodes of infected malnourished mice, as were CCR2-bearing monocytes/macrophages and monocyte-derived dendritic cells. However, CCR7 and its ligands (CCL19 and CCL21) were increased in the lymph node and CCR7 was increased in lymph node macrophages and dendritic cells. CCR2-deficient mice recapitulated the profound reduction in the number of resident (but not migratory dermal) dendritic cells in the lymph node but showed no alteration in the expression of CCL19 and CCL21. Collectively, these results suggest that the malnutrition-related reduction in the lymph node barrier to dissemination of L. donovani is related to insufficient numbers of lymph node-resident but not migratory dermal dendritic cells. This is likely driven by the altered activity of the CCR2 and CCR7 chemoattractant pathways.

  5. Tumor's other immune targets: dendritic cells.

    Science.gov (United States)

    Esche, C; Lokshin, A; Shurin, G V; Gastman, B R; Rabinowich, H; Watkins, S C; Lotze, M T; Shurin, M R

    1999-08-01

    The induction of apoptosis in T cells is one of several mechanisms by which tumors escape immune recognition. We have investigated whether tumors induce apoptosis in dendritic cells (DC) by co-culture of murine or human DC with different tumor cell lines for 4-48 h. Analysis of DC morphological features, JAM assay, TUNEL, caspase-3-like and transglutaminase activity, Annexin V binding, and DNA fragmentation assays revealed a time- and dose-dependent induction of apoptosis in DC by tumor-derived factors. This finding is both effector and target specific. The mechanism of tumor-induced DC apoptosis involved regulation of Bcl-2 and Bax expression. Double staining of both murine and human tumor tissues confirmed that tumor-associated DC undergo apoptotic death in vivo. DC isolated from tumor tissue showed significantly higher levels of apoptosis as determined by TUNEL assay when compared with DC isolated from spleen. These findings demonstrate that tumors induce apoptosis in DC and suggest a new mechanism of tumor escape from immune recognition. DC protection from apoptosis will lead to improvement of DC-based immunotherapies for cancer and other immune diseases.

  6. Crosstalk between dendritic cell subsets and implications for dendritic cell-based anticancer immunotherapy

    NARCIS (Netherlands)

    Bakdash, G.; Schreurs, I.; Schreibelt, G.; Tel, J.

    2014-01-01

    Dendritic cells (DCs) are a family of professional antigen-presenting cells that have an indispensable role in the initiation of innate and adaptive immune responses against pathogens and tumor cells. The DC family is very heterogeneous. Two main types of naturally occurring DCs circulate in periphe

  7. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  8. Modulation of respiratory dendritic cells during Klebsiella pneumonia infection

    OpenAIRE

    Hackstein, Holger; Kranz, Sabine; Lippitsch, Anne; Wachtendorf, Andreas; Kershaw, Olivia; Achim D Gruber; Michel, Gabriela; Lohmeyer, Jürgen; Bein, Gregor; Baal, Nelli; Herold, Susanne

    2013-01-01

    Background: Klebsiella pneumoniae is a leading cause of severe hospital-acquired respiratory tract infections and death but little is known regarding the modulation of respiratory dendritic cell (DC) subsets. Plasmacytoid DC (pDC) are specialized type 1 interferon producing cells and considered to be classical mediators of antiviral immunity. Method: By using multiparameter flow cytometry analysis we have analysed the modulation of respiratory DC subsets after intratracheal Klebsi...

  9. Human dendritic cell DC-SIGN and TLR-2 mediate complementary immune regulatory activities in response to Lactobacillus rhamnosus JB-1.

    Science.gov (United States)

    Konieczna, Patrycja; Schiavi, Elisa; Ziegler, Mario; Groeger, David; Healy, Selena; Grant, Ray; O'Mahony, Liam

    2015-01-01

    The microbiota is required for optimal host development and ongoing immune homeostasis. Lactobacilli are common inhabitants of the mammalian large intestine and immunoregulatory effects have been described for certain, but not all, strains. The mechanisms underpinning these protective effects are beginning to be elucidated. One such protective organism is Lactobacillus rhamnosus JB-1 (Lb. rhamnosus JB-1). Lb. murinus has no such anti-inflammatory protective effects and was used as a comparator organism. Human monocyte-derived dendritic cells (MDDCs) were co-incubated with bacteria and analysed over time for bacterial adhesion and intracellular processing, costimulatory molecule expression, cytokine secretion and induction of lymphocyte polarization. Neutralising antibodies were utilized to identify the responsible MDDC receptors. Lb. rhamnosus JB-1 adhered to MDDCs, but internalization and intracellular processing was significantly delayed, compared to Lb. murinus which was rapidly internalized and processed. Lb. murinus induced CD80 and CD86 expression, accompanied by high levels of cytokine secretion, while Lb. rhamnosus JB-1 was a poor inducer of costimulatory molecule expression and cytokine secretion. Lb. rhamnosus JB-1 primed MDDCs induced Foxp3 expression in autologous lymphocytes, while Lb. murinus primed MDDCs induced Foxp3, T-bet and Ror-γt expression. DC-SIGN was required for Lb. rhamnosus JB-1 adhesion and influenced IL-12 secretion, while TLR-2 influenced IL-10 and IL-12 secretion. Here we demonstrate that the delayed kinetics of bacterial processing by MDDCs correlates with MDDC activation and stimulation of lymphocytes. Thus, inhibition or delay of intracellular processing may be a novel strategy by which certain commensals may avoid the induction of proinflammatory responses.

  10. Human dendritic cell DC-SIGN and TLR-2 mediate complementary immune regulatory activities in response to Lactobacillus rhamnosus JB-1.

    Directory of Open Access Journals (Sweden)

    Patrycja Konieczna

    Full Text Available The microbiota is required for optimal host development and ongoing immune homeostasis. Lactobacilli are common inhabitants of the mammalian large intestine and immunoregulatory effects have been described for certain, but not all, strains. The mechanisms underpinning these protective effects are beginning to be elucidated. One such protective organism is Lactobacillus rhamnosus JB-1 (Lb. rhamnosus JB-1. Lb. murinus has no such anti-inflammatory protective effects and was used as a comparator organism. Human monocyte-derived dendritic cells (MDDCs were co-incubated with bacteria and analysed over time for bacterial adhesion and intracellular processing, costimulatory molecule expression, cytokine secretion and induction of lymphocyte polarization. Neutralising antibodies were utilized to identify the responsible MDDC receptors. Lb. rhamnosus JB-1 adhered to MDDCs, but internalization and intracellular processing was significantly delayed, compared to Lb. murinus which was rapidly internalized and processed. Lb. murinus induced CD80 and CD86 expression, accompanied by high levels of cytokine secretion, while Lb. rhamnosus JB-1 was a poor inducer of costimulatory molecule expression and cytokine secretion. Lb. rhamnosus JB-1 primed MDDCs induced Foxp3 expression in autologous lymphocytes, while Lb. murinus primed MDDCs induced Foxp3, T-bet and Ror-γt expression. DC-SIGN was required for Lb. rhamnosus JB-1 adhesion and influenced IL-12 secretion, while TLR-2 influenced IL-10 and IL-12 secretion. Here we demonstrate that the delayed kinetics of bacterial processing by MDDCs correlates with MDDC activation and stimulation of lymphocytes. Thus, inhibition or delay of intracellular processing may be a novel strategy by which certain commensals may avoid the induction of proinflammatory responses.

  11. Dendritic Cells as Danger-Recognizing Biosensors

    Directory of Open Access Journals (Sweden)

    Seokmann Hong

    2009-08-01

    Full Text Available Dendritic cells (DCs are antigen presenting cells that are characterized by a potent capacity to initiate immune responses. DCs comprise several subsets with distinct phenotypes. After sensing any danger(s to the host via their innate immune receptors such as Toll-like receptors, DCs become mature and subsequently present antigens to CD4+ T cells. Since DCs possess the intrinsic capacity to polarize CD4+ helper cells, it is critical to understand the immunological roles of DCs for clinical applications. Here, we review the different DC subsets, their danger-sensing receptors and immunological functions. Furthermore, the cytokine reporter mouse model for studying DC activation is introduced.

  12. Divergent Effects of Dendritic Cells on Pancreatitis

    Science.gov (United States)

    2015-09-01

    cells, Gr1+ inflammatory monocytes and neutrophils, or TNF production were induced to develop chronic pancreatitis in the context of DC overexpansion...Z. Yao, W. Cao, and Y.J. Liu. 2005. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp...Public reporting burden for this collection of information is estimated to average 1 hour per response , including the time for reviewing instructions

  13. Dendritic Cells for Anomaly Detection

    CERN Document Server

    Greensmith, Julie; Aickelin, Uwe

    2010-01-01

    Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human signals from the host tissue and correlate these signals with proteins know as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.

  14. Mycobacterium avium subspecies impair dendritic cell maturation.

    Science.gov (United States)

    Basler, Tina; Brumshagen, Christina; Beineke, Andreas; Goethe, Ralph; Bäumer, Wolfgang

    2013-10-01

    Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease, a chronic, granulomatous enteritis of ruminants. Dendritic cells (DC) of the gut are ideally placed to combat invading mycobacteria; however, little is known about their interaction with MAP. Here, we investigated the interaction of MAP and the closely related M. avium ssp. avium (MAA) with murine DC and the effect of infected macrophages on DC maturation. The infection of DC with MAP or MAA induced DC maturation, which differed to that of LPS as maturation was accompanied by higher production of IL-10 and lower production of IL-12. Treatment of maturing DC with supernatants from mycobacteria-infected macrophages resulted in impaired DC maturation, leading to a semi-mature, tolerogenic DC phenotype expressing low levels of MHCII, CD86 and TNF-α after LPS stimulation. Though the cells were not completely differentiated they responded with an increased IL-10 and a decreased IL-12 production. Using recombinant cytokines we provide evidence that the semi-mature DC phenotype results from a combination of secreted cytokines and released antigenic mycobacterial components of the infected macrophage. Our results indicate that MAP and MAA are able to subvert DC function directly by infecting and indirectly via the milieu created by infected macrophages.

  15. The known unknowns of the human dendritic cell network

    Directory of Open Access Journals (Sweden)

    Mélanie eDurand

    2015-03-01

    Full Text Available Dendritic cells (DC initiate and orient immune responses and comprise several subsets that display distinct phenotypes and properties. Most of our knowledge of DC subsets biology is based on mouse studies. In the past few years, the alignment of the human DC network with the mouse DC network has been the focus of much attention. Although comparative phenotypic and transcriptomic analysis have shown a high level of homology between mouse and human DC subsets, significant differences in phenotype and function have also been evidenced. Here we review recent advances in our understanding of the human DC network and discuss some remaining gaps and future challenges of the human DC field.

  16. Peptide-loaded dendritic cells prime and activate MHC-class I-restricted T cells more efficiently than protein-loaded cross-presenting DC

    DEFF Research Database (Denmark)

    Met, Ozcan; Buus, Søren; Claesson, Mogens H

    2003-01-01

    -pulsed DC. Moreover, SIINFEKL-loaded DC were up to 50 times more efficient than DC-pulsed with OVA-protein for generation of an H-2K(b)-restricted response. Immunization of mice with SIINFEKL-loaded DC resulted in a much stronger H-2K(b)-restricted response than immunization with OVA-pulsed DC. These data...

  17. Molecular Mechanisms Regulating Human Dendritic Cell Development, Survival and Function

    NARCIS (Netherlands)

    L. van de Laar (Lianne)

    2011-01-01

    textabstractDendritic cells (DC) are professional antigen presenting cells (APC) with a dual function in the immune system. On the one hand, these specialized leukocytes are equipped to alert the immune system to invading pathogens or other danger signals. On the other, DC can promote tolerogenic re

  18. Novel murine dendritic cell lines: a powerful auxiliary tool for dendritic cell research

    Directory of Open Access Journals (Sweden)

    Silvia A Fuertes Marraco

    2012-11-01

    Full Text Available Research in vitro facilitates discovery, screening and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice.In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.

  19. Targeting dendritic cells in vivo for cancer therapy

    Directory of Open Access Journals (Sweden)

    Irina eCaminschi

    2012-02-01

    Full Text Available Monoclonal antibodies that recognise cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC for induction of immune responses. The encouraging anti-tumour immunity elicited using this immunisation strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialisation of DC-subsets, the immunological outcomes of targeting different DC-subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumour immunity. Finally, we review preclinical experiments and the progress towards targeting human DC in vivo.

  20. Murid herpesvirus-4 exploits dendritic cells to infect B cells.

    Science.gov (United States)

    Gaspar, Miguel; May, Janet S; Sukla, Soumi; Frederico, Bruno; Gill, Michael B; Smith, Christopher M; Belz, Gabrielle T; Stevenson, Philip G

    2011-11-01

    Dendritic cells (DCs) play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4), infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells.

  1. Human XCR1+ Dendritic Cells Derived In Vitro from CD34+ Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells

    OpenAIRE

    S. Balan; Ollion, V.; Colletti, N.; Chelbi, R.; Montanana-Sanchis, F.; LIU, H.; Vu Manh, T.-P.; Sanchez, C.; Savoret, J.; Perrot, I.; Doffin, A.-C.; Fossum, E.; Bechlian, D.; Chabannon, C.; Bogen, B

    2014-01-01

    Human monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1+ DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1+ human DC. Assessment of the immunoactivation potential of XCR1+ human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart. We report in this study a protocol generating both XCR1+ and XCR1− human DC in CD3...

  2. Viruses, dendritic cells and the lung

    Directory of Open Access Journals (Sweden)

    Graham Barney S

    2001-06-01

    Full Text Available Abstract The interaction between viruses and dendritic cells (DCs is varied and complex. DCs are key elements in the development of a host response to pathogens such as viruses, but viruses have developed survival tactics to either evade or diminish the immune system that functions to kill and eliminate these micro-organisms. In the present review we summarize current concepts regarding the function of DCs in the immune system, our understanding of how viruses alter DC function to attenuate both the virus-specific and global immune response, and how we may be able to exploit DC function to prevent or treat viral infections.

  3. Semaphorin 7A Promotes Chemokine-Driven Dendritic Cell Migration

    NARCIS (Netherlands)

    van Rijn, Anoek; Paulis, Leonie; te Riet, Joost; Vasaturo, Angela; Reinieren-Beeren, Inge; van der Schaaf, Alie; Kuipers, Arthur J.; Schulte, Luuk P.; Jongbloets, Bart C.; Pasterkamp, R. Jeroen; Figdor, Carl G.; van Spriel, Annemiek B.; Buschow, Sonja I.

    2016-01-01

    Dendritic cell (DC) migration is essential for efficient host defense against pathogens and cancer, as well as for the efficacy of DC-based immunotherapies. However, the molecules that induce the migratory phenotype of DCs are poorly defined. Based on a largescale proteome analysis of maturing DCs,

  4. Harnessing human plasmacytoid dendritic cells as professional APCs

    NARCIS (Netherlands)

    Tel, J.; Leun, A.M. van der; Figdor, C.G.; Torensma, R.; Vries, I.J.M. de

    2012-01-01

    The plasmacytoid dendritic cell (pDC) constitutes a unique DC subset that links the innate and adaptive arm of the immune system. Whereas the unique capability of pDCs to produce large amounts of type I IFNs in response to pathogen recognition is generally accepted,their antigen-presenting function

  5. Monocyte-derived dendritic cells in bipolar disorder

    NARCIS (Netherlands)

    Knijff, EM; Ruwhof, C; de Wit, HJ; Kupka, RW; Vonk, R; Akkerhuis, GW; Nolen, WA; Drexhage, HA

    2006-01-01

    Background: Dendritic cells (DC) are key regulators of the immune system, which is compromised in patients with bipolar disorder. We sought to study monocyte-derived DC in bipolar disorder. Methods: Monocytes purified from blood collected from DSM-IV bipolar disorder outpatients (n = 53, 12 without

  6. Harnessing dendritic cells in inflammatory skin diseases.

    Science.gov (United States)

    Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O

    2011-02-01

    The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies.

  7. Clinical significance of circulating dendritic cells in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    T. Robak

    1992-01-01

    Full Text Available DENDRITIC cells are a complex group of mainly bone-marrow-derived leukocytes that play a role in autoimmune diseases. The total number of circulating dendritic cells (tDC, and their plasmacytoid dendritic cell (pDC and myeloid dendritic cell (mDC1 and mDC2 subpopulations were assessed using flow cytometry. The number of tDC and their subsets were significantly lower in systemic lupus erythematosus patients than in the control group. The count of tDC and their subsets correlated with the number of T cells. The number of tDC and pDC subpopulation were lower in the patients with lymphopenia and leucopoenia than in the patients without these symptoms. Our data suggest that fluctuations in blood dendritic cell count in systemic lupus erythematosus patients are much more significant in pDC than in mDC, what may be caused by their migration to the sites of inflammation including skin lesions. Positive correlation between dendritic cell number and TCD4+, TCD8+ and CD19+ B cells, testify of their interactions and influence on SLE pathogenesis. The association between dendritic cell number and clinical features seems to be less clear.

  8. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells.

    Science.gov (United States)

    Balan, Sreekumar; Ollion, Vincent; Colletti, Nicholas; Chelbi, Rabie; Montanana-Sanchis, Frédéric; Liu, Hong; Vu Manh, Thien-Phong; Sanchez, Cindy; Savoret, Juliette; Perrot, Ivan; Doffin, Anne-Claire; Fossum, Even; Bechlian, Didier; Chabannon, Christian; Bogen, Bjarne; Asselin-Paturel, Carine; Shaw, Michael; Soos, Timothy; Caux, Christophe; Valladeau-Guilemond, Jenny; Dalod, Marc

    2014-08-15

    Human monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1(+) DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1(+) human DC. Assessment of the immunoactivation potential of XCR1(+) human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart. We report in this study a protocol generating both XCR1(+) and XCR1(-) human DC in CD34(+) progenitor cultures (CD34-DC). Gene expression profiling, phenotypic characterization, and functional studies demonstrated that XCR1(-) CD34-DC are similar to canonical MoDC, whereas XCR1(+) CD34-DC resemble XCR1(+) blood DC (bDC). XCR1(+) DC were strongly activated by polyinosinic-polycytidylic acid but not LPS, and conversely for MoDC. XCR1(+) DC and MoDC expressed strikingly different patterns of molecules involved in inflammation and in cross-talk with NK or T cells. XCR1(+) CD34-DC but not MoDC efficiently cross-presented a cell-associated Ag upon stimulation by polyinosinic-polycytidylic acid or R848, likewise to what was reported for XCR1(+) bDC. Hence, it is feasible to generate high numbers of bona fide XCR1(+) human DC in vitro as a model to decipher the functions of XCR1(+) bDC and as a potential source of XCR1(+) DC for clinical use.

  9. Functional changes of dendritic cells in hypersensivity reactions to amoxicillin

    Directory of Open Access Journals (Sweden)

    C.M.F. Lima

    2010-10-01

    Full Text Available A better understanding of dendritic cell (DC involvement in responses to haptenic drugs is needed, because it represents a possible approach to the development of an in vitro test, which could identify patients prone to drug allergies. There are two main DC subsets: plasmacytoid DC (pDC and myeloid DC (mDC. β-lactams form hapten-carrier conjugates and may provide a suitable model to study DC behavior in drug allergy reactions. It has been demonstrated that drugs interact differently with DC in drug allergic and non-allergic patients, but there are no studies regarding these subsets. Our aim was to assess the functional changes of mDC and pDC harvested from an amoxicillin-hypersensitive 32-year-old woman who experienced a severe maculopapular exanthema as reflected in interleukin-6 (IL-6 production after stimulation with this drug and penicillin. We also aim to demonstrate, for the first time, the feasibility of this method for dendritic cell isolation followed by in vitro stimulation for studies of drug allergy physiopathology. DC were harvested using a double Percoll density gradient, which generates a basophil-depleted cell (BDC suspension. Further, pDC were isolated by blood DC antigen 4-positive magnetic selection and gravity filtration through magnetized columns. After stimulation with amoxicillin, penicillin and positive and negative controls, IL-6 production was measured by ELISA. A positive dose-response curve for IL-6 after stimulation with amoxicillin and penicillin was observed for pDC, but not for mDC or BDC suspension. These preliminary results demonstrate the feasibility of this methodology to expand the knowledge of the effect of dendritic cell activation by drug allergens.

  10. Deciphering dendritic cell heterogenity in immunity

    Directory of Open Access Journals (Sweden)

    Michaël eChopin

    2012-02-01

    Full Text Available Dendritic cells (DCs are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These finding open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now set the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  11. Transcriptional regulation of dendritic cell diversity.

    Science.gov (United States)

    Chopin, Michaël; Allan, Rhys S; Belz, Gabrielle T

    2012-01-01

    Dendritic cells (DCs) are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration, and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These findings open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle - identification of similar DC populations in mouse and man - now sets the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  12. Phenotype comparison between bone marrow derived dendritic cell and DC2.4 cell stimulated with antigen from Schistosoma japonicum%血吸虫抗原刺激小鼠骨髓来源的树突状细胞与DC2.4细胞的表型比较

    Institute of Scientific and Technical Information of China (English)

    李小红; 曹建平; 汤林华; 王胜军; 成静

    2011-01-01

    目的 研究比较小鼠树突状细胞DC2.4和骨髓来源树突状细胞(bone marrow derived dendritic cell,BMDC)经血吸虫抗原谷胱甘肽转移酶(GST)刺激后表面分子的表达异同.方法 骨髓来源的细胞经白介素4(interleukin 4,IL-4)、粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colonystimulating factor,GM-CSF)诱导培养,获得树突状细胞.常规方法培养DC2.4.体外用日本血吸虫抗原GST刺激前述两种细胞,以PBS和脂多糖(lipopolysaccharide,LPS)作对照,流式细胞仪检测细胞表面分子CD40、CDSO、CD86的平均荧光强度,并进行统计学分析.结果 日本血吸虫抗原GST刺激BMDC后,表面分子CD40、CD80、CD86的平均荧光强度依次为100.39、42.38、170.83,与PBS对照组比较,CD40无明显变化,而CD80、CD86表达上调(P<0.01);GST刺激DC2.4后,细胞表面分子CD40、CD80、CD86的平均荧光强度依次为23.73、72.13、59.58,与PBS对照组比较,CD40和CD86表达上调(P<0.01),而CD80变化不明显.结论 DC2.4与BMDC经日本血吸虫抗原刺激后表面分子的表达变化不同.%Objective To compare the phenotypes of bone marrow derived dendritic cell(BMDC)and DC2.4 cell stimulated with GST from Schistosoma japonicum.Methods Bone marrow cells were cultured in the presence of IL-4 and GM-CSF to induce dendritic cells.DC2.4 cells were cultured as routine.Both cells were stimulated with GST and the expressions of CD40,CD80 and CD86 on the cells'surface were analyzed by FACS,using PBS and lipopolysaccharide as controls. Results After stimulating with GST,the means of fluorescence intensity(MFI)for CD40,CD80 and CD86 on BMDC surface were 100.39,42.38 and 170.83,respectively.Compared with PBS control,the MFI of CD80 and CD86 on BMDC,but not CD40,enhanced significantly.The MFIs of CD40.CD80 and CD86 on DC2.4 loaded by GST were 23.73,72.13 and 59.58 respectively.Compared with PBS control,the expressions of CD40 and CD86 enhanced significantly after schistosome

  13. Receptor-Dependent Coronavirus Infection of Dendritic Cells

    Science.gov (United States)

    Turner, Brian C.; Hemmila, Erin M.; Beauchemin, Nicole; Holmes, Kathryn V.

    2004-01-01

    In several mammalian species, including humans, coronavirus infection can modulate the host immune response. We show a potential role of dendritic cells (DC) in murine coronavirus-induced immune modulation and pathogenesis by demonstrating that the JAW SII DC line and primary DC from BALB/c mice and p/p mice with reduced expression of the murine coronavirus receptor, murine CEACAM1a, are susceptible to murine coronavirus infection by a receptor-dependent pathway. PMID:15113927

  14. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero.

    NARCIS (Netherlands)

    Breitling, L.P.; Fendel, R.; Mordmueller, B.; Adegnika, A.A.; Kremsner, P.G.; Luty, A.J.F.

    2006-01-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring o

  15. Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro

    NARCIS (Netherlands)

    Jones, CA; Fernandez, M; Herc, K; Bosnjak, L; Miranda-Saksena, M; Boadle, RA; Cunningham, A

    2003-01-01

    Dendritic cells (DC) are critical for stimulation of naive T cells. Little is known about the effect of herpes simplex virus type 2 (HSV-2) infection on DC structure or function or if the observed effects of HSV-1 on human DC are reproduced in murine DC. Here, we demonstrate that by 12 h

  16. Loss of CD103~+ intestinal dendritic cells during colonic inflammation

    Institute of Scientific and Technical Information of China (English)

    Ulrike; G; Strauch; Nicole; Grunwald; Florian; Obermeier; Sonja; Gürster; Heiko; C; Rath

    2010-01-01

    AIM:To investigate possible differences in dendritic cells(DC)within intestinal tissue of mice before and after induction of colitis. METHODS:Mucosal DC derived from intestinal tissue,as well as from mesenteric lymph nodes and spleen,were analyzed by fluorescence activated cell sorting(FACS) analysis.Supernatants of these cells were analyzed for secretion of different pro-and anti-inflammatory cytokines. Immunohistochemistry and immunofluorescence were performed on cryosections of mucosal tissue derived fro...

  17. Dendritic cells modified by vitamin D

    DEFF Research Database (Denmark)

    Pedersen, Ayako Wakatsuki; Claesson, Mogens Helweg; Zocca, Mai-Britt

    2011-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell ...... and the optimal frequency, dose, and route of DC administration to achieve therapeutic effects in humans, adoptive VD3-DC transfer represents one of the most promising approaches to future treatment of autoimmune diseases.......Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell...... costimulatory molecules and hampered IL-12 production. These VD3-modulated DCs induce T cell tolerance in vitro using multiple mechanisms such as rendering T cells anergic, dampening of Th1 responses, and recruiting and differentiating regulatory T cells. Due to their ability to specifically target pathological...

  18. Avian dendritic cells: Phenotype and ontogeny in lymphoid organs.

    Science.gov (United States)

    Nagy, Nándor; Bódi, Ildikó; Oláh, Imre

    2016-05-01

    Dendritic cells (DC) are critically important accessory cells in the innate and adaptive immune systems. Avian DCs were originally identified in primary and secondary lymphoid organs by their typical morphology, displaying long cell processes with cytoplasmic granules. Several subtypes are known. Bursal secretory dendritic cells (BSDC) are elongated cells which express vimentin intermediate filaments, MHC II molecules, macrophage colony-stimulating factor 1 receptor (CSF1R), and produce 74.3+ secretory granules. Avian follicular dendritic cells (FDC) highly resemble BSDC, express the CD83, 74.3 and CSF1R molecules, and present antigen in germinal centers. Thymic dendritic cells (TDC), which express 74.3 and CD83, are concentrated in thymic medulla while interdigitating DC are found in T cell-rich areas of secondary lymphoid organs. Avian Langerhans cells are a specialized 74.3-/MHC II+ cell population found in stratified squamous epithelium and are capable of differentiating into 74.3+ migratory DCs. During organogenesis hematopoietic precursors of DC colonize the developing lymphoid organ primordia prior to immigration of lymphoid precursor cells. This review summarizes our current understanding of the ontogeny, cytoarchitecture, and immunophenotype of avian DC, and offers an antibody panel for the in vitro and in vivo identification of these heterogeneous cell types.

  19. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model

    DEFF Research Database (Denmark)

    Foged, Camilla; Brodin, Birger; Frøkjær, Sven;

    2005-01-01

    Current vaccine development includes optimization of antigen delivery to antigen presenting cells, such as dendritic cells (DC). Particulate systems have attracted increasing attention in the development of vaccine delivery systems. In the present study, we investigated DC uptake of model...

  20. Dengue tropism for macrophages and dendritic cells : the host cell effect

    NARCIS (Netherlands)

    Flipse, Jacky; Torres, Silvia; Diosa-Toro, Mayra; van der Ende-Metselaar, Heidi; Herrera-Rodriguez, Jose; Urcuqui-Inchima, Silvio; Huckriede, Anke; Rodenhuis-Zybert, Izabela A; Smit, Jolanda M

    2016-01-01

    Dengue virus infects immune cells, including monocytes, macrophages and dendritic cells (DC). We compared virus infectivity in macrophages and DC, and found that the virus-origin determined the cell tropism of progeny virus. The highest efficiency of re-infection was seen for macrophage-derived deng

  1. Fast generation of dendritic cells

    DEFF Research Database (Denmark)

    Kvistborg, P; Bøgh, Marie; Claesson, M H

    2009-01-01

    we have developed fast DC protocol by comparing two different fast DC protocols with SDDC. DC were evaluated by FACS analysis, and the optimal profile was considered: CD14(low), CD80(high), CD83(high), CD86(high), CCR7(high), HLA class I and II(high). FACS profiles were used as the selection criteria...... together with yield and morphology. Two fast DC protocols fulfilled these criteria and were selected for functional analysis. Our results demonstrate that DC generated within 5days or 48h are comparable with SDDC both phenotypically and functionally. However, we found that 48h DC were more susceptible than...... SDDC to the IL-10 inducing stimulus of TLR ligands (R848 and LPS). Thus to determine the clinical relevance of fast DC protocols in cancer settings, small phase I trials should be conducted monitoring regulatory T cells carefully....

  2. Tolerogenic dendritic cells for regulatory T cell induction in man

    Directory of Open Access Journals (Sweden)

    Verena eRaker

    2015-11-01

    Full Text Available Dendritic cells are (DC highly specialized professional antigen-presenting cells (APC that regulate immune responses, maintaining the balance between tolerance and immunity. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, inhibition of memory T cell responses, T cell anergy and induction of regulatory T cells. These properties have led to the analysis of human tolerogenic DC as a therapeutic strategy for induction or re-establishment of tolerance. In the recent years, numerous protocols for the generation of human tolerogenic DC have been developed and their tolerogenic mechanisms, including induction of regulatory T cells, are relatively well understood. Phase I trials have been conducted in autoimmune disease, with results that emphasize the feasibility and safety of treatments with tolerogenic DC. Therefore, the scientific rationale for the use of tolerogenic DC therapy in the fields of transplantation medicine and allergic and autoimmune diseases is strong. This review will give an overview on efforts and protocols to generate human tolerogenic DC with focus on IL-10-modulated DC as inducers of regulatory T cells and discuss their clinical applications and challenges faced in further developing this form of immunotherapy.

  3. Dendritic cells a double-edge sword in autoimmune responses

    Directory of Open Access Journals (Sweden)

    Giada eAmodio

    2012-08-01

    Full Text Available Dendritic cells (DC are antigen-presenting cells that play a pivotal role in regulating innate and adaptive immune responses. In autoimmunity, DC act as a double-edged sword since on one hand they initiate adaptive self-reactive responses and on the other they play a pivotal role in promoting and maintaining tolerance. Thus, DC are the most important cells in either triggering self-specific responses or in negatively regulating auto-reactive responses. DC in the steady state or specialized subsets of DC, named tolerogenic DC, are involved in the latter function. Clinical and experimental evidence indicate that prolonged presentation of self-antigens by DC is crucial for the development of destructive autoimmune diseases, and defects in tolerogenic DC functions contribute to eradication of self-tolerance. In recent years, DC have emerged as therapeutic targets for limiting their immunogenicity against self-antigens, while tolerogenic DC have been conceived as therapeutic tools to restore tolerance. The purpose of this review is to give a general overview of the current knowledge on the pathogenic role of DC in patients affected by autoimmune diseases. In addition, the protective role of tolerogenic DC will be addressed. The currently applied strategies to block immune activation or to exploit the tolerogenic potential of DC will be discussed.

  4. IL-10 control of dendritic cells in the skin

    NARCIS (Netherlands)

    B.E. Clausen (Bjorn); M.J.H. Girard-Madoux (Mathilde)

    2013-01-01

    textabstractInterleukin-10 (IL-10) is a potent immunomodulatory cytokine, whose cellular targets have not yet been precisely identified. Mice bearing a dendritic cell (DC)-specific defect in the IL-10 receptor mice exhibit exaggerated T-cell reactivation in the skin, highlighting a key function of D

  5. Phenotypic, ultra-structural and functional characterization of bovine peripheral blood dendritic cell subsets

    Science.gov (United States)

    Dendritic cells (DC) are multifunctional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets...

  6. Metabolism Is Central to Tolerogenic Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Wen Jing Sim

    2016-01-01

    Full Text Available Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential.

  7. The Deterministic Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    The Dendritic Cell Algorithm is an immune-inspired algorithm orig- inally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good when applied to large real-time datasets, it is difficult to anal- yse due to the number of random-based elements. In this paper a deterministic version of the algorithm is proposed, implemented and tested using a port scan dataset to provide a controllable system. This version consists of a controllable amount of parameters, which are experimented with in this paper. In addition the effects are examined of the use of time windows and variation on the number of cells, both which are shown to influence the algorithm. Finally a novel metric for the assessment of the algorithms output is introduced and proves to be a more sensitive metric than the metric used with the original Dendritic Cell Algorithm.

  8. Dendritic cell-development in steady-state and inflammation

    OpenAIRE

    Schmid, Michael Alexander

    2010-01-01

    Dendritic cells (DC), the major antigen-presenting cells, continuously need to be regenerated from bone marrow (BM) hematopoietic stem and progenitor cells (HSPC). What intermediate progenitors exist on the way to DC generation and what external factors act on these in steady-state and during inflammation, has not been addressed in detail. Flt3L is a non-redundant cytokine in DC development and the generation of DCs was shown to proceed along both Flt3+ common lymphoid and common myeloid prog...

  9. Targeting vaccines to dendritic cells

    DEFF Research Database (Denmark)

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-01-01

    to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC...... are considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug...... delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC....

  10. Dendritic cell SIRPα regulates homeostasis of dendritic cells in lymphoid organs.

    Science.gov (United States)

    Washio, Ken; Kotani, Takenori; Saito, Yasuyuki; Respatika, Datu; Murata, Yoji; Kaneko, Yoriaki; Okazawa, Hideki; Ohnishi, Hiroshi; Fukunaga, Atsushi; Nishigori, Chikako; Matozaki, Takashi

    2015-06-01

    Signal regulatory protein α (SIRPα), an immunoglobulin superfamily protein that is expressed predominantly in myeloid lineage cells such as dendritic cells (DCs) or macrophages, mediates cell-cell signaling. In the immune system, SIRPα is thought to be important for homeostasis of DCs, but it remains unclear whether SIRPα intrinsic to DCs is indeed indispensable for such functional role. Thus, we here generated the mice, in which SIRPα was specifically ablated in CD11c(+) DCs (Sirpa(Δ) (DC) ). Sirpa(Δ) (DC) mice manifested a marked reduction of CD4(+) CD8α(-) conventional DCs (cDCs) in the secondary lymphoid organs, as well as of Langerhans cells in the epidermis. Such reduction of cDCs in Sirpa(Δ) (DC) mice was comparable to that apparent with the mice, in which SIRPα was systemically ablated. Expression of SIRPα in DCs was well correlated with that of either endothelial cell-selective adhesion molecule (ESAM) or Epstein-Barr virus-induced molecule 2 (EBI2), both of which were also implicated in the regulation of DC homeostasis. Indeed, ESAM(+) or EBI2(+) cDCs were markedly reduced in the spleen of Sirpa(Δ) (DC) mice. Thus, our results suggest that SIRPα intrinsic to CD11c(+) DCs is essential for homeostasis of cDCs in the secondary lymphoid organs and skin.

  11. Monocyte derived dendritic cells generated by IFN-α acquire mature dendritic and natural killer cell properties as shown by gene expression analysis

    OpenAIRE

    Czibere Akos; Winter Meike; Diaz Blanco Elena; Papewalis Claudia; Schott Matthias; Maihöfer Dagmar; Kronenwett Ralf; Safaian Nancy; Korthals Mark; Haas Rainer; Kobbe Guido; Fenk Roland

    2007-01-01

    Abstract Background Dendritic cell (DC) vaccines can induce antitumor immune responses in patients with malignant diseases, while the most suitable DC culture conditions have not been established yet. In this study we compared monocyte derived human DC from conventional cultures containing GM-CSF and IL-4/TNF-α (IL-4/TNF-DC) with DC generated by the novel protocol using GM-CSF and IFN-α (IFN-DC). Methods To characterise the molecular differences of both DC preparations, gene expression profil...

  12. Bone marrow-derived dendritic cells.

    Science.gov (United States)

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  13. Cytokine-producing dendritic cells in the pathogenesis of inflammatory skin diseases

    OpenAIRE

    Johnson-Huang, Leanne M.; McNutt, N. Scott; Krueger, James G.; Lowes, Michelle A.

    2009-01-01

    Inflammatory skin diseases can be examined from many viewpoints. In this review, we consider three distinct cutaneous inflammatory diseases from the point of view of their major lesional dendritic cell (DC) subpopulations. The DC populations considered are Langerhans cells, myeloid DCs, and plasmacytoid DCs (pDCs), with specific attention to the presence and role of the inflammatory counterparts of these cells. From such a “dendritic cell-centric” focus, psoriasis, atopic dermatitis (AD), and...

  14. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  15. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    Science.gov (United States)

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.

  16. Human Dendritic Cell Functional Specialization in Steady-State and Inflammation

    OpenAIRE

    Arjan eBoltjes; Femke eVan Wijk

    2014-01-01

    Dendritic cells (DC) represent a heterogeneous population of antigen-presenting cells that are crucial in initiating and shaping immune responses. Although all DC are capable of antigen-uptake, processing, and presentation to T cells, DC subtypes differ in their origin, location, migration patterns, and specialized immunological roles. While in recent years, there have been rapid advances in understanding DC subset ontogeny, development, and function in mice, relatively little is known about ...

  17. Comparative analysis of canine monocyte- and bone-marrow-derived dendritic cells

    OpenAIRE

    Ricklin Gutzwiller, Meret Elisabeth; Moulin, Hervé Raphaël; Zurbriggen, Andreas; Roosje, Petra; Summerfield, Artur

    2010-01-01

    International audience; Dendritic cells (DC) represent a heterogeneous cell family of major importance for innate immune responses against pathogens and antigen presentation during infection, cancer, allergy and autoimmunity. The aim of the present study was to characterize canine DC generated in vitro with respect to their phenotype, responsiveness to toll-like receptor (TLR) ligands and T-cell stimulatory capacity. DC were derived from monocytes (MoDC) and from bone marrow hematopoietic cel...

  18. Dendritic cells overexpressing Fas-ligand induce pulmonary vasculitis in mice

    NARCIS (Netherlands)

    Buonocore, S; Flamand, [No Value; Claessen, N; Heeringa, P; Goldman, M; Florquin, S

    2004-01-01

    Dendritic cells (DC) genetically engineered to express Fas (CD95) ligand (FasL-DC) have been proposed as immunotherapeutic tools to induce tolerance to allografts. However, we and others recently showed that FasL-DC elicit a vigorous inflammatory response involving granulocytes and can promote Th1-t

  19. Dendritic Cells from Peyer's Patches and Mesenteric Lymph Nodes Differ from Spleen Dendritic Cells in their Response to Commensal Gut Bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Frøkiær, Hanne

    2008-01-01

    in in vitro-generated DC by L. acidophilus. Similar inhibition was observed in splenic DC, but not in MLN DC. MLN cells responded to bacterial stimulation with higher IFN-gamma production than spleen cells, possibly due to the presence of more responsive natural killer cells. Commensal bacteria therefore play......Commensal gut bacteria have potent effects on the immune system, which are partially mediated by intestinal dendritic cells (DC). Distinct commensals confer different properties to in vitro-generated DC. The aim of the present study was to reveal strain-dependent maturation patterns in primary DC....... Expression of CCR7 and CD103 on the surface of MLN DC, necessary for the induction of gut-homing regulatory T cells, increased with stimulation by Gram-positive commensals. Bacteria-dependent cytokine production (IL-6, IL-10 and TNF-alpha) was similar in spleen and MLN DC, and contaminant cells in these DC...

  20. Characterization of Interleukin-15-Transpresenting Dendritic Cells for Clinical Use

    Directory of Open Access Journals (Sweden)

    J. M. J. Van den Bergh

    2017-01-01

    Full Text Available Personalized dendritic cell- (DC- based vaccination has proven to be safe and effective as second-line therapy against various cancer types. In terms of overall survival, there is still room for improvement of DC-based therapies, including the development of more immunostimulatory DC vaccines. In this context, we redesigned our currently clinically used DC vaccine generation protocol to enable transpresentation of interleukin- (IL- 15 to IL-15Rβγ-expressing cells aiming at boosting the antitumor immune response. In this study, we demonstrate that upon electroporation with both IL-15 and IL-15Rα-encoding messenger RNA, mature DC become highly positive for surface IL-15, without influencing the expression of prototypic mature DC markers and with preservation of their cytokine-producing capacity and their migratory profile. Functionally, we show that IL-15-transpresenting DC are equal if not better inducers of T-cell proliferation and are superior in tumor antigen-specific T-cell activation compared with DC without IL-15 conditioning. In view of the clinical use of DC vaccines, we evidence with a time- and cost-effective manner that clinical grade DC can be safely engineered to transpresent IL-15, hereby gaining the ability to transfer the immune-stimulating IL-15 signal towards antitumor immune effector cells.

  1. Influence of organophosphate poisoning on human dendritic cells.

    Science.gov (United States)

    Schäfer, Marina; Koppe, Franziska; Stenger, Bernhard; Brochhausen, Christoph; Schmidt, Annette; Steinritz, Dirk; Thiermann, Horst; Kirkpatrick, Charles James; Pohl, Christine

    2013-12-05

    Organophosphourus compounds (OPC, including nerve agents and pesticides) exhibit acute toxicity by inhibition of acetylcholinesterase. Lung affections are frequent complications and a risk factor for death. In addition, epidemiological studies reported immunological alterations after OPC exposure. In our experiments we investigated the effects of organophosphourus pesticides dimethoate and chlorpyrifos on dendritic cells (DC) that are essential for the initial immune response, especially in the pulmonary system. DC, differentiated from the monocyte cell line THP-1 by using various cytokines (IL-4, GM-CSF, TNF-α, Ionomycin), were exposed to organophosphourus compounds at different concentrations for a 24h time period. DC were characterized by flow cytometry and immunofluorescence using typical dendritic cell markers (e.g., CD11c, CD209 and CD83). After OPC exposure we investigated cell death, the secretion profile of inflammatory mediators, changes of DC morphology, and the effect on protein kinase signalling pathways. Our results revealed a successful differentiation of THP-1 into DC. OPC exposure caused a significant concentration-dependent influence on DC: Dendrites of the DC were shortened and damaged, DC-specific cell surface markers (i.e., CD83and CD209) decreased dramatically after chlorpyrifos exposure. Interestingly, the effects caused by dimethoate were in general less pronounced. The organophosphourus compounds affected the release of inflammatory cytokines, such as IL-1ß and IL-8. The anti-inflammatory cytokine IL-10 was significantly down regulated. Protein kinases like the Akt family or ERK, which are essential for cell survival and proliferation, were inhibited by both OPC. These findings indicate that the tested organophosphourus compounds induced significant changes in cell morphology, inhibited anti-inflammatory cytokines and influenced important protein signalling pathways which are involved in regulation of apoptosis. Thus our results highlight

  2. Sphingosylphosphorylcholine stimulates human monocyte-derived dendritic cell chemotaxis

    Institute of Scientific and Technical Information of China (English)

    Ha-young LEE; Eun-ha SHIN; Yoe-sik BAE

    2006-01-01

    Aim: To investigate the effects of Sphingosylphosphorylcholine (SPC) on human monocyte-derived dendritic cell (DC) chemotaxis. Methods: Human DC were generated from peripheral blood monocytes by culturing them with granulocyte macrophage-colony stimulating factor and interleukin-4. The effect of SPC on the DC chemotactic migration was measured by chemotaxis assay. Intracellular signaling event involved in the SPC-induced DC chemotaxis was investigated with several inhibitors for specific kinase. The expression of the SPC receptors was examined by reverse transcription polymerase chain reaction. Results: We found that SPC induced chemotactic migration in immature DC (iDC) and mature DC (mDC). In terms of SPC-induced signaling events, mitogen activated protein kinase activation and Akt activation in iDC and mDC were stimulated. SPC-induced chemotaxis was mediated by extracellular signal-regulated protein kinase and phosphoino-sitide-3-kinase, but not by calcium in both iDC and mDC. Although mDC express ovarian cancer G protein-coupled receptor 1, but not G protein-coupled receptor 4, iDC do not express any of these receptors. To examine the involvement of sphin-gosine-1-phosphate (SIP) receptors, we checked the effect of an SIP receptor antagonist (VPC23019) on SPC-induced DC chemotaxis. VPC23019 did not affect SPC-induced DC chemotaxis. Conclusion: The results suggest that SPC may play a role in regulating DC trafficking during phagocytosis and the T cell-stimulating phase, and the unique SPC receptor, which is different from SIP receptors, is involved in SPC-induced chemotaxis.

  3. Lymph nodes from HIV-infected individuals harbor mature dendritic cells and increased numbers of PD-L1+ conventional dendritic cells.

    Science.gov (United States)

    Carranza, Paloma; Del Río Estrada, Perla M; Díaz Rivera, Dafne; Ablanedo-Terrazas, Yuria; Reyes-Terán, Gustavo

    2016-07-01

    The immune response induced by dendritic cells (DC) during the HIV infection has been of remarkable interest because of the therapeutic potential of DC for vaccine development. However, their beneficial or detrimental contribution in HIV infection remains unclear. The activation state of DC in lymph nodes (LN) is essential to induce T cell responses against HIV. In the present study, we characterized the immunophenotype and function of conventional (cDC) and plasmacytoid (pDC) dendritic cells from peripheral blood (PB) and LN of HIV(+) individuals. We observed that the frequency of PB pDC was decreased and exhibited an immature phenotype; whereas in the LN, activated pDC accumulated (CD40(+) and CD83(+)). In addition, the frequency of PB cDC from HIV(+) individuals was decreased and exhibited an immature phenotype, whereas LN harbored activated and mature cDC (CD40(+), CD83(+), CD80(+) and CD86(+)). However, an increased number of PD-L1(+) cDC was also observed in the LN. Moreover, pDC and cDC were able to produce inflammatory cytokines (IFN-α, TNF-α and IL-12) after TLR stimulation. These findings suggests that LN cDC expressing PD-L1 from HIV(+) individuals may negatively impact the generation of HIV-specific T cells and that DC might be contributing to tissue chronic immune activation.

  4. Dendritic cells and contact dermatitis.

    Science.gov (United States)

    Sasaki, Yoshinori; Aiba, Setsuya

    2007-10-01

    Contact dermatitis is a biological response to simple chemicals in the skin. Although it is well known that allergic contact dermatitis is mediated by the immune system, it is still uncertain whether it is a kind of protective response or it is simply an unnecessary response. We have demonstrated the following: (1) haptens activate Langerhans cells in the initiation phase of murine allergic contact dermatitis in vivo, (2) haptens activate human monocyte-derived dendritic cells in vitro, (3) the activation of dendritic cells by haptens is primarily mediated by the activation of p38 mitogen-activated protein kinase (MAPK), and (4) the activation of p38 MAPK is mediated by stimulation related to an imbalance of intracellular redox. Based on these observations, we will discuss the biological significance of contact dermatitis. In addition, we will review some up-to-date findings on Langerhans cell biology.

  5. Melanoma immunotherapy: dendritic cell vaccines

    OpenAIRE

    Lozada-Requena, Ivan; Laboratorios de Inmunología #108, Laboratorio de investigación y Desarrollo, Facultad de Ciencieas y Filosofía, Universidad Cayetano Heredia. Lima, Perú Empresa de Investigación y Desarrollo en Cáncer (EMINDES) SAC. Lima, Perú.; Núñez, César; Empresa de Investigación y Desarrollo en Cáncer (EMINDES) SAC. Lima, Perú.; Aguilar, José Luis; Laboratorios de Inmunología #108, Laboratorio de investigación y Desarrollo, Facultad de Ciencieas y Filosofía, Universidad Cayetano Heredia. Lima, Perú.

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy.Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion oftumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diversetypes of cancer in humans and animal models. However, given the low efficiency they have shown, we must implementstrateg...

  6. Identification of a novel immunoregulatory signaling pathway exploited by M. tuberculosis in dendritic cells

    DEFF Research Database (Denmark)

    Laursen, Janne Marie; Schoof, Erwin; Søndergaard, Jonas Nørskov;

    to the highly sophisticated infectious machinery employed by the bacterium. The dendritic cell (DC) plays a crucial role in shaping the nature of the immune response after exposure to pathogens, and the interaction between M. tuberculosis and the dendritic cell is of profound importance for the course...

  7. Haemophilus ducreyi partially activates human myeloid dendritic cells.

    Science.gov (United States)

    Banks, Keith E; Humphreys, Tricia L; Li, Wei; Katz, Barry P; Wilkes, David S; Spinola, Stanley M

    2007-12-01

    Dendritic cells (DC) orchestrate innate and adaptive immune responses to bacteria. How Haemophilus ducreyi, which causes genital ulcers and regional lymphadenitis, interacts with DC is unknown. H. ducreyi evades uptake by polymorphonuclear leukocyte and macrophage-like cell lines by secreting LspA1 and LspA2. Many H. ducreyi strains express cytolethal distending toxin (CDT), and recombinant CDT causes apoptosis of DC in vitro. Here, we examined interactions between DC and H. ducreyi 35000HP, which produces LspA1, LspA2, and CDT. In human volunteers infected with 35000HP, the ratio of myeloid DC to plasmacytoid DC was 2.8:1 in lesions, compared to a ratio of 1:1 in peripheral blood. Using myeloid DC derived from monocytes as surrogates for lesional DC, we found that DC infected with 35000HP remained as viable as uninfected DC for up to 48 h. Gentamicin protection and confocal microscopy assays demonstrated that DC ingested and killed 35000HP, but killing was incomplete at 48 h. The expression of LspA1 and LspA2 did not inhibit the uptake of H. ducreyi, despite inactivating Src kinases. Infection of DC with live 35000HP caused less cell surface marker activation than infection with heat-killed 35000HP and lipopolysaccharide (LPS) and inhibited maturation by LPS. However, infection of DC with live bacteria caused the secretion of significantly higher levels of interleukin-6 and tumor necrosis factor alpha than infection with heat-killed bacteria and LPS. The survival of H. ducreyi in DC may provide a mechanism by which the organism traffics to lymph nodes. Partial activation of DC may abrogate the establishment of a full Th1 response and an environment that promotes phagocytosis.

  8. Fluorescent activated cell sorting: an effective approach to study dendritic cell subsets in human atherosclerotic plaques.

    Science.gov (United States)

    Van Brussel, Ilse; Ammi, Rachid; Rombouts, Miche; Cools, Nathalie; Vercauteren, Sven R; De Roover, Dominique; Hendriks, Jeroen M H; Lauwers, Patrick; Van Schil, Paul E; Schrijvers, Dorien M

    2015-02-01

    Different immune cell types are present within atherosclerotic plaques. Dendritic cells (DC) are of special interest, since they are considered as the 'center of the immuniverse'. Identifying inflammatory DC subtypes within plaques is important for a better understanding of the lesion pathogenesis and pinpoints their contribution to the atherosclerotic process. We have developed a flow cytometry-based method to characterize and isolate different DC subsets (i.e. CD11b(+), Clec9A(+) and CD16(+) conventional (c)DC and CD123(+) plasmacytoid (p)DC) in human atherosclerotic plaques. We revealed a predominance of pro-inflammatory CD11b(+) DC in advanced human lesions, whereas atheroprotective Clec9A(+) DC were almost absent. CD123(+) pDC and CD16(+) DC were also detectable in plaques. Remarkably, plaques from distinct anatomical locations exhibited different cellular compositions: femoral plaques contained less CD11b(+) and Clec9A(+) DC than carotid plaques. Twice as many monocytes/macrophages were observed compared to DC. Moreover, relative amounts of T cells/B cells/NK cells were 6 times as high as DC numbers. For the first time, fluorescent activated cell sorting analysis of DC subsets in human plaques indicated a predominance of CD11b(+) cDC, in comparison with other DC subsets. Isolation of the different subsets will facilitate detailed functional analysis and may have significant implications for tailoring appropriate therapy.

  9. IL-10 and TGF-β Control of Dendritic Cells at Environmental Interfaces

    NARCIS (Netherlands)

    M.J.H. Girard-Madoux (Mathilde)

    2014-01-01

    markdownabstract__Abstract__ Dendritic cells (DC) are necessary to maintain homeostasis and are essential in regulating immune responses. DC induce effector T cell responses to invading pathogens and promote regulatory T cell (Treg) differentiation to harmless antigens. Interleukin-10 (IL-10) and t

  10. Dendritic-tumor fusion cells in cancer immunotherapy.

    Science.gov (United States)

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  11. Dendritic Cell-Mediated T Cell Proliferation -A Functional Bioindicator of Inflammatory Source-Specific Particulate Matter

    Science.gov (United States)

    Previously we found that dendritic cells (DC) were sensitive functional bioindicators of ambient PM (APM) exposure mediating Th2-allergic inflammation in the draining lymph nodes. Here, the ability of bone-marrow-derived DC (DC) and putative BM-derived basophils (Ba) to present a...

  12. Dendritic Cell-Mediated T Cell Proliferation -A Functional Bioindicator of Inflammatory Source-Specific Particulate Matter

    Science.gov (United States)

    Previously we found that dendritic cells (DC) were sensitive functional bioindicators of ambient PM (APM) exposure mediating Th2-allergic inflammation in the draining lymph nodes. Here, the ability of bone-marrow-derived DC (DC) and putative BM-derived basophils (Ba) to present a...

  13. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  14. Exosomes from B cells and Dendritic cells: mechanisms of formation, secretion and targeting

    NARCIS (Netherlands)

    Buschow, S.I.

    2006-01-01

    Many cell types, including dendritic cells (DC) and B cells, secrete small vesicles called exosomes. Exosomes from immune cells are thought to have immuno-regulatory functions but their precise role remains unresolved. The aim of the studies presented in this thesis was to get more insight into the

  15. Viral piracy: HIV-1 targets dendritic cells for transmission.

    Science.gov (United States)

    Lekkerkerker, Annemarie N; van Kooyk, Yvette; Geijtenbeek, Teunis B H

    2006-04-01

    Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Remarkably the human immunodeficiency virus-1 (HIV-1) subverts DC function leading to spread of the virus. At an early phase of HIV-1 transmission, DCs capture HIV-1 at mucosal surfaces and transmit the virus to T cells in secondary lymphoid tissues. Capture of the virus on DCs takes place via C-type lectins of which the dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) is the best studied. DC-SIGN-captured HIV-1 particles accumulate in CD81(+) multivesicular bodies (MVBs) in DCs and are subsequently transmitted to CD4+ T cells resulting in infection of T cells. The viral cell-to-cell transmission takes place at the DC-T cell interface termed the infectious synapse. Recent studies demonstrate that direct infection of DCs contributes to the transmission to T cells at a later phase. Moreover, the infected DCs may function as cellular reservoirs for HIV-1. This review discusses the different processes that govern viral piracy of DCs by HIV-1, emphasizing the intracellular routing of the virus from capture on the cell surface to egress in the infectious synapse.

  16. Caspases regulate VAMP-8 expression and phagocytosis in dendritic cells.

    Science.gov (United States)

    Ho, Yong Hou Sunny; Cai, Deyu Tarika; Huang, Dachuan; Wang, Cheng Chun; Wong, Siew Heng

    2009-09-18

    During an inflammation and upon encountering pathogens, immature dendritic cells (DC) undergo a maturation process to become highly efficient in presenting antigens. This transition from immature to mature state is accompanied by various physiological, functional and morphological changes including reduction of caspase activity and inhibition of phagocytosis in the mature DC. Caspases are cysteine proteases which play essential roles in apoptosis, necrosis and inflammation. Here, we demonstrate that VAMP-8, (a SNARE protein of the early/late endosomes) which has been shown previously to inhibit phagocytosis in DC, is a substrate of caspases. Furthermore, we identified two putative conserved caspase recognition/cleavage sites on the VAMP-8 protein. Consistent with the up-regulation of VAMP-8 expression upon treatment with caspase inhibitor (CI), immature DC treated with CI exhibits lower phagocytosis activity. Thus, our results highlight the role of caspases in regulating VAMP-8 expression and subsequently phagocytosis during maturation of DC.

  17. Dendritic cells and their potential implication in pathology and treatment of rheumatoid arthritis

    NARCIS (Netherlands)

    Wenink, M.H.; Han, W.; Toes, R.E.; Radstake, T.R.D.J.

    2009-01-01

    Dendritic cells (DC) are the professional antigen presenting cells that protect us against invading organisms. On the other hand, they uphold tolerance thereby avoiding the initiation of autoimmunity. In performing these contrasting but essential tasks DC are unique and divide these processes in tim

  18. Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide

    DEFF Research Database (Denmark)

    Ellebaek, Eva; Engell-Noerregaard, Lotte; Iversen, Trine Zeeberg

    2012-01-01

    Dendritic cells (DC) are the most potent antigen presenting cells and have proven effective in stimulation of specific immune responses in vivo. Competing immune inhibition could limit the clinical efficacy of DC vaccination. In this phase II trial, metronomic Cyclophosphamide and a Cox-2 inhibit...

  19. Genetically modified lactococcus lactis for delivery of human interleukin-10 to dendritic cells

    NARCIS (Netherlands)

    H. Braat (Henri); I.L. Huibregtse (Inge ); S.A.J. Zaat (Sebastiaan); M.L. Kapsenberg (Martien ); M.A. Sartori da Silva; M.P. Peppelenbosch (Maikel); S. van Deventer (Sander)

    2012-01-01

    textabstractInterleukin-10 (IL-10) plays an indispensable role in mucosal tolerance by programming dendritic cells (DCs) to induce suppressor Th-cells. We have tested the modulating effect of L. lactis secreting human IL-10 (L.lacti s IL-10) on DC function in vitro. Monocyte-derived DC incubated wit

  20. Molecular Characterization of Dendritic Cell-Derived Exosomes

    OpenAIRE

    Théry, Clotilde; Regnault, Armelle; Garin, Jérôme; Wolfers, Joseph; Zitvogel, Laurence; Ricciardi-Castagnoli, Paola; Raposo, Graça; Amigorena, Sebastian

    1999-01-01

    Exosomes are membrane vesicles secreted by hematopoietic cells upon fusion of late multivesicular endosomes with the plasma membrane. Dendritic cell (DC)-derived exosomes induce potent antitumor immune responses in mice, resulting in the regression of established tumors (Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Nat. Med. 4:594–600). To unravel the molecular basis of exosome-induced immune stimulation, w...

  1. The role of the vascular dendritic cell network in atherosclerosis

    OpenAIRE

    Alberts-Grill, Noah; Denning, Timothy L.; Rezvan, Amir; Jo, Hanjoong

    2013-01-01

    A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only rec...

  2. Dendritic Cells for Real-Time Anomaly Detection

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    Dendritic Cells (DCs) are innate immune system cells which have the power to activate or suppress the immune system. The behaviour of human of human DCs is abstracted to form an algorithm suitable for anomaly detection. We test this algorithm on the real-time problem of port scan detection. Our results show a significant difference in artificial DC behaviour for an outgoing portscan when compared to behaviour for normal processes.

  3. Antitumour activities of cytokine-induced killer cells and dendritic cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    ZHANG Song; JIANG Shu-juan; ZHANG Cai-qing; WANG Hong-mei; BAI Chun-xue

    2005-01-01

    @@ Solid tumour cells show a resistance to immunological effector cells in vitro.1 The resistance may be one reason why these tumours withstand immunotherapeutic approaches in humans.Dendritic cells (DC) play an important role in the immune response to tumour associated antigens in humans.DC in the periphery capture and process antigens,express lymphocyte costimulatory molecules,migrate to lymphoid organs and secrete cytokines to initiate immune response.

  4. Dendritic Cells, New Tools for Vaccination

    Science.gov (United States)

    2003-01-01

    Review Dendritic cells , new tools for vaccination Jesus Colino, Clifford M. Snapper * Department of Pathology, Uniformed Services University of the...2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved. Keywords: Vaccines; Immunotherapy; Dendritic cells 1. Introduction During...DATE 2003 2. REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Dendritic cells , new tools for vaccination 5a

  5. Neoplasms derived from plasmacytoid dendritic cells.

    Science.gov (United States)

    Facchetti, Fabio; Cigognetti, Marta; Fisogni, Simona; Rossi, Giuseppe; Lonardi, Silvia; Vermi, William

    2016-02-01

    Plasmacytoid dendritic cell neoplasms manifest in two clinically and pathologically distinct forms. The first variant is represented by nodular aggregates of clonally expanded plasmacytoid dendritic cells found in lymph nodes, skin, and bone marrow ('Mature plasmacytoid dendritic cells proliferation associated with myeloid neoplasms'). This entity is rare, although likely underestimated in incidence, and affects predominantly males. Almost invariably, it is associated with a myeloid neoplasm such as chronic myelomonocytic leukemia or other myeloid proliferations with monocytic differentiation. The concurrent myeloid neoplasm dominates the clinical pictures and guides treatment. The prognosis is usually dismal, but reflects the evolution of the associated myeloid leukemia rather than progressive expansion of plasmacytoid dendritic cells. A second form of plasmacytoid dendritic cells tumor has been recently reported and described as 'blastic plasmacytoid dendritic cell neoplasm'. In this tumor, which is characterized by a distinctive cutaneous and bone marrow tropism, proliferating cells derive from immediate CD4(+)CD56(+) precursors of plasmacytoid dendritic cells. The diagnosis of this form can be easily accomplished by immunohistochemistry, using a panel of plasmacytoid dendritic cells markers. The clinical course of blastic plasmacytoid dendritic cell neoplasm is characterized by a rapid progression to systemic disease via hematogenous dissemination. The genomic landscape of this entity is currently under intense investigation. Recurrent somatic mutations have been uncovered in different genes, a finding that may open important perspectives for precision medicine also for this rare, but highly aggressive leukemia.

  6. Characterization of colonic dendritic cells in normal and colitic mice

    Institute of Scientific and Technical Information of China (English)

    Sheena M Cruickshank; Nicholas R English; Peter J Felsburg; Simon R Carding

    2005-01-01

    AIM: Recent studies demonstrating the direct involvement of dendritic cells (DC) in the activation of pathogenic T cells in animal models of inflammatory bowel disease identify DC as important antigen presenting cells in the colon. However, very little is known about the properties of colonic DC.METHODS: Using immunohistochemistry, electron microscopy and flow cytometry we have characterized and compared colonic DC in the colon of healthy animals and interleukin-2-deficient (IL2-/-) mice that develop colitis.RESULTS: In the healthy colon, DC resided within the lamina propria and in close association with the basement membrane of colonic villi. Type 1 myeloid (CD11c+, CD11b+,B220-, CD8α-) DC made up the largest (40-45%) population and all DC expressed low levels of CD80, CD86, and CD40,and had high endocytic activity consistent with an immature phenotype. In colitic IL2-/- mice, colonic DC numbers increased four- to five-fold and were localized within the epithelial layer and within aggregates of T and B cells. They were also many more DC in mesenteric lymph nodes (MLN).The majority (>85%) of DC in the colon and MLN of IL2-/-mice were type 1 myeloid, and expressed high levels of MHC class Ⅱ, CD80, CD86, CD 40, DEC 205, and CCR5molecules and were of low endocytic activity consistent with mature DC.CONCLUSION: These findings demonstrate striking changes in the number, distribution and phenotype of DC in the inflamed colon. Their intimate association with lymphocytes in the colon and draining lymph nodes suggest that they may contribute directly to the ongoing inflammation in the colon.

  7. Antigen loading on dendritic cells affects the lell function in stimulating T cells.

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the effect of antigen loading on dendritic cells (DC). Methods: DCs collected from peripheral blood monocytes were loaded with a tumor antigen from XG-7 cell line. These DCs were then co-cultured with allogeneic T cells and were compared with those DCs without antigen exposure.

  8. Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells.

    Science.gov (United States)

    Roider, Tobias; Katzfuß, Michael; Matos, Carina; Singer, Katrin; Renner, Kathrin; Oefner, Peter J; Dettmer-Wilde, Katja; Herr, Wolfgang; Holler, Ernst; Kreutz, Marina; Peter, Katrin

    2016-12-11

    Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon(®)) on human monocyte-derived dendritic cells (DC). ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo.

  9. Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Tobias Roider

    2016-12-01

    Full Text Available Antithymocyte globulin (ATG is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon® on human monocyte-derived dendritic cells (DC. ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo.

  10. Regulatory T cells, dendritic cells and neutrophils in patients with renal cell carcinoma.

    Science.gov (United States)

    Minárik, Ivo; Lašťovička, Jan; Budinský, Vít; Kayserová, Jana; Spíšek, Radek; Jarolím, Ladislav; Fialová, Anna; Babjuk, Marek; Bartůňková, Jiřina

    2013-05-01

    We evaluated dendritic cells (DC), regulatory T lymphocytes (Treg) and neutrophils in 37 patients with newly diagnosed renal cell carcinoma (RCC) in the tumor and peripheral blood (PB) and correlated these parameters with tumor staging (early-T1, 2, late-T3, 4 and metastatic disease). The number of myeloid and plasmacytoid DC in blood of RCC patients was higher than in healthy controls. The percentage of myeloid dendritic cells (mDC) from CD45+ cells in tumors was higher in comparison with peripheral blood irrespective of disease stage. Higher percentage of these cells expressed a maturation marker in the periphery in the early stage (CD83 expressing cells). The number of plasmacytoid dendritic cells (pDC) in PB was similar in both early and late stage groups, but the early group displayed a significantly higher percentage of pDC in tumor cell suspension. Neutrophil counts in the peripheral blood of RCC patients were higher than in healthy controls, but the counts in both tumor stage groups were similar. The proportion of neutrophils from CD45+ cells was higher in late stage tumors. Higher percentage of Treg from CD4+ cells was detected in renal carcinoma tissue in comparison to PB with no difference between stages of the disease. Our results reflect the complex interplay between various cells of the immune system and the tumor microenvironment. Activation of dendritic cell subpopulations at early stages of the disease course is counterbalanced by the early appearance of T regulatory cells both in the periphery and tumor tissue. Later stages are characterized by the accumulation of neutrophils in the tumor. Appropriate timing of anticancer strategies, especially immunotherapy, should take these dynamics of the immune response in RCC patients into account.

  11. Pathogen-Associated Molecular Patterns Induced Crosstalk between Dendritic Cells, T Helper Cells, and Natural Killer Helper Cells Can Improve Dendritic Cell Vaccination.

    Science.gov (United States)

    Oth, Tammy; Vanderlocht, Joris; Van Elssen, Catharina H M J; Bos, Gerard M J; Germeraad, Wilfred T V

    2016-01-01

    A coordinated cellular interplay is of crucial importance in both host defense against pathogens and malignantly transformed cells. The various interactions of Dendritic Cells (DC), Natural Killer (NK) cells, and T helper (Th) cells can be influenced by a variety of pathogen-associated molecular patterns (PAMPs) and will lead to enhanced CD8(+) effector T cell responses. Specific Pattern Recognition Receptor (PRR) triggering during maturation enables DC to enhance Th1 as well as NK helper cell responses. This effect is correlated with the amount of IL-12p70 released by DC. Activated NK cells are able to amplify the proinflammatory cytokine profile of DC via the release of IFN-γ. The knowledge on how PAMP recognition can modulate the DC is of importance for the design and definition of appropriate therapeutic cancer vaccines. In this review we will discuss the potential role of specific PAMP-matured DC in optimizing therapeutic DC-based vaccines, as some of these DC are efficiently activating Th1, NK cells, and cytotoxic T cells. Moreover, to optimize these vaccines, also the inhibitory effects of tumor-derived suppressive factors, for example, on the NK-DC crosstalk, should be taken into account. Finally, the suppressive role of the tumor microenvironment in vaccination efficacy and some proposals to overcome this by using combination therapies will be described.

  12. Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine.

    NARCIS (Netherlands)

    Brok, M.H.M.G.M. den; Sutmuller, R.P.M.; Nierkens, S.; Bennink, E.J.; Toonen, L.W.J.; Figdor, C.G.; Ruers, T.J.M.; Adema, G.J.

    2006-01-01

    Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo-generated, tumor antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would

  13. The Current Immune Function of Hepatic Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Willy Hsu; Shang-An Shu; Eric Gershwin; Zhe-Xiong Lian

    2007-01-01

    While only a small percentage of the liver as dendritic cells, they play a major role in the regulation of liver immunity. Four major types of dendritic cell subsets include myeloid CD8α-B220-, lymphoid CD8α+B220-,plasmacytoid CD8α-B220+, and natural killer dendritic cell with CD8α-B220-NK1.1+ phenotype. Although these subsets have slightly different characteristics, they are all poor na(i)ve T cell stimulators. In exchange for their reduced capacity for allostimulation, hepatic DCs are equipped with an enhanced ability to secrete cytokines in response to TLR stimulation. In addition, they have increased level of phagocytosis. Both of these traits suggest hepatic DC as part of the innate immune system. With such a high rate of exposure to the dietary and commensal antigens, it is important for the hepatic DCs to have an enhanced innate response while maintaining a tolerogenic state to avoid chronic inflammation. Only upon secondary infectivity does the hepatic DC activate memory T cells for rapid eradication of recurring pathogen. On the other hand, overly tolerogenic characteristics of hepatic DC may be responsible for the increase prevalence of autoimmunity or liver malignancies.

  14. Immunity to pathogens taught by specialized human dendritic cell subsets.

    Directory of Open Access Journals (Sweden)

    Jens A. E. Geginat

    2015-10-01

    Full Text Available Dendritic cells (DC are specialized antigen-presenting cells (APC that have a key role in immune responses, because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and up-regulate MHC molecules and co-stimulatory receptors to activate antigen-specific CD4+ and CD8+ T-cells. It is now well established that DC are not a homogeneous population, but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DC (pDC rapidly produce large amounts of IFN-α, which has potent anti-viral functions and activates several other immune cells. However, pDC are not particularly potent APC and induce the tolerogenic cytokine IL-10 in CD4+ T-cells. In contrast, myeloid DC (mDC are very potent APC and possess the unique capacity to prime naïve T-cells and consequently to initiate a primary adaptive immune response. Different subsets of myeloid DC with specialized functions have been identified. In mice, CD8α+ mDC capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T cell responses to control intracellular pathogens. Conversely, CD8α- mDC preferentially prime CD4+ T-cells and promote Th2 or Th17 differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDC, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several relevant toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggests specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the

  15. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    Science.gov (United States)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  16. Contact-dependent Stimulation and Inhibition of Dendritic Cells by Natural Killer Cells

    OpenAIRE

    Piccioli, Diego; Sbrana, Silverio; Melandri, Emiliano; Valiante, Nicholas M.

    2002-01-01

    Natural killer (NK) cells and dendritic cells (DCs) are two distinct cell types of innate immunity. It is known that the in vitro interaction of human NK cells with autologous DCs results in DC lysis. Here we show that contact-dependent interactions between activated human NK cells and immature DCs (iDCs) provides a “control switch” for the immune system. At low NK/DC ratios, this interaction dramatically amplifies DC responses, whereas at high ratios it completely turns off their responses. ...

  17. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren

    2003-01-01

    for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity...... endpoints, including toxicity and response evaluation. This paper aims to review the technical aspects and clinical impact of vaccination trials, focusing on the generation of DC-based vaccines, evaluation of immunologic parameters and design of clinical trials necessary to meet the need for good laboratory...

  18. Closed system generation of dendritic cells from a single blood volume for clinical application in immunotherapy

    NARCIS (Netherlands)

    Elias, M; van Zanten, J; Hospers, GAP; Setroikromo, A; de Jong, MA; de Leij, LFMH; Mulder, NH

    2005-01-01

    Dendritic cells (DC) used for clinical trials should be processed oil a large scale conforming to current good manufacturing practice (cGM P) guidelines. The aim of this study was to develop a protocol for clinical grade generation of immature DC in a closed-systern. Aphereses were performed with th

  19. A Case of Plasmacytoid Dendritic Cell Leukemia

    Directory of Open Access Journals (Sweden)

    Köpeczi Judit Beáta

    2013-04-01

    Full Text Available Introduction: Plasmacytoid dendritic cell leukemia is a rare subtype of acute leukemia, which has recently been established as a distinct pathologic entity that typically follows a highly aggressive clinical course in adults. The aim of this report is to present a case of plasmacytoid dendritic cell leukemia due to its rarity and difficulty to recognize and diagnose it.

  20. Dendritic web silicon for solar cell application

    Science.gov (United States)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  1. Loss of Gadkin Affects Dendritic Cell Migration In Vitro.

    Directory of Open Access Journals (Sweden)

    Hannah Schachtner

    Full Text Available Migration is crucial for the function of dendritic cells (DCs, which act as outposts of the immune system. Upon detection of pathogens, skin- and mucosa-resident DCs migrate to secondary lymphoid organs where they activate T cells. DC motility relies critically on the actin cytoskeleton, which is regulated by the actin-related protein 2/3 (ARP2/3 complex, a nucleator of branched actin networks. Consequently, loss of ARP2/3 stimulators and upstream Rho family GTPases dramatically impairs DC migration. However, nothing is known yet about the relevance of ARP2/3 inhibitors for DC migration. We previously demonstrated that the AP-1-associated adaptor protein Gadkin inhibits ARP2/3 by sequestering it on intracellular vesicles. Consistent with a role of Gadkin in DC physiology, we here report Gadkin expression in bone marrow-derived DCs and show that its protein level and posttranslational modification are regulated upon LPS-induced DC maturation. DCs derived from Gadkin-deficient mice were normal with regards to differentiation and maturation, but displayed increased actin polymerization. While the actin-dependent processes of macropinocytosis and cell spreading were not affected, loss of Gadkin significantly impaired DC migration in vitro, however, in vivo DC migration was unperturbed suggesting the presence of compensatory mechanisms.

  2. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer

    Science.gov (United States)

    2012-07-01

    Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer PRINCIPAL INVESTIGATOR: Donald Kufe, M.D...COVERED 1 July 2011 – 30 June 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for...have been enrolled thus far. We reported in detail the characterization of the tumor cells, the generated dendritic cells and the DC/tumor fusions

  3. Recognition of enteroinvasive Escherichia coli and Shigella flexneri by dendritic cells: distinct dendritic cell activation states

    Directory of Open Access Journals (Sweden)

    Ana Carolina Ramos Moreno

    2012-02-01

    Full Text Available The innate and adaptive immune responses of dendritic cells (DCs to enteroinvasive Escherichia coli (EIEC infection were compared with DC responses to Shigella flexneri infection. EIEC triggered DCs to produce interleukin (IL-10, IL-12 and tumour necrosis factor (TNF-α, whereas S. flexneri induced only the production of TNF-α. Unlike S. flexneri, EIEC strongly increased the expression of toll like receptor (TLR-4 and TLR-5 in DCs and diminished the expression of co-stimulatory molecules that may cooperate to inhibit CD4+ T-lymphocyte proliferation. The inflammation elicited by EIEC seems to be related to innate immunity both because of the aforementioned results and because only EIEC were able to stimulate DC transmigration across polarised Caco-2 cell monolayers, a mechanism likely to be associated with the secretion of CC chemokine ligands (CCL20 and TNF-α. Understanding intestinal DC biology is critical to unravelling the infection strategies of EIEC and may aid in the design of treatments for infectious diseases.

  4. T Cells Capture Bacteria by Transinfection from Dendritic Cells.

    Science.gov (United States)

    Cruz-Adalia, Aranzazu; Ramírez-Santiago, Guillermo; Torres-Torresano, Mónica; Garcia-Ferreras, Raquel; Veiga Chacón, Esteban

    2016-01-13

    Recently, we have shown, contrary to what is described, that CD4(+) T cells, the paradigm of adaptive immune cells, capture bacteria from infected dendritic cells (DCs) by a process called transinfection. Here, we describe the analysis of the transinfection process, which occurs during the course of antigen presentation. This process was unveiled by using CD4(+) T cells from transgenic OTII mice, which bear a T cell receptor (TCR) specific for a peptide of ovoalbumin (OVAp), which therefore can form stable immune complexes with infected dendritic cells loaded with this specific OVAp. The dynamics of green fluorescent protein (GFP)-expressing bacteria during DC-T cell transmission can be monitored by live-cell imaging and the quantification of bacterial transinfection can be performed by flow cytometry. In addition, transinfection can be quantified by a more sensitive method based in the use of gentamicin, a non-permeable aminoglycoside antibiotic killing extracellular bacteria but not intracellular ones. This classical method has been used previously in microbiology to study the efficiency of bacterial infections. We hereby explain the protocol of the complete process, from the isolation of the primary cells to the quantification of transinfection.

  5. Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Fischer, Anders; Myschetzky, Peter S

    2008-01-01

    Patients with disseminated colorectal cancer have a poor prognosis. Preliminary studies have shown encouraging results from vaccines based on dendritic cells. The aim of this phase II study was to evaluate the effect of treating patients with advanced colorectal cancer with a cancer vaccine based...... on dendritic cells pulsed with an allogenic tumor cell lysate. Twenty patients with advanced colorectal cancer were consecutively enrolled. Dendritic cells (DC) were generated from autologous peripheral blood mononuclear cells and pulsed with allogenic tumor cell lysate containing high levels of cancer...

  6. Changes in dendritic cells and dendritic cell subpopulations in peripheral blood of recipients during acute rejection after kidney transplantation

    Institute of Scientific and Technical Information of China (English)

    Ma Linlin; Liu Yong; Wu Junjie; Xu Xiuhong; Liu Fen; Feng Lang; Xie Zelin

    2014-01-01

    Background Advances in transplantation immunology show that the balance between dendritic cells (DCs) and their subsets can maintain stable immune status in the induction of tolerance after transplantation.The aim of this study was to investigate if DCs and DC subpopulations in recipient peripheral blood are effective diagnostic indicators of acute rejection following kidney transplantation.Methods Immunofluorescent flow cytometry was used to classify white blood cells (WBCs),the levels of mononuclear cells and DCs (including the dominant subpopulations,plasmacytoid DC (pDC) and myeloid DC (mDC)) in peripheral blood at 0,1,7,and 28 days and 1 year after kidney transplantation in 33 patients.In addition,the blood levels of interleukin-10 (IL-10) and IL-12 were monitored before and after surgery.Fifteen healthy volunteers served as normal controls.Patients were undertaking hemodialysis owing to uremia before surgery.Results The total number of DCs,pDC,and mDC in peripheral blood and the pDC/mDC ratio were significantly lower in patients than controls (P <0.05).Peripheral DCs suddenly decreased at the end of day 1,then gradually increased through day 28 but remained below normal levels.After 1 year,levels were higher than before surgery but lower than normal.The mDC levels were higher in patients with acute rejection before and 1 day after surgery (P <0.005).There was no significant difference in IL-10 and IL-12 levels between patients with and without acute rejection.Conclusion The changes in DCs and DC subpopulations during the acute rejection period may serve as effective markers and referral indices for monitoring the immune state,and predicting rejection and reasonably adjusting immunosuppressants.

  7. Heat Shock Protein 96 Induces Maturation of Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Chunxia Cao; Wei Yang; Yonglie Chu; Qingguang Liu; Liang Yu; Cheng'en Pan

    2006-01-01

    Objective: Heat shock protein (HSP) has the promiscuous abilities to chaperone and present a broad repertoire of tumor antigens to antigen presenting cells including DCs. In this report, we analyzed the modulation of immature DC by HSP 96 (gp96).Method: Murine bone marrow-derived DC was induced by GM-CSF plus IL-4, which aped the immunostimulatory effects of DC.Cocultured DC and gp96-peptide complexes (gp96-PC) or inactivated H22 cells, the expression of MHC class Ⅱ, CD40, CD80 was quantified by flow cytometry. The concentration of IL-12 and TNF- in culture supernatants were determined by ELISA.[51] Cr release assay was used to test specific cytotoxic T cell. Results: Our study demonstrated that the extent of DC maturation induced by gp96-PC, which was reflected in surface density of costimulatory and MHC Ⅱ molecules, was correlated with the secretion of IL-12 and with the T cellactivating potential in vitro. Conclusion: Heat shock protein 96 could be isolated and purified from H22 cells and could induce maturation of dendritic cell. Our findings might be relevance to the use of DC vaccine in therapy of human tumors.

  8. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Sebastian [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Fernandes, Fabiana [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Pauwelsstrasse 30, 52074 Aachen (Germany); Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Sanroman, Laura [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Hodenius, Michael [Institute for Biomedical Engineering and Helmholtz Institute for Biomedical Engineering, Department of Applied Medical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Lang, Claus [Department of Microbiology, Ludwig-Maximillians-University of Munich, Maria-Ward-Str. 1a, 80638 Munich (Germany); Himmelreich, Uwe [In-vivo-NMR-Laboratory, Max-Planck-Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne (Germany); Biomedical NMR Unit, MoSAIC, Faculty of Medicine, KU Leuven, Onderwijs en Navorsing 1, bus 505, 3000 Leuven (Belgium); Schmitz-Rode, Thomas [Institute for Biomedical Engineering and Helmholtz Institute for Biomedical Engineering, Department of Applied Medical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Schueler, Dirk [Department of Microbiology, Ludwig-Maximillians-University of Munich, Maria-Ward-Str. 1a, 80638 Munich (Germany); Hoehn, Mathias [In-vivo-NMR-Laboratory, Max-Planck-Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne (Germany)] (and others)

    2009-05-15

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3{sup +} stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  9. Human plasmacytoid dendritic cells: from molecules to intercellular communication network

    Directory of Open Access Journals (Sweden)

    Till Sebastian Manuel Mathan

    2013-11-01

    Full Text Available Plasmacytoid Dendritic Cells (pDCs are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells (APCs, making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this review we will highlight a selection of cell surface proteins expressed by human pDCs that may facilitate communication with other immune cells, and we will discuss the implications of these molecules for pDC-driven immune responses.

  10. Dendritic Cell Apoptosis and the Pathogenesis of Dengue

    Directory of Open Access Journals (Sweden)

    Lysangela R. Alves

    2012-11-01

    Full Text Available Dengue viruses and other members of the Flaviviridae family are emerging human pathogens. Dengue is transmitted to humans by Aedes aegypti female mosquitoes. Following infection through the bite, cells of the hematopoietic lineage, like dendritic cells, are the first targets of dengue virus infection. Dendritic cells (DCs are key antigen presenting cells, sensing pathogens, processing and presenting the antigens to T lymphocytes, and triggering an adaptive immune response. Infection of DCs by dengue virus may induce apoptosis, impairing their ability to present antigens to T cells, and thereby contributing to dengue pathogenesis. This review focuses on general mechanisms by which dengue virus triggers apoptosis, and possible influence of DC-apoptosis on dengue disease severity.

  11. Plasmacytoid dendritic cells are inefficient in activation of human regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Mario Hubo

    Full Text Available BACKGROUND: Dendritic cells (DC play a key role in initiation and regulation of immune responses. Plasmacytoid DC (pDC, a small subset of DC, characterized as type-I interferon producing cells, are critically involved in anti-viral immune responses, but also mediate tolerance by induction of regulatory T cells (Treg. In this study, we compared the capacity of human pDC and conventional DC (cDC to modulate T cell activity in presence of Foxp3(+ Treg. PRINCIPAL FINDINGS: In coculture of T effector cells (Teff and Treg, activated cDC overcome Treg anergy, abrogate their suppressive function and induce Teff proliferation. In contrast, pDC do not break Treg anergy but induce Teff proliferation even in coculture with Treg. Lack of Treg-mediated suppression is independent of proinflammatory cytokines like IFN-α, IL-1, IL-6 and TNF-α. Phenotyping of pDC-stimulated Treg reveals a reduced expression of Treg activation markers GARP and CTLA-4. Additional stimulation by anti-CD3 antibodies enhances surface expression of GARP and CTLA-4 on Treg and consequently reconstitutes their suppressive function, while increased costimulation with anti-CD28 antibodies is ineffective. CONCLUSIONS/SIGNIFICANCE: Our data show that activated pDC induce Teff proliferation, but are insufficient for functional Treg activation and, therefore, allow expansion of Teff also in presence of Treg.

  12. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors.

    Science.gov (United States)

    Dauer, Marc; Obermaier, Bianca; Herten, Jan; Haerle, Carola; Pohl, Katrin; Rothenfusser, Simon; Schnurr, Max; Endres, Stefan; Eigler, Andreas

    2003-04-15

    It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.

  13. Unique immunomodulatory effects of azelastine on dendritic cells in vitro.

    Science.gov (United States)

    Schumacher, S; Kietzmann, M; Stark, H; Bäumer, W

    2014-11-01

    Allergic contact dermatitis and atopic dermatitis are among the most common inflammatory skin diseases in western countries, and antigen-presenting cells like dendritic cells (DC) are key players in their pathophysiology. Histamine, an important mediator of allergic reactions, influences DC maturation and cytokine secretion, which led us to investigate the immunomodulatory potential of the well-known histamine H1 receptor antagonists: azelastine, olopatadine, cetirizine, and pyrilamine. Unlike other H1 antihistamines, azelastine decreased lipopolysaccharide-induced tumor necrosis factor α and interleukin-12 secretion from murine bone marrow-derived DC. This effect was independent of histamine receptors H1, H2, or H4 and may be linked to inhibition of the nuclear factor kappa B pathway. Moreover, only azelastine reduced proliferation of allogenic T cells in a mixed leukocyte reaction. We then tested topical application of the H1 antihistamines on mice sensitized against toluene-2,4-diisocyanate, a model of Th2-mediated allergic contact dermatitis. In contrast to the in vitro results, all investigated substances were efficacious in reducing allergic ear swelling. Azelastine has unique effects on dendritic cells and T cell interaction in vitro. However, this did not translate into superior in vivo efficacy for Th2-mediated allergic dermatitis, possibly due to the effects of the antihistamines on other cell types involved in skin inflammation. Future research will have to clarify whether these properties are relevant to in vivo models of allergic inflammation with a different T cell polarization.

  14. Characterization of monocyte-derived dendritic cells maturated with IFN-alpha

    DEFF Research Database (Denmark)

    Svane, I M; Nikolajsen, K; Walter, M R;

    2006-01-01

    Dendritic cells (DC) are promising candidates for cancer immunotherapy. These cells can be generated from peripheral blood monocytes cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). In order to obtain full functional capacity, maturation is required......, maturation with IFN-alpha has only a small effect on induction of autologous T-cell stimulatory capacity of the DC. However, an increase in DC allogeneic T-cell stimulatory capacity was observed. These data suggest that IFN-alpha has a potential as a maturation agent used in DC-based cancer vaccine trials...

  15. IT-24DEVELOPMENT OF A NOVEL AUTOLOGOUS DENDRITIC CELL / ALLOGENEIC GLIOBLASTOMA LYSATE VACCINE PROTOCOL

    OpenAIRE

    Parney, Ian; Peterson, Timothy; Gustafson, Michael; Dietz, Allan

    2014-01-01

    BACKGROUND: Dendritic cell (DC) vaccines for glioblastoma (GBM) are promising but significant conceptual shortcomings may have limited their clinical efficacy. First, most trials have not employed optimal DC culture techniques resulting in large numbers of immature (immunosuppressive) DC's. Second, most have used autologous tumor lysate. While highly personalized, this limits vaccine availability and precludes antigen-specific response testing. Finally, GBM-mediated immunosuppression has been...

  16. The network of cytokines, receptors and transcription factors governing the development of dendritic cell subsets

    OpenAIRE

    Sathe, Priyanka; Wu, Li

    2011-01-01

    The pathways leading to the development of different dendritic cell (DC) subsets have long been unclear. In recent years, a number of precursors on the route to DC development, both under steady state and inflammatory conditions, have been described, and the nature of these pathways is becoming clearer. In addition, the development of various knockout mouse models and an in vitro system modelling DC development have revealed the role of numerous cytokines and transcription factors that influe...

  17. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy.

    Directory of Open Access Journals (Sweden)

    Veronica Rainone

    Full Text Available Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies.We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC, as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras. Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation.Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines.Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer.

  18. Expression of dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin on dendritic cells generated from human peripheral blood monocytes

    Institute of Scientific and Technical Information of China (English)

    Jun Li; Zhi-Hua Feng; Guang-Yu Li; Dan-Lei Mou; Qing-He Nie

    2006-01-01

    AIM: To generate dendritic cells (DCs) from human peripheral blood and to detect the expression of dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN; CD209) for the further study of DC-SIGN in hepatitis C virus (HCV) transmission.METHODS: Peripheral blood monocytes were isolated from blood of healthy individuals by Ficoll-Hypaque sedimentation and cultured in complete medium containing rhGM-CSF and rhIL-4. Cells were cultured for seven days, with cytokine addition every two days to obtain immature DCs. Characteristics of the cultured cells were observed under light and scanning microscope, and the expression of DC-SIGN was detected by immunofluorescence staining.RESULTS: After seven-day culture, a large number of cells with typical characteristics of DCs appeared. Their characteristics were observed under light and scanning electron microscope. These cells had a variety of cell shapes such as those of bipolar elongate cells, elaborate stellate cells and DCs. DC-SIGN was detected by immunofluorescence staining and its expression level on cultivated dendritic cells was high.CONCLUSION: DCs with a high expression of DC-SIGN can be generated from human peripheral blood monocytes in complete medium containing rhGM-CSF and rhIL-4.

  19. Transcriptional profiling of human dendritic cell populations and models--unique profiles of in vitro dendritic cells and implications on functionality and applicability.

    Directory of Open Access Journals (Sweden)

    Kristina Lundberg

    Full Text Available BACKGROUND: Dendritic cells (DCs comprise heterogeneous populations of cells, which act as central orchestrators of the immune response. Applicability of primary DCs is restricted due to their scarcity and therefore DC models are commonly employed in DC-based immunotherapy strategies and in vitro tests assessing DC function. However, the interrelationship between the individual in vitro DC models and their relative resemblance to specific primary DC populations remain elusive. OBJECTIVE: To describe and assess functionality and applicability of the available in vitro DC models by using a genome-wide transcriptional approach. METHODS: Transcriptional profiling was performed with four commonly used in vitro DC models (MUTZ-3-DCs, monocyte-derived DCs, CD34-derived DCs and Langerhans cells (LCs and nine primary DC populations (dermal DCs, LCs, blood and tonsillar CD123(+, CD1c(+ and CD141(+ DCs, and blood CD16(+ DCs. RESULTS: Principal Component Analysis showed that transcriptional profiles of each in vitro DC model most closely resembled CD1c(+ and CD141(+ tonsillar myeloid DCs (mDCs among primary DC populations. Thus, additional differentiation factors may be required to generate model DCs that more closely resemble other primary DC populations. Also, no model DC stood out in terms of primary DC resemblance. Nevertheless, hierarchical clustering showed clusters of differentially expressed genes among individual DC models as well as primary DC populations. Furthermore, model DCs were shown to differentially express immunologically relevant transcripts and transcriptional signatures identified for each model DC included several immune-associated transcripts. CONCLUSION: The unique transcriptional profiles of in vitro DC models suggest distinct functionality in immune applications. The presented results will aid in the selection of an appropriate DC model for in vitro assays and assist development of DC-based immunotherapy.

  20. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy.

    Science.gov (United States)

    Senju, S; Haruta, M; Matsumura, K; Matsunaga, Y; Fukushima, S; Ikeda, T; Takamatsu, K; Irie, A; Nishimura, Y

    2011-09-01

    This report describes generation of dendritic cells (DCs) and macrophages from human induced pluripotent stem (iPS) cells. iPS cell-derived DC (iPS-DC) exhibited the morphology of typical DC and function of T-cell stimulation and antigen presentation. iPS-DC loaded with cytomegalovirus (CMV) peptide induced vigorous expansion of CMV-specific autologous CD8+ T cells. Macrophages (iPS-MP) with activity of zymosan phagocytosis and C5a-induced chemotaxis were also generated from iPS cells. Genetically modified iPS-MPs were generated by the introduction of expression vectors into undifferentiated iPS cells, isolation of transfectant iPS cell clone and subsequent differentiation. By this procedure, we generated iPS-MP expressing a membrane-bound form of single chain antibody (scFv) specific to amyloid β (Aβ), the causal protein of Alzheimer's disease. The scFv-transfectant iPS-MP exhibited efficient Aβ-specific phagocytosis activity. iPS-MP expressing CD20-specific scFv engulfed and killed BALL-1 B-cell leukemia cells. Anti-BALL-1 effect of iPS-MP in vivo was demonstrated in a xeno-transplantation model using severe combined immunodeficient mice. In addition, we established a xeno-free culture protocol to generate iPS-DC and iPS-MP. Collectively, we demonstrated the possibility of application of iPS-DC and macrophages to cell therapy.

  1. In-Vitro differentiation of mature dendritic cells from human blood monocytes

    OpenAIRE

    Robert Gieseler; Dirk Heise; Afsaneh Soruri; Peter Schwartz; J. Hinrich Peters

    1998-01-01

    Representing the most potent antigen-presenting cells, dendritic cells (DC) can now be generated from human blood monocytes. We recently presented a novel protocol employing GM-CSF, IL-4, and IFN-γ to differentiate monocyte-derived DC in vitro. Here, such cells are characterized in detail. Cells in culture exhibited both dendritic and veiled morphologies, the former being adherent and the latter suspended. Phenotypically, they were CD1a-/dim, CD11a+, CD11b++, CD11c+, CD14dim/-, CD16a-/dim, CD...

  2. IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively

    DEFF Research Database (Denmark)

    Sichien, Dorine; Scott, Charlotte L; Martens, Liesbet

    2016-01-01

    Interferon regulatory factor-8 (IRF8) has been proposed to be essential for development of monocytes, plasmacytoid dendritic cells (pDCs) and type 1 conventional dendritic cells (cDC1s) and remains highly expressed in differentiated DCs. Transcription factors that are required to maintain the ide...

  3. The Comparison of Biologic Characteristics between Mice Embryonic Stem Cells and Bone Marrow Derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Junfeng Liu; Zhixu He; Dong Shen; Jin Huang; Haowen Wang

    2009-01-01

    OBJECTIVE This research was to induce dendritic cells (DCs)from mice embryonic stem cells and bone marrow mononuclear cells in vitro, and then compare the biologic characteristics of them.METHODS Embryonic stem cells (ESCs) suspending cultured in petri dishes were induced to generate embryonic bodies (EBs).Fourteen-day well-developed EBs were transferred to histological culture with the same medium and supplemented 25 ng/ml GM-CSF and 25 ng/ml IL-3. In the next 2 weeks, there were numerous immature DCs outgrown. Meantime, mononuclear cells isolated from mice bone marrow were induced to derive dendritic cells by supplementing 25 ng/ml GM-CSF and 25 ng/ml IL-4, and then the morphology, phenotype and function of both dendritic cells from different origins were examined.RESULTS Growing mature through exposure to lipopolysaccharide (LPS), both ESC-DCs and BM-DCs exhibited dramatic veils of cytoplasm and extensive dendrites on their surfaces, highly expressed CD11c, MHC-Ⅱ and CD86 with strong capacity to stimulate primary T cell responses in mixed leukocyte reaction (MLR).CONCLUSION ESC-DC has the same biologic characteristics as BM-DC, and it provides a new, reliable source for the functional research of DC and next produce corresponding anti-tumor vaccine.

  4. Immune modulation by dendritic-cell-based cancer vaccines

    Indian Academy of Sciences (India)

    CHAITANYA KUMAR; SAKSHI KOHLI; POONAMALLE PARTHASARATHY BAPSY; ASHOK KUMAR VAID; MINISH JAIN; VENKATA SATHYA SURESH ATTILI; BANDANA SHARAN

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells bymodulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing therecombinant human immune system components to target the pro-tumour microenvironment or by revitalizing theimmune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review,current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines arediscussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishingtumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy,radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents,might be beneficial to the patient.

  5. Study on the immune responses against pancreatic cancer induced by mucin 4 and human telomerase reverse transcriptase mRNA co-transfected dendritic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    陈江

    2014-01-01

    Objective To investigate the anti-tumor immune response induced by human pancreatic cancer mucin 4mRNA and human telomerase reverse transcriptase(hTERT)mRNA cotransfected dendritic cells(DC),and to provide the experimental evidences for the treatment of pancreatic cancer with multi-epitope loaded DC vaccine.Methods DC were isolated from peripheral DC.

  6. Targeting vaccines to dendritic cells

    DEFF Research Database (Denmark)

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-01-01

    delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC....

  7. Plasmacytoid Dendritic Cells and the Control of Herpesvirus Infections

    Directory of Open Access Journals (Sweden)

    Thomas Baranek

    2009-10-01

    Full Text Available Type-I interferons (IFN-I are cytokines essential for vertebrate antiviral defense, including against herpesviruses. IFN-I have potent direct antiviral activities and also mediate a multiplicity of immunoregulatory functions, which can either promote or dampen antiviral adaptive immune responses. Plasmacytoid dendritic cells (pDCs are the professional producers of IFN-I in response to many viruses, including all of the herpesviruses tested. There is strong evidence that pDCs could play a major role in the initial orchestration of both innate and adaptive antiviral immune responses. Depending on their activation pattern, pDC responses may be either protective or detrimental to the host. Here, we summarize and discuss current knowledge regarding pDC implication in the physiopathology of mouse and human herpesvirus infections, and we discuss how pDC functions could be manipulated in immunotherapeutic settings to promote health over disease.

  8. Functional RNA delivery targeted to dendritic cells by synthetic nanoparticles.

    Science.gov (United States)

    McCullough, Kenneth C; Bassi, Isabelle; Démoulins, Thomas; Thomann-Harwood, Lisa J; Ruggli, Nicolas

    2012-09-01

    Dendritic cells (DCs) are essential to many aspects of immune defense development and regulation. They provide important targets for prophylactic and therapeutic delivery. While protein delivery has had considerable success, RNA delivery is still expanding. Delivering RNA molecules for RNAi has shown particular success and there are reports on successful delivery of mRNA. Central, therein, is the application of cationic entities. Following endocytosis of the delivery vehicle for the RNA, cationic entities should promote vesicular membrane perturbation, facilitating cytosolic release. The present review explains the diversity of DC function in immune response development and control. Promotion of delivered RNA cytosolic release is discussed, relating to immunoprophylactic and therapeutic potential, and DC endocytic machinery is reviewed, showing how DC endocytic pathways influence the handling of internalized material. The potential advantages for application of replicating RNA are presented and discussed, in consideration of their value and development in the near future.

  9. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    Directory of Open Access Journals (Sweden)

    Mattias Svensson

    2010-08-01

    Full Text Available Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC. Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes.

  10. The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells.

    Science.gov (United States)

    Grabrucker, Christine; Liepert, Anja; Dreyig, Julia; Kremser, Andreas; Kroell, Tanja; Freudenreich, Markus; Schmid, Christoph; Schweiger, Cornelia; Tischer, Johanna; Kolb, Hans-Jochen; Schmetzer, Helga

    2010-06-01

    Adoptive immunotherapy is an important therapy option to reduce relapse rates after stem-cell transplantation in patients suffering from acute myeloid leukemia and myelodysplastic syndromes. Myeloid leukemic cells can regularly be induced to differentiate into leukemia-derived dendritic cells (DC(leu)), regaining the stimulatory capacity of professional dendritic cells (DCs) while presenting the known/unknown leukemic antigen repertoire. So far, induced antileukemic T-cell responses are variable or even mediate opposite effects. To further elicit DC/DC(leu)-induced T-cell-response patterns, we generated DC from 17 Acute myeloid leukemia (AML) and 2 myelodysplastic syndrome cases and carried out flowcytometry and (functional) nonradioactive fluorolysis assays before/after mixed lymphocyte cultures of matched (allogeneic) donor T cells (n=6), T cells prepared at relapse after stem-cell transplantation (n=4) or (autologous) patients' T cells (n=7) with blast containing mononuclear cells ("MNC") or DC(leu) ("DC"). Compared with "MNC", "DC" were better mediators of antileukemic-activity, although not in every case effective. We could define DC subtypes and cut-off proportions of DC subtypes/qualities (mature DC/DC(leu)) after "DC" priming, which were predictive for an antileukemic activity of primed T cells and the clinical course of the disease after immunotherapy (allogeneic stem-cell transplantation/donor lymphocytes infusion/therapy). In summary, our data show that the composition and quality of DC after a mixed lymphocyte culture-priming phase is predictive for a successful ex vivo antileukemic response, especially with respect to proportions of mature and leukemia-derived DC. These data contribute not only to predict DC-mediated functions or the clinical course of the diseases but also to develop and refine DC-vaccination strategies that may pave the way to develop and modify adoptive immunotherapy, especially for patients at relapse after allogeneic stem-cell

  11. Artificial Dendritic Cells: Multi-faceted Perspectives

    CERN Document Server

    Greensmith, Julie

    2009-01-01

    Dendritic cells are the crime scene investigators of the human immune system. Their function is to correlate potentially anomalous invading entities with observed damage to the body. The detection of such invaders by dendritic cells results in the activation of the adaptive immune system, eventually leading to the removal of the invader from the host body. This mechanism has provided inspiration for the development of a novel bio-inspired algorithm, the Dendritic Cell Algorithm. This algorithm processes information at multiple levels of resolution, resulting in the creation of information granules of variable structure. In this chapter we examine the multi-faceted nature of immunology and how research in this field has shaped the function of the resulting Dendritic Cell Algorithm. A brief overview of the algorithm is given in combination with the details of the processes used for its development. The chapter is concluded with a discussion of the parallels between our understanding of the human immune system a...

  12. Comparison of dendritic cell-mediated immune responses among canine malignant cells.

    Science.gov (United States)

    Tamura, Kyoichi; Arai, Hiroyoshi; Ueno, Emi; Saito, Chie; Yagihara, Hiroko; Isotani, Mayu; Ono, Kenichiro; Washizu, Tsukimi; Bonkobara, Makoto

    2007-09-01

    Dendritic cell (DC) vaccination is one of the most attractive immunotherapies for malignancies in dogs. To examine the differences in DC-mediated immune responses from different types of malignancies in dogs, we vaccinated dogs using autologous DCs pulsed with keyhole limpet hemocyanin (KLH) and cell lysate prepared from squamous cell carcinoma SCC2/88 (SCC-KLH-DC), histiocytic sarcoma CHS-5 (CHS-KLH-DC), or B cell leukemia GL-1 (GL-KLH-DC) in vitro. In vivo inductions of immune responses against these tumor cells were compared by the delayed-type hypersensitivity (DTH) skin test. The DTH response against SCC2/88 cells were observed in dogs vaccinated with autologous SCC-KLH-DC, while the response was undetectable against CHS-5 and GL-1 cells in dogs vaccinated with autologous CHS-KLH-DC and GL-KLH-DC. Skin biopsies taken from DTH challenge sites were then examined for immunohistochemistry, and recruitment of CD8 and CD4 T cells was detected at the site where SCC2/88 cells were inoculated in dogs vaccinated with SCC-KLH-DC. By contrast, neither CD8 nor CD4 T cell infiltration was found at the DTH challenge site in the dogs vaccinated with CHS-KLH-DC or GL-KLH-DC. These findings may reflect that the efficacy of immune induction by DC vaccination varies among tumor types and that immune responses could be inducible in squamous cell carcinoma. Our results encouraged further investigation of therapeutic vaccination for dogs with advanced squamous cell carcinoma in clinical trials.

  13. Expression and function of mixed lineage kinases in dendritic cells.

    Science.gov (United States)

    Handley, Matthew E; Rasaiyaah, Jane; Barnett, James; Thakker, Manish; Pollara, Gabriele; Katz, David R; Chain, Benjamin M

    2007-08-01

    Dendritic cells (DCs) sense the presence of conserved microbial structures in their local microenvironment via specific pattern recognition receptors (PRRs). This leads to a programme of changes, which include migration and activation, and enables them to induce adaptive T cell immunity. Mitogen-activated protein kinases (MAPKs) are implicated in this response, but the pathways leading from PRR ligation to MAPK activation, and hence DC activation, are not fully understood. Recent studies in the nervous system have suggested that the mixed lineage kinase (MLK) family of MAPK kinase kinase proteins may be involved as an intermediary step between PRRs and MAPKs. Therefore, in this study, we have used a well-established DC model to explore the role of MLKs in these cells. Messenger RNA for MLKs 2, 3, 4 and DLK and protein for MLKs 2, 3 and DLK are found in DC. DC activation in response to model PRR ligands, such as LPS or poly (I:C), is accompanied by phosphorylation of MLK3. In contrast, another known PRR ligand, zymosan, induces little MLK3 phosphorylation. Inhibition of MLK activity using a pharmacological inhibitor, CEP11004, blocks p38 and Jun N-terminal kinase (JNK) MAPK activation in response to LPS and poly (I:C), but not zymosan. The inhibition is associated with a block in DC activation as measured by cell-surface marker expression and cytokine secretion. Thus, MLKs are expressed in DC, and are implicated in DC activation, and the involvement of MLKs appears to be selective, depending on the nature of the DC stimulus.

  14. Dendritic Cell-Based Immunotherapy for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Hanka Jähnisch

    2010-01-01

    Full Text Available Dendritic cells (DCs are professional antigen-presenting cells (APCs, which display an extraordinary capacity to induce, sustain, and regulate T-cell responses providing the opportunity of DC-based cancer vaccination strategies. Thus, clinical trials enrolling prostate cancer patients were conducted, which were based on the administration of DCs loaded with tumor-associated antigens. These clinical trials revealed that DC-based immunotherapeutic strategies represent safe and feasible concepts for the induction of immunological and clinical responses in prostate cancer patients. In this context, the administration of the vaccine sipuleucel-T consisting of autologous peripheral blood mononuclear cells including APCs, which were pre-exposed in vitro to the fusion protein PA2024, resulted in a prolonged overall survival among patients with metastatic castration-resistent prostate cancer. In April 2010, sipuleucel-T was approved by the United States Food and Drug Administration for prostate cancer therapy.

  15. Uptake of antigen-antibody complexes by human dendritic cells.

    Science.gov (United States)

    Fanger, N A; Guyre, P M; Graziano, R F

    2001-01-01

    Fc receptors specific for IgG (FcγR) potentiate the immune response by facilitating the interaction between myeloid cells and antibody-coated targets (1-3). Monocyte and neutrophil FcyR engagement can lead to the induction of lytic-type mechanisms associated with innate responses. FcyR triggering can also play a key role in adaptive immune responses. For example, FcyR-directed capture and uptake of antigens (Ag) by dendritic cells (DC) results in processing and presentation to naive Ag-specific T cells, leading to their expansion and maturation into effector T-cell populations. This chapter describes methodology currently in use to explore and manipulate antigen-antibody (Ag-Ab) uptake by FcyR expressed on DC.

  16. Exosomes from B cells and Dendritic cells: mechanisms of formation, secretion and targeting

    OpenAIRE

    Buschow, S.I.

    2006-01-01

    Many cell types, including dendritic cells (DC) and B cells, secrete small vesicles called exosomes. Exosomes from immune cells are thought to have immuno-regulatory functions but their precise role remains unresolved. The aim of the studies presented in this thesis was to get more insight into the factors that determine exosome formation, composition and secretion as well as to learn more about their physiological relevance. Exosomes are equivalent to Luminal Vesicles (LV) of Multi Vesicular...

  17. Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells.

    Science.gov (United States)

    Deauvieau, Florence; Ollion, Vincent; Doffin, Anne-Claire; Achard, Carole; Fonteneau, Jean-François; Verronese, Estelle; Durand, Isabelle; Ghittoni, Raffaella; Marvel, Jacqueline; Dezutter-Dambuyant, Colette; Walzer, Thierry; Vie, Henri; Perrot, Ivan; Goutagny, Nadège; Caux, Christophe; Valladeau-Guilemond, Jenny

    2015-03-01

    Dendritic cells (DCs) cross-present antigen (Ag) to initiate T-cell immunity against most infections and tumors. Natural killer (NK) cells are innate cytolytic lymphocytes that have emerged as key modulators of multiple DC functions. Here, we show that human NK cells promote cross-presentation of tumor cell-derived Ag by DC leading to Ag-specific CD8(+) T-cell activation. Surprisingly, cytotoxic function of NK cells was not required. Instead, we highlight a critical and nonredundant role for IFN-γ and TNF-α production by NK cells to enhance cross-presentation by DC using two different Ag models. Importantly, we observed that NK cells promote cell-associated Ag cross-presentation selectively by monocytes-derived DC (Mo-DC) and CD34-derived CD11b(neg) CD141(high) DC subsets but not by myeloid CD11b(+) DC. Moreover, we demonstrate that triggering NK cell activation by monoclonal antibodies (mAbs)-coated tumor cells leads to efficient DC cross-presentation, supporting the concept that NK cells can contribute to therapeutic mAbs efficiency by inducing downstream adaptive immunity. Taken together, our findings point toward a novel role of human NK cells bridging innate and adaptive immunity through selective induction of cell-associated Ag cross-presentation by CD141(high) DC, a process that could be exploited to better harness Ag-specific cellular immunity in immunotherapy. © 2014 UICC.

  18. Intratumoral injection of BCG-CWS-pretreated dendritic cells following tumor cryoablation.

    Science.gov (United States)

    Kawamura, Naoshi; Udagawa, Masaru; Fujita, Tomonobu; Sakurai, Toshiharu; Yaguchi, Tomonori; Kawakami, Yutaka

    2014-01-01

    Intratumoral administration of dendritic cells (DC) following cryoablation of tumor is one of the personalized cancer immunotherapies which is able to induce immune responses to multiple endogenous tumor antigens, including shared and unique antigens. Here we describe protocols of cryoablation of tumors, generation of cultured DC, pretreatment of DC with a Toll-like receptor (TLR)-stimulating purified component of Bacillus Calmette-Guerin cell wall fraction (BCG-CWS) and highly immunogenic keyhole limpet hemocyanin (KLH) antigen, and combined use of tumor cryoablation and intratumoral administration of BCG-CWS-pretreated DC in both a murine model and cancer patients.

  19. Cross-Presentation in Mouse and Human Dendritic Cells.

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2015-01-01

    Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.

  20. Self-antigen presentation by dendritic cells in autoimmunity

    Directory of Open Access Journals (Sweden)

    Ann-Katrin eHopp

    2014-02-01

    Full Text Available The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs. Dendritic cells (DCs are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies.

  1. Specific targeting of whole lymphoma cells to dendritic cells ex vivo provides a potent antitumor vaccine

    Directory of Open Access Journals (Sweden)

    Mocikat Ralph

    2007-03-01

    Full Text Available Abstract Background Dendritic cells (DC pulsed with tumor-derived antigenic material have widely been used in antitumor vaccination protocols. However, the optimal strategy of DC loading has not yet been established. Our aim was to define requirements of optimal DC vaccines in terms of in vivo protection in a murine B-cell lymphoma model. Methods We compare various loading reagents including whole parental and modified tumor cells and a single tumor-specific antigen, namely the lymphoma idiotype (Id. Bone marrow-derived DC were pulsed in vitro and used for therapy of established A20 lymphomas. Results We show that a vaccine with superior antitumor efficacy can be generated when DC are loaded with whole modified tumor cells which provide both (i antigenic polyvalency and (ii receptor-mediated antigen internalization. Uptake of cellular material was greatly enhanced when the tumor cells used for DC pulsing were engineered to express an anti-Fc receptor immunoglobulin specificity. Upon transfer of these DC, established tumor burdens were eradicated in 50% of mice. By contrast, pulsing DC with unmodified lymphoma cells or with the lymphoma Id, even when it was endowed with the anti-Fc receptor binding arm, was far less effective. A specific humoral anti-Id response could be detected, particularly following delivery of Id protein-pulsed DC, but it was not predictive of tumor protection. Instead a T-cell response was pivotal for successful tumor protection. Interaction of the transferred DC with CD8+ T lymphocytes seemed to play a role for induction of the immune response but was dispensable when DC had received an additional maturation stimulus. Conclusion Our analyses show that the advantages of specific antigen redirection and antigenic polyvalency can be combined to generate DC-based vaccines with superior antitumor efficacy. This mouse model may provide information for the standardization of DC-based vaccination protocols.

  2. Early cytoskeletal rearrangement during dendritic cell maturation enhances synapse formation and Ca(2+) signaling in CD8(+) T cells.

    Science.gov (United States)

    Averbeck, Marco; Braun, Thorsten; Pfeifer, Gunther; Sleeman, Jonathan; Dudda, Jan; Martin, Stefan F; Kremer, Bernhard; Aktories, Klaus; Simon, Jan C; Termeer, Christian

    2004-10-01

    The interplay between dendritic cells (DC) and T cells is a dynamic process critically depending on DC maturation. Ca(2+) influx is one of the initial events occurring during DC/T cell contacts. To determine how DC maturation influences DC/T cell contacts, time-lapse video microscopy was established using TCR-transgenic CD8(+) T cells from P14 mice. DC maturation shifted DC/T cell contacts from short-lived interactions with transient Ca(2+) influx in T cells to long-lasting interactions and sustained Ca(2+) influx of 30 min and more. Follow-up of DC/T cell interactions after 2 h using confocal microscopy revealed that long-lasting Ca(2+) responses in T cells were preferentially associated with the formation of an immunological synapse involving CD54 and H2-K(b) at the DC/T cell interface. Such synapse formation preceded MHC or B7 up-regulation, since DC developed into potent Ca(2+) stimulators 7 h after initiation of maturation. Instead, the enhanced capacity of 7 h-matured DC to induce sustained Ca(2+) responses in CD8(+) T cells is critically dependent on the polarization and rearrangement of the cytoskeleton, as shown by Clostridium difficile toxin B inhibitor experiments. These data indicate that already very early after receiving a maturation stimulus, DC display enhanced cytoskeletal activity resulting in the rapid formation of immunological synapses and effective CD8(+) T cell stimulation.

  3. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells.

    Science.gov (United States)

    Evans, Vanessa A; Kumar, Nitasha; Filali, Ali; Procopio, Francesco A; Yegorov, Oleg; Goulet, Jean-Philippe; Saleh, Suha; Haddad, Elias K; da Fonseca Pereira, Candida; Ellenberg, Paula C; Sekaly, Rafick-Pierre; Cameron, Paul U; Lewin, Sharon R

    2013-01-01

    Latently infected resting CD4(+) T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4(+) T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4(+) T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4(+) T cells. Gene expression in non-proliferating CD4(+) T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4(+) T cells, which is predominantly mediated through signalling during DC-T cell contact.

  4. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Vanessa A Evans

    Full Text Available Latently infected resting CD4(+ T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4(+ T cells and syngeneic myeloid dendritic cells (mDC can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4(+ T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4(+ T cells. Gene expression in non-proliferating CD4(+ T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4(+ T cells, which is predominantly mediated through signalling during DC-T cell contact.

  5. Rapamycin Conditioning of Dendritic Cells Differentiated from Human ES Cells Promotes a Tolerogenic Phenotype

    Directory of Open Access Journals (Sweden)

    Kathryn M. Silk

    2012-01-01

    Full Text Available While human embryonic stem cells (hESCs may one day facilitate the treatment of degenerative diseases requiring cell replacement therapy, the success of regenerative medicine is predicated on overcoming the rejection of replacement tissues. Given the role played by dendritic cells (DCs in the establishment of immunological tolerance, we have proposed that DC, rendered tolerogenic during their differentiation from hESC, might predispose recipients to accept replacement tissues. As a first step towards this goal, we demonstrate that DC differentiated from H1 hESCs (H1-DCs are particularly responsive to the immunosuppressive agent rapamycin compared to monocyte-derived DC (moDC. While rapamycin had only modest impact on the phenotype and function of moDC, H1-DC failed to upregulate CD40 upon maturation and displayed reduced immunostimulatory capacity. Furthermore, coculture of naïve allogeneic T cells with rapamycin-treated H1-DC promoted an increased appearance of CD25hi Foxp3+ regulatory T cells, compared to moDC. Our findings suggest that conditioning of hESC-derived DC with rapamycin favours a tolerogenic phenotype.

  6. Development of a standardized protocol for reproducible generation of matured monocyte-derived dendritic cells suitable for clinical application

    OpenAIRE

    Bohnenkamp, H.R.; Noll, T.

    2003-01-01

    There is increasing interest in the generation of dendritic cells (DC) for cancer immunotherapy. In order to utilize DC in clinical trials it is necessary to have standardized, reproducible and easy to use protocols. We describe here the process development for the generation of DC as the result of investigation of culture conditions as well as consumption rates of medium and cytokines. Our studies demonstrate that highly viable DC (93 ± 2%) can be produced from CD14+ enriched monocytes via i...

  7. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  8. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  9. The cell biology of cross-presentation and the role of dendritic cell subsets.

    Science.gov (United States)

    Lin, Ming-Lee; Zhan, Yifan; Villadangos, Jose A; Lew, Andrew M

    2008-01-01

    The cell biology of cross-presentation is reviewed regarding exogenous antigen uptake, antigen degradation and entry into the major histocompatibility complex class I pathway. Whereas cross-presentation is not associated with enhanced phagocytic ability, certain receptors may favour uptake for cross-presentation for example mannose receptor for soluble glycoproteins. Perhaps, the defining property of the cross-presenting cell is some specialization in host machinery for handling and transport of antigen across organelles. Both cytosolic and vacuolar pathways are discussed. Which dendritic cell (DC) subset is the cross-presenting cell is explored. Cross-presentation is found within the CD8(+) subset resident in lymphoid organs. The role of other DC subsets (especially the migratory CD8(-) DC) and the route of antigen delivery are also discussed. Further consideration is given to antigen transfer between DC subsets and differential presentation to naive vs memory T cells.

  10. [Effect of plasmacytoid dendritic cells activited by bacteria on spontaneous remission of leukemia].

    Science.gov (United States)

    Li, Juan; Zhang, Lian-Sheng; Chai, Ye; Zeng, Peng-Yun; Wu, Chong-Yang; Yue, Ling-Ling; Bai, Jun; Hao, Zheng-Dong; Hu, Wan-Li; Chen, Hui-Ling; Guo, Xiao-Jia

    2014-10-01

    Spontaneous remission (SR) of leukemia is a rare event in clinic, which possibly correlated with severe infection and sepsis, but its exact mechanism has not been confirmed. Plasmacytoid dendritic cells (pDC) and myeloid dendritic cells (mDC) play a key role in innate and adaptive immunity respectively. A patient with severe infection of staphylococcus aureus acquired completely spontaneous remission (SR), moreover a increased number of pDC were observed, suggesting that bacteria-activated pDC may play an important role in SR. This study was purposed to explore if the bacteria can stimulate pDC successfully and get a functional pDC. Both pDC and mDC were isolated from freshly collected, leukocyte-rich buffy coats from healthy blood donor and leukemic patient with SR by using MACS and FACS. The pDC were cultured in RPMI 1640 medium and were stimulated with different kinds of bacteria and the expression of CD40, CD86 and HLA-DR on the cell surface was analyzed by flow cytometry. The cytokine (IFN-α, IL-12, IFN-γ, IL-2, IL-4, IL-10) production was measured by using ELISA kits. The results showed that the stimulation with staphylococcus aureus and pseudomonas aeruginosa resulted in the maturation of pDC, which secrete a large number of IFN-α and promote the differentiation of naive CD4⁺ T cells to Th1 cells. The activated pDC expressed high level of CD40 and CD86 and showed higher T cell stimulatory capacities. It is concluded that staphylococcus aureus and pseudomonas aeruginosa can activate pDC, the activated pDC secrete high quantity of IFN-α. This result suggests that bacteria stimulated pDC may play a key role in SR of leukemia following severe infections.

  11. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero.

    Science.gov (United States)

    Breitling, Lutz P; Fendel, Rolf; Mordmueller, Benjamin; Adegnika, Ayola A; Kremsner, Peter G; Luty, Adrian J F

    2006-10-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring of Gabonese mothers with different infection histories. Cord blood from newborns of mothers with malarial infection at delivery had significantly more mDC than that from nonexposed newborns (P = 0.028) but mDC and pDC HLA-DR expression was unrelated to maternal infection history. Independently of these findings, cord blood mDC and pDC numbers declined significantly as a function of increasing maternal age (P = 0.029 and P = 0.033, respectively). The inducible antigen-specific interleukin-10-producing regulatory-type T-cell population that we have previously detected in cord blood of newborns with prolonged in utero exposure to P. falciparum may directly reflect the altered DC numbers in such neonates, while the maintenance of cord blood DC HLA-DR expression contrasts with that of DC from P. falciparum malaria patients.

  12. Inducing Maturation of Monocyte-Derived Dendritic Cells on Human Epithelial Cell Feeder Layer

    Directory of Open Access Journals (Sweden)

    Delirezh N

    2012-02-01

    Full Text Available Background: Nowadays, dendritic cells (DCs have a special place in cancer treatment strategies and they have been used for tumor immunotherapy as they can induce immune response against tumor cells. Researchers have been trying to generate efficient dendritic cells in vitro; therefore, this research was done to generate them for use in research and tumor immunotherapy. Methods: This study took place at Urmia University in 2010-2011 years. In this study plastic adherent monocytes were incubated with granulocyte-macrophage colony stimulating factor (GM-CSF and interleukin-4 (IL-4 for five days. Finally, fully matured and stable DCs were generated by 48 hours of incubation in a monocyte conditioned medium (MCM containing tumor necrosis factor-α (TNF-α and epithelial cells. Phenotypic and functional analysis were carried out by using anti-CD14, anti-CD80, anti-CD86, and anti-CD83 monoclonal antibodies, and by determining their phagocytic activity, mixed lymphocyte reaction (MLR and cytokine production, respectively. Results: Dendritic cells were produced with high levels of surface molecule, i.e. of CD80, CD83, CD86, HLA-DR, expression and low levels of CD14 expression. Dendritic cells showed efficient phagocytosis and ability to stimulate T-lymphocytes. Moreover, dendritic cells could secrete high levels of interleukin-12 (IL-12 cytokine which was depictive of their full maturation. Measurement of the produced cytokines showed the generation of type-1 dendritic cells (DC1. Conclusion: Our study showed that skin epithelial cells could induce maturation of monocyte-derived dendritic cells (DCs. This feeder layer led to the production of efficient dendritic cells with the ability to be used for tumor immunotherapy.

  13. Clinical grade OK432-activated dendritic cells: in vitro characterization and tracking during intralymphatic delivery.

    Science.gov (United States)

    West, Emma; Morgan, Ruth; Scott, Karen; Merrick, Alison; Lubenko, Anatole; Pawson, David; Selby, Peter; Hatfield, Paul; Prestwich, Robin; Fraser, Sheila; Eves, David; Anthoney, Alan; Twelves, Chris; Beirne, Debbie; Patel, Poulam; O'Donnell, Dearbhaile; Watt, Suzanne; Waller, Michael; Dietz, Allan; Robinson, Philip; Melcher, Alan

    2009-01-01

    Dendritic cells (DC) are under intense preclinical and early clinical evaluation for the immunotherapy of cancer. However, the optimal culture conditions and route of delivery for DC vaccination have not been established. Here we describe the first human application of DC matured with the bacterial agent OK432 (OK-DC), using a short-term serum-free culture protocol, which generates mature DC from CD14+ precursors after 5 days. These cells were prepared within the framework of a National Blood Service facility, demonstrating that DC represent a product which is potentially deliverable alongside current standardized cell therapies within the UK National Health Service. In vitro analysis confirmed that OK-DC were mature, secreted tumor necrosis factor-alpha, interleukin-6, and interleukin-12, and stimulated both T cell and natural killer cell function. To explore effective delivery of OK-DC to lymph nodes, we performed an initial clinical tracking study of radioactively labeled, unpulsed OK-DC after intralymphatic injection into the dorsum of the foot. We showed that injected DC rapidly localized to ipsilateral pelvic lymph nodes, but did not disseminate to more distant nodes over a 48-hour period. There was no significant toxicity associated with OK-DC delivery. These results show that OK-DC are suitable for clinical use, and that intralymphatic delivery is feasible for localizing cells to sites where optimal priming of innate and adaptive antitumor immunity is likely to occur.

  14. Mesenchymal Stem Cells Inhibit Dendritic Cell Maturation and Their Allosti mulatory Capacity

    Institute of Scientific and Technical Information of China (English)

    Sophie; PACZESNY; Veronique; LATGER; CANNARD; Luc; MARCHAL; Bernard; FOLLIGUET; Jean-Franéois; STOLTZ; Assia; ELJAAFARI

    2005-01-01

    1 IntroductionDendritic cells (DC) are the most potent antigen-presenting cells. They play an important role in both initiation of immunity and maintenance of immune tolerance. In the recent years, they have been used in humans for the treatment of tumors. DCs are very poor in blood; however, they can be generated in vitro from either CD34~+ hematopoietic stem cell precursors or peripheral blood monocytes, by using appropriate cytokines~([1]). However, the microenvironment can influence their differentiatio...

  15. Investigating evolutionary conservation of dendritic cell subset identity and functions

    Directory of Open Access Journals (Sweden)

    Thien-Phong eVu Manh

    2015-06-01

    Full Text Available Dendritic cells (DC were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types

  16. Cryptococcus gattii is killed by dendritic cells, but evades adaptive immunity by failing to induce dendritic cell maturation.

    Science.gov (United States)

    Huston, Shaunna M; Li, Shu Shun; Stack, Danuta; Timm-McCann, Martina; Jones, Gareth J; Islam, Anowara; Berenger, Byron M; Xiang, Richard F; Colarusso, Pina; Mody, Christopher H

    2013-07-01

    During adaptive immunity to pathogens, dendritic cells (DCs) capture, kill, process, and present microbial Ags to T cells. Ag presentation is accompanied by DC maturation driven by appropriate costimulatory signals. However, current understanding of the intricate regulation of these processes remains limited. Cryptococcus gattii, an emerging fungal pathogen in the Pacific Northwest of Canada and the United States, fails to stimulate an effective immune response in otherwise healthy hosts leading to morbidity or death. Because immunity to fungal pathogens requires intact cell-mediated immunity initiated by DCs, we asked whether C. gattii causes dysregulation of DC functions. C. gattii was efficiently bound and internalized by human monocyte-derived DCs, trafficked to late phagolysosomes, and killed. Yet, even with this degree of DC activation, the organism evaded pathways leading to DC maturation. Despite the ability to recognize and kill C. gattii, immature DCs failed to mature; there was no increased expression of MHC class II, CD86, CD83, CD80, and CCR7, or decrease of CD11c and CD32, which resulted in suboptimal T cell responses. Remarkably, no increase in TNF-α was observed in the presence of C. gattii. However, addition of recombinant TNF-α or stimulation that led to TNF-α production restored DC maturation and restored T cell responses. Thus, despite early killing, C. gattii evades DC maturation, providing a potential explanation for its ability to infect immunocompetent individuals. We have also established that DCs retain the ability to recognize and kill C. gattii without triggering TNF-α, suggesting independent or divergent activation pathways among essential DC functions.

  17. On dendritic cell-based therapy for cancers

    Institute of Scientific and Technical Information of China (English)

    Morikazu Onji; Sk. Md. Fazle Akbar

    2005-01-01

    Dendritic cells (DCs), the most prevalent antigen-presenting cell in vivo, had been widely characterized in the last three decades. DCs are present in almost all tissues of the body and play cardinal roles in recognition of microbial agents,autoantigens, allergens and alloantigen. DCs process the microbial agents or their antigens and migrate to lymphoid tissues to present the antigenic peptide to lymphocytes. This leads to activation of antigen-specific lymphocytes. Initially, it was assumed that DCs are principally involved in the induction and maintenance of adaptive immune responses, but now it is evident that DCs also have important roles in innate immunity. These features make DCs very good candidates for therapy against various pathological conditions including malignancies. Initially, DC-based therapy was used in animal models of cancers. Data from these studies inspired considerable optimism and DC-based therapies was started in human cancers 8 years ago. In general,DC-based therapy has been found to be safe in patients with cancers, although few controlled trials have been conducted in this regard. Because the fundamentals principles of human cancers and animal models of cancers are different, the therapeutic efficacy of the ongoing regime of DC-based therapy in cancer patients is not satisfactory. In this review, we covered the various aspects that should be considered for developing better regime of DC-based therapy for human cancers.

  18. Dendritic cells in melanoma - immunohistochemical study and research trends.

    Science.gov (United States)

    Nedelcu, Roxana Ioana; Ion, Daniela Adriana; Holeab, Cosmin Adrian; Cioplea, Mirela Daniela; Brînzea, Alice; Zurac, Sabina Andrada

    2015-01-01

    Cutaneous dendritic cells play multiple physiological roles and are involved in various pathophysiological processes. Research studies of dendritic cells abound in the medical literature. Nevertheless, the role of dendritic cells in melanoma regression phenomenon is not completely understood. We conducted a scientometric analysis in order to highlight the current state on research regarding dendritic cells and melanoma. We also performed an immunohistochemical study, using specific markers for dendritic cells (CD1a, langerin). We evaluated the frequency and distribution of dendritic cells in areas of tumor regression compared to the areas of inflammatory infiltrate of melanoma without regression. The immunohistochemical study we performed revealed that dendritic cells are more frequent in the regressed areas, comparing with non-regressed ones. In regressed areas, dendritic cells have a predominant nodular pattern (19 cases), followed by diffuse isolate pattern (eight cases) and mixed pattern (diffuse and nodular) (three cases). In melanoma without regression, most cases presented a diffuse pattern (27 cases) of dendritic cells distribution. In conclusion, our immunohistochemical study stressed differences between frequency and distribution of dendritic cells located in the melanoma with regression and melanoma without regression. These data suggest that dendritic cells are involved in the regression phenomenon. Following the literature analysis we obtained, we observed that dendritic cells profile in melanoma with regression was poorly studied. Insights into antitumor immune response and dendritic cells may be essential for the understanding of the potential prognostic role of dendritic cells in melanoma and for the development of new promising therapeutic strategies for melanoma.

  19. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Pedersen, Anders Elm; Met, Ozcan

    2008-01-01

    polarized dendritic cells (alphaDC1) in serum-free medium was published based on maturation of monocyte-derived DCs with TNF-alpha/IL-1-beta/polyinosinic:polycytidylic acid (poly-I:C)/interferon (IFN)-alpha and IFN-gamma. This DC maturation cocktail was described to fulfill the criteria for optimal DC......The current "gold standard" for generation of dendritic cell (DC) used in DC-based cancer vaccine studies is maturation of monocyte-derived DCs with tumor necrosis factor-alpha (TNF-alpha)/IL-1beta/IL-6 and prostaglandin E(2) (PGE(2)). Recently, a protocol for producing so-called alpha-Type-1...... of alphaDC1 maturation cocktail to a protocol for clinical grade DC generation from cancer patients performed in X-VIVO 15 medium. We showed that alphaDC1 in this protocol induce lower up-regulation of CD83 and several other maturation markers, co-stimulatory molecules and CCR7 together with higher up...

  20. Induction of regulatory dendritic cells by dexamethasone and 1alpha,25-Dihydroxyvitamin D(3)

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Gad, Monika; Walter, Mark R;

    2004-01-01

    Dendritic cells (DC) modulated to induce T cell hyporesponsiveness have promising potential in immunotherapy of autoimmune disorders and for the prevention of allograft rejection. While studying the effect of immunosuppressive agents on the maturation of DC we found that 1alpha,25-Dihydroxyvitamin...... D(3) the active form of Vitamin D(3) (D(3)) in combination with dexamethasone (Dex) has a synergistic effect on LPS-induced maturation of DC. Monocyte-derived DCs cultured with D(3) and Dex during LPS-induced maturation have a low stimulatory effect on allogeneic T cells comparable...... immunosuppressive drug combination for the induction of DCs capable of inducing T cell hyporesponsiveness....

  1. Milk-derived GM3 and GD3 differentially inhibit dendritic cell maturation and effector functionalities

    DEFF Research Database (Denmark)

    Brønnum, H.; Seested, T.; Hellgren, Lars;

    2005-01-01

    value of gangliosides in breast milk has yet to be elucidated but when milk is ingested, dietary gangliosides might conceptually affect immune cells, such as dendritic cells (DCs). In this study, we address the in vitro effect of GD(3) and GM(3) on DC effector functionalities. Treatment of bone marrow...

  2. The role of dendritic cells in cancer

    DEFF Research Database (Denmark)

    Hansen, Morten; Andersen, Mads Hald

    2017-01-01

    Though present in low numbers, dendritic cells (DCs) are recognized as major players in the control of cancer by adaptive immunity. The roles of cytotoxic CD8+ T-cells and Th1 helper CD4+ T-cells are well-documented in murine models of cancer and associated with a profound prognostic impact when...... treatment regimens against cancer....

  3. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    2003-01-01

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  4. Monocyte derived dendritic cells generated by IFN-α acquire mature dendritic and natural killer cell properties as shown by gene expression analysis

    Directory of Open Access Journals (Sweden)

    Czibere Akos

    2007-09-01

    Full Text Available Abstract Background Dendritic cell (DC vaccines can induce antitumor immune responses in patients with malignant diseases, while the most suitable DC culture conditions have not been established yet. In this study we compared monocyte derived human DC from conventional cultures containing GM-CSF and IL-4/TNF-α (IL-4/TNF-DC with DC generated by the novel protocol using GM-CSF and IFN-α (IFN-DC. Methods To characterise the molecular differences of both DC preparations, gene expression profiling was performed using Affymetrix microarrays. The data were conformed on a protein level by immunophenotyping, and functional tests for T cell stimulation, migration and cytolytic activity were performed. Results Both methods resulted in CD11c+ CD86+ HLA-DR+ cells with a typical DC morphology that could efficiently stimulate T cells. But gene expression profiling revealed two distinct DC populations. Whereas IL-4/TNF-DC showed a higher expression of genes envolved in phagocytosis IFN-DC had higher RNA levels for markers of DC maturity and migration to the lymph nodes like DCLAMP, CCR7 and CD49d. This different orientation of both DC populations was confined by a 2.3 fold greater migration in transwell experiments (p = 0.01. Most interestingly, IFN-DC also showed higher RNA levels for markers of NK cells such as TRAIL, granzymes, KLRs and other NK cell receptors. On a protein level, intracytoplasmatic TRAIL and granzyme B were observed in 90% of IFN-DC. This translated into a cytolytic activity against K562 cells with a median specific lysis of 26% at high effector cell numbers as determined by propidium iodide uptake, whereas IL-4/TNF-DC did not induce any tumor cell lysis (p = 0.006. Thus, IFN-DC combined characteristics of mature DC and natural killer cells. Conclusion Our results suggest that IFN-DC not only stimulate adaptive but also mediate innate antitumor immune responses. Therefore, IFN-DC should be evaluated in clinical vaccination trials. In

  5. Evaluation of two different dendritic cell preparations with BCG reactivity

    Directory of Open Access Journals (Sweden)

    Fol Marek

    2016-01-01

    Full Text Available Dendritic cells (DCs play a key-role in the immune response against intracellular bacterial pathogens, including mycobacteria. Monocyte-derived dendritic cells (MoDCs are considered to behave as inflammatory cell populations. Different immunomagnetic methods (positive and negative can be used to purify monocytes before their in vitro differentiation and their culture behavior can be expected to be different. In this study we evaluated the reactivity of two dendritic cell populations towards the Bacillus Calmette-Guérin (BCG antigen. Monocytes were obtained from the blood of healthy donors, using positive and negative immunomagnetic separation methods. The expression of DC-SIGN, CD86, CD80, HLA-DR and CD40 on MoDCs was estimated by flow cytometry. The level of IL-12p70, IL-10 and TNF-α was measured by ELISA. Neither of the tested methods affected the surface marker expression of DCs. No significant alteration in immunological response, measured by cytokine production, was noted either. After BCG stimulation, the absence of IL-12, but the IL-23 production was observed in both cell preparations. Positive and negative magnetic separation methods are effective techniques to optimize the preparation of monocytes as the source of MoDCs for potential clinical application.

  6. The role of cDC1s in vivo: CD8 T cell priming through cross-presentation

    Science.gov (United States)

    Theisen, Derek; Murphy, Kenneth

    2017-01-01

    The cDC1 subset of classical dendritic cells is specialized for priming CD8 T cell responses through the process of cross-presentation. The molecular mechanisms of cross-presentation remain incompletely understood because of limited biochemical analysis of rare cDC1 cells, difficulty in their genetic manipulation, and reliance on in vitro systems based on monocyte- and bone-marrow-derived dendritic cells. This review will discuss cross-presentation from the perspective of studies with monocyte- or bone-marrow-derived dendritic cells while highlighting the need for future work examining cDC1 cells. We then discuss the role of cDC1s as a cellular platform to combine antigen processing for class I and class II MHC presentation to allow the integration of “help” from CD4 T cells during priming of CD8 T cell responses. PMID:28184299

  7. Candida albicans mannoprotein influences the biological function of dendritic cells.

    Science.gov (United States)

    Pietrella, Donatella; Bistoni, Giovanni; Corbucci, Cristina; Perito, Stefano; Vecchiarelli, Anna

    2006-04-01

    Cell wall components of fungi involved in induction of host immune response are predominantly proteins and glycoproteins, the latter being mainly mannoproteins (MP). In this study we analyse the interaction of the MP from Candida albicans (MP65) with dendritic cells (DC) and demonstrate that MP65 stimulates DC and induces the release of TNF-alpha, IL-6 and the activation of IL-12 gene, with maximal value 6 h post treatment. MP65 induces DC maturation by increasing costimulatory molecules and decreasing CD14 and FcgammaR molecule expression. The latter effect is partly mediated by toll-like receptor 2 (TLR2) and TLR4, and the MyD88-dependent pathway is involved in the process. MP65 enables DC to activate T cell response, its protein core is essential for induction of T cell activation, while its glycosylated portion primarily promotes cytokine production. The mechanisms involved in induction of protective response against C. albicans could be mediated by the MP65 antigen, suggesting that MP65 may be a suitable candidate vaccine.

  8. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement

    Science.gov (United States)

    Smith, Nikaïa; Pietrancosta, Nicolas; Davidson, Sophia; Dutrieux, Jacques; Chauveau, Lise; Cutolo, Pasquale; Dy, Michel; Scott-Algara, Daniel; Manoury, Bénédicte; Zirafi, Onofrio; McCort-Tranchepain, Isabelle; Durroux, Thierry; Bachelerie, Françoise; Schwartz, Olivier; Münch, Jan; Wack, Andreas; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2017-01-01

    Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. PMID:28181493

  9. Functional specialization of skin dendritic cell subsets in regulating T cell responses

    Directory of Open Access Journals (Sweden)

    Björn E. Clausen

    2015-10-01

    Full Text Available Dendritic cells (DC are a heterogeneous family of professional antigen presenting cells (APC classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells (LC have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance towards harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions towards contact sensitizers, cutaneous pathogens and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.

  10. Induction of anti-leukemic cytotoxic T lymphocytes by fusion of patient-derived dendritic cells with autologous myeloblasts.

    Science.gov (United States)

    Gong, Jianlin; Koido, Shigeo; Kato, Yoko; Tanaka, Yasuhiro; Chen, Dongshu; Jonas, Anna; Galinsky, Ilene; DeAngelo, Daniel; Avigan, David; Kufe, Donald; Stone, Richard

    2004-12-01

    Presentation of AML antigens by dendritic cells (DC) could potentially induce a T cell-mediated anti-leukemic immune response. In the present study, we generated DC from adherent (AD-DC) and non-adherent (NAD-DC) myeloblasts obtained from bone marrows of AML patients. Both cell populations displayed morphological, phenotypic and functional properties of DC. The functions of NAD-DC were compared to AD-DC that had been fused with autologous AML blasts (FC/AML). The FC/AML induced greater T cell proliferation and CTL activity against autologous AML blasts (9/10 cases) as compared to NAD-DC. FC/AML may thus represent a promising strategy for DC-based immunotherapy of patients with AML.

  11. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells.

    Science.gov (United States)

    Voedisch, Sabrina; Rochlitzer, Sabine; Veres, Tibor Z; Spies, Emma; Braun, Armin

    2012-01-01

    The airway mucosal epithelium is permanently exposed to airborne particles. A network of immune cells patrols at this interface to the environment. The interplay of immune cells is orchestrated by different mediators. In the current study we investigated the impact of neuronal signals on key functions of dendritic cells (DC). Using two-photon microscopic time-lapse analysis of living lung sections from CD11c-EYFP transgenic mice we studied the influence of neuropeptides on airway DC motility. Additionally, using a confocal microscopic approach, the phagocytotic capacity of CD11c(+) cells after neuropeptide stimulation was determined. Electrical field stimulation (EFS) leads to an unspecific release of neuropeptides from nerves. After EFS and treatment with the neuropeptides vasoactive intestinal peptide (VIP) or calcitonin gene-related peptide (CGRP), airway DC in living lung slices showed an altered motility. Furthermore, the EFS-mediated effect could partially be blocked by pre-treatment with the receptor antagonist CGRP(8-37). Additionally, the phagocytotic capacity of bone marrow-derived and whole lung CD11c(+) cells could be inhibited by neuropeptides CGRP, VIP, and Substance P. We then cross-linked these data with the in vivo situation by analyzing DC motility in two different OVA asthma models. Both in the acute and prolonged OVA asthma model altered neuropeptide amounts and DC motility in the airways could be measured. In summary, our data suggest that neuropeptides modulate key features motility and phagocytosis of mouse airway DC. Therefore altered neuropeptide levels in airways during allergic inflammation have impact on regulation of airway immune mechanisms and therefore might contribute to the pathophysiology of asthma.

  12. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma - A clinical, phase 1/2 trial

    DEFF Research Database (Denmark)

    Berntsen, A.; Trepiakas, R.; Wenandy, L.;

    2008-01-01

    Therapeutic dendritic cell (DC) vaccination against cancer is a strategy aimed at activating the immune system to recognize and destroy tumor cells. In this nonrandomized phase 1/2 trial, we investigated the safety, feasibility, induction of T-cell response, and clinical response after treatment...

  13. Helper role of NK cells during the induction of anticancer responses by dendritic cells.

    Science.gov (United States)

    Kalinski, Pawel; Giermasz, Adam; Nakamura, Yutaro; Basse, Per; Storkus, Walter J; Kirkwood, John M; Mailliard, Robbie B

    2005-02-01

    Recent reports demonstrate that natural killer (NK) cells and dendritic cells (DC) support each other's activity in a positive feedback. We observed that activated NK cells induce the maturation of DCs into stable type-1 polarized DCs (DC1), characterized by up to 100-fold enhanced ability to produce IL-12p70 in response to subsequent interaction with Th cells. DC1 induction depends on NK cell-produced IFN-gamma and TNF-alpha, with a possible involvement of additional factors. DC1, induced by NK cells or by NK cell-related soluble factors, are stable, resistant to tumor-related suppressive factors, and show strongly enhanced ability to induce Th1 and CTL responses. In analogy to resting T cells, the induction of "helper" function of NK cells relies on a two-signal activation paradigm. While NKG2D-dependent tumor cell recognition is sufficient to induce the cytotoxic "effector" function of NK cells, the induction of "NK cell help" requires additional signals from type-1 IFNs, products of virally-infected cells, or from IL-2. Compared to non-polarized DCs currently-used in clinical trials, DC1s act as superior inducers of anti-cancer CTL responses during in vitro sensitization. The current data provides rationale for the clinical use of DC1s in cancer and chronic infections (such as HIV), as a new generation DC-based vaccines, uniquely combining fully mature DC status with an elevated, rather than "exhausted" ability to produce bioactive IL-12p70. We are currently implementing stage I/II clinical trials, testing the effectiveness of DC1s induced by NK cells or by NK cell-related factors, as therapeutic vaccines against melanoma.

  14. Dendritic Cells Stimulated by Cationic Liposomes.

    Science.gov (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  15. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Der-Yuan Chen

    2013-01-01

    Full Text Available Dendritic cells (DCs play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM, a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS, proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs. These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases.

  16. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    Science.gov (United States)

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  17. Elevated frequencies of leukemic myeloid and plasmacytoid dendritic cells in acute myeloid leukemia with the FLT3 internal tandem duplication

    OpenAIRE

    Rickmann, Mareike; Krauter, Juergen; Stamer, Kathrin; Heuser, Michael; Salguero, Gustavo; Mischak-Weissinger, Eva; Ganser, Arnold; Stripecke, Renata

    2011-01-01

    Abstract Some 30% of acute myeloid leukemia (AML) patients display an internal tandem duplication (ITD) mutation in the FMS-like tyrosine kinase 3 (FLT3) gene. FLT3-ITDs are known to drive hematopoietic stem cells towards FLT3 ligand independent growth, but the effects on dendritic cell (DC) differentiation during leukemogenesis are not clear. We compared the frequency of cells with immunophenotype of myeloid DC (mDC: Lin?, HLA-DR+, CD11c+, CD86+) and plasmacytoid DC (pDC: Lin?, HL...

  18. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA

    DEFF Research Database (Denmark)

    Li, Shuai; Dislich, Bastian; Brakebusch, Cord H

    2015-01-01

    Tissues accommodate defined numbers of dendritic cells (DCs) in highly specific niches where different intrinsic and environmental stimuli control DC life span and numbers. DC homeostasis in tissues is important, because experimental changes in DC numbers influence immunity and tolerance toward...... various immune catastrophes and inflammation. However, the precise molecular mechanisms regulating DC life span and homeostasis are unclear. We report that the GTPase RhoA controls homeostatic proliferation, cytokinesis, survival, and turnover of cDCs. Deletion of RhoA strongly decreased the numbers of CD...... findings identify RhoA as a central regulator of DC homeostasis, and its deletion decreases DC numbers below critical thresholds for immune protection and homeostasis, causing aberrant compensatory DC proliferation....

  19. Interferon-α abrogates tolerance induction by human tolerogenic dendritic cells.

    Directory of Open Access Journals (Sweden)

    Nicole Bacher

    Full Text Available BACKGROUND: Administration of interferon-α (IFN-α represents an approved adjuvant therapy as reported for malignancies like melanoma and several viral infections. In malignant diseases, tolerance processes are critically involved in tumor progression. In this study, the effect of IFN-α on tolerance induction by human tolerogenic dendritic cells (DC was analyzed. We focussed on tolerogenic IL-10-modulated DC (IL-10 DC that are known to induce anergic regulatory T cells (iTregs. METHODOLOGY/PRINCIPAL FINDINGS: IFN-α promoted an enhanced maturation of IL-10 DC as demonstrated by upregulation of the differentiation marker CD83 as well as costimulatory molecules. IFN-α treatment resulted in an increased capacity of DC to stimulate T cell activation compared to control tolerogenic DC. We observed a strengthened T cell proliferation and increased IFN-γ production of CD4(+ and CD8(+ T cells stimulated by IFN-α-DC, demonstrating a restoration of the immunogenic capacity of tolerogenic DC in the presence of IFN-α. Notably, restimulation experiments revealed that IFN-α treatment of tolerogenic DC abolished the induction of T cell anergy and suppressor function of iTregs. In contrast, IFN-α neither affected the priming of iTregs nor converted iTregs into effector T cells. CONCLUSIONS/SIGNIFICANCE: IFN-α inhibits the induction of T cell tolerance by reversing the tolerogenic function of human DC.

  20. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    Science.gov (United States)

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  1. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  2. Infection of Dendritic Cells by the Maedi-Visna Lentivirus

    OpenAIRE

    Ryan, Susanna; Tiley, Laurence; McConnell, Ian; Blacklaws, Barbara

    2000-01-01

    The early stages of lentivirus infection of dendritic cells have been studied in an in vivo model. Maedi-visna virus (MVV) is a natural pathogen of sheep with a tropism for macrophages, but the infection of dendritic cells has not been proven, largely because of the difficulties of definitively distinguishing the two cell types. Afferent lymphatic dendritic cells from sheep have been phenotypically characterized and separated from macrophages. Dendritic cells purified from experimentally infe...

  3. In Situ Observation of Cell-to-Dendrite Transition

    Institute of Scientific and Technical Information of China (English)

    PAN Xiu-Hong; HONG Yong; JIN Wei-Qing

    2005-01-01

    @@ The cell-to-dendrite transition of succinonitrile melt suspended on a loop-shaped Pt heater is observed in real time by a differential interference microscope coupled with Schlieren technique. The transition is divided into two parts: a dendrite coalition process and a subsequent dendrite elimination process. Firstly the dendrites from the same cell are united into a single dendrite. Secondly the competitive growth of dendrites from different cells leads to the elimination of dendrites. The two processes can be understood when involving crystallographic orientation. In addition, the tip velocity and primary spacing of a cell/dendrite are also measured. It turns out that the primary spacing has a significant jump, whereas the growth velocity has no abrupt change during the cell-to-dendrite transition.

  4. Identification of a microRNA signature in dendritic cell vaccines for cancer immunotherapy

    DEFF Research Database (Denmark)

    Holmstrøm, Kim; Pedersen, Ayako Wakatsuki; Claesson, Mogens Helweg

    2010-01-01

    Dendritic cells (DCs) exposed to tumor antigens followed by treatment with T(h)1-polarizing differentiation signals have paved the way for the development of DC-based cancer vaccines. Critical parameters for assessment of the optimal functional state of DCs and prediction of the vaccine potency...... difference at the level of miRNA induction between these two groups was observed, suggesting that quantitative evaluation of selected miRNAs potentially can predict the immunogenicity of DC vaccines....

  5. Characterization of Dendritic Cells Subpopulations in Skin and Afferent Lymph in the Swine Model

    OpenAIRE

    Florian Marquet; Michel Bonneau; Florentina Pascale; Celine Urien; Chantal Kang; Isabelle Schwartz-Cornil; Nicolas Bertho

    2011-01-01

    Transcutaneous delivery of vaccines to specific skin dendritic cells (DC) subsets is foreseen as a promising strategy to induce strong and specific types of immune responses such as tolerance, cytotoxicity or humoral immunity. Because of striking histological similarities between human and pig skin, pig is recognized as the most suitable model to study the cutaneous delivery of medicine. Therefore improving the knowledge on swine skin DC subsets would be highly valuable to the skin vaccine fi...

  6. CD69 modulates sphingosine-1-phosphate-induced migration of skin dendritic cells

    OpenAIRE

    Lamana, Amalia; Martin, Pilar; de la Fuente, Hortensia; Martinez-Muñoz, Laura; Cruz-Adalia, Aranzazu; Ramirez-Huesca, Marta; Escribano, Cristina; Gollmer, Kathrin; Mellado, Mario; Stein, Jens V.; Rodriguez-Fernandez, Jose Luis; Sanchez-Madrid, Francisco; del Hoyo, Gloria Martinez

    2011-01-01

    In this study, we have investigated the role of CD69, an early inducible leukocyte activation receptor, in murine dendritic cell (DC) differentiation, maturation, and migration. Skin DCs and DC subsets present in mouse lymphoid organs express CD69 in response to maturation stimuli. Using a contact sensitization model, we show that skin DCs migrated more efficiently to draining lymph nodes (LNs) in the absence of CD69. This was confirmed by subcutaneous transfer of CD69–/– DCs, which presented...

  7. Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover

    NARCIS (Netherlands)

    P.J. Leenen (Pieter); K. Radosevic; J.S. Voerman (Jane); B. Salomon; N. van Rooijen (Nico); D. Klatzmann; W. van Ewijk (Willem)

    1998-01-01

    textabstractIn the normal mouse spleen, two distinct populations of dendritic cells (DC) are present that differ in microanatomical location. The major population of marginal DC is found in the "marginal zone bridging channels" and extends into the red pulp. The interdi

  8. Prevention of spontaneous autoimmune diabetes in NOD mice by transferring in vitro antigen-pulsed syngeneic dendritic cells

    DEFF Research Database (Denmark)

    Papaccio, G; Nicoletti, F; Pisanti, F A;

    2000-01-01

    To evaluate the effect of antigen-pulsed dendritic cell (DC) transfer on the development of diabetes, 5-week-old female NOD mice received a single iv injection of splenic syngeneic DC from euglycemic NOD mice pulsed in vitro with human y globulin (HGG). Eleven of 12 mice were protected from...

  9. Dendritic cell recognition using template matching based on one-dimensional (1D) Fourier descriptors (FD)

    Science.gov (United States)

    Muhd Suberi, Anis Azwani; Wan Zakaria, Wan Nurshazwani; Tomari, Razali; Lau, Mei Xia

    2016-07-01

    Identification of Dendritic Cell (DC) particularly in the cancer microenvironment is a unique disclosure since fighting tumor from the harnessing immune system has been a novel treatment under investigation. Nowadays, the staining procedure in sorting DC can affect their viability. In this paper, a computer aided system is proposed for automatic classification of DC in peripheral blood mononuclear cell (PBMC) images. Initially, the images undergo a few steps in preprocessing to remove uneven illumination and artifacts around the cells. In segmentation, morphological operators and Canny edge are implemented to isolate the cell shapes and extract the contours. Following that, information from the contours are extracted based on Fourier descriptors, derived from one dimensional (1D) shape signatures. Eventually, cells are classified as DC by comparing template matching (TM) of established template and target images. The results show that the proposed scheme is reliable and effective to recognize DC.

  10. Effect of insulin on functional status of cord blood-derived dendritic cells and on dendritic cell-induced CTL cytotoxicity against pancreatic cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Qiu-Liang Liu; Yi-Sheng Wang; Jia-Xiang Wang

    2009-01-01

    BACKGROUND: Dendritic cells (DCs) are the most important antigen-presenting cells in the human body, and DCs with different mature status possess different or even opposite functions. This study was designed to explore the influence of insulin on the functional status of cord blood-derived DCs and on DC-induced cytotoxic T lymphocyte (CTL) activity against pancreatic cancer cell lines. METHODS: Mononuclear cells were isolated from fresh cord blood. Interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were used to induce or stimulate the mononuclear cells. Insulin at different concentrations served to modify DCs, and then DC morphology, number, and growth status were assessed. The DC immunophenotype was detected with a flow cytometer. The IL-12 in DC supernatant was determined by ELISA. DC functional status was evaluated by the autologous mixed lymphocyte reaction. T lymphocytes were induced by insulin-modified DCs to become CTLs. The CTL cytotoxicity against pancreatic cancer cell lines was determined. RESULTS:  Mononuclear cells from cord blood can be differentiated into DCs by cytokine induction and insulin modification. With the increase in insulin concentration (2.5-25 mg/L), the expression of DC HLA-DR, CD1α, CD80, and CD83 was significantly increased, the DC ability to secrete IL-12 was significantly improved, DC function to activate autologous lymphocytes was significantly enhanced, and the cytotoxicity of CTLs induced by insulin-modified DCs against pancreatic cancer cell lines was significantly strengthened. CONCLUSIONS: Insulin may facilitate DC induction and maturation, and improve the reproductive activity of autologous lymphocytes. The cytotoxicity of CTLs induced by insulin-modified DCs against pancreatic cancer cell lines was significantly enhanced. Insulin may serve as a factor modifying DCs and inducing CTLs in vitro in insulin biotherapy.

  11. Dendritic cells produce macrophage inflammatory protein-1 gamma, a new member of the CC chemokine family.

    Science.gov (United States)

    Mohamadzadeh, M; Poltorak, A N; Bergstressor, P R; Beutler, B; Takashima, A

    1996-05-01

    Langerhans cells (LC) are skin-specific members of the dendritic cell (DC) family. DC are unique among APC for their capacity to activate immunologically naive T cells, but little is known about their chemotactic recruitment of T cells. We now report that LC produce macrophage inflammatory protein-1 gamma (MIP-1 gamma), a newly identified CC chemokine. MIP-1 gamma mRNA was detected in epidermal cells freshly procured from BALB/c mice, and depletion of I-A+ epidermal cells (i.e., LC) abrogated that expression. MIP-1 gamma mRNA was detected in the XS52 LC-like DC line as well as by 4F7+ splenic DC and granulocyte-macrophage CSF-propagated bone marrow DC. XS52 DC culture supernatants contained 9 and 10.5 kDa immunoreactivities with anti-MIP-1 gamma Abs. We observed in Boyden chamber assays that 1) XS52 DC supernatant (added to the lower chambers) induced significant migration by splenic T cells; 2) this migration was blocked by the addition of anti-MIP-1 gamma in the lower chambers or by rMIP-1 gamma in the upper chambers; and 3) comparable migration occurred in both CD4+ and CD8+ T cells and in both activated and nonactivated T cells. We conclude that mouse DC (including LC) have the capacity to elaborate the novel CC chemokine MIP-1 gamma, suggesting the active participation of DC in recruiting T cells before activation.

  12. Macrophages, Dendritic Cells, and Regression of Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jonathan E. Feig

    2012-07-01

    Full Text Available Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and monocyte-derived cells such as macrophages, dendritic cells, T cells, and other cellular elements of the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, in this review, the focus will be primarily on the monocyte derived cells- macrophages and dendritic cells. The roles of these cell types in atherogenesis will be highlighted. Finally, the mechanisms of atherosclerosis regression as it relates to these cells will be discussed.

  13. A key role for PTP1B in dendritic cell maturation, migration, and T cell activation.

    Science.gov (United States)

    Martin-Granados, Cristina; Prescott, Alan R; Le Sommer, Samantha; Klaska, Izabela P; Yu, Tian; Muckersie, Elizabeth; Giuraniuc, Claudiu V; Grant, Louise; Delibegovic, Mirela; Forrester, John V

    2015-12-01

    Dendritic cells (DC) are the major antigen-presenting cells bridging innate and adaptive immunity, a function they perform by converting quiescent DC to active, mature DC with the capacity to activate naïve T cells. They do this by migrating from the tissues to the T cell area of the secondary lymphoid tissues. Here, we demonstrate that myeloid cell-specific genetic deletion of PTP1B (LysM PTP1B) leads to defects in lipopolysaccharide-driven bone marrow-derived DC (BMDC) activation associated with increased levels of phosphorylated Stat3. We show that myeloid cell-specific PTP1B deletion also causes decreased migratory capacity of epidermal DC, as well as reduced CCR7 expression and chemotaxis to CCL19 by BMDC. PTP1B deficiency in BMDC also impairs their migration in vivo. Further, immature LysM PTP1B BMDC display fewer podosomes, increased levels of phosphorylated Src at tyrosine 527, and loss of Src localization to podosome puncta. In co-culture with T cells, LysM PTP1B BMDC establish fewer and shorter contacts than control BMDC. Finally, LysM PTP1B BMDC fail to present antigen to T cells as efficiently as control BMDC. These data provide first evidence for a key regulatory role for PTP1B in mediating a central DC function of initiating adaptive immune responses in response to innate immune cell activation.

  14. Dendritic cells in hepatitis C virus infection: key players in the IFNL3-genotype response.

    Science.gov (United States)

    O'Connor, Kate S; George, Jacob; Booth, David; Ahlenstiel, Golo

    2014-12-21

    Recently, single nucleotide polymorphisms, in the vicinity of the interferon lambda 3 (IFNL3) gene have been identified as the strongest predictor of spontaneous and treatment induced clearance of hepatitis C virus (HCV) infection. Since then, increasing evidence has implicated the innate immune response in mediating the IFNL3 genotype effect. Dendritic cells (DCs) are key to the host immune response in HCV infection and their vital role in the IFNL3 genotype effect is emerging. Reports have identified subclasses of DCs, particularly myeloid DC2s and potentially plasmacytoid DCs as the major producers of IFNL3 in the setting of HCV infection. Given the complexities of dendritic cell biology and the conflicting current available data, this review aims to summarize what is currently known regarding the role of dendritic cells in HCV infection and to place it into context of what is know about lambda interferons and dendritic cells in general.

  15. Aflatoxins of type B and G affect porcine dendritic cell maturation in vitro.

    Science.gov (United States)

    Mehrzad, Jalil; Devriendt, Bert; Baert, Kim; Cox, Eric

    2015-01-01

    The toxic effects of highly carcinogenic mycotoxins, especially aflatoxins (AF), on key antigen-presenting cells, such as dendritic cells (DC), are largely unknown. To elucidate the effect of AF on DC function, porcine monocyte-derived DC (MoDC) were treated with a mixture of several AF (i.e., AFB1, AFB2, AFG1, and AFG2) and the phagocytic capacity, the membrane expression level of several DC activation markers, the T-cell proliferation-inducing capacity, and the cytokine secretion pattern were assessed. As compared to untreated MoDC, AF significantly up-regulated the expression of the co-stimulatory molecules CD25 and CD80/86. However, the phagocytic activity of MoDC was not affected by AF treatment. While the cytokine secretion pattern of AF-treated MoDC was similar to control MoDC, the T-cell proliferation-inducing capacity of MoDC was increased upon aflatoxin treatment. The results indicate that a mixture of naturally occurring AF enhances the antigen-presenting capacity of DC, which could explain the observed immunotoxicity of AF by breaking down tolerance and further emphasizes the need to reduce the admissible level of AF in agricultural commodities.

  16. PGE2 confers survivin-dependent apoptosis resistance in human monocyte-derived dendritic cells.

    Science.gov (United States)

    Baratelli, Felicita; Krysan, Kostyantyn; Heuzé-Vourc'h, Nathalie; Zhu, Li; Escuadro, Brian; Sharma, Sherven; Reckamp, Karen; Dohadwala, Mariam; Dubinett, Steven M

    2005-08-01

    Control of apoptosis is fundamental for dendritic cell (DC) homeostasis. Numerous factors maintain DC viability throughout their lifespan, including inhibitor of apoptosis proteins. Among them, survivin is overexpressed in many human malignancies, but its physiological function in normal cells has not been fully delineated. Prostaglandin E2 (PGE2), also overproduced in several malignancies, has shown to induce proapoptotic and antiapoptotic effects in different cell types, including immune cells. In DC, PGE2 predominantly affects maturation and modulates immune functions. Here, we show that exposure of monocyte-derived DC to PGE2 (10(-5) M) for 72 h significantly increased DC survivin mRNA and protein expression. In contrast, DC, matured with lipopolysaccharide or tumor necrosis factor alpha, did not reveal survivin induction in response to PGE2. Following exposure to apoptotic stimuli, DC treated with PGE2 exhibited an overall increased viability compared with control DC, and this effect was correlated inversely with caspase-3 activation. Moreover, PGE2-treated, survivin-deficient DC demonstrated reduced viability in response to apoptotic stimuli. Further analysis indicated that PGE2 induced DC survivin expression in an E prostanoid (EP)2/EP4 receptor and phosphatidylinositol-3 kinase-dependent manner. These findings suggest that PGE2-dependent regulation of survivin is important in modulating apoptosis resistance in human DC.

  17. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany); Hoss, Mareike [Institute of Pathology, Electron Microscopy Facility, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Wong, John Erik, E-mail: John.Wong@avt.rwth-aachen.de [Chemical Process Engineering, RWTH Aachen University, Turmstrasse 46, 52056 Aachen (Germany); DWI – Leibniz Institute for Interactive Materials Research, Forckenbeckstrasse 50, Aachen (Germany); Hieronymus, Thomas, E-mail: thomas.hieronymus@rwth-aachen.de [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany)

    2015-04-15

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3{sup +} DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  18. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Science.gov (United States)

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  19. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1.

    Directory of Open Access Journals (Sweden)

    Shoba Amarnath

    2010-02-01

    Full Text Available Immunotherapy using regulatory T cells (Treg has been proposed, yet cellular and molecular mechanisms of human Tregs remain incompletely characterized. Here, we demonstrate that human Tregs promote the generation of myeloid dendritic cells (DC with reduced capacity to stimulate effector T cell responses. In a model of xenogeneic graft-versus-host disease (GVHD, allogeneic human DC conditioned with Tregs suppressed human T cell activation and completely abrogated posttransplant lethality. Tregs induced programmed death ligand-1 (PD-L1 expression on Treg-conditioned DC; subsequently, Treg-conditioned DC induced PD-L1 expression in vivo on effector T cells. PD-L1 blockade reversed Treg-conditioned DC function in vitro and in vivo, thereby demonstrating that human Tregs can promote immune suppression via DC modulation through PD-L1 up-regulation. This identification of a human Treg downstream cellular effector (DC and molecular mechanism (PD-L1 will facilitate the rational design of clinical trials to modulate alloreactivity.

  20. How vitamin A metabolizing dendritic cells are generated in the gut mucosa

    DEFF Research Database (Denmark)

    Agace, William; Persson, Emma K

    2012-01-01

    CD103(+) dendritic cells (DCs) represent the major migratory DC population in the intestinal lamina propria and are believed to play an essential role in the initiation and regulation of mucosal adaptive immune responses. Small intestine (SI) CD103(+) DCs have an enhanced capacity to generate the...

  1. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration

    DEFF Research Database (Denmark)

    Lammermann, Tim; Renkawitz, Jorg; Wu, Xunwei;

    2009-01-01

    Mature dendritic cells (DCs) moving from the skin to the lymph node are a prototypic example of rapidly migrating amoeboid leukocytes. Interstitial DC migration is directionally guided by chemokines, but independent of specific adhesive interactions with the tissue as well as pericellular...

  2. Chicken dendritic cells are susceptible to highly pathogenic avian influenza viruses which induce strong cytokine responses

    NARCIS (Netherlands)

    Vervelde, L.; Reemens, S.S.; Haarlem, van D.A.; Post, J.; Claassen, E.A.W.; Rebel, J.M.J.; Jansen, C.A.

    2013-01-01

    Infection with highly pathogenic avian influenza (HPAI) in birds and mammals is associated with severe pathology and increased mortality. We hypothesize that in contrast to low pathogenicity avian influenza (LPAI) infection, HPAI infection of chicken dendritic cells (DC) induces a cytokine deregulat

  3. Activation of toll-like receptors and dendritic cells by a broad range of bacterial molecules

    NARCIS (Netherlands)

    Boele, L.C.L.; Bajramovic, J.J.; Vries, A.M.M.B.C. de; Voskamp-Visser, I.A.I.; Kaman, W.E.; Kleij, D. van der

    2009-01-01

    Activation of pattern recognition receptors such as Toll-like receptors (TLRs) by pathogens leads to activation and maturation of dendritic cells (DC), which orchestrate the development of the adaptive immune response. To create an overview of the effects of a broad range of pathogenic bacteria, the

  4. Activation of toll-like receptors and dendritic cells by a broad range of bacterial molecules

    NARCIS (Netherlands)

    Boele, L.C.L.; Bajramovic, J.J.; Vries, A.M.M.B.C. de; Voskamp-Visser, I.A.I.; Kaman, W.E.; Kleij, D. van der

    2009-01-01

    Activation of pattern recognition receptors such as Toll-like receptors (TLRs) by pathogens leads to activation and maturation of dendritic cells (DC), which orchestrate the development of the adaptive immune response. To create an overview of the effects of a broad range of pathogenic bacteria, the

  5. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells

    NARCIS (Netherlands)

    Saeland, E.; Jong, de M.A.W.P.; Nabatov, A.; Kalay, H.; Kooijk, van Y.; Geijtenbeek, T.B.H.

    2009-01-01

    Mother-to-child transmission of human immunodeficiency virus-1 (HIV-1) occurs frequently via breast-feeding. HIV-1 targets DC-SIGN+ dendritic cells (DCs) in mucosal areas that allow efficient transmission of the virus to T cells. Here, we demonstrate that the epithelial mucin MUC1, abundant in milk,

  6. Fcγ receptor IIb strongly regulates Fcγ receptor-facilitated T cell activation by dendritic cells

    NARCIS (Netherlands)

    N. van Montfoort (Nadine); P.A.C. 't Hoen (Peter); S.M. Mangsbo (Sara); M. Camps (Marcel); P. Boross (Peter); C.J.M. Melief (Cornelis); F. Ossendorp (Ferry); J.S. Verbeek (Sjef)

    2012-01-01

    textabstractFcγR ligation by Ag-Ab immune complexes (IC) not only mediates effective Ag uptake, but also strongly initiates dendritic cell (DC) maturation, a requirement for effective T cell activation. Besides the activating FcγRI, FcγRIII, and FcγRIV, the inhibitory FcγRIIb is expressed on DCs. It

  7. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells

    NARCIS (Netherlands)

    Saeland, E.; Jong, de M.A.W.P.; Nabatov, A.; Kalay, H.; Kooijk, van Y.; Geijtenbeek, T.B.H.

    2009-01-01

    Mother-to-child transmission of human immunodeficiency virus-1 (HIV-1) occurs frequently via breast-feeding. HIV-1 targets DC-SIGN+ dendritic cells (DCs) in mucosal areas that allow efficient transmission of the virus to T cells. Here, we demonstrate that the epithelial mucin MUC1, abundant in milk,

  8. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation

    Directory of Open Access Journals (Sweden)

    Schendel Dolores J

    2010-09-01

    Full Text Available Abstract Background Antigen-loaded dendritic cells (DC are capable of priming naïve T cells and therefore represent an attractive adjuvant for vaccine development in anti-tumor immunotherapy. Numerous protocols have been described to date using different maturation cocktails and time periods for the induction of mature DC (mDC in vitro. For clinical application, the use of mDC that can be generated in only three days saves on the costs of cytokines needed for large scale vaccine cell production and provides a method to produce cells within a standard work-week schedule in a GMP facility. Methods In this study, we addressed the properties of antigen uptake, processing and presentation by monocyte-derived DC prepared in three days (3d mDC compared with conventional DC prepared in seven days (7d mDC, which represent the most common form of DC used for vaccines to date. Results Although they showed a reduced capacity for spontaneous antigen uptake, 3d mDC displayed higher capacity for stimulation of T cells after loading with an extended synthetic peptide that requires processing for MHC binding, indicating they were more efficient at antigen processing than 7d DC. We found, however, that 3d DC were less efficient at expressing protein after introduction of in vitro transcribed (ivtRNA by electroporation, based on published procedures. This deficit was overcome by altering electroporation parameters, which led to improved protein expression and capacity for T cell stimulation using low amounts of ivtRNA. Conclusions This new procedure allows 3d mDC to replace 7d mDC for use in DC-based vaccines that utilize long peptides, proteins or ivtRNA as sources of specific antigen.

  9. Tumor-derived death receptor 6 modulates dendritic cell development.

    Science.gov (United States)

    DeRosa, David C; Ryan, Paul J; Okragly, Angela; Witcher, Derrick R; Benschop, Robert J

    2008-06-01

    Studies in murine models of cancer as well as in cancer patients have demonstrated that the immune response to cancer is often compromised. This paradigm is viewed as one of the major mechanisms of tumor escape. Many therapies focus on employing the professional antigen presenting dendritic cells (DC) as a strategy to overcome immune inhibition in cancer patients. Death receptor 6 (DR6) is an orphan member of the tumor necrosis factor receptor superfamily (TNFRSF21). It is overexpressed on many tumor cells and DR6(-/-) mice display altered immunity. We investigated whether DR6 plays a role in tumorigenesis by negatively affecting the generation of anti-tumor activity. We show that DR6 is uniquely cleaved from the cell surface of tumor cell lines by the membrane-associated matrix metalloproteinase (MMP)-14, which is often overexpressed on tumor cells and is associated with malignancy. We also demonstrate that >50% of monocytes differentiating into DC die when the extracellular domain of DR6 is present. In addition, DR6 affects the cell surface phenotype of the resulting immature DC and changes their cytokine production upon stimulation with LPS/IFN-gamma. The effects of DR6 are mostly amended when these immature DC are matured with IL-1beta/TNF-alpha, as measured by cell surface phenotype and their ability to present antigen. These results implicate MMP-14 and DR6 as a mechanism tumor cells can employ to actively escape detection by the immune system by affecting the generation of antigen presenting cells.

  10. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    Science.gov (United States)

    2007-11-02

    Dendritic Cells Endocytose Bacillus anthracis Spores: Implications for Anthrax Pathogenesis1 Katherine C. Brittingham,* Gordon Ruthel,* Rekha G...germination and dissemination of spores. Found in high frequency throughout the respiratory track, dendritic cells (DCs) routinely take up foreign...COVERED - 4. TITLE AND SUBTITLE Dendritic cells endocytose Bacillus anthracis spores: implications for anthrax pathogenesis, The Journal of

  11. Dendritic Cell as Therapeutic Vaccines against Tumors and Its Role in Therapy for Hepatocellular Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Kang Sun; Liang Wang; Yanyun Zhang

    2006-01-01

    Dendritic cells (DCs) are the most potent professional antigen-presenting cells, and capable of stimulating naive T cells and driving primary immune responses. DCs are poised to capture antigen, migrate to draining lymphoid organs, and after a process of maturation, select antigen-specific !ymphocytes to which they present the processed antigen, thereby inducing immune responses. The development of protocols for the ex vivo generation of DCs may provide a rationale for designing and developing DC-based vaccination for the treatment of tumors. There are now several strategies being applied to upload antigens to DCs and manipulate DC vaccines. DC vaccines are able to induce therapeutic and protective antitumor immunity. Numerous studies indicated that hepatocellular carcinoma (HCC) immunotherapies utilizing DC-presenting tumor-associated antigens could stimulate an antitumour T cell response leading to clinical benefit without any significant toxicity. DC-based tumor vaccines have become a novel immunoadjuvant therapy for HCC.

  12. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity

    NARCIS (Netherlands)

    Bol, K.F.; Aarntzen, E.H.J.G.; Pots, J.M.; Olde Nordkamp, M.A.M.; Rakt, M.W.M.M. van de; Scharenborg, N.M.; Boer, A.J. de; Oorschot, T.G.M. van; Croockewit, S.; Blokx, W.A.M.; Oyen, W.J.G.; Boerman, O.C.; Mus, R.D.M.; Rossum, M.M. van; Graaf, C.A.A. van der; Punt, C.J.; Adema, G.J.; Figdor, C.G.; Vries, I.J. de; Schreibelt, G.

    2016-01-01

    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that

  13. Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells

    Directory of Open Access Journals (Sweden)

    Sun X

    2012-06-01

    Full Text Available Xun Sun, Simu Chen, Jianfeng Han, Zhirong ZhangKey Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People’s Republic of ChinaBackground: To establish a potential gene-delivery system with the ability to deliver plasmid DNA to dendritic cells (DCs more efficiently and specifically, we designed and synthesized a low-molecular-weight polyethyleneimine and triethyleneglycol polymer (PEI–TEG and a series of its mannosylated derivatives.Methods: PEI–TEG was synthesized from PEI2000 and PEI600 with TEG as the cross-linker. PEI–TEG was then linked to mannose via a phenylisothiocyanate bridge to obtain man-PEI–TEG conjugates. The DNA conveyance abilities of PEI–TEG, man-PEI–TEG, as well as control PEI25k were evaluated by measuring their zeta potential, particle size, and DNA-binding abilities. The in vitro cytotoxicity, cell uptake, and transfection efficiency of these PEI/DNA complexes were examined on the DC2.4 cell line. Finally, a maturation experiment evaluated the effect of costimulatory molecules CD40, CD80, and CD86 on murine bone marrow-derived DCs (BMDCs using flow cytometry.Results: PEI–TEG and man-PEI–TEG were successfully synthesized and were shown to retain the excellent properties of PEI25k for condensing DNA. Compared with PEI–TEG as well as PEI25k, the man-PEI–TEG had less cytotoxicity and performed better in both cellular uptake and transfection assays in vitro. The results of the maturation experiment showed that all the PEI/DNA complexes induced an adequate upregulation of surface markers for DC maturation.Conclusion: These results demonstrated that man-PEI–TEG can be employed as a DC-targeting gene-delivery system.Keywords: dendritic cells, DCs, mannose, polyethyleneimine, PEI, gene delivery

  14. “Dermal dendritic cells” comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages

    OpenAIRE

    Ochoa,Maria Teresa; Loncaric, Anya; Krutzik, Stephan R.; Becker, Todd C.; Modlin, Robert L.

    2008-01-01

    A key cell type of the resident skin immune system is the dendritic cell, which in normal skin is located in two distinct microanatomical compartments: Langerhans cells (LC) mainly in the epidermis and dermal dendritic cells (DDC) in the dermis. Here, the lineage of dermal dendritic cells was investigated using monoclonal antibodies and immunohistology. We provide evidence that “dermal dendritic cells” comprise at least two major phenotypic populations of dendritic appearing cells: immature D...

  15. Role of Natural Killer and Dendritic Cell Crosstalk in Immunomodulation by Commensal Bacteria Probiotics

    DEFF Research Database (Denmark)

    Rizzello, Valeria; Bonaccorsi, Irene; Dongarra, Maria Luisa

    2011-01-01

    A cooperative dialogue between natural killer (NK) cells and dendritic cells (DCs) has been elucidated in the last years. They help each other to acquire their complete functions, both in the periphery and in the secondary lymphoid organs. Thus, NK cells' activation by dendritic cells allows the ......-dependent immunomodulatory effects. We particularly aim to highlight the ability of distinct species of commensal bacterial probiotics to differently affect the outcome of DC/NK cross-talk and consequently to differently influence the polarization of the adaptive immune response....

  16. Characterization of chicken dendritic cell markers

    Science.gov (United States)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  17. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.

    Science.gov (United States)

    Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila

    2016-01-01

    Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.

  18. MFG-E8 regulates the immunogenic potential of dendritic cells primed with necrotic cell-mediated inflammatory signals.

    Directory of Open Access Journals (Sweden)

    Muhammad Baghdadi

    Full Text Available Dendritic cells (DC manipulate tissue homeostasis by recognizing dying cells and controlling immune functions. However, the precise mechanisms by which DC recognize different types of dying cells and devise distinct immunologic consequences remain largely obscure. Herein, we demonstrate that Milk-fat globule-EGF VIII (MFG-E8 is a critical mediator controlling DC immunogenicity in inflammatory microenvironments. MFG-E8 restrains DC-mediated uptake and recognition of necrotic cells. The MFG-E8-mediated suppression of necrotic cell uptake by DC resulted in the decreased proinflammatory cytokines production and activated signal components such as STAT3 and A20, which are critical to maintain tolerogenic properties of DC. Furthermore, the DC-derived MFG-E8 negatively regulates the cross-priming and effector functions of antigen-specific T cells upon recognition of necrotic cells. MFG-E8 deficiency enhances an ability of necrotic cell-primed DC to stimulate antitumor immune responses against established tumors. Our findings define what we believe to a novel mechanism whereby MFG-E8 regulates the immunogenicity of DC by modulating the modes of recognition of dying cells. Manipulating MFG-E8 levels in DC may serve as a useful strategy for controlling inflammatory microenvironments caused by various pathological conditions including cancer and autoimmunity.

  19. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  20. IRX-2, a novel immunotherapeutic, enhances functions of human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Bastian Schilling

    Full Text Available BACKGROUND: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA-specific immunity by up-regulating functions of dendritic cells (DC. METHODOLOGY/PRINCIPAL FINDINGS: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1β and IL-6 ("conv. mix". Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL. IL-12p70 and IL-10 production by DC was measured by Luminex® and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05 of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all. IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05 compared to the conv. mix-matured DC. CONCLUSION: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy.

  1. Chemoresistance of human monocyte-derived dendritic cells is regulated by IL-17A.

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    Full Text Available Dendritic cells initiate adaptive immune responses, leading either to control cancer by effector T cells or to exacerbate cancer by regulatory T cells that inhibit IFN-γ-mediated Th1-type response. Dendritic cells can also induce Th17-type immunity, mediated by IL-17A. However, the controversial role of this cytokine in cancer requires further investigations. We generated dendritic cells from peripheral blood monocytes to investigate lifespan, phenotype and chemoresistance of dendritic cells, treated with IL-17A with or without IFN-γ. Studying the expression of Bcl-2 family members, we demonstrated that dendritic cells constitutively express one pro-survival Bcl-2 member: MCL1. Immature dendritic cells were CD40(lowHLADR(low CD1a(+ MCL1(+, did not express CD14, CD68 or BCL2A1, and displayed a short 2-day lifespan. IL-17A-treated DC exhibited a semi-mature (CD40(high HLADR(low pre-M2 (CCL22(+ CD206(+ CD163(+ IL1RN(+ IL-10(- CXCL10(- IL-12(- mixed (CD1a(+ CD14+ CD68(+ macrophage-dendritic cell phenotype. They efficiently exerted mannose receptor-mediated endocytosis and did not produce superoxide anions, in the absence of TLR engagement. Interestingly, IL-17A promoted a long-term survival of dendritic cells, beyond 12 days, that correlated to BCL2A1 induction, a pro-survival Bcl-2 family member. BCL2A1 transcription was activated by NF-κB, downstream of IL-17A transduction. Thus, immature dendritic cells only express MCL1, whereas IL-17A-treated dendritic cells concomitantly expressed two pro-survival Bcl-2 family members: MCL1 and BCL2A1. These latter developed chemoresistance to 11 of the 17 chemotherapy agents tested. However, high doses of either vinblastine or cytarabine decreased MCL1 expression and induced dendritic cell death. When IL-17A is produced in vivo, administration of anti-IL-17A biotherapy may impair dendritic cell survival by targeting BCL2A1 expression. Consequently, depending on the effector or regulatory role of dendritic

  2. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...

  3. Myeloid-derived suppressor cells impair the quality of dendritic cell vaccines.

    Science.gov (United States)

    Poschke, I; Mao, Y; Adamson, L; Salazar-Onfray, F; Masucci, G; Kiessling, R

    2012-06-01

    Myeloid-derived suppressor cells (MDSC) are important regulators of the immune system and key players in tumor-induced suppression of T-cell responses. CD14+HLA-DR-/low MDSC have been detected in a great number of malignancies, including melanoma. MDSC are known to be impaired in their ability to differentiate along the myeloid lineage, e.g., into dendritic cells (DC). This is a concern for utilization of monocyte-derived DC for vaccination of patients with melanoma or other cancers exhibiting accumulation of CD14+ MDSC. When producing DC according to standard operating procedures of two currently ongoing clinical trials, we found that MDSC co-purified with monocytes isolated by elutriation. MDSC frequencies did not affect yield or viability of the produced DC, but induced a dose-dependent decrease in DC maturation, ability to take up antigen, migrate and induce T-cell IFNγ production. Changes in DC characteristics were most notable when 'pathological' frequencies of >50% CD14+HLA-DR- cells were present in the starting culture. The impaired DC quality could not be explained by altered cytokine production or increased oxidative stress in the cultures. Tracking of HLA-DR- cells throughout the culture period revealed that the observed changes were partially due to the impaired maturation and functionality of the originally HLA-DR- population, but also to their negative effects on HLA-DR+ cells. In conclusion, MDSC could be induced to differentiate into DC but, due to the impairment of overall DC vaccine quality when >50% HLA-DR- cells were present in the starting culture, their removal could be advisable.

  4. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation.

    Science.gov (United States)

    Chistiakov, Dimitry A; Sobenin, Igor A; Orekhov, Alexander N; Bobryshev, Yuri V

    2015-06-01

    Myeloid dendritic cells (mDCs) comprise a heterogeneous population of professional antigen-presenting cells, which are responsible for capture, processing, and presentation of antigens on their surface to T cells. mDCs serve as a bridge linking adaptive and innate immune responses. To date, the development of DC lineage in bone marrow is better characterized in mice than in humans. DCs and macrophages share the common myeloid progenitor called macrophage-dendritic cell progenitor (MDP) that gives rise to monocytoid lineage and common DC progenitors (CDPs). CDP in turn gives rise to plasmacytoid DCs and predendritic cells (pre-mDCs) that are common precursor of myeloid CD11b+ and CD8α(+) DCs. The development and commitment of mDCs is regulated by several transcription and hematopoietic growth factors of which CCr7, Zbtb46, and Flt3 represent 'core' genes responsible for development and functional and phenotypic maintenance of mDCs. mDCs were shown to be involved in the pathogenesis of many autoimmune and inflammatory diseases including atherosclerosis. In atherogenesis, different subsets of mDCs could possess both proatherogenic (e.g. proinflammatory) and atheroprotective (e.g. anti-inflammatory and tolerogenic) activities. The proinflammatory role of mDCs is consisted in production of inflammatory molecules and priming proinflammatory subsets of effector T cells. In contrast, tolerogenic mDCs fight against inflammation through arrest of activity of proinflammatory T cells and macrophages and induction of immunosuppressive regulatory T cells. Microenvironmental conditions trigger differentiation of mDCs to acquire proinflammatory or regulatory properties.

  5. The TNF receptor and Ig superfamily members form an integrated signaling circuit controlling dendritic cell homeostasis

    Science.gov (United States)

    De Trez, Carl; Ware, Carl F.

    2008-01-01

    Dendritic cells (DC) constitute the most potent antigen presenting cells of the immune system, playing a key role bridging innate and adaptive immune responses. Specialized DC subsets differ depending on their origin, tissue location and the influence of trophic factors, the latter remain to be fully understood. Stromal cell and myeloid-associated Lymphotoxin-β receptor (LTβR) signaling is required for the local proliferation of lymphoid tissue DC. This review focuses the LTβR signaling cascade as a crucial positive trophic signal in the homeostasis of DC subsets. The noncanonical coreceptor pathway comprised of the Immunoglobulin (Ig) superfamily member, B and T lymphocyte attenuator (BTLA) and TNFR superfamily member, Herpesvirus entry mediator (HVEM) counter regulates the trophic signaling by LTβR. Together both pathways form an integrated signaling circuit achieving homeostasis of DC subsets. PMID:18511331

  6. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine

    Science.gov (United States)

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-01-01

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4+CD25−Fopx3+) and CD4+ and CD8+ T cells were significantly decreased and increased, respectively. HPV-16-specific CD8+ T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice. PMID:28272545

  7. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine.

    Science.gov (United States)

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-03-08

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)) and CD4(+) and CD8(+) T cells were significantly decreased and increased, respectively. HPV-16-specific CD8(+) T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice.

  8. Intestinal dendritic cells in the pathogenesis of inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Sergio Rutella; Franco Locatelli

    2011-01-01

    The gastrointestinal tract harbors a large number and diverse array of commensal bacteria and is an important entry site for pathogens. For these reasons, the intestinal immune system is uniquely dedicated to protect against infections, while avoiding the development of destructive inflammatory responses to the microbiota. Several models have been proposed to explain how the immune system discriminates between, and appropriately responds to, commensal and pathogenic microorganisms. Dendritic cells (DCs) and regulatory T cells (Treg) are instrumental in maintaining immune homeostasis and tolerance in the gut. DCs are virtually omnipresent and are remarkably plastic, having the ability to adapt to the influences of the microenvironment. Different DC populations with partially overlapping phenotypic and functional properties have been described in different anatomical locations. DCs in the draining mesenteric lymph nodes, in the intestinal lamina propria and in Peyer's patches partake both in the control of intestinal inflammation and in the maintenance of gut tolerance. In this respect, gut-resident DCs and macrophages exert tolerogenic functions as they regularly encounter and sense commensal bacteria. In contrast, migrating DC subsets that are recruited to the gut as a result of pathogenic insults initiate immune responses. Importantly, tolerogenic DCs act by promoting the differentiation and expansion of Treg cells that efficiently modulate gut inflammation, as shown both in pre-clinical models of colitis and in patients with inflammatory bowel disease (IBD). This article reviews the phenotypic and functional features of gut DC subsets and discusses the current evidence underpinning the DC contribution to the pathogenesis of the major clinical subtypes of human IBD. It also addresses the potential clinical benefit derived from DC targeting either in vivo or in vitro.

  9. Dendritic cell-based vaccine for pancreatic cancer in Japan

    Institute of Scientific and Technical Information of China (English)

    Masato Okamoto; Masanori Kobayashi; Yoshikazu Yonemitsu; Shigeo Koido; Sadamu Homma

    2016-01-01

    "Vaccell" is a dendritic cell(DC)-based cancer vaccine which has been established in Japan. The DCs play central roles in deciding the direction of host immune reactions as well as antigen presentation. We have demonstrated that DCs treated with a streptococcal immune adjuvant OK-432, produce interleukin-12, induce Th1-dominant state, and elicit anti-tumor effects, more powerful than those treated with the known DCmaturating factors. We therefore decided to mature DCs by the OK-432 for making an effective DC vaccine, Vaccell. The 255 patients with inoperable pancreatic cancer who received standard chemotherapy combined with DC vaccines, were analyzed retrospectively. Survival time of the patients with positive delayed type hypersensitivity(DTH) skin reaction was significantly prolonged as compared with that of the patients with negative DTH. The findings strongly suggest that there may be "Responders" for the DC vaccine in advanced pancreatic cancer patients. We next conducted a smallscale prospective clinical study. In this trial, we pulsed HLA class Ⅱ-restricted WT1 peptide(WT1-Ⅱ) in addition to HLA class Ⅰ-restricted peptide(WT1-Ⅰ) into the DCs. Survival of the patients received WT1-Ⅰ and-Ⅱ pulsed DC vaccine was significantly extended as compared to that of the patients received DCs pulsed with WT1-Ⅰ or WT1-Ⅱ alone. Furthermore, WT1-specific DTH positive patients showed significantly improved the overall survival as well as progressionfree survival as compared to the DTH negative patients. The activation of antigen-specific immune responses by DC vaccine in combination with standard chemotherapy may be associated with a good clinical outcome in advanced pancreatic cancer. We are now planning a pivotal study of the Vaccell in appropriate protocols in Japan.

  10. Aeroallergen challenge promotes dendritic cell proliferation in the airways.

    Science.gov (United States)

    Veres, Tibor Z; Voedisch, Sabrina; Spies, Emma; Valtonen, Joona; Prenzler, Frauke; Braun, Armin

    2013-02-01

    Aeroallergen provocation induces the rapid accumulation of CD11c(+)MHC class II (MHC II)(+) dendritic cells (DCs) in the lungs, which is driven by an increased recruitment of blood-derived DC precursors. Recent data show, however, that well-differentiated DCs proliferate in situ in various tissues. This may also contribute to their allergen-induced expansion; therefore, we studied DC proliferation in the airways of mice in the steady state and after local aeroallergen provocation. Confocal whole-mount microscopy was used to visualize proliferating DCs in different microanatomical compartments of the lung. We demonstrate that in the steady state, CD11c(+)MHC II(+) DCs proliferate in both the epithelial and subepithelial layers of the airway mucosa as well as in the lung parenchyma. A 1-h pulse of the nucleotide 5-ethynyl-2'-deoxyuridine was sufficient to label 5% of DCs in both layers of the airway mucosa. On the level of whole-lung tissue, 3-5% of both CD11b(+) and CD11b(-) DC populations and 0.3% of CD11c(+)MHC II(low) lung macrophages incorporated 5-ethynyl-2'-deoxyuridine. Aeroallergen provocation caused a 3-fold increase in the frequency of locally proliferating DCs in the airway mucosa. This increase in mucosal DC proliferation was later followed by an elevation in the number of DCs. The recruitment of monocyte-derived inflammatory DCs contributed to the increasing number of DCs in the lung parenchyma, but not in the airway mucosa. We conclude that local proliferation significantly contributes to airway DC homeostasis in the steady state and that it is the major mechanism underlying the expansion of the mucosal epithelial/subepithelial DC network in allergic inflammation.

  11. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Lars A Ormandy; Tim F Greten; Anatol F(a)rber; Tobias Cantz; Susanne Petrykowska; Heiner Wedemeyer; Monique H(o)rning; Frank Lehner; Michael P Manns; Firouzeh Korangy

    2006-01-01

    AIM: To analyze the phenotype and function of dendritic cells (DC) from patients with hepatocellular carcinoma (HCC) in order to understand their role in this disease.METHODS: Myeloid dendritic cells were enumerated in peripheral blood of HCC patients. CD80, CD83, CD86 and HLA-DR expression on naive and stimulated myeloid dendritic cells from peripheral blood were analyzed. Myeloid dendritic cells were isolated from peripheral blood and their function was tested. Phagocytosis was analyzed using FITC-dextran beads, peptide specific stimulation, the capacity to stimulate allogeneic T cells and secretion of cytokines upon poly dI:dC was tested.RESULTS: Myeloid dendritic cells were reduced in patients with HCC. No differences in CD80, CD83, CD86 and HLA-DR expression were found on naive and stimulated myeloid dendritic cells from HCC patients and healthy controls. Normal phagocytosis or stimulation of peptide specific T cells was observed in contrast to an impaired allo-stimulatory capacity and a reduced IL-12 secretion.CONCLUSION: Impaired IL-12 production of mDCs in patients could lead to an impaired stimulatory capacity of naive T cells suggesting that IL-12 directed therapies may enhance tumor specific immune responses in HCC patients.

  12. Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus

    Directory of Open Access Journals (Sweden)

    Artur Summerfield

    2009-11-01

    Full Text Available Dendritic cells (DC are major players in both innate and adaptive immune responses against influenza virus. These immune responses, as well as the important interface between the innate and adaptive systems, are orchestrated by specialized subsets of DC, including conventional steady-state DC, migratory DC and plasmacytoid DC. The characteristics and efficacy of the responses are dependent on the relative activity of these DC subsets, rendering DC crucial for the development of both naïve and memory immune responses. However, due to their critical role, DC also contribute to the immunopathological processes observed during acute influenza, such as that caused by the pathogenic H5N1 viruses. Therein, the role of different DC subsets in the induction of interferon type I, proinflammatory cytokine and chemokine responses is important for the outcome of interaction between the virus and host immune defences. The present review will present current knowledge on this area, relating to the importance of DC activity for the induction of efficacious humoral and cell-mediated immune responses. This will include the main viral elements associated with the triggering or inhibition of DC activation. Finally, the current knowledge on understanding how differences in various vaccines influence the manner of immune defence induction will be presented.

  13. Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections.

    Science.gov (United States)

    Pashenkov, Mikhail; Teleshova, Natalia; Kouwenhoven, Mathilde; Smirnova, Tatiana; Jin, Ya Ping; Kostulas, Vasilios; Huang, Yu Min; Pinegin, Boris; Boiko, Alexey; Link, Hans

    2002-01-01

    Dendritic cells (DC) accumulate in the CNS during inflammation and may contribute to local immune responses. Two DC subsets present in human cerebrospinal fluid (CSF) are probably recruited from myeloid (CD11c(+)CD123(dim)) and plasmacytoid (CD11c(-)CD123(high)) blood DC. In bacterial meningitis and especially in Lyme meningoencephalitis, numbers of myeloid and plasmacytoid DC in CSF were increased, compared to non-inflammatory neurological diseases, and correlated with chemotactic activity of CSF for immature monocyte-derived DC (moDC). Multiple DC chemoattractants, including macrophage inflammatory protein (MIP)-1beta, monocyte chemotactic protein (MCP)-1, MCP-3, RANTES and stromal cell-derived factor (SDF)-1alpha were elevated in CSF in these two neuroinfections. Chemotaxis of immature moDC induced by these CSFs could be partially inhibited by mAbs against CXCR4, the receptor for SDF-1alpha, and CD88, the receptor for C5a. SDF-1alpha present in CSF also chemoattracted mature moDC, which in vivo could correspond to a diminished migration of antigen-bearing DC from the CSF to secondary lymphoid organs. Regulation of DC trafficking to and from the CSF may represent a mechanism of controlling the CNS inflammation.

  14. Low Counts of Plasmacytoid Dendritic Cells after Engraftment Are Associated with High Early Mortality after Allogeneic Stem Cell Transplantation.

    Science.gov (United States)

    Gonçalves, Matheus Vescovi; Yamamoto, Mihoko; Kimura, Eliza Yurico Sugano; Colturato, Vergílio Antônio Rensi; de Souza, Mair Pedro; Mauad, Marcos; Ikoma, Maura Valerio; Novis, Yana; Rocha, Vanderson; Ginani, Valeria Cortez; Wanderley de Oliveira Felix, Olga Margareth; Seber, Adriana; Kerbauy, Fabio Rodrigues; Hamerschlak, Nelson; Orfao, Alberto; Rodrigues, Celso Arrais

    2015-07-01

    Dendritic cells (DCs) are antigen-presenting cells that drive immune responses and tolerance and are divided in different subsets: myeloid DCs (mDCs: lineage-; HLA-DR+, 11c+), plasmacytoid dendritic cells (pDCs: HLA-DR+, CD123+), and monocyte-derived DCs (moDC: lineage-, 11c+, 16+). After hematopoietic stem cell transplantation (HSCT), low DC counts in the recipients' peripheral blood (PB) have been associated with worse outcomes, but the relevance of DC graft content remains unclear, and there are few data in the setting of unrelated donor HSCT. We evaluated the DC graft content and monitored DC recovery in PB from 111 HSCT recipients (median age, 17 years; range 1 to 74), who received bone marrow (46%), umbilical cord blood (32%), or PB (22%) from unrelated (81%) or related donors (19%). In 86 patients with sustained allogeneic recovery, patients with higher counts of all DC subsets (pDC, mDC, and moDC) 3 weeks after engraftment had lower incidence of nonrelapse mortality (NMR) and acute graft-versus-host disease (aGVHD) and better survival. pDC counts were associated with more striking results: patients with higher pDC counts had much lower incidences of NRM (3% versus 47%, P < .0001), lower incidence of aGVHD (24% versus 67%, P < .0001), and better overall survival (92% versus 45%, P < .0001). In contrast, higher pDC counts in the graft was associated with an increased risk of aGVHD (55% versus 26%, P = .02). Our results indicate that DC counts are closely correlated with HSCT outcomes and warrant further prospective evaluation and possible early therapeutic interventions to ameliorate severe aGVHD and decrease mortality.

  15. Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination.

    Science.gov (United States)

    Galea-Lauri, Joanna; Darling, David; Mufti, Ghulam; Harrison, Phillip; Farzaneh, Farzin

    2002-08-01

    Dendritic cells (DC) have been successfully used in clinical pilot studies to induce tumor-specific immunity as well as clinical response in selected patients. However, DC-based immunotherapy remains a challenge and several parameters need to be examined in order to optimize the induction of anti-tumor immune responses. This study focuses on DC vaccination for leukemia and evaluates the in vitro efficacy of three different strategies for generating antigen-loaded DC-based vaccines for the induction of major histocompatibility complex (MHC) class I-restricted anti-leukemia cytotoxic T lymphocyte (CTL) responses. These included direct fusion of DC with leukemia cells to generate DC-leukemia cell hybrids, and DC pulsed with either apoptotic leukemia cell fragments or whole tumor cell lysates. Using either the U937 cell line or primary human acute myeloid leukemia blasts (AML), DC-leukemia cell hybrids were found to be the most potent in vitro inducers of CTL activity. DC pulsed with apoptotic tumor cell fragments were less efficient, but induced a more potent CTL response compared to tumor lysate-pulsed DC. The CTL responses were both MHC class I-restricted and antigen-specific, as shown by the inability of the CTL to lyse other control targets. The data presented here suggest that the method of antigen loading onto DC may be critical in the design of tumor vaccines.

  16. Dendritic cells enhance UHMWPE wear particle-induced osteoclast differentiation of macrophages.

    Science.gov (United States)

    Cang, Dingwei; Guo, Kaijin; Zhao, Fengchao

    2015-10-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used in large joint replacement. Osteolysis induced by the UHMWPE wear particles is one of the main causes of replacement failure. This study aims to elucidate whether dendritic cells play a role in UHMWPE particle-induced osteolysis. An in vitro Raw 264.7 and DC 2.4 coculture system was employed to examine the effects of dendritic cells on the inflammatory and osteoclastogenic responses of Raw 264.7 toward UHMWPE particles. The expression of cytokines, NF-κB, and osteoclast marker genes was analyzed by ELISA, western blot, or quantitative PCR. The osteoclast differentiation was measured by TRAP staining and flow cytometry. UHMWPE particles induced Raw 264.7 cells to differentiate into osteoclasts, which was enhanced by coculturing with DC 2.4 cells. DC 2.4 cells augmented UHMWPE particle-elicited activation of NF-κB signaling, higher levels of TNF-α and MCP-1, and an increased expression of MMP-9, Calcr, and Ctsk, though DC 2.4 coculture alone did not significantly cause the aforementioned changes. These results suggest that dendritic cells, among other immune cells recruited by UHMWPE particle induced inflammation, could further exacerbate inflammation and osteolysis.

  17. Sensitivity of Dendritic Cells to Microenvironment Signals

    Science.gov (United States)

    Motta, Juliana Maria; Rumjanek, Vivian Mary

    2016-01-01

    Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies. PMID:27088097

  18. Sensitivity of Dendritic Cells to Microenvironment Signals

    Directory of Open Access Journals (Sweden)

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  19. Dendritic Cells for SYN Scan Detection

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    Artificial immune systems have previously been applied to the problem of intrusion detection. The aim of this research is to develop an intrusion detection system based on the function of Dendritic Cells (DCs). DCs are antigen presenting cells and key to activation of the human immune system, behaviour which has been abstracted to form the Dendritic Cell Algorithm (DCA). In algorithmic terms, individual DCs perform multi-sensor data fusion, asynchronously correlating the the fused data signals with a secondary data stream. Aggregate output of a population of cells, is analysed and forms the basis of an anomaly detection system. In this paper the DCA is applied to the detection of outgoing port scans using TCP SYN packets. Results show that detection can be achieved with the DCA, yet some false positives can be encountered when simultaneously scanning and using other network services. Suggestions are made for using adaptive signals to alleviate this uncovered problem.

  20. Plasmacytoid dendritic cells in antiviral immunity and autoimmunity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Plasmacytoid dendritic cells (pDCs) represent a unique and crucial immune cell population capable of producing large amounts of type I interferons (IFNs) in response to viral infection.The function of pDCs as the professional type I IFN-producing cells is linked to their selective expression of Toll-like receptor 7 (TLR7) and TLR9,which sense viral nucleic acids within the endosomal compartments.Type I IFNs produced by pDCs not only directly inhibit viral replication but also play an essential role in linking the innate and adaptive immune system.The aberrant activation of pDCs by self nucleic acids through TLR signaling and the ongoing production of type I IFNs do occur in some autoimmune diseases.Therefore,pDC may serve as an attractive target for therapeutic manipulations of the immune system to treat viral infectious diseases and autoimmune diseases.

  1. Phenotypic, ultra-structural, and functional characterization of bovine peripheral blood dendritic cell subsets.

    Directory of Open Access Journals (Sweden)

    Janet J Sei

    Full Text Available Dendritic cells (DC are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c-. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC, and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.

  2. On/off TLR segnaling decides immunogenic or tolerogenic dendritic cell maturation upon NKT cell contact

    OpenAIRE

    Caielli,

    2009-01-01

    Invariant Natural Killer (iNK)T cells play opposite immune functions. They participate in the innate immune response to promote anti-microbial and anti-tumor immunity and they are crucial to maintain T cell tolerance and prevent autoimmune diseases. While it is well known that the adjuvant function of iNKT cells is mediated through maturation of dendritic cells (DC), the mechanism underlying the tolerogenic function of iNKT cells remains unclear. We performed co-culture experiments with immat...

  3. Dendritic cells fused with different pancreatic carcinoma cells induce different T-cell responses

    Directory of Open Access Journals (Sweden)

    Andoh Y

    2013-01-01

    Full Text Available Yoshiaki Andoh,1,2 Naohiko Makino,2 Mitsunori Yamakawa11Department of Pathological Diagnostics, 2Department of Gastroenterology, Yamagata University School of Medicine, Yamagata, JapanBackground: It is unclear whether there are any differences in the induction of cytotoxic T lymphocytes (CTL and CD4+CD25high regulatory T-cells (Tregs among dendritic cells (DCs fused with different pancreatic carcinomas. The aim of this study was to compare the ability to induce cytotoxicity by human DCs fused with different human pancreatic carcinoma cell lines and to elucidate the causes of variable cytotoxicity among cell lines.Methods: Monocyte-derived DCs, which were generated from peripheral blood mononuclear cells (PBMCs, were fused with carcinoma cells such as Panc-1, KP-1NL, QGP-1, and KP-3L. The induction of CTL and Tregs, and cytokine profile of PBMCs stimulated by fused DCs were evaluated.Results: The cytotoxicity against tumor targets induced by PBMCs cocultured with DCs fused with QGP-1 (DC/QGP-1 was very low, even though PBMCs cocultured with DCs fused with other cell lines induced significant cytotoxicity against the respective tumor target. The factors causing this low cytotoxicity were subsequently investigated. DC/QGP-1 induced a significant expansion of Tregs in cocultured PBMCs compared with DC/KP-3L. The level of interleukin-10 secreted in the supernatants of PBMCs cocultured with DC/QGP-1 was increased significantly compared with that in DC/KP-3L. Downregulation of major histocompatibility complex class I expression and increased secretion of vascular endothelial growth factor were observed with QGP-1, as well as in the other cell lines.Conclusion: The present study demonstrated that the cytotoxicity induced by DCs fused with pancreatic cancer cell lines was different between each cell line, and that the reduced cytotoxicity of DC/QGP-1 might be related to the increased secretion of interleukin-10 and the extensive induction of Tregs

  4. DC/CIKs细胞通过无 miRNA 的 exosome 蛋白刺激后能增强对胰腺癌细胞的免疫作用%Increasing the immune activity of exosomes:the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Ri-sheng QUE; Cheng LIN; Guo-ping DING; Zheng-rong WU; Li-ping CAO

    2016-01-01

    Background: Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. Objective: This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced kil er cel s (DC/CIKs) against pancreatic cancer (PC). Methods:PC-derived exosomes (PEs) were extracted from cultured PANC-1 cel supernatants and then ruptured; this was fol owed by ultrafiltered exosome lysates (UELs). DCs were stimulated with lipopolysaccharide (LPS), PE, and UEL, fol owed by co-culture with CIKs. The anti-tumor effects of DC/CIKs against PC were evaluated by proliferation and kil ing rates, tumor ne-crosis factor-α(TNF-α) and perforin secretion. Exosomal miRNAs were depleted after lysis and ultrafiltration, while 128 proteins were retained, including several immune-activating proteins. Results: UEL-stimulated DC/CIKs showed a higher killing rate than LPS- and PE-stimulated DC/CIKs. Conclusions: miRNA-depleted exosome proteins may be promising agonists for specifical y activating DC/CIKs against PC.%目的:本文通过分离提取无小 RNA(miRNA)的外来体(exosome)刺激树突细胞/细胞因子活化杀伤细胞(DC/CIKs),激活其对于胰腺癌细胞的免疫杀伤作用。  创新点:无 miRNA的 exosome超速离心裂解产物可以通过激活 DC/CIKs 细胞增强其对肿瘤细胞的杀伤作用。  方法:通过收集PANC-1细胞的上清并超速离心提取其中的exosome。提取的DC细胞分别通过脂多糖、肿瘤来源exosome及无miRNA的exosome刺激后,与CIK细胞共培养。通过计算增值与杀伤效率,肿瘤坏死因子-α(TNF-α)及穿孔素的分泌,比较各组间CIK细胞对胰腺癌细胞的杀伤作用。  结论:经

  5. Cancer Vaccine by Fusions of Dendritic and Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    2009-01-01

    Full Text Available Dendritic cells (DCs are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived costimulatory molecules. DCs/tumor fusion vaccine stimulates potent antitumor immunity in the animal tumor models. In the human studies, T cells stimulated by DC/tumor fusion cells are effective in lysis of tumor cells that are used as the fusion partner. In the clinical trials, clinical and immunological responses were observed in patients with advanced stage of malignant tumors after being vaccinated with DC/tumor fusion cells, although the antitumor effect is not as vigorous as in the animal tumor models. This review summarizes recent advances in concepts and techniques that are providing new impulses to DCs/tumor fusions-based cancer vaccination.

  6. Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Thorn, M; Gad, M;

    2005-01-01

    Dendritic cells (DC) are promising candidates for cancer immunotherapy. However, it is not known whether in vitro-generated monocyte-derived DC from cancer patients are altered compared with DC from healthy donors. In a clinical phase I/II study, monocyte-derived DC were generated in vitro...... utilizing granulocyte macrophage colony-stimulating factor and rh-interleukin-4 (IL-4) and used for cancer immunotherapy. In this study, we tested the effect of various maturation cocktails and performed a comparative evaluation of the DC phenotype and functional characteristics. Polyriboinosinic...

  7. Molecular characterization of antigen-peptide pulsed dendritic cells: immature dendritic cells develop a distinct molecular profile when pulsed with antigen peptide.

    Directory of Open Access Journals (Sweden)

    Amy X Yang

    Full Text Available As dendritic cells (DCs are the most potent professional antigen-presenting cells, they are being tested as cancer vaccines for immunotherapy of established cancers. Although numerous studies have characterized DCs by their phenotype and function, few have identified potential molecular markers of antigen presentation prior to vaccination of host. In this study we generated pre-immature DC (piDC, immature DC (iDC, and mature DC (mDC from human peripheral blood monocytes (PBMC obtained from HLA-A2 healthy donors, and pulsed them with human papillomavirus E7 peptide (p11-20, a class I HLA-A2 binding antigen. We then characterized DCs for cell surface phenotype and gene expression profile by microarray technology. We identified a set of 59 genes that distinguished three differentiation stages of DCs (piDC, iDC and mDC. When piDC, iDC and mDC were pulsed with E7 peptide for 2 hrs, the surface phenotype did not change, however, iDCs rather than mDCs showed transcriptional response by up-regulation of a set of genes. A total of 52 genes were modulated in iDC upon antigen pulsing. Elongation of pulse time for iDCs to 10 and 24 hrs did not significantly bring further changes in gene expression. The E7 peptide up-modulated immune response (KPNA7, IGSF6, NCR3, TREM2, TUBAL3, IL8, NFKBIA, pro-apoptosis (BTG1, SEMA6A, IGFBP3 and SRGN, anti-apoptosis (NFKBIA, DNA repair (MRPS11, RAD21, TXNRD1, and cell adhesion and cell migration genes (EPHA1, PGF, IL8 and CYR61 in iDCs. We confirmed our results by Q-PCR analysis. The E7 peptide but not control peptide (PADRE induced up-regulation of NFKB1A gene only in HLA-A2 positive iDCs and not in HLA-A2 negative iDCs. These results suggest that E7 up-regulation of genes is specific and HLA restricted and that these genes may represent markers of antigen presentation and help rapidly assess the quality of dendritic cells prior to administration to the host.

  8. Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    DEFF Research Database (Denmark)

    Weiss, Gudrun Margarethe; Rasmussen, Simon; Fink, Lisbeth Nielsen;

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing...... cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium...

  9. Plasmacytoid dendritic cell role in cutaneous malignancies.

    Science.gov (United States)

    Saadeh, Dana; Kurban, Mazen; Abbas, Ossama

    2016-07-01

    Plasmacytoid dendritic cells (pDCs) correspond to a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, HLA-DR, blood-derived dendritic cell antigen-2 (BDCA-2), and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. Through their production of type I interferons (IFNs) and other pro-inflammatory cytokines, pDCs provide anti-viral resistance and link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer (NK) cells. While lacking from normal skin, pDCs are usually recruited to the skin in several cutaneous pathologies where they appear to be involved in the pathogenesis of several infectious, inflammatory/autoimmune, and neoplastic entities. Among the latter group, pDCs have the potential to induce anti-tumour immunity; however, the complex interaction of pDCs with tumor cells and their micro-environment appears to contribute to immunologic tolerance. In this review, we aim at highlighting the role played by pDCs in cutaneous malignancies with special emphasis on the underlying mechanisms.

  10. Expansion in vitro and cytotoxicity of dendritic cells from patients with chronic myeloid leukemia.

    Science.gov (United States)

    Ji, Lei; Xing, Pei-Ni; Wei, Xu-Cang; Wang, Tong; Li, Mei-Sheng; Zhang, Wang-Gang

    2005-04-01

    The study was aimed to investigate the extensive amplification and the cytotoxicity of dendritic cells (DC) derived from chronic myeloid leukemia cells. DC were cultured in two steps: firstly, extensive amplification in primary culture of CD34(+) or mononuclear cells isolated from CML patients' bone marrow and peripheral blood with rhFlt3-L and rhTPO for 7 days; secondly, inducing culture of DC with rhGM-CSF, rhTNF and rhIL-4 for 14 days. A system inducing DC directly were established for comparison. DC were identified by immunophenotype with flow cytometry, chromosome analysis by displaying G banding and electric microscopy analysis. The function of stimulating T cells proliferation and cytotoxicity of CML cells were confirmed through MTT assay. The results showed that after first extensive amplification in primary culture with rhFlt3-L and rhTPO for 7 days, CD34(+) cells had a total cell number with (77 +/- 5) fold expansion, and DC were (39 +/- 8)% of total cell respectively after induction culture of DC with rhGM-CSF, rhTNF and rhIL-4 for 14 days. Both the amplification of cell number and yield of DC were higher than the system without extensively culture (P < 0.01). Such DC could stimulate T cells to proliferate and kill leukemia cells finally. In conclusion, two-step culture method can obviously improve the cell number of DC required, that is better than inducing them directly. DC derived from CML cells induce the generation of anti-leukemia immunization.

  11. Genetically Modified Lactococcus lactis for Delivery of Human Interleukin-10 to Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Inge L. Huibregtse

    2012-01-01

    Full Text Available Interleukin-10 (IL-10 plays an indispensable role in mucosal tolerance by programming dendritic cells (DCs to induce suppressor Th-cells. We have tested the modulating effect of L. lactis secreting human IL-10 (L.  lactisIL-10 on DC function in vitro. Monocyte-derived DC incubated with L.  lactisIL-10 induced effector Th-cells that markedly suppressed the proliferation of allogenic Th-cells as compared to L. lactis. This suppressive effect was only seen when DC showed increased CD83 and CD86 expression. Furthermore, enhanced production of IL-10 was measured in both L.  lactisIL-10-derived DC and Th-cells compared to L. lactis-derived DC and Th-cells. Neutralizing IL-10 during DC-Th-cell interaction and coculturing L.  lactisIL-10-derived suppressor Th-cells with allogenic Th-cells in a transwell system prevented the induction of suppressor Th-cells. Only 130 pg/mL of bacterial-derived IL-10 and 40 times more exogenously added recombinant human IL-10 were needed during DC priming for the generation of suppressor Th-cells. The spatially restricted delivery of IL-10 by food-grade bacteria is a promising strategy to induce suppressor Th-cells in vivo and to treat inflammatory diseases.

  12. Dendritic Cell-Based Vaccine Against Fungal Infection.

    Science.gov (United States)

    Ueno, Keigo; Urai, Makoto; Ohkouchi, Kayo; Miyazaki, Yoshitsugu; Kinjo, Yuki

    2016-01-01

    Several pathogenic fungi, including Cryptococcus gattii, Histoplasma capsulatum, Coccidioides immitis, and Penicillium marneffei, cause serious infectious diseases in immunocompetent humans. However, currently, prophylactic and therapeutic vaccines are not clinically used. In particular, C. gattii is an emerging pathogen and thus far protective immunity against this pathogen has not been well characterized. Experimental vaccines such as component and attenuated live vaccines have been used as tools to study protective immunity against fungal infection. Recently, we developed a dendritic cell (DC)-based vaccine to study protective immunity against pulmonary infection by highly virulent C. gattii strain R265 that was clinically isolated from bronchial washings of infected patients during the Vancouver Island outbreak. In this approach, bone marrow-derived DCs (BMDCs) are pulsed with heat-killed C. gattii and then transferred into mice prior to intratracheal infection. This DC vaccine significantly increases interleukin 17A (IL-17A)-, interferon gamma (IFN-γ)-, and tumor necrosis factor alpha (TNF-α)-producing T cells in the lungs and spleen and ameliorates the pathology, fungal burden, and mortality following C. gattii infection. This approach may result in the development of a new means of controlling lethal fungal infections. In this chapter, we describe the procedures of DC vaccine preparation and murine pulmonary infection model for analysis of immune response against C. gattii.

  13. Cdc42-dependent actin dynamics controls maturation and secretory activity of dendritic cells

    DEFF Research Database (Denmark)

    Schulz, Anna M; Stutte, Susanne; Hogl, Sebastian

    2015-01-01

    Cell division cycle 42 (Cdc42) is a member of the Rho guanosine triphosphatase family and has pivotal functions in actin organization, cell migration, and proliferation. To further study the molecular mechanisms of dendritic cell (DC) regulation by Cdc42, we used Cdc42-deficient DCs. Cdc42...... disruption, our results propose that Cdc42 control of actin dynamics keeps DCs in an immature state, and cessation of Cdc42 activity during DC maturation facilitates secretion as well as rapid up-regulation of intracellular molecules to the cell surface....

  14. Dendritic cell-derived IL-15 controls the induction of CD8 T cell immune responses.

    Science.gov (United States)

    Rückert, René; Brandt, Katja; Bulanova, Elena; Mirghomizadeh, Farhad; Paus, Ralf; Bulfone-Paus, Silvia

    2003-12-01

    The development and the differentiation of CD8(+) T cells are dependent on IL-15. Here, we have studied the source and mechanism of how IL-15 modulates CD8(+) T cell-mediated Th1 immune responses by employing two delayed-type hypersensitivity (DTH) models. IL-15-deficient (IL-15(-/-)) mice or mice treated with soluble IL-15Ralpha as an IL-15 antagonist showed significantly reduced CD8(+) T cell-dependent DTH responses, while activation of CD4(+) T cell and B cell functions remained unaffected. Injection of antigen-labeled dendritic cells (DC) from IL-15(+/+), IL-15(-/-) or IL-15Ralpha(-/-) mice revealed that DC-derived IL-15 is an absolute requirement for the initiation of DTH response. The re-establishment of the interaction of IL-15 with the IL-15Ralpha by incubating IL-15(-/-) DC with IL-15 completely restored the capacity to prime T cells for DTH induction in vivo. Moreover, IL-15 also enhanced secretion of pro-inflammatory cytokines by DC and triggered in vitro CD8(+) T cell proliferation and IL-2 release. Taken together, the data suggest that an autocrine IL-15/IL-15Ralpha signaling loop in DC is essential for inducing CD8(+)-dependent Th1 immune responses in mice. Therefore, targeted manipulation of this loop promises to be an effective, novel strategy for therapeutic modulation of clinically relevant DTH reactions.

  15. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells.

    Science.gov (United States)

    Park, Jaehyung; Gerber, Michael H; Babensee, Julia E

    2015-01-01

    Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses.

  16. Isolation and culture of human hematopoietic progenitors for studies of dendritic cell biology.

    Science.gov (United States)

    Svensson, Mattias

    2009-01-01

    Understanding the regulation of distinct dendritic cell (DC) function and differentiation pathways is important in many physiological and pathophysiological processes. This includes infectious and neoplastic diseases, vaccination and immunotherapy, allograft rejection, and the pathogenesis of autoimmune diseases. Isolation and culture of human hematopoietic progenitor cells provide a valuable model for studies on DC biology and may help uncover new means to manipulate DC differentiation and function in therapeutic settings. Here, a detailed protocol for the isolation of CD34+ hematopoietic progenitor cells from human cord blood is described. The isolated cell population consists of approximately 85% CD34+ CD45+ hematopoietic progenitor cells that in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) plus tumor necrosis factor (TNF) expand and differentiate into CD11c+ HLA-DR+ DC-expressing CD1a.

  17. Dynamic populations of dendritic cell-specific ICAM-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific ICAM-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes.

    NARCIS (Netherlands)

    Engering, A.J.; Vliet, van SJ; Hebeda, K; Jackson, DG; Prevo, R; Singh, SK; Geijtenbeek, T.B.H.; Krieken, van H; Kooijk, van Y.

    2004-01-01

    In the paracortex of lymph nodes, cellular immune responses are generated against antigens captured in peripheral tissues by dendritic cells (DCs). DC-SIGN (dendritic cell-specific ICAM-3 grabbing nonintegrin), a C-type lectin exclusively expressed by DCs, functions as an antigen receptor as well as

  18. Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8α+ dendritic cell development

    KAUST Repository

    Jaiswal, Hemant

    2013-11-13

    Dendritic cells (DCs) are heterogeneous cell populations represented by different subtypes, each varying in terms of gene expression patterns and specific functions. Recent studies identified transcription factors essential for the development of different DC subtypes, yet molecular mechanisms for the developmental program and functions remain poorly understood. In this study, we developed and characterized a mouse DC progenitor-like cell line, designated DC9, from Irf8-/- bone marrow cells as a model for DC development and function. Expression of Irf8 in DC9 cells led to plasmacytoid DCs and CD8α+ DC-like cells, with a concomitant increase in plasmacytoid DC- and CD8α+ DC-specific gene transcripts and induction of type I IFNs and IL12p40 following TLR ligand stimulation. Irf8 expression in DC9 cells led to an increase in Id2 and Batf3 transcript levels, transcription factors shown to be important for the development of CD8α+ DCs. We show that, without Irf8 , expression of Id2 and Batf3 was not sufficient for directing classical CD8α+ DC development. When coexpressed with Irf8, Batf3 and Id2 had a synergistic effect on classical CD8α+ DC development. We demonstrate that Irf8 is upstream of Batf3 and Id2 in the classical CD8α+ DC developmental program and define the hierarchical relationship of transcription factors important for classical CD8α+ DC development.

  19. CD40-targeted adenoviral gene transfer to dendritic cells through the use of a novel bispecific single-chain Fv antibody enhances cytotoxic T cell activation

    NARCIS (Netherlands)

    Brandao, JG; Scheper, RJ; Lougheed, SM; Curiel, DT; Tillman, BW; Gerritsen, WR; van den Eertwegh, AJM; Pinedo, HM; Haisma, HJ; de Gruijl, TD

    2003-01-01

    Adenoviral (Ad) transduction of dendritic cells (DC) is a promising vaccination strategy. However, clinical applicability of Ad vectors is hampered by the necessity to use high titers of infectious Ad particles for efficient DC transduction. Here, we report on the production of a bacterially express

  20. Dendritic cell targeted vaccines: Recent progresses and challenges.

    Science.gov (United States)

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-03-01

    Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches.

  1. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  2. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism.

    Science.gov (United States)

    Bernal, Carmen E; Zorro, Maria M; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H; Baena, Andres; Ramirez-Pineda, Jose R

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation.

  3. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism

    Science.gov (United States)

    Bernal, Carmen E.; Zorro, Maria M.; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H.; Baena, Andres; Ramirez-Pineda, Jose R.

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation. PMID:26870700

  4. Encephalitozoon intestinalis inhibits dendritic cell differentiation through an IL-6-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Bernal Silva

    2016-02-01

    Full Text Available AbstractMicrosporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNg, CD4+ and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei, a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1b or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNg secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNg secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development towards cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation.

  5. Novel immunomodulatory effects of adiponectin on dendritic cell functions.

    Science.gov (United States)

    Tsang, Julia Yuen Shan; Li, Daxu; Ho, Derek; Peng, Jiao; Xu, Aimin; Lamb, Jonathan; Chen, Yan; Tam, Paul Kwong Hang

    2011-05-01

    Adiponectin (ADN) is an adipocytokine with anti-inflammatory properties. Although it has been reported that ADN can inhibit the immunostimulatory function of monocytes and macrophages, little is known of its effect on dendritic cells (DC). Recent data suggest that ADN can regulate immune responses. DCs are uniquely specialised antigen presenting cells that play a central role in the initiation of immunity and tolerance. In this study, we have investigated the immuno- modulatory effects of ADN on DC functions. We found that ADN has only moderate effect on the differentiation of murine bone marrow (BM) derived DCs but altered the phenotype of DCs. The expression of major histocompatibilty complex class II (MHCII), CD80 and CD86 on ADN conditioned DCs (ADN-DCs) was lower than that on untreated cells. The production of IL-12p40 was also suppressed in ADN-DCs. Interestingly, ADN treated DCs showed an increase in the expression of the inhibitory molecule, programmed death-1 ligand (PDL-1) compared to untreated cells. In vitro co-culture of ADN-DCs with allogeneic T cells led to a decrease in T cell proliferation and reduction of IL-2 production. Concomitant with that, a higher percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) was detected in co-cultures of T cells and ADN-DCs. Blocking PD-1/PDL-1 pathway could partially restore T cell function. These findings suggest that the immunomodulatory effect of ADN on immune responses could be at least partially be mediated by its ability to alter DC function. The PD-1/PDL-1 pathway and the enhancement of Treg expansion are implicated in the immunomodulatory mechanisms.

  6. Rat bone marrow-derived dendritic cells, but not ex vivo dendritic cells, secrete nitric oxide and can inhibit T-cell proliferation.

    Science.gov (United States)

    Powell, Timothy J; Jenkins, Chris D; Hattori, Ryuichi; MacPherson, G Gordon

    2003-06-01

    The relationships between different dendritic cell (DC) populations are not clearly established. In particular, it is not known how DC generated in vitro relate to those identified in vivo. Here we have characterized rat bone marrow-derived DC (BMDC) and compared them with DC isolated from spleen (SDC) and pseudo-afferent lymph (LDC). BMDC express typical DC markers and are mostly OX41 positive and CD4 negative. In contrast to ex vivo DC, some BMDC express Fc receptors. FcR+ and FcR- BMDC express similar levels of major histocompatibility complex class II molecules (MHC) and are B7 positive, but some FcR- BMDC express high levels of B7. In contrast to freshly isolated or cultured ex vivo SDC and LDC, both BMDC subpopulations can express inducible nitric oxide synthase (iNOS) and can secrete nitric oxide (NO) in amounts similar to those secreted by peritoneal macrophages. Despite expressing MHC class II and B7, FcR+ BMDC stimulate only a very weak MLR and inhibit stimulation by FcR- BMDC and ex vivo DC. Inhibition is only partially NO dependent. FcR+ BMDC are not macrophages, as judged by adherence and phagocytosis. Both subpopulations are able to present antigen to primed T cells in vitro and are able to prime naïve CD4 T cells in vivo. However, unlike SDC, BMDC are unable to stimulate cytotoxic T-lymphocyte (CTL) responses to a minor histocompatibility antigen. Thus, BMDC show marked differences to ex vivo DC and their relationship to those of in vivo DC populations, to date, is unclear.

  7. Medroxyprogesterone acetate impairs human dendritic cell activation and function.

    Science.gov (United States)

    Quispe Calla, N E; Ghonime, M G; Cherpes, T L; Vicetti Miguel, R D

    2015-05-01

    Does medroxyprogesterone acetate (MPA) impair human dendritic cell (DC) activation and function? In vitro MPA treatment suppressed expression of CD40 and CD80 by human primary DCs responding to Toll-like receptor 3 (TLR3) agonist stimulation (i.e. DC activation). Moreover, this MPA-mediated decrease in CD40 expression impaired DC capacity to stimulate T cell proliferation (i.e. DC function). MPA is the active molecule in Depo-Provera(®) (DMPA), a commonly used injectable hormonal contraceptive (HC). Although DMPA treatment of mice prior to viral mucosal tissue infection impaired the capacity of DCs to up-regulate CD40 and CD80 and prime virus-specific T cell proliferation, neither DC activation marker expression nor the ability of DCs to promote T cell proliferation were affected by in vitro progesterone treatment of human DCs generated from peripheral blood monocytes. This cross-sectional study examined MPA-mediated effects on the activation and function of human primary untouched peripheral blood DCs. Human DCs isolated from peripheral blood mononuclear cells by negative immunomagnetic selection were incubated for 24 h with various concentrations of MPA. After an additional 24 h incubation with the TLR3 agonist polyinosinic:polycytidylic acid (poly I:C), flow cytometry was used to evaluate DC phenotype (i.e. expression of CD40, CD80, CD86, and HLA-DR). In separate experiments, primary untouched human DCs were sequentially MPA-treated, poly I:C-activated, and incubated for 7 days with fluorescently labeled naïve allogeneic T cells. Flow cytometry was then used to quantify allogeneic T cell proliferation. Several pharmacologically relevant concentrations of MPA dramatically reduced CD40 and CD80 expression in human primary DCs responding to the immunostimulant poly I:C. In addition, MPA-treated DCs displayed a reduced capacity to promote allogeneic CD4(+) and CD8(+) T cell proliferation. In other DC: T cell co-cultures, the addition of antibody blocking the CD40

  8. Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses.

    Directory of Open Access Journals (Sweden)

    Sandra J van Vliet

    2009-10-01

    Full Text Available Gonorrhea is one of the most prevalent sexually transmitted diseases in the world. A naturally occurring variation of the terminal carbohydrates on the lipooligosaccharide (LOS molecule correlates with altered disease states. Here, we investigated the interaction of different stable gonoccocal LOS phenotypes with human dendritic cells and demonstrate that each variant targets a different set of receptors on the dendritic cell, including the C-type lectins MGL and DC-SIGN. Neisseria gonorrhoeae LOS phenotype C constitutes the first bacterial ligand to be described for the human C-type lectin receptor MGL. Both MGL and DC-SIGN are locally expressed at the male and female genital area, the primary site of N. gonorrhoeae infection. We show that targeting of different C-type lectins with the N. gonorrhoeae LOS variants results in alterations in dendritic cell cytokine secretion profiles and the induction of distinct adaptive CD4(+ T helper responses. Whereas N. gonorrhoeae variant A with a terminal N-acetylglucosamine on its LOS was recognized by DC-SIGN and induced significantly more IL-10 production, phenotype C, carrying a terminal N-acetylgalactosamine, primarily interacted with MGL and skewed immunity towards the T helper 2 lineage. Together, our results indicate that N. gonorrhoeae LOS variation allows for selective manipulation of dendritic cell function, thereby shifting subsequent immune responses in favor of bacterial survival.

  9. 自体DC-CIK细胞联合索拉非尼治疗晚期肾癌的临床效果%Clinical effect of autologous dendritic cells and cytokine induced killer cells combined with Sorafenib in the treatment of advanced renal cell car-cinoma

    Institute of Scientific and Technical Information of China (English)

    艾月琴; 赵华; 江龙委; 贾绍昌

    2015-01-01

    Objective To investigate the safety and efficacy of autologous dendritic cells (DC) and cytokine induced killer (CIK) cells combined with Sorafenib in the treatment of advanced renal cell carcinoma. Methods Twenty four cases of patients with advanced renal cell carcinoma who were failed by traditional therapy admitted to No.81st Hospi-tal of PLA from December 2011 to March 2014 were selected. The peripheral blood mononuclear cells (PBMCs) were collected by blood cell separator, DC and CIK cells were amplified from PBMCs through induction in v itro. Autologous DC and CIK cells combined with Sorafenib were taken to treat patients. Results After treatment, the detection of pe-ripheral blood lymphocyte subsets showed that CD3+was (67.80±8.50)%, CD4+was (40.40±7.71)%, CD4+/CD8+was (1.89±0.53)%, which were higher than before treatment [(55.97±11.71)%, (30.18±8.33)%, (1.08±0.60)%], the differences were statistically significant (P=0.018, 0.021, 0.011). After treatment, the ratio of CD8+T leukomonocyte was (17.34±4.52)%, the ratio of CD4+CD25+Treg was (4.57±1.56)%, which were lower than before treatment [(25.41±6.22)%, (7.12±1.71)%], the differences were statistically significant (P= 0.005, 0.034). Among 24 patients, there were 2 cases (8.3%) of com-plete remission (CR), 4 cases (16.7%) of partial remission (PR), 15 cases (62.5%) of stable disease (SD), 3 cases (12.5%) of progressive disease (PD); the response rate (RR) was 25.0%, the disease control rate (DCR) was 87.5%. Conclusion Sorafenib combined with autologous DC and CIK cells immunotherapy in treating advanced renal cell car-cinoma is safe, which can achieve certain clinical benefit even when the efficacy of traditional therapy is poor or failed.%目的:探讨自体树突状细胞(DC)与细胞因子诱导的杀伤细胞(CIK)联合索拉非尼治疗晚期肾癌的安全性和有效性。方法选择2011年12月~2014年3月解放军第八一医院经传统治疗失败后的晚期肾癌患者24例,经

  10. Evidence for lipopolysaccharide-induced differentiation of RAW264⋅ 7 murine macrophage cell line into dendritic like cells

    Indian Academy of Sciences (India)

    Rajiv K Saxena; Val Vallyathan; Daniel M Lewis

    2003-02-01

    Effect of lipopolysaccharide (LPS) on RAW264.7 macrophage cell line was studied. LPS-treated RAW264.7 cells increased in cell size and acquired distinct dendritic morphology. At the optimal dose of LPS (1 g/ml), almost 70% RAW264.7 cells acquired dendritic morphology. Flow cytometric studies indicate that the cell surface markers known to be expressed on dendritic cells and involved in antigen presentation and T cell activation (B7.1, B7.2, CD40, MHC class II antigens and CD1d) were also markedly upregulated on LPS-treated RAW264.7 cells. Our results suggest the possibility that LPS by itself could constitute a sufficient signal for differentiation of macrophages into DC-like cells.

  11. Tocotrienol-adjuvanted dendritic cells inhibit tumor growth and metastasis: a murine model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Sitti Rahma Abdul Hafid

    Full Text Available Tocotrienol-rich fraction (TRF from palm oil is reported to possess anti-cancer and immune-enhancing effects. In this study, TRF supplementation was used as an adjuvant to enhance the anti-cancer effects of dendritic cells (DC-based cancer vaccine in a syngeneic mouse model of breast cancer. Female BALB/c mice were inoculated with 4T1 cells in mammary pad to induce tumor. When the tumor was palpable, the mice in the experimental groups were injected subcutaneously with DC-pulsed with tumor lysate (TL from 4T1 cells (DC+TL once a week for three weeks and fed daily with 1 mg TRF or vehicle. Control mice received unpulsed DC and were fed with vehicle. The combined therapy of using DC+TL injections and TRF supplementation (DC+TL+TRF inhibited (p<0.05 tumor growth and metastasis. Splenocytes from the DC+TL+TRF group cultured with mitomycin-C (MMC-treated 4T1 cells produced higher (p<0.05 levels of IFN-γ and IL-12. The cytotoxic T-lymphocyte (CTL assay also showed enhanced tumor-specific killing (p<0.05 by CD8(+ T-lymphocytes isolated from mice in the DC+TL+TRF group. This study shows that TRF has the potential to be used as an adjuvant to enhance effectiveness of DC-based vaccines.

  12. The DC-HIL/syndecan-4 pathway regulates autoimmune responses through myeloid-derived suppressor cells.

    Science.gov (United States)

    Chung, Jin-Sung; Tamura, Kyoichi; Akiyoshi, Hideo; Cruz, Ponciano D; Ariizumi, Kiyoshi

    2014-03-15

    Having discovered that the dendritic cell (DC)-associated heparan sulfate proteoglycan-dependent integrin ligand (DC-HIL) receptor on APCs inhibits T cell activation by binding to syndecan-4 (SD-4) on T cells, we hypothesized that the DC-HIL/SD-4 pathway may regulate autoimmune responses. Using experimental autoimmune encephalomyelitis (EAE) as a disease model, we noted an increase in SD-4(+) T cells in lymphoid organs of wild-type (WT) mice immunized for EAE. The autoimmune disease was also more severely induced (clinically, histologically, and immunophenotypically) in mice knocked out for SD-4 compared with WT cohorts. Moreover, infusion of SD-4(-/-) naive T cells during EAE induction into Rag2(-/-) mice also led to increased severity of EAE in these animals. Similar to SD-4 on T cells, DC-HIL expression was upregulated on myeloid cells during EAE induction, with CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) as the most expanded population and most potent T cell suppressor among the myeloid cells examined. The critical role of DC-HIL was supported by DC-HIL gene deletion or anti-DC-HIL treatment, which abrogated T cell suppressor activity of MDSCs, and also by DC-HIL activation inducing MDSC expression of IFN-γ, NO, and reactive oxygen species. Akin to SD-4(-/-) mice, DC-HIL(-/-) mice manifested exacerbated EAE. Adoptive transfer of MDSCs from EAE-affected WT mice into DC-HIL(-/-) mice reduced EAE severity to the level of EAE-immunized WT mice, an outcome that was precluded by depleting DC-HIL(+) cells from the infused MDSC preparation. Our findings indicate that the DC-HIL/SD-4 pathway regulates autoimmune responses by mediating the T cell suppressor function of MDSCs.

  13. The role of dendritic cell subsets and innate immunity in the pathogenesis of type 1 diabetes and other autoimmune diseases

    OpenAIRE

    Price, Jeffrey D; Tarbell, Kristin V.

    2015-01-01

    Dendritic cells (DCs) are key antigen presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, ...

  14. The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases

    OpenAIRE

    Price, Jeffrey D; Tarbell, Kristin V.

    2015-01-01

    Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, ...

  15. Tolerogenic dendritic cells show gene expression profiles that are different from those of immunogenic dendritic cells in DBA/1 mice.

    Science.gov (United States)

    Lee, Eun Gae; Jung, Nam-Chul; Lee, Jun-Ho; Song, Jie-Young; Ryu, Sang-Young; Seo, Han Geuk; Han, Sung Gu; Ahn, Keun Jae; Hong, Kwan Soo; Choi, Jinjung; Lim, Dae-Seog

    2016-01-01

    Tolerogenic dendritic cells (tDCs) play an important role in inducing peripheral tolerance; however, few tDC-specific markers have been identified. The aims of this study were to examine whether tDCs show a different gene expression profile from that of immunogenic DCs and identify specific gene markers of each cell type, in DBA/1 mice. tDCs were generated by treating immature DCs (imDCs) with TNF-α and type II collagen. The gene expression profiles of mature (m)DCs and tDCs were then investigated by microarray analysis and candidate markers were validated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Supervised selection identified 75 gene signatures, 63 of which were consistently upregulated in mDCs and 12 of which were upregulated only in tDCs. Additionally, 10 genes were overexpressed or equally expressed in both tDCs and mDCs. Scin (tDC-specific genes) and Orm1, Pdlim4 and Enpp2 (mDC-specific genes) were validated by real-time qRT-PCR. Taken together, these results clearly show that tDCs and mDCs can be identified according to their expression of specific gene markers.

  16. Improvement of human dendritic cell culture for immunotoxicological investigations.

    Science.gov (United States)

    Hymery, N; Sibiril, Y; Parent-Massin, D

    2006-07-01

    A toxic injury such as a decrease in the number of immature dendritic cells caused by a cytotoxic effect or a disturbance in their maturation process can be responsible for immunodepression. There is a need to improve in vitro assays on human dendritic cells used to detect and evaluate adverse effects of xenobiotics. Two aspects were explored in this work: cytotoxic effects of xenobiotics on immature dendritic cells, and the interference of xenobiotics with dendritic cell maturation. Dendritic cells of two different origins were tested. Dendritic cells obtained either from umbilical cord blood CD34(+) cells or, for the first time, from umbilical cord blood monocytes. The cytotoxicity assay on immature dendritic cells has been improved. For the study of the potential adverse effects of xenobiotics on the maturation process of dendritic cells, several parameters were selected such as expression of markers (CD86, CD83, HLA-DR), secretion of interleukins 10 and 12, and proliferation of autologous lymphocytes. The relevance and the efficiency of the protocol applied were tested using two mycotoxins, T-2 toxin and deoxynivalence, DON, which are known to be immunosuppressive, and one phycotoxin, domoic acid, which is known not to have any immunotoxic effect. Assays using umbilical cord monocyte dendritic cell cultures with the protocol defined in this work, which involves a cytotoxicity study followed by evaluation of several markers of adverse effects on the dendritic cell maturation process, revealed their usefulness for investigating xenobiotic immunotoxicity toward immune primary reactions.

  17. Semiautomated analysis of dendrite morphology in cell culture.

    Science.gov (United States)

    Sweet, Eric S; Langhammer, Chris L; Kutzing, Melinda K; Firestein, Bonnie L

    2013-01-01

    Quantifying dendrite morphology is a method for determining the effect of biochemical pathways and extracellular agents on neuronal development and differentiation. Quantification can be performed using Sholl analysis, dendrite counting, and length quantification. These procedures can be performed on dendrite-forming cell lines or primary neurons grown in culture. In this protocol, we describe the use of a set of computer programs to assist in quantifying many aspects of dendrite morphology, including changes in total and localized arbor complexity.

  18. Cryptococcus neoformans activates bone marrow-derived conventional dendritic cells rather than plasmacytoid dendritic cells and down-regulates macrophages.

    Science.gov (United States)

    Siegemund, Sabine; Alber, Gottfried

    2008-04-01

    Induction of IL-12 and IL-23 is essential for protective immunity against Cryptococcusneoformans. The contribution of dendritic cells vs. macrophages to IL-12/23 production in response to C. neoformans infection is unclear. Activation of conventional bone marrow-derived dendritic cells (BMDC), plasmacytoid BMDC, and bone marrow-derived macrophages (BMMPhi) was assessed by analyzing cytokine responses and the expression of MHC-II, CD86, and CD80 in each cell type. Cryptococcus neoformans induced the release of IL-12/23p40 by BMDC, but not by BMMPhi, in a TLR2- and TLR4-independent but MyD88-dependent manner. Conventional BMDC rather than plasmacytoid BMDC up-regulated MHC-II and CD86, while BMMPhi down-regulated MHC-II and CD86 in response to C. neoformans. The up-regulation of MHC-II and CD86 on BMDC required MyD88. Our data point to conventional DC as critical IL-12/23-producing antigen-presenting cells during cryptococcosis.

  19. Ebola virus infection induces irregular dendritic cell gene expression.

    Science.gov (United States)

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  20. Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation.

    Directory of Open Access Journals (Sweden)

    Megumi Kaneko

    Full Text Available Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.

  1. Exploiting the immunogenic potential of cancer cells for improved dendritic cell vaccines

    Directory of Open Access Journals (Sweden)

    Lien eVandenberk

    2016-01-01

    Full Text Available Cancer immunotherapy is currently the hottest topic in the oncology field, owing predominantly to the discovery of immune checkpoint blockers. These promising antibodies and their attractive combinatorial features have initiated the revival of other effective immunotherapies like dendritic cell (DC vaccinations. Although DC-based immunotherapy can induce objective clinical and immunological responses in several tumor types, the immunogenic potential of this monotherapy is still considered suboptimal. Hence, focus should be directed on potentiating its immunogenicity by making step-by-step protocol innovations to obtain next-generation Th1-driving DC vaccines. We review some of the latest developments in the DC vaccination field, with a special emphasis on strategies that are applied to obtain a highly immunogenic tumor cell cargo to load and to activate the DCs. To this end, we discuss the effects of three immunogenic treatment modalities (ultraviolet light, oxidizing treatments and heat shock and five potent inducers of immunogenic cell death (radiotherapy, shikonin, high-hydrostatic pressure, oncolytic viruses and (hypericin-based photodynamic therapy on DC biology and their application in DC-based immunotherapy in preclinical as well as clinical settings.

  2. Sphingosine 1-phosphate as a novel immune regulator of dendritic cells

    Indian Academy of Sciences (India)

    Angelo Martino

    2007-09-01

    Although originally described as an intracellular second messenger, sphingosine 1-phosphate (S1P) has recently been shown to be involved in several physiological and pathological functions as an extracellular mediator. S1P receptors are widely expressed and thought to regulate important functions in cell signalling. Recently, the role of S1P on the immune system has evoked great interest. In particular, several aspects of the effects on antigen-presenting cells (APCs) as dendritic cells (DC) in mice and humans have been reported. In this review, we focus on the role played by S1P on the DC system and its effects in immune-related pathological states.

  3. An Engineered Herpesvirus Activates Dendritic Cells and Induces Protective Immunity

    Science.gov (United States)

    Ma, Yijie; Chen, Min; Jin, Huali; Prabhakar, Bellur S.; Valyi-Nagy, Tibor; He, Bin

    2017-01-01

    Herpes simplex viruses (HSV) are human pathogens that switch between lytic and latent infection. While attenuated HSV is explored for vaccine, the underlying event remains poorly defined. Here we report that recombinant HSV-1 with a mutation in the γ134.5 protein, a virulence factor, stimulates dendritic cell (DC) maturation which is dependent on TANK-binding kinase 1 (TBK1). When exposed to CD11+ DCs, the mutant virus that lacks the amino terminus of γ134.5 undergoes temporal replication without production of infectious virus. Mechanistically, this leads to sequential phosphorylation of interferon regulatory factor 3 (IRF3) and p65/RelA. In correlation, DCs up-regulate the expression of co-stimulatory molecules and cytokines. However, selective inhibition of TBK1 precludes phosphorylation of IRF3 and subsequent DC activation by the γ134.5 mutant. Herein, the γ134.5 mutant is immune-stimulatory and non-destructive to DCs. Remarkably, upon immunization the γ134.5 mutant induces protection against lethal challenge by the wild type virus, indicative of its vaccine potential. Furthermore, CD11+ DCs primed by the γ134.5 mutant in vivo mediate protection upon adoptive transfer. These results suggest that activation of TBK1 by engineered HSV is crucial for DC maturation, which may contribute to protective immunity. PMID:28150813

  4. The Influence of Ouabain on Human Dendritic Cells Maturation

    Directory of Open Access Journals (Sweden)

    C. R. Nascimento

    2014-01-01

    Full Text Available Although known as a Na,K-ATPase inhibitor, several other cellular and systemic actions have been ascribed to the steroid Ouabain (Oua. Particularly in the immune system, our group showed that Ouabain acts on decreasing lymphocyte proliferation, synergizing with glucocorticoids in spontaneous thymocyte apoptosis, and also lessening CD14 expression and blocking CD16 upregulation on human monocytes. However, Ouabain effects on dendritic cells (DCs were not explored so far. Considering the peculiar plasticity and the importance of DCs in immune responses, the aim of our study was to investigate DC maturation under Ouabain influence. To generate immature DCs, human monocytes were cultured with IL-4 and GM-CSF (5 days. To investigate Ouabain role on DC activation, DCs were stimulated with TNF-α for 48 h in the presence or absence of Ouabain. TNF-induced CD83 expression and IL-12 production were abolished in DCs incubated with 100 nM Ouabain, though DC functional capacity concerning lymphocyte activation remained unaltered. Nevertheless, TNF-α-induced antigen capture downregulation, another maturation marker, occurred even in the presence of Ouabain. Besides, Ouabain increased HLA-DR and CD86 expression, whereas CD80 expression was maintained. Collectively, our results suggest that DCs respond to Ouabain maturating into a distinct category, possibly contributing to the balance between immunity and tolerance.

  5. Immune receptors involved in Streptococcus suis recognition by dendritic cells.

    Directory of Open Access Journals (Sweden)

    Marie-Pier Lecours

    Full Text Available Streptococcus suis is an important swine pathogen and an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses towards S. suis, and strategies used by this pathogen for subversion of these responses is scarce. The objective of this study was to identify the immune receptors involved in S. suis recognition by dendritic cells (DCs. Production of cytokines and expression of co-stimulatory molecules by DCs were shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize S. suis and become activated mostly through Toll-like receptor (TLR signaling. Supporting this fact, TLR2(-/- DCs were severely impaired in the release of several cytokines and the surface expression of CD86 and MHC-II. The release of IL-12p70 and CXC10, and the expression of CD40 were found to depend on signaling by both TLR2 and TLR9. The release of IL-23 and CXCL1 were partially dependent on NOD2. Finally, despite the fact that MyD88 signaling was crucial for DC activation and maturation, MyD88-dependent pathways were not implicated in S. suis internalization by DCs. This first study on receptors involved in DC activation by S. suis suggests a major involvement of MyD88 signaling pathways, mainly (but not exclusively through TLR2. A multimodal recognition involving a combination of different receptors seems essential for DC effective response to S. suis.

  6. Characteristics of human dendritic cells generated in a microgravity analog culture system

    Science.gov (United States)

    Savary, C. A.; Grazziuti, M. L.; Przepiorka, D.; Tomasovic, S. P.; McIntyre, B. W.; Woodside, D. G.; Pellis, N. R.; Pierson, D. L.; Rex, J. H.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Generation of an effective immune response requires that antigens be processed and presented to T lymphocytes by antigen-presenting cells, the most efficient of which are dendritic cells (DC). Because of their influence on both the innate and the acquired arms of immunity, a defect in DC would be expected to result in a broad impairment of immune function, not unlike that observed in astronauts during or after space flight. In the study reported here, we investigated whether DC generation and function are altered in a culture environment that models microgravity, i.e., the rotary-cell culture system (RCCS). We observed that RCCS supported the generation of DC identified by morphology, phenotype (HLA-DR+ and lacking lineage-associated markers), and function (high allostimulatory activity). However, the yield of DC from RCCS was significantly lower than that from static cultures. RCCS-generated DC were less able to phagocytose Aspergillus fumigatus conidia and expressed a lower density of surface HLA-DR. The proportion of DC expressing CD80 was also significantly reduced in RCCS compared to static cultures. When exposed to fungal antigens, RCCS-generated DC produced lower levels of interleukin-12 and failed to upregulate some costimulatory/adhesion molecules involved in antigen presentation. These data suggest that DC generation, and some functions needed to mount an effective immune response to pathogens, may be disturbed in the microgravity environment of space.

  7. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial

    DEFF Research Database (Denmark)

    Berntsen, Annika; Trepiakas, Redas; Wenandy, Lynn;

    2008-01-01

    Therapeutic dendritic cell (DC) vaccination against cancer is a strategy aimed at activating the immune system to recognize and destroy tumor cells. In this nonrandomized phase 1/2 trial, we investigated the safety, feasibility, induction of T-cell response, and clinical response after treatment...... with a DC-based vaccine in patients with metastatic renal cell carcinoma. Twenty-seven patients with progressive cytokine-refractory metastatic renal cell carcinoma were vaccinated with DCs loaded with either a cocktail of survivin and telomerase peptides or tumor lysate depending on their HLA-A2 haplotype...

  8. Comparative analysis of canine monocyte- and bone-marrow-derived dendritic cells.

    Science.gov (United States)

    Ricklin Gutzwiller, Meret Elisabeth; Moulin, Hervé Raphaël; Zurbriggen, Andreas; Roosje, Petra; Summerfield, Artur

    2010-01-01

    Dendritic cells (DC) represent a heterogeneous cell family of major importance for innate immune responses against pathogens and antigen presentation during infection, cancer, allergy and autoimmunity. The aim of the present study was to characterize canine DC generated in vitro with respect to their phenotype, responsiveness to toll-like receptor (TLR) ligands and T-cell stimulatory capacity. DC were derived from monocytes (MoDC) and from bone marrow hematopoietic cells cultured with either Flt3-ligand (FL-BMDC) or with GM-CSF (GM-BMDC). All three methods generated cells with typical DC morphology that expressed CD1c, CD11c and CD14, similar to macrophages. However, CD40 was only found on DC, CD206 on MPhi and BMDC, but not on monocytes and MoDC. CD1c was not found on monocytes but on all in vitro differentiated cells. FL-BMDC and GM-BMDC were partially positive for CD4 and CD8. CD45RA was expressed on a subset of FL-BMDC but not on MoDC and GM-BMDC. MoDC and FL-DC responded well to TLR ligands including poly-IC (TLR2), Pam3Cys (TLR3), LPS (TLR4) and imiquimod (TLR7) by up-regulating MHC II and CD86. The generated DC and MPhi showed a stimulatory capacity for lymphocytes, which increased upon maturation with LPS. Taken together, our results are the basis for further characterization of canine DC subsets with respect to their role in inflammation and immune responses.

  9. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy.

    Science.gov (United States)

    Anguille, Sébastien; Smits, Evelien L; Bryant, Christian; Van Acker, Heleen H; Goossens, Herman; Lion, Eva; Fromm, Phillip D; Hart, Derek N; Van Tendeloo, Viggo F; Berneman, Zwi N

    2015-10-01

    Although the earliest—rudimentary—attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.

  10. Exploration Of The Dendritic Cell Algorithm Using The Duration Calculus

    CERN Document Server

    Gu, Feng; Aickelin, Uwe

    2010-01-01

    As one of the newest members in Artificial Immune Systems (AIS), the Dendritic Cell Algorithm (DCA) has been applied to a range of problems. These applications mainly belong to the field of anomaly detection. However, real-time detection, a new challenge to anomaly detection, requires improvement on the real-time capability of the DCA. To assess such capability, formal methods in the research of rea-time systems can be employed. The findings of the assessment can provide guideline for the future development of the algorithm. Therefore, in this paper we use an interval logic based method, named the Duration Calculus (DC), to specify a simplified single-cell model of the DCA. Based on the DC specifications with further induction, we find that each individual cell in the DCA can perform its function as a detector in real-time. Since the DCA can be seen as many such cells operating in parallel, it is potentially capable of performing real-time detection. However, the analysis process of the standard DCA constrict...

  11. Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth.

    Science.gov (United States)

    James, Britnie R; Tomanek-Chalkley, Ann; Askeland, Eric J; Kucaba, Tamara; Griffith, Thomas S; Norian, Lyse A

    2012-08-01

    Obesity is a mounting health concern in the United States and is associated with an increased risk for developing several cancers, including renal cell carcinoma (RCC). Despite this, little is known regarding the impact of obesity on antitumor immunity. Because dendritic cells (DC) are critical regulators of antitumor immunity, we examined the combined effects of obesity and tumor outgrowth on DC function. Using a diet-induced obesity (DIO) model, DC function was evaluated in mice bearing orthotopic RCC and in tumor-free controls. Tumor-free DIO mice had profoundly altered serum cytokine and chemokine profiles, with upregulation of 15 proteins, including IL-1α, IL-17, and LIF. Tumor-free DIO mice had elevated percentages of conventional splenic DC that were impaired in their ability to stimulate naive T cell expansion, although they were phenotypically similar to normal weight (NW) controls. In DIO mice, intrarenal RCC tumor challenge in the absence of therapy led to increased local infiltration by T cell-suppressive DC and accelerated early tumor outgrowth. Following administration of a DC-dependent immunotherapy, established RCC tumors regressed in normal weight mice. The same immunotherapy was ineffective in DIO mice and was characterized by an accumulation of regulatory DC in tumor-bearing kidneys, decreased local infiltration by IFN-γ-producing CD8 T cells, and progressive tumor outgrowth. Our results suggest that the presence of obesity as a comorbidity can impair the efficacy of DC-dependent antitumor immunotherapies.

  12. Neuromelanin is an immune stimulator for dendritic cells in vitro

    Directory of Open Access Journals (Sweden)

    Oberländer Uwe

    2011-11-01

    Full Text Available Abstract Background Parkinson's disease (PD is characterized at the cellular level by a destruction of neuromelanin (NM-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that anti-melanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs, the major cell type for inducing T- and B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results Murine DCs were treated with NM of substantia nigra (SN from human subjects or with synthetic dopamine melanin (DAM. DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh. NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-α. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger.

  13. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity

    OpenAIRE

    Bol, Kalijn F.; Aarntzen, Erik H. J. G.; Pots, Jeanette M.; Olde Nordkamp, Michel A. M.; van de Rakt, Mandy W. M. M.; Scharenborg, Nicole M.; de Boer, Annemiek J.; van Oorschot, Tom G. M.; Croockewit, Sandra A. J.; Blokx, Willeke A. M.; Oyen, Wim J. G.; Boerman, Otto C.; Mus, Roel D. M.; van Rossum, Michelle M.; van der Graaf, Chantal A. A.

    2016-01-01

    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combi...

  14. Inducible expression of endomorphins in murine dendritic cells.

    Science.gov (United States)

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-12-15

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7-8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [(3)H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of µ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of µ-opioid receptors.

  15. Inducible expression of endomorphins in murine dendritic cells

    Institute of Scientific and Technical Information of China (English)

    Xiaohuai Yang; Hui Xia; Yong Chen; Xiaofen Liu; Cheng Zhou; Qin Gao; Zhenghong Li

    2012-01-01

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7–8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [3H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of μ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of μ-opioid receptors.

  16. Closed system generation of dendritic cells from a single blood volume for clinical application in immunotherapy.

    Science.gov (United States)

    Elias, M; van Zanten, J; Hospers, G A P; Setroikromo, A; de Jong, M A; de Leij, L F M H; Mulder, N H

    2005-12-01

    Dendritic cells (DC) used for clinical trials should be processed on a large scale conforming to current good manufacturing practice (cGMP) guidelines. The aim of this study was to develop a protocol for clinical grade generation of immature DC in a closed-system. Aphereses were performed with the Cobe Spectra continuous flow cell separator and material was derived from one volume of blood processed. Optimisation of a 3-phase collection autoPBSC technique significantly improved the quality of the initial mononuclear cell (MNC) product. Monocytes were then enriched from MNC by immunomagnetic depletion of CD19+ B cells and CD2+ T cells and partial depletion of NK cells using the Isolex 300I Magnetic cell selector. The quality of the initial mononuclear cell product was found to determine the outcome of monocyte enrichment. Enriched monocytes were cultured in Opticyte gas-permeable containers using CellGro serum-free medium supplemented with GM-CSF and IL-4 to generate immature DC. A seeding concentration of 1 x 10(6) was found optimal in terms of DC phenotype expression, monocyte percentage in culture, and cell viability. The differentiation pattern favours day 7 for harvest of immature DC. DC recovery, viability, as well as phenotype expression after cryopreservation of immature DC was considered in this study. DC were induced to maturation and evaluated in FACS analysis for phenotype expression and proliferation assays. Mature DC were able to generate an allogeneic T-cell response as well as an anti-CMV response as detected by proliferation assays. These data indicate that the described large-scale GMP-compatible system results in the generation of stable DC derived from one volume of blood processed, which are qualitatively and quantitatively sufficient for clinical application in immunotherapeutic protocols.

  17. Lung Dendritic Cells Facilitate Extrapulmonary Bacterial Dissemination during Pneumococcal Pneumonia

    Directory of Open Access Journals (Sweden)

    Alva eRosendahl

    2013-06-01

    Full Text Available Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DC-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DC-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9 in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection.

  18. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis.

    Science.gov (United States)

    Pastille, Eva; Didovic, Sonja; Brauckmann, Daniela; Rani, Meenakshi; Agrawal, Hemant; Schade, F Ulrich; Zhang, Yang; Flohé, Stefanie B

    2011-01-15

    Murine polymicrobial sepsis is associated with a sustained reduction of dendritic cell (DC) numbers in lymphoid organs and with a dysfunction of DC that is considered to mediate the chronic susceptibility of post-septic mice to secondary infections. We investigated whether polymicrobial sepsis triggered an altered de novo formation and/or differentiation of DC in the bone marrow. BrdU labeling experiments indicated that polymicrobial sepsis did not affect the formation of splenic DC. DC that differentiated from bone marrow (bone marrow-derived DC [BMDC]) of post-septic mice released enhanced levels of IL-10 but did not show an altered phenotype in comparison with BMDC from sham mice. Adoptive transfer experiments of BMDC into naive mice revealed that BMDC from post-septic mice impaired Th1 priming but not Th cell expansion and suppressed the innate immune defense mechanisms against Pseudomonas bacteria in the lung. Accordingly, BMDC from post-septic mice inhibited the release of IFN-γ from NK cells that are critical for the protection against Pseudomonas. Additionally, sepsis was associated with a loss of resident DC in the bone marrow. Depletion of resident DC from bone marrow of sham mice led to the differentiation of BMDC that were impaired in Th1 priming similar to BMDC from post-septic mice. Thus, in response to polymicrobial sepsis, DC precursor cells in the bone marrow developed into regulatory DC that impaired Th1 priming and NK cell activity and mediated immunosuppression. The absence of resident DC in the bone marrow after sepsis might have contributed to the modulation of DC differentiation.

  19. Prolonged maturation and enhanced transduction of dendritic cells migrated from human skin explants after in situ delivery of CD40-targeted adenoviral vectors

    NARCIS (Netherlands)

    de Gruijl, TD; Luykx-de Bakker, SA; Tillman, BW; van den Eertwegh, AJM; Buter, J; Lougheed, SM; van der Bij, GJ; Safer, AM; Haisma, HJ; Curiel, DT; Scheper, RJ; Pinedo, HM; Gerritsen, WR

    2002-01-01

    Therapeutic tumor vaccination with viral vectors or naked DNA, carrying the genetic code for tumor-associated Ags, critically depends on the in vivo transduction of dendritic cells (DC). Transfection of predominantly nonprofessional APC and only small numbers of DC may hamper proper T cell activatio

  20. Characterization of Bone Marrow-Derived Dendritic Cells Developed in Serum-Free Media and their Ability to Prevent Type 1 Diabetes in Nonobese Diabetic Mice

    OpenAIRE

    Looney, Ben M; Chernatynskaya, Anna V.; Clare-Salzler, Michael J.; Xia, Chang-Qing

    2014-01-01

    Dendritic cells (DC) have been investigated as a cell-based therapy for Type 1 Diabetes (T1D). BM-DC expanded ex vivo with GM-CSF and IL-4 is typically cultured with fetal bovine serum (FBS). The effect of FBS on NOD BM-DC has not been extensively studied. In the present study we compare BM-DC generated in serum-free culture media (X-VIVO20; FBS−) with BM-DC generated in media containing 10% FBS (RPMI1640/10%FBS; FBS+). We show that FBS− BM-DC display a phenotype and cytokine-producing profil...

  1. Exposure of CD34+ precursors to cytostatic anthraquinone-derivatives induces rapid dendritic cell differentiation: implications for cancer immunotherapy.

    Science.gov (United States)

    van de Ven, Rieneke; Reurs, Anneke W; Wijnands, Pepijn G J T B; van Wetering, Sandra; Kruisbeek, Ada M; Hooijberg, Erik; Scheffer, George L; Scheper, Rik J; de Gruijl, Tanja D

    2012-02-01

    Appropriate activation of dendritic cells (DC) is essential for successful active vaccination and induction of cell-mediated immunity. The scarcity of precursor cells, as well as long culture methods, have hampered wide-scale application of DC vaccines derived from CD34(+) precursors, despite their suggested superior efficacy over the more commonly applied monocyte-derived DC (MoDC). Here, employing the CD34(+)/CD14(+) AML-derived human DC progenitor cell line MUTZ3, we show that cytostatic anthraquinone-derivatives (i.e., the anthracenedione mitoxantrone and the related anthracyclin doxorubicin) induce rapid differentiation of CD34(+) DC precursors into functional antigen-presenting cells (APC) in a three-day protocol. The drugs were found to act specifically on CD34(+), and not on CD14(+) DC precursors. Importantly, these observations were confirmed for primary CD34(+) and CD14(+) DC precursors from peripheral blood. Mitoxantrone-generated DC were fully differentiated within three days and after an additional 24 h of maturation, were as capable as standard 9-day differentiated and matured DC to migrate toward the lymph node-homing chemokines CCL19 and CCL21, to induce primary allogeneic T cell proliferation, and to prime functional MART1-specific CD8(+) T lymphocytes. Our finding that anthraquinone-derivatives like mitoxantrone support rapid high-efficiency differentiation of DC precursors may have consequences for in vitro production of DC vaccines as well as for novel immunochemotherapy strategies.

  2. Ex vivo generation of interstitial and Langerhans cell-like dendritic cell subset-based vaccines for hematological malignancies.

    Science.gov (United States)

    Hutten, Tim; Thordardottir, Soley; Hobo, Willemijn; Hübel, Jessica; van der Waart, Anniek B; Cany, Jeannette; Dolstra, Harry; Hangalapura, Basav N

    2014-06-01

    Autologous, patient-specific, monocyte-derived dendritic cell (MoDC) vaccines have been successfully applied in the clinical studies so far. However, the routine application of this strategy has been hampered by the difficulties in generating sufficient numbers of DC and the poor DC vaccine quality because of pathology or prior treatment received by the patients. The immunotherapeutic potential of other subsets of DC has not been thoroughly investigated because of their rarity in tissues and difficulties associated with their ex vivo generation. The high expansion and differentiation potential of CD34 hematopoietic progenitor cells (HPC), isolated from umbilical cord blood (UCB), into different DC subsets make them an attractive alternative DC source for cancer immunotherapy. Therefore, the aim of this study was to generate a large number of different DC subsets from CD34 HPC and evaluate their functionality in comparison with MoDC. Our culture protocol generated a clinically relevant number of mature CD1a myeloid DC and CD207 Langerhans cells (LC)-like DC subsets from CD34 HPC with >95% purity. Both DC subsets exhibited a cytokine profile that favors cytotoxic T-cell responses. Furthermore, UCB-DC and UCB-LC demonstrated superior induction of proliferation of both allogeneic as well as viral antigen-specific CD8 T cells, both in vitro and in vivo. Additional studies revealed that UCC-DC and UCB-LC can efficiently expand minor histocompatibility antigen (MiHA) HA-1-specific cytotoxic T cells in the peripheral blood of leukemia patients and prime MiHA HA-1-specific and HA-2-specific cytotoxic T cells in vitro. These preclinical findings support the pharmaceutical development of the described culture protocol for clinical evaluation.

  3. Clinical and Immunological Effects in Patients with Advanced Non-Small Cell Lung-Cancer after Vaccination with Dendritic Cells Exposed to an Allogeneic Tumor Cell Lysate*

    DEFF Research Database (Denmark)

    Engell-Noerregaard, Lotte; Kvistborg, Pia; Zocca, Mai-Britt

    2013-01-01

    Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac®, Dandrit Biotech, Copenhagen, Denmark). Imiquimod cream, proleukin......-layed effect of DC vaccination after completion of the treatment. A prospective randomized phase-IIb or -III is needed to further evaluate the use of MelCancerVac® vaccine treatment in patients with progressive NSCLC....

  4. Inhibitory effects of rat bone marrow-derived dendritic cells on naïve and alloantigen-specific CD4+ T cells: a comparison between dendritic cells generated with GM-CSF plus IL-4 and dendritic cells generated with GM-CSF plus IL-10

    Directory of Open Access Journals (Sweden)

    Ulrichs Karin

    2009-01-01

    Full Text Available Abstract Background Unlike mouse immature bone marrow (BM-derived dendritic cells (DC, rat immature BMDC have not been thoroughly characterised in vitro for the mechanisms underlying their suppressive effect. To better characterise these mechanisms we therefore analysed the phenotypes and immune inhibitory properties of rat BMDC generated with GM-CSF plus IL-4 (= IL-4 DC and with GM-CSF plus IL-10 (= IL-10 DC. Results Both IL-4 DC and IL-10 DC exhibited lower surface expression of MHC class II and costimulatory molecules than mature splenic DC. They had a strong inhibitory effect on responsive T cells in vitro and despite their weak function as antigen-presenting cells they induced anergic T cells. However, only anergic T cells induced by IL-4 DC had a suppressive effect on responsive T cells. Induction of suppressive/tolerogenic T cells by IL-4 DC required direct contact between antigen-specific T cells and IL-4 DC. In addition, IL-4 DC and IL-10 DC prolonged allograft survival in an antigen-specific manner. Conclusion A unique phenotype of immature BMDC was isolated from the cultures. The mechanisms underlying the suppressive effect may be caused by their inability to deliver adequate costimulatory signals for T-cell activation. In addition, IL-4 DC but not IL-10 DC induce anergic T cells with suppressive function. This indicates that IL-4 DC and IL-10 DC may differ in the quality of their costimulation although no differences in the surface expression of costimulatory molecules were found.

  5. GABAergic signaling is linked to a hypermigratory phenotype in dendritic cells infected by Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Jonas M Fuks

    Full Text Available During acute infection in human and animal hosts, the obligate intracellular protozoan Toxoplasma gondii infects a variety of cell types, including leukocytes. Poised to respond to invading pathogens, dendritic cells (DC may also be exploited by T. gondii for spread in the infected host. Here, we report that human and mouse myeloid DC possess functional γ-aminobutyric acid (GABA receptors and the machinery for GABA biosynthesis and secretion. Shortly after T. gondii infection (genotypes I, II and III, DC responded with enhanced GABA secretion in vitro. We demonstrate that GABA activates GABA(A receptor-mediated currents in T. gondii-infected DC, which exhibit a hypermigratory phenotype. Inhibition of GABA synthesis, transportation or GABA(A receptor blockade in T. gondii-infected DC resulted in impaired transmigration capacity, motility and chemotactic response to CCL19 in vitro. Moreover, exogenous GABA or supernatant from infected DC restored the migration of infected DC in vitro. In a mouse model of toxoplasmosis, adoptive transfer of infected DC pre-treated with GABAergic inhibitors reduced parasite dissemination and parasite loads in target organs, e.g. the central nervous system. Altogether, we provide evidence that GABAergic signaling modulates the migratory properties of DC and that T. gondii likely makes use of this pathway for dissemination. The findings unveil that GABA, the principal inhibitory neurotransmitter in the brain, has activation functions in the immune system that may be hijacked by intracellular pathogens.

  6. Dendritic cells derived exosomes migration to spleen and induction of inflammation are regulated by CCR7

    Science.gov (United States)

    Wei, Gao; Jie, Yuan; Haibo, Liu; Chaoneng, Wu; Dong, Huang; Jianbing, Zhu; Junjie, Guo; Leilei, Ma; Hongtao, Shi; Yunzeng, Zou; Junbo, Ge

    2017-01-01

    Mature dendritic cells (DCs) home to secondary lymphoid organs through CC chemokine receptor 7 (CCR7). Exosomes derived from DCs (DC-exos) are reported to migrate to spleen and induce inflammation in vivo. In this study, we demonstrated that mature bone marrow DC-exos can activate immature DC and T cells in vitro. Then we intravenously injected DC-exos into C57BL/6 mice, observing that mature DC-exos accumulated more in spleen than immature DC-exos. These DC-exos in spleen could be uptaken by splenetic DCs and T cells and induce an inflammatory response. We further showed that the increased accumulation of mature DC-exos in spleen was regulated by CCR7, whose reduction led to a decrease of accumulation in spleen and attenuated inflammatory response in serum. These data provide us a new perspective to comprehensively understand exosomes, which might inherit some special functions from their parent cells and exert these functions in vivo. PMID:28223684

  7. Immature human dendritic cells enhance their migration through KCa3.1 channel activation.

    Science.gov (United States)

    Crottès, David; Félix, Romain; Meley, Daniel; Chadet, Stéphanie; Herr, Florence; Audiger, Cindy; Soriani, Olivier; Vandier, Christophe; Roger, Sébastien; Angoulvant, Denis; Velge-Roussel, Florence

    2016-04-01

    Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization.

  8. The rapid and sustained responses of dendritic cells to influenza virus infection in a non-human primate model.

    Science.gov (United States)

    Jie, Zhijun; Sun, Wei; Wang, Shanze; Koster, Frederick; Li, Bilan; Harrod, Kevin S

    2014-01-01

    Dendritic cells (DCs) are readily infected by influenza viruses and play a crucial role in regulating host innate and adaptive immune responses to viral infection. The aims of this study are to characterize the dynamic changes in the numbers and maturation status of dendritic cells present in the lung and lung-associated lymph nodes (LALNs) in the model of a non-human primate (NHP) infected by influenza A virus (IAV). Cynomolgus macaques were infected with influenza A virus (H3N2) via bronchoscopy. Flow cytometry was used to analyze the DC numbers, maturation status and subsets during the time of acute infection (days 1, 2, 3, 4, 7) and the resolution phase (day 30). A dramatic increase in the numbers of influenza A virus-infected CD11c+CD14- myeloid dendritic cells (mDCs) and CD11c-CD123+ plasmacytoid dendritic cells (pDCs) were observed from day 1 to day 4 and peak up from day 7 post-infection. In lung and lung-associated lymph nodes, the numbers and maturation status of myeloid dendritic cells and plasmacytoid dendritic cells increased more slowly than those in the lung tissues. On day 30 post-infection, influenza A virus challenge increased the number of myeloid dendritic cells, but not plasmacytoid dendritic cells, compared with baseline. These findings indicate that dendritic cells are susceptible to influenza A virus infection, with the likely purpose of increasing mature myeloid dendritic cells numbers in the lung and lung and lung-associated lymph nodes, which provides important new insights into the regulation of dendritic cells in a non-human primate model.

  9. Brugia malayi infective larvae fail to activate Langerhans cells and dermal dendritic cells in human skin.

    Science.gov (United States)

    Cotton, R N; McDonald-Fleming, R; Boyd, A; Spates, K; Nutman, T B; Tolouei Semnani, R

    2015-02-01

    Filarial infection in humans is initiated when a mosquito deposits third-stage parasite larvae (L3) in the skin. Langerhans cells (LCs) and dermal dendritic cells (DDCs) are the first cells that the parasite encounters, and L3s must evade these highly effective antigen-presenting cells to establish infection. To assess LC and DDC responses to L3 in human skin, we employed three models of increasing physiologic relevance: in vitro-generated LCs, epidermal blister explants and full-thickness human skin sections. In vitro-generated LCs expressed TLR1-10 and robustly produced IL-6 and TNF-α in response to PolyI:C, but pre-exposure to L3s did not alter inflammatory cytokine production or TLR expression. L3s did not modulate expression of LC markers CDH1, CD207, or CD1a, or the regulatory products TSLP or IDO in epidermal explants or in vitro-generated LC. LC, CD14+ DDC, CD1c+ DC and CD141+ DC from human skin sections were analysed by flow cytometry. While PolyI:C potently induced CCL22 production in LC, CD1c+ DC, and CD141+ DC, and IL-10 production in LC, L3s did not modulate the numbers of or cytokine production by any skin DC subset. L3s broadly failed to activate or modulate LCs or DDCs, suggesting filarial larvae expertly evade APC detection in human skin.

  10. Cytotoxic activity of interferon alpha induced dendritic cells as a biomarker of glioblastoma

    Science.gov (United States)

    Mishinov, S. V.; Stupak, V. V.; Tyrinova, T. V.; Leplina, O. Yu.; Ostanin, A. A.; Chernykh, E. R.

    2016-08-01

    Dendritic cells (DCs) are the most potent antigen presenting cells that can play direct role in anti-tumor immune response as killer cells. DC tumoricidal activity can be stimulated greatly by type I IFN (IFNα and IFNβ). In the present study, we examined cytostatic and cytotoxic activity of monocyte-derived IFNα-induced DCs generated from patients with brain glioma and evaluated the potential use of these parameters in diagnostics of high-grade gliomas. Herein, we demonstrated that patient DCs do not possess the ability to inhibit the growth of tumor HEp-2 cell line but low-grade and high-grade glioma patients do not differ significantly in DC cytostatic activity. However, glioma patient DCs are characterized by reduced cytotoxic activity against HEp-2 cells. The impairment of DC cytotoxic function is observed mainly in glioblastoma patients. The cytotoxic activity of DCs against HEp-2 cells below 9% is an informative marker for glioblastomas.

  11. The role of cDC1s in vivo: CD8 T cell priming through cross-presentation [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Derek Theisen

    2017-02-01

    Full Text Available The cDC1 subset of classical dendritic cells is specialized for priming CD8 T cell responses through the process of cross-presentation. The molecular mechanisms of cross-presentation remain incompletely understood because of limited biochemical analysis of rare cDC1 cells, difficulty in their genetic manipulation, and reliance on in vitro systems based on monocyte- and bone-marrow-derived dendritic cells. This review will discuss cross-presentation from the perspective of studies with monocyte- or bone-marrow-derived dendritic cells while highlighting the need for future work examining cDC1 cells. We then discuss the role of cDC1s as a cellular platform to combine antigen processing for class I and class II MHC presentation to allow the integration of “help” from CD4 T cells during priming of CD8 T cell responses.

  12. Antitumor immunity by a dendritic cell vaccine encoding secondary lymphoid chemokine and tumor lysate on murine prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Jun Lu; Qi Zhang; Chun-Min Liang; Shu-Jie Xia; Cui-Ping Zhong; Da-Wei Wang

    2008-01-01

    Aim: To investigate the antitumor immunity by a dendritic cell (DC) vaccine encoding secondary lymphoid chemokine gene and tumor lysate on murine prostate cancer. Methods: DC from bone marrow of C57BL/6 were transfected with a plasmid vector expressing secondary lymphoid chemokine (SLC) cDNA by Lipofectamine2000 liposome and tumor lysate. Total RNA extracted from SLC+lysate-DC was used to verify the expression of SLC by reverse transcriptase-polymerase chain reaction (RT-PCR). The immunotherapeutic effect of DC vaccine on murine prostate cancer was assessed. Results: We found that in the prostate tumor model of C57BL/6 mice, the adminstration of SLC+lysate-DC inhibited tumor growth most significantly when compared with SLC-DC, lysate-DC, DC or phos-phate buffer solution (PBS) counterparts (P<0.01). Immunohistochemical fluorescent staining analysis showed the infiltration of more CD4+, CD8+ T cell and CD11c+ DC within established tumor treated by SLC+lysate-DC vaccine than other DC vaccines (P<0.01). Conclusion: DC vaccine encoding secondary lymphoid chemokine and tumor lysate can elicit significant antitumor immunity by infiltration of CD4+, CD8+ T cell and DC, which might provide a potential immunotherapy method for prostate cancer.

  13. Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity.

    Science.gov (United States)

    Yin, Weifan; Ouyang, Song; Li, Yi; Xiao, Bo; Yang, Huan

    2013-02-01

    Exosomes, 60-90-nm-sized vesicles, are produced by a large number of cell types, including tumor cells, neurons, astrocytes, hemocytes, intestinal epithelial cells, and so on. Dendritic cell (DC), the most potent professional antigen-presenting cell in the immune system, produces exosomes in the course of maturation. Mature DCs produce exosomes with the ability to elicit potent immunoactivation, resulting in tumor eradication and bacterial or virus elimination. Given the notion that exosomes are stable and easy to be modified artificially, autologous mature DC-derived exosomes have been vaccinated into patients with malignant diseases. In clinical trials utilizing exosomes as therapeutic approaches, researchers observed considerable curative effect with little side effect. However, immature or suppressive DC-derived exosomes harbor anti-inflammatory properties distinct from mature DC-derived exosomes. In murine models of autoimmune disease and transplantation, immature DC-derived exosomes reduced T cell-dependent immunoactivation, relieved clinical manifestation of autoimmune disease, and prolonged survival time of transplantation. Although the exact mechanism of how immature DC-derived exosomes function in vivo is still unclear, and there are no clinical trials regarding application of exosome vaccine into patients with autoimmune disease, we will analyze the promise of immature DC-derived exosomes as a subcellular vaccine in autoimmunity in this review.

  14. In vitro effects of trichothecenes on human dendritic cells.

    Science.gov (United States)

    Hymery, N; Sibiril, Y; Parent-Massin, D

    2006-09-01

    The aim of this work was to study the in vitro effects of trichothecenes on human dendritic cells. Trichothecenes are mycotoxins produced by fungi such as Fusarium, Myrothecium, and Stachybotrys. Two aspects have been explored in this work: the cytotoxicity of trichothecenes on immature dendritic cells to determine IC 50 (inhibition concentration), and the effects of trichothecenes on dendritic cell maturation process. Two mycotoxins (T-2 and DON) known to be immunotoxic have been tested on a model of monocyte-derived dendritic cells culture. Cytotoxic effects of T-2 toxin and DON on immature dendritic cells showed that DON is less potent than T-2 toxin. The exposure to trichothecenes during dendritic cell maturation upon addition of LPS or TNF-alpha markedly inhibited the up-regulation of maturation markers such as CD-86, HLA-DR and CCR7. Features of LPS or TNF-alpha -mediated maturation of dendritic cells, such as IL-10 and IL-12 secretions and endocytosis, were also impaired in response to trichothecenes treatment. These results suggest trichothecenes have adverse effects on dendritic cells and dendritic cell maturation process.

  15. Cross-talk between human dendritic cell subsets influences expression of RNA sensors and inhibits picornavirus infection.

    NARCIS (Netherlands)

    Kramer, M.; Schulte, B.M.; Eleveld-Trancikova, D.; Hout-Kuijer, M.A. van; Toonen, L.W.J.; Tel, J.; Vries, I.J.M. de; Kuppeveld, F.J.M. van; Jansen, B.J.H.; Adema, G.J.

    2010-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells that provide a link between innate and adaptive immunity. Multiple DC subsets exist and their activation by microorganisms occurs through binding of conserved pathogen-derived structures to so-called pattern recognition receptors (PRRs)

  16. Commonly used prophylactic vaccines as an alternative for synthetically produced TLR ligands to mature monocyte-derived dendritic cells.

    NARCIS (Netherlands)

    Schreibelt, G.; Benitez-Ribas, D.; Schuurhuis, D.; Lambeck, A.J.A.; Hout-Kuijer, M.A. van; Schaft, N.; Punt, C.J.A.; Figdor, C.G.; Adema, G.J.; Vries, I.J.M. de

    2010-01-01

    Currently dendritic cell (DC)-based vaccines are explored in clinical trials, predominantly in cancer patients. Murine studies showed that only maturation with Toll-like receptor (TLR) ligands generates mature DCs that produce interleukin-12 and promote optimal T-cell help. Unfortunately, the limite

  17. Microscopic examination and cytokine expression of bone marrow-derived dendritic cells following exposure to low pathogenic avian ionfluenza

    Science.gov (United States)

    Dendritic cells (DC) function as professional antigen presenting cells, and act as sentinels of the immune system. They are a part of the primary immune response to pathogens and help bridge the innate and adaptive immune responses. They are believed to migrate from bone marrow into the blood stre...

  18. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Science.gov (United States)

    Wittmann, Alexandra; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  19. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  20. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  1. Comparison The Effects of Two Monocyte Isolation Methods,Plastic Adherence and Magnetic Activated Cell Sorting Methods,on Phagocytic Activity of Generated Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Behnaz Asadi

    2013-01-01

    Full Text Available Objective: It is believed that monocyte isolation methods and maturation factors affect the phenotypic and functional characteristics of resultant dendritic cells (DC. In the present study, we compared two monocyte isolation methods, including plastic adherence-dendritic cells (Adh-DC and magnetic activated cell sorting- dendritic cells (MACS-DC, and their effects on phagocytic activity of differentiated immature DCs (immDCs.Materials and Methods: In this experimental study, immDCs were generated from plastic adherence and MACS isolated monocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin 4 (IL-4 in five days. The phagocytic activity of immDCs was analyzed by fluorescein isothiocyanate (FITC-conjugated latex bead using flow cytometry. One way ANOVA test was used for statistical analysis of differences among experimental groups, including Adh-DC and MACS-DC groups.Results: We found that phagocytic activity of Adh-DC was higher than MACS-DC, whereas the mean fluorescence intensity (MFI of phagocytic cells was higher in MACS-DC (p<0.05.Conclusion: We concluded that it would be important to consider phagocytosis parameters of generated DCs before making any decision about monocyte isolation methods to have fully functional DCs.

  2. Linking CD11b+ Dendritic Cells and Natural Killer T Cells to Plaque Inflammation in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Miche Rombouts

    2016-01-01

    Full Text Available Atherosclerosis remains the leading cause of death and disability in our Western society. To investigate whether the dynamics of leukocyte (subpopulations could be predictive for plaque inflammation during atherosclerosis, we analyzed innate and adaptive immune cell distributions in blood, plaques, and lymphoid tissue reservoirs in apolipoprotein E-deficient (ApoE−/− mice and in blood and plaques from patients undergoing endarterectomy. Firstly, there was predominance of the CD11b+ conventional dendritic cell (cDC subset in the plaque. Secondly, a strong inverse correlation was observed between CD11b+ cDC or natural killer T (NKT cells in blood and markers of inflammation in the plaque (including CD3, T-bet, CCR5, and CCR7. This indicates that circulating CD11b+ cDC and NKT cells show great potential to reflect the inflammatory status in the atherosclerotic plaque. Our results suggest that distinct changes in inflammatory cell dynamics may carry biomarker potential reflecting atherosclerotic lesion progression. This not only is crucial for a better understanding of the immunopathogenesis but also bares therapeutic potential, since immune cell-based therapies are emerging as a promising novel strategy in the battle against atherosclerosis and its associated comorbidities. The cDC-NKT cell interaction in atherosclerosis serves as a good candidate for future investigations.

  3. Stimulation by means of dendritic cells followed by Epstein-Barr virus-transformed B cells as antigen-presenting cells is more efficient than dendritic cells alone in inducing Aspergillus f16-specific cytotoxic T cell responses.

    Science.gov (United States)

    Zhu, F; Ramadan, G; Davies, B; Margolis, D A; Keever-Taylor, C A

    2008-02-01

    Adoptive immunotherapy with in vitro expanded antigen-specific cytotoxic T lymphocytes (CTLs) may be an effective approach to prevent, or even treat, Aspergillus (Asp) infections. Such lines can be generated using monocyte-derived dendritic cells (DC) as antigen-presenting cells (APC) but requires a relatively high volume of starting blood. Here we describe a method that generates Asp-specific CTL responses more efficiently using a protocol of antigen presented on DC followed by Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell lines (BLCL) as APC. Peripheral blood mononuclear cells were stimulated weekly (2-5x) with a complete pool of pentadecapeptides (PPC) spanning the coding region of Asp f16 pulsed onto autologous mature DC. Cultures were split and stimulated subsequently with either PPC-DC or autologous PPC-pulsed BLCL (PPC-BLCL). Lines from the DC/BLCL arm demonstrated Asp f16-specific cytotoxicity earlier and to a higher degree than lines generated with PPC-DC alone. The DC/BLCL-primed lines showed a higher frequency of Asp f16-specific interferon (IFN)-gamma producing cells but an identical effector cell phenotype and peptide specificity compared to PPC-DC-only-primed lines. Tumour necrosis factor (TNF)-alpha, but not IL-10, appeared to play a role in the effectiveness of BLCL as APC. These results demonstrate that BLCL serve as highly effective APC for the stimulation of Asp f16-specific T cell responses and that a culture approach using initial priming with PPC-DC followed by PPC-BLCL may be a more effective method to generate Asp f16-specific T cell lines and requires less starting blood than priming with PPC-DC alone.

  4. Potent antitumor effect elicited by gp96-peptide complexes pulsed by dendritic cell on mice of H22 liver cancer

    Institute of Scientific and Technical Information of China (English)

    YANG Wei; CAO Chun-xia; CHU Yong-lie; LIU Qing-guang; YU Liang; PAN Cheng-en

    2006-01-01

    Objective: To improve DC-based tumor vaccination, we studied whether dendritic cells (DCs) which cocultured with H22 liver cancer cells-derived heat shock protein (HSP) glycoprotein 96(gp96) affect the T cell-activating potential in vitro and the induction of tumor immunity in vivo. Methods: Maturation of murine bone marrow-derived DC was induced by GM-CSF plus IL-4, which mimiced the immunostimulatory effect of DC. Cocultured DC and gp96-peptide complexes were used to vaccine H22liver cancer cells of mice. Using murine models we compared the immunogenecity of DC modified by gp96-peptides complexes derived from murine liver cancer cells alone or inactive tumor cells. To verify the specificity of the vaccine, in vitro assays were executed. Serum cytokine levels were quantified to explore the supposed pathway of DC modified by gp96 peptide complexes and its effect on antitumor immune response.Results: DC modified by gp96-peptide complexes can activate spleen lymphocyte and the latter can specifically kill H22 cells but not Ehrilich ascites carcinoma cells. Modified DC can induce potent tumor-antigenspecific immune response, augment the proliferation of Th1 cells, and inhibit tumor growth. Conclusion:In this study, we have developed a novel DC-mediated tumor vaccine by combing the gp96 antigenic peptides complexes and inducing immune response against specific tumor cells. gp96 can be identified as a potent DC activator.

  5. Characterization of dendritic cells subpopulations in skin and afferent lymph in the swine model.

    Directory of Open Access Journals (Sweden)

    Florian Marquet

    Full Text Available Transcutaneous delivery of vaccines to specific skin dendritic cells (DC subsets is foreseen as a promising strategy to induce strong and specific types of immune responses such as tolerance, cytotoxicity or humoral immunity. Because of striking histological similarities between human and pig skin, pig is recognized as the most suitable model to study the cutaneous delivery of medicine. Therefore improving the knowledge on swine skin DC subsets would be highly valuable to the skin vaccine field. In this study, we showed that pig skin DC comprise the classical epidermal langerhans cells (LC and dermal DC (DDC that could be divided in 3 subsets according to their phenotypes: (1 the CD163(neg/CD172a(neg, (2 the CD163(highCD172a(pos and (3 the CD163(lowCD172a(pos DDC. These subtypes have the capacity to migrate from skin to lymph node since we detected them in pseudo-afferent lymph. Extensive phenotyping with a set of markers suggested that the CD163(high DDC resemble the antibody response-inducing human skin DC/macrophages whereas the CD163(negCD172(low DDC share properties with the CD8(+ T cell response-inducing murine skin CD103(pos DC. This work, by showing similarities between human, mouse and swine skin DC, establishes pig as a model of choice for the development of transcutaneous immunisation strategies targeting DC.

  6. Immune Monitoring Using mRNA-Transfected Dendritic Cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  7. Dendritic planarity of Purkinje cells is independent of Reelin signaling.

    Science.gov (United States)

    Kim, Jinkyung; Park, Tae-Ju; Kwon, Namseop; Lee, Dongmyeong; Kim, Seunghwan; Kohmura, Yoshiki; Ishikawa, Tetsuya; Kim, Kyong-Tai; Curran, Tom; Je, Jung Ho

    2015-07-01

    The dendritic planarity of Purkinje cells is critical for cerebellar circuit formation. In the absence of Crk and CrkL, the Reelin pathway does not function resulting in partial Purkinje cell migration and defective dendritogenesis. However, the relationships among Purkinje cell migration, dendritic development and Reelin signaling have not been clearly delineated. Here, we use synchrotron X-ray microscopy to obtain 3-D images of Golgi-stained Purkinje cell dendrites. Purkinje cells that failed to migrate completely exhibited conical dendrites with abnormal 3-D arborization and reduced dendritic complexity. Furthermore, their spines were fewer in number with a distorted morphology. In contrast, Purkinje cells that migrated successfully displayed planar dendritic and spine morphologies similar to normal cells, despite reduced dendritic complexity. These results indicate that, during cerebellar formation, Purkinje cells migrate into an environment that supports development of dendritic planarity and spine formation. While Reelin signaling is important for the migration process, it does not make a direct major contribution to dendrite formation.

  8. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  9. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation.

    Science.gov (United States)

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-02-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IkappaBalpha phosphorylation, which is necessary for nuclear factor kappaB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi.

  10. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites.

    Directory of Open Access Journals (Sweden)

    Lai Guan Ng

    2008-11-01

    Full Text Available Dendritic cells (DC, including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Galpha(i protein-coupled receptor-dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens.

  11. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  12. Macrophages and dendritic cells as actors in the immune reaction of classical Hodgkin lymphoma.

    Directory of Open Access Journals (Sweden)

    Christiane Silke Tudor

    Full Text Available The inflammatory infiltrate plays a pivotal role in classical Hodgkin lymphoma (cHL. Here, we focussed on the role of macrophages (MΦ and dendritic cells (DC.MΦ and DC infiltration was investigated in 106 cHL specimens using immunohistochemistry and cytokine expression was analyzed in a subset by real-time PCR. Human peripheral blood-derived monocytes, DC, MΦ stimulated with GM-CSF (MΦGM-CSF, pro-inflammatory MΦ-1-model or M-CSF (MΦM-CSF, immunomodulatory MΦ-2-model were incubated with cHL cell line (L1236, HDLM2 supernatants (SN. DC maturation or MΦ polarization were investigated by flow cytometry. Furthermore, the impact of DC or MΦ on cHL cell proliferation was analyzed by BrdU/CFSE assay.In cHL tissues mature myeloid (mDC and MΦ predominated. High numbers of CD83+ mDC and low numbers of CD163+ MΦ were associated with improved disease specific survival. In numerous cHL specimens increased levels of both pro- and anti-inflammatory cytokines and of IL13 and GM-CSF were observed compared to reactive lymphadenopathies. Maturation of DC and induction and maintenance of an immunomodulatory MΦ phenotype were promoted by SN derived from cHL cell lines. TNFα neutralization in SN resulted in a significant inhibition of mDC maturation. DC and pro-inflammatory MΦ inhibited the proliferation of cHL cells.Adopting an immunomodulatory phenotype is a potential mechanism for how MΦ promote immune evasion in cHL. Mature DC, in contrast, might participate in antitumoral immunity.

  13. Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells.

    Science.gov (United States)

    Barrientos, Lorena; Bignon, Alexandre; Gueguen, Claire; de Chaisemartin, Luc; Gorges, Roseline; Sandré, Catherine; Mascarell, Laurent; Balabanian, Karl; Kerdine-Römer, Saadia; Pallardy, Marc; Marin-Esteban, Viviana; Chollet-Martin, Sylvie

    2014-12-01

    Polymorphonuclear neutrophils (PMN) play a central role in inflammation and participate in its control, notably by modulating dendritic cell (DC) functions via soluble mediators or cell-cell contacts. Neutrophil extracellular traps (NETs) released by PMN could play a role in this context. To evaluate NET effects on DC maturation, we developed a model based on monocyte-derived DC (moDC) and calibrated NETs isolated from fresh human PMN. We found that isolated NETs alone had no discernable effect on moDC. In contrast, they downregulated LPS-induced moDC maturation, as shown by decreased surface expression of HLA-DR, CD80, CD83, and CD86, and by downregulated cytokine production (TNF-α, IL-6, IL-12, IL-23), with no increase in the expression of tolerogenic DC genes. Moreover, the presence of NETs during moDC maturation diminished the capacity of these moDC to induce T lymphocyte proliferation in both autologous and allogeneic conditions, and modulated CD4(+) T lymphocyte polarization by promoting the production of Th2 cytokines (IL-5 and IL-13) and reducing that of Th1 and Th17 cytokines (IFN-γ and IL-17). Interestingly, the expression and activities of the lymphoid chemokine receptors CCR7 and CXCR4 on moDC were not altered when moDC matured in the presence of NETs. Together, these findings reveal a new role for NETs in adaptive immune responses, modulating some moDC functions and thereby participating in the control of inflammation.

  14. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    You Kure Wu

    Full Text Available Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  15. The equivalents of human blood and spleen dendritic cell subtypes can be generated in vitro from human CD34+ stem cells in the presence of fms-like tyrosine kinase 3 ligand and thrombopoietin

    OpenAIRE

    Proietto, AI; Mittag, D; Roberts, AW; Sprigg, N; L. Wu

    2012-01-01

    Dendritic cells (DCs) are immune cells specialized to capture, process and present antigen to T cells in order to initiate an appropriate adaptive immune response. The study of mouse DC has revealed a heterogeneous population of cells that differ in their development, surface phenotype and function. The study of human blood and spleen has shown the presence of two subsets of conventional DC including the CD1b/c+ and CD141+CLEC9A+ conventional DC (cDC) and a plasmacytoid DC (pDC) that is CD304...

  16. Dendritic Cells are Critical Accessory Cells for Thymus-Dependent Antibody Responses in Mouse and in Man

    Science.gov (United States)

    Inaba, Kayo; Steinman, Ralph M.; van Voorhis, Wesley C.; Muramatsu, Shigeru

    1983-10-01

    We report that dendritic cells (DC) are necessary and potent accessory cells for anti-sheep erythrocyte responses in both mouse and man. In mice, a small number of DC (0.3-1% of the culture) restores the response of B/T-lymphocyte mixtures to that observed in unfractionated spleen. An even lower dose (0.03-0.1% DC) is needed if the T cells have been primed to antigen. Responses are both antigen and T cell dependent. Selective depletion of DC from unfractionated spleen with the monoclonal antibody 33D1 and complement ablates the antibody response. In contrast to DC, purified spleen macrophages are weak or inactive stimulators. However, when mixed with DC, macrophages can increase the yield of antibody-secreting cells about 2-fold. In man, small numbers (0.3-1%) of blood DC stimulate antibody formation in vitro. Purified human monocytes do not stimulate but in low doses (1% of the culture) inhibit the antibody response. Likewise, selective removal of human monocytes with antibody and complement enhances or accelerates the development of antibody-secreting cells. We conclude that DC are required for the development of T-dependent antibody responses by mouse and human lymphocytes in vitro.

  17. Immunoregulatory effects of freeze injured whole tumour cells on human dendritic cells using an in vitro cryotherapy model.

    Science.gov (United States)

    Ismail, Mohamed; Morgan, Richard; Harrington, Kevin; Davies, John; Pandha, Hardev

    2010-12-01

    Tumour cryotherapy has been described as both immunostimulatory and immunoinhibitory in previous studies. However, previous studies have not accurately reproduced the precise conditions of current clinical cryotherapy. The objective of this study is to assess the immunological effects of cryotreated whole tumour cells on dendritic cells (DC) maturation and function using an in vitro model. Prostate cancer cells were cooled using Endocare cryo-system to mimic temperatures achieved during clinical cryotherapy. Human DC were prepared from cluster of differentiation (CD) 14 monocytes and matured with lipopolysaccharide (LPS). Cryotreated cancer cells were added to DC on day 3. On day 7, DC were harvested and phenotyped. Cytokine gene expression was assessed using real time quantitative polymerase chain reaction (RT-PCR). Functional activity of DC was assessed in allogenic mixed lymphocyte reaction (MLR) and the molecular changes using gene microarray technology. There was statistically significant upregulation of costimulatory molecules and maturation markers (CD86, CD83, CD80 and CL II) in DC loaded with cryotreated whole tumour cells compared to both control DC and DC matured with LPS (P cells are exposed to sub-lethal temperature.

  18. Indoleamine 2, 3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines

    Institute of Scientific and Technical Information of China (English)

    Shih Ling HWANG; Nancy Pei-Yee CHUNG; Jacqueline Kwai-Yi CHAN; Chen-Lung Steve LIN

    2005-01-01

    Indoleamine 2, 3-dioxygenase (IDO) is a rate-limiting enzyme for the tryptophan catabolism. In human and murine cells, IDO inhibits antigen-specific T cell proliferation in vitro and suppresses T cell responses to fetal alloantigens during murine pregnancy. In mice, IDO expression is an inducible feature of specific subsets of dendritic cells (DCs),and is important for T cell regulatory properties. However, the effect of IDO and tryptophan deprivation on DC functions remains unknown. We report here that when tryptophan utilization was prevented by a pharmacological inhibitor of IDO, 1-methyl tryptophan (1MT), DC activation induced by pathogenic stimulus lipopolysaccharide (LPS) or inflammatory cytokine TNF-α was inhibited both phenotypically and functionally. Such an effect was less remarkable when DC was stimulated by a physiological stimulus, CD40 ligand. Tryptophan deprivation during DC activation also regulated the expression of CCR5 and CXCR4, as well as DC responsiveness to chemokines. These results suggest that tryptophan usage in the microenvironment is essential for DC maturation, and may also play a role in the regulation of DC migratory behaviors.

  19. Plasmacytoid dendritic cells in skin lesions of classic Kaposi's sarcoma.

    Science.gov (United States)

    Karouni, Mirna; Kurban, Mazen; Abbas, Ossama

    2016-09-01

    Plasmacytoid dendritic cells (pDCs) are the most potent producers of type I interferons (IFNs), which allows them to provide anti-viral resistance and to link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer cells. pDCs are involved in the pathogenesis of several infectious [especially viral, such as Molluscum contagiosum (MC)], inflammatory/autoimmune, and neoplastic entities. Kaposi's sarcoma (KS) is a multifocal, systemic lympho-angioproliferative tumor associated with Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Microscopy typically exhibits a chronic inflammatory lymphoplasmacytic infiltrate in addition to the vascular changes and spindle cell proliferation. Despite the extensive research done on the immune evasion strategies employed by KSHV, pDCs role in relation to KS has only rarely been investigated. Given this, we intend to investigate pDC occurrence and activity in the skin lesions of KS. Immunohistochemical staining for BDCA-2 (specific pDC marker) and MxA (surrogate marker for local type I IFN production) was performed on classic KS (n = 20) with the control group comprising inflamed MC (n = 20). As expected, BDCA-2+ pDCs were present in abundance with diffuse and intense MxA expression (indicative of local type I IFN production) in all inflamed MC cases (20 of 20, 100 %). Though present in all the KS cases, pDCs were significantly less abundant in KS than in inflamed MC cases, and MxA expression was patchy/weak in most KS cases. In summary, pDCs are part of the inflammatory host response in KS; however, they were generally low in number with decreased type I IFN production which is probably related to KSHV's ability to evade the immune system through the production of different viral proteins capable of suppressing IFN production as well as pDC function.

  20. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction.

    Science.gov (United States)

    Tezuka, Hiroyuki; Abe, Yukiko; Asano, Jumpei; Sato, Taku; Liu, Jiajia; Iwata, Makoto; Ohteki, Toshiaki

    2011-02-25

    Although both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are present in the gut-associated lymphoid tissues (GALT), the roles of pDCs in the gut remain largely unknown. Here we show a critical role for pDCs in T cell-independent (TI) IgA production by B cells in the GALT. When pDCs of the mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) (which are representative GALT) were cultured with naive B cells to induce TI IgA class switch recombination (CSR), IgA production was substantially higher than in cocultures of these cells with cDCs. IgA production was dependent on APRIL and BAFF production by pDCs. Importantly, pDC expression of APRIL and BAFF was dependent on stromal cell-derived type I IFN signaling under steady-state conditions. Our findings provide insight into the molecular basis of pDC conditioning to induce mucosal TI IgA production, which may lead to improvements in vaccination strategies and treatment for mucosal-related disorders.

  1. Metamaterial absorber with random dendritic cells

    Science.gov (United States)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  2. Dysregulated Circulating Dendritic Cell Function in Ulcerative Colitis Is Partially Restored by Probiotic Strain Lactobacillus casei Shirota

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Mann

    2013-01-01

    Full Text Available Background. Dendritic cells regulate immune responses to microbial products and play a key role in ulcerative colitis (UC pathology. We determined the immunomodulatory effects of probiotic strain Lactobacillus casei Shirota (LcS on human DC from healthy controls and active UC patients. Methods. Human blood DC from healthy controls (control-DC and UC patients (UC-DC were conditioned with heat-killed LcS and used to stimulate allogeneic T cells in a 5-day mixed leucocyte reaction. Results. UC-DC displayed a reduced stimulatory capacity for T cells (P<0.05 and enhanced expression of skin-homing markers CLA and CCR4 on stimulated T cells (P<0.05 that were negative for gut-homing marker β7. LcS treatment restored the stimulatory capacity of UC-DC, reflecting that of control-DC. LcS treatment conditioned control-DC to induce CLA on T cells in conjunction with β7, generating a multihoming profile, but had no effects on UC-DC. Finally, LcS treatment enhanced DC ability to induce TGFβ production by T cells in controls but not UC patients. Conclusions. We demonstrate a systemic, dysregulated DC function in UC that may account for the propensity of UC patients to develop cutaneous manifestations. LcS has multifunctional immunoregulatory activities depending on the inflammatory state; therapeutic effects reported in UC may be due to promotion of homeostasis.

  3. Antitumor activities of human dendritic cells derived from peripheral and cord blood

    Institute of Scientific and Technical Information of China (English)

    Jin-Kun Zhang; Jun Li; Hai-Bin Chen; Jin-Lun Sun; Yao-Juan Qu; Juan-Juan Lu

    2002-01-01

    AIM: To observe the biological specialization of humanperipheral blood dendritic cells (DC) and cord blood derivedDC and its effects on effector cells killing humanhepatocarcinoma cell line BEL-7402 in vitro.METHODS: The DC biological characteristics were detectedwith immunohistochemical and MTT assay. Two antitumorexperimental groups are: peripheral blood DC and cordblood DC groups. Peripheral blood DC groups used LAKcells as the effector cells and BEL-7402 as target cells, whilecord blood DC groups used CTL induced by tumor antigentwice pulsed DC as effector cells and BEL-7402 as targetcells, additional peripheral blood DC and cord blood DC areadded to observe its stimulating activities to effector cells.The effector's cytotoxicity to tumor cells were detected withneutral red colorimetric assay at two effector/target ratios of5:1 and 10: 1.RESULTS: Peripheral blood DC and cord blood DC highlyexpressed HLA-ABC, HLA-DR, HLA-DQ, CD54 and S-100protein. The stimulating activities to lymphocyteproliferation were compared between experimental groups(DC added) and control group (no DC added). In sixexperiment subgroups, the DC/lymphocyte ratio wassequentially 0.25: 100, 0.5: 100, 1: 100, 2: 100, 4: 100 and 8:100, A values(x± s) were 0.75396± 0.009, 0.84916± 0.010,0.90894± 0.012, 0.98371 ± 0.007, 1.01299 ± 0.006 and 1.20384± 0.006 in peripheral blood DC groups and 0.77650 ± 0.005,0.83008± 0.007, 0.92725 ± 0.007, 1.05990 ± 0.010, 1.15583 ±0.011, 1.22983 ± 0.011 in cord blood DC groups. A value was0.59517 ± 0.005 in control group. The stimulating activitieswere higher in experimental groups than in control group ( P< 0.01 ), which were increased when the DC concentrationwas enlarged ( P < 0.01 ). Two differently derived DCs hadthe same phenotypes and similar stimulating activities ( P >0.05). In peripheral blood DC groups, the cytotoxicity (x ±s) of the LD groups (experimental groups) and L groups(control group) was 58.16% ± 2.03% (5: 1), 46.18% ±2

  4. AIRE is not essential for the induction of human tolerogenic dendritic cells.

    Science.gov (United States)

    Crossland, Katherine L; Abinun, Mario; Arkwright, Peter D; Cheetham, Timothy D; Pearce, Simon H; Hilkens, Catharien M U; Lilic, Desa

    2016-06-01

    Loss-of-function mutations of the Autoimmune Regulator (AIRE) gene results in organ-specific autoimmunity and disease Autoimmune Polyendocrinopathy type 1 (APS1)/Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dystrophy (APECED). The AIRE protein is crucial in the induction of central tolerance, promoting ectopic expression of tissue-specific antigens in medullary thymic epithelial cells and enabling removal of self-reactive T-cells. AIRE expression has recently been detected in myeloid dendritic cells (DC), suggesting AIRE may have a significant role in peripheral tolerance. DC stimulation of T-cells is critical in determining the initiation or lack of an immune response, depending on the pattern of costimulation and cytokine production by DCs, defining immunogenic/inflammatory (inflDC) and tolerogenic (tolDC) DC. In AIRE-deficient patients and healthy controls, we validated the role of AIRE in the generation and function of monocyte-derived inflDC and tolDCs by determining mRNA and protein expression of AIRE and comparing activation markers (HLA-DR/DP/DQ,CD83,CD86,CD274(PDL-1),TLR-2), cytokine production (IL-12p70,IL-10,IL-6,TNF-α,IFN-γ) and T-cell stimulatory capacity (mixed lymphocyte reaction) of AIRE+ and AIRE- DCs. We show for the first time that: (1) tolDCs from healthy individuals express AIRE; (2) AIRE expression is not significantly higher in tolDC compared to inflDC; (3) tolDC can be generated from APECED patient monocytes and (4) tolDCs lacking AIRE retain the same phenotype and reduced T-cell stimulatory function. Our findings suggest that AIRE does not have a role in the induction and function of monocyte-derived tolerogenic DC in humans, but these findings do not exclude a role for AIRE in peripheral tolerance mediated by other cell types.

  5. Uptake and intracellular trafficking of superantigens in dendritic cells.

    Directory of Open Access Journals (Sweden)

    María B Ganem

    Full Text Available Bacterial superantigens (SAgs are exotoxins produced mainly by Staphylococcus aureus and Streptococcus pyogenes that can cause toxic shock syndrome (TSS. According to current paradigm, SAgs interact directly and simultaneously with T cell receptor (TCR on the T cell and MHC class II (MHC-II on the antigen-presenting cell (APC, thereby circumventing intracellular processing to trigger T cell activation. Dendritic cells (DCs are professional APCs that coat nearly all body surfaces and are the most probable candidate to interact with SAgs. We demonstrate that SAgs are taken up by mouse DCs without triggering DC maturation. SAgs were found in intracellular acidic compartment of DCs as biologically active molecules. Moreover, SAgs co-localized with EEA1, RAB-7 and LAMP-2, at different times, and were then recycled to the cell membrane. DCs loaded with SAgs are capable of triggering in vitro lymphocyte proliferation and, injected into mice, stimulate T cells bearing the proper TCR in draining lymph nodes. Transportation and trafficking of SAgs in DCs might increase the local concentration of these exotoxins where they will produce the highest effect by promoting their encounter with both MHC-II and TCR in lymph nodes, and may explain how just a few SAg molecules can induce the severe pathology associated with TSS.

  6. Dysfunction of Murine Dendritic Cells Induced by Incubation with Tumor Cells

    Institute of Scientific and Technical Information of China (English)

    Fengguang Gao; Xin Hui; Xianghuo He; Dafang Wan; Jianren Gu

    2008-01-01

    In vivo studies showed that dendritic cell (DC) dysfunction occurred in tumor microcnvironment. As tumors were composed of many kinds of cells, the direct effects of tumor cells on immature DCs (imDCs) are needed for further studies in vitro. In the present study, bone marrow-derived imDCs were incubated with lymphoma, hepatoma and menaloma cells in vitro and surface molecules in imDCs were determined by flow cytometry. Then, imDCs incubated with tumor cells or control imDCs were further pulsed with tumor lysates and then incubated with splenocytes to perform mixed lymphocyte reaction. The DC-dependent tumor antigen-specific T cell proliferation,and IL-12 secretion were determined by flow cytometry, and enzyme-linked immunosorbent assay respectively.Finally, the DC-dependent tumor-associated antigen-specific CTL was determined by enzyme-linked immunospot assay. The results showed that tumor cell-DC incubation down-regulated the surface molecules in imDCs, such as CD80, CD54, CDllb, CD11a and MHC class Ⅱ molecules. The abilities of DC-dependent antigen-specific T cell proliferation and IL-12 secretion were also decreased by tumor cell incubation in vitro. Most importantly, the ability for antigenic-specific CTL priming of DCs was also decreased by incubation with tumor cells. In the present in vitro study demonstrated that the defective abilities of DCs induced by tumor cell co-incubation and the co-incubation system might be useful for future study of tumor-immune cells direct interaction and for drug screen of immune-modulation.

  7. D-pinitol inhibits Th1 polarization via the suppression of dendritic cells.

    Science.gov (United States)

    Lee, Jun Sik; Jung, In Duk; Jeong, Young-Il; Lee, Chang-Min; Shin, Yong Kyoo; Lee, Sang-Yull; Suh, Dong-Soo; Yoon, Man-Soo; Lee, Kyu-Sub; Choi, Yung Hyun; Chung, Hae Young; Park, Yeong-Min

    2007-06-01

    d-pinitol has been demonstrated to exert insulin-like and anti-inflammatory effects. However, the effects of the maturation and immunostimulatory functions of dendritic cells (DC) remain to be clearly elucidated. In this study, we have attempted to determine whether d-pinitol regulates surface molecule expression, cytokine production, endocytosis capacity, and underlying signaling pathways in murine bone marrow-derived DC. We also attempted to ascertain whether d-pinitol could influence Th1/Th2 immune response in vivo. The DC used in this study were derived from murine bone marrow cells, and were used as immature or LPS-stimulated mature DC. The DC were then assessed with regard to surface molecule expression, dextran-FITC uptake, cytokine production, capacity to induce T-cell differentiation, and underlying signaling pathways. d-pinitol was shown to significantly inhibit CD80, CD86, MHC class I, and MHC class II expression in the LPS-stimulated mature DC. The DC also evidenced impaired IL-12 expression and IFN-gamma production. The d-pinitol-treated DC were found to be highly efficient in regards to Ag capture via mannose receptor-mediated endocytosis. d-pinitol was also demonstrated to inhibit LPS-induced MAPKs activation and NF-kappaB nuclear translocation. Moreover, the d-pinitol-treated DC manifested impaired induction of Th1 responses, and normal cell-mediated immune responses. These novel findings provide new insight into the immunopharmacological role of d-pinitol in terms of its effects on DC. These findings also broaden current perspectives concerning our understanding of the immunopharmacological functions of d-pinitol, and have ramifications for the development of therapeutic adjuvants for the treatment of DC-related acute and chronic diseases.

  8. T cells kill bacteria captured by transinfection from dendritic cells and confer protection in mice.

    Science.gov (United States)

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Calabia-Linares, Carmen; Torres-Torresano, Mónica; Feo, Lidia; Galán-Díez, Marta; Fernández-Ruiz, Elena; Pereiro, Eva; Guttmann, Peter; Chiappi, Michele; Schneider, Gerd; Carrascosa, José López; Chichón, Francisco Javier; Martínez Del Hoyo, Gloria; Sánchez-Madrid, Francisco; Veiga, Esteban

    2014-05-14

    Dendritic cells (DCs) phagocytose, process, and present bacterial antigens to T lymphocytes to trigger adaptive immunity. In vivo, bacteria can also be found inside T lymphocytes. However, T cells are refractory to direct bacterial infection, leaving the mechanisms by which bacteria invade T cells unclear. We show that T cells take up bacteria from infected DCs by the process of transinfection, which requires direct contact between the two cells and is enhanced by antigen recognition. Prior to transfer, bacteria localize to the immunological synapse, an intimate DC/T cell contact structure that activates T cells. Strikingly, T cells efficiently eliminate the transinfecting bacteria within the first hours after infection. Transinfected T cells produced high levels of proinflammatory cytokines and were able to protect mice from bacterial challenge following adoptive transfer. Thus, T lymphocytes can capture and kill bacteria in a manner reminiscent of innate immunity.

  9. [Experimental study on activating antileukemic T cells by vaccination with dendritic cells pulsed with survivin].

    Science.gov (United States)

    Zhang, Xiao-Hui; Xia, Ling-Hui; Liu, Zhong-Ping; Wei, Wen-Ning; Hu, Yu; Song, Shan-Jun

    2003-02-01

    The objective of this study is to investigate the effect of vaccination with dendritic cells pulsed with survivin antigen on activation of antileukemic T cells, and inhibiting proliferation of leukemic cells. The expression of survivin on acute leukemic cells were detected by cofocal microscopy and immunoprecipitation-Western blot. DCs collected from peripheral blood mononuclear cells were pulsed with survivin purified proteins. Stimulation index (SI) and antileukemia CTL induction were analyzed with (3)H-TdR incorporation and (51)Cr releasing assay, respectively. The phenotype of T cells and DCs were identified by flow cytometry. By immunofluorescence of bone marrow and peripheral blood mononuclear cells, survivin expression was detected in 16 out of 19 AML cases (84.2%). The results showed that survivin fluorescence distribution was in cytoplasm. DCs from peripheral blood mononuclear cells were successfully induced, with typical DC morphologic characteristic. The vaccination with dendritic cells pulsed with survivin antigen dramatically stimulated the proliferation of T cells. The DCs loading survivin activated T cells with higher CD4(+) T(H) ratio as compared with DCs group, T cells activated with DCs expressed CD8 and CD56. Survivin DCs significantly inhibited the growth of leukemic cells in vitro. In conclusion, survivin antigen expressed in the cytoplasm of leukemic cells, leukemic vaccination with DCs pulsed with survivin antigen in vitro inhibited the proliferation of leukemic cells, that may be a pathway for therapy of leukemia.

  10. Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells.

    Science.gov (United States)

    Lieskovská, J; Páleníková, J; Širmarová, J; Elsterová, J; Kotsyfakis, M; Campos Chagas, A; Calvo, E; Růžek, D; Kopecký, J

    2015-02-01

    Type I interferon (IFN), mainly produced by dendritic cells (DCs), is critical in the host defence against tick-transmitted pathogens. Here, we report that salivary cysteine protease inhibitor from the hard tick Ixodes scapularis, sialostatin L2, affects IFN-β mediated immune reactions in mouse dendritic cells. Following IFN receptor ligation, the Janus activated kinases/signal transducer and activator of transcription (JAK/STAT) pathway is activated. We show that sialostatin L2 attenuates phosphorylation of STATs in spleen dendritic cells upon addition of recombinant IFN-β. LPS-stimulated dendritic cells release IFN-β which in turn leads to the induction of IFN-stimulated genes (ISG) through JAK/STAT pathway activation. The induction of two ISG, interferon regulatory factor 7 (IRF-7) and IP-10, was suppressed by sialostatin L2 in LPS-stimulated dendritic cells. Finally, the interference of sialostatin L2 with IFN action led to the enhanced replication of tick-borne encephalitis virus in DC. In summary, we present here that tick salivary cystatin negatively affects IFN-β responses which may consequently increase the pathogen load after transmission via tick saliva.

  11. Chemokine-mediated distribution of dendritic cell subsets in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Meyer Werner

    2010-10-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC represents one of the most immunoresponsive cancers. Antigen-specific vaccination with dendritic cells (DCs in patients with metastatic RCC has been shown to induce cytotoxic T-cell responses associated with objective clinical responses. Thus, clinical trials utilizing DCs for immunotherapy of advanced RCCs appear to be promising; however, detailed analyses concerning the distribution and function of DC subsets in RCCs are lacking. Methods We characterized the distribution of the different immature and mature myeloid DC subsets in RCC tumour tissue and the corresponding normal kidney tissues. In further analyses, the expression of various chemokines and chemokine receptors controlling the migration of DC subsets was investigated. Results The highest numbers of immature CD1a+ DCs were found within RCC tumour tissue. In contrast, the accumulation of mature CD83+/DC-LAMP+ DCs were restricted to the invasive margin of the RCCs. The mature DCs formed clusters with proliferating T-cells. Furthermore, a close association was observed between MIP-3α-producing tumour cells and immature CCR6+ DC recruitment to the tumour bed. Conversely, MIP-3β and SLC expression was only detected at the tumour border, where CCR7-expressing T-cells and mature DCs formed clusters. Conclusion Increased numbers of immature DCs were observed within the tumour tissue of RCCs, whereas mature DCs were found in increased numbers at the tumour margin. Our results strongly implicate that the distribution of DC subsets is controlled by local lymphoid chemokine expression. Thus, increased expression of MIP-3α favours recruitment of immature DCs to the tumour bed, whereas de novo local expression of SLC and MIP-3β induces accumulation of mature DCs at the tumour margin forming clusters with proliferating T-cells reflecting a local anti-tumour immune response.

  12. Influence of autologous dendritic cells on cytokine-induced killer cell proliferation, cell phenotype and antitumor activity in vitro.

    Science.gov (United States)

    Cao, Jingsong; Chen, Cong; Wang, Yuhuan; Chen, Xuecheng; Chen, Zeying; Luo, Xiaoling

    2016-09-01

    Dendritic cell (DCs) are essential antigen processing and presentation cells that play a key role in the immune response. In this study, DCs were co-cultured with cytokine-induced killer cells (DC-CIKs) in vitro to detect changes in cell proliferation, cell phenotype and cell cytotoxicity. The results revealed that the DCs were suitable for co-culture with CIKs at day 7, and that cell quantity of DC-CIKs was lower than that of CIKs until day 11, but it was significantly improved to 1.17-fold that of CIKs at day 13. Flow cytometry was used to detect the cell phenotype of CIKs and DC-CIKs. Compared with CIKs at day 13, the percentage of CD3(+), CD3(+)CD4(+), CD3(+)CD8(+) and CD3(+)CD56(+) T cells in DC-CIKs was significantly improved 1.02, 1.79, 1.26 and 2.44-fold, respectively. In addition, trypan blue staining analysis demonstrated that the cell viability of CIKs and DC-CIKs was 96% and 98%, respectively. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis verified that CIK and DC-CIK cytotoxicity in Hela cells was 58% and 80%, respectively, with a significant difference. Taken together, our results indicate that the cell proliferation, cell phenotype and antitumor activity of CIKs were all enhanced following co-culture with DCs in vitro. These results are likely to be useful for DC-CIK application in antitumor therapies.

  13. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function

    OpenAIRE

    Wang, Yanyan; Huang, Gonghua; Vogel, Peter; Neale, Geoffrey; Reizis, Boris; Chi, Hongbo

    2012-01-01

    Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c+ cells induced markedly elevated apopt...

  14. Dendritic cell targeting vaccine for HPV-associated cancer

    Science.gov (United States)

    Yin, Wenjie; Duluc, Dorothée; Joo, HyeMee; Oh, SangKon

    2017-01-01

    Dendritic cells (DCs) are major antigen presenting cells that can efficiently prime and activate cellular immune responses. Delivering antigens to in vivo DCs has thus been considered as a promising strategy that could allow us to mount T cell-mediated therapeutic immunity against cancers in patients. Successful development of such types of cancer vaccines that can target in vivo DCs, however, requires a series of outstanding questions that need to be addressed. These include the proper selection of which DC surface receptors, specific DC subsets and DC activators that can further enhance the efficacy of vaccines by promoting effector T cell infiltration and retention in tumors and their actions against tumors. Supplementing these areas of research with additional strategies that can counteract tumor immune evasion mechanisms is also expected to enhance the efficacy of such therapeutic vaccines against cancers. After more than a decade of study, we have concluded that antigen targeting to DCs via CD40 to evoke cellular responses is more efficient than targeting antigens to the same types of DCs via eleven other DC surface receptors tested. In recent work, we have further demonstrated that a prototype vaccine (anti-CD40-HPV16.E6/7, a recombinant fusion protein of anti-human CD40 and HPV16.E6/7 protein) for HPV16-associated cancers can efficiently activate HPV16.E6/7-specific T cells, particularly CD8+ T cells, from the blood of HPV16+ head-and-neck cancer patients. Moreover, anti-CD40-HPV16.E6/7 plus poly(I:C) can mount potent therapeutic immunity against TC-1 tumor expressing HPV16.E6/7 protein in human CD40 transgenic mice. In this manuscript, we thus highlight our recent findings for the development of novel CD40 targeting immunotherapeutic vaccines for HPV16-associated malignancies. In addition, we further discuss several of key questions that still remain to be addressed for enhancing therapeutic immunity elicited by our prototype vaccine against HPV16

  15. Myeloid dendritic cells are potential players in human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paola eBossù

    2015-12-01

    Full Text Available Alzheimer’s (AD and Parkinson’s (PD diseases are devastating neurodegenerative disturbances wherein neuroinflammation is a chronic pathogenic process with high therapeutic potential. Major mediators of AD/PD neuroimmune processes are resident immune cells, but immune cells derived from periphery may also participate and to some extent modify neuroinflammation. Specifically, blood borne myeloid cells emerge as crucial components of AD/PD progression and susceptibility. Among these, dendritic cells (DCs are key immune orchestrators and players of brain immune surveillance: we candidate them as potential mediators of both AD and PD and as relevant cell model for unraveling myeloid cell role in neurodegeneration. Hence, we recapitulate and discuss emerging data suggesting that blood-derived DCs play a role in experimental and human neurodegenerative diseases. In humans, in particular, DCs are modified by in vitro culture with neurodegeneration-associated pathogenic factors and dysregulated in AD patients, while the levels of DC precursors are decreased in AD and PD patients’ blood, possibly as an index of their recruitment to the brain. Overall, we emphasize the need to explore the impact of DCs on neurodegeneration to uncover peripheral immune mechanisms of pathogenic importance, recognize potential biomarkers and improve therapeutic approaches for neurodegenerative diseases.

  16. HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV-positive tumour cells.

    Science.gov (United States)

    Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M

    2014-07-01

    Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Directory of Open Access Journals (Sweden)

    Irene Tirado-González

    Full Text Available Dendritic cell (DC and natural killer (NK cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.

  18. Uterine NK Cells Are Critical in Shaping DC Immunogenic Functions Compatible with Pregnancy Progression

    Science.gov (United States)

    Freitag, Nancy; Otto, Teresa; Thijssen, Victor L. J. L.; Moschansky, Petra; von Kwiatkowski, Petra; Klapp, Burghard F.; Winterhager, Elke; Bauersachs, Stefan; Blois, Sandra M.

    2012-01-01

    Dendritic cell (DC) and natural killer (NK) cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression. PMID:23056436

  19. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines

    NARCIS (Netherlands)

    N. van Montfoort (Nadine); E. van der Aa (Evelyn); A.M. Woltman (Andrea)

    2014-01-01

    textabstractEffective viral clearance requires the induction of virus-specific CD8+ cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some v

  20. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity

    NARCIS (Netherlands)

    Kreutz, M.; Giquel, B.; Hu, Q.; Abuknesha, R.; Uematsu, S.; Akira, S.; Nestle, F.O.; Diebold, S.S.

    2012-01-01

    Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is par

  1. Extended neoadjuvant chemotherapy in locally advanced breast cancer combined with GM-CSF: effect on tumour-draining lymph node dendritic cells

    NARCIS (Netherlands)

    Pinedo, H.M.; Buter, J.; Luykx-de Bakker, S.A.; Pohlmann, P.R.; Hensbergen, Y. van; Heideman, D.A.M.; Diest, P.J. van; Gruijl, T.D. de; Wall, E. van der

    2003-01-01

    The effect of long-term administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) on dendritic cell (DC) activation and survival in patients with locally advanced breast cancer (LABC) was studied. To this end, the number of activated DC (i.e. positive for the marker S100) in tumour

  2. Deficiency of a Disintegrin and Metalloproteinase 10 (ADAM10) on dendritic cells prevents the development of type 2 immunity and IgE production

    Science.gov (United States)

    Mice in which dendritic cells (DCs)lack ADAM10 (ADAM10DC-/-) were found to have a dramatic decrease in TH2 immunity and IgE production, as measured by both lung inflammation to house dust mite (HDM) and active systemic anaphylaxis models (ASA). With HDM, the ADAM10DC-/- had significantly less airway...

  3. In vivo evidence for dendritic cell lysis by NK cells

    OpenAIRE

    Ferlazzo, Guido

    2012-01-01

    By using an experimental model of anticancer vaccination, we have recently lent support to the assumption, so far only sustained by in vitro data, that natural killer cells can restrain less immunogenic, allegedly tolerogenic, dendritic cells (DCs). This in vivo selection of immunogenic DCs appears to depend on perforin and to be associated with a more protective tumor-specific T lymphocyte response.

  4. MUTZ-3-derived dendritic cells as an in vitro alternative model to CD34+ progenitor-derived dendritic cells for testing of chemical sensitizers.

    Science.gov (United States)

    Nelissen, Inge; Selderslaghs, Ingrid; Heuvel, Rosette Van Den; Witters, Hilda; Verheyen, Geert R; Schoeters, Greet

    2009-12-01

    The cytokine-dependent CD34(+) human acute myeloid leukaemia cell line MUTZ-3 was used to generate immature dendritic-like cells (MUTZ-3 DC) and their validity as an alternative to primary CD34(+) progenitor-derived DC (CD34-DC) for testing chemical-induced sensitization was assessed. Expression levels of the DC maturation markers HLA-DR, CD86, CD83 and CD11c were studied using flow cytometry after 24 and 48 h exposure to the model compound nickel sulphate (100 and 300 microM). No maturation of MUTZ-3 DC was observed, whereas significantly upregulated expression levels of CD83 and CD86 were noticed in CD34-DC after 24h treatment with 300 microM nickel sulphate compared to control cells. Differential expression of the cytokine genes IL1beta, IL6, IL8, CCL2, CCL3, CCL3L1, CCL4 was analyzed using real-time RT-PCR after 6, 10 and 24h of nickel sulphate exposure. In response to 100 microM nickel sulphate MUTZ-3 DC revealed slightly upregulated mRNA levels after 24h, whereas 300 microM induced transcription of CCL3, CCL3L1 and IL8 significantly after 6 or 10h. These cytokine data correspond to the previously observed effects of 100 microM nickel sulphate in CD34-DC. Our findings underline the stimulatory capacity of nickel sulphate in MUTZ-3 DC with regard to cytokine mRNA induction, but not surface marker expression. Compared to CD34-DC, however, the studied endpoint markers seemed to be less inducible, making the MUTZ-3 DC model in its presented form less suitable for in vitro testing of sensitization. Further assessment of MUTZ-3 DC using other differentiation protocols and an extended set of chemicals will be required to reveal whether this cell line may be a valid alternative model system to primary CD34-DC.

  5. Antigen Gene Transfer to Human Plasmacytoid Dendritic Cells Using Recombinant Adenovirus and Vaccinia Virus Vectors

    Directory of Open Access Journals (Sweden)

    Hetty J. Bontkes

    2005-01-01

    Full Text Available Recombinant adenoviruses (RAd and recombinant vaccinia viruses (RVV expressing tumour-associated antigens (TAA are used as anti-tumour vaccines. It is important that these vaccines deliver the TAA to dendritic cells (DC for the induction of a strong immune response. Infection of myeloid DC (MDC with RAd alone is relatively inefficient but CD40 retargeting significantly increases transduction efficiency and DC maturation. Infection with RVV is efficient without DC maturation. Plasmacytoid dendritic cells (PDC play a role in the innate immune response to viral infections through the secretion of IFNα but may also play a role in specific T-cell induction. The aim of our study was to investigate whether PDC are better targets for RAd and RVV based vaccines. RAd alone hardly infected PDC (2% while CD40 retargeting did not improve transduction efficiency, but it did increase PDC maturation (25% CD83 positive cells. Accordingly, specific CTL activation by RAd infected PDC was limited (the number of IFNγ producing CTL was reduced by 75% compared to stimulation with peptide loaded PDC. RVV infected PDC specifically stimulated CTL but PDC were not activated. These Results indicate that PDC are not ideal targets for RAd and RVV based vaccines. However, PDC induced specific CTL activation after pulsing with recombinant protein, indicating that PDC can also cross-present antigens released from surrounding infected cells.

  6. Human plasmacytoid dendritic cells: from molecules to intercellular communication network

    NARCIS (Netherlands)

    Mathan, T.S.M.; Figdor, C.G.; Buschow, S.I.

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presentin

  7. Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...

  8. Modulation of murine bone marrow-derived dendritic cells and B-cells by MCS-18 a natural product isolated from Helleborus purpurascens.

    Science.gov (United States)

    Littmann, Leonie; Rössner, Susanne; Kerek, Franz; Steinkasserer, Alexander; Zinser, Elisabeth

    2008-01-01

    MCS-18, a natural product isolated from Helleborus purpurascens has been shown to have several beneficial effects in inflammatory and autoimmune disorders. However, very little is known regarding the immuno-modulatory capacity of MCS-18 in respect to murine bone marrow-derived dendritic cells (BM-DC) and B-cells. Thus, in the present study we examined the effect of MCS-18 on murine BM-DC and B-cells. Interestingly MCS-18 inhibited the expression of important DC-specific molecules and lead to an impaired T-cell stimulation capacity. In addition, MCS-18 also reduced B-cell proliferation and immunoglobulin production.

  9. Immunotherapy of intracranial G422 glioblastoma with dendritic cells pulsed with tumor extract or RNA

    Institute of Scientific and Technical Information of China (English)

    张哲; 汤灵玲; 詹仁雅; 童鹰; 姚航平; 杜理安

    2004-01-01

    Objective: To investigate the anti-tumor efficacy of dendritic cell (DC)-based vaccines pulsed with tumor extracts or RNA in a mouse model of intracranial G422 glioblastoma. Methods: Bone marrow-derived DCs were pulsed ex vivo with tumor extracts or RNA. Ninety female mice harboring 4-day-old intracranial G422 glioblastomas and 126 normal mice were treated with three spaced one week apart subcutaneous injections either with PBS, unpulsed DCs, G422 tumor extracts, RNA, DCs pulsed with G422 tumor extracts (DC/extract) or with RNA (DC/RNA). Seven days after the third immunization of normal mice, the spleens of 36 of them were harvested for cytotoxic T lyphocyte (CTL) assays and the others were challenged in the brain with G422 tumor cells. All the treated mice were followed for survival. Some mice brains were removed and examined pathologically when they died. Results: Immunization using DC/extract or DC/RNA significantly induced G422-specific CTL responses compared with control groups (P<0.01). Vaccination with DC/extract or DC/RNA, either prior to G422 tumor challenge or in tumor-harboring mice, significantly prolonged survival compared with other control groups (P<0.01). Conclusion: DCs pulsed with tumor extracts or RNA derived from autologous tumors has potential antitumor effects via activation of cell-mediated immunity. Our results suggest a useful therapeutic strategy against gliomas.

  10. Immunotherapy of intracranial G422 glioblastoma with dendritic cells pulsed with tumor extract or RNA

    Institute of Scientific and Technical Information of China (English)

    张哲; 汤灵玲; 詹仁雅; 童鹰; 姚航平; 杜理安

    2004-01-01

    Objective: To investigate the anti-tumor efficacy of dendritic cell (DC)-based vaccines pulsed with tumor extracts or RNA in a mouse model of intracranial G422 glioblastoma. Methods: Bone marrow-derived DCs were pulsed ex vivo with tumor extracts or RNA. Ninety female mice harboring 4-day-old intracranial G422 glioblastomas and 126 normal mice were treated with three spaced one week apart subcutaneous injections either with PBS, unpulsed DCs, G422 tumor extracts, RNA, DCs pulsed with G422 tumor extracts (DC/extract) or with RNA (DC/RNA). Seven days after the third immunization of normal mice, the spleens of 36 of them were harvested for cytotoxic T lyphocyte (CTL) assays and the others were challenged in the brain with G422 tumor cells. All the treated mice were followed for survival. Some mice brains were removed and examined pathologically when they died. Results: Immunization using DC/extract or DC/RNA significantly induced G422-specific CTL responses compared with control groups (P<0.01). Vaccination with DC/extract or DC/RNA, either prior to G422 tumor challenge or in tumor-harboring mice, significantly prolonged survival compared with other control groups (P<0.01). Conclusion: DCs pulsed with tumor extracts or RNA derived from autologous tumors has potential antitumor effects via activation of cell-mediated immunity. Our results suggest a useful therapeutic strategy against gliomas.

  11. Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Tedesco, Gianni

    2010-01-01

    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is sucessful at detecting port scans.

  12. Evidence for local dendritic cell activation in pulmonary sarcoidosis

    Directory of Open Access Journals (Sweden)

    Berge Bregje

    2012-04-01

    Full Text Available Abstract Background Sarcoidosis is a granulomatous disease characterized by a seemingly exaggerated immune response against a difficult to discern antigen. Dendritic cells (DCs are pivotal antigen presenting cells thought to play an important role in the pathogenesis. Paradoxically, decreased DC immune reactivity was reported in blood samples from pulmonary sarcoidosis patients. However, functional data on lung DCs in sarcoidosis are lacking. We hypothesized that at the site of disease DCs are mature, immunocompetent and involved in granuloma formation. Methods We analyzed myeloid DCs (mDCs and plasmacytoid DCs (pDCs in broncho-alveolar lavage (BAL and blood from newly diagnosed, untreated pulmonary sarcoidosis patients and healthy controls using 9-color flowcytometry. DCs, isolated from BAL using flowcytometric sorting (mDCs or cultured from monocytes (mo-DCs, were functionally assessed in a mixed leukocyte reaction with naïve allogeneic CD4+ T cells. Using Immunohistochemistry, location and activation status of CD11c+DCs was assessed in mucosal airway biopsies. Results mDCs in BAL, but not in blood, from sarcoidosis patients were increased in number when compared with mDCs from healthy controls. mDCs purified from BAL of sarcoidosis patients induced T cell proliferation and differentiation and did not show diminished immune reactivity. Mo-DCs from patients induced increased TNFα release in co-cultures with naïve allogeneic CD4+ T cells. Finally, immunohistochemical analyses revealed increased numbers of mature CD86+ DCs in granuloma-containing airway mucosal biopsies from sarcoidosis patients. Conclusion Taken together, these finding implicate increased local DC activation in granuloma formation or maintenance in pulmonary sarcoidosis.

  13. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  14. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  15. Morphology and ontogeny of dendritic cells in rats at different development periods

    Institute of Scientific and Technical Information of China (English)

    Juan Gao; Hua-Mei Yang; Jian-Xin Zhu; Tong-Xin Chen; Zhen-Juan He

    2009-01-01

    AIM: To study the morphology and ontogeny of dendritic cells of Peyer's patches in rats at different development periods.METHODS: The morphometric and flow cytometric analyses were performed to detect all the parameters of villous-crypts axis and the number of OX62+DC,OX62+CD4+SIRP+DC, and OX62+CD4-SIRP-DC in the small intestine in different groups of rats. The relationship between the parameters of villous-axis and the number of DC and DC subtype were analyzed.RESULTS: All morphometric parameters changed significantly with the development of pups in the different age groups ( F = 10.751, 12.374, 16.527,5.291, 3.486; P = 0.000, 0.000, 0.000, 0.001, 0.015).Villous height levels were unstable and increased from 115.24 μm to 140.43 μm as early as 3 wk postpartum.Villous area increased significantly between 5 and 7 wk postpartum, peeked up to 13 817.60 μm2 at 7 wk postpartum. Villous height and crypt depth ratios were relatively stable and increased significantly from 5.536, P = 0.0013). OX62+CD4+SIRP+DC subset levels detected in single-cell suspensions of rat total Peyer's patch dendritic cells (PP-DCs) increased significantly 2.07% 9-11 wk postpartum ( F = 7.216, P = 0.005).CONCLUSION: This study confirms the agerelated changes in villous-crypt axis differentiation in the small intestine. Simultaneously, there are also development and maturation in rat PP-DCs phenotypic expression. Furthermore, the morphological changes of intestinal mucosa and the development of immune cells (especially DC) peaked at 9-11 wk postpartum,indicating that the intestinal mucosae reached a relatively mature state at 11 wk postpartum.

  16. Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function.

    Directory of Open Access Journals (Sweden)

    John Wei

    Full Text Available Lipopolysaccharide (LPS, a component of gram-negative bacterial cell walls, has been shown to have a strong adjuvant effect towards inhaled antigens contributing to airway inflammation. Isoflavones are anti-inflammatory molecules present in abundant quantities in soybeans. We investigated the effect of isoflavones on human dendritic cell (DC activation via LPS stimulation and subsequent DC-mediated effector cell function both in vitro and in a mouse model of upper airway inflammation. Human monocyte-derived DCs (MDDC were matured with LPS (or TNF-α +/- isoflavones (genistein or daidzein. The surface expression levels of DC activation markers were analyzed by flow cytometry. Mature DCs +/- isoflavones were washed and cultured with freshly-isolated allogenic naïve CD4⁺ T cells for 5 days or with autologous natural killer (NK cells for 2 hours. The percentages of proliferating IFN-γ⁺ CD4⁺ T cells and cytokine levels in culture supernatants were assessed. NK cell degranulation and DC cytotoxicity were measured by flow cytometry. Isoflavones significantly suppressed the activation-induced expression of DC maturation markers (CD83, CD80, CD86 and MHC class I but not MHC class II molecules in vitro. Isoflavone treatment inhibited the ability of LPS-DCs to induce IFN-γ in CD4⁺ T cells. NK cell degranulation and the percentage of dead DCs were significantly increased in isoflavone-treated DC-NK co-culture experiments. Dietary isoflavones suppressed the mucosal immune response to intra-nasal sensitization of mice to ovalbumin. Similar results were obtained when isoflavones were co-administered during sensitization. These results demonstrate that soybean isoflavones suppress immune sensitization by suppressing DC-maturation and its subsequent DC-mediated effector cell functions.

  17. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function

    Science.gov (United States)

    Laffont, Sophie; Seillet, Cyril; Guéry, Jean-Charles

    2017-01-01

    Autoimmunity, infectious diseases and cancer affect women and men differently. Because they tend to develop more vigorous adaptive immune responses than men, women are less susceptible to some infectious diseases but also at higher risk of autoimmunity. The regulation of immune responses by sex-dependent factors probably involves several non-redundant mechanisms. A privileged area of study, however, concerns the role of sex steroid hormones in the biology of innate immune cells, especially dendritic cells (DCs). In recent years, our understanding of the lineage origin of DC populations has expanded, and the lineage-committing transcription factors shaping peripheral DC subsets have been identified. Both progenitor cells and mature DC subsets express estrogen receptors (ERs), which are ligand-dependent transcription factors. This suggests that estrogens may contribute to the reported sex differences in immunity by regulating DC biology. Here, we review the recent literature and highlight evidence that estrogen-dependent activation of ERα regulates the development or the functional responses of particular DC subsets. The in vitro model of GM-CSF-induced DC differentiation shows that CD11c+ CD11bint Ly6cneg cells depend on ERα activation by estrogen for their development, and for the acquisition of competence to activate naive CD4+ T lymphocytes and mount a robust pro-inflammatory cytokine response to CD40 stimulation. In this model, estrogen signaling in conjunction with GM-CSF is necessary to promote early interferon regulatory factor (Irf)-4 expression in macrophage-DC progenitors and their subsequent differentiation into IRF-4hi CD11c+ CD11bint Ly6cneg cells, closely related to the cDC2 subset. The Flt3L-induced model of DC differentiation in turn shows that ERα signaling promotes the development of conventional DC (cDC) and plasmacytoid DC (pDC) with higher capability of pro-inflammatory cytokine production in response to TLR stimulation. Likewise, cell

  18. Impact of rapamycin on phenotype and tolerogenic function of dendritic cells via intravital optical imaging

    Science.gov (United States)

    Luo, Meijie; Zhang, Zhihong

    2014-03-01

    Rapamycin (RAPA) as a unique tolerance-promoting therapeutic drug is crucial to successful clinical organ transplantation. DC (Dendritic cells) play a critical role in antigen presentation to T cells to initiate immune responses involved in tissue rejection. Although the influence of RAPA on DC differentiation and maturation had been reported by some research groups, it is still controversial and unclear right now. In addition, it is also lack of study on investigating the role of DC in DTH reaction via intravital optical imaging. Herein, we investigated the effect of rapamycin on phenotype and function of bone marrow monocyte-derived DC both in vitro and in vivo. In vitro experiments by flow cytometry (FACS) showed that DC displayed decreased cell size and lower expression levels of surface molecule CD80 induced by RAPA; Furthermore, the phagocytic ability to OVA of DC was inhibited by RAPA started from 1 h to 2 h post co-incubation, but recovered after 4 h; In addition, the capacity of DC to activate naïve OT-II T cell proliferation was also inhibited at 3 day post co-incubation, but had no effect at 5 day, the data indicated this effect was reversible when removing the drug. More importantly, the DC-T interaction was monitored both in vitro and in intravital lymph node explant, and showed that RAPA-DC had a significant lower proportion of long-lived (>15min) contacts. Thus, RAPA displayed immunosuppressive to phenotypic and functional maturation of DC, and this phenomenon induced by RAPA may favorable in the clinical organ transplantation in future.

  19. Interleukin-10 modified dendritic cells induce allo-hyporesponsiveness and prolong small intestine allograft survival

    Institute of Scientific and Technical Information of China (English)

    Min Zhu; Ming-Fa Wei; Fang Liu; Hui-Fen Shi; Guo Wang

    2003-01-01

    AIM: To investigate whether TL-10-transduced dendritic cells (DCs) could induce tolerogenicity and prolong allograft survival in rat intestinal transplantation.METHODS: Spleen-derived DCs were prepared and genetically modified by hTL-10 gene. The level of IL-10 expression was quantitated by ELTSA. DC function was assessed by MTT in mixed leukocyte reaction. Allogeneic T-cell apoptosis was examined by flow cytometric analysis. Seven days before heterotopic intestinal transplantation, 2x106 donor-derived IL-10-DC were injected intravenously, then transplantation was performed between SD donor and Wistar recipient.RESULTS: Compared with untransduced DC, IL-10-DC could suppress allogeneic mixed leukocyte reaction (MLR). The inhibitory effect was the most striking with the stimulator/effector (S/F) ratio of 1:10. The inhibition rate was 33.25 %,41.19 % (P<0.01) and 22.92 % with the S/E ratio of 1:1,1:10 and 1:50 respectively. At 48 hours and 72 hours by flow cytometry counting, apoptotic T cells responded to IL-10-DC in MLR were 13.8 % and 30.1%, while untransduced group did not undergo significant apoptosis (P<0.05). IL-10-DC pretreated recipients had a moderate survival prolongation with a mean allograft survival of 19.8 days (P<0.01),compared with 7.3±2.4 days in control group and 8.3±2.9days in untransduced DC group. Rejection occurred in the control group within three days. The difference between untreated DC group and control group was not significant.CONCLUSION: IL-10-DC can induce allogenic T-cell hyporesponsiveness in vitro and apoptosis may be involved in it. IL-10-DC pretreatment can prolong intestinal allograft survival in the recipient.

  20. Fusions of Dendritic Cells and C6 Cells Transfected with TGF-β1 Antisense in Treatment of Intracranial Gliomas

    Institute of Scientific and Technical Information of China (English)

    Jin Gui-shan; Liu Fu-sheng; Chai Qi; Wang Jian-jao; Li Jun-hua

    2007-01-01

    Objective: To investigate the immunotherapy efficacy of fusion cells (dendritic-C6anti-TGF-β1 cells) in the treatment of intracranial gliomas. Methods: Dendritic cells were isolated from rat bone-marrow precursors stimulated in vitro with granulocyte-macrophage colony-stimulating factor (GM-CSF) and Interleukin-4 (IL-4). C6anti-TGF-β1 cells originally from C6 cell line of a rat glioblastoma were transfected with plasmid of TGF-β1 anti-sense gene. Fusions of dendritic cells and C6anti-TGF-β1 cells were prepared by polyethylene glycol (PEG). The DC/C6anti-TGF-β1 fusion cells were observed and confirmed by light microscopy and scanning electron microscopy. Experimental rats were divided into three groups at random: C6 cells (Ⅰ), dendritic-C6anti-TGF-β1 fusion cells and C6 cells (Ⅱ) and IMDM medium only (Ⅲ). The cells were injected into right parietal lobe region of the rat with stereotaxic technique. Histology, tumor necrosis and survival time were evaluated. Results: Compared with the rats that received C6 cells (survival median time was less than 20 days, tumor region was seen in all fields of observed), the rats injected with dendritic-C6anti-TGF-β1 fusion cells and C6 cells got a more prolonged life span (more than 59 days), as well as less tumor region (5.01%-6.2%). There was no tumor necrosis, but some glias were seen in surroundings. All rats were survived and no necrosis was observed in negative control group. Statistical analysis showed that group Ⅱ had significant difference compared with group Ⅰ. Conclusions: Dendritic-C6anti-TGF-β1 fusion cells could prolong the life span of rats, providing a strategy to achieve an antitumor response against tumors in the central nervous system.

  1. Lack of CCR5 on dendritic cells promotes a proinflammatory environment in submandibular glands of the NOD mouse

    NARCIS (Netherlands)

    M.E. Wildenberg; C.G. van Helden-Meeuwsen; J.P. van de Merwe (Joop); C. Moreno (Christophe); H.A. Drexhage (Hemmo); M.A. Versnel (Marjan)

    2008-01-01

    textabstractSjögren's syndrome is an autoimmune disease characterized by lymphocytic infiltration of the salivary glands. In the NOD mouse, a model for this disease, the development of lymphocytic infiltrates in the salivary glands is preceded by an accumulation of dendritic cells (DC). Given the ke

  2. Effect of foot-and-mouth disease virus on the frequency, phenotype and function of circulating dendritic cells in cattle

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes one of the most devastating diseases in cloven-hoofed animals. Disease symptoms in FMDV-infected animals appear within 2 to 3 days of exposure. Dendritic cells (DC) play an essential role in protective immune responses agai...

  3. An improved protocol for generation of immuno-potent dendritic cells through direct electroporation of CD14+monocytes

    NARCIS (Netherlands)

    Milano, Francesca; van Baal, Jantine W. P. M.; Rygiel, Agnieszka M.; Bergman, Jacques J. G. H. M.; Van Deventer, Sander J. H.; Kapsenberg, Martien L.; Peppelenbosch, Maikel P.; Krishnadath, Kausilia K.

    2007-01-01

    In this study we demonstrate a novel protocol showing that electroporation of CD14+ monocytes directly isolated from blood with green fluorescent protein (GFP) RNA results in a 3-fold higher yield of antigen presenting dendritic cells (DCs) when compared to conventional methods employing immature DC

  4. Comparison of two in vitro dendritic cell maturation models for screening contact sensitizers using a panel of methacrylates.

    NARCIS (Netherlands)

    Rustemeyer, T.; Preuss, M; Blomberg - van der Flier, von B.M.E.; Das, PK; Scheper, R.J.

    2003-01-01

    Allergen-induced emigration and maturation of dendritic cells (DC) are pivotal steps in sparking off allergic contact dermatitis. In vitro models, reflecting these steps, may provide tools for assessment of sensitizing capacities of putative contact allergens. Here, we evaluated the applicability of

  5. Tetraspanin-3 regulates protective immunity against Eimera tenella infection following immunization with dendritic cell-derived exosomes

    Science.gov (United States)

    The effects of immunization with dendritic cell (DC) exosomes, which had been incubated or non-incubated with an anti-tetraspanin-3 (Tspan-3) blocking antibody (Ab), were studied using an experimental model of Eimeria tenella avian coccidiosis. Purified exosomes from cecal tonsil and splenic DCs exp...

  6. Proteome analysis demonstrates profound alterations in human dendritic cell nature by TX527, an analogue of vitamin D

    DEFF Research Database (Denmark)

    Ferreira, G. B.; van Etten, E.; Lage, K.

    2009-01-01

    Structural analogues of vitamin D have been put forward as therapeutic agents able to exploit the immunomodulatory effects of vitamin D, without its undesired calcemic side effects. We have demonstrated that TX527 affects dendritic cell (DC) maturation in vitro, resulting in the generation of a t...

  7. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells.

    Science.gov (United States)

    Izquierdo-Useros, Nuria; Esteban, Olga; Rodriguez-Plata, Maria T; Erkizia, Itziar; Prado, Julia G; Blanco, Julià; García-Parajo, Maria F; Martinez-Picado, Javier

    2011-12-01

    Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression.

  8. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1

    Directory of Open Access Journals (Sweden)

    Helen eSingleton

    2016-06-01

    Full Text Available Monocyte-derived macrophages (MoMØ and monocyte-derived dendritic cells (MoDC are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV is known to infect myeloid cells, such as macrophages (MØ and dendritic cells (DC. Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated monocyte-derived macrophages (MoMØ were stimulated with activators for classical (M1 or alternative (M2 activation. GM-CSF and IL-4 generated monocyte-derived dendritic cells (MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells towards PRRSV-1 infection.

  9. Excretory-secretory products (ESP) from Fasciola hepatica induce tolerogenic properties in myeloid dendritic cells.

    Science.gov (United States)

    Falcón, Cristian; Carranza, Franco; Martínez, Fernando F; Knubel, Carolina P; Masih, Diana T; Motrán, Claudia C; Cervi, Laura

    2010-09-15

    Fasciola hepatica is a helminth trematode that migrates through the host tissues until reaching bile ducts where it becomes an adult. During its migration the parasite releases different excretory-secretory products (ESP), which are in contact with the immune system. In this study, we focused on the effect of ESP on the maturation and function of murine bone marrow derived-dendritic cells (DC). We found that the treatment of DC with ESP failed to induce a classical maturation of these cells, since ESP alone did not activate DC to produce any cytokines, although they impaired the ability of DC to be activated by TLR ligands and also their capacity to stimulate an allospecific response. In addition, using an in vitro ovalbumin peptide-restricted priming assay, ESP-treated DC exhibited a capacity to drive Th2 and regulatory T cell (Treg) polarization of CD4(+) cells from DO11.10 transgenic mice. This was characterized by increased IL-4, IL-5, IL-10 and TGF-beta production and the expansion of CD4(+)CD25(+)Foxp3(+) cells. Our results support the hypothesis that ESP from F. hepatica modulate the maturation and function of DC as part of a generalized immunosuppressive mechanism that involves a bias towards a Th2 response and Treg development.

  10. High Efficiency Interleaved Active Clamped Dc-Dc Converter with Fuel Cell for High Voltage Applications

    Directory of Open Access Journals (Sweden)

    Sona P

    2014-02-01

    Full Text Available A high efficiency interleaved ZVS active clamped current fed dc-dc converter is proposed in this paper specially used for fuel cell applications. As the fuel cell output is very low we are in need of a step up dc-dc converter. Here a current fed dc-dc converter is used. Two current fed dc-dc converters are interleaved by connecting their inputs in parallel and outputs in series. With this proposed methodology input current ripples in the fuel cell stacks can be reduced and a regulated output voltage ripples can be obtained. The active clamping circuit used in this model absorbs the turn off voltage spikes hence low voltage devices with low on state resistance can be used.Voltage doubler circuits will give double the output voltage than normal with smaller transformer turns ratio and flexibility. The proposed method is simulated in MATLAB for verifying the accuracy of the proposed design.

  11. Studies on the control mechanism and the degenerative immune function of dendritic cells using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Sung Tae; Kim, Jong Jin; Choi, Ji Na; Park, Jung Eun; Jeong, Young Ran [Sunchon National University, Sunchon (Korea, Republic of)

    2010-05-15

    Dendritic cells are actively used as cellular adjuvant in cancer immunotherapy. However, although DC immunotherapies primarily target the elderly population, little is known about the effect of aging on DC functions. Here, we compared the T-cell stimulation, cytokine production, and costimulatory molecule expression of spleen or bone marrow-derived CD11c{sup +} DCs of C57BL/6 mice. In the first year, we compared various function of dendritic cells isolated from young and gamma-irradiated 57BL/6 mice(5 weeks after {gamma}-radiation) for the development of aging models using radiation. In the second year, we also compared the function of spleen- and bone marrow-derived dendritic cells of young(2-3 months) and old(23-24 months) 57BL/6 mice. And we studied the differences of spleen- and bone marrow-derived dendritic cells of young and gamma-irradiated 57BL/6 mice(2, 4, 6 months after {gamma}-radiation) for the development of aging models in third year. And we obtained various differences between spleen- and bone marrow-derived dendritic cells of normal and old(23-24 months) or {gamma}-irradiated 57BL/6 mice. It is possible to use our results as age-associated model for modulation of the declined immunity and hematopoiesis for treatment of cancer, adult diseases and stress in aging. Such studies on the mechanism of aging model would further lead to new avenues for the development of functional foods which effect such as pathogenesis, inflammatory and autoimmune disorders. It will contributed to activation of related industry conforming quality and diversity of radiation industry. The techniques developed in our research may provide novel therapeutic modalities for age-associated immune dysfunctions

  12. Monitoring the initiation and kinetics of human dendritic cell-induced polarization of autologous naive CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Tammy Oth

    Full Text Available A crucial step in generating de novo immune responses is the polarization of naive cognate CD4+ T cells by pathogen-triggered dendritic cells (DC. In the human setting, standardized DC-dependent systems are lacking to study molecular events during the initiation of a naive CD4+ T cell response. We developed a TCR-restricted assay to compare different pathogen-triggered human DC for their capacities to instruct functional differentiation of autologous, naive CD4+ T cells. We demonstrated that this methodology can be applied to compare differently matured DC in terms of kinetics, direction, and magnitude of the naive CD4+ T cell response. Furthermore, we showed the applicability of this assay to study the T cell polarizing capacity of low-frequency blood-derived DC populations directly isolated ex vivo. This methodology for addressing APC-dependent instruction of naive CD4+ T cells in a human autologous setting will provide researchers with a valuable tool to gain more insight into molecular mechanisms occurring in the early phase of T cell polarization. In addition, it may also allow the study of pharmacological agents on DC-dependent T cell polarization in the human system.

  13. Triggering of dendritic cell apoptosis by xanthohumol.

    Science.gov (United States)

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  14. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism.

    Science.gov (United States)

    Welty, Nathan E; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J; Igyártó, Botond Z; Kaplan, Daniel H

    2013-09-23

    Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103(+) subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103(+)CD11b(+) LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC-T cell interactions were not required for Th17 development, as this response was intact in huLangerin-Cre I-Aβ(fl/fl) mice. In contrast, responses to intestinal infection or flagellin administration were unaffected by the absence of CD103(+)CD11b(+) DCs. huLangerin-DTA x BatF3(-/-) mice lacked both CD103(+) LP DC subsets, resulting in defective gut homing and fewer LP T reg cells. Despite these defects in LP DCs and resident T cells, we did not observe alterations of intestinal microbial communities. Thus, CD103(+) LP DC subsets control T cell homeostasis through both nonredundant and overlapping mechanisms.

  15. Liver dendritic cells present bacterial antigens and produce cytokines upon Salmonella encounter.

    Science.gov (United States)

    Johansson, Cecilia; Wick, Mary Jo

    2004-02-15

    The capacity of murine liver dendritic cells (DC) to present bacterial Ags and produce cytokines after encounter with Salmonella was studied. Freshly isolated, nonparenchymal liver CD11c(+) cells had heterogeneous expression of MHC class II and CD11b and a low level of CD40 and CD86 expression. Characterization of liver DC subsets revealed that CD8alpha(-)CD4(-) double negative cells constituted the majority of liver CD11c(+) ( approximately 85%) with few cells expressing CD8alpha or CD4. Flow cytometry analysis of freshly isolated CD11c(+) cells enriched from the liver and cocultured with Salmonella expressing green fluorescent protein (GFP) showed that CD11c(+) MHC class II(high) cells had a greater capacity to internalize Salmonella relative to CD11c(+) MHC class II(low) cells. Moreover, both CD8alpha(-) and CD8alpha(+) liver DC internalized bacteria with similar efficiency after both in vitro and in vivo infection. CD11c(+) cells enriched from the liver could also process Salmonella for peptide presentation on MHC class I and class II to primary, Ag-specific T cells after internalization requiring actin cytoskeletal rearrangements. Flow cytometry analysis of liver CD11c(+) cells infected with Salmonella expressing GFP showed that both CD8alpha(-) and CD8alpha(+) DC produced IL-12p40 and TNF-alpha. The majority of cytokine-positive cells did not contain bacteria (GFP(-)) whereas only a minor fraction of cytokine-positive cells were GFP(+). Furthermore, only approximately 30-50% of liver DC containing bacteria (GFP(+)) produced cytokines. Thus, liver DC can internalize and process Salmonella for peptide presentation to CD4(+) and CD8(+) T cells and elicit proinflammatory cytokine production upon Salmonella encounter, suggesting that DC in the liver may contribute to immunity against hepatotropic bacteria.

  16. Synergistic effect between amoxicillin and TLR ligands on dendritic cells from amoxicillin-delayed allergic patients.

    Directory of Open Access Journals (Sweden)

    Maria J Sanchez-Quintero

    Full Text Available Amoxicillin, a low-molecular-weight compound, is able to interact with dendritic cells inducing semi-maturation in vitro. Specific antigens and TLR ligands can synergistically interact with dendritic cells (DC, leading to complete maturation and more efficient T-cell stimulation. The aim of the study was to evaluate the synergistic effect of amoxicillin and the TLR2, 4 and 7/8 agonists (PAM, LPS and R848, respectively in TLR expression, DC maturation and specific T-cell response in patients with delayed-type hypersensitivity (DTH reactions to amoxicillin. Monocyte-derived DC from 15 patients with DTH to amoxicillin and 15 controls were cultured with amoxicillin in the presence or absence of TLR2, 4 and 7/8 agonists (PAM, LPS and R848, respectively. We studied TLR1-9 gene expression by RT-qPCR, and DC maturation, lymphocyte proliferation and cytokine production by flow cytometry. DC from both patients and controls expressed all TLRs except TLR9. The amoxicillin plus TLR2/4 or TLR7/8 ligands showed significant differences, mainly in patients: AX+PAM+LPS induced a decrease in TLR2 and AX+R848 in TLR2, 4, 7 and 8 mRNA levels. AX+PAM+LPS significantly increased the percentage of maturation in patients (75% vs. controls (40% (p=0.036 and T-cell proliferation (80.7% vs. 27.3% of cases; p=0.001. Moreover, the combinations AX+PAM+LPS and AX+R848 produced a significant increase in IL-12p70 during both DC maturation and T-cell proliferation. These results indicate that in amoxicillin-induced maculopapular exanthema, the presence of different TLR agonists could be critical for the induction of the innate and adaptive immune responses and this should be taken into account when evaluating allergic reactions to these drugs.

  17. Brucella discriminates between mouse dendritic cell subsets upon in vitro infection.

    Science.gov (United States)

    Papadopoulos, Alexia; Gagnaire, Aurélie; Degos, Clara; de Chastellier, Chantal; Gorvel, Jean-Pierre

    2016-01-01

    Brucella is a Gram-negative bacterium responsible for brucellosis, a worldwide re-emerging zoonosis. Brucella has been shown to infect and replicate within Granulocyte macrophage colony-stimulating factor (GMCSF) in vitro grown bone marrow-derived dendritic cells (BMDC). In this cell model, Brucella can efficiently control BMDC maturation. However, it has been shown that Brucella infection in vivo induces spleen dendritic cells (DC) migration and maturation. As DCs form a complex network composed by several subpopulations, differences observed may be due to different interactions between Brucella and DC subsets. Here, we compare Brucella interaction with several in vitro BMDC models. The present study shows that Brucella is capable of replicating in all the BMDC models tested with a high infection rate at early time points in GMCSF-IL15 DCs and Flt3l DCs. GMCSF-IL15 DCs and Flt3l DCs are more activated than the other studied DC models and consequently intracellular bacteria are not efficiently targeted to the ER replicative niche. Interestingly, GMCSF-DC and GMCSF-Flt3l DC response to infection is comparable. However, the key difference between these 2 models concerns IL10 secretion by GMCSF DCs observed at 48 h post-infection. IL10 secretion can explain the weak secretion of IL12p70 and TNFα in the GMCSF-DC model and the low level of maturation observed when compared to GMCSF-IL15 DCs and Flt3l DCs. These models provide good tools to understand how Brucella induce DC maturation in vivo and may lead to new therapeutic design using DCs as cellular vaccines capable of enhancing immune response against pathogens.

  18. FOXO1 regulates dendritic cell activity through ICAM-1 and CCR7.

    Science.gov (United States)

    Dong, Guangyu; Wang, Yu; Xiao, Wenmei; Pacios Pujado, Sandra; Xu, Fanxing; Tian, Chen; Xiao, E; Choi, Yongwon; Graves, Dana T

    2015-04-15

    The transcription factor FOXO1 regulates cell function and is expressed in dendritic cells (DCs). We investigated the role of FOXO1 in activating DCs to stimulate a lymphocyte response to bacteria. We show that bacteria induce FOXO1 nuclear localization through the MAPK pathway and demonstrate that FOXO1 is needed for DC activation of lymphocytes in vivo. This occurs through FOXO1 regulation of DC phagocytosis, chemotaxis, and DC-lymphocyte binding. FOXO1 induces DC activity by regulating ICAM-1 and CCR7. FOXO1 binds to the CCR7 and ICAM-1 promoters, stimulates CCR7 and ICAM-1 transcriptional activity, and regulates their expression. This is functionally important because transfection of DCs from FOXO1-deleted CD11c.Cre(+)FOXO1(L/L) mice with an ICAM-1-expressing plasmid rescues the negative effect of FOXO1 deletion on DC bacterial phagocytosis and chemotaxis. Rescue with both CCR7 and ICAM-1 reverses impaired DC homing to lymph nodes in vivo when FOXO1 is deleted. Moreover, Ab production following injection of bacteria is significantly reduced with lineage-specific FOXO1 ablation. Thus, FOXO1 coordinates upregulation of DC activity through key downstream target genes that are needed for DCs to stimulate T and B lymphocytes and generate an Ab defense to bacteria.

  19. Rationale for a multimodality strategy to enhance the efficacy of dendritic cell-based cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Jashodeep eDatta

    2015-06-01

    Full Text Available Dendritic cells (DC, master antigen-presenting cells that orchestrate interactions between the adaptive and innate immune arms, are increasingly utilized in cancer immunotherapy. Despite remarkable progress in our understanding of DC immunobiology, as well as several encouraging clinical applications — such as DC-based sipuleucel-T for metastatic castration-resistant prostate cancer — clinically effective DC-based immunotherapy as monotherapy for a majority of tumors remains a distant goal. The complex interplay between diverse molecular and immune processes that govern resistance to DC-based vaccination compels a multimodality approach, encompassing a growing arsenal of antitumor agents which target these distinct processes and synergistically enhance DC function. These include antibody-based targeted molecular therapies, immune checkpoint inhibitors, therapies that inhibit immunosuppressive cellular elements, conventional cytotoxic modalities, and immune potentiating adjuvants. It is likely that in the emerging era of precision cancer therapeutics, tangible clinical benefits will only be realized with a multifaceted—and personalized—approach combining DC-based vaccination with adjunctive strategies.

  20. Immunomodulatory Effects of 1,25-Dihydroxyvitamin D3 on Dendritic Cells Promote Induction of T Cell Hyporesponsiveness to Myelin-Derived Antigens

    Directory of Open Access Journals (Sweden)

    Wai-Ping Lee

    2016-01-01

    Full Text Available While emerging evidence indicates that dendritic cells (DC play a central role in the pathogenesis of multiple sclerosis (MS, their modulation with immunoregulatory agents provides prospect as disease-modifying therapy. Our observations reveal that 1,25-dihydroxyvitamin D3 (1,25(OH2D3 treatment of monocyte-derived DC results in a semimature phenotype and anti-inflammatory cytokine profile as compared to conventional DC, in both healthy controls and MS patients. Importantly, 1,25(OH2D3-treated DC induce T cell hyporesponsiveness, as demonstrated in an allogeneic mixed leukocyte reaction. Next, following a freeze-thaw cycle, 1,25(OH2D3-treated immature DC could be recovered with a 78% yield and 75% viability. Cryopreservation did not affect the expression of membrane markers by 1,25(OH2D3-treated DC nor their capacity to induce T cell hyporesponsiveness. In addition, the T cell hyporesponsiveness induced by 1,25(OH2D3-treated DC is antigen-specific and robust since T cells retain their capacity to respond to an unrelated antigen and do not reactivate upon rechallenge with fully mature conventional DC, respectively. These observations underline the clinical potential of tolerogenic DC (tolDC to correct the immunological imbalance in MS. Furthermore, the feasibility to cryopreserve highly potent tolDC will, ultimately, contribute to the large-scale production and the widely applicable use of tolDC.

  1. Highly efficient transduction of human plasmacytoid dendritic cells without phenotypic and functional maturation

    Directory of Open Access Journals (Sweden)

    Plumas Joel

    2009-01-01

    Full Text Available Abstract Background Gene modified dendritic cells (DC are able to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific manner. Among the different DC subsets, plasmacytoid DC (pDC are well known for their ability to recognize and respond to a variety of viruses by secreting high levels of type I interferon. Methods We analyzed here, the transduction efficiency of a pDC cell line, GEN2.2, and of pDC derived from CD34+ progenitors, using lentiviral vectors (LV pseudotyped with different envelope glycoproteins such as the vesicular stomatitis virus envelope (VSVG, the gibbon ape leukaemia virus envelope (GaLV or the feline endogenous virus envelope (RD114. At the same time, we evaluated transgene expression (E-GFP reporter gene under the control of different promoters. Results We found that efficient gene transfer into pDC can be achieved with VSVG-pseudotyped lentiviral vectors (LV under the control of phoshoglycerate kinase (PGK and elongation factor-1 (EF1α promoters (28% to 90% of E-GFP+ cells, respectively in the absence of phenotypic and functional maturation. Surprisingly, promoters (desmin or synthetic C5–12 described as muscle-specific and which drive gene expression in single strand AAV vectors in gene therapy protocols were very highly active in pDC using VSVG-LV. Conclusion Taken together, our results indicate that LV vectors can serve to design pDC-based vaccines in humans, and they are also useful in vitro to evaluate the immunogenicity of the vector preparations, and the specificity and safety of given promoters used in gene therapy protocols.

  2. A novel cell subset:Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells(IKDCs).IKDCs not only secret type I and type II interferons to recognize and kill tumor cells effectively, but also express MHC-II molecules to present antigens.Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  3. Intradermal application of vitamin D3 increases migration of CD14 (+) dermal dendritic cells and promotes the development of Foxp3 (+) regulatory T cells

    NARCIS (Netherlands)

    Bakdash, G.; Schneider, L.P.; Capel, T.M. van; Kapsenberg, M.L.; Teunissen, M.B.M.; Jong, E.C. de

    2013-01-01

    The active form of vitamin D3 (VitD) is a potent immunosuppressive drug. Its effects are mediated in part through dendritic cells (DCs) that promote the development of regulatory T cells (Tregs). However, it remains elusive how VitD would influence the different human skin DC subsets, e.g., CD1a (+)

  4. Intradermal application of vitamin D3 increases migration of CD14 (+) dermal dendritic cells and promotes the development of Foxp3 (+) regulatory T cells

    NARCIS (Netherlands)

    Bakdash, G.; Schneider, L.P.; Capel, T.M. van; Kapsenberg, M.L.; Teunissen, M.B.M.; Jon