WorldWideScience

Sample records for demonstration vadose

  1. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    International Nuclear Information System (INIS)

    FIELD, J.G.

    1999-01-01

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will provide additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well

  2. T Tank Farm Interim Surface Barrier Demonstration -- Vadose Zone Monitoring FY07 Report

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Strickland, Christopher E.; Keller, Jason M.; Wittreich, Curtis D.; Sydnor, Harold A.

    2008-01-01

    CH2M HILL Hanford Group, Inc. is currently in the process of constructing a temporary surface barrier over a portion of the T Tank Farm as part of the T farm Interim Surface Barrier Demonstration Project. The surface barrier is designed to prevent the infiltration of precipitation into the contaminated soil zone created by the Tank T-106 leak and minimize movement of the contamination. As part of the demonstration effort, vadose zone moisture monitoring is being performed to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered and remotely-controlled system was installed to continuously monitor soil water conditions in four instrument nests (i.e., A, B, C, and D) and the site meteorological condition. Each instrument nest was composed of a capacitance probe with multiple sensors, multiple heat-dissipation units, a neutron probe access tube and a datalogger. Nests A and B also contained a drain gauge each. The principle variables monitored for this purpose are soil-water content, soil-water pressure, and soil-water flux. In addition to these, soil temperature, precipitation, and air temperature are measured. Data from each of the dataloggers were transmitted remotely to the receiving computer. The neutron probe access tube was used to perform quarterly manual measurements of soil-water content using a neutron probe. This monitoring system was used to assess the soil water conditions in the soil outside and within the footprint of the surface barrier to be emplaced in the Hanford T Tank Farm. Data to date is baseline under the condition without the interim surface barrier in place. All the instruments except the two drain gauges were functional in FY07. The capacitance-probe measurements showed that the soil-moisture content at relatively shallow depths (e.g., 0.6 and 0.9 m) was increasing since October 2006 and reached the highest in early January 2007 followed by a slight decrease. Soil-moisture contents at the depths of 1.3 m and

  3. T-TY Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring Plan

    International Nuclear Information System (INIS)

    Zhang, Z.F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank of the 241-T Tank Farm in 1973. Five tanks are assumed to have leaked in the TY Farm. Many of the contaminants from those leaks still reside within the vadose zone within the T and TY Tank Farms. The Department of Energy's Office of River Protection seeks to minimize the movement of these contaminant plumes by placing interim barriers on the ground surface. Such barriers are expected to prevent infiltrating water from reaching the plumes and moving them further. The soil water regime is monitored to determine the effectiveness of the interim surface barriers. Soil-water content and water pressure are monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. Four instrument nests were installed in the T Farm in fiscal year (FY) 2006 and FY2007; two nests were installed in the TY Farm in FY2010. Each instrument nest contains a neutron probe access tube, a capacitance probe, and four heat-dissipation units. A meteorological station has been installed at the north side of the fence of the T Farm. This document summarizes the monitoring methods, the instrument calibration and installation, and the vadose zone monitoring plan for interim barriers in T farm and TY Farm.

  4. T Tank Farm Interim Surface Barrier Demonstration--Vadose Zone Monitoring Plan

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Keller, Jason M.; Strickland, Christopher E.

    2007-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim barrier on the surface. Such a barrier is expected to prevent infiltrating water from reaching the plume and moving it further. A plan has been prepared to monitor and determine the effectiveness of the interim surface barrier. Soil water content and water pressure will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests were installed. Each instrument nest contains a neutron probe access tube, a capacitance probe, four heat-dissipation units, and a drain gauge to measure soil water flux. A meteorological station has been installed outside of the fence. In fiscal year 2007, two additional instrument nests are planned to be installed beneath the proposed barrier.

  5. Advanced Vadose Zone Simulations Using TOUGH

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Doughty, C.; Kowalsky, M.B.; Moridis, G.J.; Pan,L.; Xu, T.; Zhang, Y.; Pruess, K.

    2007-02-01

    The vadose zone can be characterized as a complex subsurfacesystem in which intricate physical and biogeochemical processes occur inresponse to a variety of natural forcings and human activities. Thismakes it difficult to describe, understand, and predict the behavior ofthis specific subsurface system. The TOUGH nonisothermal multiphase flowsimulators are well-suited to perform advanced vadose zone studies. Theconceptual models underlying the TOUGH simulators are capable ofrepresenting features specific to the vadose zone, and of addressing avariety of coupled phenomena. Moreover, the simulators are integratedinto software tools that enable advanced data analysis, optimization, andsystem-level modeling. We discuss fundamental and computationalchallenges in simulating vadose zone processes, review recent advances inmodeling such systems, and demonstrate some capabilities of the TOUGHsuite of codes using illustrative examples.

  6. Optimization of remediation strategies using vadose zone monitoring systems

    Science.gov (United States)

    Dahan, Ofer

    2016-04-01

    the unsaturated zone including enhanced bioremediation of contaminated deep vadose zone (40 m depth). Manipulating subsurface conditions for enhanced bioremediation was demonstrated through two remediation projects. One site is characterized by 20 m deep vadose zone that is contaminated with gasoline products and the other is a 40 m deep vadose zone that is contaminated with perchlorate. In both cases temporal variation of the sediment water content as well as the variations in the vadose zone chemical and isotopic composition allowed real time detection of water flow velocities, contaminants transport rates and bio-degradation degree. Results and conclusions from each wetting cycle were used to improve the following wetting cycles in order to optimize contaminants degradation conditions while minimizing leaching of contaminants to the groundwater.

  7. Effect of vadose zone on the steady-state leakage rates from landfill barrier systems

    International Nuclear Information System (INIS)

    Celik, B.; Rowe, R.K.; Unlue, K.

    2009-01-01

    Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10 m and a fine textured vadose zone thickness of about 5 m. Therefore, the fine and coarse textured vadose zones thicker than about 5 m and 10 m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers

  8. Vadose Zone Transport Field Study: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste

  9. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    Science.gov (United States)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  10. Vadose Zone Journal: The first ten years

    NARCIS (Netherlands)

    Vrugt, J.A.; Or, D.; Young, M.H.

    2013-01-01

    Celebrating ten years of publication, the authors introduce a special section commemorating the anniversary of Vadose Zone Journal and reviewing the journal’s role in an evolving understanding of vadose zone science.

  11. Cave breakdown by vadose weathering.

    Directory of Open Access Journals (Sweden)

    Osborne R. Armstrong L.

    2002-01-01

    Full Text Available Vadose weathering is a significant mechanism for initiating breakdown in caves. Vadose weathering of ore bodies, mineral veins, palaeokarst deposits, non-carbonate keystones and impure, altered or fractured bedrock, which is intersected by caves, will frequently result in breakdown. Breakdown is an active, ongoing process. Breakdown occurs throughout the vadose zone, and is not restricted to large diameter passages, or to cave ceilings. The surfaces of disarticulated blocks are commonly coated, rather than having fresh broken faces, and blocks continue to disintegrate after separating from the bedrock. Not only gypsum, but also hydromagnesite and aragonite are responsible for crystal wedging. It is impossible to study or identify potential breakdown foci by surface surveys alone, in-cave observation and mapping are essential.

  12. Installation and sampling of vadose zone monitoring devices

    International Nuclear Information System (INIS)

    Bergeron, S.M.; Strickland, D.J.; Pearson, R.

    1987-10-01

    A vadose zone monitoring system was installed in a sanitary landfill near the Y-12 facility on the Department of Energy's Oak Ridge, Tennessee Reservation. The work was completed as part of the LLWDDD program to develop, design, and demonstrate new low level radioactive waste disposal monitoring methods. The objective of the project was to evaluate the performance of three types of vadose zone samplers within a similar hydrogeologic environment for use as early detection monitoring devices. The three different types of samplers included the Soil Moisture Equipment Corporation Pressure-Vacuum samplers (Models 1920 and 1940), and the BAT Piezometer (Model MK II) manufactured by BAT Envitech, Inc. All three samplers are designed to remove soil moisture from the vadose (unsaturated) zone. Five clusters of three holes each were drilled to maximum depths of 45 ft around part of the periphery of the landfill. Three samplers, one of each type, were installed at each cluster location. Water samples were obtained from 13 of the 15 samplers and submitted to Martin Marietta for analysis. All three samplers performed satisfactorily when considering ease of installation, required in-hole development, and ability to collect water samples from the vadose zone. Advantages and disadvantages of each sampler type are discussed in the main report

  13. DEEP VADOSE ZONE TREATABILITY TEST PLAN

    International Nuclear Information System (INIS)

    Chronister, G.B.; Truex, M.J.

    2009-01-01

    (sm b ullet) Treatability test plan published in 2008 (sm b ullet) Outlines technology treatability activities for evaluating application of in situ technologies and surface barriers to deep vadose zone contamination (technetium and uranium) (sm b ullet) Key elements - Desiccation testing - Testing of gas-delivered reactants for in situ treatment of uranium - Evaluating surface barrier application to deep vadose zone - Evaluating in situ grouting and soil flushing

  14. Vadose zone characterisation at industrial contaminated sites

    OpenAIRE

    Fernandez de Vera, Natalia; Dahan, Ofer; Dassargues, Alain; Vanclooster, Marnik; Nguyen, Frédéric; Brouyère, Serge

    2015-01-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. To overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in ...

  15. Foam-Delivery of Remedial Amendments for Enhanced Vadose Zone Metals and Radionuclides Remediation

    International Nuclear Information System (INIS)

    Zhong, L.; Szecsody, J.E.; Dresel, P.E.; Zhang, Z.F.; Qafoku, N.P.

    2009-01-01

    significant Cr(VI) in-situ immobilization. Foam delivery of citrate-phosphate mixture to vadose zone sediments for apatite precipitation was also tested in preliminary column and 2-D flow cell tests. The results of this study demonstrated for the first time that foam injection can be successfully used for CPS delivery and that foam-delivered CPS can be applied for Cr(VI) immobilization in contaminated vadose zones. A second solution (Ca-citrate-PO 4 ) was also foam-delivered into vadose zone sediments. This sediment will result in precipitation of apatite, which then adsorbs and incorporates Sr (and Sr-90) into the structure. 1-D and 2-D foam injection experiments resulted in a wide area of apatite precipitate. (authors)

  16. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    International Nuclear Information System (INIS)

    Fayer, J.M.; Freedman, V.L.; Ward, A.L.; Chronister, G.B.

    2010-01-01

    tasks to achieve those outcomes. Full understanding of contaminant behavior in the deep vadose zone is constrained by four key data gaps: limited access; limited data; limited time; and the lack of an accepted predictive capability for determining whether surface barriers can effectively isolate deep vadose zone contaminants. Activities designed to fill these data gaps need to have these outcomes: (1) common evaluation methodology that provides a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination; (2) deep vadose zone data that characterize the lithology, the spatial distribution of moisture and contaminants, the physical, chemical, and biological process that affect the mobility of each contaminant, and the impacts to the contaminants following placement of a surface barrier; (3) subsurface monitoring to provide subsurface characterization of initial conditions and changes that occur during and following remediation activities; and (4) field observations that span years to decades to validate the evaluation methodology. A set of six proposed tasks was identified to provide information needed to address the above outcomes. The proposed tasks are: (1) Evaluation Methodology - Develop common evaluation methodology that will provide a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination. (2) Case Studies - Conduct case studies to demonstrate the applicability ofthe common evaluation methodology and provide templates for subsequent use elsewhere. Three sites expected to have conditions that would yield valuable information and experience pertinent to deep vadose zone contamination were chosen to cover a range of conditions. The sites are BC Cribs and Trenches, U Plant Cribs, and the T Farm Interim Cover. (3) Subsurface Monitoring Technologies - Evaluate minimally invasive

  17. 1999 vadose zone monitoring plan and guidance for subsequent years

    International Nuclear Information System (INIS)

    Horton, D.G.; Reidel, S.P.; Last, G.V.

    1998-08-01

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive waste in the US. The majority of the liquid waste was disposed to the soil column where much of it remains today. This document provides the rationale and general framework for vadose zone monitoring at cribs, ditches, trenches and other disposal facilities to detect new sources of contamination and track the movement of existing contamination in the vadose zone for the protection of groundwater. The document provides guidance for subsequent site-specific vadose zone monitoring plans and includes a brief description of past vadose monitoring activities (Chapter 3); the results of the Data Quality Objective process used for this plan (Chapter 4); a prioritization of liquid waste disposal sites for vadose monitoring (Chapter 5 and Appendix B); a general Monitoring and Analysis Plan (Chapter 6); a general Quality Assurance Project Plan (Appendix A), and a description of vadose monitoring activities planned for FY 1999 (Appendix C)

  18. Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site

    Science.gov (United States)

    Morse, J. G.; Wellman, D. M.; Gephart, R.

    2010-12-01

    .S Department of Energy recognizes these challenges and is committed to a sustained, focused effort of continuing to apply existing technologies where feasible while investing and developing in new innovative, field-demonstrated capabilities supporting longer-term basic and applied research to establish the technical underpinning for solving intractable deep vadose zone problems and implementing final remedies. This approach will rely upon Multi-Project Teams focusing on coordinated projects across multiple DOE offices, programs, and site contractors plus the facilitation of basic and applied research investments through implementing a Deep Vadose Zone Applied Field Research Center and other scientific studies.

  19. Deficiencies in Vadose Zone Understanding at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas Ronald; Bates, Dona Louise; Bishop, Carolyn Wagoner; Heard, Robert Eugene; Hubbell, Joel Michael; Hull, Laurence Charles; Lehman, Richard Michael; Magnuson, Swen O; Mattson, Earl Douglas; Mccarthy, James Michael; Porro, Indrek; Ritter, Paul David; Roddy, Michael Scott; Singler, Robert Edward; Smith, Richard Paul

    2000-08-01

    Subsurface contamination in the vadose zone, that portion of the subsurface pathway between land surface and an underlying aquifer, poses environmental problems at the Idaho National Engineering and Environmental Laboratory (INEEL) in eastern Idaho and across the U.S. Department of Energy complex. Assessing potential adverse impacts from these contaminated sites requires an understanding of the mechanisms controlling contaminant transport. Currently, vadose zone experts at the INEEL cannot with confidence predict the movement of water and contaminants in the complex, heterogeneous, fractured subsurface at the INEEL, especially within the vadose zone. In the draft version (Revision 1) of the Vadose Zone Deficiencies document, deficiencies in scientific understanding of flow and transport processes in the vadose zone at the INEEL were identified and grouped into 13 categories and recommendations were provided to address each of the deficiencies. The draft document provided the basis for an INEEL Vadose Zone Workshop that was conducted October 20 and 21, 1999, in Idaho Falls, Idaho. The workshop was conducted to group and rank the previously identified deficiencies and for the subsequent development of science plans to address the deficiencies that limit reliable predictions of water and contaminant movement in the subsurface. The workshop participants, comprising INEEL and scientists and project managers and non-INEEL scientists knowledgeable about the vadose zone, developed science- and technology-based recommendations derived through a series of technical sessions at the workshop. In this document, the final version of the Vadose Zone Deficiencies document, the draft document has been incorporated, largely intact, as well as the results from the workshop. The workshop participants grouped the deficiencies in vadose zone understanding at the INEEL into seven categories. These seven categories will be the focus areas of five science plans that are being developed to

  20. Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier

    Science.gov (United States)

    Zhang, Z. F.; Strickland, C. E.; Field, J. G.

    2009-12-01

    A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.

  1. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  2. An analytical model for predicting transport in a coupled vadose/phreatic system

    International Nuclear Information System (INIS)

    Tomasko, D.

    1997-05-01

    A simple analytical model is presented for predicting the transport of a contaminant in both the unsaturated (vadose) and saturated (phreatic) zones following a surficial spill. The model incorporates advection, dispersion, adsorption, and first-order decay in both zones and couples the transport processes at the water table. The governing equation is solved by using the method of Laplace transforms, with numerical inversion of the Laplace space equation for concentration. Because of the complexity of the functional form for the Laplace space solution, a numerical methodology using the real and imaginary parts of a Fourier series was implemented. To reduce conservatism in the model, dilution at the water table was also included. Verification of the model is demonstrated by its ability to reproduce the source history at the surface and to replicate appropriate one-dimensional transport through either the vadose or phreatic zone. Because of its simplicity and lack of detailed input data requirements, the model is recommended for scoping calculations

  3. Foam - novel delivery technology for remediation of vadose zone environments - 59019

    International Nuclear Information System (INIS)

    Jansik, Danielle; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Zhang, Fred; Foote, Martin; Wu, Yuxin; Hubbard, Susan

    2012-01-01

    readily penetrate low permeability zones. Although surfactant foams have been used for subsurface mobilization efforts in the oil and gas industry, thus far the concept of using foams as a delivery mechanism for transporting remedial amendments into deep vadose zone environments to stabilize metal and long-lived radionuclide contaminants has not been explored. Foam flow can be directed by pressure gradients, rather than being dominated by gravity; and foam delivery mechanisms limit the volume of water (< 5% vol.) required for remedy delivery and emplacement, thus mitigating contaminant mobilization. We will present the results of a numerical modeling and integrated laboratory-/ intermediate-scale investigation to simulate, develop, demonstrate, and monitor (i.e., advanced geophysical techniques and advanced predictive bio-markers) foam-based delivery of remedial amendments to remediate metals and radionuclides in vadose zone environments. (authors)

  4. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    International Nuclear Information System (INIS)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z.F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-01

    -scale tests will be used to bridge the gap between the small-scale foam transport studies and the field-scale demonstration. Numerical simulation studies on foam delivery under vadose conditions will be performed to simulate observed foam transport behavior under vadose zone conditions and predict the foam delivery performance at field-scale

  5. simulation of vertical water flow through vadose zone

    African Journals Online (AJOL)

    HOD

    Simulation of vertical water flow representing the release of water from the vadose zone to the aquifer of surroundings ... ground water pollution from agricultural, industrial and municipal .... Peak Flow Characteristics of Wyoming. Streams: US ...

  6. VADOSE ZONE STUDIES AT AN INDUSTRIAL CONTAMINATED SITE: THE VADOSE ZONE MONITORING SYSTEM AND CROSS-HOLE GEOPHYSICS

    OpenAIRE

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-01-01

    In situ vadose zone characterization is essential to improve risk characterization and remediation measures for soil and groundwater contamination. However, most available technologies have been developed in the context of agricultural soils. Most of these methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, they are applicable only in the first meters of soils, leaving deeper vadose zones with lack of informatio...

  7. Vadose zone drilling at the NTS

    International Nuclear Information System (INIS)

    Efurd, D.W.

    1994-01-01

    The Yucca Mountain Project has an opportunity to evaluate possible mobilization and transport of radioactive materials away from the storage horizon in the proposed repository. One scenario by which such transport could occur involves water leaving the storage area and carrying radioactive particulates of colloidal size. The colloids could move along the gas-liquid interface in partially filled fractures within the vadose zone. It should be possible to check the reality of this proposed scenario by examining ''anthropogenic analogs'' of the repository. These are sites of nuclear tests conducted in unsaturated tuff at the Nevada Test Site (NTS). We propose to drill under one or more such sites to determine if radionuclides have moved from their original confinement in the puddle- glass at the bottom of the cavity. This document examines the characteristics of an ideal test site for such a study, suggests several possible locations that have some of the desired characteristics, and recommends one of these sites for the proposed drilling

  8. Evidence of linked biogeochemical and hydrological processes in homogeneous and layered vadose zone systems

    Science.gov (United States)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2010-12-01

    flux. No such mineral bands developed in the sterilized column. As a consequence, water content in the lenses of the sterilized column was half that of the other column and flow rates through the lenses were an order of magnitude lower. This flow impedance limited the interaction and mixing of groundwater with infiltrating vadose zone water and led to the formation of geochemically distinct water masses residing in relatively close proximity to one another. Results provide a specific examples of the direct impact of biogeochemical cycling on water flow in the vadose zone and vice versa. In addition, these demonstrate that the presence of layers in vadose zone environments may be an important control on overall chemical fate and transport in subsurface systems.

  9. Global Patterns of Legacy Nitrate Storage in the Vadose Zone

    Science.gov (United States)

    Ascott, M.; Gooddy, D.; Wang, L.; Stuart, M.; Lewis, M.; Ward, R.; Binley, A. M.

    2017-12-01

    Global-scale nitrogen (N) budgets have been developed to quantify the impact of man's influence on the nitrogen cycle. However, these budgets often do not consider legacy effects such as accumulation of nitrate in the deep vadose zone. In this presentation we show that the vadose zone is an important store of nitrate which should be considered in future nitrogen budgets for effective policymaking. Using estimates of depth to groundwater and nitrate leaching for 1900-2000, we quantify for the first time the peak global storage of nitrate in the vadose zone, estimated as 605 - 1814 Teragrams (Tg). Estimates of nitrate storage are validated using previous national and basin scale estimates of N storage and observed groundwater nitrate data for North America and Europe. Nitrate accumulation per unit area is greatest in North America, China and Central and Eastern Europe where thick vadose zones are present and there is an extensive history of agriculture. In these areas the long solute travel time in the vadose zone means that the anticipated impact of changes in agricultural practices on groundwater quality may be substantially delayed. We argue that in these areas use of conventional nitrogen budget approaches is inappropriate and their continued use will lead to significant errors.

  10. A/M Area Vadose Zone Monitoring Plan (U)

    International Nuclear Information System (INIS)

    Kupar, J.; Jarosch, T.R.; Jackson, D.G. Jr.; Looney, B.B.; Jerome, K.M.; Riha, B.D.; Rossabi, J.; Van Pelt, R.S.

    1998-03-01

    Characterization and monitoring data from implementation and the first two and one half years of vadose zone remediation operations indicate that this activity has substantially improved the performance of the A/M Area Groundwater Corrective Action Program. During this period, vadose zone remediation removed approximately 225, 000 lbs (100,000 Kg) of chlorinated solvents (CVOCs) from the subsurface. Further, vadose zone remediation system operation increased the overall CVOC removal rate of the A/M Area Groundwater Corrective Action by 300% to 500% during this period versus the groundwater pump and treat system along. Various support activities have been performed to support operation and documentation of performance of the vadose zone remediation system. These activities address performance of existing systems (contaminant distributions, zone of influence, and process monitoring data), evaluation of suspect sources, evaluation of alternative/enhancement technologies, and initial development of remediation goals. In particular, the most recent A/M vadose zone remediation support activities (described in WSRC-RP-97-109) were completed and the results provide key documentation about system performance

  11. Deep Vadose Zone–Applied Field Research Initiative Fiscal Year 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Truex, Michael J.; Johnson, Timothy C.; Bunn, Amoret L.; Golovich, Elizabeth C.

    2013-03-14

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2012.

  12. Preface: Research advances in vadose zone hydrology through simulations with the TOUGH codes

    International Nuclear Information System (INIS)

    Finsterle, Stefan; Oldenburg, Curtis M.

    2004-01-01

    symposium, with special attention to issues related to the vadose zone and unsaturated flow systems. The first paper, written by the original developer of TOUGH, Karsten Pruess, provides an overview of the history of the TOUGH codes, the main physical processes considered, their mathematical and numerical implementation, and case studies. That paper is followed by a review article summarizing inverse modeling applications performed by iTOUGH2. A subsequent group of papers deals with diverse unsaturated zone systems, highlighting the versatility of the code to handle a variety of processes in different geologic settings. Simulation capabilities of the TOUGH codes are increasingly used for geologic carbon sequestration studies as testified by the next group of papers. The final series of papers demonstrates the use of the TOUGH codes in support of remediation and engineering applications. These studies discuss biological and reactive chemical transport simulations, the design of clean-up operations and landfill management, and the analysis of engineered soil stabilization. As guest editors, we thank the authors for their interesting contributions, and the many reviewers for their careful and constructive review comments. Finally, on behalf of all of the authors and ourselves, we express our sincerest appreciation to Rien van Genuchten for providing the opportunity to publish these papers together in a Special Section of ''Vadose Zone Journal''

  13. Calibrating Vadose Zone Models with Time-Lapse Gravity Data

    DEFF Research Database (Denmark)

    Christiansen, Lars; Hansen, A. B.; Looms, M. C.

    2009-01-01

    A change in soil water content is a change in mass stored in the subsurface. Given that the mass change is big enough, the change can be measured with a gravity meter. Attempts have been made with varying success over the last decades to use ground-based time-lapse gravity measurements to infer...... hydrogeological parameters. These studies focused on the saturated zone with specific yield as the most prominent target parameter. Any change in storage in the vadose zone has been considered as noise. Our modeling results show a measureable change in gravity from the vadose zone during a forced infiltration...... experiment on 10m by 10m grass land. Simulation studies show a potential for vadose zone model calibration using gravity data in conjunction with other geophysical data, e.g. cross-borehole georadar. We present early field data and calibration results from a forced infiltration experiment conducted over 30...

  14. Transport and degradation of fuel compounds in the vadose zone

    DEFF Research Database (Denmark)

    Christophersen, Mette; Broholm, Mette Martina; Kjeldsen, Peter

    2002-01-01

    Fuel has been spilled in the vadose zone at many sites. An artificial jet fuel source has been installed in a vadose zone at Airbase Værløse. The field experiment is conducted to investigate the natural attenuation potential in order to obtain better evaluations of the risk for groundwater...... contamination. Field data and calculations of mass in the pore air indicate a large loss within a short period of time. Laboratory experiments and isotopic analysis proves that biodegradation is occurring. The results indicate that for most compounds degradation is significant reducing the concentrations...

  15. Site characterization for the in situ bioremediation of the vadose zone

    International Nuclear Information System (INIS)

    Montemagno, C.D.; Leo, A.; Craig, J.

    1993-01-01

    Studies were conducted to determine whether bioremediation can be used to treat a diesel fuel spill in the deep vadose zone (>30 m). After laboratory studies confirmed the ability of the natural population of organisms to degrade the diesel fuel, the technological issue of transporting the required mass of nutrients to the contaminated soils was addressed. Laboratory studies demonstrated that nutrient and oxygen transport can be enhanced by the addition of divalent cations to injected waters. This addition of minerals caused the observed hydraulic conductivity to be maintained at elevated levels that allowed the macronutrient nitrogen, provided as ammonium ion, to be more uniformly distributed to target soil domains

  16. Bayesian Markov-Chain-Monte-Carlo inversion of time-lapse crosshole GPR data to characterize the vadose zone at the Arrenaes Site, Denmark

    DEFF Research Database (Denmark)

    Scholer, Marie; Irving, James; Zibar, Majken Caroline Looms

    2012-01-01

    We examined to what extent time-lapse crosshole ground-penetrating radar traveltimes, measured during a forced infiltration experiment at the Arreneas field site in Denmark, could help to quantify vadose zone hydraulic properties and their corresponding uncertainties using a Bayesian Markov...... distributions compared with the corresponding priors, which in turn significantly improves knowledge of soil hydraulic properties. Overall, the results obtained clearly demonstrate the value of the information contained in time-lapse GPR data for characterizing vadose zone dynamics.......-chain-Monte-Carlo inversion approach with different priors. The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable information on the hydraulic properties of the vadose zone because of its strong sensitivity to soil water content. In particular, recent evidence has suggested...

  17. Vadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics

    Science.gov (United States)

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-05-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, most technologies are applicable only in the first meters of soils, leaving deeper vadose zones with lack of information, in particular on field scale heterogeneity. In order to overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in Belgium. Industrial activities carried out on site left a legacy of soil and groundwater contamination in BTEX, PAH, cyanide and heavy metals. The experiment comprises the combination of two techniques: the Vadose Zone Monitoring System (VMS) and cross-hole geophysics. The VMS allows continuous measurements of water content and temperature at different depths of the vadose zone. In addition, it provides the possibility of pore water sampling at different depths. The system is formed by a flexible sleeve containing monitoring units along its depth which is installed in a slanted borehole. The flexible sleeve contains three types of monitoring units in the vadose zone: Time Domain Transmissometry (TDT), which allows water content measurements; Vadose Sampling Ports (VSP), used for collecting water samples coming from the matrix; the Fracture Samplers (FS), which are used for retrieving water samples from the fractures. Cross-hole geophysics techniques consist in the injection of an electrical current using electrodes installed in vertical boreholes. From measured potential differences, detailed spatial patterns about electrical properties of the subsurface can be inferred. Such spatial patterns are related with subsurface heterogeneities, water content and solute concentrations. Two VMS were

  18. Transport and degradation of contaminants in the vadose zone

    NARCIS (Netherlands)

    Schotanus, D.

    2013-01-01

    Leaching of contaminants from the vadose zone to the groundwater depends on the soil properties and the infiltration rate. In this thesis, organic degradable contaminants were studied, such as de-icing chemicals (consisting of propylene glycol, PG) and pesticides. Heterogeneous soil properties

  19. A National Roadmap for Vadose Zone Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kowall, Stephen Jacob

    2001-08-01

    This roadmap is a means of achieving, to the best of our current knowledge, a reasonable scientific understanding of how contaminants of all forms move in the vadose geological environments. This understanding is needed to reduce the present uncertainties in predicting contaminant movement, which in turn will reduce the uncertainties in remediation decisions.

  20. Effects of Lime and Concrete Waste on Vadose Zone Carbon Cycling

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jessen, Søren; Postma, D.

    2014-01-01

    In this work we investigate how lime and crushed concrete waste (CCW) affect carbon cycling in the vadose zone and explore whether these amendments could be employed to mitigate climate change by increasing the transport of CO2 from the atmosphere to the groundwater. We use a combination of exper......In this work we investigate how lime and crushed concrete waste (CCW) affect carbon cycling in the vadose zone and explore whether these amendments could be employed to mitigate climate change by increasing the transport of CO2 from the atmosphere to the groundwater. We use a combination...... of experimental and modeling tools to determine ongoing biogeochemical processes. Our results demonstrate that lime and CCW amendments to acid soil contribute to the climate forcing by largely increasing the soil CO2 efflux to the atmosphere. In a series of mesocosm experiments, with barley (Hordeum vulgare L.......) grown on podzolic soil material, we have investigated inorganic carbon cycling through the gaseous and liquid phases and how it is affected by different soil amendments. The mesocosm amendments comprised the addition of 0, 9.6, or 21.2 kg m−2 of crushed concrete waste (CCW) or 1 kg lime m−2. The CCW...

  1. Automated Passive Capillary Lysimeters for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Jabro, J.; Evans, R.

    2009-04-01

    In this study, we demonstrated and evaluated the performance and accuracy of an automated PCAP lysimeters that we designed for in-situ continuous measuring and estimating of drainage water below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with sampling surface dimensions of 31 cm width * 91 cm long and 87 cm in height were placed 90 cm below the soil surface in a Lihen sandy loam. Our state-of-the-art design incorporated Bluetooth wireless technology to enable an automated datalogger to transmit drainage water data simultaneously every 15 minutes to a remote host and had a greater efficiency than other types of lysimeters. It also offered a significantly larger coverage area (2700 cm2) than similarly designed vadose zone lysimeters. The cumulative manually extracted drainage water was compared with the cumulative volume of drainage water recorded by the datalogger from the tipping bucket using several statistical methods. Our results indicated that our automated PCAPs are accurate and provided convenient means for estimating water drainage in the vadose zone without the need for costly and manually time-consuming supportive systems.

  2. Electrical Resistance Tomography to monitor vadose water movement

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; LaBrecque, D.

    1991-01-01

    We report results of one test in which Electrical Resistance Tomography (ERT) was used to map the changes in electrical resistivity in the vadose zone as a function of time while water infiltration occurred. The ERT images were used to infer shape and movement of the infiltration plume in the unsaturated soil. We supplied a continuous water source at a point about 10 feet below the surface (at the end of a shallow screened hole) for only a short time--2.5 hours. This pulsed source introduced a open-quote slug close-quote of water whose infiltration was followed to about 60 foot depth during a 23 hour period. The ERT images show resistivity decreases as the water content of the vadose zone increased while water was added to the soil; the resistivity of the soil later increased after the supply of water was cut-off and the induced soil moisture began to subside

  3. Calibrating vadose zone models with time-lapse gravity data

    DEFF Research Database (Denmark)

    Christiansen, Lars; Binning, Philip John; Rosbjerg, Dan

    2011-01-01

    The vadose zone plays an important role in the hydrologic cycle. Various geophysical methods can determine soil water content variations in time and space in volumes ranging from a few cubic centimeters to several cubic meters. In contrast to the established methods, time-lapse gravity measurements...... of changes in soil water content do not rely on a petrophysical relationship between the measured quantity and the water content but give a direct measure of the mass change in the soil. Only recently has the vadose zone been systematically incorporated when ground-based gravity data are used to infer...... hydrologic information. In this study, changes in the soil water content gave rise to a measurable signal in a forced infiltration experiment on a 107-m2 grassland area. Time-lapse gravity data were able to constrain the van Genuchten soil hydraulic parameters in both a synthetic example and a field...

  4. The Mojave vadose zone: a subsurface biosphere analogue for Mars.

    Science.gov (United States)

    Abbey, William; Salas, Everett; Bhartia, Rohit; Beegle, Luther W

    2013-07-01

    If life ever evolved on the surface of Mars, it is unlikely that it would still survive there today, but as Mars evolved from a wet planet to an arid one, the subsurface environment may have presented a refuge from increasingly hostile surface conditions. Since the last glacial maximum, the Mojave Desert has experienced a similar shift from a wet to a dry environment, giving us the opportunity to study here on Earth how subsurface ecosystems in an arid environment adapt to increasingly barren surface conditions. In this paper, we advocate studying the vadose zone ecosystem of the Mojave Desert as an analogue for possible subsurface biospheres on Mars. We also describe several examples of Mars-like terrain found in the Mojave region and discuss ecological insights that might be gained by a thorough examination of the vadose zone in these specific terrains. Examples described include distributary fans (deltas, alluvial fans, etc.), paleosols overlain by basaltic lava flows, and evaporite deposits.

  5. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    Hughes, M. C.

    1999-01-01

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  6. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    International Nuclear Information System (INIS)

    Flury, Markus; Harsh, James B.; Zachara, John M.; McCarthy, John F.; Lichtner, Peter C.

    2006-01-01

    This project seeks to improve the basic understanding of the role of colloids in facilitating the transport of contaminants in the vadose zone. We focus on three major thrusts: (1) thermodynamic stability and mobility of colloids formed by reactions of sediments with highly alkaline tank waste solutions, (2) colloid-contaminant interactions, and (3) in-situ colloid mobilization and colloid facilitated contaminant transport occurring in both contaminated and uncontaminated Hanford sediments

  7. Enhanced phytoremediation in the vadose zone: Modeling and column studies

    Science.gov (United States)

    Sung, K.; Chang, Y.; Corapcioglu, M.; Cho, C.

    2002-05-01

    Phytoremediation is a plant-based technique with potential for enhancing the remediation of vadoese zone soils contaminated by pollutants. The use of deep-rooted plants is an alternative to conventional methodologies. However, when the phytoremediation is applied to the vadose zone, it might have some restrictions since it uses solely naturally driven energy and mechanisms in addition to the complesxity of the vadose zone. As a more innovative technique than conventional phytoremediation methods, air injected phytoremediation technique is introduced to enhance the remediation efficiency or to apply at the former soil vapor extraction or bio venting sites. Effects of air injection, vegetation treatment, and air injection with vegetation treatments on the removal of hydrocarbon were investigated by column studies to simulate the field situation. Both the removal efficiency and the microbial activity were highest in air-injected and vegetated column soils. It was suggested that increased microorganisms activity stimulated by plant root exudates enhanced biodegradation of hydrocarbon compounds. Air injection provided sufficient opportunity for promoting the microbial activity at depths where the conditions are anaerobic. Air injection can enhance the physicochemical properties of the medium and contaminant and increase the bioavailability i.e., the plant and microbial accessibility to the contaminant. A mathematical model that can be applied to phytoremediation, especially to air injected phytoremediation, for simulating the fate and the transport of a diesel contaminant in the vadose zone is developed. The approach includes a two-phase model of water flow in vegetated and unplanted vadose zone soil. A time-specific root distribution model and a microbial growth model in the rhizosphere of vegetated soil were combined with an unsaturated soil water flow equation as well as with a contaminant transport equation. The proposed model showed a satisfactory representation of

  8. A Catalog of Vadose Zone Hydraulic Properties for the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Eugene J.; Khaleel, Raziuddin; Heller, Paula R.

    2001-09-24

    The purpose of this catalog is to integrate all available soil physics data and information from vadose zone characterization and performance assessments into one useable, scientifically defensible document.

  9. Vadose Zone Infiltration Rates from Sr isotope Measurements

    Science.gov (United States)

    Maher, K.; Maher, K.; DePaolo, D. J.; DePaolo, D. J.; Conrad, M.

    2001-12-01

    Predicting infiltration rates and recharge through the vadose zone in arid regions is difficult and hence developing methods for the measurement of infiltration rates is important. We have been investigating the use of Sr isotope measurements for determining infiltration at the 200 Area plateau on the Hanford reservation in central Washington. In this context, infiltration affects the transport of contaminants to the water table as well as recharge of the groundwater system. Using Sr isotopes for this purpose requires drill core and water samples from the vadose zone, although leaches of the cores can substitute for water samples. Complementary information, including some constraints on regional recharge, can also be obtained using water samples from groundwater monitoring wells. The VZ method is based on the fact that the Sr isotope ratio of soil water just below the surface is often set by dissolution of aeolian material including carbonate, and this ratio is different from the average value in the deeper underlying vadose zone rock matrix. As water infiltrates, the Sr isotopic composition of the water changes toward the rock values as a result of Sr released from the rocks by weathering reactions. The rate of change with depth of the Sr isotope ratio of the vadose zone water is a function ultimately of q/R; the ratio of the infiltration flux (q) to the bulk rock weathering rate (R). Where it is possible to evaluate R, q can be estimated. As data accumulate it may be possible to improve the calibration of the method. At Hanford the vadose zone rock material is mostly unconsolidated sand, silt, and gravel of broadly granitic composition, which constitute the Hanford and Ringold formations. Annual precipitation is about 160 mm/yr. Drilling and coring of a ca. 70m hole to the water table in 1999 as part of the Hanford groundwater monitoring program, in a relatively undisturbed area of the site, allowed us to generate a unique Sr isotope data set. The Sr isotope

  10. HEAT AND MASS TRANSFER IN THE VADOSE ZONE WITH PLANT ROOTS. (R825414)

    Science.gov (United States)

    AbstractThe vadose zone is the intermediate medium between the atmosphere and groundwater. The modeling of the processes taking place in the vadose zone needs different approaches to those needed for groundwater transport problems because of the marked changes in envi...

  11. Vadose Zone Fate and Transport Simulation of Chemicals Associated with Coal Seam Gas Extraction

    Science.gov (United States)

    Simunek, J.; Mallants, D.; Jacques, D.; Van Genuchten, M.

    2017-12-01

    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this presentation is to provide an overview of the HYDRUS models and their add-on modules, and to demonstrate applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the vadose zone. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated) provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the coupled HYDRUS-PHREEQC module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in the vadose zone leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration is complexation of

  12. Plutonium Particle Migration in the Shallow Vadose Zone: The Nevada Test Site as an Analog Site

    Science.gov (United States)

    Hunt, J. R.; Smith, D. K.

    2004-12-01

    The upper meter of the vadose zone in desert environments is the horizon where wastes have been released and human exposure is determined through dermal, inhalation, and food uptake pathways. This region is also characterized by numerous coupled processes that determine contaminant transport, including precipitation infiltration, evapotranspiration, daily and annual temperature cycling, dust resuspension, animal burrowing, and geochemical weathering reactions. While there is considerable interest in colloidal transport of minerals, pathogenic organisms, and contaminants in the vadose zone, there are limited field sites where the actual occurrence of contaminant migration can be quantified over the appropriate spatial and temporal scales of interest. At the US Department of Energy Nevada Test Site, there have been numerous releases of radionuclides since the 1950's that have become field-scale tracer tests. One series of tests was the four safety shots conducted in an alluvial valley of Area 11 in the 1950's. These experiments tested the ability of nuclear materials to survive chemical explosions without initiating fission reactions. Four above-ground tests were conducted and they released plutonium and uranium on the desert valley floor with only one of the tests undergoing some fission. Shortly after the tests, the sites were surveyed for radionuclide distribution on the land surface using aerial surveys and with depth. Additional studies were conducted in the 1970's to better understand the fate of plutonium in the desert that included studies of depth distribution and dust resuspension. More recently, plutonium particle distribution in the soil profile was detected using autoradiography. The results to date demonstrate the vertical migration of plutonium particles to depths in excess of 30 cm in this arid vadose zone. While plutonium migration at the Nevada Test Site has been and continues to be a concern, these field experiments have become analog sites for the

  13. TWRS vadose zone contamination issue expert panel status report

    International Nuclear Information System (INIS)

    Shafer, D.S.

    1997-01-01

    When members were first canvassed for participation in the Vadose Zone Expert Panel the stated purpose for convening the Panel was to review a controversial draft report, the SX Tank Farm Report. This report was produced by a DOE Grand Junction Project Office (GJPO) contractor, RUST Geotech, now MACTEC-ERS, for the DOE Richland Office (DOERL). Three meetings were planned for June, July and August, 1995 to review the draft report and to complete a Panel report by mid-September. The Expert Panel has found its efforts confounded by various non-technical issues. The Expert Panel has chosen to address some of the non-technical issues in this Preface rather than to dilute the technical discussion that follows in the body of this independent expert panel status report (Panel Report). Rather than performing a straightforward manuscript review, the Panel was asked to resolve conflicting interpretations of gamma-ray logging measurements performed in vadose zone boreholes (drywells) surrounding the high-level radioactive wastes of the SX tank farm. There are numerous and complex technical issues that must be evaluated before the vertical and radial extent of contaminant migration at the SX tank farm can be accurately assessed. When the Panel first met in early June, 1996, it quickly became apparent that the scientific and technical issues were obscured by policy and institutional affairs which have polarized discussion among various segments of the Hanford organization. This situation reflects the kinds of institutional problems described separately in reports by the National Research Council of the National Academy of Sciences (NAS/NRC), The Hanford Tanks Environmental Impacts and Policy Choices and BmTiers to Science: Technical Management of the Department of Energy Environmental Remediation Program. The Vadose Zone Characterization Program, appears to be caught between conflicting pressures and organizational mandates, some imposed from outside DOE-RL and some self

  14. TWRS vadose zone contamination issue expert panel report

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, D.S.

    1997-05-01

    When members were first canvassed for participation in the Vadose Zone Expert Panel the stated purpose for convening the Panel was to review a controversial draft report, the SX Tank Farm Report. This report was produced by a DOE Grand Junction Project Office (GJPO) contractor, RUST Geotech, now MACTEC-ERS, for the DOE Richland Office (DOERL). Three meetings were planned for June, July and August, 1995 to review the draft report and to complete a Panel report by mid-September. The Expert Panel has found its efforts confounded by various non-technical issues. The Expert Panel has chosen to address some of the non-technical issues in this Preface rather than to dilute the technical discussion that follows in the body of this independent expert panel status report (Panel Report). Rather than performing a straightforward manuscript review, the Panel was asked to resolve conflicting interpretations of gamma-ray logging measurements performed in vadose zone boreholes (drywells) surrounding the high-level radioactive wastes of the SX tank farm. There are numerous and complex technical issues that must be evaluated before the vertical and radial extent of contaminant migration at the SX tank farm can be accurately assessed. When the Panel first met in early June, 1996, it quickly became apparent that the scientific and technical issues were obscured by policy and institutional affairs which have polarized discussion among various segments of the Hanford organization. This situation reflects the kinds of institutional problems described separately in reports by the National Research Council of the National Academy of Sciences (NAS/NRC), The Hanford Tanks Environmental Impacts and Policy Choices and BmTiers to Science: Technical Management of the Department of Energy Environmental Remediation Program. The Vadose Zone Characterization Program, appears to be caught between conflicting pressures and organizational mandates, some imposed from outside DOE-RL and some self

  15. Deep Vadose Zone Treatability Test of Soil Desiccation for the Hanford Central Plateau: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [CH2M Hill Plateau Remediation Co., Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greenwood, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peterson, John E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hubbard, Susan S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ward, Anderson L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-02-20

    Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths where direct exposure pathways are not of concern, but may need to be remediated to protect groundwater. The Department of Energy developed a treatability test program for technologies to address Tc-99 and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment, have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. The treatability test of desiccation described herein was conducted as an element of the deep vadose zone treatability test program. Desiccation was shown to be a potentially effective vadose zone remediation technology to protect groundwater when used in conjunction with a surface infiltration barrier.

  16. Summary of Vadose -- Zone Conceptual Models for Flow and Contaminant Transport and 1999 - 2003 Progress on Resolving Deficiencies in Understanding the Vadose Zone at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Starr; Dana L. Dettmers; Brennon R. Orr; Thomas R. Wood

    2003-12-01

    The thick vadose zone that underlies the Idaho National Engineering and Environmental Laboratory has been recognized both as an avenue through which contaminants disposed at or near the ground surface can migrate to groundwater in the underlying Eastern Snake River Plain aquifer, and as a barrier to the movement of contaminants into the aquifer. Flow and contaminant transport in the vadose zone at the INEEL is complicated by the highly heterogeneous nature of the geologic framework and by the variations in the behavior of different contaminants in the subsurface. The state of knowledge concerning flow and contaminant transport in the vadose zone at and near the INEEL IN 1999 was summarized in Deficiencies in Vadose Zone Understanding at the Idaho National Engineering and Environmental Laboratory (Wood et al., 2000). These authors identified deficiencies in knowledge of flow and contaminant transport processes in the vadose zone, and provided recommendations for additional work that should be conducted to address these deficiencies. In the period since (Wood et al., 2000) was prepared, research has been published that, to some degree, address these deficiencies. This document provides a bibliography of reports, journal articles, and conference proceedings published 1999 through mid-2003 that are relevant to the vadose zone at or near the INEEL and provides a brief description of each work. Publications that address specific deficiencies or recommendations are identified, and pertinent information from selected publications is presented.

  17. In situ vadose zone remediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    Greacen, J.R.; Finkel, D.J.

    1991-01-01

    This paper discusses a pilot-scale system treating vadose zone soils contaminated with petroleum products constructed and operated at a former petroleum bulk storage terminal in New England. A site investigation following decommissioning activities identified more than 100,000 yds of soil at the site contaminated by both No. 2 fuel oil and gasoline. Soil cleanup criteria of 50 ppm TPH and 0.25 ppm BTEX were established. A pilot-scale treatment unit with dimensions of 125 ft x 125 ft x 6 ft was constructed to evaluate the potential for in situ treatment of vadose zone soils. Contaminant levels in pilot cell soils ranged from 0 to 5,250 ppm TPH and 0.0 to 4.2 ppm BTEX. Two soil treatment methods n the pilot system were implemented; venting to treat the lighter petroleum fractions and bioremediation to treat the nonvolatile petroleum constituents. Seven soil gas probes were installed to monitor pressure and soil gas vapor concentrations in the subsurface. Changes in soil gas oxygen and carbon dioxide concentrations were used as an indirect measure of enhanced bioremediation of pilot cell soils. After operating the system for a period of 2.5 months, soil BTEX concentrations were reduced to concentrations below the remediation criteria for the site

  18. Tank waste remediation system vadose zone program plan

    International Nuclear Information System (INIS)

    Fredenburg, E.A.

    1998-01-01

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities

  19. Tank waste remediation system vadose zone program plan

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, E.A.

    1998-07-27

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities.

  20. Challenges for Deep Vadose Zone Remediation at the Hanford Site

    International Nuclear Information System (INIS)

    Morse, John G.; Charboneau, Briant L.; Lober, Robert W.; Triplett, Mark B.

    2008-01-01

    The 'deep vadose zone' is defined as the region below the practical depth of surface remedy influence (e.g., excavation or barrier). At the Hanford Site, this region of the Central Plateau poses unique challenges for characterization and remediation. The contaminants in this region also pose a potentially significant continuing or future threat to groundwater. Currently, deep vadose zone characterization efforts and remedy selection are spread over multiple waste site Operable Units and tank farm Waste Management Areas. A particular challenge for this effort is the situation in which past leaks from single-shell tanks have become commingled with discharges from nearby liquid disposal sites. The Hanford Site is working with all affected parties, including the Washington State Department of Ecology, the Environmental Protection Agency, DOE-RL, DOE-ORP, and multiple contractor organizations to develop a unified approach to conducting work and reaching remediation decisions. This effort addresses the complex and challenging technical and regulatory issues within this environment. A true inter-Agency effort is evaluating the best strategy or combination of strategies for focusing technical investigations, including treatability studies, and for attaining remedy decisions on the Hanford Site

  1. Geomicrobiology of High Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    International Nuclear Information System (INIS)

    Fredrickson, Jim K.; Zachara, John M.; Balkwill, David L.; Kennedy, David W.; Li, Shu-Mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 7 CFU g-1 but viable microorganisms were recovered from 11 of 16 samples including several of the most radioactive ones (e.g., > 10 ?Ci/g 137Cs). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known Gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples but other high G+C phyla were also represented including Rhodococcus and Nocardia. Two isolates from the second most radioactive sample (>20 ?Ci 137Cs g-1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20kGy. Many of the Gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that Gram-positive bacteria, predominantly high G+C phyla, are indigenous to Hanford vadose sediments and some are effective at surviving the extreme physical and chemical stress associated with radioactive waste

  2. Characterization of Direct Push Vadose Zone Sediments from the T and TY Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-06-08

    This report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from 5 direct push characterization holes emplaced to investigate vadose zone contamination associated with leaks from tanks 241-TY-105 (UPR-200-W-152) and 241-TY-106 (UPR-200-W-153). Tank 241-TY-105 is estimated to have leaked 35,000 gal of tributyl phosphate (TBP) waste from the uranium recovery process to the vadose zone in 1960. Tank 241-TY-106 is estimated to have leaked 20,000 gal of TBP-uranium recovery waste to the vadose zone in 1959. Although several drywells in the vicinity of tank 241-TY-106 contain measurable quantities of cesium-137 and/or cobalt-60, their relatively low concentrations indicate that the contaminant inventory in the vadose zone around tank 241-TY-106 is quite small. Additionally, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from 7 direct push characterization holes emplaced to investigate vadose zone contamination associated with an overfill event and leak from tank 241-T-101.

  3. A Low-Level Real-Time In Situ Monitoring System for Tritium in Groundwater and Vadose Zone

    Science.gov (United States)

    Santo, J. T.; Levitt, D. G.

    2002-12-01

    Tritium is a radioactive isotope of hydrogen produced as a by-product of the nuclear fuel cycle. It is also an integral part of the nuclear weapons industry and has been released into the environment through both the production and testing of nuclear weapons. There are many sites across the DOE complex where tritium has been released into the subsurface through the disposal of radioactive waste and at the Nevada Test Site, through the underground testing of nuclear weapons. Numerous DOE facilities have an on-going regulatory need to be able to monitor tritium concentrations in groundwater within deep hydrologic zones and in the shallower non-saturated vadose zone beneath waste disposal pits and shafts and other release sites. Typical access to groundwater is through deep monitoring wells and situated in remote locations. In response to this need, Science and Engineering Associates, Inc. (SEA) and its subcontractor, the University of Nevada Las Vegas (UNLV) Harry Reid Center (HRC) for Environmental Studies has conducted the applied research and engineering and produced a real time, in situ monitoring system for the detection and measurement of low levels of tritium in the groundwater and in the shallower vadose zone. The monitoring system has been deployed to measure tritium in both the vadose zone near a subsurface radioactive waste package and the groundwater in a deep hydrologic reservoir at the Nevada Test Site. The monitoring system has been designed to detect tritium in the subsurface below federal and/or state regulatory limits for safe drinking water and has been successfully demonstrated. The development effort is being funded through the U.S. Department of Energy, National Energy Technology Laboratory and the DOE Nevada Operations Office Advanced Monitoring Systems Initiative (AMSI).

  4. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    International Nuclear Information System (INIS)

    Flury, Markus

    2003-01-01

    Contaminants have leaked into the vadose zone at the USDOE Hanford reservation. It is important to understand the fate and transport of these contaminants to design remediation strategies and long-term waste management plans at the Hanford reservation. Colloids may play an important role in fate and transport of strongly sorbing contaminants, such as Cs or Pu. This project seeks to improve the basic understanding of colloid and colloid-facilitated transport of contaminants in the vadose zone. The specific objectives addressed are: (1) Determine the structure, composition, and surface charge characteristics of colloidal particles formed under conditions similar to those occurring during leakage of waste typical of Hanford tank supernatants into soils and sediments surrounding the tanks. (2) Characterize the mutual interactions between colloids, contaminant, and soil matrix in batch experiments under various ionic strength and pH conditions. We will investigate the nature of the solid-liquid interactions and the kinetics of the reactions. (3) Evaluate mobility of colloids through soil under different degrees of water saturation and solution chemistry (ionic strength and pH). (4) Determine the potential of colloids to act as carriers to transport the contaminant through the vadose zone and verify the results through comparison with field samples collected under leaking tanks. (5) Improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for implementation into reactive chemical transport models. This project was in part supported by an NSF-IGERT grant to Washington State University. The IGERT grant provided funding for graduate student research and education, and two graduate students were involved in the EMSP project. The IGERT program also supported undergraduate internships. The project is part of a larger EMSP program to study fate and transport of contaminants under leaking Hanford waste tanks. The project has

  5. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  6. Hydrologic properties of the vadose zone at B292

    International Nuclear Information System (INIS)

    Shinn, J.; Mallon, B.; Martins, S.

    1992-09-01

    A formula for the unsaturated hydraulic conductivity was derived for the vadose zone down to the 45-foot depth by analysis of data from 5 wells near B292. The formula gives the median hydraulic conductivity as a function of depth and soil-water content, and was obtained by parameterization of saturated hydraulic conductivity and the water-retention characteristics to the median particle diameter of soil samples. It was noted that the variation of median particle diameter among soil samples at the same depth, taken from 5 wells in close proximity to B292, would have a great effect on saturated hydraulic conductivity. The coefficient of variation of median particle diameter was estimated to be 1.23 at any depth, based on apparent log-normal frequency distribution. The coefficient of variation of measured and predicted saturated hydraulic conductivity was estimated to be 7.9; large values are found in the literature as well

  7. Colloid-Facilitated Transport of Radionuclides Through The Vadose Zone

    International Nuclear Information System (INIS)

    Markus Flury; James B. Harsh; John F. McCarthy' Peter C. Lichtner; John M. Zachara

    2007-01-01

    The main purpose of this project was to advance the basic scientific understanding of colloid and colloid-facilitated Cs transport of radionuclides in the vadose zone. We focused our research on the hydrological and geochemical conditions beneath the leaking waste tanks at the USDOE Hanford reservation. Specific objectives were (1) to determine the lability and thermodynamic stability of colloidal materials, which form after reacting Hanford sediments with simulated Hanford Tank Waste, (2) to characterize the interactions between colloidal particles and contaminants, i.e., Cs and Eu, (3) to determine the potential of Hanford sediments for in situ mobilization of colloids, (4) to evaluate colloid-facilitated radionuclide transport through sediments under unsaturated flow, (5) to implement colloid-facilitated contaminant transport mechanisms into a transport model, and (6) to improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for clean-up procedures and long-term risk assessment

  8. Preliminary study of radioactive waste disposal in the vadose zone

    International Nuclear Information System (INIS)

    1978-09-01

    To investigate the characteristics of the vadose zone with respect to radioactive waste disposal, the mechanics of unsaturated flow in arid regions and the geohydrology of four areas with a deep water table were studied. The studies indicated that (1) arid sites with a water table deeper than 200 m can be found in at least three distinct geologic settings in the western United States, (2) the physics of unsaturated flow in soils and rock with interstitial porosity at low water contents, particularly under thermal gradients, is not yet completely understood, and (3) under certain conditions unsaturated flow can be so slow that analytic modeling of an unflawed repository is unnecessary to prove effective containment

  9. Preliminary study of radioactive waste disposal in the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    To investigate the characteristics of the vadose zone with respect to radioactive waste disposal, the mechanics of unsaturated flow in arid regions and the geohydrology of four areas with a deep water table were studied. The studies indicated that (1) arid sites with a water table deeper than 200 m can be found in at least three distinct geologic settings in the western United States, (2) the physics of unsaturated flow in soils and rock with interstitial porosity at low water contents, particularly under thermal gradients, is not yet completely understood, and (3) under certain conditions unsaturated flow can be so slow that analytic modeling of an unflawed repository is unnecessary to prove effective containment.

  10. Preliminary field demonstration of a fiber-optic TCE sensor

    International Nuclear Information System (INIS)

    Angel, S.M.; Langry, K.; Roe, J.; Colston, B.W. Jr.; Daley, P.F.; Milanovich, F.P.

    1991-02-01

    We have developed a differential-absorption fiber-optic sensor for use in groundwater and vadose zone monitoring of certain volatile organochlorines. The principle of detection is a quantitative, irreversible chemical reaction that forms visible light-absorbing products. The sensor has been evaluated against gas chromatographic (GC) standard measurements and has demonstrated accuracy and sensitivity sufficient for the environmental monitoring of trace levels of trichloroethylene (TCE) and chloroform. This sensor is currently under evaluation in monitoring well and vadose zone applications. In this paper, we describe the principles of the existing single measurement sensor technology and show preliminary field-test results. 3 refs., 8 figs

  11. Vadose Zone Modeling Workshop proceedings, March 29--30, 1993

    International Nuclear Information System (INIS)

    Khaleel, R.

    1993-08-01

    At the Hanford Site, the record of decision for remediation of CERCLA sites is largely based on results of the baseline risk and performance assessment of the remedial action alternatives. These assessments require the ability to predict the fate and transport of contaminants along appropriate exposure pathways which, in case of the Hanford Site, includes the migration of contaminants through the vadose zone to the water table. Listed below are some of the requirements, as prescribed by the regulators, relative to CERCLA risk and performance assessment at Hanford. A workshop was organized by the Environmental Risk and Performance Assessment Group, Westinghouse Hanford Company on March 29--30, 1993 at the Richland Best Western Tower Inn. During the workshop, an assessment was made of the need for and scope of various tasks being conducted or planned as part of the Hanford Site waste isolation performance assessment/risk assessment activities. Three external, nationally-recognized experts served as part of a review panel for the workshop: (a) Professor Lynn Gelhar of MIT; (b) Professor Peter Wierenga of University of Arizona; and (c) Dr. Rien van Genuchten of US Salinity Laboratory, Riverside, California. The technical experts provided their perspectives on the current state-of-the-art in vadose zone flow and transport modeling. In addition, the technical experts provided an outside independent assessment of the work being performed or planned in support of various activities identified in TPA Milestone M-29-02. This document includes the following: Recommendations from the three peer reviewers; areas of expertise of the three peer reviewers; workshop agenda; copies of viewgraphs (where available) from presenters at the workshop; workshop minutes; and list of workshop attendees

  12. Model Package Report: Central Plateau Vadose Zone Geoframework Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Sarah D.

    2018-03-27

    The purpose of the Central Plateau Vadose Zone (CPVZ) Geoframework model (GFM) is to provide a reasonable, consistent, and defensible three-dimensional (3D) representation of the vadose zone beneath the Central Plateau at the Hanford Site to support the Composite Analysis (CA) vadose zone contaminant fate and transport models. The GFM is a 3D representation of the subsurface geologic structure. From this 3D geologic model, exported results in the form of point, surface, and/or volumes are used as inputs to populate and assemble the various numerical model architectures, providing a 3D-layered grid that is consistent with the GFM. The objective of this report is to define the process used to produce a hydrostratigraphic model for the vadose zone beneath the Hanford Site Central Plateau and the corresponding CA domain.

  13. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  14. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  15. Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones

    Science.gov (United States)

    Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.

    2011-12-01

    Remediation of contaminated vadose zones is often hindered by an inability to effectively distribute amendments. Many amendment-based approaches have been successful in saturated formations, however, have not been widely pursued when treating contaminated unsaturated materials due to amendment distribution limitations. Aerosol delivery is a promising new approach for distributing amendments in contaminated vadose zones. Amendments are aerosolized and injected through well screens. During injection the aerosol particles are transported with the gas and deposited on the surfaces of soil grains. Resulting distributions are radially and vertically broad, which could not be achieved by injecting pure liquid-phase solutions. The objectives of this work were A) to characterize transport and deposition behaviors of aerosols; and B) to develop capabilities for predicting results of aerosol injection scenarios. Aerosol transport and deposition processes were investigated by conducting lab-scale injection experiments. These experiments involved injection of aerosols through a 2m radius, sand-filled wedge. A particle analyzer was used to measure aerosol particle distributions with time, and sand samples were taken for amendment content analysis. Predictive capabilities were obtained by constructing a numerical model capable of simulating aerosol transport and deposition in porous media. Results from tests involving vegetable oil aerosol injection show that liquid contents appropriate for remedial applications could be readily achieved throughout the sand-filled wedge. Lab-scale tests conducted with aqueous aerosols show that liquid accumulation only occurs near the point of injection. Tests were also conducted using 200 g/L salt water as the aerosolized liquid. Liquid accumulations observed during salt water tests were minimal and similar to aqueous aerosol results. However, particles were measured, and salt deposited distal to the point of injection. Differences between

  16. Karst system vadose zone hydrodynamics highlighted by an integrative geophysical and hydrogeological monitoring

    Science.gov (United States)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Rochez, G.; Kaufmann, O.

    2015-12-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of climate conditions, diminished evapotranspiration and differences of porosity relative to deeper layers. It is therefore crucial, but challenging, to separate the hydrological signature of the vadose zone from the one of the saturated zone for understanding hydrological processes that occur in the vadose zone. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside with various techniques. We present results covering two years of hydrogeological and geophysical monitoring at the Rochefort Cave Laboratory (RCL), located in the Variscan fold-and-thrust belt (Belgium), a region that shows many karstic networks within Devonian limestone units. Hydrogeological data such as flows and levels monitoring or tracer tests performed in both vadose and saturated zones bring valuable information on the hydrological context of the studied area. Combining those results with geophysical measurements allows validating and imaging them with more integrative techniques. A microgravimetric monitoring involves a superconducting gravimeter continuously measuring at the surface of the RCL. Early in 2015, a second relative gravimeter was installed in the underlying cave system located 35 meters below the surface. This set up allows highlighting vadose gravity changes. These relative measurements are calibrated using an absolute gravimeter. 12 additional stations (7 at the surface, 5 in the cave) are monitored on a monthly basis by a spring gravimeter. To complete these gravimetric measurements, the site has been equipped with a permanent Electrical Resistivity Tomography (ERT) monitoring system comprising an uncommon array of surface, borehole and cave electrodes. Although such

  17. In-situ bioaugmentation of vadose zone restoration

    International Nuclear Information System (INIS)

    Myers, J.M.; Minkel, K.A.; Schepart, B.S.

    1992-01-01

    Leakage from an underground gasoline storage tank caused evacuation from a restaurant and an insurance company. An engineering consultant was engaged to correct the problem. Upon remedy of the habitability situation, a groundwater recovery system was designed to recover whatever open-quotes free productclose quotes gasoline could be collected. Since traditional open-quotes Pump and treatclose quotes remedial technologies are successful only to the extent that the contaminant is mobile, an alternative is necessary to effectively remediate that contamination which is recalcitrant. At this point, Waste Stream Technology was enlisted to propose an in-situ remedial action plan. Approximately five injection wells were installed around the perimeter and in the zone of influence of each of eight recovery wells. The injection wells were designed to distribute the bacteria at various depths in the vadose zone. Bacteria were cultured on site in Waste Stream's proprietary bioreactor. Bacterial and nutrient applications were injected on a weekly basis. Bacterial population dynamics and BETX levels were monitored throughout the course of the remediation. Although the remediation is currently in progress, disappearance of open-quotes free productclose quotes on the water table and elimination of benzene in the groundwater over a reasonable time period marked the success of this project

  18. A vadose zone water fluxmeter with divergence control

    Science.gov (United States)

    Gee, G.W.; Ward, A.L.; Caldwell, T.G.; Ritter, J.C.

    2002-01-01

    Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self‐calibrating tipping bucket, with a sensitivity of ∼4 mL tip−1. For our meter this is equivalent to detection limit of ∼0.1 mm. Passive‐wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two‐dimensional (2‐D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr−1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr−1 to more than 1000 mm yr−1.

  19. 3D vadose zone modeling using geostatistical inferences

    International Nuclear Information System (INIS)

    Knutson, C.F.; Lee, C.B.

    1991-01-01

    In developing a 3D model of the 600 ft thick interbedded basalt and sediment complex that constitutes the vadose zone at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL) geostatistical data were captured for 12--15 parameters (e.g. permeability, porosity, saturation, etc. and flow height, flow width, flow internal zonation, etc.). This two scale data set was generated from studies of subsurface core and geophysical log suites at RWMC and from surface outcrop exposures located at the Box Canyon of the Big Lost River and from Hell's Half Acre lava field all located in the general RWMC area. Based on these currently available data, it is possible to build a 3D stochastic model that utilizes: cumulative distribution functions obtained from the geostatistical data; backstripping and rebuilding of stratigraphic units; an ''expert'' system that incorporates rules based on expert geologic analysis and experimentally derived geostatistics for providing: (a) a structural and isopach map of each layer, (b) a realization of the flow geometry of each basalt flow unit, and (c) a realization of the internal flow parameters (eg permeability, porosity, and saturation) for each flow. 10 refs., 4 figs., 1 tab

  20. Vadose Zone Hydrogeology Data Package for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V.; Freeman, Eugene J.; Cantrell, Kirk J.; Fayer, Michael J.; Gee, Glendon W.; Nichols, William E.; Bjornstad, Bruce N.; Horton, Duane G.

    2006-06-01

    This data package documents the technical basis for selecting physical and geochemical parameters and input values that will be used in vadose zone modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc., Richland, Washington, and revised as part of the Characterization of Systems Project managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Richland Operations Office (DOE-RL). This data package describes the geologic framework, the physical, hydrologic, and contaminant transport properties of the geologic materials, and deep drainage (i.e., recharge) estimates, and builds on the general framework developed for the initial assessment conducted using the System Assessment Capability (SAC) (Bryce et al. 2002). The general approach for this work was to update and provide incremental improvements over the previous SAC data package completed in 2001. As with the previous SAC data package, much of the data and interpreted information were extracted from existing documents and databases. Every attempt was made to provide traceability to the original source(s) of the data or interpretations.

  1. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm - 13235

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R. [Washington River Protection Solutions, P.O. Box 850, Richland, WA, 99352 (United States)

    2013-07-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit. (authors)

  2. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm-13235

    International Nuclear Information System (INIS)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-01-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit

  3. Short-term and long-term Vadose zone monitoring: Current technologies, development, and applications

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    1999-01-01

    At Hanford, Savannah River, Oak Ridge, Idaho National Engineering and Environmental Laboratory (INEEL), and other DOE sites, field vadose zone observations have shown complex water seepage and mass transport behavior in a highly heterogeneous, thick vadose zone on a variety of scales. Recent investigation showed that severe contamination of soils and groundwater by organic contaminant and nuclear waste occurred because of water seepage and contaminant transport along localized, preferential, fast flow within the heterogeneous vadose zone. However, most of the existing characterization and monitoring methods are not able to locate these localized and persistent preferential pathways associated with specific heterogeneous geologic features, such as clastic dikes, caliche layers, or fractures. In addition, changes in the chemical composition of moving and indigenous solutes, particularly sodium concentration, redox conditions, biological transformation of organic materials, and high temperature, may significantly alter water, chemicals, and bio-transformation exchange between the zones of fast flow and the rest of the media. In this paper, using the data from Hanford and INEEL sites, we will (1) present evidence that central problems of the vadose zone investigations are associated with preferential, fast flow phenomena and accelerated migration of organic and radioactive elements, (2) identify gaps in current characterization and monitoring technologies, and (3) recommend actions for the development of advanced vadose zone characterization and monitoring methods using a combination of hydrologic, geochemical, and geophysical techniques

  4. A modeling study of water flow in the vadose zone beneath the Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.; Nguyen, H.D.; Martian, P.

    1992-01-01

    A modeling study was conducted for the purpose of gaining insight into the nature of water flow in the vadose zone beneath the Radioactive Waste Management Complex (RWMC). The modeling study focused on three specific hydrologic aspects: (1) relationship between meteorologic conditions and net infiltration, (2) water movement associated with past flooding events, and (3) estimation of water travel-times through the vadose zone. This information is necessary for understanding how contaminants may be transported through the vadose zone. Evaluations of net infiltration at the RWMC were performed by modeling the processes of precipitation, evaporation, infiltration and soil-moisture redistribution. Water flow simulations were performed for two distinct time periods, namely 1955--1964 and 1984--1990. The patterns of infiltration were calculated for both the undisturbed (or natural sediments) and the pit/trench cover materials. Detailed simulations of the 1969 flooding of Pit 10 were performed to estimate the rate and extent of water movement through the vadose zone. Water travel-times through the vadose zone were estimated using a Monte Carlo simulation approach. The simulations accounted for variability of soil and rock hydraulic properties as well as variations in the infiltration rate

  5. Current challenges in quantifying preferential flow through the vadose zone

    Science.gov (United States)

    Koestel, John; Larsbo, Mats; Jarvis, Nick

    2017-04-01

    In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  6. Solute travel time in the vadose zone under RWMC at INEL

    International Nuclear Information System (INIS)

    Liou, J.C.P.; Tian, J.

    1995-01-01

    Solute transport in the vadose zone under the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL) is considered. The objective is to assess the relative importance of variables involved in modeling the travel time of a conservative solute from ground surface to water table. The vadose zone under RWMC is composed of several layers of basalt flows interceded with sediment layers. The thickness of the layers varies with location. The hydraulic properties also vary. The extents of the variations are large, with standard deviations exceed mean in some instances. The vadose zone is idealized as composed of horizontal layers. Solute transport starts at the ground surface and moves vertically downwards to the water table. The perceived process is one-dimensional. This study used VS2DT, a computer code developed by the US Geological Survey, for simulating solute transport in variably saturated porous media

  7. Deep Vadose Zone Characterization at the Hanford Site: Accomplishments from the Last Ten Years

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-01

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments collected within/adjacent to the twelve single-shell tank farms contained within Hanford's Central Plateau region. This work has been performed under the Resource Conservation and Recovery Act (RCRA) Corrective Action Program and is associated with the Hanford Federal Facility Agreement and Consent Order. While there are many facets to the laboratory studies employed by PNNL, the four primary objectives of this work are to: identify the type and quantity of contamination present, understand the physical processes that affect the transport of contaminants in the vadose zone sediments, when practical, identify the source(s) of the contamination found in the sediment samples, and when practical, determine if a link can be made between the vadose zone contamination observed and any known groundwater contaminants in the vicinity. Since its inception in 1997, PNNL's Vadose Zone Characterization Project has evolved to better meet these four key objectives. The single-largest adaptation of the Vadose Zone Characterization Project over its ten years of operation was the advent of a tiered sample analysis approach. Use of a tiered approach allows resources to be focused on those samples/tests that provide the largest amount of scientific information to best meet the four key project objectives within the budget available. Another significant, but more recent, adaptation has been the implementation of a rapid turnaround characterization process in which sediment samples are analyzed in near real-time to aid drilling activities within the tank farms. This paper highlights details of the characterization activities performed as well

  8. High Frequency Electromagnetic Impedance Imaging for Vadose Zone and Groundwater Characterization

    International Nuclear Information System (INIS)

    Newman, Greory A.; Alumbaugh, David L.; Hoversten, Michael; Nichols, Edward

    2003-01-01

    A geophysical experiment is described for characterizing the clastic dike systems, which are ubiquitous within the vadose zone at the Hanford Nuclear Reservation. because the dikes possess a significant electrical contrast from the insulating host medium, we have applied controlled source audio magnetotelluric (CSAMT) measurements to map their geometric extent and to further clarify if the dike complex acts as a conduit for contaminant transport within the vadose zone. Because of cost and weak natural field signal levels, we employed controlled field sourcing using the STRATGEM acquisition system. Use of artificial fields often goes with the assumption that the data required in the far-field of the transmitter

  9. Simulation of water seepage through a vadose zone in fractured rock

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2003-01-01

    In order to improve our understanding of the vadose zone in fractured rock, obtaining useful tools to simulate, predict and prevent subsurface contamination, a three-dimensional model has been developed from the base of recent two-dimensional codes. Fracture systems are simulated by means of a dynamical evolution of a random-fuse network model, and the multiphase expression of Richards equation is used to describe fluid displacements. Physical situations presented here emphasized the importance of fracture connectivity and spatial variability on the seepage evolution through the vadose zone, and confirm the existence of dendritic patterns along localized preferential paths. (author)

  10. Vadose zone transport field study: Detailed test plan for simulated leak tests

    International Nuclear Information System (INIS)

    AL Ward; GW Gee

    2000-01-01

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to

  11. Vadose Zone Nitrate Transport Dynamics Resulting from Agricultural Groundwater Banking

    Science.gov (United States)

    Murphy, N. P.; McLaughlin, S.; Dahlke, H. E.

    2017-12-01

    In recent years, California's increased reliance on groundwater resources to meet agricultural and municipal demands has resulted in significant overdraft and water quality issues. Agricultural groundwater banking (AGB) has emerged as a promising groundwater replenishment opportunity in California; AGB is a form of managed aquifer recharge where farmland is flooded during the winter using excess surface water in order to recharge the underlying groundwater. Suitable farmland that is connected to water delivery systems is available for AGB throughout the Central Valley. However, questions remain how AGB could be implemented on fertilized agricultural fields such that nitrate leaching from the root zone is minimized. Here, we present results from field and soil column studies that investigate the transport dynamics of nitrogen in the root and deeper vadose zone during flooding events. We are specifically interested in estimating how timing and duration of flooding events affect percolation rates, leaching and nitrification/denitrification processes in three soil types within the Central Valley. Laboratory and field measurements include nitrogen (NO3-, NH4+, NO2-, N2O), redox potentials, total organic carbon, dissolved oxygen, moisture content and EC. Soil cores are collected in the field before and after recharge events up to a depth of 4m, while other sensors monitor field conditions continuously. Preliminary results from the three field sites show that significant portions of the applied floodwater (12-62 cm) infiltrated below the root zone: 96.1% (Delhi), 88.6% (Modesto) and 76.8% (Orland). Analysis of the soil cores indicate that 70% of the residual nitrate was flushed from the sandy soil, while the fine sandy loam showed only a 5% loss and in some cores even an increase in soil nitrate (in the upper 20cm). Column experiments support these trends and indicate that increases in soil nitrate in the upper root zone might be due to organic nitrogen mineralization and

  12. Soil Desiccation Techniques Strategies For Immobilization Of Deep Vadose Contaminants At The Hanford Central Plateau

    International Nuclear Information System (INIS)

    Benecke, M.W.; Chronister, G.B.; Truex, M.J.

    2012-01-01

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  13. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  14. Climate, soil, and vegetation controls on the temporal variability of vadose zone transport

    NARCIS (Netherlands)

    Harman, C.J.; Rao, P.S.C.; Basu, N.B.; McGrath, G.S.; Kumar, P.; Sivapalan, M.

    2011-01-01

    Temporal patterns of solute transport and transformation through the vadose zone are driven by the stochastic variability of water fluxes. This is determined by the hydrologic filtering of precipitation variability into infiltration, storage, drainage, and evapotranspiration. In this work we develop

  15. Sampling and Hydrogeology of the Vadose Zone Beneath the 300 Area Process Ponds

    International Nuclear Information System (INIS)

    Bjornstad, Bruce N.

    2004-01-01

    Four open pits were dug with a backhoe into the vadose zone beneath the former 300 Area Process Ponds in April 2003. Samples were collected about every 2 feet for physical, chemical, and/or microbiological characterization. This reports presents a stratigraphic and geohydrologic summary of the four excavations

  16. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    International Nuclear Information System (INIS)

    HAASS, C.C.

    1999-01-01

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included

  17. Vadose zone investigations at the Lawrence Livermore National Laboratory Superfund Site: An overview

    International Nuclear Information System (INIS)

    Iovenitti, J.L.; Nitao, J.J.; Bishop, D.J.

    1992-09-01

    Lawrence Livermore National Laboratory (LLNL)is investigating the fate and transport of vadose zone contaminants at their Livermore site in Livermore, California. The principal objectives of this work are to identify potential source areas at the Livermore site which require remediation, to prioritize those areas, and finally, to optimize the remediation process. Primary contaminants of interest for this investigation are volatile organic compounds (VOCs) and tritium. A fully integrated, three-part program, consisting of quantitative modeling, field studies, and laboratory measurements, is in progress. To evaluate and predict vadose zone contaminant migration, quantitative modeling is used. Our modeling capabilities are being enhanced through the development of a multicomponent,three-dimensional,nonaqueous phase liquid-liquid-vapor,nonisothermal flow and transport computer code. This code will be also used to evaluate vadose zone remediation requirements. Field studies to acquire LLNL site-specific soil (sediment) characteristics for computer code calibration and validation include subsurf ace lithologic and contaminant profiling, in situ soil moisture content, ground surface emission flux of VOCs and tritium, transpiration of tritium, and ground surface evapotranspiration of water. Multilevel vadose zone monitoring devices are used to monitor the gaseous and aqueous transport of contaminants

  18. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  19. Seasonal Variability in Vadose zone biodegradation at a crude oil pipeline rupture site

    Science.gov (United States)

    Sihota, Natasha J.; Trost, Jared J.; Bekins, Barbara; Berg, Andrew M.; Delin, Geoffrey N.; Mason, Brent E.; Warren, Ean; Mayer, K. Ulrich

    2016-01-01

    Understanding seasonal changes in natural attenuation processes is critical for evaluating source-zone longevity and informing management decisions. The seasonal variations of natural attenuation were investigated through measurements of surficial CO2 effluxes, shallow soil CO2 radiocarbon contents, subsurface gas concentrations, soil temperature, and volumetric water contents during a 2-yr period. Surficial CO2 effluxes varied seasonally, with peak values of total soil respiration (TSR) occurring in the late spring and summer. Efflux and radiocarbon data indicated that the fractional contributions of natural soil respiration (NSR) and contaminant soil respiration (CSR) to TSR varied seasonally. The NSR dominated in the spring and summer, and CSR dominated in the fall and winter. Subsurface gas concentrations also varied seasonally, with peak values of CO2 and CH4 occurring in the fall and winter. Vadose zone temperatures and subsurface CO2 concentrations revealed a correlation between contaminant respiration and temperature. A time lag of 5 to 7 mo between peak subsurface CO2 concentrations and peak surface efflux is consistent with travel-time estimates for subsurface gas migration. Periods of frozen soils coincided with depressed surface CO2 effluxes and elevated CO2 concentrations, pointing to the temporary presence of an ice layer that inhibited gas transport. Quantitative reactive transport simulations demonstrated aspects of the conceptual model developed from field measurements. Overall, results indicated that source-zone natural attenuation (SZNA) rates and gas transport processes varied seasonally and that the average annual SZNA rate estimated from periodic surface efflux measurements is 60% lower than rates determined from measurements during the summer.

  20. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  1. Characterization of Direct Push Vadose Zone Sediments from the 241-U Single-Shell Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-20

    The overall goals of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid, via collection of geochemical information and data, the future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas (WMAs). For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at WMA U are found in Crumpler (2003). To meet these goals, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses of vadose zone sediment collected within the U Single-Shell Tank Farm. Specifically, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from ten direct push characterization holes emplaced to investigate vadose zone contamination associated with potential leaks within the 241-U Single-Shell Tank Farm. Specific tanks targeted during this characterization campaign included tanks 241-U-104/241-U-105, 241-U-110, and 241-U-112. Additionally, this report compiles data from direct push samples collected north of tank 241-U-201, as well as sediment collected from the background borehole (C3393). After evaluating all the characterization and analytical data, there is no question that the vadose zone in the vicinity of tanks 241-U-104 and 241-U-105 has been contaminated by tank-related waste. This observation is not new, as gamma logging of drywells in the area has identified uranium contamination at the

  2. Climate variability and vadose zone controls on damping of transient recharge

    Science.gov (United States)

    Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.

    2017-01-01

    Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.

  3. Bioremediation of RDX in the vadose zone beneath the Pantex Plant

    Energy Technology Data Exchange (ETDEWEB)

    Shull, T.L.; Speitel, G.E. Jr.; McKinney, D.C. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1999-01-01

    The presence of dissolved high explosives (HE), in particular RDX and HMX, is well documented in the perched aquifer beneath the Pantex Plant, but the distribution of HE in the vadose zone has not yet been well defined. Although current remediation activities focus on the contamination in the perched aquifer, eventually regulatory concern is likely to turn to the residual contamination in the vadose zone. Sources of HE include the infiltration of past wastewater discharges from several HE-processing facilities through the ditch drainage system and leachate from former Landfill 3. With limited existing data on the HE distribution in the vadose zone and without preventive action, it must be assumed that residual HE could be leached into infiltrating water, providing a continuing supply of contamination to the perched aquifer. The purpose of this project was to more closely examine the fate and transport of HE in the vadose zone through mathematical modeling and laboratory experimentation. In particular, this report focuses on biodegradation as one possible fate of HE. Biodegradation of RDX in the vadose zone was studied because it is both present in highest concentration and is likely to be of the greatest regulatory concern. This study had several objectives: determine if indigenous soil organisms are capable of RDX biodegradation; determine the impact of electron acceptor availability and nutrient addition on RDX biodegradation; determine the extent of RDX mineralization (i.e., conversion to inorganic carbon) during biodegradation; and estimate the kinetics of RDX biodegradation to provide information for mathematical modeling of fate and transport.

  4. CMI Remedy Selection for HE- and Barium-Contaminated Vadose Zone and Alluvium at LANL

    Science.gov (United States)

    Hickmott, D.; Reid, K.; Pietz, J.; Ware, D.

    2008-12-01

    A high explosives (HE) machining building outfall at Los Alamos National Laboratory's Technical Area 16 discharged millions of gallons of HE- and barium-contaminated water into the Canon de Valle watershed. The effluent contaminated surface soils, the alluvial aquifer, vadose zone waters, and deep-perched and regional groundwaters with HE and barium, frequently at levels greater than regulatory standards. Site characterization studies began in 1995 and included extensive monitoring of surface water, groundwater, soils, and subsurface solid media. Hydrogeologic and geophysical studies were conducted to help understand contaminant transport mechanisms and pathways. Results from the characterization studies were used to develop a site conceptual model. In 2000 the principal source area was removed. The ongoing Corrective Measure Study (CMS) and Corrective Measure Implementation (CMI) focus on residual vadose zone contamination and on the contaminated alluvial system. Regulators recently selected a CMI remedy that combined: 1) augmented source removal; 2) grouting of an HE- contaminated surge bed; 3) deployment of Stormwater Management System (SMS) stormfilters in contaminated springs; and 4) permeable reactive barriers (PRBs) in contaminated alluvium. The hydrogeologic conceptual model for the vadose zone and alluvial system as well as the status of the canyon as habitat for the Mexican Spotted Owl were key factors in selection of these minimal-environmental-impact remedies. The heterogeneous vadose zone, characterized by flow and contaminant transport in fractures and in surge beds, requires contaminant treatment at a point of discharge. The canyon PRB is being installed to capture water and contaminants prior to infiltration into the vadose zone. Pilot-scale testing of the SMS and lab-scale batch and column tests of a range of media suggest that granular activated carbon, zeolite, and gypsum may be effective media for removal of HE and/or barium from contaminated

  5. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah Sd.

    2001-01-01

    The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from RCRA borehole bore samples and composite samples. Intact cores from two RCRA boreholes (299-W22-48 and 299-W22-50) near the SX Tank Farm and four, large-quantity grab samples from outcrop sediment on and off the Hanford Site were sampled to better understand the fate of contaminants in the vadose zone beneath underground storage tanks at the Hanford Site. Borehole and outcrop samples analyzed for this report are located outside the tank farms, and therefore may be considered standard or background samples from which to compare contaminated sediments within the tank farms themselves. This report presents our interpretation of the physical, chemical, and mineralogical properties of the uncontaminated vadose zone sediments, and variations in the vertical distribution of these properties. The information presented in this report is intended to support preparation of the S-SX Field Investigation Report to be prepared by CH2M Hill Hanford Group, Inc. as well as future remediation actions at the S-SX Tank Farm

  6. Understanding Fluid and Contaminant Movement in the Unsaturated Zone Using the INEEL Vadose Zone Monitoring System

    International Nuclear Information System (INIS)

    Hubbell, J. M.; Mattson, E. D.; Sisson, J. B.; Magnuson, S. O.

    2002-01-01

    DOE has hundreds of contaminated facilities and waste sites requiring cleanup and/or long-term monitoring. These contaminated sites reside in unsaturated soils (i.e. the vadose zone) above the water table. Some of these sites will require active remediation activities or removal while other sites will be placed under institutional controls. In either case, evaluating the effectiveness of the remediation strategy or institutional controls will require monitoring. Classical monitoring strategies implemented at RCRA/CERCLA sites require ground water sampling for 30 years following closure. The overall effectiveness of ground water sampling is diminished due to the fact that by the time you detect chemical transport from a waste site, a major contamination plume likely exists in the vadose zone and the aquifer. This paper suggests a more effective monitoring strategy through monitoring near the contaminant sites within the vadose zone. Vadose zone monitoring allows for quicker detection of potential contaminant transport. The INEEL Vadose Zone Monitoring System (VZMS) is becoming an accepted, cost effective monitoring technology for assessing contaminant transport at DOE facilities. This paper describes the technologies employed in the VZMS and describes how it was used at several DOE facilities. The INEEL VZMS has provided the information in developing and validating both conceptual and risk assessment models of contaminant transport at the Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge National Laboratory (ORNL), Savannah River Site (SRS) and the Hanford site. These DOE sites exhibit a broad range of meteorologic, hydrologic and geologic conditions representative of various common geologic environments. The VZMS is comprised of advanced tensiometers, water content sensors, temperature sensors and soil and gas samplers. These instruments are placed at multiple depths in boreholes and allows for the detection of water movement in the

  7. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.

    Science.gov (United States)

    Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O

    2014-01-01

    demonstrate that analyzing vadose zone and groundwater data by spatial statistical analysis methods can significantly contribute to the understanding of the relations between groundwater contaminating sources, and to assessing appropriate remediation steps. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Offsite demonstrations for MWLID technologies

    International Nuclear Information System (INIS)

    Williams, C.; Gruebel, R.

    1995-01-01

    The goal of the Offsite Demonstration Project for Mixed Waste Landfill Integrated Demonstration (MWLID)-developed environmental site characterization and remediation technologies is to facilitate the transfer, use, and commercialization of these technologies to the public and private sector. The meet this goal, the project identified environmental restoration needs of mixed waste and/or hazardous waste landfill owners (Native American, municipal, DOE, and DoD); documenting potential demonstration sites and the contaminants present at each site; assessing the environmental regulations that would effect demonstration activities; and evaluating site suitability for demonstrating MWLID technologies at the tribal and municipal sites identified. Eighteen landfill sites within a 40.2-km radius of Sandia National Laboratories are listed on the CERCLIS Site/Event Listing for the state of New Mexico. Seventeen are not located within DOE or DoD facilities and are potential offsite MWLID technology demonstration sites. Two of the seventeen CERCLIS sites, one on Native American land and one on municipal land, were evaluated and identified as potential candidates for off-site demonstrations of MWLID-developed technologies. Contaminants potentially present on site include chromium waste, household/commercial hazardous waste, volatile organic compounds, and petroleum products. MWLID characterization technologies applicable to these sites include Magnetometer Towed Array, Cross-borehole Electromagnetic Imaging, SitePlanner trademark/PLUME, Hybrid Directional Drilling, Seamist trademark/Vadose Zone Monitoring, Stripping Analyses, and x-ray Fluorescence Spectroscopy for Heavy Metals

  9. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Johnson, Timothy C.; Smith, Ronald M.; Truex, Michael J.; Matthews, Hope E.

    2011-01-01

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative

  10. 300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Pierce, Eric M.; Bacon, Diana H.; Oostrom, Martinus; Gunderson, Katie M.; Webb, Samuel M.; Bovaird, Chase C.; Cordova, Elsa A.; Clayton, Eric T.; Parker, Kent E.; Ermi, Ruby M.; Baum, Steven R.; Vermeul, Vincent R.; Fruchter, Jonathan S.

    2008-09-30

    This report presents results from bench-scale treatability studies conducted under site-specific conditions to optimize the polyphosphate amendment for implementation of a field-scale technology demonstration to stabilize uranium within the 300 Area vadose and smear zones of the Hanford Site. The general treatability testing approach consisted of conducting studies with site sediment and under site conditions, to develop an effective chemical formulation and infiltration approach for the polyphosphate amendment under site conditions. Laboratory-scale dynamic column tests were used to 1) quantify the retardation of polyphosphate and its degradation products as a function of water content, 2) determine the rate of polyphosphate degradation under unsaturated conditions, 3) develop an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, 4) develop an understanding of the transformation mechanism, the identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and -silicate minerals with the polyphosphate remedy under solubility-limiting conditions, and 5) quantify the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and smear zone.

  11. Characterization of contaminant transport by gravity, capilliarity and barometric pumping in heterogeneous vadose regimes. 1997 annual progress report

    International Nuclear Information System (INIS)

    Carrigan, C.R.

    1997-01-01

    'Vadose regimes can be the sites of complex interactions between the atmosphere and groundwater. When a volatile contaminant exists as free product or in dissolved form in the vadose environment, upward transport can occur with the contaminant ultimately being vented as a vapor into the atmosphere. This transport happens naturally and can be enhanced by anisotropy resulting from heterogenities in the vadose regime. Several stages in the transport process are involved in going from a volatile, liquid state contaminant to a contaminant vapor vented at the surface. In a three-year effort, called the Vadose Zone Transport Study, the authors are investigating, with the aid of existing data, new field studies involving dissolved tracer gases and 3-D diagnostic computer simulations that provide a framework to interpret the observations, the detailed nature of each of these stages of transport in several different kinds of vadose regimes. They are emphasizing the impact of features specific to a site, that is, the local geology and hydrology, on each stage of the transport process. In particular they want to better understand how the time scales for (1) partitioning contaminants from the liquid to the vapor states and then (2) transporting the vapor out of the vadose regime are dependent on the specific character of a site. Such time-scale information will be important for evaluating the potential of contaminant sources as well as remediation strategies including natural remediation approaches.'

  12. Vadose Zone Infiltration Rate at Hanford, Washington, Inferred from Sr Isotope Measurements

    International Nuclear Information System (INIS)

    Maher, Katharine; DePaolo, Donald J.; Conrad, Mark E.; Serne, R. Jeffrey

    2003-01-01

    Sr isotope ratios were measured in the pore water, acid extracts, and sediments of a 70-m vadose zone core to obtain estimates of the long-term infiltration flux for a site in the Hanford/DOE complex in eastern Washington State. The 87Sr/86Sr values of the pore waters decrease systematically with depth, from a high value of 0.721 near the surface toward the bulk sediment average value of 0.711. Estimates of the bulk weathering rate combined with Sr isotopic data were used to constrain the long-term (century to millenial scale) natural diffuse infiltration flux for the site given both steady state and nonsteady state conditions. The models suggest that the infiltration fluc for the site is 7+- 3 mm/yr. The method shows potential for providing long-term in situ estimates of infiltration rates for deep heterogeneous vadose zones

  13. A comprehensive analysis of contaminant transport in the vadose zone beneath tank SX-109

    International Nuclear Information System (INIS)

    Ward, A.L.; Gee, G.W.; White, M.D.

    1997-02-01

    The Vadose Zone Characterization Project is currently investigating the subsurface distribution of gamma-emitting radionuclides in S and SX Waste Management Area (WMA-S-SX) located in the 200 West Area of the US Department of Energy's Hanford Site in southeastern Washington State. Spectral-gamma logging of boreholes has detected elevated 137 Cs concentrations as deep as 38 m, a depth considered excessive based on the assumed geochemistry of 137 Cs in Hanford sediments. Routine groundwater sampling under the Resource Conservation and Recovery Act (RCRA) have also detected elevated levels of site-specific contaminants downgradient of WMA-S-SX. The objective of this report is to explore the processes controlling the migration of 137 Cs, 99 Tc, and NO 3 through the vadose zone of WMA-S-SX, particularly beneath tank SX-109

  14. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  15. Transport and degradation of perchlorate in deep vadose zone: implications from direct observations during bioremediation treatment

    Science.gov (United States)

    Dahan, Ofer; Katz, Idan; Avishai, Lior; Ronen, Zeev

    2017-08-01

    An in situ bioremediation experiment of a deep vadose zone ( ˜ 40 m) contaminated with a high concentration of perchlorate (> 25 000 mg L-1) was conducted through a full-scale field operation. Favourable environmental conditions for microbiological reduction of perchlorate were sought by infiltrating an electron donor-enriched water solution using drip irrigation underlying an airtight sealing liner. A vadose zone monitoring system (VMS) was used for real-time tracking of the percolation process, the penetration depth of dissolved organic carbon (DOC), and the variation in perchlorate concentration across the entire soil depth. The experimental conditions for each infiltration event were adjusted according to insight gained from data obtained by the VMS in previous stages. Continuous monitoring of the vadose zone indicated that in the top 13 m of the cross section, perchlorate concentration is dramatically reduced from thousands of milligrams per litre to near-detection limits with a concurrent increase in chloride concentration. Nevertheless, in the deeper parts of the vadose zone (< 17 m), perchlorate concentration increased, suggesting its mobilization down through the cross section. Breakthrough of DOC and bromide at different depths across the unsaturated zone showed limited migration capacity of biologically consumable carbon and energy sources due to their enhanced biodegradation in the upper soil layers. Nevertheless, the increased DOC concentration with concurrent reduction in perchlorate and increase in the chloride-to-perchlorate ratio in the top 13 m indicate partial degradation of perchlorate in this zone. There was no evidence of improved degradation conditions in the deeper parts where the initial concentrations of perchlorate were significantly higher.

  16. IMPACT ASSESSMENT OF EXISTING VADOSE ZONE CONTAMINATION AT THE HANFORD SITE SX TANK FARM

    International Nuclear Information System (INIS)

    KHALEEL R

    2007-01-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr -1 , is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted, groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 10 6 pCi L -1 . The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr -1 , and compared to the basecase(100 mm yr -1 ) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary

  17. Impact Assessment of Existing Vadose Zone Contamination at the Hanford Site SX Tank Farm

    International Nuclear Information System (INIS)

    Khaleel, Raziuddin; White, Mark D.; Oostrom, Martinus; Wood, Marcus I.; Mann, Frederick M.; Kristofzski, John G.

    2007-01-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr -1 , is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 106 pCi L-1. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr -1 , and compared to the base case (100 mm yr -1 ) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary.

  18. Radiotracer technique to study pollutant behavior in the vadose zone for groundwater protection

    International Nuclear Information System (INIS)

    Kulkarni, U.P.; Sinha, U.K.; Navada, S.V.; Datta, P.S.; Sud, Y.K.; Kulkarni, K.M.; Aggrawal, P.; )

    2004-01-01

    Pollutants are generated either by industrial or agricultural activity. Pollutants produced due to industrial activities fall into point source category and those generated from agricultural are grouped into extended source category. Under an International Atomic Energy Agency/Coordinated Research Program study, emphasis has been given on transport of pollutants, generated from agricultural activities, in particular, due to the application of fertilizer inputs to a variety of crops. Pollutants take entry through the vadose zone and ultimately join the saturated zone. Once groundwater is polluted it is rather difficult or impossible to take remedial measures for groundwater protection. Groundwater being an important natural resource, it is important to protect it from getting polluted. It is hence essential to have a clear understanding of the complex processes (physical, biological and chemical etc.) undergoing in the unsaturated zone. Radiotracers give good insight about the pollutant behavior in the vadose zone. Tritiated water and 60 Co (a gamma emitting tracer in the cyanide complex form) were used as tracers and were injected at 60 cm depth in the vadose zone of IARI farm for pollutant transport study. Tritium and 60 Co tracer displacements were measured by liquid scintillation and sodium iodide scintillation method respectively. It was found that the tritium tracer moved up to 2.4 meters in six months and part of the tritium tracer was exchanged with immobile water in the soil, as three distinct peaks were observed in tritium profile. 60 Co and tritium tracers were found to move with the same velocity in the vadose zone. These tracer studies indicate that the pollutants may reach the groundwater in about three years. (author)

  19. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    International Nuclear Information System (INIS)

    Roostapour, A.; Kam, S.I.

    2012-01-01

    Highlights: ► A new mathematical framework established for vadose-zone foam remediation. ► Graphical solutions presented by Method of Characteristics quantitatively. ► Effects of design parameters in the field applications thoroughly investigated. ► Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S w ), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam strength, and foam stability) are shown to be all important, interacting with each other. Results also

  20. Wildfire effects on vadose zone hydrology in forested boreal peatland microforms

    Science.gov (United States)

    Thompson, Dan K.; Waddington, James M.

    2013-04-01

    SummaryPeatland vulnerability to wildfire disturbance has been shown to vary as a function of hummock and hollow microforms and vadose zone hydrology, with low-lying hollow microforms most susceptible to deep combustion of peat. To better understand how this microform induced pattern of burning alters vadose water storage, pore-water pressure, and water table relationships, we examined a paired burned and unburned peatland in the boreal plain region of north central Alberta. Water table response to rain events increased significantly after wildfire, resulting in a more variable unsaturated zone thickness that was more responsive to smaller rain events. Water storage losses in the vadose zone occurred primarily at depths greater than 15 cm. Large peat surface water loss occurred in hummock microforms in the early spring due to the presence of unsaturated frozen peat at depth, likely a result of a vapour gradient from the unfrozen peat into the frozen peat underneath. During this period, the loss of water storage in the vadose zone satisfied up to 25% of daily evaporative demand, compared to only 3-5% during ice-free periods. A similar but less severe drying was observed late in summer, with burned hummocks the most vulnerable with high pore-water pressures. The enhanced surface drying observed is a precursor to high pore-water pressure conditions that inhibit Sphagnum regeneration. Our observations point to a paradox where the hummocks, being most resistant to combustion, are themselves most prone to high pore-water pressures following wildfire. The harsher hummock environment may contribute to the observed delay in post-fire Sphagnum regeneration in hummocks compared to hollows.

  1. Transport and degradation of perchlorate in deep vadose zone: implications from direct observations during bioremediation treatment

    Directory of Open Access Journals (Sweden)

    O. Dahan

    2017-08-01

    Full Text Available An in situ bioremediation experiment of a deep vadose zone ( ∼  40 m contaminated with a high concentration of perchlorate (> 25 000 mg L−1 was conducted through a full-scale field operation. Favourable environmental conditions for microbiological reduction of perchlorate were sought by infiltrating an electron donor-enriched water solution using drip irrigation underlying an airtight sealing liner. A vadose zone monitoring system (VMS was used for real-time tracking of the percolation process, the penetration depth of dissolved organic carbon (DOC, and the variation in perchlorate concentration across the entire soil depth. The experimental conditions for each infiltration event were adjusted according to insight gained from data obtained by the VMS in previous stages. Continuous monitoring of the vadose zone indicated that in the top 13 m of the cross section, perchlorate concentration is dramatically reduced from thousands of milligrams per litre to near-detection limits with a concurrent increase in chloride concentration. Nevertheless, in the deeper parts of the vadose zone (< 17 m, perchlorate concentration increased, suggesting its mobilization down through the cross section. Breakthrough of DOC and bromide at different depths across the unsaturated zone showed limited migration capacity of biologically consumable carbon and energy sources due to their enhanced biodegradation in the upper soil layers. Nevertheless, the increased DOC concentration with concurrent reduction in perchlorate and increase in the chloride-to-perchlorate ratio in the top 13 m indicate partial degradation of perchlorate in this zone. There was no evidence of improved degradation conditions in the deeper parts where the initial concentrations of perchlorate were significantly higher.

  2. A vadose zone Transport Processes Investigation within the glacial till at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Schwing, J.; Roepke, Craig Senninger; Brainard, James Robert; Glass, Robert John Jr.; Mann, Michael J.A.; Holt, Robert M..; Kriel, Kelly

    2007-01-01

    This report describes a model Transport Processes Investigation (TPI) where field-scale vadose zone flow and transport processes are identified and verified through a systematic field investigation at a contaminated DOE site. The objective of the TPI is to help with formulating accurate conceptual models and aid in implementing rational and cost effective site specific characterization strategies at contaminated sites with diverse hydrogeologic settings. Central to the TPI are Transport Processes Characterization (TPC) tests that incorporate field surveys and large-scale infiltration experiments. Hypotheses are formulated based on observed pedogenic and hydrogeologic features as well as information provided by literature searches. The field and literature information is then used to optimize the design of one or more infiltration experiments to field test the hypothesis. Findings from the field surveys and infiltration experiments are then synthesized to formulate accurate flow and transport conceptual models. Here we document a TPI implemented in the glacial till vadose zone at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio, a US Department of Energy (DOE) uranium processing site. As a result of this TPI, the flow and transport mechanisms were identified through visualization of dye stain within extensive macro pore and fracture networks which provided the means for the infiltrate to bypass potential aquatards. Such mechanisms are not addressed in current vadose zone modeling and are generally missed by classical characterization methods

  3. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD'S SITE CENTRAL PLATEAU

    International Nuclear Information System (INIS)

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-01-01

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented

  4. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples

  5. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  6. Deep Vadose Zone Applied Field Research Center: Transformational Technology Development For Environmental Remediation

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Gephart, Roy E.; Johnson, Timothy C.; Chronister, Glen B.; Gerdes, Kurt D.; Chamberlain, Skip; Marble, Justin; Ramirez, Rosa

    2011-01-01

    DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of each organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.

  7. Parallel inversion of a massive ERT data set to characterize deep vadose zone contamination beneath former nuclear waste infiltration galleries at the Hanford Site B-Complex (Invited)

    Science.gov (United States)

    Johnson, T.; Rucker, D. F.; Wellman, D.

    2013-12-01

    revealed the general footprint of vadose zone contamination beneath infiltration galleries. In 2011, the USDOE commissioned an effort to re-invert the B-Complex ERT data as a whole using a recently developed massively parallel 3D ERT inversion code. The computational mesh included approximately 1.085 million elements and closely honored the 37m of topographic relief as determined by LiDAR imaging. The water table and tank boundaries were also incorporated into the mesh to facilitate regularization disconnects, enabling sharp conductivity contrasts where they occur naturally without penalty. The data were inverted using 1024 processors, requiring 910 Gb of memory and 11.5 hours of computation time. The imaging results revealed previously unrealized detail concerning the distribution and behavior of contaminants migrating through the vadose zone, and are currently being used by site cleanup operators and regulators to understand the origin of a groundwater nitrate plume emerging from one of the infiltration galleries. The results overall demonstrate the utility of high performance computing, unstructured meshing, and custom regularization constraints for optimal processing of massive ERT data sets enabled by modern ERT survey hardware.

  8. Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone.

    Science.gov (United States)

    Nauer, Philipp A; Chiri, Eleonora; Schroth, Martin H

    2013-10-01

    Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil disturbance. It is based on perforated access tubes (ATs) permanently installed in the soil. A multi-level sampler allows extraction of soil-gas samples from 20 locations within 1 m depth, while a capacitance probe is used to measure volumetric water contents. During idle times, the ATs are sealed and can be equipped with temperature sensors. Proof-of-concept experiments in a field lysimeter showed good agreement of soil-gas samples and water-content measurements compared with conventional techniques, while a successfully performed gas-tracer test demonstrated the feasibility of the PMLS to determine soil-gas diffusion coefficients in situ. A field application of the PMLS to quantify oxidation of atmospheric CH4 in a field lysimeter and in the forefield of a receding glacier yielded activity coefficients and soil-atmosphere fluxes well in agreement with previous studies. With numerous options for customization, the presented tool extends the methodological choices to investigate soil-gas transport in the vadose zone.

  9. Vadose zone monitoring plan using geophysical nuclear logging for radionuclides discharged to Hanford liquid waste disposal facilities

    International Nuclear Information System (INIS)

    Price, R.K.

    1995-11-01

    During plutonium production at Hanford, large quantities of hazardous and radioactive liquid effluent waste have been discharged to the subsurface (vadose zone). These discharges at over 330 liquid effluent disposal facilities (ie. cribs, ditches, and ponds) account for over 3,000,000 curies of radioactive waste released into the subsurface. It is estimated that 10% of the contaminants have reached the groundwater in many places. Continuing migration may further impact groundwater quality in the future. Through the RCRA Operational Monitoring Program, a Radionuclide Logging System (RLS) has been obtained by Hanford Technical Services (HTS) and enhanced to measure the distribution of contaminants and monitor radionuclide movement in existing groundwater and vadose zone boreholes. Approximately 100 wells are logged by HTS each year in this program. In some cases, movement has been observed years after discharges were terminated. A similar program is in place to monitor the vadose zone at the Tank Farms. This monitoring plan describes Hanford Programs for monitoring the movement of radioactive contamination in the vadose zone. Program background, drivers, and strategy are presented. The objective of this program is to ensure that DOE-RL is aware of any migration of contaminants in the vadose zone, such that groundwater can be protected and early actions can be taken as needed

  10. Characterization Activities to Determine the Extent of DNAPL in the Vadose Zone at the A-014 Outfall of A/M Area

    International Nuclear Information System (INIS)

    Jackson, D.G.

    2000-01-01

    The purpose of this investigation was to perform characterization activities necessary to confirm the presence and extent of DNAPL in the shallow vadose zone near the headwaters of the A-014 Outfall. Following the characterization, additional soil vapor extraction wells and vadose monitoring probes were installed to promote and monitor remediation activities in regions of identified DNAPL

  11. Characterization of the vadose zone above a shallow aquifer contaminated with gas condensate hydrocarbons

    International Nuclear Information System (INIS)

    Sublette, K.; Duncan, K.; Thoma, G.; Todd, T.

    2002-01-01

    A gas production site in the Denver Basin near Ft. Lupton, Colorado has leaked gas condensate hydrocarbons from an underground concrete tank used to store produced water. The leak has contaminated a shallow aquifer. Although the source of pollution has been removed, a plume of hydrocarbon contamination still remains for nearly 46 m from the original source. An extensive monitoring program was conducted in 1993 of the groundwater and saturated sediments. The objective was to determine if intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurred at the site at a rate that would support remediation. Geochemical indicators of hydrogen biodegradation by microorganisms in the saturated zone included oxygen depletion, increased alkalinity, sulfate depletion, methane production and Fe2+ production associated with hydrogen contamination. The presence of sulfate-reducing bacteria and methanogens was also much higher in the contaminated sediments. Degraded hydrocarbon metabolites were found in contaminated groundwater. An extensive characterization of the vadose zone was conducted in which the vadose zone was sample in increments of 15 cm from the surface to the water table at contaminated and non contaminated sites. The samples were tested for individual C3+ hydrocarbons, methane, CO2, total organic carbon, total inorganic carbon, and total petroleum hydrocarbons. The vadose zone consisted of an active and aerobic bioreactor fueled by condensate hydrocarbons transported into the unsaturated zone by evaporation of hydrocarbons at the water table. It was concluded that the unsaturated zone makes an important contribution to the natural attenuation of gas condensate hydrocarbons in the area. 17 refs., 2 tabs., 28 figs

  12. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  13. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Science.gov (United States)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip

  14. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Directory of Open Access Journals (Sweden)

    A. Watlet

    2018-03-01

    Full Text Available Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1 upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2 deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3 a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of

  15. Geochemical Processes Controlling Migration of High Level Wastes in Hanford's Vadose Zone

    International Nuclear Information System (INIS)

    Zachara, John M.; Serne, R. Jeffrey; Freshley, Mark D.; Mann, Frederick M.; Anderson, Frank J.; Wood, Marcus I.; Jones, Thomas E.; Myers, David A.

    2007-01-01

    High level nuclear wastes (HLW) from Hanford's plutonium reprocessing are stored in massive, buried, single-shell tanks in eighteen tank farms. The wastes were initially hot because of radioactive decay, and many exhibited extreme chemical character in terms of pH, salinity, and radionuclide concentration. At present, 67 of the 149 single shell tanks are suspected to have released over 1.9 million L of tank waste to the vadose zone, with most leak events occurring between 1950 and 1975. Boreholes have been placed through the largest vadose zone plumes to define the extent of contaminant migration, and to develop conceptual models of processes governing the transformation, retardation, and overall transport of tank waste residuals. Laboratory studies with sediments so collected have shown that ion exchange, precipitation and dissolution, and surface complexation reactions have occurred between the HLW and subsurface sediments moderating their chemical character, and retarding the migration of select contaminants. Processes suspected to facilitate the far-field migration of immobile radionuclides including stable aqueous complex formation and mobile colloids were found to be potentially operative, but unlikely to occur in the field, with the exception of cyanide-facilitated migration of 60Co. Fission product oxyanions are the most mobile of tank waste constituents because their adsorption is suppressed by large concentrations of waste anions; the vadose zone clay fraction is negative in surface charge; and, unlike Cr, their reduced forms are unstable in oxidizing environments. Reaction/process-based transport modeling is beginning to be used for predictions of future contaminant mobility and plume evolution

  16. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    International Nuclear Information System (INIS)

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P.; Dever, L.G.; O'Neill, L.J.; Tyler, S.W.; Chapman, J.

    1994-01-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement

  17. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2008-09-11

    The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in January 2007. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc., tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within waste management area (WMA) C. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data compiled on vadose zone sediment recovered from direct-push samples collected around the site of an unplanned release (UPR), UPR-200-E-82, adjacent to the 241-C-152 Diversion Box located in WMA C.

  18. Electrical Conductivity in the Vadose Zone beneath a Tamarisk Grove along the Virgin River in Nevada

    Science.gov (United States)

    Shillito, R.; Sueki, S.; Berli, M.; Healey, J. M.; Acharya, K.

    2013-12-01

    Thick tamarisk groves along river corridors of the Southwest can transpire vast quantities of water and, as an invasive species, compete with native plants for space and resources. It is hypothesized that tamarisk can outcompete other species by not only tolerating high soil salinity, but by increasing soil salinity due to transpiration of salt-rich near-surface groundwater. The goal of this study was to garner experimental evidence for salt accumulation around tamarisk trees in comparison with other species (mesquite) along the Virgin River near Riverside, NV. At the experimental site, electrical conductivity (EC), temperature (T), and volumetric water content (VWC) within the vadose zone were monitored using sensors at 20, 40, 60, 80 and 100 cm depth on 30-minute intervals within the tamarisk thicket where several mesquite trees are found. Nearby groundwater levels were monitored every 40 days. The 2012 - 2013 data reveal an unexpected EC profile between the surface and the groundwater table (average depth 100 cm). A crust was found within depressions on the surface with EC values as high as 18.8 mS/cm. In the vadose zone (0 to 80 cm depth), average EC values of 4.4 mS/cm were recorded. Most interestingly, in the capillary fringe immediately above the water table (80 to 100 cm depth) average EC values of only 1.25 mS/cm were found whereas the groundwater (>100 cm depth) showed considerably higher EC values averaging 8.8 mS/cm. Additionally, the surface beneath the tamarisk had double the EC as that beneath the mesquite. The contrast in the EC indicates an increase in the aquifer salinity, which may be due to leachate infiltration through the vadose zone concentrated by plant transpiration and direct deposition of saline tamarisk leaf litter and secretions onto the understory. Evapotranspiration and shedding of litter by the tamarisk accelerated the salinity concentrations in the uppermost part of the vadose zone. Ultimately, understanding the salinity regime as

  19. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Roostapour, A. [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Kam, S.I., E-mail: kam@lsu.edu [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new mathematical framework established for vadose-zone foam remediation. Black-Right-Pointing-Pointer Graphical solutions presented by Method of Characteristics quantitatively. Black-Right-Pointing-Pointer Effects of design parameters in the field applications thoroughly investigated. Black-Right-Pointing-Pointer Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S{sub w}), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam

  20. Immobilization of Radionuclides in the Hanford Vadose Zone by Incorporation in Solid Phases

    International Nuclear Information System (INIS)

    Brown, Gordon E. Jr.; Catalano, Jeffrey G.; Warner, Jeffrey A.; Samual Shaw; Daniel Grolimund

    2005-01-01

    The Department of Energy's Hanford Nuclear Site located in Washington State has accumulated over 2 million curies of radioactive waste from activities related to the production of plutonium (Ahearne, 1997). Sixty-seven of the single-shelled tanks located at the site are thought to have leaked, allowing between 2 and 4 million liters of waste fluids into the underlying vadose zone. The chemical processes employed at the Hanford Site to extract plutonium, as well as the need to minimize corrosion of the high-carbon steel storage tanks, resulted in uncharacterized hyperalkaline waste streams rich in radionuclides as well as other species including significant amounts of sodium and aluminum

  1. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  2. Improvements to measuring water flux in the vadose zone.

    Science.gov (United States)

    Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M

    2004-01-01

    Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix.

  3. Managed aquifer recharge of treated wastewater: water quality changes resulting from infiltration through the vadose zone.

    Science.gov (United States)

    Bekele, Elise; Toze, Simon; Patterson, Bradley; Higginson, Simon

    2011-11-01

    Secondary treated wastewater was infiltrated through a 9 m-thick calcareous vadose zone during a 39 month managed aquifer recharge (MAR) field trial to determine potential improvements in the recycled water quality. The water quality improvements of the recycled water were based on changes in the chemistry and microbiology of (i) the recycled water prior to infiltration relative to (ii) groundwater immediately down-gradient from the infiltration gallery. Changes in the average concentrations of several constituents in the recycled water were identified with reductions of 30% for phosphorous, 66% for fluoride, 62% for iron and 51% for total organic carbon when the secondary treated wastewater was infiltrated at an applied rate of 17.5 L per minute with a residence time of approximately four days in the vadose zone and less than two days in the aquifer. Reductions were also noted for oxazepam and temazepam among the pharmaceuticals tested and for a range of microbial pathogens, but reductions were harder to quantify as their magnitudes varied over time. Total nitrogen and carbamazepine persisted in groundwater down-gradient from the infiltration galleries. Infiltration does potentially offer a range of water quality improvements over direct injection to the water table without passage through the unsaturated zone; however, additional treatment options for the non-potable water may still need to be considered, depending on the receiving environment or the end use of the recovered water. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    International Nuclear Information System (INIS)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm

  5. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    Energy Technology Data Exchange (ETDEWEB)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  6. Rectangular Schlumberger resistivity arrays for delineating vadose zone clay-lined fractures in shallow tuff

    International Nuclear Information System (INIS)

    Miele, M.; Laymon, D.; Gilkeson, R.; Michelotti, R.

    1996-01-01

    Rectangular Schlumberger arrays can be used for 2-dimensional lateral profiling of apparent resistivity at a unique current electrode separation, hence single depth of penetration. Numerous apparent resistivity measurements are collected moving the potential electrodes (fixed MN spacing) within a rectangle of defined dimensions. The method provides a fast, cost-effective means for the collection of dense resistivity data to provide high-resolution information on subsurface hydrogeologic conditions. Several rectangular Schlumberger resistivity arrays were employed at Los Alamos National Laboratory (LANL) from 1989 through 1995 in an area adjacent to and downhill from an outfall pipe, septic tank, septic drainfield, and sump. Six rectangular arrays with 2 AB spacings were used to delineate lateral low resistivity anomalies that may be related to fractures that contain clay and/or vadose zone water. Duplicate arrays collected over a three year time period exhibited very good data repeatability. The properties of tritium make it an excellent groundwater tracer. Because tritium was present in discharged water from all of the anthropogenic sources in the vicinity it was used for this purpose. One major low resistivity anomaly correlates with relatively high tritium concentrations in the tuff. This was determined from borehole samples collected within and outside of the anomalous zone. The anomaly is interpreted to be due to fractures that contain clay from the soil profile. The clay was deposited in the fractures by aeolian processes and by surface water infiltration. The fractures likely served as a shallow vadose zone groundwater pathway

  7. LNAPL infiltration in the vadose zone: Comparisons of physical and numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pantazidou, M. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-03-01

    The numerical model T2VOC was used to reproduce light, nonaqueous phase liquid (LNAPL) infiltration scenarios in the vadose zone. The numerical modeling results were compared to results from laboratory experiments simulating LNAPL spills in the vadose zone. Laboratory measurements included results from one-dimensional column and two-dimensional tank experiments using uniform sands of varying average grain sizes. The constitutive relationships for the sands were obtained from the one-dimensional experiments. The two-dimensional experiments simulated leakage of kerosene under constant head. The sensitivity of the numerical results to the constitutive relationships used and the specified boundary conditions was examined. For this purpose two different capillary pressure-saturation relationships were used for the same sand and both constant head and constant flux conditions were obtained for the two capillary pressure curves used. The constant flux boundary conditions produced a much better prediction. At the initial stages of infiltration the results for both capillary pressure curves were similar and in good agreement with the experimental results. However, as the LNAPL front approaches the capillary fringe the choice of the capillary pressure curve was found to influence the results.

  8. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  9. System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area - Application to Uranium Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Parker, Kyle R.; Waichler, Scott R.; Williams, Mark D.

    2013-10-01

    This report represents a synthesis and integration of basic and applied research into a system-scale model of the Hanford 300 Area groundwater uranium plume, supported by the U.S. Department of Energy’s Richland Operations (DOE-RL) office. The report integrates research findings and data from DOE Office of Science (DOE-SC), Office of Environmental Management (DOE-EM), and DOE-RL projects, and from the site remediation and closure contractor, Washington Closure Hanford, LLC (WCH). The three-dimensional, system-scale model addresses water flow and reactive transport of uranium for the coupled vadose zone, unconfined aquifer, and Columbia River shoreline of the Hanford 300 Area. The system-scale model of the 300 Area was developed to be a decision-support tool to evaluate processes of the total system affecting the groundwater uranium plume. The model can also be used to address “what if” questions regarding different remediation endpoints, and to assist in design and evaluation of field remediation efforts. For example, the proposed cleanup plan for the Hanford 300 Area includes removal, treatment, and disposal of contaminated sediments from known waste sites, enhanced attenuation of uranium hot spots in the vadose and periodically rewetted zone, and continued monitoring of groundwater with institutional controls. Illustrative simulations of polyphosphate infiltration were performed to demonstrate the ability of the system-scale model to address these types of questions. The use of this model in conjunction with continued field monitoring is expected to provide a rigorous basis for developing operational strategies for field remediation and for defining defensible remediation endpoints.

  10. Application of Vadose Zone Monitoring Technology for Characterization of Leachate Generation in Landfills

    Science.gov (United States)

    aharoni, imri; dahan, ofer

    2016-04-01

    Ground water contamination due to landfill leachate percolation is considered the most severe environmental threat related to municipal solid waste landfills. Natural waste degradation processes in landfills normally produce contaminated leachates up to decades after the waste has been buried. Studies have shown that understanding the mechanisms which govern attenuation processes and the fate of pollutants in the waste and in the underlying unsaturated zone is crucial for evaluation of environmental risks and selection of a restoration strategy. This work focuses on a closed landfill in the coastal plain of Israel that was active until 2002 without any lining infrastructure. A vadose zone monitoring system (VMS) that was implemented at the site enables continuous measurements across the waste body (15 m thick) and underlying sandy vadose zone (16 m thick). Data collected by the VMS included continuous measurements of water content as well as chemical composition of the leachates across the entire waste and vadose zone cross section. Results indicated that winter rain percolated through the waste, generating wetting waves which were observed across the waste and unsaturated sediment from land surface until groundwater at 31 m bls. Quick percolation and high fluxes were observed in spite of the clay cover that was implemented at the site as part of the rehabilitation scheme. The results show that the flow pattern is controlled by a preferential mechanism within the waste body. Specific sections showed rapid fluxes in response to rain events, while other sections remained unaffected. In the underlying sandy vadose zone the flow pattern exhibited characteristics of matrix flow. Yet, some sections received higher fluxes due to the uneven discharge of leachates from the overlying waste body. Water samples collected from the waste layer indicate production of highly polluted leachates over 14 years after the landfill was closed. The chemical composition within the waste

  11. Vadose zone monitoring at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, 1985--1989

    International Nuclear Information System (INIS)

    McElroy, D.L.

    1990-12-01

    Vadose zone monitoring at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL) was implemented under the Subsurface Investigation Program Plan. The objective of the Subsurface Investigation Program was to characterize the subsurface at the RWMC in order to measure and predict radionuclide transport. Soil moisture sensors were installed to characterize the uniformity of water entry to the surficial sediments and moisture flux in the surficial sediments and the deeper stratigraphic units. From 1985 to 1987, a network of vadose zone instruments was installed in sediments at the RWMC. The instruments included psychrometers, gypsum blocks, heat-dissipation sensors (HDSs), tensiometers, lysimeters, and neutron access tubes. These instruments were placed at depths up to 230 ft below land surface (BLS) in a heterogeneous geologic system comprised of sediments that overlie and are intercalated with basalt flows. After organic contaminants were detected in the subsurface at the RWMC in 1988, the vadose zone monitoring project was incorporated into a broader characterization effort. This report presents the analyses of the vadose zone monitoring data collected from FY-1985 to FY-1989. The performance of the instruments are compared. Matric potential ranges and trends in the surficial sediments and interbeds are discussed. Hydraulic gradients are calculated to determine the direction of moisture movement. Using the neutron logging data in conjunction with the matric potential and hydraulic gradient data, infiltration is examined with respect to seasonal nature and source. 14 refs., 19 figs., 4 tabs

  12. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  13. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  14. Natural analogues for processes affecting disposal of high-level radioactive waste in the vadose zone

    Science.gov (United States)

    Stuckless, J. S.

    2003-04-01

    Natural analogues can contribute to understanding and predicting the performance of subsystems and processes affecting a mined geologic repository for high-level radioactive waste in several ways. Most importantly, analogues provide tests for various aspects of systems of a repository at dimensional scales and time spans that cannot be attained by experimental study. In addition, they provide a means for the general public to judge the predicted performance of a potential high-level nuclear waste repository in familiar terms such that the average person can assess the anticipated long-term performance and other scientific conclusions. Hydrologists working on the Yucca Mountain Project (currently the U.S. Department of Energy's Office of Repository Development) have modeled the flow of water through the vadose zone at Yucca Mountain, Nevada and particularly the interaction of vadose-zone water with mined openings. Analogues from both natural and anthropogenic examples confirm the prediction that most of the water moving through the vadose zone will move through the host rock and around tunnels. This can be seen both quantitatively where direct comparison between seepage and net infiltration has been made and qualitatively by the excellent degree of preservation of archaeologic artifacts in underground openings. The latter include Paleolithic cave paintings in southwestern Europe, murals and artifacts in Egyptian tombs, painted subterranean Buddhist temples in India and China, and painted underground churches in Cappadocia, Turkey. Natural analogues also suggest that this diversion mechanism is more effective in porous media than in fractured media. Observations from natural analogues are also consistent with the modeled decrease in the percentage of infiltration that becomes seepage with a decrease in amount of infiltration. Finally, analogues, such as tombs that have ben partially filled by mud flows, suggest that the same capillary forces that keep water in the

  15. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA; Co-Principal Investigator: Jeff Terry, Illinois Institute of Technology, Chicago, IL

    2008-05-12

    There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of the most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The

  16. Vadose zone process that control landslide initiation and debris flow propagation

    Science.gov (United States)

    Sidle, Roy C.

    2015-04-01

    Advances in the areas of geotechnical engineering, hydrology, mineralogy, geomorphology, geology, and biology have individually advanced our understanding of factors affecting slope stability; however, the interactions among these processes and attributes as they affect the initiation and propagation of landslides and debris flows are not well understood. Here the importance of interactive vadose zone processes is emphasized related to the mechanisms, initiation, mode, and timing of rainfall-initiated landslides that are triggered by positive pore water accretion, loss of soil suction and increase in overburden weight, and long-term cumulative rain water infiltration. Both large- and small-scale preferential flow pathways can both contribute to and mitigate instability, by respectively concentrating and dispersing subsurface flow. These mechanisms are influenced by soil structure, lithology, landforms, and biota. Conditions conducive to landslide initiation by infiltration versus exfiltration are discussed relative to bedrock structure and joints. The effects of rhizosphere processes on slope stability are examined, including root reinforcement of soil mantles, evapotranspiration, and how root structures affect preferential flow paths. At a larger scale, the nexus between hillslope landslides and in-channel debris flows is examined with emphasis on understanding the timing of debris flows relative to chronic and episodic infilling processes, as well as the episodic nature of large rainfall and related stormflow generation in headwater streams. The hydrogeomorphic processes and conditions that determine whether or not landslides immediately mobilize into debris flows is important for predicting the timing and extent of devastating debris flow runout in steep terrain. Given the spatial footprint of individual landslides, it is necessary to assess vadose zone processes at appropriate scales to ascertain impacts on mass wasting phenomena. Articulating the appropriate

  17. An Exact Solution for the Assessment of Nonequilibrium Sorption of Radionuclides in the Vadose Zone

    International Nuclear Information System (INIS)

    Drake, R. L.; Chen, J-S.

    2002-01-01

    In a report on model evaluation, the authors ran the HYDRUS Code, among other transport codes, to evaluate the impacts of nonequilibrium sorption sites on the time-evolution of 99Tc and 90Sr through the vadose zone. Since our evaluation was based on a rather low, annual recharge rate, many of the numerical results derived from HYDRUS indicated that the nonequilibrium sorption sites, in essence, acted as equilibrium sorption sites. To help explain these results, we considered a ''stripped-down'' version of the HYDRUS system. This ''stripped-down'' version possesses two dependent variables, one for the radionuclides in solution and the other for the radionuclides adsorbed to the nonequilibrium sites; and it possesses constant physical parameters. The resultant governing equation for the radionuclides in solution is a linear, advection-dispersion-reaction (i.e., radioactive decay) partial differential equation containing a history integral term accounting for the nonequilibrium sorption sites. It is this ''stripped-down'' version, which is the subject of this paper. We found an exact solution to this new version of the model. The exact solution is given in terms of a single definite integral of terms involving elementary functions of the independent variables and the system parameters. This integral possesses adequate convergence properties and is easy to evaluate, both in a quantitative matter and in a qualitative manner. The parameters that are considered in the system are as follows: the radionuclide's equilibrium partition coefficient between water and soil, the bulk density of the soil, the fractions of equilibrium/nonequilibrium sorption sites, the volumetric water content, the first order equilibrium adsorption rate constant, the first order radioactive decay rate constant, the liquid water soil tortuosity factor, the molecular diffusion coefficient in water, the longitudinal dispersivity factor, and the Darcian fluid flux density. In addition, the system

  18. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    the lack of information on vertical variability of soil properties. It is our opinion that, with sufficient information on soil horizonation and with an appropriate horizontal resolution, it may be demonstrated that model outputs may be largely sensitive to the vertical variability of stream tubes, even at applicative scales. Horizon differentiation is one of the main observations made by pedologists while describing soils and most analytical data are given according to soil horizons. Over the last decades, soil horizonation has been subjected to regular monitoring for mapping soil variation at regional scales. Accordingly, this study mainly aims to developing a regional-scale simulation approach for vadose zone flow and transport that use real soil profiles data based on information on vertical variability of soils. As to the methodology, the parallel column concept was applied to account for the effect of vertical heterogeneity on variability of water flow and solute transport in the vadose zone. Even if the stream tube approach was mainly introduced for (unrealistic) vertically homogeneous soils, we extended their use to real vertically variable soils. The approach relies on available datasets coming from different sources and offers quantitative answers to soil and groundwater vulnerability to non-point source of chemicals and pathogens at regional scale within a defined confidence interval. This result will be pursued through the design and building up of a spatial database containing 1). Detailed pedological information, 2). Hydrological properties mainly measured in the investigated area in different soil horizons, 3). Water table depth, 4). Spatially distributed climatic temporal series, and 5). Land use. The area of interest for the study is located in the sub-basin of Metaponto agricultural site, located in southern Basilicata Region in Italy, covering approximately 11,698 hectares, crossed by two main rivers, Sinni and Agri and from many secondary water

  19. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L.

    1983-01-01

    An apparatus is described in which effects of pressure, volume, and temperature changes on a gas can be observed simultaneously. Includes use of the apparatus in demonstrating Boyle's, Gay-Lussac's, and Charles' Laws, attractive forces, Dalton's Law of Partial pressures, and in illustrating measurable vapor pressures of liquids and some solids.…

  20. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations to illustrate characteristics of substances. Outlines a method to detect the changes in pH levels during the electrolysis of water. Uses water pistols, one filled with methane gas and the other filled with water, to illustrate the differences in these two substances. (TW)

  1. Vadose zone monitoring at the radioactive waste management complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McElroy, D.L.; Hubbell, J.M.

    1989-01-01

    A network of vadose zone instruments was installed in surficial sediments and sedimentary interbeds beneath the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. The network of instruments monitor moisture movement in a heterogeneous geologic system comprised of sediments which overlie and are intercalated with basalt flows. The general range of matric potentials in the surficial sediments (0 to 9.1 m) was from saturation to -3 bars. The basalt layer beneath the surficial sediments impedes downward water movement. The general range of matric potentials in the 9-, 34- and 73-m interbeds was from -0.3 to 1.7 bars. Preliminary results indicated downward moisture movement through the interbeds. 8 refs., 9 figs., 1 tab

  2. Calibrating vadose zone models with time-lapse gravity data: a forced infiltration experiment

    DEFF Research Database (Denmark)

    Christiansen, Lars; Hansen, Allan Bo; Zibar, Majken Caroline Looms

    A change in soil water content is a change in mass stored in the subsurface, and when large enough, can be measured with a gravity meter. Over the last few decades there has been increased use of ground-based time-lapse gravity measurements to infer hydrogeological parameters. These studies have...... focused on the saturated zone, with specific yield as the most prominent target parameter and with few exceptions, changes in storage in the vadose zone have been considered as noise. Here modeling results are presented suggesting that gravity changes will be measureable when soil moisture changes occur...... in the unsaturated zone. These results are confirmed by field measurements of gravity and georadar data at a forced infiltration experiment conducted over 14 days on a grassland area of 10 m by 10 m. An unsaturated zone infiltration model can be calibrated using the gravity data with good agreement to the field data...

  3. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  4. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities

  5. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux...... to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 +/- 0.07 and 4.9 +/- 0.07 mu mol Cm-2 s(-1), respectively...

  6. Bioventing - a new twist on soil vapor remediation of the vadose zone and shallow ground water

    International Nuclear Information System (INIS)

    Yancheski, T.B.; McFarland, M.A.

    1992-01-01

    Bioventing, which is a combination of soil vapor remediation and bioremediation techniques, may be an innovative, cost-effective, and efficient remedial technology for addressing petroleum contamination in the vadose zone and shallow ground water. The objective of bioventing is to mobilize petroleum compounds from the soil and ground water into soil vapor using soil vapor extraction and injection technology, and to promote the migration of the soil vapor upward to the turf root zone for degradation by active near-surface microbiological activity. Promoting and maintaining optimum microbiological activity in the turf root rhizosphere is a key component to the bioventing technique. Preliminary ongoing USEPA bioventing pilot studies (Kampbell, 1991) have indicated that this technique is a promising remediation technology, although feasibility studies are not yet complete. However, based on the preliminary data, it appears that proper bioventing design and implementation will result in substantial reductions of petroleum compounds in the capillary zone and shallow ground water, complete degradation of petroleum compounds in the turf root zone, and no surface emissions. A bioventing system was installed at a site in southern Delaware with multiple leaking underground storage tanks in early 1992 to remediate vadose zone and shallow ground-water contaminated by petroleum compounds. The system consists of a series of soil vapor extraction and soil vapor/atmospheric air injection points placed in various contamination areas and a central core remediation area (a large grassy plot). This system was chosen for this site because it was least costly to implement and operate as compared to other remedial alternatives (soil vapor extraction with carbon or catalytic oxidation of off-gas treatment, insitu bioremediation, etc.), and results in the generation of no additional wastes

  7. Which key properties controls the preferential transport in the vadose zone under transient hydrological conditions

    Science.gov (United States)

    Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.

    2015-12-01

    Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5

  8. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Fred Brokman; John Selker; Mark Rockhold

    2004-01-26

    While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination.

  9. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Brockman, Fred J.; Selker, John S.; Rockhold, Mark L.

    2004-10-31

    Executive Summary - While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination...

  10. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater.

    Science.gov (United States)

    Voisin, Jérémy; Cournoyer, Benoit; Vienney, Antonin; Mermillod-Blondin, Florian

    2018-05-16

    Stormwater infiltration systems (SIS) have been built in urban areas to reduce the environmental impacts of stormwater runoff. Infiltration basins allow the transfer of stormwater runoff to aquifers but their abilities to retain contaminants depend on vadose zone properties. This study assessed the influence of vadose zone thickness (VZT) on the transfer of inorganic nutrients (PO 4 3- , NO 3 - , NH 4 + ), dissolved organic carbon (total -DOC- and biodegradable -BDOC-) and bacteria. A field experiment was conducted on three SIS with a thin vadose zone (zone (>10 m). Water samples were collected at three times during a rainy period of 10 days in each infiltration basin (stormwater runoff), in the aquifer impacted by infiltration (impacted groundwater) and in the same aquifer but upstream of the infiltration area (non-impacted groundwater). Inorganic nutrients, organic matter, and dissolved oxygen (DO) were measured on all water samples. Bacterial community structures were investigated on water samples through a next-generation sequencing (NGS) scheme of 16S rRNA gene amplicons (V5-V6). The concentrations of DO and phosphate measured in SIS-impacted groundwaters were significantly influenced by VZT due to distinct biogeochemical processes occurring in the vadose zone. DOC and BDOC were efficiently retained in the vadose zone, regardless of its thickness. Bacterial transfers to the aquifer were overall low, but data obtained on day 10 indicated a significant bacterial transfer in SIS with a thin vadose zone. Water transit time and water saturation of the vadose zone were found important parameters for bacterial transfers. Most bacterial taxa (>60%) from impacted groundwaters were not detected in stormwater runoff and in non-impacted groundwaters, indicating that groundwater bacterial communities were significantly modified by processes associated with infiltration (remobilization of bacteria from vadose zone and/or species sorting). Copyright © 2018 Elsevier B

  11. Baseline mapping study of the Steed Pond aquifer and vadose zone beneath A/M Area, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Jackson, D.G. Jr.

    2000-01-01

    This report presents the second phase of a baseline mapping project conducted for the Environmental Restoration Department (ERD) at Savannah River Site. The purpose of this second phase is to map the structure and distribution of mud (clay and silt-sized sediment) within the vadose zone beneath A/M Area. The results presented in this report will assist future characterization and remediation activities in the vadose zone and upper aquifer zones in A/M Area

  12. Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Fliermans, C.B.; Eddy-Dilek, C.A.; Lombard, K.H.; Enzien, M.V.; Dougherty, J.M.; Wear, J.

    1994-01-01

    The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ''Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.'' Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well

  13. DNAPL Surface Chemistry: Its Impact on DNAPL Distribution in the Vadose Zone and its Manipulation to Enhance Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Suan Power; Stefan Grimberg; Miles Denham

    2003-06-16

    The remediation of DNAPLs in subsurface environments is often limited by the heterogeneous distribution of the organic fluid. The fraction of DNAPL that is in the high conductivity regions of the subsurface can often be recovered relatively easily, although DNAPL in lower conductivity regions is much more difficult to extract, either through direct pumping or remediation measures based on interface mass transfer. The distribution of DNAPL within the vadose zone is affected by a complex interplay of heterogeneities in the porous matrix and the interfacial properties defining the interactions among all fluid and solid phases. Decreasing the interfacial tension between a DNAPL and water in the vadose zone could change the spreading of the DNAPL, thereby increase the surface area for mass transfer and the effectiveness of soil vapor extraction remediation.

  14. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  15. E-Area Low-Level Waste Facility Vadose Zone Model: Confirmation of Water Mass Balance for Subsidence Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-30

    In preparation for the next revision of the E-Area Low-Level Waste Facility (LLWF) Performance Assessment (PA), a mass balance model was developed in Microsoft Excel to confirm correct implementation of intact- and subsided-area infiltration profiles for the proposed closure cap in the PORFLOW vadose-zone model. The infiltration profiles are based on the results of Hydrologic Evaluation of Landfill Performance (HELP) model simulations for both intact and subsided cases.

  16. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer, E-mail: odahan@bgu.ac.il; Ronen, Zeev, E-mail: zeevrone@bgu.ac.il

    2017-02-15

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10{sup 5} to 10{sup 7} copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  17. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    International Nuclear Information System (INIS)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-01-01

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10"5 to 10"7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  18. Geochemical Characterization of Chromate Contamination in the 100 Area Vadose Zone at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P. Evan; Qafoku, Nikolla; McKinley, James P.; Fruchter, Jonathan S.; Ainsworth, Calvin C.; Liu, Chongxuan; Ilton, Eugene S.; Phillips, J. L.

    2008-07-16

    The major objectives of the proposed study were to: 1.) determine the leaching characteristics of hexavalent chromium [Cr(VI)] from contaminated sediments collected from 100 Area spill sites; 2.) elucidate possible Cr(VI) mineral and/or chemical associations that may be responsible for Cr(VI) retention in the Hanford Site 100 Areas through the use of i.) macroscopic leaching studies and ii.) microscale characterization of contaminated sediments; and 3.) provide information to construct a conceptual model of Cr(VI) geochemistry in the Hanford 100 Area vadose zone. In addressing these objectives, additional benefits accrued were: (1) a fuller understanding of Cr(VI) entrained in the vadose zone that will that can be utilized in modeling potential Cr(VI) source terms, and (2) accelerating the Columbia River 100 Area corridor cleanup by providing valuable information to develop remedial action based on a fundamental understanding of Cr(VI) vadose zone geochemistry. A series of macroscopic column experiments were conducted with contaminated and uncontaminated sediments to study Cr(VI) desorption patterns in aged and freshly contaminated sediments, evaluate the transport characteristics of dichromate liquid retrieved from old pipelines of the 100 Area; and estimate the effect of strongly reducing liquid on the reduction and transport of Cr(VI). Column experiments used the < 2 mm fraction of the sediment samples and simulated Hanford groundwater solution. Periodic stop-flow events were applied to evaluate the change in elemental concentration during time periods of no flow and greater fluid residence time. The results were fit using a two-site, one dimensional reactive transport model. Sediments were characterized for the spatial and mineralogical associations of the contamination using an array of microscale techniques such as XRD, SEM, EDS, XPS, XMP, and XANES. The following are important conclusions and implications. Results from column experiments indicated that most

  19. Petrophysical characteristics of basalt in the vadose zone, Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Knutson, C.F.; Harrison, W.E.; Smith, R.P.

    1989-01-01

    We have used a core characterization system to measure bulk densities, porosities, and permeabilities of basalt lavas from the vadose zone at the Idaho National Engineering Laboratory (INEL). At the INEL, basalt lava flows with intercalated alluvial, aeolian, and lacustrine sediments extend to depths of one kilometer or more. Individual lava flows are generally less than 15 meters thick and commonly have vesicular tops and bottoms with massive basalt in their interiors. Petrophysical characterization is essential to an understanding of fluid movement in the vadose zone and in the saturated zone. Many hundreds of closely spaced permeability/porosity/bulk density measurements have defined the variability of these parameters within and between individual basalt flows. Based on geological logging and porosity/permeability measurements made on many hundred feet of core, we feel that a rather sophisticated and rigorous logging program is necessary to characterize these complex and highly variable basaltic flow units. This paper endeavors to provide a petrophysical/geological conceptual model of the Snake River Plain basalts from the vadose zone under the Radioactive Waste Management Complex area at the INEL. We hope that this model will aid in subsequent geotechnical logging in this portion of the Eastern Snake River Plain. 8 refs., 14 figs., 2 tabs

  20. Modeling potential migration of petroleum hydrocarbons from a mixed-waste disposal site in the vadose zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Walton, J.C.; Baca, R.G.

    1989-01-01

    Environmental monitoring of a mixed-waste disposal site at the Idaho National Engineering Laboratory has confirmed release and migration into the vadose zone of: (1) chlorinated hydrocarbons in the vapor phase and (2) trace levels of certain transuranic elements. The finding has prompted an evaluation of the potential role of waste petroleum hydrocarbons in mediating or influencing contaminant migration from the disposal site. Disposal records indicate that a large volume of machine oil contaminated with transuranic isotopes was disposed at the site along with the chlorinated solvents and other radioactive wastes. A multiphase flow model was used to assess the possible extent of oil and vapor movement through the 177 m thick vadose zone. One dimensional simulations were performed to estimate the vertical distribution of the vapor phase, the aqueous phase, and immiscible free liquid as a function of time. The simulations indicate that the oil may migrate slowly through the vadose zone, to potentially significant depths. Calculated transport rates support the following ranking with regard to relative mobility: vapor phase > aqueous phase > free liquid. 21 refs., 7 figs., 2 tabs

  1. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole)

  2. Characterization of Vadose Zone Sediment: Borehole 41-09-39 in the S-SX Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 5.15. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 41-09-39 installed adjacent to tank SX-109.

  3. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).

  4. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    Energy Technology Data Exchange (ETDEWEB)

    HILL, J.S.

    2000-04-20

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOm-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 milliredyear total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial start-up in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200

  5. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    Energy Technology Data Exchange (ETDEWEB)

    HILL, J.S.

    2000-03-08

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection--Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOE/TU-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(axl), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the

  6. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    International Nuclear Information System (INIS)

    HILL, J.S.

    2000-01-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection--Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOE/TU-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(axl), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200-East and 200-West Areas of the Hanford Site. Vadose zone

  7. Underground Corrosion of Activated Metals in an Arid Vadose Zone Environment

    International Nuclear Information System (INIS)

    Adler Flitton, M.K; Mizia, R.E.; Bishop, C.W.

    2001-01-01

    The subsurface radioactive disposal site located at the Idaho National Engineering and Environmental Laboratory contains neutron-activated metals from nonfuel nuclear-reactor- core components. A long-term corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The tests use nonradioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, Type 304L stainless steel, Type 315L stainless steel, nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6, and a zirconium alloy, (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) (the proposed material for the high- integrity disposal containers) are also included in the test program. This paper briefly describes the test program and presents the early corrosion rate results after 1 year and 3 years of underground exposure

  8. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  9. Assessing toxic levels of hydrocarbons on microbial degrader communities in vadose zone fill soils

    International Nuclear Information System (INIS)

    Schoenberg, T.H.; Long, S.C.

    1995-01-01

    Authentic fill samples were collected from the vadose zone at a highway travel plaza. The contamination at the site is a combination of gasoline, diesel, and waste oil resulting from leaking underground storage tanks. Microbial assessments including plate counts and specific-degrader enumerations were performed to establish the presence of degrader microbial communities, and thus bioremediation potential. Contaminant levels were estimated in samples by quantifying headspace VOCs in collection jars. Physical soil characteristics including soil grain size distribution and moisture content were measured to evaluate the potential ecological variables that would affect implementation of a bioremediation technology. Toxicity screening using the Microtox trademark acute toxicity assay was used to compare the level of toxicity present among samples. These analyses were used to assess the potential for using in situ bioventing remediation to clean-up the leaking underground storage tank spill study site. High contaminant levels appear to have exerted a toxic effect and resulted in smaller total microbial community sizes in highly contaminated areas (thousands of ppmv) of the site. Microtox trademark EC50 results generally corroborated with the trends of the enumeration experiments. Microbial characterization results indicate that in situ bioremediation would be possible at the study site. Soil heterogeneity appears to pose the greatest challenges to the design and implementation of bioremediation at this site

  10. Water and Solute Transport in Arid Vadose Zones: Innovations in Measurement and Analysis

    International Nuclear Information System (INIS)

    Tyler, S W.; Scanlon, Bridget R.; Gee, Glendon W.; Allison, G B.; Parlange, M. B.; Hopmans, J. W.

    1999-01-01

    Understanding the physics of flow and transport through the vadose zone has advanced significantly in the last three decades. These advances have been made primarily in humid regions or in irrigated agricultural settings. While some of the techniques are useful, many are not suited to arid regions. The fluxes of water and solutes typically found in arid regions are often orders of magnitude smaller than those found in agricultural settings, while the time scales for transport can be orders of magnitude larger. The depth over which transport must be characterized is also often much greater than in humid regions. Rather than relying on advances in applied tracers, arid-zone researchers have developed natural tracer techniques that are capable of quantifying transport over tens to thousands of years. Techniques have been developed to measure the hydraulic properties of sediments at all water contents, including the very dry range and at far greater depths. As arid and semiarid regions come under increased development pressures for such activities as hazardous- and radioactive-waste disposal, the development of techniques and the understanding of water and solute transport have become crucial components in defining the environmental impacts of activities at the landsurface

  11. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James R.; Coplen, Amy K

    2005-11-01

    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of waste water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program

  12. Vadose-zone instrumentation in coarse alluvial deposits of the Amargosa Desert near Beatty, Nevada

    International Nuclear Information System (INIS)

    Morgan, D.S.; Fischer, J.M.

    1984-01-01

    A vadose-zone monitoring shaft near Beatty, NV, is 1.52 m in diameter and penetrates nearly 14 m of unsaturated fluvial sediments. These sediments are comprised of silty sand, coarse sandy gravel, and poorly cemented sand, with gravel and occasional cobbles and boulders. Thirty-three lateral ports at 11 levels between 3 and 13 m deep allow access to undisturbed sediments outside the vertical shaft. The prefabricated metal shaft was emplaced in a 2.44-m-diameter hole excavated by using a crane drill with bucket and flight augers. Laboratory-calibrated thermocouple-psychrometers are being used to measure soil-matrix potential. A method of installing the phychrometers was developed which will allow their retrieval, after extended periods in the soil, for cleaning, recalibration, and reinstallation. Primary access holes 2.5 cm in diameter are drilled laterally outward from the monitoring shaft to a distance of approximately 4 m. The psychrometer is then inserted into the primary access hole and sealed into a smaller diameter boring in the undisturbed material at the outer end of the primary access hole. Data are collected and stored by a programmable measurement-control and data-logger system powered by photovoltaic cells. Magnetic-tape data storage is used to back up daily data retrieval via telecommunication with the project headquarters in Carson City, Nev., 520 km north of the study

  13. Pedotransfer functions for isoproturon sorption on soils and vadose zone materials.

    Science.gov (United States)

    Moeys, Julien; Bergheaud, Valérie; Coquet, Yves

    2011-10-01

    Sorption coefficients (the linear K(D) or the non-linear K(F) and N(F)) are critical parameters in models of pesticide transport to groundwater or surface water. In this work, a dataset of isoproturon sorption coefficients and corresponding soil properties (264 K(D) and 55 K(F)) was compiled, and pedotransfer functions were built for predicting isoproturon sorption in soils and vadose zone materials. These were benchmarked against various other prediction methods. The results show that the organic carbon content (OC) and pH are the two main soil properties influencing isoproturon K(D) . The pedotransfer function is K(D) = 1.7822 + 0.0162 OC(1.5) - 0.1958 pH (K(D) in L kg(-1) and OC in g kg(-1)). For low-OC soils (OC isoproturon sorption in soils in unsampled locations should rely, whenever possible, and by order of preference, on (a) site- or soil-specific pedotransfer functions, (b) pedotransfer functions calibrated on a large dataset, (c) K(OC) values calculated on a large dataset or (d) K(OC) values taken from existing pesticide properties databases. Copyright © 2011 Society of Chemical Industry.

  14. DOE capabilities for in-situ characterization and monitoring of formation properties in the vadose zone

    International Nuclear Information System (INIS)

    Hearst, J.R.; Brodeur, J.R.; Koizumi, C.J.; Conaway, J.G.; Mikesell, J.L.; Nelson, P.H.; Stromswold, D.C.; Wilson, R.D.

    1993-09-01

    The DOE Environmental Restoration (ER) Program faces the difficult task of characterizing the properties of the subsurface and identifying and mapping a large number of contaminants at landfills, surface disposal areas, spill sites, nuclear waste tanks, and subsurface contaminant plumes throughout the complex of DOE facilities. Geophysical borehole logs can measure formation properties such as bulk density, water content, and lithology, and can quantitatively analyze for radionuclides and such elements as chlorine and heavy metals. Since these measurements can be replaced as desired, they can be used for both initial characterization and monitoring of changes in contaminant concentration and water content (sometimes linked to contaminant migration), at a fraction of the cost of conventional sampling. The techniques develop at several DOE laboratories, and the experience that the authors have gained in making in-situ measurements in the vadose zone, are applicable to problems at many other DOE sites. Moreover, they can capitalize on existing inventories of boreholes. By building on this experience workers involved in ER projects at those sites should be able to obtain high-quality data at substantial reductions in cost and time

  15. Use of Gas Transported Reactants for Uranium Remediation in Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Szecsody, James E.; Zhong, Lirong; Truex, Michael J.; Resch, Charles T.; Williams, Mark D.

    2010-01-01

    This laboratory-scale investigation is focused on decreasing mobility of uranium in subsurface contaminated sediments in the vadose zone by in situ geochemical manipulation at low water content. This geochemical manipulation of the sediment surface phases included reduction, pH change (acidic and alkaline), and additions of chemicals (phosphate, ferric iron) to form specific precipitates. Reactants were advected into 1-D columns packed with Hanford 200 area U-contaminated sediment as a reactive gas (for CO2, NH3, H2S, SO2), with a 0.1% water content mist (for NaOH, Fe(III), HCl, PO4) and with a 1% water content foam (for PO4). Because uranium is present in the sediment in multiple phases, changes in U surface phases were evaluated with a series of liquid extractions that dissolve progressively less soluble phases and electron microbe identification of mineral phases. In terms of the short-term decrease in U mobility (in decreasing order), NH3, NaOH mist, CO2, HCl mist, and Fe(III) mist showed 20% to 35% change in U surface phases. The two reductive gas treatments (H2S and SO2) showed little change. For long-term decrease in U transport, mineral phases created that had low solubility (phosphates, silicates) were desired, so NH3, phosphates (mist and foam delivered), and NaOH mist showed the greatest formation of these minerals.

  16. Interpretation of vadose zone monitoring system data near Engineered Trench 1

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Whiteside, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-12

    The E-Area Vadose Zone Monitoring System (VZMS) includes lysimeter sampling points at many locations alongside and angling beneath the Engineered Trench #1 (ET1) disposal unit footprint. The sampling points for ET1 were selected for this study because collectively they showed consistently higher tritium (H-3) concentrations than lysimeters associated with other trench units. The VZMS tritium dataset for ET1 from 2001 through 2015 comprises concentrations at or near background levels at approximately half of locations through time, concentrations up to about 600 pCi/mL at a few locations, and concentrations at two locations that have exceeded 1000 pCi/mL. The highest three values through 2015 were 6472 pCi/mL in 2014 and 4533 pCi/mL in 2013 at location VL-17, and 3152 pCi/mL in 2007 at location VL-15. As a point of reference, the drinking water standard for tritium and a DOE Order 435.1 performance objective in the saturated zone at the distant 100-meter facility perimeter is 20 pCi/mL. The purpose of this study is to assess whether these elevated concentrations are indicative of a general trend that could challenge 2008 E-Area Performance Assessment (PA) conclusions, or are isolated perturbations that when considered in the context of an entire disposal unit would support PA conclusions.

  17. Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments

    Energy Technology Data Exchange (ETDEWEB)

    Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey; Bovaird, Chase C.

    2011-09-30

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.

  18. Field demonstration and transition of SCAPS direct push VOC in-situ sensing technologies

    International Nuclear Information System (INIS)

    Davis, William M.

    1999-01-01

    This project demonstrated two in-situ volatile organic compound (VOC) samplers in combination with the direct sampling ion trap mass spectrometer (DSITMS). The technologies chosen were the Vadose Sparge and the Membrane Interface Probe (MIP) sensing systems. Tests at two demonstration sites showed the newer VOC technologies capable of providing in situ contaminant measurements at two to four times the rate of the previously demonstrated Hydrosparge sensor. The results of this project provide initial results supporting the utility of these new technologies to provide rapid site characterization of VOC contaminants in the subsurface

  19. Installation of a Hydrologic Characterization Network for Vadose Zone Monitoring of a Single-Shell Tank Farm at the U. S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Gee, Glendon W.; Ward, Anderson L.; Ritter, Jason C.; Sisson, James B.; Hubbell, Joel M.; Sydnor, Harold A.

    2001-01-01

    The Pacific Northwest National Laboratory, in collaboration with the Idaho National Engineering and Environmental Laboratory and Duratek Federal Services, deployed a suite of vadose-zone instruments at the B Tank Farm in the 200 E Area of the Hanford Site, near Richland, Washington, during the last quarter of FY 2001. The purpose of the deployment was to obtain in situ hydrologic characterization data within the vadose zone of a high-level-waste tank farm. Eight sensor nests, ranging in depth from 67 m (220 ft) below ground surface (bgs) to 0.9 m (3 ft) bgs were placed in contact with vadose-zone sediments inside a recently drilled, uncased, borehole (C3360) located adjacent to Tank B-110. The sensor sets are part of the Vadose Zone Monitoring System and include advanced tensiometers, heat dissipation units, frequency domain reflectometers, thermal probes, and vadose zone solution samplers. Within the top meter of the surface, a water flux meter was deployed to estimate net infiltration from meteoric water (rain and snowmelt) sources. In addition, a rain gage was located within the tank farm to document on-site precipitation events. All sensor units, with the exception of the solution samplers, were connected to a solar-powered data logger located within the tank farm. Data collected from these sensors are currently being accessed by modem and cell phone and will be analyzed as part of the DOE RL31SS31 project during the coming year (FY 2001)

  20. Influence of Clastic Dikes on Vertical Migration of Contaminants in the Vadose Zonde at Hanford

    International Nuclear Information System (INIS)

    Murray, Christopher J.; Ward, Anderson L.; Wilson, John L.

    2004-01-01

    The purpose of this study was to examine the hypothesis that clastic dikes could form a preferential flow path through the vadose zone to the water table at the Hanford Site. Clastic dikes are subvertical structures that form within sedimentary sequences after deposition and cut across the original sedimentary layers. They are common throughout the Hanford Site, often occurring in organized polygonal networks. In the initial phase of the project, we analyzed the large-scale geometry of the clastic dikes and developed an algorithm for simulating their spatial distribution. This result will be useful in providing maps of the potential distribution of clastic dikes in areas where they are not exposed at the surface (e.g., where covered by windblown sand or construction of facilities like tank farms at the surface). In addition to the study of the large-scale distribution of the dikes, a major focus of the project was on field, laboratory, and modeling studies of the hydrogeological properties of the clastic dikes and the effect that they have on transport of water through the vadose zone. These studies were performed at two field locations at the Hanford Site. We performed an extensive series of field and laboratory measurements of a large number of samples from the clastic dikes, linked with infrared (IR) and visual imagery of the clastic dikes and surrounding matrix. We developed a series of correlations from the sample data that allowed us to estimate the unsaturated hydraulic conductivity of the dike and matrix at an extremely high resolution (approximately 1 mm). The resulting grids, each of which measured several meters on a side and included nearly four million grid nodes, were used to study the distribution of moisture between the clastic dike and surrounding matrix, as well as the relative velocities that moisture would have through the clastic dike and matrix for a number of different recharge scenarios. Results show the development of complex flow networks

  1. Heterogeneity and Scaling in Geologic Media: Applications to Transport in the Vadose and Saturated Zones

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Stephen R.

    2003-06-01

    Heterogeneity and Scaling in Geologic Media: Applications to Transport in the Vadose and Saturated Zones Stephen Brown, Gregory Boitnott, and Martin Smith New England Research In rocks and soils, the bulk geophysical and transport properties of the matrix and of fracture systems are determined by the juxtaposition of geometric features at many length scales. For sedimentary materials the length scales are: the pore scale (irregularities in grain surface roughness and cementation), the scale of grain packing faults (and the resulting correlated porosity structures), the scale dominated by sorting or winnowing due to depositional processes, and the scale of geomorphology at the time of deposition. We are studying the heterogeneity and anisotropy in geometry, permeability, and geophysical response from the pore (microscopic), laboratory (mesoscopic), and backyard field (macroscopic) scales. In turn these data are being described and synthesized for development of mathematical models. Eventually, we will perform parameter studies to explore these models in the context of transport in the vadose and saturated zones. We have developed a multi-probe physical properties scanner which allows for the mapping of geophysical properties on a slabbed sample or core. This device allows for detailed study of heterogeneity at those length scales most difficult to quantify using standard field and laboratory practices. The measurement head consists of a variety of probes designed to make local measurements of various properties, including: gas permeability, acoustic velocities (compressional and shear), complex electrical impedance (4 electrode, wide frequency coverage), and ultrasonic reflection (ultrasonic impedance and permeability). We can thus routinely generate detailed geophysical maps of a particular sample. With the exception of the acoustic velocity, we are testing and modifying these probes as necessary for use on soil samples. As a baseline study we have been

  2. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  3. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.

    Science.gov (United States)

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

    2010-02-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  4. Determining flow, recharge, and vadose zone drainage in an unconfined aquifer from groundwater strontium isotope measurements, Pasco Basin, WA

    International Nuclear Information System (INIS)

    2004-01-01

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr

  5. Surface and subsurface continuous gravimetric monitoring of groundwater recharge processes through the karst vadose zone at Rochefort Cave (Belgium)

    Science.gov (United States)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.

    2017-12-01

    Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined

  6. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media.

    Science.gov (United States)

    Pang, Liping; Lafogler, Mark; Knorr, Bastian; McGill, Erin; Saunders, Darren; Baumann, Thomas; Abraham, Phillip; Close, Murray

    2016-04-15

    Phosphorous (P) leaching (e.g., from effluents, fertilizers) and transport in highly permeable subsurface media can be an important pathway that contributes to eutrophication of receiving surface waters as groundwater recharges the base-flow of surface waters. Here we investigated attenuation and transport of orthophosphate-P in gravel aquifer and vadose zone media in the presence and absence of model colloids (Escherichia coli, kaolinite, goethite). Experiments were conducted using repacked aquifer media in a large column (2m long, 0.19m in diameter) and intact cores (0.4m long, 0.24m in diameter) of vadose zone media under typical field flow rates. In the absence of the model colloids, P was readily traveled through the aquifer media with little attenuation (up to 100% recovery) and retardation, and P adsorption was highly reversible. Conversely, addition of the model colloids generally resulted in reduced P concentration and mass recovery (down to 28% recovery), and increased retardation and adsorption irreversibility in both aquifer and vadose zone media. The degree of colloid-assisted P attenuation was most significant in the presence of fine material and Fe-containing colloids at low flow rate but was least significant in the presence of coarse gravels and E. coli at high flow rate. Based on the experimental results, setback distances of 49-53m were estimated to allow a reduction of P concentrations in groundwater to acceptable levels in the receiving water. These estimates were consistent with field observations in the same aquifer media. Colloid-assisted P attenuation can be utilized to develop mitigation strategies to better manage effluent applications in gravelly soils. To efficiently retain P within soil matrix and reduce P leaching to groundwater, it is recommended to select soils that are rich in iron oxides, to periodically disturb soil preferential flow paths by tillage, and to apply a low irrigation rate. Copyright © 2016 Elsevier B.V. All rights

  7. Linking river, floodplain, and vadose zone hydrology to improve restoration of a coastal river affected by saltwater intrusion.

    Science.gov (United States)

    Kaplan, D; Muñoz-Carpena, R; Wan, Y; Hedgepeth, M; Zheng, F; Roberts, R; Rossmanith, R

    2010-01-01

    Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of damaged ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems affected by saltwater intrusion but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress [Taxodium distichum (L.) Rich.] floodplain swamps in southeast Florida. We investigated soil moisture and porewater salinity dynamics in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to saltwater intrusion and a transition to salt-tolerant, mangrove-dominated communities. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 min were installed along two transects-one in an upstream, freshwater location and one in a downstream tidal area. Complemented by surface water, groundwater, and meteorological data, these unique 4-yr datasets quantified the spatial variability and temporal dynamics of vadose zone hydrology. Results showed that soil moisture can be closely predicted based on river stage and topographic elevation (overall Nash-Sutcliffe coefficient of efficiency = 0.83). Porewater salinity rarely exceeded tolerance thresholds (0.3125 S m(-1)) for bald cypress upstream but did so in some downstream areas. This provided an explanation for observed vegetation changes that both surface water and groundwater salinity failed to explain. The results offer a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provide relationships for evaluating proposed restoration and management scenarios for the Loxahatchee River.

  8. Advanced Simulation Capability for Environmental Management: Development and Demonstrations - 12532

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Hubbard, Susan S. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Moulton, J. David; Dixon, Paul [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States)

    2012-07-01

    The U.S. Department of Energy Office of Environmental Management (EM), Technology Innovation and Development is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of capabilities, which are organized into Platform and Integrated Tool-sets and a High-Performance Computing Multi-process Simulator. The Platform capabilities target a level of functionality to allow end-to-end model development, starting with definition of the conceptual model and management of data for model input. The High-Performance Computing capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The new capabilities are demonstrated through working groups, including one focused on the Hanford Site Deep Vadose Zone. The ASCEM program focused on planning during the first year and executing a prototype tool-set for an early demonstration of individual components. Subsequently, ASCEM has focused on developing and demonstrating an integrated set of capabilities, making progress toward a version of the capabilities that can be used to engage end users. Demonstration of capabilities continues to be implemented through working groups. Three different working groups, one focused on EM problems in the deep vadose zone, another investigating attenuation mechanisms for metals and radionuclides, and a third focusing on waste tank performance assessment, continue to make progress. The project

  9. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  10. Bayesian Markov chain Monte Carlo Inversion of Time-Lapse Geophysical Data To Characterize the Vadose Zone

    DEFF Research Database (Denmark)

    Scholer, Marie; Irving, James; Zibar, Majken Caroline Looms

    Geophysical methods have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, time-lapse geophysical data, when coupled with a hydrological model and inverted stochastically, may allow for the effective estimation of subsurface hydraulic...... parameters and their corresponding uncertainties. In this study, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach to investigate how much information regarding vadose zone hydraulic properties can be retrieved from time-lapse crosshole GPR data collected at the Arrenaes field site...

  11. Characterization of contaminant transport by gravity, capillarity and barometric pumping in heterogeneous vadose regimes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Carrigan, C.R.; Hudson, G.B.

    1998-01-01

    'The intent of this research program is to obtain an improved understanding of vadose zone transport processes and to develop field and modeling techniques required to characterize contaminant transport in the unsaturated zone at DOE sites. For surface spills and near-surface leaks of chemicals, the vadose zone may well become a long-term source of contamination for the underlying water table. Transport of contaminants can occur in both the liquid and gas phases of the unsaturated zone. This transport occurs naturally as a result of diffusion, buoyancy forces (gravity), capillarity and barometric pressure variations. In some cases transport can be enhanced by anisotropies present in hydrologic regimes. This is particularly true for gas-phase transport which may be subject to vertical pumping resulting from atmospheric pressure changes. For liquid-phase flows, heterogeneity may enhance the downward transport of contaminants to the water table depending on soil properties and the scale of the surface spill or near-surface leak. Characterization techniques based upon the dynamics of transport processes are likely to yield a better understanding of the potential for contaminant transport at a specific site than methods depending solely on hydrologic properties derived from a borehole. Such dynamic-characterization techniques can be useful for evaluating sites where contamination presently exists as well as for providing an objective basis to evaluate the efficacy of proposed as well as implemented clean-up technologies. The real-time monitoring of processes that may occur during clean-up of tank waste and the mobility of contaminants beneath the Hanford storage tanks during sluicing operations is one example of how techniques developed in this effort can be applied to current remediation problems. In the future, such dynamic-characterization methods might also be used as part of the site-characterization process for determining suitable locations of new DOE facilities

  12. Estimation of percolating water dynamics through the vadose zone of the Postojna cave on the basis of isotope composition

    Directory of Open Access Journals (Sweden)

    Janja Kogovšek

    2007-12-01

    Full Text Available Within the scope of monitoring water percolation through the 100-m thick vadose zone in the area of Postojnska jama continuous measurements of precipitation were carried out on the surface, and continuous measurements of water flowandphysicalandchemicalparametersof selected water trickles were performed under the surface. Occasional samples of percolating waters were taken for the analysis of water oxygen isotope composition. An exponential model of groundwater flowwaselaborated,bymeansofwhichtheretentiontime of water in individual trickles was estimated. Modelled retention times of groundwater range from 2.5 months to over one year.

  13. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan; Krupka, Kenneth M.; Serne, R. Jeffrey

    2007-09-28

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  14. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater.

    Science.gov (United States)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-02-15

    In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than -200mV. Perchlorate was reduced continuously from ∼1150mg/L at the inlet to ∼300mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10 5 to 10 7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-01-01

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ∼1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer

  16. Description of work vadose drilling at the 1301-N and 1325-N facilities, 100-NR-1 operable unit

    International Nuclear Information System (INIS)

    1994-08-01

    This description of work (DOW) details the field activities associated with the sampling of the vadose zone soils beneath the 1301-N and 1325-N cribs and trenches and will serve as a field guide for those performing the work. These activities are undertaken pursuant to the Hanford Federal Facility Agreement and Consent Order (Ecology et al., 1994a) Milestone M-16-94-01H-Tl and the June 30, 1994 Milestone Change Request M-16-94-02 (Ecology et al., 1994b). Three vadose zone borings, 1301-N-1, 1301-N-2, and 1325-N-1, will be constructed to investigate the vertical and horizontal distribution of radionuclide contamination in sediments beneath the cribs and trenches. The boreholes are also intended to intersect subsurface areas that may have been contaminated by dangerous wastes, i.e., metals, in effluent disposed during past operation of the facilities. This limited field investigation will provide data for the evaluation of remedial alternatives. Data from the investigation are expected to confirm that the cribs and trenches are high priority sites in the 100-NR-1 operable unit. Data, from the investigation will be used to evaluate alternatives for closure of the 1301-N and 1325-N sites. The contaminants of potential concern (COPCs) for the 1301-N/1325-N limited field investigation are presented in Table 1

  17. Bioventing in the subarctic: Field scale implementation of soil heating to allow in situ vadose zone biodegradation throughout the year

    International Nuclear Information System (INIS)

    Oram, D.E.; Winters, A.T.; Winsor, T.R.

    1994-01-01

    Bioventing is a technique of in situ bioremediation of contaminants in unsaturated zone soils that has advantages over other technologies such as soil vapor extraction. At locations where off-gas treatment would be required, bioventing can be a more cost-effective method of remediation. Using bioventing to remediate petroleum hydrocarbons in the vadose zone soils in extremely cold climates may be augmented by heating the subsurface soils. The US Air Force has conducted a bioventing feasibility study at Eielson Air Force Base since 1991. The feasibility study evaluated different methods of heating soils to maintain biodegradation rates through the winter. Results from this study were used to optimize the design of a full-scale bioventing system that incorporated a soil heating system. The system installed consists of the typical components of a bioventing system including an air injection blower, a system to distribute air in the vadose zone, and a monitoring system. To maintain biodegradation at a constant rate throughout the year, soil heating and temperature monitoring systems were also installed. Results to date indicate that summer soil temperatures and biodegradation of hydrocarbons have been maintained through the winter

  18. Colloid Genesis/Transport and Flow Pathway Alterations Resulting From Interactions of Reactive Waste Solutions and Hanford Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.

    2001-01-01

    Leakage of underground tanks containing high-level nuclear waste solutions has been identified at various DOE facilities. The Hanford Site is one the main facilities of concern, with about 2,300 to 3,400 m3 of leaked waste liquids. Radionuclides and other contaminants have been found in elevated concentrations in the vadose zone and groundwater underneath single shell tank farms. We do not currently know the mechanisms responsible for the unexpected deep migration of some contaminants through the vadose zone, and such understanding is urgently needed for planning remediation. Due to the extreme chemical conditions of the tank waste solutions (very high pH, aluminum concentration, and ionic strength), interactions between the highly reactive waste solutions and sediments underneath the tanks can result in dissolution of primary minerals of the sediments and precipitation of secondary phases including colloidal particles. Contaminants can sorb onto and/or co-precipitate with the secondary phases. Therefore transport of strongly associated contaminants on mobile colloids can be substantially greater than without colloids. The overall objective of this research is to improve our understanding on the effects of interactions between the tank waste solution and sediments on deep contaminant migration under Hanford Site conditions. This objective will be achieved through the following four tasks: (1) colloid generation and transport studies, (2) studies on sediment permeability and chemical composition alterations, (3) quantifying associations of contaminants with secondary colloids, and (4) studies on the combined effects of the aforementioned processes on deep contaminant migration

  19. An analytical solution to assess the SH seismoelectric response of the vadose zone

    Science.gov (United States)

    Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.

    2018-03-01

    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a one-dimensional soil constituted by a single layer on top of a half space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than

  20. Advective Removal of Intraparticle Uranium from Contaminated Vadose Zone Sediments, Hanford, USA

    International Nuclear Information System (INIS)

    Ilton, Eugene S.; Qafoku, Nikolla; Liu, Chongxuan; Moore, D. A.; Zachara, John M.

    2008-01-01

    A column study on U contaminated vadose zone sediments from the Hanford Site, WA, was performed in order to aid the development of a model for predicting U(VI) release rates under a dynamic flow regime and for variable geochemical conditions. The sediments of interest are adjacent to and below tank BX-102, part of the BX tank farm that contained high level liquid radioactive waste. Two sediments, with different U(VI) loadings and intraparticle large fracture vs. smaller fracture ratios, were reacted with three different solutions. The primary reservoir for U(VI) appears to be a micron-sized nanocrystalline Na-U-Si phase, possibly Na-boltwoodite, that nucleated and grew on plagioclase grains that line fractures within sand-sized granitic clasts. The solutions were all calcite saturated and in equilibrium with atmospheric CO2, where one solution was simply DI-water, the second was a synthetic ground water (SGW) with elevated Na, and the third was the same SGW but with both elevated Na and Si. The latter two solutions were employed, in part, to test the effect of saturation state on U(VI) release. For both sediments and all three electrolytes, there was an initial rapid release of U(VI) to the advecting solution followed by a plateau of low U(VI) concentration. U(VI) effluent concentration increased during subsequent stop flow (SF) events. The electrolytes with elevated Na and Si appreciably depressed U(VI) concentrations relative to DI water. The effluent data for both sediments and all three electrolytes was simulated reasonably well by a three domain model (the advecting fluid, fractures, and matrix) that coupled U(VI) dissolution rates, intraparticle U(VI) diffusion, and interparticle advective transport of U(VI); where key transport and dissolution processes had been parameterized in previous batch studies. For the calcite-saturated DI-water, U(VI) concentrations in the effluent remained far below saturation with respect to Na-boltwoodite and release of U(VI) to

  1. Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'

    Science.gov (United States)

    Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.

    2017-12-01

    The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008

  2. An analytical solution to assess the SH seismoelectric response of the vadose zone

    Science.gov (United States)

    Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.

    2018-06-01

    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a 1D soil constituted by a single layer on top of a half-space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock in which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than the

  3. Recommendations for computer code selection of a flow and transport code to be used in undisturbed vadose zone calculations for TWRS immobilized wastes environmental analyses

    International Nuclear Information System (INIS)

    VOOGD, J.A.

    1999-01-01

    An analysis of three software proposals is performed to recommend a computer code for immobilized low activity waste flow and transport modeling. The document uses criteria restablished in HNF-1839, ''Computer Code Selection Criteria for Flow and Transport Codes to be Used in Undisturbed Vadose Zone Calculation for TWRS Environmental Analyses'' as the basis for this analysis

  4. H51E-1535: Biogeochemical factors influencing the transport and fate of colloids and colloid-associated contaminants in the vadose zone

    Science.gov (United States)

    The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, ...

  5. A BENCHMARKING ANALYSIS FOR FIVE RADIONUCLIDE VADOSE ZONE MODELS (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, AND CHAIN 2D) IN SOIL SCREENING LEVEL CALCULATIONS

    Science.gov (United States)

    Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...

  6. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc

  7. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

  8. Linking carbon and hydrologic fluxes in the critical zone: Observations from high-frequency monitoring of a weathered bedrock vadose zone

    Science.gov (United States)

    Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.

    2017-12-01

    A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to

  9. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    Science.gov (United States)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  10. Chaotic-Dynamical Conceptual Model to Describe Fluid Flow and Contaminant Transport in a Fractured Vadose Zone

    International Nuclear Information System (INIS)

    Faybishenko, Boris; Doughty, Christine; Geller, Jil T.

    1999-01-01

    DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has led to the contamination of (or threatens to contaminate) underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is the determination of the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently, through narrow pathways, driven by variations in environmental conditions. These preferential flow pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following activities: Development of multi scale conceptual models and mathematical and numerical algorithms for flow and transport, which incorporate both (a) the spatial variability of heterogeneous porous and fractured media and (b) the temporal dynamics of flow and transport; Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow; Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils and remediation efforts. This approach is based on the consideration of multi scale spatial heterogeneity and flow phenomena that are affected by

  11. Uranium-series isotopes transport in surface, vadose and ground waters at San Marcos uranium bearing basin, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Burillo Montúfar, Juan Carlos; Reyes Cortés, Manuel; Reyes Cortés, Ignacio Alfonso; Espino Valdez, Ma. Socorro; Hinojosa de la Garza, Octavio Raúl; Nevárez Ronquillo, Diana Pamela; Herrera Peraza, Eduardo; Rentería Villalobos, Marusia; Montero Cabrera, María Elena

    2012-01-01

    In the U deposit area at San Marcos in Chihuahua, Mexico, hydrogeological and climatic conditions are very similar to the Nopal I, Peña Blanca U deposit, 50 km away. The physicochemical parameters and activity concentrations of several 238 U-series isotopes have been determined in surface, vadose and ground waters at San Marcos. The application of some published models to activity ratios of these isotopes has allowed assessing the order of magnitude of transport parameters in the area. Resulting retardation factors in San Marcos area are R f238 ≈ 250–14,000 for the unsaturated zone and ≈110–1100 for the saturated zone. The results confirm that the mobility of U in San Marcos is also similar to that of the Nopal I U deposit and this area can be considered as a natural analog of areas suitable for geologic repositories of high-level nuclear waste.

  12. Emerging organic pollutants in the vadose zone of a soil aquifer treatment system: Pore water extraction using positive displacement.

    Science.gov (United States)

    Sopilniak, Alexander; Elkayam, Roy; Rossin, Anna Voloshenko; Lev, Ovadia

    2018-01-01

    Trace organic compounds in effluents, water streams and aquifers are amply reported. However, the mobile pool of Emerging Organic Contaminants (EOCs) in the deep parts of the vadose zone is hard to estimate, due to difficulties in extraction of sufficient quantity of pore water. Here, we present a new methodology for depth profiling of EOCs in pore water by Positive Displacement Extraction (PDE): Pore water extraction from unsaturated soil samples is carried out by withdrawal of soil cores by direct-push drilling and infiltrating the core by organics free water. We show that EOC concentrations in the water eluted in the plateau region of the inverse breakthrough curve is equal to their pore water concentrations. The method was previously validated for DOC extraction, and here the scope of the methodology is extended to pore water extraction for organic pollutants analysis. Method characteristics and validation were carried out with atrazine, simazine, carbamazepine, venlafaxine, O-desmethylvenlafaxine and caffeine in the concentration range of several ng to several μg/liter. Validation was carried out by laboratory experiments on three different soils (sandy, sandy-clayey and clayey). Field studies in the vadose zone of a SAT system provided 27 m deep EOC profiles with less than 1.5 m spatial resolution. During the percolation treatment, carbamazepine remained persistent, while the other studied EOCs were attenuated to the extent of 50-99%.The highest degradation rate of all studied EOCs was in the aerobic zone. EOC levels based on PDE and extraction by centrifugation were compared, showing a positive bias for centrifugation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux

    Science.gov (United States)

    Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong

    2018-04-01

    Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.

  14. Conceptual Models for Migration of Key Groundwater Contaminants Through the Vadose Zone and Into the Upper Unconfined Aquifer Below the B-Complex

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Keller, Jason M.; Thorne, Paul D.; Lanigan, David C.; Christensen, J. N.; Thomas, Gregory S.

    2010-07-01

    The B-Complex contains 3 major crib and trench disposal sites and 3 SST farms that have released nearly 346 mega-liters of waste liquids containing the following high groundwater risk drivers: ~14,000 kg of CN, 29,000 kg of Cr, 12,000 kg of U and 145 Ci of Tc-99. After a thorough review of available vadose zone sediment and pore water, groundwater plume, field gamma logging, field electrical resistivity studies, we developed conceptual models for which facilities have been the significant sources of the contaminants in the groundwater and estimated the masses of these contaminants remaining in the vadose zone and currently present in the groundwater in comparison to the totals released. This allowed us to make mass balance calculations on how consistent our knowledge is on the current deep vadose zone and groundwater distribution of contaminants. Strengths and weaknesses of the conceptual models are discussed as well as implications on future groundwater and deep vadose zone remediation alternatives. Our hypothesized conceptual models attribute the source of all of the cyanide and most of the Tc-99 currently in the groundwater to the BY cribs. The source of the uranium is the BX-102 tank overfill event and the source of most of the chromium is the B-7-A&B and B-8 cribs. Our mass balance estimates suggest that there are much larger masses of U, CN, and Tc remaining in the deep vadose zone within ~20 ft of the water table than is currently in the groundwater plumes below the B-Complex. This hypothesis needs to be carefully considered before future remediation efforts are chosen. The masses of these groundwater risk drivers in the the groundwater plumes have been increasing over the last decade and the groundwater plumes are migrating to the northwest towards the Gable Gap. The groundwater flow rate appears to flucuate in response to seasonal changes in hydraulic gradient. The flux of contaminants out of the deep vadose zone from the three proposed sources also

  15. Application of vadose-zone monitoring system for real-time characterization of leachate percolation in and under a municipal landfill.

    Science.gov (United States)

    Aharoni, Imri; Siebner, Hagar; Dahan, Ofer

    2017-09-01

    Leachates from solid-waste landfills are considered a severe threat to groundwater quality. The fate of pollutants in the waste and underlying unsaturated zone is crucial for evaluating environmental risks and selecting a restoration strategy. In this study, a vadose-zone monitoring system (VMS) installed in a municipal landfill was used, for the first time, to continuously track leachates percolation dynamics and assess their chemical transformation across the entire thickness of the waste body (15m) and underlying unsaturated zone (16m) to the water table. Winter rains were found to quickly infiltrate through the waste and underlying vadose zone despite a clay cover that was implemented as part of a restoration and leachate-prevention strategy. Within the waste body, the flow pattern was controlled by preferential flow paths, which changed frequently. It is hypothesized that ongoing decomposition of the waste creates dynamic variations in the waste's physical structure and flow pattern. Water samples collected from the waste layer indicated the formation of highly polluted leachates. The chemical composition in the waste body showed extreme variability between sampling points with respect to DOC (407-31,464mg/L), BOD/COD ratios (0.07-0.55), Fe 2+ (6.8-1154mg/L), ammonium (68-2924mg/L) and heavy metal concentrations. Environmental hot spots creating concentrated, aggressive, "acid-phase" leachates still exist in the waste more than 13years after closing the landfill. However, continuous changes in the flow pattern and moisture distribution affected the creation and decay of such environments. In the underlying sandy vadose zone, some sections repeatedly exhibited stronger and faster flow characteristics than others. These local fluxes of concentrated leachates rapidly transported heavy contaminant loads toward the groundwater. However results showed evidence of continual attenuation processes in the deep vadose zone, with the anaerobic digestion of organic matter

  16. Scale-Up Information for Gas-Phase Ammonia Treatment of Uranium in the Vadose Zone at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of this technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.

  17. Characterization of Vadose Zone Sediment: Borehole 299-E33-45 Near BX-102 in the B-BX-BY Waste Management Area

    International Nuclear Information System (INIS)

    Serne, R JEFFREY.; Last, George V.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.

    2002-01-01

    The goal of the Tank Farm Vadose Zone Project is to define risks from past and future single-shell tank farm activities. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a borehole installed northeast of tank BX-102 (borehole 299-E33-45). This report also presents data on the sediment lithologies, the vertical extent of contamination, their migration potential, and the source of the contamination in the vadose zone and perched water east of the BX Tank Farm. The near horizontally bedded, northeasterly dipping sediment likely caused horizontal flow of the migrating contaminants. At borehole 299-E33-45, there are several fine-grained lens within the H2 unit that cause horizontally spreading of percolating fluids. The 21-ft thick Plio-pleistocene fine grained silt/clay unit is also an important horizontal flow conduit as evidenced by the perched water between 227-232 ft bgs. Based on comparing the depth of penetration of contaminants and comparing the percentages that are water leachable, uranium migrates slower than technetium-99 and nitrate. The technetium-99 desorption data are consistently near zero, meaning that the technetium-99 is not interacting with the sediment. In summary, the moisture content, pH, electrical conductivity, sodium, tritium, and uranium profiles do not suggest that plume has penetrated below 170 ft bgs. In general, the majority of the ratios of constituents found in the porewater in the Hanford formation sediments are closer to being from the 1951 metals waste solution that escaped tank BX-102 during a cascading accident. There may be a source of water, containing nitrate but not technetium, that is feeding the perched water zone. The deep vadose, perched and groundwater data do not present a clear picture on what might be occurring in the Pliopleistocene units

  18. The vadose zone as a geoindicator of environmental change and groundwater quality in water-scarce areas

    Science.gov (United States)

    Edmunds, W. M.; Baba Goni, I.; Gaye, C. B.; Jin, L.

    2013-12-01

    Inert and reactive tracers in moisture profiles provide considerable potential for the vadose zone to be used as an indicator of rapid environmental change. This indicator is particularly applicable in areas of water stress where long term (decade to century) scale records may be found in deep unsaturated zones in low rainfall areas and provide insights into recent recharge, climate variation and water-rock interactions which generate groundwater quality. Unsaturated zone Cl records obtained by elutriation of moisture are used widely for estimating recharge and water balance studies; isotope profiles (3H, δ2H, δ18O) from total water extraction procedures are used for investigation of residence times and hydrological processes. Apart from water taken using lysimeters, little work has been conducted directly on the geochemistry of pore fluids. This is mainly due to the difficulties of extraction of moisture from unsaturated material with low water contents (typically 2-6 wt%) and since dilution methods can create artifacts. Using immiscible liquid displacement techniques it is now possible to directly investigate the geochemistry of moisture from unsaturated zone materials. Profiles up to 35m from Quaternary sediments from dryland areas of the African Sahel (Nigeria, Senegal) as well as Inner Mongolia, China are used to illustrate the breadth of information obtainable from vadose zone profiles. Using pH, major and trace elements and comparing with isotopic data, a better understanding is gained of timescales of water movement, aquifer recharge, environmental records and climate history as well as water-rock interaction and contaminant behaviour. The usefulness of tritium as residence time indicator has now expired following cessation of atmospheric thermonuclear testing and through radioactive decay. Providing the rainfall Cl, moisture contents and bulk densities of the sediments are known, then Cl accumulation can be substituted to estimate timescales. Profiles

  19. Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F; Serne, R JEFFREY; Bjornstad, Bruce N; Valenta, Michelle M; Lanigan, David C; Vickerman, Tanya S; Clayton, Ray E; Geiszler, Keith N; Iovin, Cristian; Clayton, Eric T; Kutynakov, I V; Baum, Steven R; Lindberg, Michael J; Orr, Robert D

    2007-02-05

    A geologic/geochemical investigation in the vicinity of UPR-200-E-82 was performed using pairs of cone-penetrometer probe holes. A total of 41 direct-push cone-penetrometer borings (19 pairs to investigate different high moisture zones in the same sampling location and 3 individual) were advanced to characterize vadose zone moisture and the distribution of contaminants. A total of twenty sample sets, containing up to two split-spoon liners and one grab sample, were delivered to the laboratory for characterization and analysis. The samples were collected around the documented location of the C-152 pipeline leak, and created an approximately 120-ft diameter circle around the waste site. UPR-200-E-82 was a loss of approximately 2,600 gallons of Cs-137 Recovery Process feed solution containing an estimated 11,300 Ci of cesium-137 and 5 Ci of technetium-99. Several key parameters that are used to identify subsurface contamination were measured, including: water extract pH, electrical conductivity, nitrate, technetium-99, sodium, and uranium concentrations and technetium-99 and uranium concentrations in acid extracts. All of the parameters, with the exception of electrical conductivity, were elevated in at least some of the samples analyzed as part of this study. Specifically, soil pH was elevated (from 8.69 to 9.99) in five samples collected northeast and southwest of the C-152 pipeline leak. Similarly, samples collected from these same cone-pentrometer holes contained significantly more water-extractable sodium (more than 50 g/g of dry sediment), uranium (as much as 7.66E-01 g/g of dry sediment), nitrate (up to 30 g/g of dry sediment), and technetium-99 (up to 3.34 pCi/g of dry sediment). Most of the samples containing elevated concentrations of water-extractable sodium also had decreased levels of water extractable calcium and or magnesium, indicating that tank-related fluids that were high in sodium did seep into the vadose zone near these probe holes. Several of the

  20. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  1. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Ku, T.L.; Luo, S.; Goldstein, S.J.; Murrell, M.T.; Chu, W.L.; Dobson, P.F.

    2009-01-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234 U/ 238 U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234 U/ 238 U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234 U/ 238 U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  2. Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near B 110 in the B BX-BY Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; mccain, r. G.; Lindenmeier, Clark W.; Orr, Robert D.; Legore, Virginia L.; Clayton, Ray E.; Lindberg, Michael J.; Kutynakov, I. V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-ectractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in December 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the B-BX-BY Waste Management Area. This report is the third in a series of three reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a borehole installed approximately 4.5 m (15 ft) northeast of tank B- 110 (borehole 299-E33-46).

  3. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  4. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    Science.gov (United States)

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings

  5. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  6. Water and vapor transfer in vadose zone of Gobi desert and riparian in the hyper arid environment of Ejina, China

    Science.gov (United States)

    Du, C.; Yu, J.; Sun, F.; Liu, X.

    2015-12-01

    To reveal how water and vapor transfer in vadose zone affect evapotranspiration in Gobi desert and riparian in hyper arid region is important for understanding eco-hydrological process. Field studies and numerical simulations were imported to evaluate the water and vapor movement processes under non isothermal and lower water content conditions. The soil profiles (12 layers) in Gobi desert and riparian sites of Ejina were installed with sensors to monitor soil moisture and temperature for 1 year. The meteorological conditions and water table were measured by micro weather stations and mini-Divers respectively in the two sites. Soil properties, including particles composition, moisture, bulk density, water retention curve, and saturated hydraulic conductivity of two site soil profiles, was measured. The observations showed that soil temperatures for the two sites displayed large diurnal and seasonal fluctuations. Temperature gradients with depth resulted in a downward in summer and upward in winter and became driving force for thermal vapor movement. Soil moistures in Gobi desert site were very low and varied slowly with time. While the soil moistures in riparian site were complicated due to root distribution but water potentials remained uniform with time. The hydrus-1D was employed to simulate evapotranspiration processes. The simulation results showed the significant difference of evaporation rate in the Gobi desert and riparian sites.

  7. Effect of nitrate, acetate and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil

    Science.gov (United States)

    Nozawa-Inoue, Mamie; Jien, Mercy; Yang, Kun; Rolston, Dennis E.; Hristova, Krassimira R.; Scow, Kate M.

    2011-01-01

    Effect of nitrate, acetate and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared to unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration which was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting either perchlorate or nitrate stimulates growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment. PMID:21284679

  8. Spectroscopic and Microscopic Characterization of Contaminant Uptake and Retention by Carbonates in the Soil and Vadose Zone

    International Nuclear Information System (INIS)

    Reeder, Richard J.; Fisher, Nicholas S.; Hess, Wayne P.; Beck, Kenneth M.

    2003-01-01

    The research focus of this previous EMSP grant was assessment of the role that carbonate minerals play in the uptake and sequestration of metal and radionuclide contaminants in soils and the vadose zone for conditions relevant to the Hanford Site and other sites in the DOE Complex. The project was a collaboration among researchers at SUNY-Stony Brook and EMSL/PNNL. Carbonates, particularly calcite, are present in the Hanford subsurface as grain coatings, disseminated particles, and dense caliche layers. Calcite is also predicted to be forming beneath leaking tanks. A range of metal and radionuclide species that pose risks at Hanford and other DOE sites were considered, including U(VI), Cr(CV), Cs, Pb(II), and selected lanthanides (as models for trivalent actinides). Batch sorption and co-precipitation experiments of these metals with pre-equilibrated calcite and selected uptake experiments on natural caliche formed the basis to determine the mechanisms of metal/radionuclide binding and to assess the effect on the stability of the sorbed species and the potential for remobilization. Our results provide ne information that can benefit DOE clean-up methodology and potentially provide new approaches for uptake of selected heavy metals

  9. In-situ active/passive bioreclamation of vadose zone soils contaminated with gasoline and waste oil using soil vapor extraction/bioventing: Laboratory pilot study to full scale site operation

    International Nuclear Information System (INIS)

    Zachary, S.P.; Everett, L.G.

    1993-01-01

    The use of soil venting to supply oxygen and remove metabolites from the biodegradation of light hydrocarbons is a cost effective in-situ remediation approach. To date, little data exists on the effective in-situ bioreclamation of vadose zone soil contaminated with waste/hydraulic oil without excavation or the addition of water or nutrients to degrade the heavy petroleum contaminants. Gasoline and waste/hydraulic oil contaminated soils below an active commercial building required an in-situ non-disruptive remediation approach. Initial soil vapor samples collected from the vadose zone revealed CO 2 concentrations in excess of 16% and O 2 concentrations of less than 1% by volume. Soil samples were collected from below the building within the contaminated vadose zone for laboratory chemical and physical analysis as well as to conduct a laboratory biotreatability study. The laboratory biotreatability study was conducted for 30 days to simulate vadose zone bioventing conditions using soil taken from the contaminated vadose zone. Results of the biotreatability study revealed that the waste oil concentrations had been reduced from 960 mg/Kg to non-detectable concentrations within 30 days and the volatile hydrocarbon content had decreased exponentially to less than 0.1% of the original concentration. Post treatability study biological enumeration revealed an increase in the microbial population of two orders of magnitude

  10. Biodiesel Mass Transit Demonstration

    Science.gov (United States)

    2010-04-01

    The Biodiesel Mass Transit Demonstration report is intended for mass transit decision makers and fleet managers considering biodiesel use. This is the final report for the demonstration project implemented by the National Biodiesel Board under a gran...

  11. Authoring Effective Demonstrations

    National Research Council Canada - National Science Library

    Fu, Dan; Jensen, Randy; Salas, Eduardo; Rosen, Michael A; Ramachandran, Sowmya; Upshaw, Christin L; Hinkelman, Elizabeth; Lampton, Don

    2007-01-01

    ... or human role-players for each training event. We report our ongoing efforts to (1) research the nature and purpose of demonstration, articulating guidelines for effective demonstration within a training context, and (2...

  12. Comparing Demonstratives in Kwa

    African Journals Online (AJOL)

    This paper is a comparative study of demonstrative forms in three K wa languages, ... relative distance from the deictic centre, such as English this and that, here and there. ... Mostly, the referents of demonstratives are 'activated' or at least.

  13. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  14. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone

    Science.gov (United States)

    Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.

    2013-01-01

    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578

  15. Use of Large-Scale Multi-Configuration EMI Measurements to Characterize Subsurface Structures of the Vadose Zone.

    Science.gov (United States)

    Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.

    2017-12-01

    Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was

  16. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

    International Nuclear Information System (INIS)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P.; Wang, Zheming; Bargar, John; Faurie, Danielle K.; Resch, Charles T.; Phillips, Jerry L.

    2010-01-01

    This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: (a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), (b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, (c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and (d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation. Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.

  17. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P.; Wang, Zheming; Bargar, John; Faurie, Danielle K.; Resch, Charles T.; Phillips, Jerry L.

    2010-12-01

    This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.

  18. CO2 leakage monitoring and analysis to understand the variation of CO2 concentration in vadose zone by natural effects

    Science.gov (United States)

    Joun, Won-Tak; Ha, Seung-Wook; Kim, Hyun Jung; Ju, YeoJin; Lee, Sung-Sun; Lee, Kang-Kun

    2017-04-01

    Controlled ex-situ experiments and continuous CO2 monitoring in the field are significant implications for detecting and monitoring potential leakage from CO2 sequestration reservoir. However, it is difficult to understand the observed parameters because the natural disturbance will fluctuate the signal of detections in given local system. To identify the original source leaking from sequestration reservoir and to distinguish the camouflaged signal of CO2 concentration, the artificial leakage test was conducted in shallow groundwater environment and long-term monitoring have been performed. The monitoring system included several parameters such as pH, temperature, groundwater level, CO2 gas concentration, wind speed and direction, atmospheric pressure, borehole pressure, and rainfall event etc. Especially in this study, focused on understanding a relationship among the CO2 concentration, wind speed, rainfall and pressure difference. The results represent that changes of CO2 concentration in vadose zone could be influenced by physical parameters and this reason is helpful in identifying the camouflaged signal of CO2 concentrations. The 1-D column laboratory experiment also was conducted to understand the sparking-peak as shown in observed data plot. The results showed a similar peak plot and could consider two assumptions why the sparking-peak was shown. First, the trapped CO2 gas was escaped when the water table was changed. Second, the pressure equivalence between CO2 gas and water was broken when the water table was changed. These field data analysis and laboratory experiment need to advance due to comprehensively quantify local long-term dynamics of the artificial CO2 leaking aquifer. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  19. Strategy Guideline: Demonstration Home

    Energy Technology Data Exchange (ETDEWEB)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  20. Strategy Guideline. Demonstration Home

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  1. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-06-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  2. Modeling non-steady state radioisotope transport in the vadose zone - A case study using uranium isotopes at Peña Blanca, Mexico

    Science.gov (United States)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-10-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/ 238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/ 238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/ 238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  3. Water movement and solute transport in deep vadose zone under four irrigated agricultural land-use types in the North China Plain

    Science.gov (United States)

    Min, Leilei; Shen, Yanjun; Pei, Hongwei; Wang, Ping

    2018-04-01

    Groundwater-fed agriculture has caused water table declines and groundwater quality degradation in the North China Plain. Based on sediment sampling in deep vadose zone (with a maximum depth of 11.0 m), groundwater recharge, seepage velocity, solute inventory and transport under four typical irrigated agricultural land-use types (winter wheat and summer maize, WM; pear orchards, PO; outdoor vegetables, VE; and cotton, CO) were investigated in this study. The results reveal that there are many solutes stored in the vadose zone. Nitrate storage per unit depth in the vadose zone is highest under PO (1703 kg/ha), followed by VE (970 kg/ha), WM (736 kg/ha) and CO (727 kg/ha). However, the amount of annual leached nitrate under the four land-use types results in a different order (VE, 404 kg/ha; WM, 108 kg/ha; PO, 23 kg/ha; CO, 13 kg/ha). The estimated average recharge rates are 180 mm/yr for WM, 27 mm/yr for CO, 320 mm/yr for VE and 49 mm/yr for PO. The seepage velocity under VE (2.22 m/yr) exceeds the values under the other three land-use types (WM, 0.85 m/yr; PO, 0.49 m/yr; CO, 0.09 m/yr). The highest seepage velocity under VE caused significant nitrate contamination in groundwater, whereas the other two land-use types (WM and PO) had no direct influence on groundwater quality. The results of this work could be used for groundwater resources management.

  4. Verification of T2VOC using an analytical solution for VOC transport in vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    Shan, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    T2VOC represents an adaption of the STMVOC to the TOUGH2 environment. In may contaminated sites, transport of volatile organic chemicals (VOC) is a serious problem which can be simulated by T2VOC. To demonstrate the accuracy and robustness of the code, we chose a practical problem of VOC transport as the test case, conducted T2VOC simulations, and compared the results of T2VOC with those of an analytical solution. The agreements between T2VOC and the analytical solutions are excellent. In addition, the numerical results of T2VOC are less sensitive to grid size and time step to a certain extent.

  5. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Stronthium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.; Fujita, Yoshiko

    2007-11-07

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers’ exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  6. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    International Nuclear Information System (INIS)

    Smith, Robert W.; Fujita, Yoshiko

    2007-01-01

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  7. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2006-10-18

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants

  8. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  9. Vadose zone processes delay groundwater nitrate reduction response to BMP implementation as observed in paired cultivated vs. uncultivated potato rotation fields

    Science.gov (United States)

    Jiang, Y.; Nyiraneza, J.; Murray, B. J.; Chapman, S.; Malenica, A.; Parker, B.

    2017-12-01

    Nitrate leaching from crop production contributes to groundwater contamination and subsequent eutrophication of the receiving surface water. A study was conducted in a 7-ha potato-grain-forages rotation field in Prince Edward Island (PEI), Canada during 2011-2016 to link potato rotation practices and groundwater quality. The field consists of fine sandy loam soil and is underlain by 7-9 m of glacial till, which overlies the regional fractured ;red-bed; sandstone aquifer. The water table is generally located in overburden close to the bedrock interface. Field treatments included one field zone taken out of production in 2011 with the remaining zones kept under a conventional potato rotation. Agronomy data including crop tissue, soil, and tile-drain water quality were collected. Hydrogeology data including multilevel monitoring of groundwater nitrate and hydraulic head and data from rock coring for nitrate distribution in overburden and bedrock matrix were also collected. A significant amount of nitrate leached below the soil profile after potato plant kill (referred to as topkill) in 2011, most of it from fertilizer N. A high level of nitrate was also detected in the till vadose zone through coring in December 2012 and through multilevel groundwater sampling from January to May 2014 in both cultivated and uncultivated field zones. Groundwater nitrate concentrations increased for about 2.5 years after the overlying potato field was removed from production. Pressure-driven uniform flow processes dominate water and nitrate transport in the vadose zone, producing an apparently instant water table response but a delayed groundwater quality response to nitrate leaching events. These data suggest that the uniform flow dominated vadose zone in agricultural landscapes can cause the accumulation of a significant amount of nitrate originated from previous farming activities, and the long travel time of this legacy nitrate in the vadose zone can result in substantially delayed

  10. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  11. Electrical resistivity tomography for early vadose leak detection under single shell storage tanks

    International Nuclear Information System (INIS)

    Narbutovshih, S.M.

    1996-01-01

    This document describes planned testing with Electrical Resistivity Tomography (ERT). It is prepared in support of TTP RL46WT51 Rev. 1, funded by the Tank Focus Area through the Office of Technology Integration. The primary goal of the testing for fiscal year 1996 (FY96) is to develop and demonstrate the ability to place vertical electrode arrays (VEA) with the cone penetrometer technology (CPT) to depths below existing single shell tanks (SST) at the DOE Hanford Site. It is desirable to have the capability to use CPT for this application for obvious reasons. First, current methods of emplacement, drilled boreholes, are expensive with respect to the rest of the ERT operation. Cone penetrometer VEA emplacements offer the opportunity to significantly reduce installation costs. Second, use of CPT will reduce emplacement time from weeks or months to just several days depending on the number of VEAs and the depth of placement. ERT is preferable to other monitoring methods since operation costs and turn around time are less than the current baselines of either groundwater sampling networks or borehole logging techniques. ERT cost savings can be substantial and will continue into the future. ERT can also provide complete coverage under a tank or other facility which is an important supplement to existing monitoring methods. Groundwater sampling provides one data point per well and borehole logging provides data along a line in the ground. Neither provide information from beneath a facility and thus, are not able to locate release points. These electrode arrays are used to acquire subsurface electrical resistance data in a manner appropriate for tomographic inversion. The resulting tomograms can then be used to detect, monitor and track contaminated moisture plumes leaking from underground storage tanks during waste retrieval operations

  12. Explosives disposal demonstration projects. Progress report, April 12, 1995--June 30, 1995

    International Nuclear Information System (INIS)

    Charbeneau, R.

    1995-01-01

    This report contains quarterly reports on two projects. The first is undertaking the environmental restoration at the Pantex Plant. Research objectives are organized under four general tasks: field testing and produced water treatment, bioremediation of contaminated groundwater and soils, vadose zone remediation, and chromium remediation. The other project goal is to demonstrate generation of diamond by explosive compression of Carbon 60 and Carbon 70 and mixtures of these fullerenes. The intent is to exploit expertise developed by Pantex and other DOE Laboratories in the area of understanding and modeling of explosive compression for initiation of nuclear fission reactions to explosively compress carbon in the form of fullerenes with the goal of transforming the material into the diamond phase

  13. VAMOS: The verification and monitoring options study: Current research options for in-situ monitoring and verification of contaminant remediation and containment within the vadose zone

    International Nuclear Information System (INIS)

    Betsill, J.D.; Gruebel, R.D.

    1995-09-01

    The Verification and Monitoring Options Study Project (VAMOS) was established to identify high-priority options for future vadose-zone environmental research in the areas of in-situ remediation monitoring, post-closure monitoring, and containment emplacement and verification monitoring. VAMOS examined projected needs not currently being met with applied technology in order to develop viable monitoring and verification research options. The study emphasized a compatible systems approach to reinforce the need for utilizing compatible components to provide user friendly site monitoring systems. To identify the needs and research options related to vadose-zone environmental monitoring and verification, a literature search and expert panel forums were conducted. The search included present drivers for environmental monitoring technology, technology applications, and research efforts. The forums included scientific, academic, industry, and regulatory environmental professionals as well as end users of environmental technology. The experts evaluated current and future monitoring and verification needs, methods for meeting these needs, and viable research options and directions. A variety of high-priority technology development, user facility, and technology guidance research options were developed and presented as an outcome of the literature search and expert panel forums

  14. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    International Nuclear Information System (INIS)

    Rucker, Gregory G.

    2007-01-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  15. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1997 annual progress report

    International Nuclear Information System (INIS)

    Alumbaugh, D.L.

    1997-01-01

    'It is the objective of this proposed study to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This fundamentally new approach to site characterization and monitoring will provide detailed knowledge about hydrological properties, geological heterogeneity and the extent and movement of contamination. HHGIT combines electrical resistivity tomography (ERT) to geophysically sense a 3D volume, statistical information about fabric of geological formations, and sparse data on moisture and contaminant distributions. Combining these three types of information into a single inversion process will provide much better estimates of spatially varied hydraulic properties and three-dimensional contaminant distributions than could be obtained from interpreting the data types individually. Furthermore, HHGIT will be a geostatistically based estimation technique; the estimates represent conditional mean hydraulic property fields and contaminant distributions. Thus, this method will also quantify the uncertainty of the estimates as well as the estimates themselves. The knowledge of this uncertainty is necessary to determine the likelihood of success of remediation efforts and the risk posed by hazardous materials. Controlled field experiments will be conducted to provide critical data sets for evaluation of these methodologies, for better understanding of mechanisms controlling contaminant movement in the vadose zone, and for evaluation of the HHGIT method as a long term monitoring strategy.'

  16. Characterization of Vadose Zone Sediment: RCRA Borehole 299-E33-338 Located Near the B-BX-BY Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmeier, Clark W.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.8. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in June 2003. The overall goals of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are: 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid via collection of geotechnical information and data, future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank waste management areas. For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at the B-BX-BY tank farm waste management area are found in CH2M HILL (2000).

  17. You Don't Need Richards'... A New General 1-D Vadose Zone Solution Method that is Reliable

    Science.gov (United States)

    Ogden, F. L.; Lai, W.; Zhu, J.; Steinke, R. C.; Talbot, C. A.

    2015-12-01

    Hydrologic modelers and mathematicians have strived to improve 1-D Richards' equation (RE) solution reliability for predicting vadose zone fluxes. Despite advances in computing power and the numerical solution of partial differential equations since Richards first published the RE in 1931, the solution remains unreliable. That is to say that there is no guarantee that for a particular set of soil constitutive relations, moisture profile conditions, or forcing input that a numerical RE solver will converge to an answer. This risk of non-convergence renders prohibitive the use of RE solvers in hydrological models that need perhaps millions of infiltration solutions. In lieu of using unreliable numerical RE solutions, researchers have developed a wide array of approximate solutions that more-or-less mimic the behavior of the RE, with some notable deficiencies such as parameter insensitivity or divergence over time. The improved Talbot-Ogden (T-O) finite water-content scheme was shown by Ogden et al. (2015) to be an extremely good approximation of the 1-D RE solution, with a difference in cumulative infiltration of only 0.2 percent over an 8 month simulation comparing the improved T-O scheme with a RE numerical solver. The reason is that the newly-derived fundamental flow equation that underpins the improved T-O method is equivalent to the RE minus a term that is equal to the diffusive flux divided by the slope of the wetting front. Because the diffusive flux has zero mean, this term is not important in calculating the mean flux. The wetting front slope is near infinite (sharp) in coarser soils that produce more significant hydrological interactions between surface and ground waters, which also makes this missing term 1) disappear in the limit, and, 2) create stability challenges for the numerical solution of RE. The improved T-O method is a replacement for the 1-D RE in soils that can be simulated as homogeneous layers, where the user is willing to neglect the effects

  18. Monitoring and Modeling the Fate and Transport of Nitrate in the Vadose Zone beneath a Suwannee River Basin Vegetable Farm

    Science.gov (United States)

    Albert, M. A.; Graham, W. D.; Graetz, D.

    2002-05-01

    The Suwannee River basin has received much attention in recent years due to increased nitrogen levels in the groundwater-fed rivers of the basin that could seriously affect the welfare of this ecosystem. Nitrogen levels have increased from 0.1mg/l NO3-N to more than 5 mg/L NO3-N in many springs in the Suwannee Basin over the past 40 years. Nitrate concentrations in the Suwannee River itself have been increasing at the rate of .02 mg/L per year over the past 20 years. Suwannee River nitrate loads increase from 2300 kg/day to 6000 kg/day over a 33 mile stretch of the river between Dowling Park and Branford, Florida. Within this stretch of river, 89% of the nitrate loading appeared to come from the lower two-thirds, where agriculture is the dominant land use. The objective of this research is to monitor and model the impacts of alternative nutrient and water management practices on soil water quality, groundwater quality and crop yield at a commercial vegetable farm in the Suwannee River Basin. Groundwater monitoring wells, suction lysimeters, soil cores and TDR probes are used to monitor water and nitrogen transport at the site. Periodic plant biomass sampling is conducted to determine nitrogen uptake by the plants and to estimate crop yield. Field data show that two-thirds of the nitrogen applied to the spring 2001 potato crop leached to groundwater due to excessive irrigation and poor nitrogen uptake efficiency by the potatoes. The DSSAT35-Potato Crop model and the LEACHM vadose-zone model were calibrated for the spring 2001 potato crop and used to predict nitrogen leaching and crop yield for alternative management practices. Simulation results show that by reducing the duration of irrigation, reducing the fertilizer application rate, and improving the timing of fertilizer applications, nitrogen leaching can be reduced by approximately 50% while maintaining acceptable crop yields. Results of this project will ultimately be used to develop best management practices

  19. Experimental quantification of solute transport through the vadose zone under dynamic boundary conditions with dye tracers and optical methods.

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2017-04-01

    transport through the material interface which differs between the stationary (unilateral) and dynamic cases (bilateral). This qualitative observation is confirmed by breakthrough curves for dynamic experiments which generally show the trend of faster initial breakthrough and increased tailing when compared to stationary infiltration results. Literature Cremer, C.J.M., I. Neuweiler, M. Bechtold, J. Vanderborght (2016): Solute Transport in Heterogeneous Soil with Time-Dependent Boundary Conditions, Vadose Zone Journal 15 (6) DOI: 10.2136/vzj2015.11.0144

  20. Utilizing High-Performance Computing to Investigate Parameter Sensitivity of an Inversion Model for Vadose Zone Flow and Transport

    Science.gov (United States)

    Fang, Z.; Ward, A. L.; Fang, Y.; Yabusaki, S.

    2011-12-01

    High-resolution geologic models have proven effective in improving the accuracy of subsurface flow and transport predictions. However, many of the parameters in subsurface flow and transport models cannot be determined directly at the scale of interest and must be estimated through inverse modeling. A major challenge, particularly in vadose zone flow and transport, is the inversion of the highly-nonlinear, high-dimensional problem as current methods are not readily scalable for large-scale, multi-process models. In this paper we describe the implementation of a fully automated approach for addressing complex parameter optimization and sensitivity issues on massively parallel multi- and many-core systems. The approach is based on the integration of PNNL's extreme scale Subsurface Transport Over Multiple Phases (eSTOMP) simulator, which uses the Global Array toolkit, with the Beowulf-Cluster inspired parallel nonlinear parameter estimation software, BeoPEST in the MPI mode. In the eSTOMP/BeoPEST implementation, a pre-processor generates all of the PEST input files based on the eSTOMP input file. Simulation results for comparison with observations are extracted automatically at each time step eliminating the need for post-process data extractions. The inversion framework was tested with three different experimental data sets: one-dimensional water flow at Hanford Grass Site; irrigation and infiltration experiment at the Andelfingen Site; and a three-dimensional injection experiment at Hanford's Sisson and Lu Site. Good agreements are achieved in all three applications between observations and simulations in both parameter estimates and water dynamics reproduction. Results show that eSTOMP/BeoPEST approach is highly scalable and can be run efficiently with hundreds or thousands of processors. BeoPEST is fault tolerant and new nodes can be dynamically added and removed. A major advantage of this approach is the ability to use high-resolution geologic models to preserve

  1. Characterization of Direct-Push Vadose Zone Sediments from the 241-B and 241-BX Tank Farms

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong; Bjornstad, Bruce N.; Valenta, Michelle M.; Iovin, Cristian; Lanigan, David C.; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-01-01

    Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier I tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes

  2. Characterization of Direct-Push Vadose Zone Sediments from the 241-B and 241-BX Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong; Bjornstad, Bruce N.; Valenta, Michelle M.; Iovin, Cristian; Lanigan, David C.; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-21

    Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier I tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes

  3. Innovative technology demonstration

    International Nuclear Information System (INIS)

    Anderson, D.B.; Luttrell, S.P.; Hartley, J.N.; Hinchee, R.

    1992-04-01

    The Innovative Technology Demonstration (ITD) program at Tinker Air Force Base (TAFB), Oklahoma City, Oklahoma, will demonstrate the overall utility and effectiveness of innovative technologies for site characterization, monitoring, and remediation of selected contaminated test sites. The current demonstration test sites include a CERCLA site on the NPL list, located under a building (Building 3001) that houses a large active industrial complex used for rebuilding military aircraft, and a site beneath and surrounding an abandoned underground tank vault used for storage of jet fuels and solvents. The site under Building 3001 (the NW Test Site) is contaminated with TCE and Cr +6 ; the site with the fuel storage vault (the SW Tanks Site) is contaminated with fuels, BTEX and TCE. These sites and others have been identified for cleanup under the Air Force's Installation Restoration Program (IRP). This document describes the demonstrations that have been conducted or are planned for the TAFB

  4. Laser Communications Relay Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — LCRD is a minimum two year flight demonstration in geosynchronous Earth orbit to advance optical communications technology toward infusion into Deep Space and Near...

  5. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  6. Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near Tank B-110 in the B-BX-BY Waste Management Area

    International Nuclear Information System (INIS)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Mccain, Richard G.; Lindenmeier, Clark W.; Orr, Robert D.; Legore, Virginia L.; Clayton, Ray E.; Lindberg, Michael J.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2002-01-01

    This report presents vadose sediment characterization data that improves understanding of the nature and extent of past releases in the B tank farm. A vertical borehole, located approximately 15 ft (5 m) from the northeast edge of single-shell tank 241-B-110 was drilled to a total depth of 264.4 ft bgs, the groundwater table was encountered at 255.8 ft bgs. During drilling, a total of 3 two-ft long, 4-inch diameter split-spoon core samples were collected between 10 and 254 ft bgs-an average of every 7.5 ft. Grab samples were collected between these core sample intervals to yield near continuous samples to a depth of 78.3 m (257 ft). Geologic logging occurred after each core segment was emptied into an open plastic container, followed by photographing and sub-sampling for physical and chemical characterization. In addition, 54 out of a total of 120 composite grab samples were opened, sub-sampled, logged, and photographed. Immediately following the geologic examination, the core an d selected grab samples were sub-sampled for moisture content, gamma-emission radiocounting, tritium and strontium-90 determinations, total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants) and one-to-one sediment to water extracts (which provide soil pH, electrical conductivity, cation, and anion data and water soluble contaminant data). Later, additional aliquots of selected sleeves or grab samples were removed to measure particle size distribution and mineralogy and to squeeze porewater. Major conclusions follow. Vadose zone contamination levels were lower than generally anticipated prior to the initiation of the field investigation. Strong evidence of extensive vadose zone lateral migration in WMA BBXBY exists. There are indications that such lateral migration may have extended into WMA B-BX-BY from adjacent past practice discharge sites. Ponding of runoff from natural precipitation in the

  7. Education Payload Operation - Demonstrations

    Science.gov (United States)

    Keil, Matthew

    2009-01-01

    Education Payload Operation - Demonstrations (EPO-Demos) are recorded video education demonstrations performed on the International Space Station (ISS) by crewmembers using hardware already onboard the ISS. EPO-Demos are videotaped, edited, and used to enhance existing NASA education resources and programs for educators and students in grades K-12. EPO-Demos are designed to support the NASA mission to inspire the next generation of explorers.

  8. Buried Waste Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities

  9. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 μg/L in the aqueous phase and from approximately 10 to 290 μg/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone

  10. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States); Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, A. [LBNL; Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-09-28

    quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.

  11. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    International Nuclear Information System (INIS)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-01-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): Electrical Resistivity Tomography (ERT); Cross-Borehole Electromagnetic Induction (CEMI) ; High-Resolution Resistivity (HRR); Cross-Borehole Radar (XBR); Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone

  12. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  13. Test Objectives for the Saltcake Dissolution Retrieval Demonstration

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    This document describes the objectives the Saltcake Dissolution Retrieval Demonstration. The near term strategy for single-shell tank waste retrieval activities has shifted from focusing on maximizing the number of tanks entered for retrieval (regardless of waste volume or content) to a focus on scheduling the retrieval of wastes from those single-shell tanks with a high volume of contaminants of concern. These contaminants are defined as mobile, long-lived radionuclides that have a potential of reaching the groundwater and the Columbia River. This strategy also focuses on the performance of key retrieval technology demonstrations, including the Saltcake Dissolution Retrieval Demonstration, in a variety of waste forms and tank farm locations to establish a technical basis for future work. The work scope will also focus on the performance of risk assessment, retrieval performance evaluations (RPE) and incorporating vadose zone characterization data on a tank-by-tank basis, and on updating tank farm closure/post closure work plans. The deployment of a retrieval technology other than Past-Practice Sluicing (PPS) allows determination of limits of technical capabilities, as well as, providing a solid planning basis for future SST retrievals. This saltcake dissolution technology deployment test will determine if saltcake dissolution is a viable retrieval option for SST retrieval. CH2M Hill Hanford Group (CHG) recognizes the SST retrieval mission is key to the success of the River Protection Project (RPP) and the overall completion of the Hanford Site cleanup. The objectives outlined in this document will be incorporated into and used to develop the test and evaluation plan for saltcake dissolution retrievals. The test and evaluation plan will be developed in fiscal year 2001

  14. Demonstration testing and evaluation of in situ soil heating

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the '70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid '80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern

  15. Learning From Demonstration?

    DEFF Research Database (Denmark)

    Koch, Christian; Bertelsen, Niels Haldor

    2014-01-01

    Demonstration projects are often used in the building sector to provide a basis for using new processes and/or products. The climate change agenda implies that construction is not only required to deliver value for the customer, cost reductions and efficiency but also sustainable buildings....... This paper reports on an early demonstration project, the Building of a passive house dormitory in the Central Region of Denmark in 2006-2009. The project was supposed to deliver value, lean design, prefabrication, quality in sustainability, certification according to German standards for passive houses......, and micro combined heat and power using hydrogen. Using sociological and business economic theories of innovation, the paper discusses how early movers of innovation tend to obtain only partial success when demonstrating their products and often feel obstructed by minor details. The empirical work...

  16. Solar renovation demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Joergensen, O [ed.

    1998-10-01

    In the framework of the IEA SHC Programme, a Task on building renovation was initiated, `Task 20, Solar Energy in Building Renovation`. In a part of the task, Subtask C `Design of Solar Renovation Projects`, different solar renovation demonstration projects were developed. The objective of Subtask C was to demonstrate the application of advanced solar renovation concepts on real buildings. This report documents 16 different solar renovation demonstration projects including the design processes of the projects. The projects include the renovation of houses, schools, laboratories, and factories. Several solar techniques were used: building integrated solar collectors, glazed balconies, ventilated solar walls, transparent insulation, second skin facades, daylight elements and photovoltaic systems. These techniques are used in several simple as well as more complex system designs. (au)

  17. Biodenitrification demonstration test report

    International Nuclear Information System (INIS)

    Benear, A.K.; Murray, S.J.; Lahoda, E.J.; Leslie, J.W.; Patton, J.B.; Menako, C.R.

    1987-08-01

    A two-column biodenitrification (BDN) facility was constructed at the Feed Materials Production Center (FMPC) in 1985 and 1986 to test the feasibility of biological treatment for industrial nitrate-bearing waste water generated at FMPC. This demonstration facility comprises one-half of the proposed four-column production facility. A demonstration test was conducted over a four month period in 1987. The results indicate the proposed BDN production facility can process FMPC industrial wastewater in a continuous manner while maintaining an effluent that will consistently meet the proposed NPDES limits for combined nitrate nitrogen (NO 3 -N) and nitrite nitrogen (NO 2 -N). The proposed NPDES limits are 62 kg/day average and 124 kg/day maximum. These limits were proportioned to determine that the two-column demonstration facility should meet the limits of 31 kg/day average and 62 kg/day maximum

  18. Distributed picture compilation demonstration

    Science.gov (United States)

    Alexander, Richard; Anderson, John; Leal, Jeff; Mullin, David; Nicholson, David; Watson, Graham

    2004-08-01

    A physical demonstration of distributed surveillance and tracking is described. The demonstration environment is an outdoor car park overlooked by a system of four rooftop cameras. The cameras extract moving objects from the scene, and these objects are tracked in a decentralized way, over a real communication network, using the information form of the standard Kalman filter. Each node therefore has timely access to the complete global picture and because there is no single point of failure in the system, it is robust. The demonstration system and its main components are described here, with an emphasis on some of the lessons we have learned as a result of applying a corpus of distributed data fusion theory and algorithms in practice. Initial results are presented and future plans to scale up the network are also outlined.

  19. Photovoltaic demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W B; Hacker, R J; Kaut, W [eds.

    1991-01-01

    This book, the proceedings of the fourth PV-Contractors' Meeting organized by the Commission of the European Communities, Directorate-General for Energy, held at Brussels on 21 and 22 November 1989, provides an overview of the photovoltaic demonstration projects which have been supported in the framework of the Energy Demonstration Program since 1983. It includes reports by each of the contractors who submitted proposals in 1983, 1984, 1985 and 1986, describing progress with their projects. Summaries of the discussions held at the meeting, which included contractors whose projects were submitted in 1987, are also presented. The different technologies which are being demonstrated concern the modules, the cabling of the array, structure design, storage strategy and power conditioning. The various applications include desalination, communications, dairy farms, water pumping, and warning systems. Papers have been processed separately for inclusion on the data base.

  20. Electric vehicle demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Ouellet, M. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The desirable characteristics of Canadian projects that demonstrate vehicle use in real-world operation and the appropriate mechanism to collect and disseminate the monitoring data were discussed in this presentation. The scope of the project was on passenger cars and light duty trucks operating in plug-in electric vehicle (PHEV) or battery electric vehicle modes. The presentation also discussed the funding, stakeholders involved, Canadian travel pattern analysis, regulatory framework, current and recent electric vehicle demonstration projects, and project guidelines. It was concluded that some demonstration project activities may have been duplicated as communication between the proponents was insufficient. It was recommended that data monitoring using automatic data logging with minimum reliance on logbooks and other user entry should be emphasized. figs.

  1. Innovative technology demonstrations

    International Nuclear Information System (INIS)

    Anderson, D.B.; Luttrell, S.P.; Hartley, J.N.

    1992-08-01

    Environmental Management Operations (EMO) is conducting an Innovative Technology Demonstration Program for Tinker Air Force Base (TAFB). Several innovative technologies are being demonstrated to address specific problems associated with remediating two contaminated test sites at the base. Cone penetrometer testing (CPT) is a form of testing that can rapidly characterize a site. This technology was selected to evaluate its applicability in the tight clay soils and consolidated sandstone sediments found at TAFB. Directionally drilled horizontal wells was selected as a method that may be effective in accessing contamination beneath Building 3001 without disrupting the mission of the building, and in enhancing the extraction of contamination both in ground water and in soil. A soil gas extraction (SGE) demonstration, also known as soil vapor extraction, will evaluate the effectiveness of SGE in remediating fuels and TCE contamination contained in the tight clay soil formations surrounding the abandoned underground fuel storage vault located at the SW Tanks Site. In situ sensors have recently received much acclaim as a technology that can be effective in remediating hazardous waste sites. Sensors can be useful for determining real-time, in situ contaminant concentrations during the remediation process for performance monitoring and in providing feedback for controlling the remediation process. Following the SGE demonstration, the SGE system and SW Tanks test site will be modified to demonstrate bioremediation as an effective means of degrading the remaining contaminants in situ. The bioremediation demonstration will evaluate a bioventing process in which the naturally occurring consortium of soil bacteria will be stimulated to aerobically degrade soil contaminants, including fuel and TCE, in situ

  2. Innovative technology demonstrations

    International Nuclear Information System (INIS)

    Anderson, D.B.; Hartley, J.N.; Luttrell, S.P.

    1992-04-01

    Currently, several innovative technologies are being demonstrated at Tinker Air Force Base (TAFB) to address specific problems associated with remediating two contaminated test sites at the base. Cone penetrometer testing (CPT) is a form of testing that can rapidly characterize a site. This technology was selected to evaluate its applicability in the tight clay soils and consolidated sandstone sediments found at TAFB. Directionally drilled horizontal wells have been successfully installed at the US Department of Energy's (DOE) Savannah River Site to test new methods of in situ remediation of soils and ground water. This emerging technology was selected as a method that may be effective in accessing contamination beneath Building 3001 without disrupting the mission of the building, and in enhancing the extraction of contamination both in ground water and in soil. A soil gas extraction (SGE) demonstration, also known as soil vapor extraction, will evaluate the effectiveness of SGE in remediating fuels and TCE contamination contained in the tight clay soil formations surrounding the abandoned underground fuel storage vault located at the SW Tanks Site. In situ sensors have recently received much acclaim as a technology that can be effective in remediating hazardous waste sites. Sensors can be useful for determining real-time, in situ contaminant concentrations during the remediation process for performance monitoring and in providing feedback for controlling the remediation process. A demonstration of two in situ sensor systems capable of providing real-time data on contamination levels will be conducted and evaluated concurrently with the SGE demonstration activities. Following the SGE demonstration, the SGE system and SW Tanks test site will be modified to demonstrate bioremediation as an effective means of degrading the remaining contaminants in situ

  3. Gigashot Optical Laser Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  4. Photovoltaic demonstration projects 2

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W B; Hacker, R J [Halcrow (William) and Partners, Swindon (UK); Kaut, W [eds.

    1989-01-01

    This book, the proceedings of the third Photovoltaic Contractors' Meeting organised by the Commission of the European Communities, Directorate-General for Energy provides an overview of the photovoltaic demonstration projects which have been supported by the Energy Directorate of the Commission of the European Communities since 1983. It includes reports by each of the contractors who submitted proposals in 1983, 1984 and 1985, describing progress with their projects. The different technologies which are being demonstrated concern the modules, the cabling of the array, structure design, storage strategy and power conditioning. The various applications include powering of houses, villages, recreation centres, water desalination, communications, dairy farms, water pumping and warning systems. (author).

  5. Inseparable Phone Books Demonstration

    Science.gov (United States)

    Balta, Nuri; Çetin, Ali

    2017-01-01

    This study is aimed at first introducing a well-known discrepant event; inseparable phone books and second, turning it into an experiment for high school or middle school students. This discrepant event could be used especially to indicate how friction force can be effective in producing an unexpected result. Demonstration, discussion, explanation…

  6. PHARUS ASAR demonstrator

    NARCIS (Netherlands)

    Smith, A.J.E.; Bree, R.J.P. van; Calkoen, C.J.; Dekker, R.J.; Otten, M.P.G.; Rossum, W.L. van

    2001-01-01

    PHARUS is a polarimetric phased array C-band Synthetic Aperture Radar (SAR), designed and built for airborne use. Advanced SAR (ASAR) data in image and alternating polarization mode have been simulated with PHARUS to demonstrate the use of Envisat for a number of typical SAR applications that are

  7. Demonstrating the Gas Laws.

    Science.gov (United States)

    Holko, David A.

    1982-01-01

    Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…

  8. Astronomy LITE Demonstrations

    Science.gov (United States)

    Brecher, Kenneth

    2006-12-01

    Project LITE (Light Inquiry Through Experiments) is a materials, software, and curriculum development project. It focuses on light, optics, color and visual perception. According to two recent surveys of college astronomy faculty members, these are among the topics most often included in the large introductory astronomy courses. The project has aimed largely at the design and implementation of hands-on experiences for students. However, it has also included the development of lecture demonstrations that employ novel light sources and materials. In this presentation, we will show some of our new lecture demonstrations concerning geometrical and physical optics, fluorescence, phosphorescence and polarization. We have developed over 200 Flash and Java applets that can be used either by teachers in lecture settings or by students at home. They are all posted on the web at http://lite.bu.edu. For either purpose they can be downloaded directly to the user's computer or run off line. In lecture demonstrations, some of these applets can be used to control the light emitted by video projectors to produce physical effects in materials (e.g. fluorescence). Other applets can be used, for example, to demonstrate that the human percept of color does not have a simple relationship with the physical frequency of the stimulating source of light. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  9. A Magnetic Circuit Demonstration.

    Science.gov (United States)

    Vanderkooy, John; Lowe, June

    1995-01-01

    Presents a demonstration designed to illustrate Faraday's, Ampere's, and Lenz's laws and to reinforce the concepts through the analysis of a two-loop magnetic circuit. Can be made dramatic and challenging for sophisticated students but is suitable for an introductory course in electricity and magnetism. (JRH)

  10. Chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1998 annual progress report

    International Nuclear Information System (INIS)

    Doughty, C.; Dragila, M.I.; Faybishenko, B.; Podgorney, R.K.; Stoops, T.M.; Wheatcraft, S.W.; Wood, T.R.

    1998-01-01

    'DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has lead to the contamination of or threatens to contaminate underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is to determine the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently through narrow pathways driven by variations in environmental conditions. These preferential pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following Activities (1) Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; (2) Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils, and how it can be used to guide remediation efforts; (3) Development of a conceptual model and mathematical and numerical algorithms for flow and transport, which incorporate both: (a) the spatial variability of heterogeneous porous and fractured media, and (b) the description of the temporal dynamics of flow and transport, which may be chaotic; and (4) Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow. This approach is based on the assumption that spatial

  11. Computer code selection criteria for flow and transport code(s) to be used in undisturbed vadose zone calculations for TWRS environmental analyses

    International Nuclear Information System (INIS)

    Mann, F.M.

    1998-01-01

    The Tank Waste Remediation System (TWRS) is responsible for the safe storage, retrieval, and disposal of waste currently being held in 177 underground tanks at the Hanford Site. In order to successfully carry out its mission, TWRS must perform environmental analyses describing the consequences of tank contents leaking from tanks and associated facilities during the storage, retrieval, or closure periods and immobilized low-activity tank waste contaminants leaving disposal facilities. Because of the large size of the facilities and the great depth of the dry zone (known as the vadose zone) underneath the facilities, sophisticated computer codes are needed to model the transport of the tank contents or contaminants. This document presents the code selection criteria for those vadose zone analyses (a subset of the above analyses) where the hydraulic properties of the vadose zone are constant in time the geochemical behavior of the contaminant-soil interaction can be described by simple models, and the geologic or engineered structures are complicated enough to require a two-or three dimensional model. Thus, simple analyses would not need to use the fairly sophisticated codes which would meet the selection criteria in this document. Similarly, those analyses which involve complex chemical modeling (such as those analyses involving large tank leaks or those analyses involving the modeling of contaminant release from glass waste forms) are excluded. The analyses covered here are those where the movement of contaminants can be relatively simply calculated from the moisture flow. These code selection criteria are based on the information from the low-level waste programs of the US Department of Energy (DOE) and of the US Nuclear Regulatory Commission as well as experience gained in the DOE Complex in applying these criteria. Appendix table A-1 provides a comparison between the criteria in these documents and those used here. This document does not define the models (that

  12. Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks

    Science.gov (United States)

    Mills, Christopher T.; Goldhaber, Martin B.

    2012-01-01

    Sacramento Valley (California, USA) soils and sediments have high concentrations of Cr(III) because they are partially derived from ultramafic material. Some Cr(III) is oxidized to more toxic and mobile Cr(VI) by soil Mn oxides. Valley soils typically have neutral to alkaline pH at which Cr(III) is highly immobile. Much of the valley is under cultivation and is both fertilized and irrigated. A series of laboratory incubation experiments were conducted to assess how cultivation might impact Cr cycling in shallow vadose zone material from the valley. The first experiments employed low (7.1 mmol N per kg soil) and high (35 mmol N kg− 1) concentrations of applied (NH4)2SO4. Initially, Cr(VI) concentrations were up to 45 and 60% greater than controls in low and high incubations, respectively. After microbially-mediated oxidation of all NH4+, Cr(VI) concentrations dropped below control values. Increased nitrifying bacterial populations (estimated by measurement of phospholipid fatty acids) may have increased the Cr(VI) reduction capacity of the vadose zone material resulting in the observed decreases in Cr(VI). Another series of incubations employed vadose zone material from a different location to which low (45 meq kg− 1) and high (128 meq kg− 1) amounts of NH4Cl, KCl, and CaCl2 were applied. All treatments, except high concentration KCl, resulted in mean soil Cr(VI) concentrations that were greater than the control. High concentrations of water-leachable Ba2 + (mean 38 μmol kg− 1) in this treatment may have limited Cr(VI) solubility. A final set of incubations were amended with low (7.1 mmol N kg− 1) and high (35 mmol N kg− 1) concentrations of commercial liquid ammonium polyphosphate (APP) fertilizer which contained high concentrations of Cr(III). Soil Cr(VI) in the low APP incubations increased to a concentration of 1.8 μmol kg− 1 (5 × control) over 109 days suggesting that Cr(III) added with the APP fertilizer was more

  13. Remote monitoring demonstration

    International Nuclear Information System (INIS)

    Caskey, Susan; Olsen, John

    2006-01-01

    The recently upgraded remote monitoring system at the Joyo Experimental Reactor uses a DCM-14 camera module and GEMINI software. The final data is compatible both with the IAEA-approved GARS review software and the ALIS software that was used for this demonstration. Features of the remote monitoring upgrade emphasized compatibility with IAEA practice. This presentation gives particular attention to the selection process for meeting network security considerations at the O'arai site. The Joyo system is different from the NNCA's ACPF system, in that it emphasizes use of IAEA standard camera technology and data acquisition and transmission software. In the demonstration itself, a temporary virtual private network (VPN) between the meeting room and the server at Sandia in Albuquerque allowed attendees to observe data stored from routine transmissions from the Joyo Fresh Fuel Storage to Sandia. Image files from a fuel movement earlier in the month showed Joyo workers and IAEA inspectors carrying out a transfer. (author)

  14. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.

    1981-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Substantially increasing shipping and disposal charges have sparked renewed industry interest in incineration and other advanced volume reduction techniques as potential cost-saving measures. Repeated inquiries from industry sources regarding LLW applicability of the Los Alamos controlled-air incineration (CAI) design led DOE to initiate this commercial demonstration program in FY-1980. The selected program approach to achieving CAI demonstration at a utility site is a DOE sponsored joint effort involving Los Alamos, a nuclear utility, and a liaison subcontractor. Required development tasks and responsibilities of the particpants are described. Target date for project completion is the end of FY-1985

  15. Photovoltaic demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Kaut, W [Commission of the European Communities, Brussels (Belgium); Gillett, W B; Hacker, R J [Halcrow Gilbert Associates Ltd., Swindon (GB)

    1992-12-31

    This publication, comprising the proceedings of the fifth contractor`s meeting organized by the Commission of the European Communities, Directorate-General for Energy, provides an overview of the photovoltaic demonstration projects which have been supported in the framework of the energy demonstration programme since 1983. It includes reports by each of the contractors who submitted proposals in 1987 and 1988, describing progress within their projects. Projects accepted from earlier calls for proposals and not yet completed were reviewed by a rapporteur and are discussed in the summary section. The results of the performance monitoring of all projects and the lessons drawn from the practical experience of the projects are also presented in the summaries and conclusions. Contractors whose projects were submitted in 1989 were also present at the meeting and contributed to the reported discussions. This proceeding is divided into four sessions (General, Housing, technical presentations, other applications) and 24 papers are offered.

  16. AVNG system demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Thron, Jonathan Louis [Los Alamos National Laboratory; Mac Arthur, Duncan W [Los Alamos National Laboratory; Kondratov, Sergey [VNIIEF; Livke, Alexander [VNIIEF; Razinkov, Sergey [VNIIEF

    2010-01-01

    An attribute measurement system (AMS) measures a number of unclassified attributes of potentially classified material. By only displaying these unclassified results as red or green lights, the AMS protects potentially classified information while still generating confidence in the measurement result. The AVNG implementation that we describe is an AMS built by RFNC - VNIIEF in Sarov, Russia. To provide additional confidence, the AVNG was designed with two modes of operation. In the secure mode, potentially classified measurements can be made with only the simple red light/green light display. In the open mode, known unclassified material can be measured with complete display of the information collected from the radiation detectors. The AVNG demonstration, which occurred in Sarov, Russia in June 2009 for a joint US/Russian audience, included exercising both modes of AVNG operation using a number of multi-kg plutonium sources. In addition to describing the demonstration, we will show photographs and/or video taken of AVNG operation.

  17. Antares: preliminary demonstrator results

    International Nuclear Information System (INIS)

    Kouchner, A.

    2000-05-01

    The ANTARES collaboration is building an undersea neutrino telescope off Toulon (Mediterranean sea) with effective area ∼ 0.1 km 2 . An extensive study of the site properties has been achieved together with software analysis in order to optimize the performance of the detector. Results are summarized here. An instrumented line, linked to shore for first time via an electro-optical cable, has been immersed late 1999. The preliminary results of this demonstrator line are reported. (author)

  18. The Majorana Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, Estanislao; Fast, James E.; Hoppe, Eric W.; Keillor, Martin E.; Kephart, Jeremy D.; Kouzes, Richard T.; LaFerriere, Brian D.; Merriman, Jason H.; Orrell, John L.; Overman, Nicole R.; Avignone, Frank T.; Back, Henning O.; Combs, Dustin C.; Leviner, L.; Young, A.; Barabash, Alexander S.; Konovalov, S.; Vanyushin, I.; Yumatov, Vladimir; Bergevin, M.; Chan, Yuen-Dat; Detwiler, Jason A.; Loach, J. C.; Martin, R. D.; Poon, Alan; Prior, Gersende; Vetter, Kai; Bertrand, F.; Cooper, R. J.; Radford, D. C.; Varner, R. L.; Yu, Chang-Hong; Boswell, M.; Elliott, S.; Gehman, Victor M.; Hime, Andrew; Kidd, M. F.; LaRoque, B. H.; Rielage, Keith; Ronquest, M. C.; Steele, David; Brudanin, V.; Egorov, Viatcheslav; Gusey, K.; Kochetov, Oleg; Shirchenko, M.; Timkin, V.; Yakushev, E.; Busch, Matthew; Esterline, James H.; Tornow, Werner; Christofferson, Cabot-Ann; Horton, Mark; Howard, S.; Sobolev, V.; Collar, J. I.; Fields, N.; Creswick, R.; Doe, Peter J.; Johnson, R. A.; Knecht, A.; Leon, Jonathan D.; Marino, Michael G.; Miller, M. L.; Robertson, R. G. H.; Schubert, Alexis G.; Wolfe, B. A.; Efremenko, Yuri; Ejiri, H.; Hazama, R.; Nomachi, Masaharu; Shima, T.; Finnerty, P.; Fraenkle, Florian; Giovanetti, G. K.; Green, M.; Henning, Reyco; Howe, M. A.; MacMullin, S.; Phillips, D.; Snavely, Kyle J.; Strain, J.; Vorren, Kris R.; Guiseppe, Vincente; Keller, C.; Mei, Dong-Ming; Perumpilly, Gopakumar; Thomas, K.; Zhang, C.; Hallin, A. L.; Keeter, K.; Mizouni, Leila; Wilkerson, J. F.

    2011-09-03

    A brief review of the history and neutrino physics of double beta decay is given. A description of the MAJORANA DEMONSTRATOR research and development program, including background reduction techniques, is presented in some detail. The application of point contact (PC) detectors to the experiment is discussed, including the effectiveness of pulse shape analysis. The predicted sensitivity of a PC detector array enriched to 86% to 76Ge is given.

  19. IGCC technology and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R G [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K [Sydkraft AB, Malmoe (Sweden)

    1997-12-31

    Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)

  20. IGCC technology and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J. [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R.G. [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K. [Sydkraft AB, Malmoe (Sweden)

    1996-12-31

    Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)

  1. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  2. Waste and Disposal: Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2002-01-01

    Within the Belgian R and D programme on geological disposal, demonstration experiments have become increasingly important. In this contribution to the scientific report 2001, an overview is given of SCK-CEN's activities and achievements in the field of large-scale demonstration experiments. In 2001, main emphasis was on the PRACLAY project, which is a large-scale experiment to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In the context of PRACLAY, a surface experiment (OPHELIE) has been developed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory. In 2001, efforts were focussed on the operation of the OPHELIE mock-up. SCK-CEN also contributed to the SELFRAC roject which studies the self-healing of fractures in a clay formation

  3. Technology demonstration assessment report for X-701B Holding Pond

    International Nuclear Information System (INIS)

    1992-07-01

    This Technology Demonstration Assessment Report (TDAR) was developed to evaluate and recommend the most feasible approach for cleanup of contaminated Minford soils below the X-701B Holding Pond and to summarize closure activities at the Portsmouth Gaseous Diffusion Plant (PORTS)X-701B Holding Pond(X-701B)site. In this TDAR, the recommended alternative and the activities for closure of the X-701B site are discussed. Four treatment technologies chosen for the TD, along with a contingent design, were evaluated to determine which approach would be appropriate for final closure of X-701B. These technologies address removal of soil contamination from the vadose zone and the saturated zone. The four technologies plus the Contingent Design evaluated were: In situ Soil Mixing with Solidification/Stabilization; In situ Soil Mixing with Isothermal Vapor Extraction; In situ Soil Mixing with Thermally Enhanced Vapor Extraction; In situ Soil Mixing with Peroxidation Destruction; and Contingent Closure. These technologies were evaluated according to their performance, reliability, implementability, safety, waste minimization, cost, and implementation time. Based on these criteria, a preferred treatment approach was recommended. The goal of the treatment approach is to apply the most appropriate technology demonstrated at X-231 B in order to reduce Volatile Organic Compounds (VOCs) in the saturated Minford soils directly beneath the X-701B Holding Pond. The closure schedule will include bid and award of two construction contracts, mobilization and demobilization, soil treatment, cap design, and cap construction. The total time required for soil treatment will be established based on actual performance of the soil treatment approach in the field

  4. Electrical Resistivity Correlation to Vadose Zone Sediment and Pore-Water Composition for the BC Cribs and Trenches Area

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Ward, Anderson L.; Um, Wooyong; Bjornstad, Bruce N.; Rucker, Dale F.; Lanigan, David C.; Benecke, Mark W.

    2009-01-01

    This technical report documents the results of geochemical and soil resistivity characterization of sediment obtained from four boreholes drilled in the BC Cribs and Trench area. Vadose zone sediment samples were obtained at a frequency of about every 2.5 ft from approximately 5 ft bgs to borehole total depth. In total, 505 grab samples and 39 six-inch long cores were obtained for characterization. The pore-water chemical composition data, laboratory-scale soil resistivity and other ancillary physical and hydrologic measurements and analyses described in this report are designed to provide a crucial link between direct measurements on sediments and the surface-based electrical-resistivity information obtained via field surveys. A second goal of the sediment characterization was to measure the total and water-leachable concentrations of key contaminants of concern as a function of depth and distance from the footprints of inactive disposal facilities. The total and water-leachable concentrations of key contaminants will be used to update contaminant distribution conceptual models and to provide more data for improving base-line risk predictions and remedial alternative selections. The ERC 'ground truthing' exercise for the individual boreholes showed mixed results. In general, the high concentrations of dissolved salts in the pore waters of sediments from C5923, C5924 and C4191 produced a low resistivity 'target' in the processed resistivity field surveys, and variability could be seen in the resistivity data that could relate to the variability in pore- water concentrations but the correlations (regression R2 were mediocre ranging from 0.2 to 0.7 at best; where perfect correlation is 1.0). The field-based geophysical data also seemed to suffer from a sort of vertigo, where looking down from the ground surface, the target (e.g., maximum pore-water salt concentration) depth was difficult to resolve. The best correlations between the field electrical resistivity

  5. Electrical Resistivity Correlation to Vadose Zone Sediment and Pore-Water Composition for the BC Cribs and Trenches Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Ward, Anderson L.; Um, Wooyong; Bjornstad, Bruce N.; Rucker, Dale F.; Lanigan, David C.; Benecke, Mark W.

    2009-06-01

    This technical report documents the results of geochemical and soil resistivity characterization of sediment obtained from four boreholes drilled in the BC Cribs and Trench area. Vadose zone sediment samples were obtained at a frequency of about every 2.5 ft from approximately 5 ft bgs to borehole total depth. In total, 505 grab samples and 39 six-inch long cores were obtained for characterization. The pore-water chemical composition data, laboratory-scale soil resistivity and other ancillary physical and hydrologic measurements and analyses described in this report are designed to provide a crucial link between direct measurements on sediments and the surface-based electrical-resistivity information obtained via field surveys. A second goal of the sediment characterization was to measure the total and water-leachable concentrations of key contaminants of concern as a function of depth and distance from the footprints of inactive disposal facilities. The total and water-leachable concentrations of key contaminants will be used to update contaminant distribution conceptual models and to provide more data for improving base-line risk predictions and remedial alternative selections. The ERC “ground truthing” exercise for the individual boreholes showed mixed results. In general, the high concentrations of dissolved salts in the pore waters of sediments from C5923, C5924 and C4191 produced a low resistivity “target” in the processed resistivity field surveys, and variability could be seen in the resistivity data that could relate to the variability in pore- water concentrations but the correlations (regression R2 were mediocre ranging from 0.2 to 0.7 at best; where perfect correlation is 1.0). The field-based geophysical data also seemed to suffer from a sort of vertigo, where looking down from the ground surface, the target (e.g., maximum pore-water salt concentration) depth was difficult to resolve. The best correlations between the field electrical

  6. Demonstration of HITEX

    International Nuclear Information System (INIS)

    Morrison, H.D.; Woodall, K.B.

    1993-01-01

    A model reactor for HITEX successfully demonstrated the concept of high-temperature isotopic exchange in a closed loop simulating the conditions for fusion fuel cleanup. The catalyst of platinum on alumina pellets provided a surface area large enough to operate the reactor at 400 degrees celsius with flow rates up to 2 L/min. A 15-L tank containing a mixture of 4% CD 4 in H 2 was depleted in deuterium within 75 minutes down to 100 ppm HD above the natural concentration of HD in the make-up hydrogen stream. The application to tritium removal from tritiated impurities in a hydrogen stream will work as well or better

  7. Visual Electricity Demonstrator

    Science.gov (United States)

    Lincoln, James

    2017-09-01

    The Visual Electricity Demonstrator (VED) is a linear diode array that serves as a dynamic alternative to an ammeter. A string of 48 red light-emitting diodes (LEDs) blink one after another to create the illusion of a moving current. Having the current represented visually builds an intuitive and qualitative understanding about what is happening in a circuit. In this article, I describe several activities for this device and explain how using this technology in the classroom can enhance the understanding and appreciation of physics.

  8. Exploration Medical System Demonstration

    Science.gov (United States)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  9. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.

    1982-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Increasing transportation and disposal costs have caused industry to consider incineration as a cost-effective means of volume reduction of combustible LLW. Repeated inquiries from the nuclear industry regarding the applicability of the Los Alamos controlled air incineration (CAI) design led the DOE to initiate a commercial demonstration program in FY-1980. Development studies and results in support of this program involving ion exchange resin incineration and fission/activation product distributions within the Los Alamos CAI are described

  10. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  11. Characterization of Vadose Zone Sediment: Borehole 299-W23-19[SX -115] in the S-SX Waste Management Area

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Schaef, Herbert T.; Bjornstad, Bruce N.; Lanigan, David C.; Gee, Glendon W.; Lindenmeier, Clark W.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; O'Hara, Matthew J.; Brown, Christopher F.; Last, George V.; Kutnyakov, Igor V.; Burke, Deborah Sd; Wilson, Teresa C.; Williams, Bruce A.

    2001-01-01

    The Tank Farm Vadose Zone Project is led by CH2M HILL Hanford Group, Inc. Their goals include defining risks from past and future single-shell tank farm activities, identifying and evaluating the efficacy of interim measures, and collecting geo-technical information and data. The purpose of these activities is to support future decisions made by the U.S. Department of Energy regarding near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas. To help in this effort, CH2M HILL contracted with scientists at Pacific Northwest National Laboratory to analyze sediment samples collected from borehole 299-W23-19. The conclusions reached from this study support specific mechanisms influencing subsurface migration of contaminants. The mechanisms are supported by the distributions of contaminants beneath tank farms. These observations will help DOE and CH2M HILL identify and implement viable remediation and closure activities

  12. Accurate measurements of vadose zone fluxes using automated equilibrium tension plate lysimeters: A synopsis of results from the Spydia research facility, New Zealand.

    Science.gov (United States)

    Wöhling, Thomas; Barkle, Greg; Stenger, Roland; Moorhead, Brian; Wall, Aaron; Clague, Juliet

    2014-05-01

    Automated equilibrium tension plate lysimeters (AETLs) are arguably the most accurate method to measure unsaturated water and contaminant fluxes below the root zone at the scale of up to 1 m². The AETL technique utilizes a porous sintered stainless-steel plate to provide a comparatively large sampling area with a continuously controlled vacuum that is in "equilibrium" with the surrounding vadose zone matric pressure to ensure measured fluxes represent those under undisturbed conditions. This novel lysimeter technique was used at an intensive research site for investigations of contaminant pathways from the land surface to the groundwater on a sheep and beef farm under pastoral land use in the Tutaeuaua subcatchment, New Zealand. The Spydia research facility was constructed in 2005 and was fully operational between 2006 and 2011. Extending from a central access caisson, 15 separately controlled AETLs with 0.2 m² surface area were installed at five depths between 0.4 m and 5.1 m into the undisturbed volcanic vadose zone materials. The unique setup of the facility ensured minimum interference of the experimental equipment and external factors with the measurements. Over the period of more than five years, a comprehensive data set was collected at each of the 15 AETL locations which comprises of time series of soil water flux, pressure head, volumetric water contents, and soil temperature. The soil water was regularly analysed for EC, pH, dissolved carbon, various nitrogen compounds (including nitrate, ammonia, and organic N), phosphorus, bromide, chloride, sulphate, silica, and a range of other major ions, as well as for various metals. Climate data was measured directly at the site (rainfall) and a climate station at 500m distance. The shallow groundwater was sampled at three different depths directly from the Spydia caisson and at various observation wells surrounding the facility. Two tracer experiments were conducted at the site in 2009 and 2010. In the 2009

  13. Characterization of Vadose Zone Sediment: Borehole C3103 Located in the 216-B-7A Crib Near the B Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmeier, Clark W.; Serne, R JEFFREY.; Bjornstad, Bruce N.; Last, George V.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2002-12-01

    This report summarizes data collected from samples in borehole C3103. Borehole C3103 was completed to further characterize the nature and extent of vadose zone contaminants supplied by intentional liquid discharges into the crib 216-B7A/7B between 1954 and 1967. These cribs received dilute waste streams from the bismuth phosphate fuel reprocessing program in the 1950's and decontamination waste in the 1960's. Elevated concentrations of several constituents were primarily measured at different depth intervals. The primary radionuclides present in this borehole are cesium-137 and uranium near the top of the borehole. Chemical characteristics attributed to wastewater-soil interaction at different locations within this zone are elevated pH, sodium, fluoride, carbonate nitrate, and sulphate

  14. Smart Grid Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Craig [National Rural Electric Cooperative Association, Arlington, VA (United States); Carroll, Paul [National Rural Electric Cooperative Association, Arlington, VA (United States); Bell, Abigail [National Rural Electric Cooperative Association, Arlington, VA (United States)

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  15. Trace Metals in Groundwater and the Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid West DOE

    International Nuclear Information System (INIS)

    Smith, Robert W.

    2004-01-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption)

  16. Experimental Plan: 300 Area Treatability Test: In Situ Treatment of the Vadose Zone and Smear Zone Uranium Contamination by Polyphosphate Infiltration

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Pierce, Eric M.; Oostrom, Mart; Fruchter, Jonathan S.

    2007-01-01

    The overall objectives of the treatability test is to evaluate and optimize polyphosphate remediation technology for infiltration either from ground surface, or some depth of excavation, providing direct stabilization of uranium within the deep vadose and capillary fringe above the 300 Area aquifer. Expected result from this experimental plan is a data package that includes: (1) quantification of the retardation of polyphosphate, (2) the rate of degradation and the retardation of degradation products as a function of water content, (3) an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, (4) an understanding of the transformation mechanism, identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and silicate minerals with the polyphosphate remedy under solubility-limiting conditions, (5) quantification of the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and capillary fringe, and (6) quantification of reliable equilibrium solubility values for autunite under hydraulically unsaturated conditions allowing accurate prediction of the long-term stability of autunite. Moreover, results of intermediate scale testing will quantify the transport of polyphosphate and degradation products, and yield degradation rates, at a scale that is bridging the gap between the small-scale UFA studies and the field scale. These results will be used to test and verify a site-specific, variable saturation, reactive transport model and to aid in the design of a pilot-scale field test of this technology. In particular, the infiltration approach and monitoring strategy of the pilot test would be primarily based on results from intermediate-scale testing. Results from this

  17. Electrodynamic Dust Shield Demonstrator

    Science.gov (United States)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  18. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  19. Fusion-power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  20. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  1. Industrial demonstration trials

    International Nuclear Information System (INIS)

    Gelee, M.; Fabre, C.; Villepoix, R. de; Fra, J.; Le Foulgoc, L.; Morel, Y.; Querite, P.; Roques, R.

    1975-01-01

    Prototypes of the plant components, meeting the specifications set by the process and built by industrial firms in collaboration with the supervisor and the C.E.A., are subjected to trial runs on the UF 6 test bench of the Pierrelatte testing zone. These items of equipment (diffuser, compressor, exchanger) are placed in an industrial operation context very similar to that of an enrichment plant. Their performance is measured within a broad region around the working point and their reliability observed over periods up to several tens of thousands of hours. Between 1969 and 1973 six industrial demonstration test benches have been built, marking the stages in the technical preparation of the 1973 file on the basis of which the decision of building was taken by Eurodif [fr

  2. Fusion Power Demonstration III

    International Nuclear Information System (INIS)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report

  3. TPA device for demonstration

    International Nuclear Information System (INIS)

    1980-02-01

    The TPA (torus plasma for amature) is a small race-trac type device made by the technical service division to demonstrate basic properties of plasma such as electron temperature, conductivity, effect of helical field for toroidal drift, and shape of plasma in mirror and cusp magnetic field in linear section. The plasmas are produced by RF discharge (-500W) and/or DC discharge (-30 mA) within glass discharge tube. Where major radius is 50 cm, length of linear section is 50 cm, toroidal magnetic field is 200 gauss. The device has been designed to be compact with only 100 V power source (-3.2 KW for the case without helical field) and to be full automatic sequence of operation. (author)

  4. Fusion power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  5. Dynamic wall demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsui, L.; Mayhew, W.

    1990-12-01

    The dynamic wall concept is a ventilation strategy that can be applied to a single family dwelling. With suitable construction, outside air can be admitted through the exterior walls of the house to the interior space to function as ventilation air. The construction and performance monitoring of a demonstration house built to test the dynamic wall concept in Sherwood Park, Alberta, is described. The project had the objectives of demonstrating and assessing the construction methods; determining the cost-effectiveness of the concept in Alberta; analyzing the operation of the dynamic wall system; and determining how other components and systems in the house interact with the dynamic wall. The exterior wall construction consisted of vinyl siding, spun-bonded polyolefin-backed (SBPO) rigid fiberglass sheathing, 38 mm by 89 mm framing, fiberglass batt insulation and 12.7 mm drywall. The mechanical system was designed to operate in the dynamic (negative pressure) mode, however flexibility was provided to allow operation in the static (balanced pressure) mode to permit monitoring of the walls as if they were in a conventional house. The house was monitored by an extensive computerized monitoring system. Dynamic wall operation was dependent on pressure and temperature differentials between indoor and outdoor as well as wind speed and direction. The degree of heat gain was found to be ca 74% of the indoor-outdoor temperature differential. Temperature of incoming dynamic air was significantly affected by solar radiation and measurement of indoor air pollutants found no significant levels. 4 refs., 34 figs., 11 tabs.

  6. A Demonstration of Lusail

    KAUST Repository

    Mansour, Essam; Abdelaziz, Ibrahim; Ouzzani, Mourad; Aboulnaga, Ashraf; Kalnis, Panos

    2017-01-01

    There has been a proliferation of datasets available as interlinked RDF data accessible through SPARQL endpoints. This has led to the emergence of various applications in life science, distributed social networks, and Internet of Things that need to integrate data from multiple endpoints. We will demonstrate Lusail; a system that supports the need of emerging applications to access tens to hundreds of geo-distributed datasets. Lusail is a geo-distributed graph engine for querying linked RDF data. Lusail delivers outstanding performance using (i) a novel locality-aware query decomposition technique that minimizes the intermediate data to be accessed by the subqueries, and (ii) selectivityawareness and parallel query execution to reduce network latency and to increase parallelism. During the demo, the audience will be able to query actually deployed RDF endpoints as well as large synthetic and real benchmarks that we have deployed in the public cloud. The demo will also show that Lusail outperforms state-of-the-art systems by orders of magnitude in terms of scalability and response time.

  7. A Demonstration of Lusail

    KAUST Repository

    Mansour, Essam

    2017-05-10

    There has been a proliferation of datasets available as interlinked RDF data accessible through SPARQL endpoints. This has led to the emergence of various applications in life science, distributed social networks, and Internet of Things that need to integrate data from multiple endpoints. We will demonstrate Lusail; a system that supports the need of emerging applications to access tens to hundreds of geo-distributed datasets. Lusail is a geo-distributed graph engine for querying linked RDF data. Lusail delivers outstanding performance using (i) a novel locality-aware query decomposition technique that minimizes the intermediate data to be accessed by the subqueries, and (ii) selectivityawareness and parallel query execution to reduce network latency and to increase parallelism. During the demo, the audience will be able to query actually deployed RDF endpoints as well as large synthetic and real benchmarks that we have deployed in the public cloud. The demo will also show that Lusail outperforms state-of-the-art systems by orders of magnitude in terms of scalability and response time.

  8. Demonstration exercise 'Cavtat 09'

    International Nuclear Information System (INIS)

    Trut, D.

    2009-01-01

    The demonstration exercise is to show a terrorist attack in urban area resulting in a certain number of injured people. On 7th April 2009 a terrorist group HAL 9000 is in Cavtat and set up an explosive devices with chemical reagents in several spots with intention to activate them and cause great number of victims. On the same day, in area of the Cavtat Croatia Hotel, which is hosting the world CBMTS Congress, Cavtat Police Station notice several masked persons, in escapement. Hotel personnel alerted the County 112 Center about noticed devices placed by chlorine dioxide tanks, for water conditioning. Intervention police came to block entrance to this area and evacuate hotel's guests and congress members. An explosion and fire occurs from where the position of water-conditioning plant and chlorine dioxide tank. The 112 Center alarms fire-fighters for fight fire and decontamination action and HAZMAT Civil Support Team from Georgia (participated the congress). In the meantime, guests have been instructed not to leave their rooms and to hermetically close doors and windows with available material to keep away potential toxic fume. Decision makers form the County Protection and Rescue Headquarters monitors the situation till the end of alert for the population in the area of Cavtat.(author)

  9. Tidd PFBC demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Marrocco, M. [American Electric Power, Columbus, OH (United States)

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent of sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.

  10. Kinesthetic Transverse Wave Demonstration

    Science.gov (United States)

    Pantidos, Panagiotis; Patapis, Stamatis

    2005-09-01

    This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.

  11. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater

    International Nuclear Information System (INIS)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    g kg -1 , representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a very small fraction of the total solid phase Cr, they are a potentially important source for Cr(VI) to groundwater. Enhanced groundwater recharge through the vadose zone due to irrigation could carry Cr(VI) from the vadose zone to the groundwater and may be the mechanism responsible for the correlation observed between elevated Cr(VI) and NO 3 - concentrations in previously published data for valley groundwaters. Incubation of a valley subsoil showed a Cr(VI) production rate of 24 μg kg -1 a -1 suggesting that field Cr(VI) concentrations could be regenerated annually. Increased Cr(VI) production rates in H + -amended soil incubations indicate that soil acidification processes such as nitrification of ammonium in fertilizers could potentially increase the occurrence of geogenic Cr(VI) in groundwater. Thus, despite the natural origin of the Cr, Cr(VI) generation in the Sacramento Valley soils and sediments has the potential to be influenced by human activities.

  12. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

    Science.gov (United States)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a

  13. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Christopher T., E-mail: cmills@usgs.gov [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Denver Federal Center, MS 964D, Denver, CO 80225 (United States); Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J. [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Denver Federal Center, MS 964D, Denver, CO 80225 (United States)

    2011-08-15

    from 0 to 42 {mu}g kg{sup -1}, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a very small fraction of the total solid phase Cr, they are a potentially important source for Cr(VI) to groundwater. Enhanced groundwater recharge through the vadose zone due to irrigation could carry Cr(VI) from the vadose zone to the groundwater and may be the mechanism responsible for the correlation observed between elevated Cr(VI) and NO{sub 3}{sup -} concentrations in previously published data for valley groundwaters. Incubation of a valley subsoil showed a Cr(VI) production rate of 24 {mu}g kg{sup -1} a{sup -1} suggesting that field Cr(VI) concentrations could be regenerated annually. Increased Cr(VI) production rates in H{sup +}-amended soil incubations indicate that soil acidification processes such as nitrification of ammonium in fertilizers could potentially increase the occurrence of geogenic Cr(VI) in groundwater. Thus, despite the natural origin of the Cr, Cr(VI) generation in the Sacramento Valley soils and sediments has the potential to be influenced by human activities.

  14. Cavity-based secondary mineralization in volcanic tuffs of Yucca Mountain, Nevada: a new type of the polymineral vadose speleothem, or a hydrothermal deposit?

    Directory of Open Access Journals (Sweden)

    Dublyansky Yuri V.

    2005-07-01

    Full Text Available Secondary minerals (calcite, chalcedony, quartz, opal, fluorite, heulandite, strontianite residing in open cavities in the Miocenerhyolite tuffs of Yucca Mountain, Nevada have been interpreted by some researchers as "speleothemic" formations, deposited as aresult of downward infiltration of meteoric waters (DOE, 2001, Whelan et al., 2002. The major mineral of the paragenesis, calcite,shows spectacular trend of the textural and crystal morphology change: from anhedral granular occurrences, through (optionalplatelet, bladed and scepter varieties, to euhedral blocky morphologies. The trend is consistent with the overall decrease in thesupesaturation of the mineral forming solution. Stable isotope properties of calcite evolve from 13C-enriched (δ13C = +4 to +9 ‰ PDBat early stages of growth to 13C-depleted (-5 to -10 ‰ at late stages. The non-cyclic character of the isotope record and extremevariations of isotopic values argue against the meteoric origin of mineral forming fluids. The δ13C >4 ‰ PDB require isotope partitioningbetween dissolved CO2 and CH4, which is only possible in reducing anoxic environment, but not in aerated vadose zone.Fluid inclusions studied in calcite, quartz and fluorite revealed that the minerals were deposited from thermal solutions. Thetemperatures were higher at early stages of mineral growth (60 to 85oC and declined with time. Most late-stage calcites containonly all-liquid inclusions, suggesting temperatures less than ca. 35-50oC. Minerals collected close to the major fault show the highesttemperatures. Gases trapped in fluid inclusions are dominated by CO2 and CH4; Raman spectrometry results suggest the presenceof aromatic/cyclic hydrocarbon gases. The gas chemistry, thus, also indicates reduced (anoxic character of the mineral formingfluids.Secondary minerals at Yucca Mountain have likely formed during the short-term invasion(s of the deep-seated aqueous fluidsinto the vadose zone. Following the invasion

  15. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 1, Final report: Final report text data in tabular form, Disk 1

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-09-01

    This project was designed to demonstrate in situ bioremediation of ground water and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade trichlorethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated aquifer and adjacent vadose zone. The principle carbon/energy source nutrient used in this demonstration was methane (natural gas). In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency, safety, and public and regulatory acceptability. This report describes the preliminary results of the demonstration and provides conclusions only for those measures that the Bioremediation Technical Support Group felt were so overwhelmingly convincing that they do not require further analyses. Though this report is necessarily superficial it does intend to provide a basis for further evaluating the technology and for practitioners to immediately apply some parts of the technology.

  16. Information Integration Technology Demonstration (IITD)

    National Research Council Canada - National Science Library

    Loe, Richard

    2001-01-01

    The objectives of the Information Integration Technology Demonstration (IITD) were to investigate, design a software architecture and demonstrate a capability to display intelligence data from multiple disciplines...

  17. Appraisal of nuclear waste isolation in the vadose zone in arid and semiarid regions (with emphasis on the Nevada Test Site)

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

    1983-05-01

    An appraisal was made of the concept of isolating high-level radioactive waste in the vadose zone of alluvial-filled valleys and tuffaceous rocks of the Basin and Range geomorphic province. Principal attributes of these terranes are: (1) low population density, (2) low moisture influx, (3) a deep water table, (4) the presence of sorptive rocks, and (5) relative ease of construction. Concerns about heat effects of waste on unsaturated rocks of relatively low thermal conductivity are considered. Calculations show that a standard 2000-acre repository with a thermal loading of 40 kW/acre in partially saturated alluvium or tuff would experience an average temperature rise of less than 100 0 C above the initial temperature. The actual maximum temperature would depend strongly on the emplacement geometry. Concerns about seismicity, volcanism, and future climatic change are also mitigated. The conclusion reached in this appraisal is that unsaturated zones in alluvium and tuff of arid regions should be investigated as comprehensively as other geologic settings considered to be potential repository sites

  18. Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Charles J Werth; Albert J Valocchi, Hongkyu Yoon

    2011-05-21

    Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

  19. Using Water and Agrochemicals in the Soil, Crop and Vadose Environment (WAVE Model to Interpret Nitrogen Balance and Soil Water Reserve Under Different Tillage Managements

    Directory of Open Access Journals (Sweden)

    Zare Narjes

    2014-10-01

    Full Text Available Applying models to interpret soil, water and plant relationships under different conditions enable us to study different management scenarios and then to determine the optimum option. The aim of this study was using Water and Agrochemicals in the soil, crop and Vadose Environment (WAVE model to predict water content, nitrogen balance and its components over a corn crop season under both conventional tillage (CT and direct seeding into mulch (DSM. In this study a corn crop was cultivated at the Irstea experimental station in Montpellier, France under both CT and DSM. Model input data were weather data, nitrogen content in both the soil and mulch at the beginning of the season, the amounts and the dates of irrigation and nitrogen application. The results show an appropriate agreement between measured and model simulations (nRMSE < 10%. Using model outputs, nitrogen balance and its components were compared with measured data in both systems. The amount of N leaching in validation period were 10 and 8 kgha–1 in CT and DSM plots, respectively; therefore, these results showed better performance of DSM in comparison with CT. Simulated nitrogen leaching from CT and DSM can help us to assess groundwater pollution risk caused by these two systems.

  20. Appraisal of nuclear waste isolation in the vadose zone in arid and semiarid regions (with emphasis on the Nevada Test Site)

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

    1983-05-01

    An appraisal was made of the concept of isolating high-level radioactive waste in the vadose zone of alluvial-filled valleys and tuffaceous rocks of the Basin and Range geomorphic province. Principal attributes of these terranes are: (1) low population density, (2) low moisture influx, (3) a deep water table, (4) the presence of sorptive rocks, and (5) relative ease of construction. Concerns about heat effects of waste on unsaturated rocks of relatively low thermal conductivity are considered. Calculations show that a standard 2000-acre repository with a thermal loading of 40 kW/acre in partially saturated alluvium or tuff would experience an average temperature rise of less than 100{sup 0}C above the initial temperature. The actual maximum temperature would depend strongly on the emplacement geometry. Concerns about seismicity, volcanism, and future climatic change are also mitigated. The conclusion reached in this appraisal is that unsaturated zones in alluvium and tuff of arid regions should be investigated as comprehensively as other geologic settings considered to be potential repository sites.

  1. Characterization of Vadose Zone Sediment: Borehole 299-W23-19 [SX-115] in the S-SX Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Gee, Glendon W.; Lindenmeier, Clark W.; Clayton, Ray E.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Last, George V.; Kutnyakov, Igor V.; Burke, Deborah S.; Wilson, Teresa C.; Williams, Bruce A.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.15 and 4.19. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The Tank Farm Vadose Zone Project is led by CH2M HILL Hanford Group, Inc. Their goals include defining risks from past and future single-shell tank farm activities, identifying and evaluating the efficacy of interim measures, and collecting geotechnical information and data. The purpose of these activities is to support future decisions made by the U.S. Department of Energy (DOE) regarding near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas. To help in this effort, CH2M HILL Hanford Group, Inc. contracted with scientists at Pacific Northwest National Laboratory to analyze sediment samples collected from borehole 299-W23-19.

  2. Buried Waste Integrated Demonstration lessons learned: 1993 technology demonstrations

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Owens, K.J.

    1994-01-01

    An integrated technology demonstration was conducted by the Buried Waste Integrated Demonstration (BWID) at the Idaho National Engineering Laboratory Cold Test Pit in the summer of 1993. This program and demonstration was sponsored by the US Department of Energy Office of Technology Development. The demonstration included six technologies representing a synergistic system for the characterization and retrieval of a buried hazardous waste site. The integrated technology demonstration proved very successful and a summary of the technical accomplishments is presented. Upon completion of the integrated technology demonstration, cognizant program personnel participated in a lessons learned exercise. This exercise was conducted at the Simplot Decision Support Center at Idaho State University and lessons learned activity captured additional information relative to the integration of technologies for demonstration purposes. This information will be used by BWID to enhance program planning and strengthen future technology demonstrations

  3. Integrated Ground Operations Demonstration Units

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the AES Integrated Ground Operations Demonstration Units (IGODU) project is to demonstrate cost efficient cryogenic operations on a relevant...

  4. Cargo Data Management Demonstration System

    Science.gov (United States)

    1974-02-01

    Delays in receipt and creation of cargo documents are a problem in international trade. The work described demonstrates some of the advantages and capabilities of a computer-based cargo data management system. A demonstration system for data manageme...

  5. Teleoperation for learning by demonstration

    DEFF Research Database (Denmark)

    Kukliński, Kamil; Fischer, Kerstin; Marhenke, Ilka

    2014-01-01

    Learning by demonstration is a useful technique to augment a robot's behavioral inventory, and teleoperation allows lay users to demonstrate novel behaviors intuitively to the robot. In this paper, we compare two modes of teleoperation of an industrial robot, the demonstration by means of a data...... glove and by means of a control object (peg). Experiments with 16 lay users, performing assembly task on the Cranfield benchmark objects, show that the control peg leads to more success, more efficient demonstration and fewer errors....

  6. Helicopter detection and classification demonstrator

    NARCIS (Netherlands)

    Koersel, A.C. van

    2000-01-01

    A technology demonstrator that detects and classifies different helicopter types automatically, was developed at TNO-FEL. The demonstrator is based on a PC, which receives its acoustic input from an all-weather microphone. The demonstrator uses commercial off-the-shelf hardware to digitize the

  7. Technetium, Iodine, and Chromium Adsorption/Desorption Kd Values for Vadose Zone Pore Water, ILAW Glass, and Cast Stone Leachates Contacting an IDF Sand Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M.V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bacon, Diana H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    Performance and risk assessments of immobilized low-activity waste (ILAW) at the Integrated Disposal Facility (IDF) have shown that risks to groundwater are quite sensitive to adsorption-desorption interactions occurring in the near- and far-field environment. These interactions between the underlying sediments and the contaminants present in the leachates that descend from the buried glass, secondary waste grouts, and potentially Cast Stone low-activity waste packages have been represented in these assessments using the contaminant distribution coefficient (Kd) construct. Some contaminants (99Tc, 129I, and Cr) present in significant quantities in these wastes have low Kd values and tend to drive risk to public health and the environment. Relatively small changes in the Kd value can cause relatively large changes in the retardation factor. Thus, even relatively small uncertainty in the Kd value can result in a relatively large uncertainty in the risk determined through performance assessment modeling. The purpose of this study is to further reduce the uncertainty in Kd values for 99Tc, iodine (iodide and iodate), and Cr (chromate; CrO42-) by conducting systematic adsorption-desorption experiments using actual sand-dominated Hanford formation sediments from beneath the IDF and solutions that closely mimic Hanford vadose zone pore water and leachates from Cast Stone and ILAW glass waste forms. Twenty-four batch and 21 flow-through column experiments were conducted, yielding 261 Kd measurements for these key contaminants, and contributing to our understanding for predicting transport from wastes disposed to the IDF. While the batch Kd methodology is not well-suited for measuring Kd values for non-sorbing species (as noted by the U.S. Environmental Protection Agency), the batch Kd results presented here are not wholly inconsistent with the column Kd results, and could be used for sensitivity purposes. Results from the column experiments are consistent with the best

  8. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    International Nuclear Information System (INIS)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-01-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  9. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-09-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  10. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan (Revision 2)

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern. This document is a Treatability Study Work Plan for the demonstration program. The document contains a description of the proposed treatability study, background of the EM heating process, description of the field equipment, and demonstration test design

  11. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT- CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, R.

    2013-02-26

    The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  12. A chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1997 progress report and presentations at the annual meeting, Ernest Orlando Lawrence Berkeley National Laboratory, December 3-4, 1997

    International Nuclear Information System (INIS)

    Faybishenko, B.; Doughty, C.; Geller, J.

    1998-07-01

    Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report

  13. Oil migration through unsaturated soils and its effect on the Vadose Zone Interactive Processes (VIP) model output

    International Nuclear Information System (INIS)

    Joseph, A.T.; Grenney, W.J.; Stevens, D.K.

    1994-01-01

    The VIP model, which simulates the concentration profiles of the hazardous compounds in the soil, water, and the air phases, assumes a fixed oily phase. The purpose of this study was to measure oil migration in soil systems and to determine its effect on the VIP model output. Experiments were conducted to demonstrate the mobility of an oil through the unsaturated zone of the soil. The studies were conducted in laboratory scale glass columns. A light petroleum oil and two types of soil were used. The experiments demonstrated that oil migrates down significantly through the soil columns. The extent of migration depended on the volume of oil applied and the type of soil. However, the applied oil was completely immobilized in the columns. The model was modified to incorporate oil migration. The modified model can be expected to produce more realistic contaminant concentration profiles during land treatment of oily wastes when compared to that produced by the present version of the VIP model. (Author)

  14. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report (Volume 1) for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees} to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  15. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume I

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report (Volume 1) for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  16. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  17. A Comprehensive General Chemistry Demonstration

    Science.gov (United States)

    Sweeder, Ryan D.; Jeffery, Kathleen A.

    2013-01-01

    This article describes the use of a comprehensive demonstration suitable for a high school or first-year undergraduate introductory chemistry class. The demonstration involves placing a burning candle in a container adjacent to a beaker containing a basic solution with indicator. After adding a lid, the candle will extinguish and the produced…

  18. Notional Airspace Operations Demonstration Plan

    Science.gov (United States)

    Trongale, Nicholas A.

    2006-01-01

    The airspace operations demonstration (AOD) is intended to show that the Access 5 Step 1 functional requirements can be met. The demonstration will occur in two phases. The initial on-range phase will be carried out in restricted airspace to demonstrate the cooperative collision avoidance (CCA) functional requirements and to provide risk-reduction for the AOD by allowing the test team to rehearse some elements of the demonstration mission. The CCA system to be used in these flights is based on Automatic Dependent Surveillance-Broadcast (ADS-B) which is a commercially-available system by which airplanes constantly broadcast their current position and altitude to other aircraft and ground resources over a dedicated radio datalink. The final phase will occur in the national airspace (NAS) and will be the formal demonstration of the remainder of the proposed functional requirements. The general objectives of the AOD are as follows: (1) Demonstrate that the UAS can aviate in the NAS (2) Demonstrate that the UAS can navigate in the NAS (3) Demonstrate that the UAS can communicate with the NAS (4) Demonstrate that the UAS can perform selected collision avoidance functions in the NAS (5) Demonstrate that the UAS can evaluate and avoid weather conflicts in the NAS (6) Demonstrate that the UAS can provide adequate command and control in the NAS In addition to the stated objectives, there are a number of goals for the flight demonstration. The demo can be accomplished successfully without achieving these goals, but these goals are to be used as a guideline for preparing for the mission. The goals are: (1) Mission duration of at least 24 hours (2) Loiter over heavy traffic to evaluate the data block issue identified during the Access 5 Airspace Operations Simulations (3) Document the contingency management process and lessons learned (4) Document the coordination process for Ground Control Stations (GCS) handoff (5) Document lessons learned regarding the process of flying in

  19. Demonstration of Cauchy: Understanding Algebraic

    Directory of Open Access Journals (Sweden)

    T.L. Costa

    2012-11-01

    Full Text Available ABSTRACT: In this study we present some considerations about the End of Course Work undergraduate Full Degree in Mathematics / UFMT, drafted in 2011, and by taking title "A story about Cauchy and Euler's theorem on polyhedra" that gave birth to our research project Master of Education, begun in 2012, on the approaches of Euler's theorem on polyhedra in mathematics textbooks. At work in 2011 presented some considerations about the history of Euler's theorem for polyhedra which focus the demonstration presented by Cauchy (1789-1857, who tries to generalize it, relying on assumptions not observable in Euclidean geometry. Therefore, we seek the accessible literature on the history of mathematics; relate some aspects of the demonstration Cauchy with historical events on the development of mathematics in the nineteenth century, which allowed the acceptance of such a demonstration by mathematicians of his time.Keywords: History of Mathematics. Euler's Theorem on Polyhedra. Demonstration of Cauchy.

  20. CT Demonstration of Caput Medusae

    Science.gov (United States)

    Weber, Edward C.; Vilensky, Joel A.

    2009-01-01

    Maximum intensity and volume rendered CT displays of caput medusae are provided to demonstrate both the anatomy and physiology of this portosystemic shunt associated with portal hypertension. (Contains 2 figures.)

  1. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  2. Factors Effecting the Fate and Transport of CL-20 in the Vadose Zone and Groundwater: Final Report 2002 - 2004 SERDP Project CP-1255

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Riley, Robert G.; Devary, Brooks J.; Girvin, Donald C.; Resch, Charles T.; Campbell, James A.; Fredrickson, Herbert L.; Thompson, Karen T.; Crocker, Fiona H.; Qasim, Mohammad M.; Gamerdinger, Amy P.; Lemond, Luke A.

    2005-06-01

    This SERDP-funded project was initiated to investigate the fate of CL-20 in the subsurface environment, with a focus on identification and quantification of geochemical and microbial reactions of CL-20. CL-20 can be released to the surface and subsurface terrestrial environment by: a) manufacturing processes, b) munition storage, and c) use with low order detonation or unexploded ordnance. The risk of far-field subsurface migration was assessed through labora-tory experiments with a variety of sediments and subsurface materials to quantify processes that control CL-20 sorption-limited migration and degradation. Results of this study show that CL-20 will exhibit differing behavior in the subsurface terrestrial environment: 1. CL-20 on the sediment surface will photodegrade and interact with plants/animals (described in other SERDP projects CU 1254, 1256). CL-20 will exhibit greater sorption in humid sediments to organic matter. Transport will be solubility limited (i.e., low CL-20 aqueous solubility). 2. CL-20 infiltration into soils (<2 m) from spills will be subject to sorption to soil organic matter (if present), and low to high biodegradation rates (weeks to years) depending on the microbial population (greater in humid environment). 3. CL-20 in the vadose zone (>2 m) will be, in most cases, subject to low sorption and low degradation rates, so would persist in the subsurface environment and be at risk for deep migration. Low water content in arid regions will result in a decrease in both sorption and the degradation rate. Measured degradation rates in unsaturated sediments of years would result in significant subsurface migration distances. 4. CL-20 in groundwater will be subject to some sorption but likely very slow degradation rates. CL-20 sorption will be greater than RDX. Most CL-20 degradation will be abiotic (ferrous iron and other transition metals), because most deep subsurface systems have extremely low natural microbial populations. Degradation rates

  3. Buried Waste Integrated Demonstration Plan

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented

  4. Auditory demonstrations simulating Mayan architecture

    Science.gov (United States)

    Lubman, David

    2005-09-01

    Fascination with the ancient temples and ball court at Chichen Itza provide rich opportunities for science education. Children of all ages are delighted to learn that the sound of handclaps scattered from long temple staircases are transformed into bird chirps. Their engagement in such seemingly magical phenomena provides magic moments for teaching acoustical principals, including the picket-fence effect (PFE). PFE transforms impulsive sounds scattered from spatially periodic structures into tonal sounds. PFE is demonstrated with a computer possessing a sound card and a simple sound editing program. The inverse relationship between tonal frequency and the time interval between periodic impulses is easily demonstrated. The number of impulses needed to produce an audible tone is easily demonstrated and compared with the number of steps on the staircase. Transformation of audible tones into downward-gliding chirps is simulated by monotonically increasing the time between impulses. The Great Ball Court also provides opportunities for acoustical demonstration. Observers clapping their hands while standing between the long, tall, and parallel walls of the playing field marvel at the profound flutter echo heard for about 1.5 s. The flutter echo sonogram demonstrates the speed of sound and frequency-selective atmospheric attenuation.

  5. Demonstration of reliability centered maintenance

    International Nuclear Information System (INIS)

    Schwan, C.A.; Morgan, T.A.

    1991-04-01

    Reliability centered maintenance (RCM) is an approach to preventive maintenance planning and evaluation that has been used successfully by other industries, most notably the airlines and military. Now EPRI is demonstrating RCM in the commercial nuclear power industry. Just completed are large-scale, two-year demonstrations at Rochester Gas ampersand Electric (Ginna Nuclear Power Station) and Southern California Edison (San Onofre Nuclear Generating Station). Both demonstrations were begun in the spring of 1988. At each plant, RCM was performed on 12 to 21 major systems. Both demonstrations determined that RCM is an appropriate means to optimize a PM program and improve nuclear plant preventive maintenance on a large scale. Such favorable results had been suggested by three earlier EPRI pilot studies at Florida Power ampersand Light, Duke Power, and Southern California Edison. EPRI selected the Ginna and San Onofre sites because, together, they represent a broad range of utility and plant size, plant organization, plant age, and histories of availability and reliability. Significant steps in each demonstration included: selecting and prioritizing plant systems for RCM evaluation; performing the RCM evaluation steps on selected systems; evaluating the RCM recommendations by a multi-disciplinary task force; implementing the RCM recommendations; establishing a system to track and verify the RCM benefits; and establishing procedures to update the RCM bases and recommendations with time (a living program). 7 refs., 1 tab

  6. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Sresty, G.C.

    1994-07-07

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

  7. Demonstration of blind quantum computing.

    Science.gov (United States)

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip

    2012-01-20

    Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.

  8. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  9. Demonstrating Fermat's Principle in Optics

    Science.gov (United States)

    Paleiov, Orr; Pupko, Ofir; Lipson, S. G.

    2011-01-01

    We demonstrate Fermat's principle in optics by a simple experiment using reflection from an arbitrarily shaped one-dimensional reflector. We investigated a range of possible light paths from a lamp to a fixed slit by reflection in a curved reflector and showed by direct measurement that the paths along which light is concentrated have either…

  10. Some Field Demonstrations in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Some Field Demonstrations in India. 2x150kVAR STATCOM at M/s Hindusthan Latex, Trivandrum. 250kVAR, 800V dc, 2-level STATCOM (Installed at Peekey Steels, Calicut). 250kVAR,800V dc, UPQC at CDAC, Trivandrum. REFERENCE: Website www. cdac.gov.in.

  11. Flexible-Rotor Balancing Demonstration

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1986-01-01

    Report describes method for balancing high-speed rotors at relatively low speeds and discusses demonstration of method on laboratory test rig. Method ensures rotor brought up to speeds well over 20,000 r/min smoothly, without excessive vibration amplitude at critical speeds or at operating speed.

  12. A Demonstration and a Souvenir

    Science.gov (United States)

    Lentz, Randy

    1978-01-01

    Describes an activity using interchangeable, preset tool holders to provide a demonstration for parents or students attending a school's open house session that produces a small souvenir (an aluminum mini-chalice) for them. A procedure sheet for the school's individual lathe and specification diagrams for making the cup are provided. (TA)

  13. NDT performance demonstration in Spain

    International Nuclear Information System (INIS)

    Bollini, G.J.

    1994-01-01

    The experience obtained from the in-service inspection of reactor pressure vessels (RPV) of Spanish nuclear power plants and the participation in several international programs, such as PISC, has shown the need for a performance demonstration, not only for the ultrasonic inspection techniques of RPV, but also for other ISI non-destructive techniques as in the case of eddy current inspection of steam generator tubing. Section XI of the ASME Code, which is applied in Spain for ISI, has incorporated recently the Appendix VIII for performance demonstration of ultrasonic inspection techniques. As a direct consequence of this, a Spanish project for performance demonstration of ultrasonic inspection techniques has been launched recently, which includes the manufacturing of full-scale mock-ups of nozzle to vessel welds, reactor vessel welds, wrought austenitic piping welds and ferritic piping welds of PWR and BWR nuclear power plants from different suppliers. This considerable technical effort will let the different Spanish organizations which are part of the project to participate and colaborate with similar international projects and in particular with a European initiative for performance demonstration. (Author)

  14. SunJammer Technology Demonstration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sunjammer Project is a NASA funded contract to L?Garde Inc. to fly a solar sail demonstration for a period of approximately one year. L?Garde is also partnered...

  15. The buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1991-01-01

    There are numerous locations throughout the Department of Energy (DOE) Complex where wastes have been buried in the ground or stored for future disposal. Much of this buried waste is contaminated with hazardous and radioactive materials. An extensive research program has been initiated at the Idaho National Engineering Laboratory (INEL) to develop and demonstrate advanced remediation techniques for DOE Complex buried waste. The purpose of the Buried Waste Integrated Demonstration (BWID), is to develop a scientifically sound and deployable remediation system consisting of advanced technologies which address the buried waste characteristics of the DOE Complex. This comprehensive remediation system win include technologies for the entire remediation cycle (cradle-to-grave). Technologies developed and demonstrated within the BWID will be transferred to the DOE Complex sites with buried waste, to private industry, and to universities. Multidirectional technology transfer is encouraged by the BWID. Identification and evaluation of plausible technological solutions are an ongoing activity of the BWID. A number of technologies are currently under development throughout the DOE Complex, private industry, and universities. Technology integration mechanisms have been established by BWID to facilitate collaborative research and demonstration of applicable remedial technologies for buried waste. Successful completion of the BWID will result in the development of a proven and deployable system at the INEL and other DOE Complex buried waste sites, thereby supporting the DOE Complex's environmental restoration objectives

  16. E/Z MAS demonstration

    International Nuclear Information System (INIS)

    Boor, M.G.; Hurford, J.M.; Landry, R.P.; Martinez, B.J.; Solem, A.M.; Whiteson, R.; Zardecki, A.

    1998-01-01

    Los Alamos National Laboratory has developed E/Z MAS, a new generation nuclear material accountability application based on the latest technology and designed for facilities required to track nuclear materials with a simple-to-use interface. E/Z MAS is based on years of experience spent developing nuclear material accounting systems. E/Z MAS uses a modern relational database with a web server and enables users on a classified local area network to interact with the database with web browsers. The E/Z MAS Demonstration poster session demonstrates the E/Z MAS functions required by an operational nuclear facility to track material as it enters and leaves a facility and to account for the material as it moves through a process. The generation of internal facility reports and external reports for the Russian Federal system will be demonstrated. Bar-code readers will be used to demonstrate the ability of EZ MAS to automate certain functions, such as physical inventories at facilities

  17. US GCFR demonstration plant design

    International Nuclear Information System (INIS)

    Hunt, P.S.; Snyder, H.J.

    1980-05-01

    A general description of the US GCFR demonstration plant conceptual design is given to provide a context for more detailed papers to follow. The parameters selected for use in the design are presented and the basis for parameter selection is discussed. Nuclear steam supply system (NSSS) and balance of plant (BOP) component arrangements and systems are briefly discussed

  18. Satellite Demonstration: The Videodisc Technology.

    Science.gov (United States)

    Propp, George; And Others

    1979-01-01

    Originally part of a symposium on educational media for the deaf, the paper describes a satellite demonstration of video disc materials. It is explained that a panel of deaf individuals in Washington, D.C. and another in Nebraska came into direct two-way communication for the first time, and video disc materials were broadcast via the satellite.…

  19. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  20. Irvine Smart Grid Demonstration, a Regional Smart Grid Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Yinger, Robert [Southern California Edison Company, Rosemead, CA (United States); Irwin, Mark [Southern California Edison Company, Rosemead, CA (United States)

    2015-12-29

    ISGD was a comprehensive demonstration that spanned the electricity delivery system and extended into customer homes. The project used phasor measurement technology to enable substation-level situational awareness, and demonstrated SCE’s next-generation substation automation system. It extended beyond the substation to evaluate the latest generation of distribution automation technologies, including looped 12-kV distribution circuit topology using URCIs. The project team used DVVC capabilities to demonstrate CVR. In customer homes, the project evaluated HAN devices such as smart appliances, programmable communicating thermostats, and home energy management components. The homes were also equipped with energy storage, solar PV systems, and a number of energy efficiency measures (EEMs). The team used one block of homes to evaluate strategies and technologies for achieving ZNE. A home achieves ZNE when it produces at least as much renewable energy as the amount of energy it consumes annually. The project also assessed the impact of device-specific demand response (DR), as well as load management capabilities involving energy storage devices and plug-in electric vehicle charging equipment. In addition, the ISGD project sought to better understand the impact of ZNE homes on the electric grid. ISGD’s SENet enabled end-to-end interoperability between multiple vendors’ systems and devices, while also providing a level of cybersecurity that is essential to smart grid development and adoption across the nation. The ISGD project includes a series of sub-projects grouped into four logical technology domains: Smart Energy Customer Solutions, Next-Generation Distribution System, Interoperability and Cybersecurity, and Workforce of the Future. Section 2.3 provides a more detailed overview of these domains.

  1. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  2. Plasma hearth process demonstration project

    International Nuclear Information System (INIS)

    Geimer, R.M.; Gillins, R.L.

    1995-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the US Department of Energy (DOE) Office of Technology Development Mixed Waste Focus Area. The PHP is a high temperature thermal treatment process using a plasma arc torch in a stationary, refractory lined chamber that destroys organics and stabilizes the residuals in a nonleaching, vitrified waste form, greatly improving the disposability of the waste. This paper describes the PHP system and summarizes test results to date, including volume reduction, destruction and removal efficiencies for organic wastes, and emission characteristics. Tests performed so far demonstrate that the PHP adresses DOE mixed waste final waste form requirements and US Environmental Protection Agency Toxicity Characteristic Leaching Procedure requirements

  3. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  4. Earth Science Capability Demonstration Project

    Science.gov (United States)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  5. Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID's success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories' Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque's and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ''dry'' soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater

  6. Salt decontamination demonstration test results

    International Nuclear Information System (INIS)

    Snell, E.B.; Heng, C.J.

    1983-06-01

    The Salt Decontamination Demonstration confirmed that the precipitation process could be used for large-scale decontamination of radioactive waste sale solution. Although a number of refinements are necessary to safely process the long-term requirement of 5 million gallons of waste salt solution per year, there were no observations to suggest that any fundamentals of the process require re-evaluation. Major accomplishments were: (1) 518,000 gallons of decontaminated filtrate were produced from 427,000 gallons of waste salt solution from tank 24H. The demonstration goal was to produce a minimum of 200,000 gallons of decontaminated salt solution; (2) cesium activity in the filtrate was reduced by a factor of 43,000 below the cesium activity in the tank 24 solution. This decontamination factor (DF) exceeded the demonstration goal of a DF greater than 10,000; (3) average strontium-90 activity in the filtrate was reduced by a factor of 26 to less than 10 3 d/m/ml versus a goal of less than 10 4 d/m/ml; and (4) the concentrated precipitate was washed to a final sodium ion concentration of 0.15 M, well below the 0.225 M upper limit for DWPF feed. These accomplishments were achieved on schedule and without incident. Total radiation exposure to personnel was less than 350 mrem and resulted primarily from sampling precipitate slurry inside tank 48. 3 references, 6 figures, 2 tables

  7. Aerospace Communications Security Technologies Demonstrated

    Science.gov (United States)

    Griner, James H.; Martzaklis, Konstantinos S.

    2003-01-01

    In light of the events of September 11, 2001, NASA senior management requested an investigation of technologies and concepts to enhance aviation security. The investigation was to focus on near-term technologies that could be demonstrated within 90 days and implemented in less than 2 years. In response to this request, an internal NASA Glenn Research Center Communications, Navigation, and Surveillance Aviation Security Tiger Team was assembled. The 2-year plan developed by the team included an investigation of multiple aviation security concepts, multiple aircraft platforms, and extensively leveraged datalink communications technologies. It incorporated industry partners from NASA's Graphical Weather-in-the-Cockpit research, which is within NASA's Aviation Safety Program. Two concepts from the plan were selected for demonstration: remote "black box," and cockpit/cabin surveillance. The remote "black box" concept involves real-time downlinking of aircraft parameters for remote monitoring and archiving of aircraft data, which would assure access to the data following the loss or inaccessibility of an aircraft. The cockpit/cabin surveillance concept involves remote audio and/or visual surveillance of cockpit and cabin activity, which would allow immediate response to any security breach and would serve as a possible deterrent to such breaches. The datalink selected for the demonstrations was VDL Mode 2 (VHF digital link), the first digital datalink for air-ground communications designed for aircraft use. VDL Mode 2 is beginning to be implemented through the deployment of ground stations and aircraft avionics installations, with the goal of being operational in 2 years. The first demonstration was performed December 3, 2001, onboard the LearJet 25 at Glenn. NASA worked with Honeywell, Inc., for the broadcast VDL Mode 2 datalink capability and with actual Boeing 757 aircraft data. This demonstration used a cockpitmounted camera for video surveillance and a coupling to

  8. Exploration Medical System Demonstration Project

    Science.gov (United States)

    Chin, D. A.; McGrath, T. L.; Reyna, B.; Watkins, S. D.

    2011-01-01

    A near-Earth Asteroid (NEA) mission will present significant new challenges including hazards to crew health created by exploring a beyond low earth orbit destination, traversing the terrain of asteroid surfaces, and the effects of variable gravity environments. Limited communications with ground-based personnel for diagnosis and consultation of medical events require increased crew autonomy when diagnosing conditions, creating treatment plans, and executing procedures. Scope: The Exploration Medical System Demonstration (EMSD) project will be a test bed on the International Space Station (ISS) to show an end-to-end medical system assisting the Crew Medical Officers (CMO) in optimizing medical care delivery and medical data management during a mission. NEA medical care challenges include resource and resupply constraints limiting the extent to which medical conditions can be treated, inability to evacuate to Earth during many mission phases, and rendering of medical care by a non-clinician. The system demonstrates the integration of medical technologies and medical informatics tools for managing evidence and decision making. Project Objectives: The objectives of the EMSD project are to: a) Reduce and possibly eliminate the time required for a crewmember and ground personnel to manage medical data from one application to another. b) Demonstrate crewmember's ability to access medical data/information via a software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities. d) Develop a common data management architecture that allows for scalability, extensibility, and interoperability of data sources and data users. e) Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management f) Provide

  9. AAEC builds synroc demonstration plant

    International Nuclear Information System (INIS)

    O'Hagan, R.

    1986-01-01

    A demonstration plant to test the feasibility of an Australian-developed method of immobilising radioactive waste is being built at the Australian Atomic Energy Commission's Lucas Heights Research Laboratories. The plant will operate as if radioactive waste was actually being processed, but non-radioactive elements of a similar composition will be used. The process involves the simulated waste being mixed into a slurry with the main SYNROC ingredients and then converted to a powder. The powder is moved about the plant in bellows-type containers by robots

  10. Charge sniffer for electrostatics demonstrations

    Science.gov (United States)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  11. Dynamic Underground Stripping Demonstration Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; udel, K.

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92

  12. Flambeau River Biofuels Demonstration Plant

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert J. [Flambeau River Biofuels, Inc., Park Falls, WI (United States)

    2012-07-30

    Flambeau River BioFuels, Inc. (FRB) proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Park Falls, Wisconsin. The biorefinery was to be co-located at the existing pulp and paper mill, Flambeau River Papers, and when in full operation would both generate renewable energy – making Flambeau River Papers the first pulp and paper mill in North America to be nearly fossil fuel free – and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. FRB planned to replicate this facility at other paper mills after this first demonstration scale plant was operational and had proven technical and economic feasibility.

  13. Parker Hybrid Hydraulic Drivetrain Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Raymond [Parker-Hannifin Corporation, Cleveland, OH (United States); Howland, James [Parker-Hannifin Corporation, Cleveland, OH (United States); Venkiteswaran, Prasad [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  14. Reactor-vessel-sectioning demonstration

    International Nuclear Information System (INIS)

    Lundgren, R.A.

    1981-09-01

    A technical demonstration was successfully completed of simulated reactor vessel sectioning using the combined techniques of air arc gouging and flame cutting. A 4-ft x 3-ft x 9-in. thick sample was fabricated of A36 carbon steel to simulate a reactor vessel wall. A 1/4-in. layer of stainless steel (SS) was tungsten inert gas (TIG)-welded to the carbon steel. Several techniques were considered to section the simulated reactor vessel; air arc gouging was selected to penetrate the stainless steel, and flame cutting was selected to sever the carbon steel. Three sectioning operations were demonstrated. For all three, the operating parameters were the same; but the position of the sample was varied. For the first cut, the sample was placed in a horizontal position, and it was successfully severed from the SS side. For the second cut, the sample was turned over and cut from the carbon steel side. Cutting from the carbon steel side has the advantages of cost reduction

  15. Role of Competitive Cation Exchange on Chromatographic Displacement of Cesium in the Vadose Zone beneath the Hanford S/SX Tank Farm

    International Nuclear Information System (INIS)

    Lichtner, Peter C.; Yabusaki, Steven B.; Pruess, Karsten; Steefel, Carl

    2004-01-01

    believed to have been released from the SX-108/SX-109 tanks. The calculations indicate that during the initial period of the tank leak when Cs + is associated with high Na + concentrations, there is little retardation of the Cs + plume. However, as time increases the Na + and Cs + profiles become chromatographically separated due to differences in their selectivity coefficients and dilution of the tank leak plume with infiltrating rainwater. Eventually the two species become separated spatially, and Cs + becomes highly retarded and remains essentially fixed in the sediments by cation exchange. For the 20 m Na + simulated tank leak, the sorbed Cs + profile is in close agreement with data obtained from the slant borehole and consistent with the estimated tank supernatant concentration. The simulations suggest that natural attenuation processes should result in strong fixation of Cs + in the vadose zone in spite of the release of high Na + concentrations during a tank leak event

  16. Energy 2007. Research, development, demonstration; Energi 07. Forskning, udvikling, demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Byriel, I.P.; Justesen, Helle; Beck, A.; Borup Jensen, J.; Rosenfeldt Jakobsen, Kl; Jacobsen, Steen Hartvig (eds.)

    2007-08-10

    Danish energy research is in an exciting and challenging situation. Rising oil prices, unstable energy supply, climate policy responsibilities and globalization have brought development of new environmentally friendly and more efficient energy technologies into focus. Promising international markets for newly developed energy technologies are emerging, and at the same time well established Danish positions of strength are challenged by new strong actors on the global market. The Danish government has set to work on its vision of an appreciable strengthening of public energy research funding through the recent law on the energy technological development and demonstration programme EUDP and the realization of globalization funds. The interaction between basic and applied research must be kept intact. In this report the various Danish energy research programmes administered by Energinet.dk, Danish Energy Authority, Danish Energy Association, Danish Council for Strategic Research's Programme Commission on Energy and Environment and Danish National Advanced Technology Foundation, coordinate their annual reports for the first time. The aim of Energy 2007 is to give the reader an idea of how the energy research programmes collaborate on solving the major energy technology challenges - also in an international context. (BA)

  17. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  18. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports

  19. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3

  20. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 1 of Volume IV, discusses: Process overview functional descriptions; Control system descriptions; Support system descriptions; Maintenance system descriptions; and Process equipment descriptions

  1. Demonstration of creep during filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Bugge, Thomas Vistisen; Kirchheiner, Anders Løvenbalk

    The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found...... that the production of filtrate also depends on the characteristic time for the filter cake solids to deform. This is formulated in the Terzaghi-Voigt model in which a secondary consolidation is introduced. The secondary consolidation may be visualized by plots of the relative cake deformation (U) v.s. the square...... root of time. Even more clearly it is demonstrated by plotting the liquid pressure at the cake piston interface v.s. the relative deformation (to be shown). The phenomenon of a secondary consolidation processes is in short called creep. Provided that the secondary consolidation rate is of the same...

  2. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 9 discusses the following topics: Integrated System Normal Operations Test Results and Analysis Report; Integrated System Off-Normal Operations Test Results and Analysis Report; and Integrated System Maintenance Operations Test Results and Analysis Report

  3. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  4. Alderney 5 complex demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D. [High Performance Energy Systems, Halifax, NS (Canada)

    2008-07-01

    The Halifax Regional Municipality (HRM) is the largest municipality in Atlantic Canada. This presentation described the flagship facility and the energy efficiency retrofit of five HRM-owned buildings called the Alderney 5 complex. The 5 objectives of the demonstration project involved a district-scale cooling project; replacement of chillers with harbour cooling; and replacement of a high exergy system with a low exergy system. Synergies and challenges of the project were also identified. The presentation also referred to borehole thermal energy storage; existing Halifax Harbour cooling; Halifax Harbour temperatures; cold energy geothermal borehole field; and the benefits of advanced concentric boreholes. A project update and progress to date were also provided. The Alderney 5 project represents the first concentric borehole technology for use to store and retrieve cold energy. tabs., figs.

  5. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 8 discusses Control System SOT Tests Results and Analysis Report. This is a continuation of Book 7

  6. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  7. Navy fuel cell demonstration project.

    Energy Technology Data Exchange (ETDEWEB)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  8. Prototypical Rod Construction Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report

  9. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 4 of Volume IV, discusses: Off-normal operating and recovery procedures; Emergency response procedures; Troubleshooting procedures; and Preventive maintenance procedures

  10. Reactor-vessel-sectioning demonstration

    International Nuclear Information System (INIS)

    Lundgren, R.A.

    1981-07-01

    A successful technical demonstration of simulated reactor vessel sectioning was completed using the combined techniques of air arc gouging and flame cutting. A 4-ft x 3-ft x 9-in. thick sample was fabricated of A36 carbon steel to simulate a reactor vessel wall. A 1/4-in layer of stainless steel (SS) was tungsten inert gas (TIG)-welded to the carbon steel. Several techniques were considered to section the simulated reactor vessel: an air arc gouger was chosen to penetrate the stainless steel, and flame cutting was selected to sever the carbon steel. After the simulated vessel was successfully cut from the SS side, another cut was made, starting from the carbon steel side. This cut was also successful. Cutting from the carbon steel side has the advantages of cost reduction since the air arc gouging step is eliminated and contamination controlled because the molten metal is blown inward

  11. Performance Demonstration Program Management Plan

    International Nuclear Information System (INIS)

    2005-01-01

    To demonstrate compliance with the Waste Isolation Pilot Plant (WIPP) waste characterization program, each testing and analytical facility performing waste characterization activities participates in the Performance Demonstration Program (PDP). The PDP serves as a quality control check against expected results and provides information about the quality of data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed by an independent organization to each of the facilities participating in the PDP. There are three elements within the PDP: analysis of simulated headspace gases, analysis of solids for Resource Conservation and Recovery Act (RCRA) constituents, and analysis for transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques. Because the analysis for TRU radionuclides using NDA techniques involves both the counting of drums and standard waste boxes, four PDP plans are required to describe the activities of the three PDP elements. In accordance with these PDP plans, the reviewing and approving authority for PDP results and for the overall program is the CBFO PDP Appointee. The CBFO PDP Appointee is responsible for ensuring the implementation of each of these plans by concurring with the designation of the Program Coordinator and by providing technical oversight and coordination for the program. The Program Coordinator will designate the PDP Manager, who will coordinate the three elements of the PDP. The purpose of this management plan is to identify how the requirements applicable to the PDP are implemented during the management and coordination of PDP activities. The other participants in the program (organizations that perform site implementation and activities under CBFO contracts or interoffice work orders) are not covered under this management plan. Those activities are governed by the organization's quality assurance (QA) program and procedures or as otherwise directed by CBFO.

  12. Demonstration of Data Interactive Publications

    Science.gov (United States)

    Domenico, B.; Weber, J.

    2012-04-01

    This is a demonstration version of the talk given in session ESSI2.4 "Full lifecycle of data." For some years now, the authors have developed examples of online documents that allowed the reader to interact directly with datasets, but there were limitations that restricted the interaction to specific desktop analysis and display tools that were not generally available to all readers of the documents. Recent advances in web service technology and related standards are making it possible to develop systems for publishing online documents that enable readers to access, analyze, and display the data discussed in the publication from the perspective and in the manner from which the author wants it to be represented. By clicking on embedded links, the reader accesses not only the usual textual information in a publication, but also data residing on a local or remote web server as well as a set of processing tools for analyzing and displaying the data. With the option of having the analysis and display processing provided on the server (or in the cloud), there are now a broader set of possibilities on the client side where the reader can interact with the data via a thin web client, a rich desktop application, or a mobile platform "app." The presentation will outline the architecture of data interactive publications along with illustrative examples.

  13. Demonstration poloidal coil test facility

    International Nuclear Information System (INIS)

    Sato, Masahiko; Kawano, Katumi; Tada, Eisuke

    1989-01-01

    A new compact cryogenic cold compressor was developed by Japan Atomic Energy Research Institute (JAERI) in collaboration with Isikawajima-Harima Heavy Industries Co., Ltd. (IHI) in order to produce the supercritical helium below 4.2 K for Demonstration Poloidal Coils (DPC) which are forced-flow cooled type superconducting pulse coils. This compressor is one of key components for DPC test facility. The cold compressor reduces pressure in liquid helium bath, which contains liquid helium of around 3,000 l, down to 0.5 atm efficiently. Consequently, supercritical helium down to 3.5 K is produced and supplied to the DPC coils. A centrifugal compressor with dynamic gas bearing is selected as a compressor mechanism to realize high adiabatic efficiency and large flow rate. In this performance tests, the compressor was operated for 220 h at saturated condition from 0.5 to 1.0 atm without any failure. High adiabatic efficiency (more than 60 %) is achieved with wide flow range (25-65 g/s) and the design value is fully satisfied. The compressor can rotate up to 80,000 rpm at maximum then the coil supply temperature of supercritical helium is 3.5 K. (author)

  14. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  15. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 4 discusses the following topics: Rod Compaction/Loading System Test Results and Analysis Report; Waste Collection System Test Results and Analysis Report; Waste Container Transfer Fixture Test Results and Analysis Report; Staging and Cutting Table Test Results and Analysis Report; and Upper Cutting System Test Results and Analysis Report

  16. Dynamic underground stripping demonstration project

    International Nuclear Information System (INIS)

    Newmark, R.L.

    1992-04-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution

  17. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 5 discusses the following topics: Lower Cutting System Test Results and Analysis Report; NFBC Loading System Test Results and Analysis Report; Robotic Bridge Transporter Test Results and Analysis Report; RM-10A Remotec Manipulator Test Results and Analysis Report; and Manipulator Transporter Test Results and Analysis Report

  18. Ionosphere Waves Service - A demonstration

    Science.gov (United States)

    Crespon, François

    2013-04-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.

  19. Heterogeneity and contaminant transport modeling for the Savannah River integrated demonstration site

    International Nuclear Information System (INIS)

    Chesnut, D.A.

    1992-11-01

    The effectiveness of remediating aquifers and vadose zone sediments is frequently controlled by spatial heterogeneities. A continuing and long-recognized problem in selecting, planning, implementing, and operating remediation projects is the development of methods for quantitatively describing heterogeneity and predicting its effects on process performance. The similarity to and differences from modeling oil recovery processes in the petroleum industry are illustrated by the extension to contaminant extraction processes of an analytic model originally developed for waterflooding petroleum reservoirs. The resulting equations incorporate the effects of heterogeneity through a single parameter, σ. Fitting this model to the Savannah River in situ Air Stripping test data suggests that the injection of air into a horizontal well below the water table may have improved performance by changing the flow pattern in the vadose zone. This change increased the capture volume, and consequently the contaminant mass inventory, of the horizontal injection well completed in the vadose zone. The apparent increases (compared to extraction only from the horizontal well) are from 10,200 to 21,000 pounds for TCE and from 3,600 pounds to 59,800 pounds for PCE. The predominance of PCE in this calculated increase suggests that redistribution of flow paths in the vadose zone, rather than in-situ stripping, may provide most of the improvement. Although this preliminary conclusion remains to be reinforced by more sophisticated modeling currently in progress, there appears to be a definite improvement, which is attributable to air injection, over conventional remediation methods

  20. Magnetic Launch Assist Demonstration Test

    Science.gov (United States)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  1. Coal ash artificial reef demonstration

    International Nuclear Information System (INIS)

    Livingston, R.J.; Brendel, G.F.; Bruzek, D.A.

    1991-01-01

    This experimental project evaluated the use of coal ash to construct artificial reefs. An artificial reef consisting of approximately 33 tons of cement-stabilized coal ash blocks was constructed in approximately 20 feet of water in the Gulf of Mexico approximately 9.3 miles west of Cedar Key, Florida. The project objectives were: (1) demonstrate that a durable coal ash/cement block can be manufactured by commercial block-making machines for use in artificial reefs, and (2) evaluate the possibility that a physically stable and environmentally acceptable coal ash/cement block reef can be constructed as a means of expanding recreational and commercial fisheries. The reef was constructed in February 1988 and biological surveys were made at monthly intervals from May 1988 to April 1989. The project provided information regarding: Development of an optimum design mix, block production and reef construction, chemical composition of block leachate, biological colonization of the reef, potential concentration of metals in the food web associated with the reef, acute bioassays (96-hour LC 50 ). The Cedar Key reef was found to be a habitat that was associated with a relatively rich assemblage of plants and animals. The reef did not appear to be a major source of heavy metals to species at various levels of biological organization. GAI Consultants, Inc (GAI) of Monroeville, Pennsylvania was the prime consultant for the project. The biological monitoring surveys and evaluations were performed by Environmental Planning and Analysis, Inc. of Tallahassee, Florida. The chemical analyses of biological organisms and bioassay elutriates were performed by Savannah Laboratories of Tallahassee, Florida. Florida Power Corporation of St. Petersburg, Florida sponsored the project and supplied ash from their Crystal River Energy Complex

  2. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees}to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  3. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  4. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger R.; Flach, Greg [Savannah River National Laboratory, Savannah River Site, Bldg 773-43A, Aiken, SC 29808 (United States); Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Dixon, Paul; Moulton, J. David [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States); Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Marble, Justin [Department of Energy, 19901 Germantown Road, Germantown, MD 20874-1290 (United States)

    2013-07-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  5. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    International Nuclear Information System (INIS)

    Seitz, Roger R.; Flach, Greg; Freshley, Mark D.; Freedman, Vicky; Gorton, Ian; Dixon, Paul; Moulton, J. David; Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan; Marble, Justin

    2013-01-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  6. A Forceful Demonstration by FORS

    Science.gov (United States)

    1998-09-01

    .). In addition, detailed computer software was provided to prepare the complex astronomical observations with FORS in advance and to monitor the instrument performance by quality checks of the scientific data accumulated. In return for building FORS for the community of European astrophysicists, the scientists in the three institutions of the FORS Consortium have received a certain amount of Guaranteed Observing Time at the VLT. This time will be used for various research projects concerned, among others, with minor bodies in the outer solar system, stars at late stages of their evolution and the clouds of gas they eject, as well as galaxies and quasars at very large distances, thereby permitting a look-back towards the early epoch of the universe. First tests of FORS1 at the VLT UT1: a great success After careful preparation, the FORS consortium has now started the so-called commissioning of the instrument. This comprises the thorough verification of the specified instrument properties at the telescope, checking the correct functioning under software control from the Paranal control room and, at the end of this process, a demonstration that the instrument fulfills its scientific purpose as planned. While performing these tests, the commissioning team at Paranal were able to obtain images of various astronomical objects, some of which are shown here. Two of these were obtained on the night of "FORS First Light". The photos demonstrate some of the impressive posibilities with this new instrument. They are based on observations with the FORS standard resolution collimator (field size 6.8 x 6.8 armin = 2048 x 2048 pixels; 1 pixel = 0.20 arcsec). Spiral galaxy NGC 1288 ESO PR Photo 37a/98 ESO PR Photo 37a/98 [Preview - JPEG: 800 x 908 pix - 224k] [High-Res - JPEG: 3000 x 3406 pix - 1.5Mb] A colour image of spiral galaxy NGC 1288, obtained on the night of "FORS First Light". The first photo shows a reproduction of a colour composite image of the beautiful spiral galaxy NGC

  7. Didactic demonstrations of superfluidity and superconductivity phenomena

    International Nuclear Information System (INIS)

    Aniola-Jedrzejak, L.; Lewicki, A.; Pilipowicz, A.; Tarnawski, Z.; Bialek, H.

    1980-01-01

    In order to demonstrate to students phenomena of superfluidity and superconductivity a special helium cryostat has been constructed. The demonstrated effects, construction of the cryostat and the method of demonstration are described. (author)

  8. Hanford Tanks Initiative AX tank farm cone penetrometer demonstration training plan

    International Nuclear Information System (INIS)

    Iwatate, D.F.

    1998-01-01

    The HTI subsurface characterization task will use the Hanford Cone Penetrometer platform (CPP) to deploy soil sensor and sampling probes into the vadose zone/soils around AX-104 during FY-99. This training plan identifies training requirements in support of the HTI task, describes specific staff training needs, and identifies how the training will be provided and by whom. Documentation of training completion is also described

  9. Perchlorate Removal, Destruction, and Field Monitoring Demonstration

    National Research Council Canada - National Science Library

    Coppola, Edward N; Davis, Andrea

    2006-01-01

    The objectives of this demonstration were to evaluate and demonstrate a complete perchlorate ion exchange process for groundwater that included a unique, regenerable, perchlorate-selective ion exchange resin...

  10. HTI retrieval demonstration project execution plan

    International Nuclear Information System (INIS)

    Ellingson, D.R.

    1997-01-01

    This plan describes the process for demonstrating the retrieval of difficult Hanford tank waste forms utilizing commercial technologies and the private sector to conduct the operations. The demonstration is to be conducted in Tank 241-C-106

  11. Introduction to Methods Demonstrations for Authentication

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Hansen, Randy R.; Pitts, W. K.

    2002-01-01

    During the Trilateral Initiative Technical Workshop on Authentication and Certification, PNNL will demonstrate some authentication technologies. This paper briefly describes the motivation for these demonstrations and provide background on them

  12. Using Daily Horoscopes To Demonstrate Expectancy Confirmation.

    Science.gov (United States)

    Munro, Geoffrey D.; Munro, James E.

    2000-01-01

    Describes a classroom demonstration that uses daily horoscopes to show the effect that expectation can have on judgment. Addresses the preparation, procedure, and results of the demonstration, and student evaluations. States that the demonstration appears to be effective for teaching students about expectancy confirmation. (CMK)

  13. 40 CFR 117.14 - Demonstration projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  14. Cone penetrometer demonstration standard startup review checklist

    International Nuclear Information System (INIS)

    KRIEG, S.A.

    1998-01-01

    Startup readiness for the Cone Penetrometer Demonstration in AX Tank Farm will be verified through the application of a Standard Startup Review Checklist. This is a listing of those items essential to demonstrating readiness to start the Cone Penetrometer Demonstration in AX Tank Farm

  15. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    International Nuclear Information System (INIS)

    1995-09-01

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool

  16. How to Demonstrate Microgravity in your Classroom

    Science.gov (United States)

    DeLombard, Richard; Hall, Nancy Rabel

    2013-01-01

    Learn why zero gravity is a misnomer and learn how to demonstrate microgravity to students and the general public. In this session, a short theory segment will explain and reinforce these concepts so that you may explain to others. Session participants will also see simple equipment that demonstrates microgravity during the session and can just as well be done in the classroom or museum exhibit hall. The hands-on demonstration devices range from a leaky water bottle to an electronic drop tower with an on-board camera. The session will also include demonstration techniques for Physics, Forces & Motion, and orbits. This material is useful for middle school forces and motions instruction, high school physics instruction, public demonstrations at conferences & school open houses, travelling museum exhibits, fixed museum exhibits, and independent student projects or experiments. These activities also connect the terrestrial demonstration with planetary & moon motion, comet trajectory, and more.

  17. The mixed waste landfill integrated demonstration

    International Nuclear Information System (INIS)

    Burford, T.D.; Williams, C.V.

    1994-01-01

    The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ''in-situ'' characterization, monitoring, remediation, and containment of landfills in arid environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies and systems. The comparison will include the cost, efficiency, risk, and feasibility of using these innovative technologies at other sites

  18. Challenging demonstrations in the physics classroom

    International Nuclear Information System (INIS)

    Raz, E.

    2004-01-01

    Full Text: We consider the role of classroom demonstrations in improving students understanding of physics lectures and suggest criteria to decide whether a given demonstration will be pedagogically useful. In the light of these considerations, we performed two series of related experiments before groups of high-school students. We shall perform one of them with active participation from the audience. We shall also show some challenging demonstrations performed in the final stages of the Israeli Physics Olympiad for high-school students

  19. Test and Demonstration Assets of New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-03-31

    This document was developed by the Arrowhead Center of New Mexico State University as part of the National Security Preparedness Project (NSPP), funded by a DOE/NNSA grant. The NSPP has three primary components: business incubation, workforce development, and technology demonstration and validation. The document contains a survey of test and demonstration assets in New Mexico available for external users such as small businesses with security technologies under development. Demonstration and validation of national security technologies created by incubator sources, as well as other sources, are critical phases of technology development. The NSPP will support the utilization of an integrated demonstration and validation environment.

  20. Tidd PFBC Demonstration Project, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-08-31

    The Clean Coal Technology (CCT) Demonstration Program is a government and industry co-funded technology development effort to demonstrate a new generation of innovative coal utilization processes. One goal of the program is to furnish the energy marketplace with a variety of energy efficient, environmentally superior coal-based technologies. Demonstration projects seek to establish the commercial feasibility of the most promising coal technologies that have proceeded beyond the proof-of-concept stage. This report is a post-project assessment of the DOE CCT Demonstration Program, the Tidd PFBC Demonstration Project. A major objective of the CCT Program is to provide the technical data necessary for the private sector to proceed confidently with the commercial replication of the demonstrated technologies. An essential element of meeting this goal is the dissemination of results from the demonstration projects. This post-project assessment (PPA) report is an independent DOE appraisal of the successes that the completed project had in achieving its objectives and aiding in the commercialization of the demonstrated technology. The report also provides an assessment of the expected technical, environmental, and economic performance of the commercial version of the technology, as well as an analysis of the commercial market.

  1. OVERVIEW OF USEPA'S ARSENIC TECHNOLOGY DEMONSTRATION PROGRAM

    Science.gov (United States)

    This presentation provides a summary on the Arsenic Treatment Technology Demonstration Program. The information includes the history and the current status of the demonstration projects on both round 1 and round 2 including some photos of the treatment systems. The presentation m...

  2. The Simplest Demonstration on Acoustic Beats

    Science.gov (United States)

    Ganci, Alessio; Ganci, Salvatore

    2015-01-01

    The classical demonstration experiment on acoustic beats using two signal generators and a dual trace oscilloscope is an important ingredient in teaching the subject. This short laboratory note aims to point out what may be the simplest demonstrative experiment on acoustic beats to carry out in a classroom without employing any lab apparatus.

  3. Status of IFR fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; McFarlane, H.F.

    1993-01-01

    The next major step in Argonne's Integral Fast Reactor (IFR) Program is demonstration of the pyroprocess fuel cycle, in conjunction with continued operation of EBR-II. The Fuel Cycle Facility (FCF) is being readied for this mission. This paper will address the status of facility systems and process equipment, the initial startup experience, and plans for the demonstration program

  4. Professor's Page: Do Demonstration Lessons Work?

    Science.gov (United States)

    Clarke, Doug

    2011-01-01

    As part of a large research and professional development project funded by the Catholic Education Office Melbourne (CEOM), called "Contemporary Teaching and Learning of Mathematics," the ACU team has been leading demonstration lessons. There is certainly not universal agreement on the worth of demonstration lessons in the mathematics…

  5. Buried Waste Integrated Demonstration Strategy Plan

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology's threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report

  6. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  7. Marketing Plan for Demonstration and Validation Assets

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-05-30

    The National Security Preparedness Project (NSPP), is to be sustained by various programs, including technology demonstration and evaluation (DEMVAL). This project assists companies in developing technologies under the National Security Technology Incubator program (NSTI) through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. This report documents the DEMVAL marketing and visibility plan, which will focus on collecting information about, and expanding the visibility of, DEMVAL assets serving businesses with national security technology applications in southern New Mexico.

  8. Transportable Vitrification System Demonstration on Mixed Waste

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    This paper describes preliminary results from the first demonstration of the Transportable Vitrification System (TVS) on actual mixed waste. The TVS is a fully integrated, transportable system for the treatment of mixed and low-level radioactive wastes. The demonstration was conducted at Oak Ridge's East Tennessee Technology Park (ETTP), formerly known as the K-25 site. The purpose of the demonstration was to show that mixed wastes could be vitrified safely on a 'field' scale using joule-heated melter technology and obtain information on system performance, waste form durability, air emissions, and costs

  9. Prototype scale demonstration of CECE detritiation

    International Nuclear Information System (INIS)

    Sadhankar Ramesh; Cobanoglu, Macit

    2004-01-01

    AECL has developed and demonstrated the Combined Electrolysis and Catalytic Exchange (CECE) Process for detritiation of heavy water. Although CECE has been the subject of pilot-scale demonstrations by various organizations, AECL is the first to demonstrate this technology in an industrial prototype plant. AECL designed, built and operated a CECE demonstration facility under CAN/CSA N286 Quality Assurance Program. The facility was licensed by the Canadian nuclear regulator. This was a two-fold demonstration of the CECE technology - for upgrading (removal of light water) and for detritiation of heavy water. In 1998 June, AECL began operating the facility in upgrading mode. The design feed rate ranged up to 25 Mg/a for 95 mol% D 2 O feed water. After 18 months of operation in upgrading mode, the facility was reconfigured and operated for an additional 9 months from 2000 August in detritiation mode. Design capacity for detritiation was 5 Mg/a with a detritiation factor (DF) of 100. However, significantly higher DFs, up to 56 000, were demonstrated. Highlights of the detritiation demonstration were: Proven robustness of AECL's proprietary wetproofed catalyst for Liquid Phase Catalytic Exchange; Demonstration of a trickle-bed-recombiner for stoichiometric combination of deuterium and oxygen; Demonstration of electrolysis of highly tritiated heavy water; High process availability and controllability was demonstrated by a long interrupted run; Low emissions; Demonstration of high DF - up to 56 000 - a significant advantage of the CECE process over other approaches to detritiation; Validation of AECL's simulation code for the CECE process over a range of DFs from 100 to 50 000. Apart from the technology, AECL has expertise in all aspects of setting up a new detritiation facility including design, engineering, safety assessment, licensing support, project management and training. AECL is also the engineering and design contractor for a tritium removal facility that is under

  10. 2017 SmartWay Logistics Tool Demonstration

    Science.gov (United States)

    This EPA presentation provides information on the SmartWay Logistics Carrier Tool: its background and development, participation in the program, application process, emission metrics, tool demonstration, data collection, and schedule for 2017.

  11. Edison Demonstration of Smallsat Networks (EDSN)

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Edison Demonstration of SmallSat Networks (EDSN) mission will launch and deploy a group of eight cubesats into a loose formation approximately 250 miles (400...

  12. Reliability demonstration of imaging surveillance systems

    International Nuclear Information System (INIS)

    Sheridan, T.F.; Henderson, J.T.; MacDiarmid, P.R.

    1979-01-01

    Security surveillance systems which employ closed circuit television are being deployed with increasing frequency for the protection of property and other valuable assets. A need exists to demonstrate the reliability of such systems before their installation to assure that the deployed systems will operate when needed with only the scheduled amount of maintenance and support costs. An approach to the reliability demonstration of imaging surveillance systems which employ closed circuit television is described. Failure definitions based on industry television standards and imaging alarm assessment criteria for surveillance systems are discussed. Test methods which allow 24 hour a day operation without the need for numerous test scenarios, test personnel and elaborate test facilities are presented. Existing reliability demonstration standards are shown to apply which obviate the need for elaborate statistical tests. The demonstration methods employed are shown to have applications in other types of imaging surveillance systems besides closed circuit television

  13. Status of the Majorana Demonstrator experiment

    Science.gov (United States)

    Martin, R. D.; Abgrall, N.; Aguayo, E.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Mertens, S.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G., II; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Soin, A.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    2014-06-01

    The Majorana Demonstrator neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.

  14. Classroom Demonstrations in Materials Science/Engineering.

    Science.gov (United States)

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  15. Lessons Learned from Microgrid Demonstrations Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Qu, Min [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-31

    The survey leads to policy recommendations for starting a microgrid demonstration program and overall development of microgrid and distributed energy. Additionally, specific recommendations have been made for China specifically.

  16. Keys to Successful EPIQ Business Demonstrator Implementation

    NARCIS (Netherlands)

    Shoikova, Elena; Denishev, Vladislav

    2009-01-01

    Shoikova, E., & Denishev, V. (2009). Keys to Successful EPIQ Business Demonstrator Implementation. Paper presented at the 'Open workshop of TENCompetence - Rethinking Learning and Employment at a Time of Economic Uncertainty-event'. November, 19, 2009, Manchester, United Kingdom: TENCompetence.

  17. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    International Nuclear Information System (INIS)

    Albert Calderon

    1998-01-01

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (4) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Conducting bench-scale tests to produce coke and acceptable tar from the process to satisfy Koppers, a prospective stakeholder; Consolidation of the project team players to execute the full size commercial cokemaking reactor demonstration; and Progress made in advancing the design of the full size commercial cokemaking reactor

  18. Medicare Demonstration Projects and Evaluation Reports

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) conducts and sponsors a number of innovative demonstration projects to test and measure the effect of potential...

  19. Hybrid Life Support System Technology Demonstrations

    Science.gov (United States)

    Morrow, R. C.; Wetzel, J. P.; Richter, R. C.

    2018-02-01

    Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.

  20. Nuclear Systems (NS): Technology Demonstration Unit (TDU)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA's Space Technology Mission Directorate. To this end, the...

  1. Radioactive waste incineration system cold demonstration test

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Takaoku, Yoshinobu; Koyama, Shigeru; Nagae, Madoka; Seike, Yasuhiko; Yamanaka, Yasuhiro; Shibata, Kenji; Manabe, Kyoichi

    1984-12-01

    To demonstrate Waste Incineration System (WIS) which our company has been licensed by Combustion Engineering Inc., USA we installed a demonstration test plant in our Hiratsuka Research Laboratory and started the demonstration test on January 1984. One of the characteristics of this system is to be able to process many kinds of wastes with only one system, and to get high volume reduction factors. In our test plant, we processed paper, cloth, wood, polyethylene sheets as the samples of solid combustible wastes and spent ion exchange resins with incineration and processed condensed liquid wastes with spray drying. We have got good performances and enough Decontamination Factor (DF) data for the dust control equipment. In this paper, we introduce this demonstration test plant and report the test results up to date. (author).

  2. Demonstration and Deployment Strategy Workshop: Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-05-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12–13, 2014, at Argonne National Laboratory.

  3. Space Internet-Embedded Web Technologies Demonstration

    Science.gov (United States)

    Foltz, David A.

    2001-01-01

    The NASA Glenn Research Center recently demonstrated the ability to securely command and control space-based assets by using the Internet and standard Internet Protocols (IP). This is a significant accomplishment because future NASA missions will benefit by using Internet standards-based protocols. The benefits include reduced mission costs and increased mission efficiency. The Internet-Based Space Command and Control System Architecture demonstrated at the NASA Inspection 2000 event proved that this communications architecture is viable for future NASA missions.

  4. Some simple demonstration experiments involving homopolar motors

    OpenAIRE

    Stewart, Seán M.

    2007-01-01

    The ready availability of very strong permanent magnets in the form of rare-earth magnetic alloys such as neodymium-iron-boron has lead to renewed interest in one of the oldest types of electric motors - the homopolar motor. The ease with which a demonstration homopolar motor can now be built and operated when neodymium magnets are used is quite remarkable. In this paper some simple homopolar motors employing neodymium magnets suitable for demonstrational purposes are described and discussed....

  5. Some simple demonstration experiments involving homopolar motors

    OpenAIRE

    Stewart,Seán M.

    2007-01-01

    The ready availability of very strong permanent magnets in the form of rare-earth magnetic alloys such as neodymium-iron-boron has lead to renewed interest in one of the oldest types of electric motors - the homopolar motor. The ease with which a demonstration homopolar motor can now be built and operated when neodymium magnets are used is quite remarkable. In this paper some simple homopolar motors employing neodymium magnets suitable for demonstrational purposes are described and discussed.

  6. Postirradiation examination of ORR demonstration elements

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Copeland, G.L.; Hofman, G.L.

    1991-01-01

    Postirradiation examinations of selected U 3 Si 2 fuel elements fabricated by B and W, CERCA, and NUKEM and irradiated during the whole core demonstration in the Oak Ridge Research Reactor are nearing completion. The results of all tests have shown the demonstration fuel elements, produced under production-line conditions, to have performed in the excellent manner expected from earlier tests of miniature fuel plates and full-sized elements. (orig.)

  7. Guidance manual for conducting technology demonstration activities

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  8. Guidance manual for conducting technology demonstration activities

    International Nuclear Information System (INIS)

    Jolley, R.L.; Morris, M.I.; Singh, S.P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety

  9. Orbital Express fluid transfer demonstration system

    Science.gov (United States)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging

  10. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration

  11. Accelerated reliability demonstration under competing failure modes

    International Nuclear Information System (INIS)

    Luo, Wei; Zhang, Chun-hua; Chen, Xun; Tan, Yuan-yuan

    2015-01-01

    The conventional reliability demonstration tests are difficult to apply to products with competing failure modes due to the complexity of the lifetime models. This paper develops a testing methodology based on the reliability target allocation for reliability demonstration under competing failure modes at accelerated conditions. The specified reliability at mission time and the risk caused by sampling of the reliability target for products are allocated for each failure mode. The risk caused by degradation measurement fitting of the target for a product involving performance degradation is equally allocated to each degradation failure mode. According to the allocated targets, the accelerated life reliability demonstration test (ALRDT) plans for the failure modes are designed. The accelerated degradation reliability demonstration test plans and the associated ALRDT plans for the degradation failure modes are also designed. Next, the test plan and the decision rules for the products are designed. Additionally, the effects of the discreteness of sample size and accepted number of failures for failure modes on the actual risks caused by sampling for the products are investigated. - Highlights: • Accelerated reliability demonstration under competing failure modes is studied. • The method is based on the reliability target allocation involving the risks. • The test plan for the products is based on the plans for all the failure modes. • Both failure mode and degradation failure modes are considered. • The error of actual risks caused by sampling for the products is small enough

  12. Decision support software technology demonstration plan

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  13. Loop Group Parakeet Virtual Cable Concept Demonstrator

    Science.gov (United States)

    Dowsett, T.