WorldWideScience

Sample records for demonstration plant performance

  1. Round Robin Test for Performance Demonstration System of Ultrasound Examination Personnel in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Young Ho; Yang, Seung Han; Kim, Yong Sik; Yoon, Byung Sik; Lee, Hee Jong

    2005-01-01

    Ultrasound testing performance during in-service inspection for the main components of NPPs is strongly affected by each examination person. Therefore, ASME established a more strict qualification requirement in Sec. XI Appendix VIII for the ultrasound testing personnel in nuclear power plants. The Korean Performance Demonstration (KPD) System according to the ASME code for the ultrasonic testing personnel, equipments, and procedures to apply to the Class 1 and 2 piping ultrasound examination of nuclear power plants in Korea was established. And a round robin test was conducted in order to verify the effectiveness of PD method by comparing the examination results from the method of Performance Demonstration (PD) and a traditional ASME code dB-drop method. The round robin test shows that the reliability of the PD method is better than that of the dB-drop method. As a result, application of the PD method to the in-service inspection of the nuclear power plants will improve the performance of ultrasound testing

  2. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  3. NDT performance demonstration in Spain

    International Nuclear Information System (INIS)

    Bollini, G.J.

    1994-01-01

    The experience obtained from the in-service inspection of reactor pressure vessels (RPV) of Spanish nuclear power plants and the participation in several international programs, such as PISC, has shown the need for a performance demonstration, not only for the ultrasonic inspection techniques of RPV, but also for other ISI non-destructive techniques as in the case of eddy current inspection of steam generator tubing. Section XI of the ASME Code, which is applied in Spain for ISI, has incorporated recently the Appendix VIII for performance demonstration of ultrasonic inspection techniques. As a direct consequence of this, a Spanish project for performance demonstration of ultrasonic inspection techniques has been launched recently, which includes the manufacturing of full-scale mock-ups of nozzle to vessel welds, reactor vessel welds, wrought austenitic piping welds and ferritic piping welds of PWR and BWR nuclear power plants from different suppliers. This considerable technical effort will let the different Spanish organizations which are part of the project to participate and colaborate with similar international projects and in particular with a European initiative for performance demonstration. (Author)

  4. Coal demonstration plants. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Six of these demonstration plant projects are described and progress in the quarter is summarized. Several support and complementary projects are described (fuel feeding system development, performance testing and comparative evaluation, engineering support, coal grinding equipment development and a critical components test facility). (LTN)

  5. Design and simulation of a plant control system for a GCFR demonstration plant

    International Nuclear Information System (INIS)

    Estrine, E.A.; Greiner, H.G.

    1980-02-01

    A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations

  6. Evaluation of economical at a uranium enrichment demonstration plant

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the economy of technical achievement apply in the uranium enrichment demonstration plant is evaluated. From the evaluation, it can be concluded that the expected purpose was achieved because there was a definite economic prospect to commercial plant. The benefit analysis of thirteen years operation of the uranium enrichment demonstration plant also provides a financial aspect of the uranium enrichment business. Therefore, the performance, price and reliability of the centrifuge is an important factor in the uranium enrichment business. And the continuous development of a centrifuge while considering balance with the development cost is necessary for the business in the future. (author)

  7. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  8. Coal demonstration plants. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Twenty-two projects involving demonstration plants or support projects for such plants are reviewed, including a summary for each of progress in the quarter. (LTN)

  9. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.

    Science.gov (United States)

    Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-04-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  10. Results from an in-plant demonstration of intelligent control

    International Nuclear Information System (INIS)

    Edwards, R.M.; Garcia, H.E.; Messick, N.

    1993-01-01

    A learning systems-based reconfigurable controller was demonstrated on the deaerating feedwater heater at the Experimental Breeder Reactor II (EBR-II) on April 1, 1993. Failures of the normal pressure regulating process were introduced by reducing the steam flow to the heater by as much as 10%. The controller maintained pressure in the heater at acceptable levels for several minutes, whereas operator intervention would have otherwise been required within a few seconds. This experiment demonstrates the potential of advanced control techniques for improving safety, reliability, and performance of power plant operations as well as the utility of EBR-II as an experimental power plant controls facility

  11. Demonstration of risk-based approaches to nuclear plant regulation

    International Nuclear Information System (INIS)

    Rahn, F.J.; Sursock, J.P.; Darling, S.S.; Oddo, J.M.

    1993-01-01

    This paper describes generic technical support EPRI is providing to the nuclear power industry relative to its recent initiatives in the area of risk-based regulations (RBR). A risk-based regulatory approach uses probabilistic risk assessment (PRA), or similar techniques, to allocate safety resources commensurate with the risk posed by nuclear plant operations. This approach will reduce O ampersand M costs, and also improve nuclear plant safety. In order to enhance industry, Nuclear Regulatory Commission (NRC) and public confidence in RBR, three things need to be shown: (1) manpower/resource savings are significant for both NRC and industry; (2) the process is doable in a reasonable amount of time; and (3) the process, if uniformly applied, results in demonstrably cheaper power and safer plants. In 1992, EPRI performed a qualitative study of the key RBR issues contributing to high O ampersand M costs. The results are given on Table 1. This study is being followed up by an in-depth quantitative cost/benefit study to focus technical work on producing guidelines/procedures for licensing submittals to NRC. The guidelines/procedures necessarily will be developed from successful demonstration projects such as the Fitzpatrick pilot plant study proposed by the New York Power Authority and other generic applications. This paper presents three examples: two motor operated valve projects performed by QUADREX Energy Services Corporation working with utilities in responding to NRC Generic Letter 89-10, and a third project working with Yankee Atomic Electric Company on service water systems at a plant in its service system. These demonstration projects aim to show the following: (1) the relative ease of putting together a technical case based on RBR concepts; (2) clarity in differentiating the various risk trade-offs, and in communicating overall reductions in risk with NRC; and (3) improved prioritization of NRC directives

  12. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  13. US GCFR demonstration plant design

    International Nuclear Information System (INIS)

    Hunt, P.S.; Snyder, H.J.

    1980-05-01

    A general description of the US GCFR demonstration plant conceptual design is given to provide a context for more detailed papers to follow. The parameters selected for use in the design are presented and the basis for parameter selection is discussed. Nuclear steam supply system (NSSS) and balance of plant (BOP) component arrangements and systems are briefly discussed

  14. Performance in the WIPP nondestructive assay performance demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, C.J. [Consolidated Technical Services, Inc., Frederick, MD (United States); Connolly, M.J.; Becker, G.K. [Lockheed Martin Idaho Technologies Company, Idaho Falls, ID (United States)

    1997-11-01

    Measurement facilities performing nondestructive assay (NDA) of wastes intended for disposal at the United States Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) are required to demonstrate their ability to meet specific Quality Assurance Objectives (QAOs). This demonstration is performed, in part, by participation in the NDA Performance Demonstration Program (PDP). The PDP is funded and managed by the Carlsbad Area Office (CAO) of DOE and is conducted by the Idaho National Engineering Laboratory. It tests the characteristics of precision, system bias and/or total uncertainty through the measurement of variable, blind combinations of simulated waste drums and certified radioactive standards. Each facility must successfully participate in the PDP using each different type of measurement system planned for use in waste characterization. The first cycle of the PDP using each different type of measurement system planned for use in waste characterization. The first cycle of the PDP was completed in July 1996 and the second is scheduled for completion by December 1996. Seven sites reported data in cycle 1 for 11 different measurement systems. This paper describes the design and operation of the PDP and provides the performance data from cycle 1. It also describes the preliminary results from cycle 2 and updates the status and future plans for the NDA PDP. 4 refs., 9 figs., 11 tabs.

  15. Desalination demonstration plant using nuclear heat

    International Nuclear Information System (INIS)

    Hanra, M.S.; Misra, B.M.

    1998-01-01

    Most of the desalination plants which are operating throughout the world utilize the energy from thermal power station which has the main disadvantage of polluting the environment due to combustion of fossil fuel and with the inevitable rise in prices of fossil fuel, nuclear driven desalination plants will become more economical. So it is proposed to set up nuclear desalination demonstration plant at the location of Madras Atomic Power Station (MAPS), Kalpakkam. The desalination plant will be of a capacity 6300 m 3 /day and based on both Multi Stage Flash (MSF) and Sea Water Reverse Osmosis (SWRO) processes. The MSF plant with performance ratio of 9 will produce water total dissolved solids (TDS-25 ppm) at a rate of 4500 m 3 /day from seawater of 35000 ppm. A part of this water namely 1000 m 3 /day will be used as Demineralised (DM) water after passing it through a mixed bed polishing unit. The remaining 3500 m 3 /day water will be mixed with 1800 m 3 /day water produced from the SWRO plant of TDS of 400 ppm and the same be supplied to industrial/municipal use. The sea water required for MSF and SWRO plants will be drawn from the intake/outfall system of MAPS which will also supply the required electric power pumping. There will be net 4 MW loss of power of MAPS namely 3 MW for MSF and 1 MW for SWRO desalination plants. The salient features of the project as well as the technical details of the both MSF and SWRO processes and its present status are given in this paper. It also contains comparative cost parameters of water produced by both processes. (author)

  16. Establishment and implementation of performance demonstration system for ultrasonic examination in Korea

    International Nuclear Information System (INIS)

    Kim, Yong-sik

    2007-01-01

    Korea Electric Power Research Institute (KEPRI) and Korea Hydro and Nuclear Power Company (KHNP) developed Korean Performance Demonstration (KPD) system for ultrasonic examination applicable to pressurized light-water reactor and pressurized heavy-water reactor power plants in accordance with ASME Sec. XI App. VIII. In order to develop the KPD system following works were completed. 1) Surveying the welds on piping of all nuclear power plants in Korea, 2) Surveying the bolting configuration of all nuclear power plant in Korea, 3) Determining the number and type of test specimens, 4)Designing the test and the practice specimens, 5) Developing quality assurance procedures for the fabrication of test specimens and system management, 6) Developing generic procedures for manual ultrasonic test, 7) Fabrication and fingerprint of test specimen. After establishing the KPD system, round robin tests were conducted to evaluate the accuracy and reliability of examination results by comparing traditional ASME code and performance demonstration method. KEPRI/KHNP had successfully developed the KPD system to fulfill the performance demonstration requirements of ASME Sec. XI, Appendix VIII, and are executing the performance demonstration test for ultrasonic examination system. (author)

  17. AAEC builds synroc demonstration plant

    International Nuclear Information System (INIS)

    O'Hagan, R.

    1986-01-01

    A demonstration plant to test the feasibility of an Australian-developed method of immobilising radioactive waste is being built at the Australian Atomic Energy Commission's Lucas Heights Research Laboratories. The plant will operate as if radioactive waste was actually being processed, but non-radioactive elements of a similar composition will be used. The process involves the simulated waste being mixed into a slurry with the main SYNROC ingredients and then converted to a powder. The powder is moved about the plant in bellows-type containers by robots

  18. Coal demonstration plants. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The objective of the US DOE demonstration program is to demonstrate and verify second-generation technologies and validate the economic, environmental and productive capacity of a near commercial-size plant by integrating and operating a modular unit using commercial size equipment. These facilities are the final stage in the RD and D process aimed at accelerating and reducing the risks of industrial process implementation. Under the DOE program, contracts for the design, construction, and operation of the demonstration plants are awarded through competitive procedures and are cost shared with the industrial partner. The conceptual design phase is funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded between industry and the government. The government share of the cost involved for a demonstration plant depends on the plant size, location, and the desirability and risk of the process to be demonstrated. The various plants and programs are discussed: Description and status, funding, history, flowsheet and progress during the current quarter. (LTN)

  19. Real Time Demonstration Project XRF Performance Evaluation Report for Paducah Gaseous Diffusion Plant AOC 492

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Robert L [Argonne National Laboratory

    2008-04-03

    This activity was undertaken to demonstrate the applicability of market-available XRF instruments to quantify metal concentrations relative to background and risk-based action and no action levels in Paducah Gaseous Diffusion Plant (PGDP) soils. As such, the analysis below demonstrates the capabilities of the instruments relative to soil characterization applications at the PGDP.

  20. Draft plan for the Waste Isolation Pilot Plant test phase: Performance assessment and operations demonstration

    International Nuclear Information System (INIS)

    1989-04-01

    The mission of the Waste Isolation Pilot Plant (WIPP) Project is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes resulting from United States defense programs. With the Construction Phase of the WIPP facility nearing completion, WIPP is ready to initiate the next phase in its development, the Test Phase. The purpose of the Test Phase is to collect the necessary scientific and operational data to support a determination whether to proceed to the Disposal Phase and thereby designate WIPP a demonstration facility for the disposal of TRU wastes. This decision to proceed to the Disposal Phase is scheduled for consideration by September 1994. Development of the WIPP facility is the responsibility of the United States Department of Energy (DOE), whose Albuquerque Operations Office has designated the WIPP Project Office as Project Manager. This document describes the two major programs to be conducted during the Test Phase of WIPP: (1) Performance Assessment for determination of compliance with the Environmental Protection Agency Standard and (2) Operations Demonstration for evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP facility. 42 refs., 38 figs., 14 tabs

  1. Environmental analysis for pipeline gas demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plant of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.

  2. Risk-based plant performance indicators

    International Nuclear Information System (INIS)

    Boccio, J.L.; Azarm, M.A.; Hall, R.E.

    1991-01-01

    Tasked by the 1979 President's Commission on the Accident at Three Mile Island, the U.S. nuclear power industry has put into place a performance indicator program as one means for showing a demonstrable record of achievement. Largely through the efforts of the Institute of Nuclear Power Operations (INPO), plant performance data has, since 1983, been collected and analyzed to aid utility management in measuring their plants' performance progress. The U.S. Nuclear Regulatory Commission (NRC) has also developed a set of performance indicators. This program, conducted by NRC's Office for the Analysis and Evaluation of Operational Data (AEOD), is structured to present information on plant operational performance in a manner that could enhance the staff's ability to recognize changes in the safety performance. Both organizations recognized that performance indicators have limitations and could be subject to misinterpretation and misuse with the potential for an adverse impact on safety. This paper reports on performance indicators presently in use, e.g., unplanned automatic scrams, unplanned safety system actuation, safety system failures, etc., which are logically related to safety. But, a reliability/risk-based method for evaluating either individual indicators or an aggregated set of indicators is not yet available

  3. Industrial Fuel Gas Demonstration Plant Program. Demonstration plant operation plan (Deliverable No. 38)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Demo Plant Operating Plan is composed of the following sequence of events starting with the training or personnel, familiarizing of the personnel with the plant and completing the long-term run in the following sequences: inspection during construction, plant completion, shakedown of equipment, process unit startup, shakedown of process units, variable run operation and a turnaround. During the construction period, technical personnel from DRC, MLGW and IGT will be at the plant site becoming familiar with the equipment, its installation and all of the auxiliaries so that on completion of construction they will be well grounded on the plant detail and its configuration. At the same time the supervisory operating personnel will have hands on training the gasifier operation at the IGT pilot plant to develop a field for gasifier operation. As a plant sections are completed, they will be checked out in accordance with the contractor and operator (client) procedure as outlined. Subsequent to this, various vendor designs and furnished equipment will be checked out operating-wise and a performance test run if feasible. The actual startup of the plant will be subsequential with the support areas as utilities, coal handling and waste treatment being placed in operation first. Subsequent to this the process units will be placed in operation starting from the rear of the process train and working forward. Thus the downstream units will be operating before the reactor is run on coal. The reactor will be checked out on coke operation.

  4. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1993-03-01

    This permit application has been prepared to obtain a research, development, and demonstration permit to perform pilot-scale treatability testing on the 242-A Evaporator process condensate waste water effluent stream. It provides the management framework, and controls all the testing conducted in the waste water pilot plant using dangerous waste. It also provides a waste acceptance envelope (upper limits for selected constituents) and details the safety and environmental protection requirements for waste water pilot plant testing. This permit application describes the overall approach to testing and the various components or requirements that are common to all tests. This permit application has been prepared at a sufficient level of detail to establish permit conditions for all waste water pilot plant tests to be conducted

  5. Demonstrating the Effects of Light Quality on Plant Growth.

    Science.gov (United States)

    Whitesell, J. H.; Garcia, Maria

    1977-01-01

    Describes a lab demonstration that illustrates the effect of different colors or wavelengths of visible light on plant growth and development. This demonstration is appropriate for use in college biology, botany, or plant physiology courses. (HM)

  6. Human Performance at the Perry Nuclear Power Plant

    International Nuclear Information System (INIS)

    Rabe, Alan W.

    1998-01-01

    Provides a description of human performance training for plant workers as implemented at the Perry Nuclear Power Plant. Practical concepts regarding the training are presented as well as a demonstration of some of the training material. Concepts are drawn from INPO, Reason and Deming. The paper encourages the use of site-wide and individual organizational unit training in human performance management techniques. (author)

  7. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  8. 1000kW on-site PAFC power plant development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, Tomohide; Koike, Shunichi [Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA), Osaka (Japan); Ishikawa, Ryou [New Energy and Industrial Technology Development Organization (NEDO), Tokyo (Japan)

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and New Energy and Industrial Technology Development Organization (NEDO) have been conducting a joint project on development of a 5000kW urban energy center type PAFC power plant (pressurized) and a 1000kW on-site PAFC power plant (non-pressurized). The objective of the technical development of 1000kW on-site PAFC power plant is to realize a medium size power plant with an overall efficiency of over 70% and an electrical efficiency of over 36%, that could be installed in a large building as a cogeneration system. The components and system integration development work and the plant design were performed in 1991 and 1992. Manufacturing of the plant and installation at the test site were completed in 1994. PAC test was carried out in 1994, and generation test was started in January 1995. Demonstration test is scheduled for 1995 and 1996.

  9. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  10. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration

    International Nuclear Information System (INIS)

    D’Alessandro, Bruno; D’Amico, Michele; Desideri, Umberto; Fantozzi, Francesco

    2013-01-01

    Highlights: ► IPRP technology development for distributed conversion of biomass and wastes. ► IPRP demonstrative unit combines a rotary kiln pyrolyzer to a 80 kWe microturbine. ► Main performances and critical issues are pointed out for different residual fuels. -- Abstract: The concept of integrated pyrolysis regenerated plant (IPRP) is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor, where waste heat from GT is used to sustain the pyrolysis process. The IPRP plant provides a unique solution for microscale (below 250 kW) power plants, opening a new and competitive possibility for distributed biomass or wastes to energy conversion systems. The paper summarizes the state of art of the IPRP technology, from preliminary numerical simulation to pilot plant facility, including some new available data on pyrolysis gas from laboratory and pilot plants.

  11. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  12. Achievement report for fiscal 1993 on developing entrained bed coal gasification power plant. Part 5. Survey and research edition for demonstration plant; 1993 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 5. Jissho plant ni kansuru chosa kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    With an objective of developing the coal gasification composite power generation technology, surveys and researches have been carried out on a demonstration plant. This paper summarizes the achievements in fiscal 1993. Based on the achievements having been obtained by the previous fiscal year, the current fiscal year has discussed the method for evaluating the up-scaling, and performed a conceptual design of the demonstration plant. In discussing the demonstration plant in the current fiscal year, identification was made on the basic performance characteristics as the IGCC (atmospheric temperature characteristics, coal type change characteristics, partial load characteristics, methods for plant actuation and shutdown, and utility use amount), and selections were conducted on different systems to be adopted in the demonstration plant, both based on the approximate thermal material balance having been derived in the previous fiscal year. The results of the discussions were summarized as the steam cycle discussion, performance discussion by coal types, partial load characteristics, atmospheric temperature characteristics, secondary air temperature characteristics, discussions to enhance efficiency and reliability in association with the up-scaling, discussions on the utility facilities, discussions on the protection interlock, and forecast on the entire performance according to the approximate thermal material balance. (NEDO)

  13. Nondestructive examinations performance demonstration standpoint of the BCCN (Nuclear Construction Inspection Office)

    International Nuclear Information System (INIS)

    Deschamps, J.; Novat, J.

    1994-01-01

    The part played by in service non-destructive examinations (NDE) in the safety assessment of French nuclear power plants has developed considerably since startup of the first PWR unit 15 years ago. In 15 years of operation and continued plant construction, defects came to light, revealed either by a non-destructive examination or a leak occurring in operation or during hydrostatic test. It is consequently necessary to operate reactors affected by defects already detected or liable to develop according to a known mechanism. This practice is only acceptable if it can be proved that the defects will remain harmless in all situations. This implies that they can be detected without fail beyond a certain threshold, that they can be characterized and that their propensity to develop can be measured. In some cases, only NDE data can justify the continued operation of a reactor. Maximum guarantees as to the performances and reliability of these examinations are consequently indispensable, since plant safety conclusions will be based on their results. This paper discusses: the advantages of an NDE performance demonstration program; practical assessments role; and NDE performance demonstration stages

  14. Implementation status of performance demonstration program for steam generator tubing analysts in Korea

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Lee, Hee Jong; Yoo, Hyun Ju; Nam, Min Woo; Hong, Sung Yull

    2013-01-01

    Some essential components in nuclear power plants are periodically inspected using non destructive examinations, for example ultrasonic, eddy current and radiographic examinations, in order to determine their integrity. These components include nuclear power plant items such as vessels, containments, piping systems, pumps, valves, tubes and core support structure. Steam generator tubes have an important safety role because they constitute one of the primary barriers between the radioactive and non radioactive sides of the nuclear power plant. There is potential that if a tube bursts while a plant is operating, radioactivity from the primary coolant system could escape directly to the atmosphere. Therefore, in service inspections are critical in maintaining steam generator tube integrity. In general, the eddy current testing is widely used for the inspection of steam generator tubes due tube integrity. In general, the eddy current testing is widely used for the inspection of steam generator tubes due to its high inspection speed and flaw detectability on non magnetic tubes. However, it is not easy to analyze correctly eddy current signals because they are influenced by many factors. Therefore, the performance of eddy current data analysts for steam generator tubing should be demonstrated comprehensively. In Korea, the performance of steam generator tubing analysts has been demonstrated using the Qualified Data Analyst program. This paper describes the performance demonstration program for steam generator tubing analysts and its implementation results in Korea. The pass rate of domestic analysts for this program was 71.4%

  15. Implementation status of performance demonstration program for steam generator tubing analysts in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan Hee; Lee, Hee Jong; Yoo, Hyun Ju; Nam, Min Woo [KHNP Central Research Institute, Daejeon (Korea, Republic of); Hong, Sung Yull [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2013-02-15

    Some essential components in nuclear power plants are periodically inspected using non destructive examinations, for example ultrasonic, eddy current and radiographic examinations, in order to determine their integrity. These components include nuclear power plant items such as vessels, containments, piping systems, pumps, valves, tubes and core support structure. Steam generator tubes have an important safety role because they constitute one of the primary barriers between the radioactive and non radioactive sides of the nuclear power plant. There is potential that if a tube bursts while a plant is operating, radioactivity from the primary coolant system could escape directly to the atmosphere. Therefore, in service inspections are critical in maintaining steam generator tube integrity. In general, the eddy current testing is widely used for the inspection of steam generator tubes due tube integrity. In general, the eddy current testing is widely used for the inspection of steam generator tubes due to its high inspection speed and flaw detectability on non magnetic tubes. However, it is not easy to analyze correctly eddy current signals because they are influenced by many factors. Therefore, the performance of eddy current data analysts for steam generator tubing should be demonstrated comprehensively. In Korea, the performance of steam generator tubing analysts has been demonstrated using the Qualified Data Analyst program. This paper describes the performance demonstration program for steam generator tubing analysts and its implementation results in Korea. The pass rate of domestic analysts for this program was 71.4%.

  16. Kimberlina: a zero-emissions demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Pronske, K. [Clean Energy Systems Inc. (USA)

    2007-06-15

    FutureGen may be getting the headlines, but it is not the only superclean demonstration plant in town. In fact, you could argue that other technologies are further down the evolutionary timeline. Case in point: Clean Energy Systems' adaptation of rocket engine technology to radically change the way fuel is burned. The result is a true zero-emissions power plant. Its most distinctive element is an oxy-combustor, similar to one used in rocket engines, that generates steam by burning clean, gaseous fuel in the presence of gaseous oxygen and water. The clean fuel is prepared by processing a conventional fossil fuel such as coal-derived syngas, refinery residues, biomass or biodigester gas, or natural or landfill gas. Combustion takes place at near-stoichiometric conditions to produce a mixture of steam and CO{sub 2} at high temperature and pressure. The steam conditions are suitable for driving a conventional or advanced steam turbine-generator, or a gas turbine modified to be driven by high-temperature steam or to do work as an expansion unit at intermediate pressure. After pressure through the turbine(s), the steam/CO{sub 2} mixture is condensed, cooled, and separated into water and CO{sub 2}. The CO{sub 2} can be sequestered and/or purified and sold for commercial use. Durability and performance tests carried out between March 2005 and March 2006 produced excellent results. CO and NOx emissions are considerably low than those of combined-cycle power plants fuelled by natural gas and using selective catalytic reduction for NOx control. Work is continuing under an NETL grant. Progress and plans are reported in the article. 7 figs.

  17. Performance Demonstration Program Management Plan

    International Nuclear Information System (INIS)

    2005-01-01

    To demonstrate compliance with the Waste Isolation Pilot Plant (WIPP) waste characterization program, each testing and analytical facility performing waste characterization activities participates in the Performance Demonstration Program (PDP). The PDP serves as a quality control check against expected results and provides information about the quality of data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed by an independent organization to each of the facilities participating in the PDP. There are three elements within the PDP: analysis of simulated headspace gases, analysis of solids for Resource Conservation and Recovery Act (RCRA) constituents, and analysis for transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques. Because the analysis for TRU radionuclides using NDA techniques involves both the counting of drums and standard waste boxes, four PDP plans are required to describe the activities of the three PDP elements. In accordance with these PDP plans, the reviewing and approving authority for PDP results and for the overall program is the CBFO PDP Appointee. The CBFO PDP Appointee is responsible for ensuring the implementation of each of these plans by concurring with the designation of the Program Coordinator and by providing technical oversight and coordination for the program. The Program Coordinator will designate the PDP Manager, who will coordinate the three elements of the PDP. The purpose of this management plan is to identify how the requirements applicable to the PDP are implemented during the management and coordination of PDP activities. The other participants in the program (organizations that perform site implementation and activities under CBFO contracts or interoffice work orders) are not covered under this management plan. Those activities are governed by the organization's quality assurance (QA) program and procedures or as otherwise directed by CBFO.

  18. Eddy current NDE performance demonstrations using simulation tools

    International Nuclear Information System (INIS)

    Maurice, L.; Costan, V.; Guillot, E.; Thomas, P.

    2013-01-01

    To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code C armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

  19. Fiscal 1994 achievement report. Development of entrained bed coal gasification power plant (Part 5 - Survey of demonstration plant); 1994 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 5. Jissho plant ni kansuru chosa kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    A survey was conducted of a demonstration plant for developing the technology of integrated coal gasification combined cycle power generation. In fiscal 1994, based on the studies of pilot plant operation conducted up to the preceding fiscal year and on the studies of a demonstration plant (conceptual design of a demonstration plant), systems were examined for still higher performance and economical efficiency. For optimizing the heat source for pulverized coal drying air, an extracted air heat utilizing system was adopted, excellent in performance (approximately 0.5% improvement in absolute value) and in economical efficiency. For reducing the consumption of inert gas for the fluidized bed desulfurization facility, an approximately 30% reduction was found to be possible dependent on gas regeneration conditions in the regeneration tower. For performance improvement with the combined cycle equipment placed under a partial load, the generating-end efficiency was improved approximately 0.2% when only SGC (syngas cooler) was loaded 80% or less and kept at a constant pressure. Studies were also made about how to maintain a constant output with the equipment exposed to air temperature changes. (NEDO)

  20. NDE performance demonstration in the US nuclear power industry - applications, costs, lessons learned, and connection to NDE reliability

    International Nuclear Information System (INIS)

    Ammirato, F.

    1997-01-01

    Periodic inservice inspection (ISI) of nuclear power plant components is performed in the United States to satisfy legal commitments and to provide plant owners with reliable information for managing degradation. Performance demonstration provides credible evidence that ISI will fulfill its objectives. This paper examines the technical requirements for inspection and discusses how these technical needs are used to develop effective performance demonstration applications. NDE reliability is discussed with particular reference to its role in structural integrity assessments and its connection with performance demonstration. It is shown that the role of NDE reliability can range from very small to critical depending on the particular application and must be considered carefully in design of inspection techniques and performance demonstration programs used to qualify the inspection. Finally, the costs, benefits, and problems associated with performance demonstration are reviewed along with lessons learned from more than 15 years of performance demonstration experience in the US. (orig.)

  1. Power-up of Fugen reactor and development of demonstration plant

    International Nuclear Information System (INIS)

    Sawai, Sadamu; Akebi, Michio; Yazaki, Akira.

    1979-06-01

    The Fugen Nuclear Power Station is the 165 MWe prototype plant characterized by heavy water-moderated, boiling light water-cooled, pressure tube type, and was developed by the Power Reactor and Nuclear Fuel Development Corporation, Japan. The plant went into commercial operation on March 20, 1979, in Tsuruga, Fukui Prefecture. Some delay in the overall schedule occurred due to the shortage of cement caused by the oil crisis, more stringent regulations as the result of stress corrosion cracking experienced in BWRs, and design modifications. All functional tests, the final check-up of the whole plant, and remaining modifying works had been completed by March 10, 1978. The minimum criticality was achieved with 22 mixed oxide fuel assemblies on March 20, 1978. Thereafter, the tests on reactor physics, plant dynamics, the performances of components and systems, and radiation and water chemistry have been carried out. 5 MWe was sent to grid system for the first time on July 29, 1978. The commercial operation of the plant was licenced by the Government on March 30, 1979. The conceptual design of the 600 MWe demonstration plant was finished in early 1979, and the detailed design is to be carried out in 1979 and 1980. The main design principle was incorporated in the conceptual design, but some modifications are to be made to reduce the power cost and to facilitate the easy maintenance. (Kako, I.)

  2. Coupling solar photo-Fenton and biotreatment at industrial scale: Main results of a demonstration plant

    International Nuclear Information System (INIS)

    Malato, Sixto; Blanco, Julian; Maldonado, Manuel I.; Oller, Isabel; Gernjak, Wolfgang; Perez-Estrada, Leonidas

    2007-01-01

    This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500 mg L -1 ) containing a non-biodegradable organic substance (α-methylphenylglycine at 500 mg L -1 ), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe 2+ = 20 mg L -1 . Based on pilot plant results, an industrial plant with 100 m 2 of CPC collectors for a 250 L/h treatment capacity has been designed. The solar system discharges the wastewater (WW) pre-treated by photo-Fenton into a biotreatment based on an immobilized biomass reactor. First, results of the industrial plant are also presented, demonstrating that it is able to treat up to 500 L h -1 at an average solar ultraviolet radiation of 22.9 W m -2 , under the same conditions (pH, hydrogen peroxide consumption) tested in the pilot plant

  3. Validation of Sizewell ''B'' ultrasonic inspections -- Messages for performance demonstration

    International Nuclear Information System (INIS)

    Conroy, P.J.; Leyland, K.S.; Waites, C.

    1994-01-01

    At the time that the decisions leading to the construction of the Sizewell ''B'' plant were being made, public concern over the potential hazards of nuclear power was increasing. This concern was heightened by the accident at USA's Three Mile Island plant. The result of this and public pressure was that an extensive public inquiry was held in addition to the UK's normal licensing process. Part of the evidence to the inquiry supporting the safety case relied upon the ability of ultrasonic inspections to demonstrate that the Reactor Pressure Vessel (RPV) and other key components were free from defects that could threaten structural integrity. Evidence from a variety of trials designed to investigate the performance capability of ultrasonic inspection revealed that although ultrasonic inspection had the potential to satisfy this requirement its performance in practice was heavily dependent upon the details of application. It was therefore generally recognized that some form of inspection validation was required to provide assurance that the equipment, procedures and operators to be employed were adequate for purpose. The concept of inspection validation was therefore included in the safety case for the licensing of Sizewell ''B''. The UK validation trials covering the ultrasonic inspections of the Sizewell ''B'' PWR Reactor Pressure Vessel are now nearing completion. This paper summarizes the results of the RPV validations and considers some of the implications for ASME 11 Appendix 8 the US code covering performance demonstration

  4. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul; Hall, Stephen; Morjaria, Mahesh; Chadliev, Vladimir; Milam, Nick; Milan, Christopher; Gevorgian, Vahan

    2017-03-24

    controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.

  5. Early Site Permit Demonstration Program: Plant parameters envelope report

    International Nuclear Information System (INIS)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry's initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants

  6. 40 CFR 63.1585 - How does an industrial POTW treatment plant demonstrate compliance?

    Science.gov (United States)

    2010-07-01

    ... Works Industrial Potw Treatment Plant Description and Requirements § 63.1585 How does an industrial POTW treatment plant demonstrate compliance? (a) An existing industrial POTW treatment plant demonstrates... §§ 63.1586 through 63.1590. Non-industrial POTW Treatment Plant Requirements ...

  7. Performance demonstration program plan for RCRA constituent analysis of solidified wastes

    International Nuclear Information System (INIS)

    1995-06-01

    Performance Demonstration Programs (PDPS) are designed to help ensure compliance with the Quality Assurance Objectives (QAOs) for the Waste Isolation Pilot Plant (WIPP). The PDPs are intended for use by the Department of Energy (DOE) Carlsbad Area Office (CAO) to assess and approve the laboratories and other measurement facilities supplying services for the characterization of WIPP TRU waste. The PDPs may also be used by CAO in qualifying laboratories proposing to supply additional analytical services that are required for other than waste characterization, such as WIPP site operations. The purpose of this PDP is to test laboratory performance for the analysis of solidified waste samples for TRU waste characterization. This performance will be demonstrated by the successful analysis of blind audit samples of simulated, solidified TRU waste according to the criteria established in this plan. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess laboratory performance regarding compliance with the QAOs. The concentration of analytes in the PDP samples will address levels of regulatory concern and will encompass the range of concentrations anticipated in actual waste characterization samples. Analyses that are required by the WIPP to demonstrate compliance with various regulatory requirements and which are included in the PDP must be performed by laboratories that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses and the samples on which they are performed are referred to as WIPP samples for the balance of this document

  8. Demonstration project: Oxy-fuel combustion at Callide-A plant

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Keiji; Misawa, Nobuhiro; Kiga, Takashi; Spero, Chris

    2007-07-01

    Oxy-fuel combustion is expected to be one of the promising systems on CO2 recovery from pulverized-coal power plant, and enable the CO2 to be captured in a more cost-effective manner compared to other CO2 recover process. An Australia-Japan consortium was established in 2004 specifically for the purpose of conducting a feasibility study on the application of oxy-fuel combustion to an existing pulverized-coal power plant that is Callide-A power plant No.4 unit at 30MWe owned by CS Energy in Australia. One of the important components in this study has been the recent comparative testing of three Australian coals under both oxy-fuel and air combustion conditions using the IHI combustion test facilities. The tests have yielded a number of important outcomes including a good comparison of normal air with oxy-fuel combustion, significant reduction in NOx mass emission rates under oxy-fuel combustion. On the basis of the feasibility study, the project under Australia-Japan consortium is now under way for applying oxy-fuel combustion to an existing plant by way of demonstration. In this project, a demonstration plant of oxy-fuel combustion will be completed by the end of 2008. This project aims at recovering CO2 from an actual power plant for storage. (auth)

  9. LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

  10. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  11. Flambeau River Biofuels Demonstration Plant

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert J. [Flambeau River Biofuels, Inc., Park Falls, WI (United States)

    2012-07-30

    Flambeau River BioFuels, Inc. (FRB) proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Park Falls, Wisconsin. The biorefinery was to be co-located at the existing pulp and paper mill, Flambeau River Papers, and when in full operation would both generate renewable energy – making Flambeau River Papers the first pulp and paper mill in North America to be nearly fossil fuel free – and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. FRB planned to replicate this facility at other paper mills after this first demonstration scale plant was operational and had proven technical and economic feasibility.

  12. Industry Application ECCS / LOCA Integrated Cladding/Emergency Core Cooling System Performance: Demonstration of LOTUS-Baseline Coupled Analysis of the South Texas Plant Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vaghetto, Rodolfo [Texas A & M Univ., College Station, TX (United States); Vanni, Alessandro [Texas A & M Univ., College Station, TX (United States); Neptune, Kaleb [Texas A & M Univ., College Station, TX (United States)

    2017-06-01

    Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance during LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.

  13. Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes

    International Nuclear Information System (INIS)

    2006-01-01

    The Performance Demonstration Program (PDP) for Resource Conservation and Recovery Act (RCRA) constituents distributes test samples for analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in solid matrices. Each distribution of test samples is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD; DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department. The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the RCRA PDP. Participating laboratories demonstrate acceptable performance by successfully analyzing single-blind performance evaluation samples (subsequently referred to as PDP samples) according to the criteria established in this plan. PDP samples are used as an independent means to assess laboratory performance regarding compliance with the WAP quality assurance objectives (QAOs). The concentrations of analytes in the PDP samples address levels of regulatory concern and encompass the range of concentrations anticipated in waste characterization samples. The WIPP requires analyses of homogeneous solid wastes to demonstrate compliance with regulatory requirements. These analyses must be performed by laboratories that demonstrate acceptable performance in this PDP. These analyses are referred to as WIPP analyses, and the samples on which they are performed are referred to as WIPP samples. Participating laboratories must analyze PDP samples using the same procedures used for WIPP samples.

  14. Performance Demonstration Initiative U.S. implementation of ASME B and PV code section 11 Appendix 8

    International Nuclear Information System (INIS)

    Becker, F.L.; Ammirato, F.; Huffman, K.

    1994-01-01

    New requirements have now been added to Section 11 as mandatory Appendix 8, ''Performance Demonstration Requirements for Ultrasonic Examination systems''. The appendix was recently published and incorporates performance demonstration requirements for ultrasonic examination equipment, procedures, and personnel. These new requirements will have far reaching and significant impact on the conduct of ISI at all nuclear power plants. For the first time since Section 11 was issued in 1970, the effectiveness of ultrasonic examination procedures and the proficiency of examiners must be demonstrated on reactor pressure vessel (RPV), piping, and bolting markups containing real flaws, Recognizing the importance and complexity of Appendix 8 implementation, representatives from all US nuclear utilities have formed the Performance Demonstration Initiative (PDI) to implement Appendix 8 to provide for uniform implementation

  15. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 5 - Surveys and studies of demonstration plant); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 5. Jissho plant ni kansuru chosa kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Surveys and studies were conducted concerning a demonstration plant for establishing the technology of integrated coal gasification combined cycle, and the fiscal 1995 results are compiled. In this fiscal year, a demonstration plant conceptual design was prepared for assuring smooth transition from a pilot plant to a commercial plant. The design followed the system employed at the Nakoso pilot plant for its gasification power generation. It was decided that the gasification furnace be of the air-blown (oxygen enriched) 2-stage entrained bed type, that the desulfurization system be of the dry type 2-stage fluidized bed type, the dedusting system be of the dry type granular bed type (moving bed type), that the combined cycle power facility be derived from the commercialized gas turbine, and that the cycle of the steam system agree with the integrated coal gasification combined cycle system now under discussion. Studies were made, which covered heat efficiency (generating end/sending end), heat/matter balance, process flow, gas turbine/steam system optimization, comparison in performance with a pilot plant with its dimensions increased, estimation of the performance of each of the facilities, estimation of the construction cost, calculation of the generation cost, environmental friendliness, operating characteristics, acceptable coal types, and the like. (NEDO)

  16. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...

  17. It is now time to proceed with a gas-cooled breeder reactor (GBR) demonstration plant

    International Nuclear Information System (INIS)

    Chermanne, J.

    1976-01-01

    Since 1969, the GBRA has been making studies to provide evidence on questions which were not clear regarding the Gas-cooled Breeder Reactor: design feasibility and performance, safety, strategy and economics, and R and D necessary for a demonstration plant. Studies were carried out on a 1200-MW(e) commercial reference design with pin fuel, which was also used as a basis for a definition of the GBR demonstration plant. During the six years, a great deal of information has been generated at GBRA and it confirms the forecasts of the promoters of the Gas-cooled Breeder Reactor that the GBR is an excellent reactor from all points of view: design - the reactor can be engineered without major difficulty, using present techniques. As far as fuel is concerned, LMFBR fuel technology is applicable plus limited specific development effort. Performance - the GBR is the best breeder with oxide fuel and using conventional techniques. The strategy studies carried out at GBRA have clearly shown that a high performance breeder such as the GBR is absolutely required in large quantities by the turn of the century in order to avoid dependence on natural uranium resources. Regarding safety, a major step forward has been made when an ad hoc group on GBR safety, sponsored by the EEC, concluded that no major difficulties were anticipated which would prevent the GBR reaching adequate safety standards. Detailed economic assessments performed on an item-to-item basis have shown that the cost of a GBR with its high safety standard is about the same as that of an HTR. One can therefore conclude that, with the present cost of natural uranium, the GBR is competitive with the LWRs. Owing to the very limited R and D effort necessary and the obvious safety, economic and strategic advantages of the concept, it is concluded that the development and construction of a GBR demonstration plant must be started now if one wants to secure an adequate energy supply past the turn of the century. (author)

  18. The Evritania (Greece) demonstration plant of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A.; Karabela, A.J. [Aristotle University of Thessaloniki (Greece). Dept. of Chemical Engineering and Chemical Process Engineering Research Institute

    1999-06-01

    This paper is focused on describing the Evritania demonstration plant for pyrolysis of forestry biomass. This plant was constructed in the village of Voulpi, district of Evritania, in central Greece, in 1995, with a threefold purpose; development of know-how, forest fire prevention and rural development. The products are charcoal and bio-oil. The plant capacity is 1200-1450 kg/h of wet biomass and the pyrolysis temperature is approx. 400 deg C. The raw material used is Arbutus unedo, which is an evergreen broad-leaf tree which covers the area. Other agricultural waste could also be used, such as olive pits and cuttings, almond shells and cotton kernels. The paper includes the conceptual process flow sheet, the changes and improvements made during the trial phase, data from the start-up phase, and product characteristics. Comparison of the process with the Alten process is presented. Additionally, comparisons are made of product characteristics with those from other pyrolysis processes. In general, the results obtained are encouraging even though several improvements of the pilot plant are required. (author)

  19. Standard compliance - NDE performance demonstration/inspection in the CANDU industry

    International Nuclear Information System (INIS)

    Choi, E.

    2011-01-01

    CANDU nuclear power plants are operated in 3 provinces in Canada for electric power generation. A table in the paper will show the built and operating plants in Ontario, Quebec, New Brunswick and overseas. The regulator for nuclear power in Canada is the Canadian Nuclear Safety Commission (CNSC). The CNSC holds the plant licensees accountable for compliance to CSA N285.4 for periodic inspections. The Standard basically specifies the 'what, when, where, how, how much and how frequently' NDE is to be done on pressure retaining systems and components in CANDU nuclear power plants. In inspection methods, the Standard specifies they must be non-destructive. The NDE methods were grouped into visual, dimensional, surface, volumetric and integrative. The Standard also specifies that the licensees are responsible for the performance demonstration (PD) of the adequacy of the procedures and the proficiency of the personnel. This paper describes the Standard's requirement in NDE qualification and presents a joint project participated by Canadian and overseas CANDU owners. The sub-project for NDE included providing evidence and technical justification on the adequacy of the procedures and the proficiency of the personnel. The paper describes the qualification methodology followed by the participants. This will be followed by how the participants produced Inspection Specification, tools and procedures, personnel training and qualification programs, test and qualification samples, independent peer reviews and Technical Justification. (author)

  20. Plant performance monitoring program at Krsko NPP

    International Nuclear Information System (INIS)

    Bach, B.; Kavsek, D.

    2004-01-01

    A high level of nuclear safety and plant reliability results from the complex interaction of a good design, operational safety and human performance. This is the reason for establishing a set of operational plant safety performance indicators, to enable monitoring of both plant performance and progress. Performance indicators are also used for setting challenging targets and goals for improvement, to gain additional perspective on performance relative to other plants and to provide an indication of a potential need to adjust priorities and resources to achieve improved overall plant performance. A specific indicator trend over a certain period can provide an early warning to plant management to evaluate the causes behind the observed changes. In addition to monitoring the changes and trends, it is also necessary to compare the indicators with identified targets and goals to evaluate performance strengths and weaknesses. Plant Performance Monitoring Program at Krsko NPP defines and ensures consistent collection, processing, analysis and use of predefined relevant plant operational data, providing a quantitative indication of nuclear power plant performance. When the program was developed, the conceptual framework described in IAEA TECDOC-1141 Operational Safety Performance Indicators for Nuclear Power Plants was used as its basis in order to secure that a reasonable set of quantitative indications of operational safety performance would be established. Safe, conservative, cautious and reliable operation of the Krsko NPP is a common goal for all plant personnel. It is provided by continuous assurance of both health and safety of the public and employees according to the plant policy stated in program MD-1 Notranje usmeritve in cilji NEK, which is the top plant program. Establishing a program of monitoring and assessing operational plant safety performance indicators represents effective safety culture of plant personnel.(author)

  1. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    International Nuclear Information System (INIS)

    1994-10-01

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R ampersand D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined

  2. Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.

  3. Demonstration of reliability centered maintenance

    International Nuclear Information System (INIS)

    Schwan, C.A.; Morgan, T.A.

    1991-04-01

    Reliability centered maintenance (RCM) is an approach to preventive maintenance planning and evaluation that has been used successfully by other industries, most notably the airlines and military. Now EPRI is demonstrating RCM in the commercial nuclear power industry. Just completed are large-scale, two-year demonstrations at Rochester Gas ampersand Electric (Ginna Nuclear Power Station) and Southern California Edison (San Onofre Nuclear Generating Station). Both demonstrations were begun in the spring of 1988. At each plant, RCM was performed on 12 to 21 major systems. Both demonstrations determined that RCM is an appropriate means to optimize a PM program and improve nuclear plant preventive maintenance on a large scale. Such favorable results had been suggested by three earlier EPRI pilot studies at Florida Power ampersand Light, Duke Power, and Southern California Edison. EPRI selected the Ginna and San Onofre sites because, together, they represent a broad range of utility and plant size, plant organization, plant age, and histories of availability and reliability. Significant steps in each demonstration included: selecting and prioritizing plant systems for RCM evaluation; performing the RCM evaluation steps on selected systems; evaluating the RCM recommendations by a multi-disciplinary task force; implementing the RCM recommendations; establishing a system to track and verify the RCM benefits; and establishing procedures to update the RCM bases and recommendations with time (a living program). 7 refs., 1 tab

  4. Worldwide nuclear-plant performance

    International Nuclear Information System (INIS)

    Surrey, J.; Thomas, S.

    1980-01-01

    The authors compare the performance of different reactor systems to identify the determinants of plant performance, to examine the evidence of technological maturation, and to discover the principal causes of outage or unavailability. In the light of the findings, they discuss the implications for the UK regarding reactor choice and technology development. They make no judgements about the relative merits of nuclear and fossil-fuel plants, or about safety. (author)

  5. PA activity by using nuclear power plant safety demonstration and analysis

    International Nuclear Information System (INIS)

    Tsuchiya, Mitsuo; Kamimae, Rie

    1999-01-01

    INS/NUPEC presents one of Public acceptance (PA) methods for nuclear power in Japan, 'PA activity by using Nuclear Power Plant Safety Demonstration and Analysis', by using one of videos which is explained and analyzed accident events (Loss of Coolant Accident). Safety regulations of The National Government are strictly implemented in licensing at each of basic design and detailed design. To support safety regulation activities conducted by the National Government, INS/NLTPEC continuously implement Safety demonstration and analysis. With safety demonstration and analysis, made by assuming some abnormal conditions, what impacts could be produced by the assumed conditions are forecast based on specific design data on a given nuclear power plants. When analysis results compared with relevant decision criteria, the safety of nuclear power plants is confirmed. The decision criteria are designed to help judge if or not safety design of nuclear power plants is properly made. The decision criteria are set in the safety examination guidelines by taking sufficient safety allowance based on the latest technical knowledge obtained from a wide range of tests and safety studies. Safety demonstration and analysis is made by taking the procedure which are summarized in this presentation. In Japan, various PA (Public Acceptance) pamphlets and videos on nuclear energy have been published. But many of them focused on such topics as necessity or importance of nuclear energy, basic principles of nuclear power generation, etc., and a few described safety evaluation particularly of abnormal and accident events in accordance with the regulatory requirements. In this background, INS/NUPEC has been making efforts to prepare PA pamphlets and videos to explain the safety of nuclear power plants, to be simple and concrete enough, using various analytical computations for abnormal and accident events. In results, PA activity of INS/NUPEC is evaluated highly by the people

  6. Safety demonstration test on solvent fire in fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji; Hashimoto, Kazuichiro

    1989-03-01

    This report summarizes a fundamental of results obtained in the Reprocessing Plant Safety Demonstration Test Program which was performed under the contract between the Science and Technology Agency of Japan and the Japan Atomic Energy Research Institute. In this test program, a solvent fire was hypothesized, and such data were obtained as fire behavior, smoke behavior and integrity of exhaust filters in the ventilation system. Through the test results, it was confirmed that under the fire condition in hypothetical accident, the integrity of the cell and the cell ventilation system were maintained, and the safety function of the exhaust filters was maintained against the smoke loading. Analytical results by EVENT code agreed well with the present test data on the thermofluid flow in a cell ventilation system. (author)

  7. Programs to improve plant performance

    International Nuclear Information System (INIS)

    Felmus, N.L.

    1987-01-01

    Looking toward the 1990's, we see a period in which our industry will face the challenge of improving the performance of the nuclear plants which are built and operating. The skills and technology are at hand to make good plant performance a reality and we believe the time has come to use them to achieve that end. As reserve margins decline, utilities and their regulators will increasingly seek to tap the unexploited capacity tied up in plants operating below their optimum availability. This paper describes a number of the programs, plant improvements and operations improvements which can yield a significant increase in nuclear plant availability and capacity factor now and into the 1990's. (author)

  8. Development and demonstration of near-real-time accounting systems for reprocessing plants

    International Nuclear Information System (INIS)

    Cobb, D.D.; Hakkila, E.A.; Dayem, H.A.; Shipley, J.P.; Baker, A.L.

    1981-01-01

    A program to develop and demonstrate near-real-time accounting systems for reprocessing plants has been active at Los Alamos since 1976. The technology has been developed through modeling and simulation of process operation and measurement systems and evaluation of these data using decision analysis techniques. Aspects of near-real-time systems have been demonstrated successfully at the AGNS reprocessng plant as part of a joint study of near-real-time accounting

  9. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  10. Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases

    International Nuclear Information System (INIS)

    2006-01-01

    The Performance Demonstration Program (PDP) for headspace gases distributes sample gases of volatile organic compounds (VOCs) for analysis. Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility's compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement

  11. Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases

    International Nuclear Information System (INIS)

    2007-01-01

    The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility's compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document

  12. Safety analysis report for packaging (onsite) transuranic performance demonstration program sample packaging

    International Nuclear Information System (INIS)

    Mccoy, J.C.

    1997-01-01

    The Transuranic Performance Demonstration Program (TPDP) sample packaging is used to transport highway route controlled quantities of weapons grade (WG) plutonium samples from the Plutonium Finishing Plant (PFP) to the Waste Receiving and Processing (WRAP) facility and back. The purpose of these shipments is to test the nondestructive assay equipment in the WRAP facility as part of the Nondestructive Waste Assay PDP. The PDP is part of the U. S. Department of Energy (DOE) National TRU Program managed by the U. S. Department of Energy, Carlsbad Area Office, Carlsbad, New Mexico. Details of this program are found in CAO-94-1045, Performance Demonstration Program Plan for Nondestructive Assay for the TRU Waste Characterization Program (CAO 1994); INEL-96/0129, Design of Benign Matrix Drums for the Non-Destructive Assay Performance Demonstration Program for the National TRU Program (INEL 1996a); and INEL-96/0245, Design of Phase 1 Radioactive Working Reference Materials for the Nondestructive Assay Performance Demonstration Program for the National TRU Program (INEL 1996b). Other program documentation is maintained by the national TRU program and each DOE site participating in the program. This safety analysis report for packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the TRU PDP sample packaging meets the onsite transportation safety requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for an onsite Transportation Hazard Indicator (THI) 2 packaging. This SARP, however, does not include evaluation of any operations within the PFP or WRAP facilities, including handling, maintenance, storage, or operating requirements, except as they apply directly to transportation between the gate of PFP and the gate of the WRAP facility. All other activities are subject to the requirements of the facility safety analysis reports (FSAR) of the PFP or WRAP facility and requirements of the PDP

  13. Chemical monitoring strategy for the assessment of advanced water treatment plant performance.

    Science.gov (United States)

    Drewes, J E; McDonald, J A; Trinh, T; Storey, M V; Khan, S J

    2011-01-01

    A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.

  14. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2009-01-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  15. Pre-engineering assessment of Enersolve Demonstration Project. Dairy processing plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-07-15

    This study involved evaluation of a dairy processing plant to demonstrate energy conservation potential and developing a strategy to realize energy savings through retrofitting and revamping. The cheese and whey making plant of Agropur Cooperative Agro-Alimentaire located in Quebec was selected as a representative Canadian dairy processing plant. The pre-engineering assessment included a review of existing facility at the plant and plant operation, identification of plant equipment or process steps where substantial economic benefits would result from retrofitting and revamping, and estimation of budgetary cost for the subsequent engineering, procurement, construction management and monitoring of the retrofitted equipment. 3 figs., 2 tabs.

  16. Performance parameters of a standalone PV plant

    International Nuclear Information System (INIS)

    El Fathi, Amine; Nkhaili, Lahcen; Bennouna, Amin; Outzourhit, Abdelkader

    2014-01-01

    Highlights: • We described in details a photovoltaic power plant installed in the remote rural village Elkaria (Essaouira Morocco – 7.2 kWp). • We presented the results of monitoring and some performance parameters of the plant such as load curve. • We discussed the energy management of the plant which is based on the droop mode control. • We presented and discussed the yields and the performance ratio of the plant. - Abstract: In this work we present a detailed description of a 7.2 kWp photovoltaic power plant installed in the remote rural village Elkaria (province of Essaouira in Morocco). This plant supplies 16 households with electricity through a local grid that was installed for this purpose. The results of monitoring some performance parameters of the plant such as load curve, the yields and the performance ratio are presented and discussed. The performance ratio of the PV plant varied between 33% and 70.2%. The low values of this parameter are mainly attributed to the way the battery inverter manages the energy flow

  17. Spanish experience of fuel performance under zinc injection conditions in high duty plants

    International Nuclear Information System (INIS)

    Sanchez, Alicia; Doncel, Nuria

    2008-01-01

    Zinc is being added to the reactor coolant system in three Spanish PWRs (Vandellos II, Asco I and Asco II), owned by Association Nuclear Asco Vandellos AIE (ANAV), to delay Primary Water Stress Corrosion Cracking (PWSCC) initiation. Although additional advantages from zinc addition are expected, in the short term some concern exists concerning fuel performance during the first cycles of zinc addition due to a possible elevation of corrosion products from system materials when zinc is initially added. Elevated corrosion product levels in a high duty plant may cause an enhancement on crud deposited on fuel, increasing Axial Offset Anomaly (AOA) risk and accelerated cladding corrosion. To demonstrate the acceptable performance of ZIRLOTM clad fuel under zinc chemistry at a high duty plant, EPRI's Fuel Reliability Program (FRP) has chosen Vandellos II as a zinc demonstration plant to perform oxide thickness measurements and crud scraping and analysis. This paper presents the results from Vandellos II and Asco II oxide measurements as well as the conclusions from the crud samples analyses performed at Vandellos II. Furthermore, the effect of zinc addition on corrosion product behavior and dose rates are be discussed

  18. The status of performance demonstration in Taiwan

    International Nuclear Information System (INIS)

    Shyu, H.F.; Shong, W.J.

    2004-01-01

    The nuclear authority in Taiwan adopts the ASME Code Section XI, Appendix VIII as a mandatory requirement for the in-service inspection of importance nuclear components. To fulfill this requirement, the ultrasonic testing (UT) Level II of nuclear power plants have to go abroad for the qualification of performance demonstration (PD) hosted by the EPRI, USA. It is time consuming and costs much money. In order to set up domestic PD capability, this project planned and purchased test pieces, prepared qualification procedures and arranged examination site. A prototype PD system for carbon steel piping weld and stainless steel piping weld manual UT has been established from 2002. Until January 2004, five PD qualification sections have been held. The detection accuracy and uncertainty of flaw length sizing of UT were calculated according to the data provided by the examinees. Based on the available data, the flaw detection accuracy was about 89% for both stainless steel and carbon steel. However, the uncertainty of flaw length sizing varied with test piece material and flaw orientation. This analysis can be a reference for related organizations to gain more insight information of UT results. (author)

  19. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  20. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  1. Light and Plants. A Series of Experiments Demonstrating Light Effects on Seed Germination, Plant Growth, and Plant Development.

    Science.gov (United States)

    Downs, R. J.; And Others

    A brief summary of the effects of light on plant germination, growth and development, including photoperiodism and pigment formation, introduces 18 experiments and demonstrations which illustrate aspects of these effects. Detailed procedures for each exercise are given, the expected results outlined, and possible sources of difficulty discussed.…

  2. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    Science.gov (United States)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  3. Savannah River Plant low-level waste incinerator demonstration

    International Nuclear Information System (INIS)

    Tallman, J.A.

    1984-01-01

    A two-year demonstration facility was constructed at the Savannah River Plant (SRP) to incinerate suspect contaminated solid and low-level solvent wastes. Since startup in January 1984, 4460 kilograms and 5300 liters of simulated (uncontaminated) solid and solvent waste have been incinerated to establish the technical and operating data base for the facility. Combustion safeguards have been enhanced, process controls and interlocks refined, some materials handling problems identified and operating experience gained as a result of the 6 month cold run-in. Volume reductions of 20:1 for solid and 25:1 for solvent waste have been demonstrated. Stack emissions (NO 2 , SO 2 , CO, and particulates) were only 0.5% of the South Carolina ambient air quality standards. Radioactive waste processing is scheduled to begin in July 1984. 2 figures, 2 tables

  4. Possible futures for the development of a fusion demonstration plant

    International Nuclear Information System (INIS)

    Nichols, S.P.

    1976-01-01

    As indicated by the Fusion Planning Bulletins, the Division of Controlled Thermonuclear Research is becoming involved in planning with alternative scenarios. The Center for Energy Studies at the University of Texas at Austin has been involved with such planning for several years and has examined various scenarios for fusion power development using the Partitive Analytical Forecasting (PAF) technique. The most recent studies compare the long-term plan presented in WASH-1290, Fusion Power by Magnetic Confinement, with other plans that have been proposed, such as the plan proposed by Kulcinski and Conn of the University of Wisconsin. The study indicates that some of the alternative plans do have possibilities to shorten the required time for the completion of a demonstration fusion plant without increased costs or a decrease in the likelihood of success. The current efforts of the project are in the planning exercises recently completed by committees set up by the DCTR. Further comparisons of alternative scenarios will be performed as part of this effort

  5. Plant diversity to support humans in a CELSS ground based demonstrator

    Science.gov (United States)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  6. Using a plant health system framework to assess plant clinic performance in Uganda

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank B.

    2016-01-01

    and expand, new analytical frameworks and tools are needed to identify factors influencing performance of services and systems in specific contexts, and to guide interventions. In this paper we apply a plant health system framework to assess plant clinic performance, using Uganda as a case study...... factors, influenced by basic operational and financial concerns, inter-institutional relations and public sector policies. Overall, there was a fairly close match between the plant health system attributes and plant clinic performance, suggesting that the framework can help explain system functioning....... A comparative study of plant clinics was carried out between July 2010 and September 2011 in the 12 districts where plant clinics were operating at that time. The framework enabled us to organise multiple issues and identify key features that affected the plant clinics. Clinic performance was, among other...

  7. The characteristics of the prestressed concrete reactor vessel of the HHT demonstration plant

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1979-01-01

    The paper concentrates on the design studies of the HTGR prestressed concrete reactor vessel (PCRV) for the HHT Demonstration Plant. The multi-cavity reactor pressure vessel accommodates all components carrying primary gas, including heat exchangers and gas turbine. For reasons of economics and availability of the reactor plant, generic requirements are made for the PCRV. A short description of the power plant is also presented

  8. Demonstration plant of smoke treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Kawamura, Keita

    1989-01-01

    The acid rain caused by sulfur oxides and nitrogen oxides has become the large social problem as it damages forests, lakes and agricultural crops and also buildings in Europe and America. In such circumstances, concern has been expressed in various countries on the smoke treatment technology, EBA process, which removes the sulfur oxides and nitrogen oxides contained in smoke simultaneously by irradiating electron beam on the smoke which is exhausted from power station boilers and industrial boilers and mainly causes acid rain. The research and development of this technology were begun in 1971 based on the original idea of Ebara Corp., and from 1972, those were advanced as the joint research with Japan Atomic Energy Research Institute. Thereafter, by the joint research with the technical research association on prevention of nitrogen oxides in iron and steel industry, by ammonia addition and irradiation process, the desulfurization and denitration performance was heightened, and the byproduct was successfully captured as powder, in this way, the continuous dry treatment process was established. The demonstration test plant was constructed in a coal-firing power station in Indiana, USA, and the trial operation was carried out from 1985 for two years. (K.I.)

  9. Performance evaluation of cogeneration power plants

    International Nuclear Information System (INIS)

    Bacone, M.

    2001-01-01

    The free market has changed the criteria for measuring the cogeneration plant performances. Further at the technical-economic parameters, are considered other connected at the profits of the power plant [it

  10. IGCC technology and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R G [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K [Sydkraft AB, Malmoe (Sweden)

    1997-12-31

    Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)

  11. IGCC technology and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J. [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R.G. [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K. [Sydkraft AB, Malmoe (Sweden)

    1996-12-31

    Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)

  12. Manufacturing plant performance evaluation by discrete event simulation

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mohd Rasid Osman; Rosnah Mohd Yusuff; Napsiah Ismail; Zulkiflie Leman

    2002-01-01

    A case study was conducted to evaluate the performance of a manufacturing plant using discrete event simulation technique. The study was carried out on animal feed production plant. Sterifeed plant at Malaysian Institute for Nuclear Technology Research (MINT), Selangor, Malaysia. The plant was modelled base on the actual manufacturing activities recorded by the operators. The simulation was carried out using a discrete event simulation software. The model was validated by comparing the simulation results with the actual operational data of the plant. The simulation results show some weaknesses with the current plant design and proposals were made to improve the plant performance. (Author)

  13. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

    Energy Technology Data Exchange (ETDEWEB)

    GREER DA; THIEN MG

    2012-01-12

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The

  14. Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

  15. Field demonstration of ex situ biological treatability of contaminated groundwater at the Strachan gas plant

    International Nuclear Information System (INIS)

    Kurz, M.D.; Stepan, D.J.

    1997-03-01

    A multi-phase study was conducted to deal with the issues of groundwater and soil contamination by sour gas processing plants in Alberta. Phase One consisted of a review of all soil and groundwater monitoring data submitted to Alberta Environment by sour gas plants in accordance with the Canadian Clean Water Act. The current phase involves the development, evaluation and demonstration of selected remediation technologies to address subsurface contamination of sediments and groundwater at sour gas treatment plants with special attention to the presence of natural gas condensate in the subsurface. Results are presented from a pilot-scale biological treatability test that was performed at the Gulf Strachan Natural Gas Processing Plant in Rocky Mountain House, Alberta, where contaminated groundwater from the plant was being pumped to the surface through many recovery wells to control contaminant migration. The recovered groundwater was directed to a pump-and-treat system that consisted of oil-water separation, iron removal, hardness removal, and air stripping, before being reinjected. The pilot-scale biological treatability testing was conducted to evaluate process stability in treating groundwater without pretreatment for iron and hardness reduction and to evaluate the removal of organic contaminants. Results of a groundwater characterization analysis are discussed. Chemical characteristics of the groundwater at the Strachan Gas Plant showed that an ex situ remediation technology would address the dissolved volatile and semi-volatile organic contamination from natural gas condensates, as well as the nitrogenous compounds resulting from the use of amine-based process chemicals. 4 refs., 5 tabs., 4 figs

  16. Thermal performance analysis of a solar heating plant

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Andersen, Ola Lie

    was developed to calculate thermal performances of the plant. In the Trnsys model, three solar collector fields with a total solar collector area of 33,300 m2, a seasonal water pit heat storage of 75,000 m3, a simplified CO2 HP, a simplified ORC unit and a simplified wood chip boiler were included. The energy......Detailed measurements were carried out on a large scale solar heating plant located in southern Denmark in order to evaluate thermal performances of the plant. Based on the measurements, energy flows of the plant were evaluated. A modified Trnsys model of the Marstal solar heating plant...... consumption of the district heating net was modeled by volume flow rate and given forward and return temperatures of the district heating net. Weather data from a weather station at the site of the plant were used in the calculations. The Trnsys calculated yearly thermal performance of the solar heating plant...

  17. Generic demonstration plant study (A/E package)

    International Nuclear Information System (INIS)

    Molzen, D.F.

    1979-01-01

    Molzen--Corbin and Associates, Albuquerque, New Mexico, under contract to Sandia Laboratories, has prepared preliminary drawings, descriptive material and a scale model of the demonstration plant. This information will be made available to A/E firms to assist them in the preparation of proposals for complete construction plans and specifications. The four categories for which preliminary work has been prepared consist of structural work, mechanical work, electrical work, and cost estimates. In addition, preliminary specifications, including a written description of the facility consisting of mechanical electrical systems and operations, a description of the safety features, the basic design criteria, three-dimensional sketches, and a scale model of the design have been prepared. The preliminary drawings indicate the required minimum wall thicknesses, overall dimensions and the necessary layout of the removable concrete blocks and slabs required for radiation protection and control

  18. Current status and technical description of Chinese 2 x 250 MWth HTR-PM demonstration plant

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Wu Zongxin; Wang Dazhong; Xu Yuanhui; Sun Yuliang; Li Fu; Dong Yujie

    2009-01-01

    After the nuclear accidents of Three Mile Island and Chernobyl the world nuclear community made great efforts to increase research on nuclear reactors and to develop advanced nuclear power plants with much improved safety features. Following the successful construction and a most gratifying operation of the 10 MW th high-temperature gas-cooled test reactor (HTR-10), the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University has developed and designed an HTR demonstration plant, called the HTR-PM (high-temperature-reactor pebble-bed module). The design, having jointly been carried out with industry partners from China and in collaboration of experts worldwide, closely follows the design principles of the HTR-10. Due to intensive engineering and R and D efforts since 2001, the basic design of the HTR-PM has been finished while all main technical features have been fixed. A Preliminary Safety Analysis Report (PSAR) has been compiled. The HTR-PM plant will consist of two nuclear steam supply system (NSSS), so called modules, each one comprising of a single zone 250 MW th pebble-bed modular reactor and a steam generator. The two NSSS modules feed one steam turbine and generate an electric power of 210 MW. A pilot fuel production line will be built to fabricate 300,000 pebble fuel elements per year. This line is closely based on the technology of the HTR-10 fuel production line. The main goals of the project are two-fold. Firstly, the economic competitiveness of commercial HTR-PM plants shall be demonstrated. Secondly, it shall be shown that HTR-PM plants do not need accident management procedures and will not require any need for offsite emergency measures. According to the current schedule of the project the completion date of the demonstration plant will be around 2013. The reactor site has been evaluated and approved; the procurement of long-lead components has already been started. After the successful operation of the demonstration plant

  19. Post-installed concrete anchors in nuclear power plants: Performance and qualification

    International Nuclear Information System (INIS)

    Mahrenholtz, Philipp; Eligehausen, Rolf

    2015-01-01

    Graphical abstract: - Highlights: • Review of qualification and design regulations for anchors in nuclear power plants. • First complete set of nuclear anchor load–displacement data and its evaluation ever. • Demonstration of robust test behavior of a qualified post-installed anchor product. - Abstract: In nuclear power plants (NPPs), post-installed anchors are widely used for structural and non-structural connections to concrete. In many countries, anchor products employed for safety relevant applications have to be approved by the authorities. For the high safety standards in force for NPPs, special requirements have to be met to allow for extreme design situations. This paper presents an experimental test program conducted to evaluate the performance of anchors according to the German Guideline for Anchorages in Nuclear Power Plants and Nuclear Technology Installations (DIBt KKW Leitfaden, 2010). After a brief introduction to anchor behavior and the regulative context, the results of tension and shear tests carried out on undercut anchors are discussed. Robust load capacities and relatively small displacements determined for demanding load and crack cycling tests demonstrated the suitability of anchors qualified according to a state-of-the-art qualification guideline

  20. Assessment of materials selection and performance for direct-coal- liquefaction plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Judkins, R.R.; Keiser, J.R.

    1996-09-01

    Several direct coal liquefaction processes have been demonstrated at the pilot plant level in the United States. Presently only one plant remains operational, namely, the Hydrocarbon Technologies, Inc., 4.0- ton-per-day process development unit in Lawrenceville, New Jersey. The period from 1974 to 1982 saw the greatest amount of development of direct coal liquefaction in the United States with four major pilot plants being devoted to variants of this technology. The plants included the SRC-I plant at Wilsonville, Alabama, which operated from 1974 to 1992; the SRC-I/II plant at Fort Lewis, Washington, which operated from 1974 to 1981; the H-Coal plant at Catlettsburg, Kentucky, which operated from 1980 to 1982; and the Exxon Coal Liquefaction Pilot Plant at Baytown, Texas, which operated from 1980 to 1982. Oak Ridge National Laboratory scientists and engineers were actively involved in many phases and technical disciplines at all four of these plants, especially in materials testing, evaluation, and failure analyses. In addition, ORNL materials scientists and engineers conducted reviews of the demonstration and commercial plant designs for materials selections. The ORNL staff members worked closely with materials engineers at the pilot plants in identifying causes of materials degradation and failures, and in identifying solutions to these problems. This report provides a comprehensive summary of those materials activities. Materials performance data from laboratory and coal liquefaction pilot plant tests, failure analyses, and analyses of components after use in pilot plants were reviewed and assessed to determine the extent and causes of materials degradation in direct coal liquefaction process environments. Reviews of demonstration and commercial plant design documents for materials selections were conducted. These reviews and assessments are presented to capture the knowledge base on the most likely materials of construction for direct coal liquefaction plants.

  1. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Appendix D. Impact assessment. [Demonstration plant at Newman, KY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-21

    In appendix D, the air quality condition for various pollutants in the areas surrounding the proposed demonstration plant site is given with respect to attainment or non-attainment of US EPA regulations. The minimum pollutant emission rates for these regulated and for several other pollutants are given. Then the estimated emission rates from the proposed plant are given for a dozen pollutants which exceed these limits and therefore require an ambient air quality analysis. This involves taking into account the estimated emission of these pollutants from the proposed plant and from other sources in the surrounding area. Finally, background data from the surrounding area including meteorological data and sampling of regulated pollutants are given. (LTN)

  2. Performance evaluations of a geothermal power plant

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    Thermodynamic analysis of an operational 7.5 MWe binary geothermal power plant in Tuzla-Turkey is performed, through energy and exergy, using actual plant data to assess its energetic and exergetic performances. Eight performance-related parameters, namely total exergy destruction ratio, component exergy destruction ratio, dimensionless exergy destruction, energetic renewability ratio, exergetic renewability ratio, energetic reinjection ratio, exergetic reinjection ratio and improvement potential are investigated. Energy and exergy losses/destructions for the plant and its units are determined and illustrated using energy and exergy flow diagrams. The largest energy and exergy losses occur in brine reinjection unit. The variation of the plant energy efficiency is found between 6% and 12%. Exergy efficiency values change between 35 and 49%. The annual average energy and exergy efficiencies are found as 9.47% and 45.2%, respectively. - Highlights: → Investigation of a geothermal system energetically and exergetically. → Performance assessment of the system through energy and exergy efficiencies. → Utilization of temperature distribution in exergy calculations. → Evaluation of eight energetic and exergetic parameters for the system.

  3. Safety demonstration tests of air-ventilation system for the postulated explosive burning in a cell of fuel-reprocessing plant

    International Nuclear Information System (INIS)

    Takada, Junichi; Suzuki, Motoe; Tukamoto, Michio; Koike, Tadao; Nishio, Gunji

    1995-03-01

    Safety demonstration tests of an explosive burning in a cell in the reprocessing plant has been carried out in JAERI under the auspices of the Science and Technology Agency, to evaluate the safety of an air-ventilation system during the hypothetical explosion. The postulated explosive burning of organic solvent mixed with nitric acid was simulated by solid explosives. The demonstration test was performed using an industrial scale experimental facility simulating to the ventilation system of the large scale reprocessing plant in JAPAN. Propagations of pressure, temperature, and gas velocity through cells and ducts in the ventilation system were measured during the explosive burning under deflagration. Experimental data in this report can be used to evaluate the transport phenomena of radioactive materials in the ventilation system during the explosion, and also to verify computer code CELVA for the safety analysis of ventilation system in the event of explosion accidents. (author)

  4. Guidance on the implementation of a risk based safety performance monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Sewell, R.T.; Kuritzky, A.S.; Khatib-Rahbar, M.

    1997-05-01

    The principal objective of the present study is to review and evaluate existing Performance Indicator (PI) monitoring programs, and to develop and demonstrate an overall PSA-based methodology and framework for the monitoring and use of risk-based PIs and SIs (Safety Indicator), that would enable: Identification of trends and patterns in safety performance at a specific plant and a population of plants; Assessment of the significance of the trends and patterns; Identification of precursors of accident sequences and safety reductions; Identification of the most critical functional areas of concern, especially as they relate to a defense-in-depth safety philosophy; Comparison of safety performance trends at a plant with those at comparable plants; Incorporation of the PIs and SIs into a risk- and performance-based decision process. To support the overall project objective, it is important that information needs and data collection procedures are clearly outlined. Of key significance in this regard is the premise that a performance monitoring system should not be burdened by an excessive number of low-level PIs that may have only a peripheral relationship to safety. Other supporting objectives of the study include: To identify and discuss other issues pertaining to the practical implementation of a safety performance monitoring system (outlining the databases and algorithms needed); and to demonstrate implementation of the preliminary guidance for monitoring and use of the selected set of PIs and SIs, within the proposed framework, via application to the operating history of a NPP having a PSA and readily available event data

  5. Evaluation of the uranium enrichment demonstration plant project

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the organization system of the uranium enrichment business is evaluated, based on the operation of the uranium enrichment demonstration plant. As a result, in uranium enrichment technology development or business, it was acknowledged that maintenance of the organization which has the Trinity of a research/engineering/operation was necessary in an industrialization stage by exceptional R and D cycle. Japan Nuclear Fuel Ltd. (JNFL) set up the Rokkashomura Aomori Uranium Enrichment Research and Development Center in November 2000. As a result, the system that company directly engaged in engineering development was prepared. And results obtained in this place is expected toward certain establishment of the uranium enrichment business of Japan. (author)

  6. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J.; Leo, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); O`Shea, T.P. [Santa Clara Demonstration Project, CA (United States)

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  7. Radioactive waste incineration system cold demonstration test

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Takaoku, Yoshinobu; Koyama, Shigeru; Nagae, Madoka; Seike, Yasuhiko; Yamanaka, Yasuhiro; Shibata, Kenji; Manabe, Kyoichi

    1984-12-01

    To demonstrate Waste Incineration System (WIS) which our company has been licensed by Combustion Engineering Inc., USA we installed a demonstration test plant in our Hiratsuka Research Laboratory and started the demonstration test on January 1984. One of the characteristics of this system is to be able to process many kinds of wastes with only one system, and to get high volume reduction factors. In our test plant, we processed paper, cloth, wood, polyethylene sheets as the samples of solid combustible wastes and spent ion exchange resins with incineration and processed condensed liquid wastes with spray drying. We have got good performances and enough Decontamination Factor (DF) data for the dust control equipment. In this paper, we introduce this demonstration test plant and report the test results up to date. (author).

  8. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the

  9. Instrumentation and process control for fossil demonstration plants. Quarterly technical progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    LeSage, L.G.

    1977-07-01

    Work has been performed on updating the study of the state-of-the-art of instrumentation for Fossil Demonstration Plants (FDP), development of mass-flow and other on-line instruments for FDP, process control analysis for FDP, and organization of a symposium on instrumentation and control for FDP. A Solids/Gas Flow Test Facility (S/GFTF) under construction for instrument development, testing, evaluation, and calibration is described. The development work for several mass-flow and other on-line instruments is described: acoustic flowmeter, capacitive density flowmeter, neutron activation flowmeter and composition analysis system, gamma ray correlation flowmeter, optical flowmeter, and capacitive liquid interface level meter.

  10. Objective indicators of organizational performance at nuclear power plants

    International Nuclear Information System (INIS)

    Olson, J.; Osborn, R.N.; Jackson, D.H.; Shikiar, R.

    1986-01-01

    This report summarizes research conducted on the development and validation of organizational performance measures at operating nuclear power plants. Publicly available data, including measures from Licensee Event Reports, operating and outage data, and violations data, are used to predict penultimate measures of plant safety. Penultimate measures of safety include potentially significant events, overexposures and near overexposures, and several radiological release measures. The 1981 and 1982 performance measures are used in correlation and regression analyses to predict performance on the penultimate safety measures in 1982 and 1983. Many of the plant performance measures are consistently predictive of the frequency of potentially significant events. No strong, consistent predictors emerge for exposures or liquid radiological releases. Several performance measures are consistent predictors of gaseous releases. The regression analyses indicate that the predictors do not tend to combine in consistent, multivariate patterns, and controls for plant age, size, type, region, and fuel cycle stage do not substantially affect the results. The analysis concludes that existing performance data do appear to be predictive of some aspects of plant safety performance. The report recommends that more reliable, summary performance measures be created by combining several of the performance measures tested in the current analysis

  11. Demonstration of an automated on-line surveillance system at a commercial nuclear power plant

    International Nuclear Information System (INIS)

    Smith, C.M.; Sweeney, F.J.

    1983-01-01

    As a first step in demonstrating the practicality of performing continuous on-line surveillance of the performance of nuclear steam supply systems using noise related techniques, Oak Ridge National Laboratory is operating a computerized noise signal data acquisition and processing system at the Sequoyah Unit 1 Nuclear Plant, an 1148 MWe four-loop Westinghouse pressurized water reactor (PWR) located near Chattanooga, Tennessee. The principal objective is to establish, with a degree of continuity and completeness not previously achieved, the long-term characteristics of signals from neutron detectors and process sensors in order to evaluate the feasibility of detecting and diagnosing anomalous reactor conditions by means of changes in these signals. The system is designed to automatically screen the gathered data, using a number of descriptors derived from the power spectra of the monitored signals, and thereby select for the noise analyst's perusal only those data which differ statistically from norms which the system has previously established

  12. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Rajive Ganguli

    2012-01-01

    Full Text Available The impact of particle size distribution (PSD of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal, emissions (SO2, NOx, CO, and carbon content of ash (fly ash and bottom ash. The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2, NOx, and CO. Additionally, two tests where stack mercury (Hg data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal. These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency and thereby, increasing their marketability.

  13. Chinese nuclear heating test reactor and demonstration plant

    International Nuclear Information System (INIS)

    Wang Dazhong; Ma Changwen; Dong Duo; Lin Jiagui

    1992-01-01

    In this report the importance of nuclear district heating is discussed. From the viewpoint of environmental protection, uses of energy resources and transport, the development of nuclear heating in China is necessary. The development program of district nuclear heating in China is given in the report. At the time being, commissioning of the 5 MW Test Heating Reactor is going on. A 200 MWt Demonstration Plant will be built. In this report, the main characteristics of these reactors are given. It shows this type of reactor has a high inherent safety. Further the report points out that for this type of reactor the stability is very important. Some experimental results of the driving facility are included in the report. (orig.)

  14. Evaluating and improving nuclear power plant operating performance

    International Nuclear Information System (INIS)

    1999-07-01

    This report aims to provide the basis for improvements in the understanding of nuclear power plants operation and ideas for improving future productivity. The purpose of the project was to identify good practices of operating performance at a few of the world's most productive plants. This report was prepared through a series of consultants meetings, a specialists meeting and an Advisory Group meeting with participation of experts from 23 Member States. The report is based on self-assessment of half a dozen plants that have been chosen as representatives of different reactor types in as many different countries, and the views and assessment of the participants on good practices influencing plant performance. Three main areas that influence nuclear power plant availability and reliability were identified in the discussions: (1) management practices, (2) personnel characteristics, and (3) working practices. These areas cover causes influencing plant performance under plant management control. In each area the report describes factors or good practices that positively influence plant availability. The case studies, presented in annexes, contain the plant self-assessment of areas that influence their availability and reliability. Six plants are represented in the case studies: (1) Dukovany (WWER, 1760 MW) in the Czech Republic; (2) Blayais (PWR, 3640 MW) in France; (3) Paks (WWER, 1840 MW) in Hungary; (4) Wolsong 1 (PHWR, 600 MW) in the Republic of Korea; (5) Trillo 1 (PWR, 1066 MW) in Spain; and (6) Limerick (BWR, 2220 MW) in the United States of America

  15. Performance demonstration tests for eddy current inspection of steam generator tubing

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1996-05-01

    This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given

  16. Performance demonstration tests for eddy current inspection of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1996-05-01

    This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given.

  17. Performance demonstration program plan for analysis of simulated headspace gases

    International Nuclear Information System (INIS)

    1995-06-01

    The Performance Demonstration Program (PDP) for analysis of headspace gases will consist of regular distribution and analyses of test standards to evaluate the capability for analyzing VOCs, hydrogen, and methane in the headspace of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each distribution is termed a PDP cycle. These evaluation cycles will provide an objective measure of the reliability of measurements performed for TRU waste characterization. Laboratory performance will be demonstrated by the successful analysis of blind audit samples of simulated TRU waste drum headspace gases according to the criteria set within the text of this Program Plan. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess laboratory performance regarding compliance with the QAPP QAOs. The concentration of analytes in the PDP samples will encompass the range of concentrations anticipated in actual waste characterization gas samples. Analyses which are required by the WIPP to demonstrate compliance with various regulatory requirements and which are included in the PDP must be performed by laboratories which have demonstrated acceptable performance in the PDP

  18. Plant operator performance evaluation system

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Fukuda, Mitsuko; Kubota, Ryuji.

    1989-01-01

    A plant operator performance evaluation system to analyze plant operation records during accident training and to identify and classify operator errors has been developed for the purpose of supporting realization of a training and education system for plant operators. A knowledge engineering technique was applied to evaluation of operator behavior by both even-based and symptom-based procedures, in various situations including event transition due to multiple failures or operational errors. The system classifies the identified errors as to their single and double types based on Swain's error classification and the error levels reflecting Rasmussen's cognitive level, and it also evaluates the effect of errors on plant state and then classifies error influence, using 'knowledge for phenomena and operations', as represented by frames. It has additional functions for analysis of error statistics and knowledge acquisition support of 'knowledge for operations'. The system was applied to a training analysis for a scram event in a BWR plant, and its error analysis function was confirmed to be effective by operational experts. (author)

  19. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    DOE Carlsbad Field Office

    2001-01-01

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to

  20. Evaluating and improving nuclear power plant operating performance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report aims to provide the basis for improvements in the understanding of nuclear power plants operation and ideas for improving future productivity. The purpose of the project was to identify good practices of operating performance at a few of the world`s most productive plants. This report was prepared through a series of consultants meetings, a specialists meeting and an Advisory Group meeting with participation of experts from 23 Member States. The report is based on self-assessment of half a dozen plants that have been chosen as representatives of different reactor types in as many different countries, and the views and assessment of the participants on good practices influencing plant performance. Three main areas that influence nuclear power plant availability and reliability were identified in the discussions: (1) management practices, (2) personnel characteristics, and (3) working practices. These areas cover causes influencing plant performance under plant management control. In each area the report describes factors or good practices that positively influence plant availability. The case studies, presented in annexes, contain the plant self-assessment of areas that influence their availability and reliability. Six plants are represented in the case studies: (1) Dukovany (WWER, 1760 MW) in the Czech Republic; (2) Blayais (PWR, 3640 MW) in France; (3) Paks (WWER, 1840 MW) in Hungary; (4) Wolsong 1 (PHWR, 600 MW) in the Republic of Korea; (5) Trillo 1 (PWR, 1066 MW) in Spain; and (6) Limerick (BWR, 2220 MW) in the United States of America Figs, tabs

  1. A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom

    Science.gov (United States)

    Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric

    2015-01-01

    A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…

  2. The Blend Down Monitoring System Demonstration at the Padijcah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Benton, J.; Close, D.; Johnson, W. Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-01-01

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor 235 U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF 6 flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities

  3. Safety demonstration tests of postulated solvent fire accidents in extraction process of a fuel reprocessing plant, (2)

    International Nuclear Information System (INIS)

    Tukamoto, Michio; Takada, Junichi; Koike, Tadao; Nishio, Gunji; Uno, Seiichiro; Kamoshida, Atsusi; Watanabe, Hironori; Hashimoto, Kazuichiro; Kitani, Susumu.

    1992-03-01

    Demonstration tests of hypothetical solvent fire in an extraction process of the reprocessing plant were carried out from 1984 to 1985 in JAERI, focusing on the confinement of radioactive materials during the fire by a large-scale fire facility (FFF) to evaluate the safety of air-ventilation system in the plant. Fire data from the demonstration test were obtained by focusing on fire behavior at cells and ducts in the ventilation system, smoke generation during the fire, transport and deposition of smoke containing simulated radioactive species in the ventilation system, confinement of radioactive materials, and integrity of HEPA filters by using the FFF simulating an air-ventilation system of the reference reprocessing plant in Japan. The present report is published in a series of the report Phase I (JAERI-M 91-145) of the demonstration test. Test results in the report will be used for the verification of a computer code FACE to evaluate the safety of postulated fire accidents in the reprocessing plant. (author)

  4. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...

  5. Demonstration tokamak-power-plant study (DEMO)

    International Nuclear Information System (INIS)

    1982-09-01

    A study of a Demonstration Tokamak Power Plant (DEMO) has been completed. The study's objective was to develop a conceptual design of a prototype reactor which would precede commercial units. Emphasis has been placed on defining and analyzing key design issues and R and D needs in five areas: noninductive current drivers, impurity control systems, tritium breeding blankets, radiation shielding, and reactor configuration and maintenance features. The noninductive current drive analysis surveyed a wide range of candidates and selected relativistic electron beams for the reference reactor. The impurity control analysis considered both a single-null poloidal divertor and a pumped limiter. A pumped limiter located at the outer midplane was selected for the reference design because of greater engineering simplicity. The blanket design activity focused on two concepts: a Li 2 O solid breeder with high pressure water cooling and a lead-rich Li-Pb eutectic liquid metal breeder (17Li-83Pb). The reference blanket concept is the Li 2 O option with a PCA structural material. The first wall concept is a beryllium-clad corrugated panel design. The radiation shielding effort concentrated on reducing the cost of bulk and penetration shielding; the relatively low-cost outborad shield is composed of concrete, B 4 C, lead, and FE 1422 structural material

  6. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.

    Science.gov (United States)

    Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J

    2009-07-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.

  7. Utility experience using THERMAC for plant thermal performance analysis

    International Nuclear Information System (INIS)

    Jain, P.K.; Doran, K.J.

    1993-01-01

    THERMAC is a state-of-the-art software package designed to assist those responsible for monitoring and evaluating the thermal performance of fossil and nuclear power plants. It is an integrated program, available on PCs and selected workstations, that combines strong analytical capabilities with a graphical user interface and object-oriented database. The software accurately analyses all of the components of a power plant from first principles. The graphical user interface is employed to build plant specific models; it can also be used to create custom screen displays. THERMAC is able to read plant measurements and statistically account for any missing or erroneous plant data; it does not require any additional plant instrumentation. THERMAC can be used to archive historical data, generate customized trending plots and periodic performance reports. open-quotes What-if close-quote studies can be conducted to predict the impact of corrective actions on thermal performance

  8. Preparation for full scale demonstration of an air staged gasifier plant. Technical project development; For combined heat and power production with wood chips; Forberedelse til fuldskala demonstration af trinopdelt forgasningsanlaeg. Teknisk projektudvikling. Delrapport

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.

    2011-04-15

    The project has aimed to further develop the technology for staged biomass gasification and establish an organizational and financial model to ensure that the technology can be introduced on the market. This report describes the technique in an upcoming demonstration plant. A complete planning and design of a demonstration plant with a capacity of 300 kW electric power and 700 kW heat was prepared. That is four times more than the pilot plant at Graested District Heating (Castor plant) can produce. A full scale demonstration plant with bio-gasification technology for wood chips will be established and put into operation in 2012. (ln)

  9. An electron beam flue gas treatment plant for a coal fired thermal power station. EBA demonstration plant in Chengdu thermal power station (China EBA Project)

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Nakanishi, Ikuo; Shi, Jingke

    1999-01-01

    Ebara's electron beam flue gas treatment plant was installed and is being demonstrated in Chengdu Thermal Power Station, Sichuan, China. The demonstration is proving that this plant is fully capable of meeting the target removal of sulfur dioxides from flue gas (flow rate : 300-thousand m 3 /h). Recovered by-products, namely ammonium sulfate and ammonium nitrate, from the treatment were actually tested as fertilizers, the result of which was favorable. The sale and distribution of these by-products are already underway. In May 1995, this plant was presented the certificate of authorization by China's State Power Corporation. It is noted that this was the first time a sulfur dioxide removal plant was certified as such in China. (author)

  10. On the plant operators performance during earthquake

    International Nuclear Information System (INIS)

    Kitada, Y.; Yoshimura, S.; Abe, M.; Niwa, H.; Yoneda, T.; Matsunaga, M.; Suzuki, T.

    1994-01-01

    There is little data on which to judge the performance of plant operators during and after strong earthquakes. In order to obtain such data to enhance the reliability on the plant operation, a Japanese utility and a power plant manufacturer carried out a vibration test using a shaking table. The purpose of the test was to investigate operator performance, i.e., the quickness and correctness in switch handling and panel meter read-out. The movement of chairs during earthquake as also of interest, because if the chairs moved significantly or turned over during a strong earthquake, some arresting mechanism would be required for the chair. Although there were differences between the simulated earthquake motions used and actual earthquakes mainly due to the specifications of the shaking table, the earthquake motions had almost no influence on the operators of their capability (performance) for operating the simulated console and the personal computers

  11. Performance measures for aging of nuclear power plants

    International Nuclear Information System (INIS)

    Ross, D.F. Jr.

    1993-01-01

    The Nuclear Power Plant licenses are granted by the US Nuclear Regulatory Commission (NRC) for a 40-year term. There is at present consideration being given to extending the authorized service lifetime beyond that, perhaps for a total of 60 or 70 years total. A logical concern for such a length of operation is whether the plant ages in such a way as to be significantly less safe as it gets older. As a corollary to this, there would be the question as to how to measure a diminution in plant safety. Each operating utility has, of course, ways to observe the plant performance. It has maintenance and surveillance programs which are used for this purpose. The NRC maintains a presence at each operating plant in the form of resident inspectors. The NRC also receives utility reports which may then be used to synthesize operating performance. It also reviews plant performance directly through what is known as the Systematic Assessment of Licensee Performance (SALP). In the paper the various data management programs used by the NRC will be described. The results of each program is presented, and observations are made as to the potential effect of age on safety performance. It is also necessary to define the size of the population being examined. There are at present 109 operating reactors. The age distribution is used to normalize the data. Some of the indicators discussed in this paper are concerned more with the indirect effect of aging, such as inadvertent shutdown. The regulated industry maintains a program known as the Nuclear Power Reliability Data System (NPRDS) to which the electric utilities participate in a voluntary manner. Data from NPRDS can be accessed to observe the direct aging effect; this is not covered in this paper. To the degree that plant operating staff learns how to cope with aging equipment and operate in a safe manner nonetheless, the performance indicators would not fully reflect the aging effect

  12. St. Louis demonstration final report: refuse processing plant equipment, facilities, and environmental evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Fiscus, D.E.; Gorman, P.G.; Schrag, M.P.; Shannon, L.J.

    1977-09-01

    The results are presented of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and the power plants. Data on plant material flows and operating parameters, plant operating costs, characteristics of plant material flows, and emissions from various processing operations were obtained during a testing program encompassing 53 calendar weeks. Refuse derived fuel (RDF) is the major product (80.6% by weight) of the refuse processing plant, the other being ferrous metal scrap, a marketable by-product. Average operating costs for the entire evaluation period were $8.26/Mg ($7.49/ton). The average overall processing rate for the period was 168 Mg/8-h day (185.5 tons/8-h day) at 31.0 Mg/h (34.2 tons/h). Future plants using an air classification system of the type used at the St. Louis demonstration plant will need an emissions control device for particulates from the large de-entrainment cyclone. Also in the air exhaust from the cyclone were total counts of bacteria and viruses several times higher than those of suburban ambient air. No water effluent or noise exposure problems were encountered, although landfill leachate mixed with ground water could result in contamination, given low dilution rates.

  13. Field Demonstration of Fuel Crud Filtration System at Ulchin Plant

    International Nuclear Information System (INIS)

    Kang, Duk-Won; Lee, Doo-Ho; Park, Jong-Youl; Choi, In-Kyu

    2007-01-01

    Crud deposited onto the fuel assemblies in nuclear power plants was not a serious problem until an upper core flux depression named Axial Offset Anomaly (AOA) was found at Callaway, USA in 1989. Though the mechanism of an AOA is not completely understood, crud is believed to be a key component of initiating AOA. After the sufficient amount of corrosion products in the reactor cooling system are deposited on the fuel clad by a sub-cooled nucleate boiling, boron is adsorbed in the crud. Thus a measurable reduction in the neutron flux occurs which causes an AOA problem. A filtration system has been developed to remove the fuel crud from irradiated fuel assemblies for mitigating the axial offset anomaly under a technical cooperation agreement with DEI (Dominion Engineering Inc.). This filtration system with a fuel cleaning fixture was successfully demonstrated at Ulchin plant unit 2. Within several minutes, detachable crud deposits were effectively removed from the clad surfaces of the fuel assembly. Also, to characterize the crud particles for each fuel assembly, a small crud sampling device and radiation monitor devices were connected to the filtration system during the cleaning operation. In this study, we completed a functional test and demonstration of an ultrasonic fuel cleaning system by using four spent fuel assemblies. It took only 5 minutes to remove the fuel crud from each fuel assembly. In addition, collective dose rates indicated an average of 8 R/Hr per assembly

  14. Performance of High Temperature Filter System for Radioactive Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Park, Seung Chul; Hwang, Tae Won; Shin, Sang Won; Ha, Jong Hyun; Kim, Hey Suk; Park, So Jin

    2004-01-01

    Important operation parameters and performance of a high temperature ceramic candle filter system were evaluated through a series of demonstration tests at a pilot-scale vitrification plant. At the initial period of each test, due to the growth of dust cake on the surface of ceramic candles, the pressure drop across the filter media increased sharply. After that it became stable to a certain range and varied continuously proportion to the face velocity of off-gas. On the contrary, at the initial period of each test, the permeability of filter element decreased rapidly and then it became stable. Back flushing of the filter system was effective under the back flushing air pressure range of 3∼5 bar. Based on the dust concentrations measured by iso-kinetic dust sampling at the inlet and outlet point of HTF, the dust collection efficiency of HTF evaluated. The result met the designed performance value of 99.9%. During the demonstration tests including a hundred hour long test, no specific failure or problem affecting the performance of HTF system were observed.

  15. Fuzzy inference system for evaluating and improving nuclear power plant operating performance

    International Nuclear Information System (INIS)

    Guimaraes, Antonio Cesar F.; Lapa, Celso Marcelo Franklin

    2003-01-01

    This paper presents a fuzzy inference system (FIS) as an approach to estimate Nuclear Power Plant (NPP) performance indicators. The performance indicators for this study are the energy availability factor (EAF) and the planned (PUF) and unplanned unavailability factor (UUF). These indicators are obtained from a non analytical combination among the same operational parameters. Such parameters are, for example, environment impacts, industrial safety, radiological protection, safety indicators, scram rate, thermal efficiency, and fuel reliability. This approach uses the concept of a pure fuzzy logic system where the fuzzy rule base consists of a collection of fuzzy IF-THEN rules. The fuzzy inference engine uses these fuzzy IF-THEN rules to determine a mapping from fuzzy sets in the input universe of discourse to fuzzy sets in the output universe of discourse based on fuzzy logic principles. The results demonstrated the potential of the fuzzy inference to generate a knowledge basis that correlate operations occurrences and NPP performance. The inference system became possible the development of the sensitivity studies, future operational condition previsions and may support the eventual corrections on operation of the plant

  16. Performance of Generating Plant: Managing the Changes. Part 1: International availability data exchange for thermal generating plant

    Energy Technology Data Exchange (ETDEWEB)

    Stallard, G.S.; Deschaine, R. [Black and Veatch (United States)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 1 (WG1). WG1's primary focus is to analyse the best ways to measure, evaluate, and apply power plant performance and availability data to promote plant performance improvements worldwide. The paper explores the specific work activities of 2004-2007 to extend traditional analysis and benchmarking frameworks. It is divided into two major topics: Overview of current electric supply industry issues/trends; and, Technical Methods/Tools to evaluate performance in today's ESI.

  17. Performance demonstration requirements for eddy current steam generator tube inspection

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1992-10-01

    This paper describes the methodology used for developing performance demonstration tests for steam generator tube eddy current (ET) inspection systems. The methodology is based on statistical design principles. Implementation of a performance demonstration test based on these design principles will help to ensure that field inspection systems have a high probability of detecting and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented. Probability of detection and flaw sizing tests are described

  18. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2001-01-01

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB's will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components

  19. Design consideration on hydrogen production demonstration plant of thermochemical IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Sakaba, Nariaki; Onuki, Kaoru; Hino, Ryutaro

    2009-03-01

    Preliminary design study was carried out on the hydrogen production demonstration plant of thermochemical IS process. In the pilot test, hydrogen production will be examined under prototypical condition using an apparatus made of industrial materials, which is driven by the sensible heat of helium gas heated by an electric heater that simulates the High Temperature Engineering Test Reactor (HTTR). Tentative system condition was defined considering the HTTR specification and the experience on the construction and the operation of the mock-up test facility using methane reforming for hydrogen production. The process condition and the system flow diagram were discussed to meet the system condition. Based on the defined process condition, types of the main components were discussed taking the corrosion resistance of the structural materials into consideration. Applicable rules and regulations were also surveyed regarding the plant construction and operation. (author)

  20. Cooling performance assessment of horizontal earth tube system and effect on planting in tropical greenhouse

    International Nuclear Information System (INIS)

    Mongkon, S.; Thepa, S.; Namprakai, P.; Pratinthong, N.

    2014-01-01

    Graphical abstract: - Highlights: • The cooling ability of HETS is studied for planting in tropical greenhouse. • The effective of system was moderate with COP more than 2.0. • Increasing diameter and air velocity increase COP more than other parameters. • The plant growth with HETS was significantly better than no-HETS plant. - Abstract: The benefit of geothermal energy is used by the horizontal earth tube system (HETS); which is not prevalent in tropical climate. This study evaluated geothermal cooling ability and parameters studied in Thailand by mathematical model. The measurement of the effect on plant cultivation was carried out in two identical greenhouses with 30 m 2 of greenhouse volume. The HETS supplied cooled air to the model greenhouse (MGH), and the plant growth results were compared to the growth results of a conventional greenhouse (CGH). The prediction demonstrated that the coefficient of performance (COP) in clear sky day would be more than 2.0 while in the experiment it was found to be moderately lower. The parameters study could be useful for implementation of a system for maximum performance. Two plants Dahlias and head lettuce were grown satisfactory. The qualities of the plants with the HETS were better than the non-cooled plants. In addition, the quality of production was affected by variations of microclimate in the greenhouses and solar intensity throughout the cultivation period

  1. Industrial Fuel Gas Demonstration Plant Program: environmental permit compliance plan

    Energy Technology Data Exchange (ETDEWEB)

    Bodamer, Jr., James W.; Bocchino, Robert M.

    1979-11-01

    This Environmental Permit Compliance Plan is intended to assist the Memphis Light, Gas and Water Division in acquiring the necessary environmental permits for their proposed Industrial Fuel Gas Demonstration Plant in a time frame consistent with the construction schedule. Permits included are those required for installation and/or operation of gaseous, liquid and solid waste sources and disposal areas. Only those permits presently established by final regulations are described. The compliance plan describes procedures for obtaining each permit from identified federal, state and local agencies. The information needed for the permit application is presented, and the stepwise procedure to follow when filing the permit application is described. Information given in this plan was obtained by reviewing applicable laws and regulations and from telephone conversations with agency personnel on the federal, state and local levels. This Plan also presents a recommended schedule for beginning the work necessary to obtain the required environmental permits in order to begin dredging operations in October, 1980 and construction of the plant in September, 1981. Activity for several key permits should begin as soon as possible.

  2. Synthesis gas demonstration plant program, Phase I. Site confirmation report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    With few reservations, the Baskett, Kentucky site exhibits the necessary characteristics to suggest compatibility with the proposed Synthesis Gas Demonstration Plant Project. An evaluation of a broad range of technical disciplinary criteria in consideration of presently available information indicated generally favorable conditions or, at least, conditions which could be feasibly accommodated in project design. The proximity of the Baskett site to market areas and sources of raw materials as well as a variety of transportation facilities suggests an overall favorable impact on Project economic feasibility. Two aspects of environmental engineering, however, have been identified as areas where the completion or continuation of current studies are required before removing all conditions on site suitability. The first aspect involves the current contradictory status of existing land use and planning ordinances in the site area. Additional investigation of the legality of, and local attitudes toward, these present plans is warranted. Secondly, terrestrial and aquatic surveys of plant and animal life species in the site area must be completed on a seasonal basis to confirm the preliminary conclusion that no exclusionary conditions exist.

  3. The experiences to improve plant performance and reliability of Ko-Ri nuclear power plants

    International Nuclear Information System (INIS)

    Kang, Ho Weon

    1998-01-01

    This paper provides a discussion of the lessons learned from operational experience and the future plans to improve performance of the Ko-Ri plant. To operate nuclear power plants safely with good performance is the only way to mitigate the negative image of nuclear power generation to the public and to enhance the economical benefit compared to other electrical generation method. Therefore, in a continuous effort to overcome a negative challenge from outside, we have driven an aggressive 'OCTF' campaign as part of safety. As a result of our efforts, the following remarkable achievements have been accomplished. (1) 3 times of OCTF during recent three years (2) Selected twice as a top notch power plant on the list of NEI magazine in terms of plant capacity factor (3) No scram recorded in 1997 for all 4 units at Ko-Ri site. Ko-Ri is now undergoing the large scale plant betterment projects for retaking-off our operating performance to the level of new challenge target. Such improvement of critical components in the reactor coolant system and turbine system greatly contribute to increase the safety and reliability of the plant and to shortening of the planned outage period as well as to reduction of radiation exposure and radwaste. (Cho, G. S.). 5 tabs., 10 figs

  4. Phenomenology and course of severe accidents in PWR-plants training by teaching and demonstration

    International Nuclear Information System (INIS)

    Sonnenkalb, M.; Rohde, J.

    1999-01-01

    A special one day training course on 'Phenomenology and Course of Severe Accidents in PWR-Plants' was developed at GRS initiated by the interest of German utilities. The work was done in the frame of projects sponsored by the German Ministries for Environment, Nature Conservation and Nuclear Safety (BMW) and for Education, Science, Research and Technology (BMBF). In the paper the intention and the subject of this training course are discussed and selected parts of the training course are presented. Demonstrations are made within this training course with the GRS simulator system ATLAS to achieve a broader understanding of the phenomena discussed and the propagation of severe accidents on a plant specific basis. The GRS simulator system ATLAS is linked in this case to the integral code MELCOR and pre-calculated plant specific severe accident calculations are used for the demonstration together with special graphics showing plant specific details. Several training courses have been held since the first one in November, 1996 especially to operators, shift personal and the management board of a German PWR. In the meantime the training course was updated and suggestions for improvements from the participants were included. In the future this training course will be made available for members of crisis teams, instructors of commercial training centres and researchers of different institutions too. (author)

  5. Experience gained with the Synroc demonstration plant at ANSTO and its relevance to plutonium immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Jostsons, A.; Ridal, A.; Mercer, D.J.; Vance, E.R.L. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1996-05-01

    The Synroc Demonstration Plant (SDP) was designed and constructed at Lucas Heights to demonstrate the feasibility of Synroc production on a commercial scale (10 kg/hr) with simulated Purex liquid HLW. Since commissioning of the SDP in 1987, over 6000 kg of Synroc has been fabricated with a range of feeds and waste loadings. The SDP utilises uniaxial hot-pressing to consolidate Synroc. Pressureless sintering and hot-isostatic pressing have also been studied at smaller scales. The results of this extensive process development have been incorporated in a conceptual design for a radioactive plant to condition HLW from a reprocessing plant with a capacity to treat 800 tpa of spent LWR fuel. Synroic containing TRU, including Pu, and fission products has been fabricated and characterised in a glove-box facility and hot cells, respectively. The extensive experience in processing of Synroc over the past 15 years is summarised and its relevance to immobilization of surplus plutonium is discussed.

  6. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the following...

  7. Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2017-02-01

    The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015, testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.

  8. Slipstream pilot-scale demonstration of a novel amine-based post-combustion technology for carbon dioxide capture from coal-fired power plant flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Krish R. [Linde LLC, Murray Hill, NJ (United States)

    2017-02-03

    Post-combustion CO2 capture (PCC) technology offers flexibility to treat the flue gas from both existing and new coal-fired power plants and can be applied to treat all or a portion of the flue gas. Solvent-based technologies are today the leading option for PCC from commercial coal-fired power plants as they have been applied in large-scale in other applications. Linde and BASF have been working together to develop and further improve a PCC process incorporating BASF’s novel aqueous amine-based solvent technology. This technology offers significant benefits compared to other solvent-based processes as it aims to reduce the regeneration energy requirements using novel solvents that are very stable under the coal-fired power plant feed gas conditions. BASF has developed the desired solvent based on the evaluation of a large number of candidates. In addition, long-term small pilot-scale testing of the BASF solvent has been performed on a lignite-fired flue gas. In coordination with BASF, Linde has evaluated a number of options for capital cost reduction in large engineered systems for solvent-based PCC technology. This report provides a summary of the work performed and results from a project supported by the US DOE (DE-FE0007453) for the pilot-scale demonstration of a Linde-BASF PCC technology using coal-fired power plant flue gas at a 1-1.5 MWe scale in Wilsonville, AL at the National Carbon Capture Center (NCCC). Following a project kick-off meeting in November 2011 and the conclusion of pilot plant design and engineering in February 2013, mechanical completion of the pilot plant was achieved in July 2014, and final commissioning activities were completed to enable start-up of operations in January 2015. Parametric tests were performed from January to December 2015 to determine optimal test conditions and evaluate process performance over a variety of operation parameters. A long-duration 1500-hour continuous test campaign was performed from May to

  9. Better plant performance through better management

    International Nuclear Information System (INIS)

    Csik, B.J.

    1985-01-01

    A forum convened by the IAEA discussed key aspects and current issues of nuclear power plant operations management in depth. Among the topics addressed were the following: the roles and responsibilities of the operating organization, operations management, and the regulatory body; performance objectives and operational procedures and practices, and potential conflict among plant safety, reliability, and economic operation; advances in day-to-day operation; maintenance and quality control; and shaping of the proper attitudes toward safety

  10. Decommissioning and decontamination of licensed reactor facilities and demonstration nuclear power plants

    International Nuclear Information System (INIS)

    Lear, G.; Erickson, P.B.

    1975-01-01

    Decommissioning of licensed reactors and demonstration nuclear power plants has been accomplished by mothballing (protective storage), entombment, and dismantling or a combination of these three. The alternative selected by a licensee seems to be primarily based on cost. A licensee must, however, show that the decommissioning process provides adequate protection of the health and safety of the public and no adverse impact on the environment. To date the NRC has approved each of the alternatives in the decommissioning of different facilities. The decommissioning of small research reactors has been accomplished primarily by dismantling. Licensed nuclear power plants, however, have been decommissioned primarily by being placed in a mothballed state in which they continue to retain a reactor license and the associated licensee responsibilities

  11. Combined effects of arthropod herbivores and phytopathogens on plant performance

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should...... be expected from the added impacts of herbivore and pathogen when they attack alone. 2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together...... with wounding arthropods because of facilitated infection and antagonistic impacts from induction of pathogen resistance by sucking herbivores. 3. We compiled published studies on the impact of plant–herbivore–pathogen interactions on plant performance and used meta-analysis to search for consistent patterns...

  12. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico

    2014-01-01

    The market for solar heating plants connected to district heating systems is expanding rapidly in Denmark. It is expected that by the end of 2014 the 10 largest solar heating plants in Europe will be located in Denmark. Measurements from 23 Danish solar heating plants, all based on flat plate solar...... collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show...... of the cost/performance ratio for solar collector fields, both with flat plate collectors and with concentrating tracking solar collectors. It is recommended to continue monitoring and analysis of all large solar heating plants to document the reliability of the solar heating plants. It is also recommended...

  13. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    system to facilitate improved chemistry control and to help staff to proactively identify and address emerging issues before they result in a loss of performance. This paper will outline AECL's chemistry control philosophy, and provide specific examples to illustrate how changes to plant design, materials, operational procedures, and chemistry specifications are being implemented to support improved chemistry performance in existing and new-build CANDU® plants. (author)

  14. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  15. The experiences to improve plant performance and reliability of Ko-Ri nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Weon [Korea Electric Power Corp. Ko-Ri nuclear power division, Ko-Ri (Korea, Republic of)

    1998-07-01

    This paper provides a discussion of the lessons learned from operational experience and the future plans to improve performance of the Ko-Ri plant. To operate nuclear power plants safely with good performance is the only way to mitigate the negative image of nuclear power generation to the public and to enhance the economical benefit compared to other electrical generation method. Therefore, in a continuous effort to overcome a negative challenge from outside, we have driven an aggressive 'OCTF' campaign as part of safety. As a result of our efforts, the following remarkable achievements have been accomplished. (1) 3 times of OCTF during recent three years (2) Selected twice as a top notch power plant on the list of NEI magazine in terms of plant capacity factor (3) No scram recorded in 1997 for all 4 units at Ko-Ri site. Ko-Ri is now undergoing the large scale plant betterment projects for retaking-off our operating performance to the level of new challenge target. Such improvement of critical components in the reactor coolant system and turbine system greatly contribute to increase the safety and reliability of the plant and to shortening of the planned outage period as well as to reduction of radiation exposure and radwaste. (Cho, G. S.). 5 tabs., 10 figs.

  16. Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater.

    Science.gov (United States)

    Niwa, Terutake; Hatamoto, Masashi; Yamashita, Takuya; Noguchi, Hiroshi; Takase, Osamu; Kekre, Kiran A; Ang, Wui Seng; Tao, Guihe; Seah, Harry; Yamaguchi, Takashi

    2016-10-01

    This study comprehensively evaluated the performance of a full-scale plant (4550m(3)d(-1)) using a UASB reactor followed by a ceramic MBR for the reclamation and reuse of mixed industrial wastewater containing many inorganics, chemical, oil and greases. This plant was demonstrated as the first full-scale system to reclaim the mixed industrial wastewater in the world. During 395days of operation, influent chemical oxygen demand (COD) fluctuated widely, but this system achieved COD removal rate of 91% and the ceramic MBR have operated flux of 21-25LMH stably. This means that this system adsorbed the feed water fluctuation and properly treated the water. Energy consumption of this plant was achieved 0.76kWhmm(-3) and this value is same range of domestic sewage MBR system. The combination of an UASB reactor and ceramic MBR is the most economical and feasible solution for water reclamation of mixed industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. SRC-I demonstration plant analytical laboratory methods manual. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Klusaritz, M.L.; Tewari, K.C.; Tiedge, W.F.; Skinner, R.W.; Znaimer, S.

    1983-03-01

    This manual is a compilation of analytical procedures required for operation of a Solvent-Refined Coal (SRC-I) demonstration or commercial plant. Each method reproduced in full includes a detailed procedure, a list of equipment and reagents, safety precautions, and, where possible, a precision statement. Procedures for the laboratory's environmental and industrial hygiene modules are not included. Required American Society for Testing and Materials (ASTM) methods are cited, and ICRC's suggested modifications to these methods for handling coal-derived products are provided.

  18. Demonstration of a 1 MWe biomass power plant at USMC Base Camp Lejeune

    International Nuclear Information System (INIS)

    Cleland, J.; Purvis, C.R.

    1997-01-01

    A biomass energy conversion project is being sponsored by the U.S. Environmental Protection Agency (EPA) to demonstrate an environmentally and economically sound electrical power option for government installations, industrial sites, rural cooperatives, small municipalities, and developing countries. Under a cooperative agreement with EPA, Research Triangle Institute is initiating operation of the Camp Lejeune Energy from Wood (CLEW) biomass plant. Wood gasification combined with internal combustion engines was chosen because of (1) recent improvements in gas cleaning, (2) simple, economical operation for units less than 10 MW, and (3) the option of a clean, cheap fuel for the many existing facilities generating expensive electricity from petroleum fuels with reciprocating engines. The plant incorporates a downdraft, moving bed gasifier utilizing hogged waste wood from the Marine Corps Base at Camp Lejeune, NC. A moving bed bulk wood dryer and both spark ignition and diesel engines are included. Unique process design features are briefly described relative to the gasifier, wood drying, tar separation, and process control. A test plan for process optimization and demonstration of reliability, economics, and environmental impact is outlined. (author)

  19. Plant safety and performance indicators for regulatory use

    International Nuclear Information System (INIS)

    Ferjancic, M.; Nemec, T.; Cimesa, S.

    2004-01-01

    Slovenian Nuclear Safety Administration (SNSA) supervises nuclear and radiological safety of Krsko NPP. This SNSA supervision is performed through inspections, safety evaluations of plant modifications and event analyses as well as with the safety and performance indicators (SPI) which are a valuable data source for plant safety monitoring. In the past SNSA relied on the SPI provided by Krsko NPP and did not have a set of SPI which would be more appropriate for regulatory use. In 2003 SNSA started with preparation of a new set of SPI which would be more suitable for performing the regulatory oversight of the plant. New internal SNSA procedure which is under preparation will define use and evaluation of SPI and will include definitions for the proposed set of SPI. According to the evaluation of SPI values in comparison with the limiting values and/or trending, the procedure will define SNSA response and actions. (author)

  20. UNEP Demonstrations of Mercury Emission Reduction at Two Coal-fired Power Plants in Russia

    Directory of Open Access Journals (Sweden)

    Jozewicz W.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP partnership area “Mercury releases from coal combustion” (The UNEP Coal Partnership has initiated demonstrations of mercury air emission reduction at two coal-fired power plants in Russia. The first project has modified the wet particulate matter (PM scrubber installed in Toliatti thermal plant to allow for addition of chemical reagents (oxidants into the closedloop liquid spray system. The addition of oxidant resulted in significant improvement of mercury capture from 20% total mercury removal (without the additive up to 60% removal (with the additive. It demonstrates the effectiveness of sorbent injection technologies in conjunction with an electrostatic precipitator (ESP. ESPs are installed at 60%, while wet PM scrubbers are installed at 30% of total coal-fired capacity in Russia. Thus, the two UNEP Coal Partnership projects address the majority of PM emission control configurations occurring in Russia.

  1. Operational safety performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    2000-05-01

    Since the late 1980s, the IAEA has been actively sponsoring work in the area of indicators to monitor nuclear power plant (NPP) operational safety performance. The early activities were mainly focused on exchanging ideas and good practices in the development and use of these indicators at nuclear power plants. Since 1995 efforts have been directed towards the elaboration of a framework for the establishment of an operational safety performance indicator programme. The result of this work, compiled in this publication, is intended to assist NPPs in developing and implementing a monitoring programme, without overlooking the critical aspects related to operational safety performance. The framework proposed in this report was presented at two IAEA workshops on operational safety performance indicators held in Ljubljana, Slovenia, in September 1998 and at the Daya Bay NPP, Szenzhen, China, in December 1998. During these two workshops, the participants discussed and brainstormed on the indicator framework presented. These working sessions provided very useful insights and ideas which where used for the enhancement of the framework proposed. The IAEA is acknowledging the support and contribution of all the participants in these two activities. The programme development was enhanced by pilot plant studies. Four plants from different countries with different designs participated in this study with the objective of testing the applicability, usefulness and viability of this approach

  2. Application of Advanced Technology to Improve Plant Performance in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Advances in computer technologies, signal processing, analytical modeling, and the advent of wireless sensors have provided the nuclear industry with ample means to automate and optimize maintenance activities and improve safety, efficiency, and availability, while reducing costs and radiation exposure to maintenance personnel. This paper provides a review of these developments and presents examples of their use in the nuclear power industry and the financial and safety benefits that they have produced. As the current generation of nuclear power plants have passed their mid-life, increased monitoring of their health is critical to their safe operation. This is especially true now that license renewal of nuclear power plants has accelerated, allowing some plants to operate up to 60 years or more. Furthermore, many utilities are maximizing their power output through uprating projects and retrofits. This puts additional demand and more stress on the plant equipment such as the instrumentation and control (I and C) systems and the reactor internal components making them more vulnerable to the effects of aging, degradation, and failure. In the meantime, the nuclear power industry is working to reduce generation costs by adopting condition-based maintenance strategies and automation of testing activities. These developments have stimulated great interest in on-line monitoring (OLM) technologies and new diagnostic and prognostic methods to anticipate, identify, and resolve equipment and process problems and ensure plant safety, efficiency, and immunity to accidents. The foundation for much of the required technologies has already been established through 40 years of research and development (R and D) efforts performed by numerous organizations, scientists, and engineers around the world including the author. This paper provides examples of these technologies and demonstrates how the gap between some of the more important R and D efforts and end users have been filled

  3. Proceedings of the 1978 symposium on instrumentation and control for fossil demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The 1978 symposium on instrumentation and control for fossil demonstration plants was held at Newport Beach, California, June 19--21, 1978. It was sponsored by Argonne National Laboratory, the U.S. Department of Energy - Fossil Energy, and the Instrument Society of America - Orange County Section. Thirty-nine papers have been entered individually into the data base. (LTN)

  4. Standard guide for in-plant performance evaluation of automatic pedestrian SNM monitors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This guide is affiliated with Guide C1112 on special nuclear material (SNM) monitors, Guide C1169 on laboratory performance evaluation, and Guide C1189 on calibrating pedestrian SNM monitors. This guide to in-plant performance evaluation is a comparatively rapid way to verify whether a pedestrian SNM monitor performs as expected for detecting SNM or SNM-like test sources. 1.1.1 In-plant performance evaluation should not be confused with the simple daily functional test recommended in Guide C1112. In-plant performance evaluation takes place less often than daily tests, usually at intervals ranging from weekly to once every three months. In-plant evaluations are also more extensive than daily tests and may examine both a monitor's nuisance alarm record and its detection sensitivity for a particular SNM or alternative test source. 1.1.2 In-plant performance evaluation also should not be confused with laboratory performance evaluation. In-plant evaluation is comparatively rapid, takes place in the monitor...

  5. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Science.gov (United States)

    Mahdavi-Arab, Nafiseh; Meyer, Sebastian T; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2014-01-01

    Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance to investigate both

  6. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Directory of Open Access Journals (Sweden)

    Nafiseh Mahdavi-Arab

    Full Text Available Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance

  7. Industrial Fuel Gas Demonstration Plant Program. Conceptual design and evaluation of commercial plant. Volume III. Economic analyses (Deliverable Nos. 15 and 16)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This report presents the results of Task I of Phase I in the form of a Conceptual Design and Evaluation of Commercial Plant report. The report is presented in four volumes as follows: I - Executive Summary, II - Commercial Plant Design, III - Economic Analyses, IV - Demonstration Plant Recommendations. Volume III presents the economic analyses for the commercial plant and the supporting data. General cost and financing factors used in the analyses are tabulated. Three financing modes are considered. The product gas cost calculation procedure is identified and appendices present computer inputs and sample computer outputs for the MLGW, Utility, and Industry Base Cases. The results of the base case cost analyses for plant fenceline gas costs are as follows: Municipal Utility, (e.g. MLGW), $3.76/MM Btu; Investor Owned Utility, (25% equity), $4.48/MM Btu; and Investor Case, (100% equity), $5.21/MM Btu. The results of 47 IFG product cost sensitivity cases involving a dozen sensitivity variables are presented. Plant half size, coal cost, plant investment, and return on equity (industrial) are the most important sensitivity variables. Volume III also presents a summary discussion of the socioeconomic impact of the plant and a discussion of possible commercial incentives for development of IFG plants.

  8. Conceptual design of a demonstration reactor for electric power generation

    International Nuclear Information System (INIS)

    Asaoka, Y.; Hiwatari, R.; Okano, K.; Ogawa, Y.; Ise, H.; Nomoto, Y.; Kuroda, T.; Mori, S.; Shinya, K.

    2005-01-01

    Conceptual study on a demonstration plant for electric power generation, named Demo-CREST, was conducted based on the consideration that a demo-plant should have capacities both (1) to demonstrate electric power generation in a plant scale with moderate plasma performance, which will be achieved in the early stage of the ITER operation, and foreseeable technologies and materials and (2) to have a possibility to show an economical competitiveness with advanced plasma performance and high performance blanket systems. The plasma core was optimized to be a minimum size for both net electric power generation with the ITER basic plasma parameters and commercial-scale generation with advance plasma parameters, which would be attained by the end of ITER operation. The engineering concept, especially the breeding blanket structure and its maintenance scheme, is also optimized to demonstrate the tritium self-sustainability and maintainability of in-vessel components. Within the plasma performance as planned in the present ITER program, the net electric power from 0 MW to 500 MW is possible with the basic blanket system under the engineering conditions of maximum magnetic field 16 T, NBI system efficiency 50%, and NBI current drive power restricted to 200 MW. Capacities of stabilization of reversed shear plasma and the high thermal efficiency are additional factors for optimization of the advanced blanket. By replacing the blanket system with the advanced one of higher thermal efficiency, the net electric power of about 1000 MW is also possible so that the economic performance toward the commercial plant can be also examined with Demo-CREST. (author)

  9. Audits and their effectiveness in improving plant performance

    International Nuclear Information System (INIS)

    Callen, L.J.

    1986-01-01

    For several years, the NRC's performance appraisal teams (PATs) have been assessing the effectiveness of the various audit programs established by operating nuclear power plants. A major focus of the PAT assessments is on the audit programs mandated by 10 CFR, technical specifications, industry codes and standards, and NRC operating license conditions. These audits are typically performed by a plant's quality assurance organization, and program oversight is often provided at the corporate level by a safety review committee. The scope of these audit programs is broad, typically including such functional areas as maintenance, operations, health physics, emergency preparedness, training, procurement, and security. For an audit program to be truly effective in improving plant performance beyond the minimum level established by regulatory requirements, the audits must first be effective in identifying deficiencies that go beyond minimum regulatory requirements. The PAT experience to date is that typical industry audit programs are not designed to identify these types of deficiencies

  10. Industrial demonstration trials

    International Nuclear Information System (INIS)

    Gelee, M.; Fabre, C.; Villepoix, R. de; Fra, J.; Le Foulgoc, L.; Morel, Y.; Querite, P.; Roques, R.

    1975-01-01

    Prototypes of the plant components, meeting the specifications set by the process and built by industrial firms in collaboration with the supervisor and the C.E.A., are subjected to trial runs on the UF 6 test bench of the Pierrelatte testing zone. These items of equipment (diffuser, compressor, exchanger) are placed in an industrial operation context very similar to that of an enrichment plant. Their performance is measured within a broad region around the working point and their reliability observed over periods up to several tens of thousands of hours. Between 1969 and 1973 six industrial demonstration test benches have been built, marking the stages in the technical preparation of the 1973 file on the basis of which the decision of building was taken by Eurodif [fr

  11. Demonstration of the use of ADAPT to derive predictive maintenance algorithms for the KSC central heat plant

    Science.gov (United States)

    Hunter, H. E.

    1972-01-01

    The Avco Data Analysis and Prediction Techniques (ADAPT) were employed to determine laws capable of detecting failures in a heat plant up to three days in advance of the occurrence of the failure. The projected performance of algorithms yielded a detection probability of 90% with false alarm rates of the order of 1 per year for a sample rate of 1 per day with each detection, followed by 3 hourly samplings. This performance was verified on 173 independent test cases. The program also demonstrated diagnostic algorithms and the ability to predict the time of failure to approximately plus or minus 8 hours up to three days in advance of the failure. The ADAPT programs produce simple algorithms which have a unique possibility of a relatively low cost updating procedure. The algorithms were implemented on general purpose computers at Kennedy Space Flight Center and tested against current data.

  12. RIMAP demonstration project. Pat. 1: Risk based life management of piping system in power plant Heilbronn

    International Nuclear Information System (INIS)

    Bareiss, J.; Puck, P.; Matschecko, B.; Jovanovic, A.; Balos, D.; Perunicic

    2003-01-01

    In the framework of EU project RIMAP [1] a new European Guideline for optimized risk based maintenance and inspection planning of industrial plants (RBLM - Risk Based Life Management) is being developed. The RIMAP project consists of the three clustered projects: development (RTD), demonstration (DEMO) and thematic network (TN). Current work and future, planned work in RIMAP demonstration project on applications of the RIMAP methodology in power plants are presented briefly in the first part of the paper. Also presented in the paper are the results of a preliminary analysis of piping system in power plant Heilbronn using the concept of risk-based monitoring as part of overall concept of risk-based life management. Shortly the following issues are discussed in the paper: identification of critical components, application of a multilevel risk analysis (..from ''screening'' to ''detailed analysis''), determination of PoF - Probability of Failure, determination of COF - Consequence of Failure and optimation of inspection and maintenance plan. (orig.)

  13. RIMAP demonstration project. Risk-based life management of piping system in power plant Heilbronn

    International Nuclear Information System (INIS)

    Bareiss, J.; Buck, P.; Matschecko, B.; Jovanovic, A.; Balos, D.; Perunicic, M.

    2004-01-01

    In the framework of EU project RIMAP [Risk Based Inspection and Maintenance Procedures for European Industry (2000)] a new European Guideline for optimized risk based maintenance and inspection planning of industrial plants (RBLM, Risk Based Life Management) is being developed. The RIMAP project consists of the three clustered projects: - development (RTD); - demonstration (DEMO): - thematic network (TN). Current work and future, planned work in RIMAP demonstration project on applications of the RIMAP methodology in power plants are presented briefly in the first part of the paper. Also presented in the paper are the results of a preliminary analysis of piping system in power plant Heilbronn using the concept of risk-based monitoring as part of overall concept of risk-based life management. Shortly the following issues are discussed in the paper: - identification of critical components; - application of a multilevel risk analysis (...from 'screening' to 'detailed analysis'); - determination of PoF (Probability of Failure); - determination of CoF (Consequence of Failure); - optimation of inspection and maintenance plan. From our experience with the application of the RIMAP methodology the following conclusions can be drawn: The use of risk-based methods in inspection and maintenance of piping systems in power plants gives transparency to the decision making process and gives an optimized maintenance policy based on current state of the components. The results of the work clearly show the power of the proposed method for concentration on critical items: out of 64 monitored components 5 were selected for intermediate analysis and only 1 for the detailed analysis (probabilistic high temperature fracture mechanics)

  14. Conceptual design study for the demonstration reactor of JSFR. (1) Current status of JSFR development

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Sakamoto, Yoshihiko; Kotake, Shoji; Aoto, Kazumi; Ohshima, Jun; Ito, Takaya

    2011-01-01

    JAEA is now conducting 'Fast Reactor Cycle Technology Development (FaCT)' project for the commercialization before 2050s. A demonstration reactor of Japan Sodium-cooled Fast Reactor (JSFR) is planned to start operation around 2025. In the FaCT project, conceptual design study on the demonstration reactor has been performed since 2007 to determine the referential reactor specifications for the next stage design work from 2011 for the licensing and construction. Plant performance as a demonstration reactor for the 1.5 GWe commercial reactor JSFR is being compared between 750 MWe and 500 MWe plant designs. By using the results of conceptual design study, output power will be determined during year of 2010. This paper describes development status of key technologies and comparison between 750 MWe and 500 MWe plants with the view points of demonstration ability for commercial JSFR plant. (author)

  15. Human performance improvement for nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    The IAEA assists NPP operating organizations to improve plant performance through a focus on human performance improvement in areas like organizational and leadership development, senior management decision making, organization and management of HPI programmes including tools needed for effective HPI implementation, safety culture enhancement, knowledge management, personnel selection and staffing, career development, training and development, work design, scheduling and conditions, procedure and other job-aid development and use, effective communications, human performance monitoring, motivation. Many NPP operating organizations in Member States, are not yet achieving the full potential of their NPP technology/equipment regarding safety, operational or economic performance due to human performance weaknesses. The IAEA's HPI (Human Performance Improvement) services provide a means for these organizations to efficiently and effectively learn from international experts and the experiences of others in improving plant performance through human performance improvements. NPP operating organizations can benefit from these services in a number of ways, including requesting a national project, participating in a regional project, or requesting an assist visit. The types of activities provided through these services include assistance in benchmarking practices of successful organizations, providing information exchange and reviews of current practices through assist missions, conducting workshops on focused human performance topics, evaluating current human performance methods, including assistance in implementing self assessment programmes and providing support to safety culture enhancement programmes based on self-assessment

  16. Labour Mobility and Plant Performance in Denmark: The Significance of Related Inflows

    DEFF Research Database (Denmark)

    Timmermans, Bram; Boschma, Ron

    This paper investigates the impact of different types of labour mobility on plant performance, making use of the IDA-database that provides detailed information on all individuals and plants for the whole of Denmark. Our study shows that the effect of labour mobility can only be assessed when one...... performance. Moreover, intra-regional skilled labour mobility had a negative effect on plant performance in general, while the effect of inter-regional labour mobility depends on the type of skills that flow into the plant. We used a sophisticated indicator of revealed relatedness that measures the degree...... accounts for the type of skills that flow into the plant, and the degree to which these match the existing set of skills at the plant level. We found that the inflow of related skills has a positive impact on plant performance, while inflows of similar and unrelated skills have a negative effect on plant...

  17. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2005-01-01

    The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the

  18. Test of job performance aids for power plants. Final report

    International Nuclear Information System (INIS)

    Shriver, E.L.; Zach, S.E.; Foley, J.P. Jr.

    1982-10-01

    The objective of EPRI Research Project 1396-1 was to evaluate the applicability and effectiveness of Job Performance Aids (JPAs) in nuclear power plant situations. For over twenty years, JPAs have been developed in military situations to meet the problems of confusing, incomplete, and inaccurate procedures on maintenance jobs. Kinton, Incorporated of Alexandria, Virginia applied the military experience with JPAs to nuclear power plant situations and identified potential benefits in terms of cost reductions and improved performance. Sample JPAs were developed for Control Room Operations, Maintenance, Plant Operations, Instrumentation and Control, Health Physics, and Quality Assurance tasks (procedures) in selected nuclear plants. JPAs were also developed for a prototype condenser tube leak detection system in the design stage, as well as for generic classes of circuit breaker equipment. Based on the results of the study, the use of JPAs is recommended for plant procedures of medium to high difficulty and for those tasks performed infrequently, even if fairly simple

  19. Nuclear power plant control room operators' performance research

    International Nuclear Information System (INIS)

    Gray, L.H.; Haas, P.M.

    1984-01-01

    A research program is being conducted to provide information on the performance of nuclear power plant control room operators when responding to abnormal/emergency events in the plants and in full-scope training simulators. The initial impetus for this program was the need for data to assess proposed design criteria for the choice of manual versus automatic action for accomplishing safety-related functions during design basis accidents. The program also included studies of training simulator capabilities, of procedures and data for specifying and verifying simulator performance, and of methods and applications of task analysis

  20. Demonstration of Coupled Multievent Scenario at a Subject Nuclear Power Plant

    International Nuclear Information System (INIS)

    Coleman, Justin Leigh; Prescott, Steven Ralph; Smith, Curtis; Sampath, Ram

    2015-01-01

    This report discusses how to perform a coupled, seismic and flooding, multievent risk-informed analysis. Presented in the following sections are the need for multievent risk-informed analysis, the tools needed to perform the analysis, and an example of solving a demonstration problem.

  1. The Hidden Habit of the Entomopathogenic Fungus Beauveria bassiana: First Demonstration of Vertical Plant Transmission

    Science.gov (United States)

    Quesada-Moraga, Enrique; López-Díaz, Cristina; Landa, Blanca Beatriz

    2014-01-01

    Beauveria bassiana strain 04/01-Tip, obtained from a larva of the opium poppy stem gall wasp Iraella luteipes (Hymenoptera; Cynipidae), endophytically colonizes opium poppy (Papaver somniferum L.) plants and protects them against this pest. The goal of this study was to monitor the dynamics of endophytic colonization of opium poppy by B. bassiana after the fungus was applied to the seed and to ascertain whether the fungus is transmitted vertically via seeds. Using a species-specific nested PCR protocol and DNA extracted from surface-sterilised leaf pieces or seeds of B. bassiana-inoculated opium poppy plants, the fungus was detected within the plant beginning at the growth stage of rosette building and them throughout the entire plant growth cycle (about 120–140 days after sowing). The fungus was also detected in seeds from 50% of the capsules sampled. Seeds that showed positive amplification for B. bassiana were planted in sterile soil and the endophyte was again detected in more than 42% of the plants sampled during all plant growth stages. Beauveria bassiana was transmitted to seeds in 25% of the plants from the second generation that formed a mature capsule. These results demonstrate for the first time the vertical transmission of an entomopathogenic fungus from endophytically colonised maternal plants. This information is crucial to better understand the ecological role of entomopathogenic fungi as plant endophytes and may allow development of a sustainable and cost effective strategy for I. luteipes management in P. somniferum. PMID:24551242

  2. The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission.

    Science.gov (United States)

    Quesada-Moraga, Enrique; López-Díaz, Cristina; Landa, Blanca Beatriz

    2014-01-01

    Beauveria bassiana strain 04/01-Tip, obtained from a larva of the opium poppy stem gall wasp Iraella luteipes (Hymenoptera; Cynipidae), endophytically colonizes opium poppy (Papaver somniferum L.) plants and protects them against this pest. The goal of this study was to monitor the dynamics of endophytic colonization of opium poppy by B. bassiana after the fungus was applied to the seed and to ascertain whether the fungus is transmitted vertically via seeds. Using a species-specific nested PCR protocol and DNA extracted from surface-sterilised leaf pieces or seeds of B. bassiana-inoculated opium poppy plants, the fungus was detected within the plant beginning at the growth stage of rosette building and them throughout the entire plant growth cycle (about 120-140 days after sowing). The fungus was also detected in seeds from 50% of the capsules sampled. Seeds that showed positive amplification for B. bassiana were planted in sterile soil and the endophyte was again detected in more than 42% of the plants sampled during all plant growth stages. Beauveria bassiana was transmitted to seeds in 25% of the plants from the second generation that formed a mature capsule. These results demonstrate for the first time the vertical transmission of an entomopathogenic fungus from endophytically colonised maternal plants. This information is crucial to better understand the ecological role of entomopathogenic fungi as plant endophytes and may allow development of a sustainable and cost effective strategy for I. luteipes management in P. somniferum.

  3. Performance of Generating Plant: Managing the Changes. Part 2: Thermal Generating Plant Unavailability Factors and Availability Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Curley, G. Michael [North American Electric Reliability Corporation (United States); Mandula, Jiri [International Atomic Energy Agency (IAEA)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 2 (WG2). WG2's main task is to facilitate the collection and input on an annual basis of power plant performance data (unit-by-unit and aggregated data) into the WEC PGP database. The statistics will be collected for steam, nuclear, gas turbine and combined cycle, hydro and pump storage plant. WG2 will also oversee the ongoing development of the availability statistics database, including the contents, the required software, security issues and other important information. The report is divided into two sections: Thermal generating, combined cycle/co-generation, combustion turbine, hydro and pumped storage unavailability factors and availability statistics; and nuclear power generating units.

  4. The development and use of plant models to assist with both the commissioning and performance optimisation of plant control systems

    International Nuclear Information System (INIS)

    Conner, A.S.; Region, S.E.

    1984-01-01

    Successful engagement of cascade control systems used to control complex nuclear plant often present control engineers with difficulties when trying to obtain early automatic operation of these systems. These difficulties often arise because prior to the start of live plant operation, control equipment performance can only be assessed using open loop techniques. By simulating simple models of plant on a computer and linking it to the site control equipment, the performance of the system can be examined and optimised prior to live plant operation. This significantly reduces the plant down time required to correct control equipment performance faults during live plant operation

  5. BALTICA IV. Plant maintenance for managing life and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hietanen, S; Auerkari, P [eds.; VTT Manufacturing Technology, Espoo (Finland). Operational Reliability

    1999-12-31

    BALTICA IV International Conference on Plant Maintenance Managing Life and performance held on September 7-9, 1998 on board M/S Silja Symphony on its cruise between Helsinki-Stockholm and at Aavaranta in Kirkkonummi. The BALTICA IV conference provides a forum for the transfer of technology from applied research to practice. This is one of the two volumes of the proceedings of the BALTICA IV International Conference on Plant Maintenance Managing Life and Performance. The BALTICA IV conference focuses on new technology, recent experience and applications of condition and life management, and on improvements in maintenance strategies for safe and economical operation of power plants. (orig.)

  6. BALTICA IV. Plant maintenance for managing life and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hietanen, S.; Auerkari, P. [eds.] [VTT Manufacturing Technology, Espoo (Finland). Operational Reliability

    1998-12-31

    BALTICA IV International Conference on Plant Maintenance Managing Life and performance held on September 7-9, 1998 on board M/S Silja Symphony on its cruise between Helsinki-Stockholm and at Aavaranta in Kirkkonummi. The BALTICA IV conference provides a forum for the transfer of technology from applied research to practice. This is one of the two volumes of the proceedings of the BALTICA IV International Conference on Plant Maintenance Managing Life and Performance. The BALTICA IV conference focuses on new technology, recent experience and applications of condition and life management, and on improvements in maintenance strategies for safe and economical operation of power plants. (orig.)

  7. Over facility design description for the CPDF [Centrifuge Plant Demonstration Facility]: SDD-1 [System Design Description

    International Nuclear Information System (INIS)

    1987-04-01

    The Centrifuge Plant Demonstration Facility (CPDF) is an essential part of the continuing development of first-production-plant centrifuge technology that will integrate centrifuge machines into a process and enrichment plant design. The CPDF will provide facilities for testing and continued development of a unit cascade in direct support of the commercial Gas Centrifuge Enrichment Plant (GCEP). The basic cascade-oriented equipment, feed, withdrawal, drive system, process piping, utility piping, and other auxiliary and support equipment will be tested in an operating configuration that represents, to the extent possible, GCEP arrangement and operating conditions. The objective will be to demonstrate procedures for production cascade installation, start-up, operation, and maintenance, and to provide proof of overall cascade and associated system design, construction, and operating and maintenance concepts. To the maximum possible extent, all equipment for the CPDF will be procured from commercial sources. Centrifuges will be procured from industry using government-supplied specifications and drawings. The existing Component Preparation Laboratory (CPL) located near the CPDF site will be used for centrifuge component receiving, inspection, assembly, and qualification testing of pre-production test machines. Later in the test program, samples of production machines planned for use in the GCEP will be tested in the CPDF

  8. {sup 137}Cs sorption into bentonite from Cidadap-Tasikmalaya as buffer material for disposal demonstration plant facility at Serpong

    Energy Technology Data Exchange (ETDEWEB)

    Setiawan, B., E-mail: bravo@batan.go.id; Sriwahyuni, H., E-mail: bravo@batan.go.id; Ekaningrum, NE., E-mail: bravo@batan.go.id; Sumantry, T., E-mail: bravo@batan.go.id [Radwaste Technology Center-National Nuclear Energy Agency, PUSPIPTEK, Serpong-Tangerang 15310 (Indonesia)

    2014-03-24

    According to co-location principle, near surface disposal type the disposal demonstration plant facility will be build at Serpong nuclear area. The facility also for anticipation of future needs to provide national facility for the servicing of radwaste management of non-nuclear power plant activity in Serpong Nuclear Area. It is needs to study the material of buffer and backfill for the safety of demonstration plant facility. A local bentonite rock from Cidadap-Tasikmalaya was used as the buffer materials. Objective of experiment is to find out the specific data of sorption characteristic of Cidadap bentonite as buffer material in a radwaste disposal system. Experiments were performed in batch method, where bentonite samples were contacted with CsCl solution labeled with Cs-137 in 100 ml/g liquid:solid ratio. Initial Cs concentration was 10{sup −8} M and to study the effects of ionic strength and Cs concentration in solution, 0.1 and 1.0 M NaCl also CsCl concentration ranging 10{sup −8} - 10{sup −4} M were added in solution. As the indicator of Cs saturated in bentonite samples, Kd value was applied. Affected parameters in the experiment were contact time, effects of ionic strength and concentration of CsCl. Results showed that sorption of Cs by bentonite reached constantly after 16 days contacted, and Kd value was 10.600 ml/g. Effect of CsCl concentration on Kd value may decreased in increased in CsCl concentration. Effect of ionic strength increased according to increased in concentration of background and would effect to Kd value due to competition of Na ions and Cs in solution interacts with bentonite. By obtaining the bentonite character data as buffer material, the results could be used as the basis for making of design and the basic of performance assessment the near surface disposal facility in terms of isolation capacity of radwaste later.

  9. Thermal diagnostics in power plant to improve performance

    International Nuclear Information System (INIS)

    Meister, H.

    1995-01-01

    The improvement of older power plants by changing poor performing components is a cost effective method to increase the capacity of the units. The necessary information for the detection of components that are to be replaced can be obtained from heat rate and component tests with accuracy instrumentation. The discussed methods and tools provided by ABB Were used with success in several power plants in Europe. These tools are in the process of permanent improvement and can be used in almost any type of power plant. Due to the reasons discussed above, there is a high potential for improvement of a lot of power plants in the next decade. (author)

  10. Demonstration of advanced combustion NO(sub X) control techniques for a wall-fired boiler. Project performance summary, Clean Coal Technology Demonstration Program

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The project represents a landmark assessment of the potential of low-NO(sub x) burners, advanced overtire air, and neural-network control systems to reduce NO(sub x) emissions within the bounds of acceptable dry-bottom, wall-fired boiler performance. Such boilers were targeted under the Clean Air Act Amendments of 1990 (CAAA). Testing provided valuable input to the Environmental Protection Agency ruling issued in March 1994, which set NO(sub x) emission limits for ''Group 1'' wall-fired boilers at 0.5 lb/10(sup 6) Btu to be met by January 1996. The resultant comprehensive database served to assist utilities in effectively implementing CAAA compliance. The project is part of the U.S. Department of Energy's Clean Coal Technology Demonstration Program established to address energy and environmental concerns related to coal use. Five nationally competed solicitations sought cost-shared partnerships with industry to accelerate commercialization of the most advanced coal-based power generation and pollution control technologies. The Program, valued at over$5 billion, has leveraged federal funding twofold through the resultant partnerships encompassing utilities, technology developers, state governments, and research organizations. This project was one of 16 selected in May 1988 from 55 proposals submitted in response to the Program's second solicitation. Southern Company Services, Inc. (SCS) conducted a comprehensive evaluation of the effects of Foster Wheeler Energy Corporation's (FWEC) advanced overfire air (AOFA), low-NO(sub x) burners (LNB), and LNB/AOFA on wall-fired boiler NO(sub x) emissions and other combustion parameters. SCS also evaluated the effectiveness of an advanced on-line optimization system, the Generic NO(sub x) Control Intelligent System (GNOCIS). Over a six-year period, SCS carried out testing at Georgia Power Company's 500-MWe Plant Hammond Unit 4 in Coosa, Georgia. Tests proceeded in a logical sequence using rigorous statistical analyses to

  11. Effect of Low Pressure End Conditions on Steam Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Ali Syed Haider

    2014-07-01

    Full Text Available Most of the electricity produced throughout the world today is from steam power plants and improving the performance of power plants is crucial to minimize the greenhouse gas emissions and fuel consumption. Energy efficiency of a thermal power plant strongly depends on its boiler-condenser operating conditions. The low pressure end conditions of a condenser have influence on the power output, steam consumption and efficiency of a plant. Hence, the objective this paper is to study the effect of the low pressure end conditions on a steam power plant performance. For the study each component was modelled thermodynamically. Simulation was done and the results showed that performance of the condenser is highly a function of its pressure which in turn depends on the flow rate and temperature of the cooling water. Furthermore, when the condenser pressure increases both net power output and plant efficiency decrease whereas the steam consumption increases. The results can be used to run a steam power cycle at optimum conditions.

  12. Full parabolic trough qualification from prototype to demonstration loop

    Science.gov (United States)

    Janotte, Nicole; Lüpfert, Eckhard; Pottler, Klaus; Schmitz, Mark

    2017-06-01

    On the example of the HelioTrough® collector development the full accompanying and supporting qualification program for large-scale parabolic trough collectors for solar thermal power plants is described from prototype to demonstration loop scale. In the evaluation process the actual state and the optimization potential are assessed. This includes the optical and geometrical performance determined by concentrator shape, deformation, assembly quality and local intercept factor values. Furthermore, its mechanical performance in terms of tracking accuracy and torsional stiffness and its thermal system performance on the basis of the overall thermal output and heat loss are evaluated. Demonstration loop tests deliver results of collector modules statistical slope deviation of 1.9 to 2.6 mrad, intercept factor above 98%, peak optical performance of 81.6% and heat loss coefficients from field tests. The benefit of such a closely monitored development lies in prompt feedback on strengths, weaknesses and potential improvements on the new product at any development stage from first module tests until demonstration loop evaluation. The product developer takes advantage of the achieved technical maturity, already before the implementation in a commercial power plant. The well-understood performance characteristics allow the reduction of safety margins making the new HelioTrough collector competitive from the start.

  13. Practical experience and lessons learned through implementation of Appendix VIII performance demonstration requirements

    International Nuclear Information System (INIS)

    Ashwin, P.J.; Becker, F.L.; Latiolais, C.L.; Spanner, J.C.

    1996-01-01

    To provide the US nuclear industry with a uniform implementation of the Performance Demonstration requirements within the 1989 edition of ASME Section XI, Appendix VIII, representatives from all US nuclear utilities formed the Performance Demonstration Initiative (PDI). The PDI recognized the potential benefits that Appendix VIII offered the nuclear industry and initiated a proactive approach to implement the requirements. In doing so it was expected that performance demonstration of ultrasonic examination procedures would allow for improvement in the efficiency and credibility of inservice inspection to be realized. Explicit within the performance demonstration requirements of Appendix VIII is the need for a Performance Demonstration Administrator, a difficult requirement to fulfill. Not only must the administrator exhibit the attributes of understanding the demonstration requirements, but also have solid technical knowledge, integrity and be able to interface with the industry at all levels, from operations to regulatory. For the nuclear industry, the EPRI NDE Center is an obvious choice to fulfill this position. This paper provides a brief background of the PDI, a nuclear industry-wide initiative to implement the performance demonstration requirements of Appendix VIII. Even though the consensus approach adopted by the PDI is discussed, the paper's primary objective is to provide examples of the lessons learned by the Center through the specific requirements of Appendix VIII

  14. Off-design performance analysis of organic Rankine cycle using real operation data from a heat source plant

    International Nuclear Information System (INIS)

    Kim, In Seop; Kim, Tong Seop; Lee, Jong Jun

    2017-01-01

    Highlights: • ORC systems driven by waste or residual heat from a combined cycle cogeneration plant were analyzed. • An off-design analysis model was developed and validated with commercial ORC data. • A procedure to predict the actual variation of ORC performance using the off-design model was set up. • The importance of using long-term operation data of the heat source plant was demonstrated. - Abstract: There has been increasing demand for cogeneration power plants, which provides high energy utilization. Research on upgrading power plant performance is also being actively pursued. The organic Rankine cycle (ORC) can operate with mid- and low-temperature heat sources and is suitable for enhancing performance of existing power plants. In this study, an off-design analysis model for the ORC was developed, which is driven by waste heat or residual heat from a combined cycle cogeneration plant. The applied heat sources are the exhaust gas from the heat recovery steam generator (Case 1) and waste heat from a heat storage unit (Case 2). Optimal design points of the ORC were selected based on the design heat source condition of each case. Then, the available ORC power output for each case was predicted using actual long-term plant operation data and a validated off-design analysis model. The ORC capacity of Case 2 was almost two times larger than that of Case 1. The predicted average electricity generation of both cases was less than the design output. The results of this paper reveal the importance of both the prediction of electricity generation using actual plant operation data and the need for optimal ORC system sizing.

  15. Comparative assessment of PV plant performance models considering climate effects

    DEFF Research Database (Denmark)

    Tina, Giuseppe; Ventura, Cristina; Sera, Dezso

    2017-01-01

    . The methodological approach is based on comparative tests of the analyzed models applied to two PV plants installed respectively in north of Denmark (Aalborg) and in the south of Italy (Agrigento). The different ambient, operating and installation conditions allow to understand how these factors impact the precision...... the performance of the studied PV plants with others, the efficiency of the systems has been estimated by both conventional Performance Ratio and Corrected Performance Ratio...

  16. Availability Performance Analysis of Thermal Power Plants

    Science.gov (United States)

    Bhangu, Navneet Singh; Singh, Rupinder; Pahuja, G. L.

    2018-03-01

    This case study presents the availability evaluation method of thermal power plants for conducting performance analysis in Indian environment. A generic availability model has been proposed for a maintained system (thermal plants) using reliability block diagrams and fault tree analysis. The availability indices have been evaluated under realistic working environment using inclusion exclusion principle. Four year failure database has been used to compute availability for different combinatory of plant capacity, that is, full working state, reduced capacity or failure state. Availability is found to be very less even at full rated capacity (440 MW) which is not acceptable especially in prevailing energy scenario. One of the probable reason for this may be the difference in the age/health of existing thermal power plants which requires special attention of each unit from case to case basis. The maintenance techniques being used are conventional (50 years old) and improper in context of the modern equipment, which further aggravate the problem of low availability. This study highlights procedure for finding critical plants/units/subsystems and helps in deciding preventive maintenance program.

  17. Energy performance indicator report: fluid milk plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In Canada, the dairy sector consumes significant amounts of energy and is looking for new ways of saving energy. The aim of this study, performed by the Competitive Analysis Centre Inc., was to find novel energy savings ideas for fluid milk plants. For this purpose, the energy consumption of 17 fluid milk plants, which accounts for over 50% of total Canadian output, was analyzed; first, at the plant level, and then by 8 categories at the sub-plant level in order to develop benchmarks that could be applied at both these levels. The paper provides background information on Canada's fluid milk sector and outlines the methodology used to develop and apply energy efficiency measures in the sector; the study findings are also presented. This report found that the energy consumption of the Canadian fluid milk sector could be lowered by applying the energy saving proposals developed herein.

  18. Improving plant performance through efficient nuclear waste management - The French experience

    International Nuclear Information System (INIS)

    Peterson, C.H.

    1986-01-01

    This paper discusses high and low level waste management and its effect on Plant Performance. In France, high level waste policy is an improtant factor in plant performance. The LLW section of the paper discusses the role of French Industry organization as well as the benefits of standard plants with standard practices. The regulation of the production of waste and the waste processing by utilities is covered

  19. WIPP [Waste Isolation Pilot Plant] test phase plan: Performance assessment

    International Nuclear Information System (INIS)

    1990-04-01

    The U.S. Department of Energy (DOE) is responsible for managing the disposition of transuranic (TRU) wastes resulting from nuclear weapons production activities of the United States. These wastes are currently stored nationwide at several of the DOE's waste generating/storage sites. The goal is to eliminate interim waste storage and achieve environmentally and institutionally acceptable permanent disposal of these TRU wastes. The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being considered as a disposal facility for these TRU wastes. This document describes the first of the following two major programs planned for the Test Phase of WIPP: Performance Assessment -- determination of the long-term performance of the WIPP disposal system in accordance with the requirements of the EPA Standard; and Operations Demonstration -- evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP underground facility. 120 refs., 19 figs., 8 tabs

  20. Development of web based performance analysis program for nuclear power plant turbine cycle

    International Nuclear Information System (INIS)

    Park, Hoon; Yu, Seung Kyu; Kim, Seong Kun; Ji, Moon Hak; Choi, Kwang Hee; Hong, Seong Ryeol

    2002-01-01

    Performance improvement of turbine cycle affects economic operation of nuclear power plant. We developed performance analysis system for nuclear power plant turbine cycle. The system is based on PTC (Performance Test Code), that is estimation standard of nuclear power plant performance. The system is developed using Java Web-Start and JSP(Java Server Page)

  1. GCFR demonstration plant: conceptual design and status report

    International Nuclear Information System (INIS)

    1980-12-01

    Helium Breeder Associates (HBA), a non-profit corporation, has been the program manager and technical integrator of the Gas-Cooled Fast Reactor (GCFR) development effort since 1977. When DOE discontinued support of the GCFR in 1980, the HBA members undertook the task of providing for an orderly termination and documentation of the program. HBA does not agree with the government's rational for withdrawing support for this promising technology and has directed its termination and documentation toward preserving the current state of its development. Toward that end, HBA has compiled the following report which is a summary of the conceptual design of the demonstration plant and status of the program as of the end of 1980. It includes summaries of tasks that have not evolved to a final conclusion. Although the report has not been subjected to formal review and approval by the designers, it is intended to provide the reader with the design considerations that were current at the time of program termination. It is hoped that the report will be useful in restarting the program in the future by establishing the basis of the completed conceptual design and indicating a logical path for new design and development

  2. EFFECT OF DATE OF PLANTING ON THE PERFORMANCE OF ...

    African Journals Online (AJOL)

    BSN

    KEY WORDS: Date of Planting, Performance, Groundnut, haulm, yield, grain yield. ... Adamawa State, groundnuts have the highest tonnage among the legumes cultivated and ranks ... germination because of moisture stress) and such planting continues till the ..... variations in temperature and solar radiation intercepted.

  3. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Madron, F. [Chemplant Technology s.r.o., Hrncirska 4, 400 01 Usti nad Labem (Czech Republic); Papuga, J. [CEZ a.s., JE Dukovany, 675 50 Dukovany (Czech Republic); Pliska, J. [I and C ENERGO a.s., Prazska 684, 674 01 Trebic (Czech Republic)

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation

  4. Using international experience to improve performance of nuclear power plants

    International Nuclear Information System (INIS)

    Calori, F.; Csik, B.J.; Strickert, R.J.

    1989-01-01

    Information on performance achievements will assist nuclear power plant operating organizations to develop initiatives for improved or continued high performance of their plants. The paper describes the activities of the IAEA in reviewing and analysing the reasons for good performance by contacting operating organizations identified by its Power Reactor Information System as showing continued good performance. Discussions with operations personnel of utilities have indicated practices which have a major positive impact on good performance and which are generally common to all well performing organizations contacted. The IAEA also promotes further activities directed primarily to the achievement of standards of excellence in nuclear power operation. These are briefly commented

  5. Performance of Generating Plant: Managing the Changes. Executive Summary and Table of Contents

    Energy Technology Data Exchange (ETDEWEB)

    Curley, G. Michael [North American Electric Reliability Corporation (United States); Mandula, Jiri [International Atomic Energy Agency (IAEA)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This document serves as a supporting paper. Sections include: features of Italian energy and electricity; the evolution of liberalisation; support mechanism for renewables; connection to wind farm transmission network; wind source integration into power system; and, final comments. The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 1 (WG1). WG1's primary focus is to analyse the best ways to measure, evaluate, and apply power plant performance and availability data to promote plant performance improvements worldwide. The paper explores the specific work activities of 2004-2007 to extend traditional analysis and benchmarking frameworks. It is divided into two major topics: Overview of current electric supply industry issues/trends; and, Technical Methods/Tools to evaluate performance in today's ESI.

  6. Development of quality assurance and performance testing for the Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Dole, L.R.; McDaniel, E.W.; Robinson, S.M.

    1984-08-01

    The Process Experimental Pilot Plant (PREPP) is planned for operation by EG and G Idaho, Inc., to demonstrate a full-scale, cement-based, disposal process for transuranic (TRU) wastes. Procedures need to be developed to determine the quality of the waste product during processing and the durability of the final waste form produced in this facility. This report summarizes basic guidelines for the selection of the waste form composition and process conditions that affect product performance. Physical property tests that may be applicable for quality assurance during processing are also described. Approaches to accelerated performance tests needed to predict the performance of the cement-based waste form are identified, and suggestions are made for the development of processing tests to ensure the quality of the final waste-host product. 29 references, 3 figures, 4 tables

  7. Development of quality assurance and performance testing for the Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Dole, L.R.; McDaniel, E.W.; Robinson, S.M.

    1984-06-01

    The Process Experimental Pilot Plant (PREPP) is planned for operation by EG and G Idaho, Inc., to demonstrate a full-scale, cement-based, disposal process for transuranic (TRU) wastes. Procedures need to be developed to determine the quality of the waste product during processing and the durability of the final waste form produced in this facility. This report summarizes basic guidelines for the selection of the waste form composition and process conditions that affect product performance. Physical property tests that may be applicable for quality assurance during processing are also described. Approaches to accelerated performance tests needed to predict the performance of the cement-based waste form are identified, and suggestions are made for the development of processing tests to assure the quality of the final waste-host product. 29 references, 3 figures, 3 tables

  8. Off-design thermodynamic performances on typical days of a 330 MW solar aided coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Wang, Yanjuan; Wang, Zhaoguo; Jin, Hongguang

    2014-01-01

    Highlights: • Optical loss and heat loss of solar field under different turbine load were investigated. • Off-design thermodynamic feature was disclosed by analyzing several operational parameters. • Possible schemes was proposed to improve the net solar-to-electricity efficiency. - Abstract: The contribution of mid-temperature solar thermal power to improve the performance of coal-fired power plant is analyzed in the present paper. In the solar aided coal-fired power plant, solar heat at <300 °C is used to replace the extracted steam from the steam turbine to heat the feed water. In this way, the steam that was to be extracted could consequently expand in the steam turbine to boost output power. The advantages of a solar aided coal-fired power plant in design condition have been discussed by several researchers. However, thermodynamic performances on off-design operation have not been well discussed until now. In this paper, a typical 330 MW coal-fired power plant in Sinkiang Province of China is selected as the case study to demonstrate the advantages of the solar aided coal-fired power plant under off-design conditions. Hourly thermodynamic performances are analyzed on typical days under partial load. The effects of several operational parameters, such as solar irradiation intensity, incident angle, flow rate of thermal oil, on the performance of solar field efficiency and net solar-to-electricity efficiency were examined. Possible schemes have been proposed for improving the solar aided coal-fired power plant on off-design operation. The results obtained in the current study could provide a promising approach to solve the poor thermodynamic performance of solar thermal power plant and also offer a basis for the practical operation of MW-scale solar aided coal-fired power plant

  9. Performance of Generating Plant: Managing the Changes. Part 3: Renewable energy plant: reports on wind, photovoltaics and biomas energies

    Energy Technology Data Exchange (ETDEWEB)

    Manoha, Bruno; Cohen, Martin [Electricite de France (France)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 3 (WG3). WG3 will promote the introduction of performance indicators for renewable energy generating plant (wind, geothermal, solar and biomass) developed by the Committee. It will also assess selected transitional technology issues and environmental factors related to non-conventional technologies. The WG3 report includes sections on Wind Energy Today, Photovoltaics Energy Today, Biomass Electricity Today and appendices.

  10. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley

    Directory of Open Access Journals (Sweden)

    M. E. Santamaria

    2018-04-01

    Full Text Available Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production.

  11. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley

    Science.gov (United States)

    Santamaria, M. E.; Diaz, Isabel; Martinez, Manuel

    2018-01-01

    Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production. PMID:29681917

  12. Nuclear Power Plant Performance: Ascending The Summit

    International Nuclear Information System (INIS)

    Anderson, T. M.

    1986-01-01

    When we look back over the years and consider the progress we have made in improving nuclear plant performance, I'm sure that many of you must feel the same mixture of elation and apprehension the mountain climber feels when he finally confronts his summit. In the curse of the last 10 years, many of US have watched availability averages rise from 50% to 60%, to 65% -- and recently, to 70%, 80% and beyond. Yet, as impressive an accomplishment as that is, there comes, I think, a growing realization that the steady increases we have achieved up to now may, in fact, have been the easy part of the journey, the trek from base camp -- and that within a very small handful of years, we may find ourselves pushing plant performance right to the limit, only to discover that it is pushing back

  13. Effect of design and operation of modern ammonia plants on the performance of integrated heavy water plants (Paper No. 2.1)

    International Nuclear Information System (INIS)

    Kumar, Manoj; Haldar, T.K.; Gupta, S.K.; Ramamurty, C.B.

    1992-01-01

    The heavy water plant being parasitic in nature, its design, operation and performance is affected to a great extent by the design, performance and operation of the ammonia plant. Some of the factors which affect the performance of heavy water plant such as on-stream hours and capacity utilisation of the ammonia plant, deuterium concentration (D/D+H) in feed synthesis gas, operating pressure of synthesis loop of ammonia plant, composition of feed synthesis gas, and level of oxygenated impurities in feed synthesis gas are described in this paper. (author). 3 tabs., 4 figs

  14. Performance analysis of WWER-440/230 nuclear power plants

    International Nuclear Information System (INIS)

    1997-01-01

    This report examines one particular design, the WWER-440/230, the first generation of commercial WWERs, essentially comparable to the western PWR. This design was installed widely in eastern Europe with a total of 16 unites being completed in what are now Armenia, Bulgaria, Germany (the former German Democratic Republic) the Slovak Republic and Russia. The plants in Armenia and Germany (the former German Democratic Republic) have been closed down, but particularly in Bulgaria and to a lesser extent the Slovak Republic the remaining plants supply a significant proportion of the electricity of the country and decisions to close them could not be taken lightly. The aim of this report is twofold: first to determine whether the impression given by these good overall performance indicators is confirmed using more detailed indicators covering a wide range of factors; second, to see to what extent good performance can be attributed to the industrial and institutional environment in which these plants were designed, built and operated. Particular attention is paid to identifying factors that may impact the quality of the service provided, especially those factors under management control which can be strongly influenced by current and future policy changes and those factors that are beyond the plant management control but could have influenced the performance of the power plants. Issues concerning the safety of these plants are of considerable importance, but they remain outside the scope of this report. Conclusions and recommendations formulated by the IAEA related to WWER safety are contained in the series of reports prepared in the framework of the Extrabudgetary Programme on WWER Safety. A programme progress report was published in 1994 (IAEA-TECDOC-773). Refs, figs, tabs

  15. Performance analysis of WWER-440/230 nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report examines one particular design, the WWER-440/230, the first generation of commercial WWERs, essentially comparable to the western PWR. This design was installed widely in eastern Europe with a total of 16 unites being completed in what are now Armenia, Bulgaria, Germany (the former German Democratic Republic) the Slovak Republic and Russia. The plants in Armenia and Germany (the former German Democratic Republic) have been closed down, but particularly in Bulgaria and to a lesser extent the Slovak Republic the remaining plants supply a significant proportion of the electricity of the country and decisions to close them could not be taken lightly. The aim of this report is twofold: first to determine whether the impression given by these good overall performance indicators is confirmed using more detailed indicators covering a wide range of factors; second, to see to what extent good performance can be attributed to the industrial and institutional environment in which these plants were designed, built and operated. Particular attention is paid to identifying factors that may impact the quality of the service provided, especially those factors under management control which can be strongly influenced by current and future policy changes and those factors that are beyond the plant management control but could have influenced the performance of the power plants. Issues concerning the safety of these plants are of considerable importance, but they remain outside the scope of this report. Conclusions and recommendations formulated by the IAEA related to WWER safety are contained in the series of reports prepared in the framework of the Extrabudgetary Programme on WWER Safety. A programme progress report was published in 1994 (IAEA-TECDOC-773). Refs, figs, tabs.

  16. Demonstration test for reliability of valves for atomic power plants

    International Nuclear Information System (INIS)

    Hosaka, Shiro

    1978-01-01

    The demonstration test on the reliability of valves for atomic power plants being carried out by the Nuclear Engineering Test Center is reported. This test series is conducted as six-year project from FY 1976 to FY 1981 at the Isogo Test Center. The demonstration test consists of (1) environmental test, (2) reaction force test, (3) vibration test, (4) stress measurement test, (5) operational characteristic test, (6) flow resistance coefficient measuring test, (7) leakage test and (8) safety valve and relief valve test. These contents are explained about the special requirements for nuclear use, for example, the enviornmental condition after the design base accident of PWRs and BWRs, the environmental test sequence for isolation valves of containment vessels under the emergency condition, the seismic test condition for valves of nuclear use, the various stress measurements under thermal transient conditions, the leak test after 500 cycles between the normal operating conditions for PWRs and BWRs and the start up conditions and so on. As for the testing facilities, the whole flow diagram is shown, in which the environmental test section, the vibration test section, the steam test section, the hot water test section, the safety valve test section and main components are included. The specifications of each test section and main components are presented. (Nakai, Y.)

  17. Nuclear power plant performance statistics. Comparison with fossil-fired units

    International Nuclear Information System (INIS)

    Tabet, C.; Laue, H.J.; Qureshi, A.; Skjoeldebrand, R.; White, D.

    1983-01-01

    The joint UNIPEDE/World Energy Conference Committee on Availability of Thermal Generating Plants has a mandate to study the availability of thermal plants and the different factors that influence it. This has led to the collection and publication at the Congress of the World Energy Conference (WEC) every third year of availability and unavailability factors to be used in systems reliability studies and operations and maintenance planning. For nuclear power plants the joint UNIPEDE/WEC Committee relies on the IAEA to provide availability and unavailability data. The IAEA has published an annual report with operating data from nuclear plants in its Member States since 1971, covering in addition back data from the early 1960s. These reports have developed over the years and in the early 1970s the format was brought into close conformity with that used by UNIPEDE and WEC to report performance of fossil-fired generating plants. Since 1974 an annual analytical summary report has been prepared. In 1981 all information on operating experience with nuclear power plants was placed in a computer file for easier reference. The computerized Power Reactor Information System (PRIS) ensures that data are easily retrievable and at its present level it remains compatible with various national systems. The objectives for the IAEA data collection and evaluation have developed significantly since 1970. At first, the IAEA primarily wanted to enable the individual power plant operator to compare the performance of his own plant with that of others of the same type; when enough data had been collected, they provided the basis for assessment of the fundamental performance parameters used in economic project studies; now, the data base merits being used in setting availability objectives for power plant operations. (author)

  18. Small Scale Mixing Demonstration Batch Transfer and Sampling Performance of Simulated HLW - 12307

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jesse; Townson, Paul; Vanatta, Matt [EnergySolutions, Engineering and Technology Group, Richland, WA, 99354 (United States)

    2012-07-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste treatment Plant (WTP) has been recognized as a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. At the end of 2009 DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS), awarded a contract to EnergySolutions to design, fabricate and operate a demonstration platform called the Small Scale Mixing Demonstration (SSMD) to establish pre-transfer sampling capacity, and batch transfer performance data at two different scales. This data will be used to examine the baseline capacity for a tank mixed via rotational jet mixers to transfer consistent or bounding batches, and provide scale up information to predict full scale operational performance. This information will then in turn be used to define the baseline capacity of such a system to transfer and sample batches sent to WTP. The Small Scale Mixing Demonstration (SSMD) platform consists of 43'' and 120'' diameter clear acrylic test vessels, each equipped with two scaled jet mixer pump assemblies, and all supporting vessels, controls, services, and simulant make up facilities. All tank internals have been modeled including the air lift circulators (ALCs), the steam heating coil, and the radius between the wall and floor. The test vessels are set up to simulate the transfer of HLW out of a mixed tank, and collect a pre-transfer sample in a manner similar to the proposed baseline configuration. The collected material is submitted to an NQA-1 laboratory for chemical analysis. Previous work has been done to assess tank mixing performance at both scales. This work involved a combination of unique instruments to understand the three dimensional distribution of solids using a combination of Coriolis meter measurements, in situ chord length distribution

  19. Nuclear steam power plant cycle performance calculations supported by power plant monitoring and results computer

    International Nuclear Information System (INIS)

    Bettes, R.S.

    1984-01-01

    The paper discusses the real time performance calculations for the turbine cycle and reactor and steam generators of a nuclear power plant. Program accepts plant measurements and calculates performance and efficiency of each part of the cycle: reactor and steam generators, turbines, feedwater heaters, condenser, circulating water system, feed pump turbines, cooling towers. Presently, the calculations involve: 500 inputs, 2400 separate calculations, 500 steam properties subroutine calls, 200 support function accesses, 1500 output valves. The program operates in a real time system at regular intervals

  20. World-class outage performance of the Olkiluoto nuclear power plant

    International Nuclear Information System (INIS)

    Paavola, M.

    1998-01-01

    The production of the Olkiluoto power plant units covered 17% of the electricity consumption in Finland in 1997; the total share of nuclear energy was 27% of the electricity consumed in the country. Based on Finnish experience, nuclear energy is a safe, environmentally friendly and economic way to produce electricity provided that the plants and their personnel are well taken care of. TVO's policy is to keep the plant units in good condition and technically modern. This requires continuous investments in the plant. In maintenance, attention is paid to monitoring the condition of the plant and to preventive maintenance aiming at avoiding disturbances in production. TVO has chosen continuous development as the operational line develops the plant by annual investments and performs the necessary modifications during planned annual outages trying to avoid long production interruptions. The load factors of the Olkiluoto nuclear power plant have been high. The average load factor during the last decade was over 93%. The most significant single factor in the production deficits is the amount or electricity, which has not been produced because of the annual outages. Due to this, special attention has been paid to the performance of the annual outages. TVO aims at continuous development of the annual outage procedure. A centralized task management system makes it possible to perform simultaneously more tasks than before. The company has also invested in equipment and systems, which ease and speed up servicing. Normal outage length varies between 10 and 16 days. By keeping the plant units as modern as possible and in good condition we facilitate reaching TVO's target, which is also stated in TVO's slogan 'always 40 years lifetime'. (author)

  1. Demonstration of near-real-time accounting at the AGNS Barnwell Plant

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Baker, A.L.

    1981-01-01

    Near-real-time nuclear materials accounting is being demonstrated in a series of experiments at the Allied-General Nuclear Services Barnwell Nuclear Fuels Plant. Each experiment consists of operating the second and third plutonium cycles continuously for 1 week using uranium solutions. Process data are collected in near-real time by the AGNS computerized nuclear materials control and accounting system, and the data are analyzed for diversion using decision analysis techniques developed and implemented by Los Alamos. Although the measurement system primarily consists of process control measurements that have not been optimized for near-real-time accounting, the results of a series of diversion tests show that diversion and unexpected losses from the process area can be detected

  2. Waste Treatment Plant LAW Evaporation: Antifoam Performance

    International Nuclear Information System (INIS)

    BAICH, MARKA

    2004-01-01

    This report describes the work performed to determine the performance and fate of several commercial antifoams during evaporation of various simulants of Envelope A, B, and C mixed with simulated River Protection Project Waste Treatment Plant (RPP-WTP) recycle streams. Chemical and radiation stability of selected antifoams was also investigated.Contributors to this effort include: Illinois Institute of Technology (IIT), DOW Corning Analytical, and Savannah River Technology Center (SRTC)

  3. Interactive effects of herbivory and competition intensity determine invasive plant performance.

    Science.gov (United States)

    Huang, Wei; Carrillo, Juli; Ding, Jianqing; Siemann, Evan

    2012-10-01

    Herbivory can reduce plant fitness, and its effects can be increased by competition. Though numerous studies have examined the joint effects of herbivores and competitors on plant performance, these interactive effects are seldom considered in the context of plant invasions. Here, we examined variation in plant performance within a competitive environment in response to both specialist and generalist herbivores using Chinese tallow as a model species. We combined tallow plants from native and invasive populations to form all possible pairwise combinations, and designated invasive populations as stronger neighbours and native populations as weaker neighbours. We found that when no herbivory was imposed, invasive populations always had higher total biomass than natives, regardless of their neighbours, which is consistent with our assumption of increased competitive ability. Defoliation by either generalist or specialist herbivores suppressed plant growth but the effects of specialists were generally stronger for invasive populations. Invasive populations had their lowest biomass when fed upon by specialists while simultaneously competing with stronger neighbours. The root/shoot ratios of invasive populations were lower than those of native populations under almost all conditions, and invasive plants were taller than native plants overall, especially when herbivores were present, suggesting that invasive populations may adopt an "aboveground first" strategy to cope with herbivory and competition. These results suggest that release from herbivores, especially specialists, improves an invader's performance and helps to increase its competitive ability. Therefore, increasing interspecific competition intensity by planting a stronger neighbour while simultaneously releasing a specialist herbivore may be an especially effective method of managing invasive plants.

  4. An overview of U.S. plant performance improvement through effective radioactive waste management

    International Nuclear Information System (INIS)

    Sieberling, R.; Lyons, P.W.

    1986-01-01

    Radioactive waste volumes in the United States commercial nuclear power industry have declined over the last five years after increasing steadily in the late 1970's. This decline is considered to be especially significant because major backfits/modifications and major component repair/replacement at U.S. nuclear power stations have been accomplished during this period. This paper analyzes the key reasons for this performance and outlines the positive effects that this trend has upon overall nuclear plant performance. In reviewing plant performance data, there appears to be a direct correlation between overall plant performance and radioactive waste performance. For example, plants with high capacity factors, strong industrial safety programs, low collective man-rem, and good contamination controls, generally have a history of low radioactive waste volumes. The reasons for this excellent performance is the result of direct management and supervisory involvement in plant operations, implementation of high standards of performance, and monitoring performance against these standards. Using the techniques outlined in this paper, the U.S. nuclear power industry can continue to reduce the volume of low-level solid radioactive waste being generated

  5. Nuclear power plant performance. Status and trends

    International Nuclear Information System (INIS)

    Glorian, D.

    1995-01-01

    The performance of nuclear power plants can be assessed in several different fields: operating costs, safety, reliability of electricity generation, impact on the environment and personnel protection (industrial safety, radiation protection, etc.). Comparing national and international performance levels involves the use of performance indicators, together with a terminology, precise definitions and computerized data collection and processing facilities. The paper gives a brief review of the different actions undertaken during the last ten years to achieve international harmonization in the use of indicators. The main international indicators in use today by virtually all nuclear operators around the world are examined. Figures are given for each of these main indicators. In particularly, the levels of 'excellence' achieved throughout the world are discussed, together with the difficulties encountered in trying to match them or indeed maintain them. Future prospects regarding both the efforts made towards achieving international harmonization and the optimum use of this system of international performance indicators are examined, in order to achieve mutual enhancement through this approach to feedback of experience. Considering the overall performance indicators in use, it must be clearly recognized that, over the last ten years, the nuclear industry has made a tremendous effort to improve performance; the challenge for the future is to maintain a very high level of quality in the area of safety by keeping the operating costs (and investment costs for future plants) within a reasonable range

  6. Performance of PWR Nuclear power plants, up to 1985

    International Nuclear Information System (INIS)

    Muniz, A.A.

    1987-01-01

    The performance of PWR nuclear power plants is studied, based on operational data up to 1985. The availability analysis was made with 793 unit-year and the reliability analysis was made with 5851 unit x month. The results were discussed and the availability of those nuclear power plants were estimated. (E.G.) [pt

  7. Performance of a Grid Connected Photovoltaic Plant

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2009-01-01

    Full Text Available The paper presents an overwiev of the performances of the grid connectedphotovoltaik plant at the University ”Eftimie Murgu��� Resita, Romaniarealised on the monitoriesed wheather and installations datastored in a on-line data base during one year.

  8. Evaluation criteria for enhanced solar–coal hybrid power plant performance

    International Nuclear Information System (INIS)

    Zhao, Yawen; Hong, Hui; Jin, Hongguang

    2014-01-01

    Attention has been directed toward hybridizing solar energy with fossil power plants since the 1990s to improve reliability and efficiency. Appropriate evaluation criteria were important in the design and optimization of solar–fossil hybrid systems. Two new criteria to evaluate the improved thermodynamic performances in a solar hybrid power plant were developed in this study. Correlations determined the main factors influencing the improved thermodynamic performances. The proposed criteria can be used to effectively integrate solar–coal hybridization systems. Typical 100 MW–1000 MW coal-fired power plants hybridized with solar heat at approximately 300 °C, which was used to preheat the feed water before entering the boiler, were evaluated using the criteria. The integration principle of solar–coal hybrid systems was also determined. The proposed evaluation criteria may be simple and reasonable for solar–coal hybrid systems with multi-energy input, thus directing system performance enhancement. - Highlights: • New criteria to evaluate the solar hybrid power plant were developed. • Typical solar–coal hybrid power plants were evaluated using the criteria. • The integration principle of solar–coal hybrid systems was determined. • The benefits of the solar–coal hybrid system are enhanced at lower solar radiation

  9. Inter-plant coordination and its relationships with supply chain integration and operational performance

    DEFF Research Database (Denmark)

    Yang, Cheng; Chaudhuri, Atanu; Farooq, Sami

    2016-01-01

    Based on the data obtained from the sixth version of International Manufacturing Strategy Survey (IMSS VI), this paper explores the relationships at the level of plant between (1) inter-plant coordination and operational performance, and (2) between inter-plant coordination and internal/external ......Based on the data obtained from the sixth version of International Manufacturing Strategy Survey (IMSS VI), this paper explores the relationships at the level of plant between (1) inter-plant coordination and operational performance, and (2) between inter-plant coordination and internal...

  10. Web-based turbine cycle performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyun Young; Lee, Sung Jin; Chang, Soon Heung; Choi, Seong Soo

    2000-01-01

    As an approach to improve the economical efficiency of operating nuclear power plants, a thermal performance analysis tool for steam turbine cycle has been developed. For the validation and the prediction of the signals used in thermal performance analysis, a few statistical signal processing techniques are integrated. The developed tool provides predicted performance calculation capability that is steady-state wet steam turbine cycle simulation, and measurement performance calculation capability which determines component- and cycle-level performance indexes. Web-based interface with all performance analysis is implemented, so even remote users can achieve performance analysis. Comparing to ASME PTC6 (Performance Test Code 6), the focusing point of the developed tool is historical performance analysis rather than single accurate performance test. The proposed signal processing techniques are validated using actual plant signals, and turbine cycle models are tested by benchmarking with a commercial thermal analysis tool

  11. Follow-up study of the MASSAHAKE-demonstration plant; MASSAHAKE-demonstraatiolaitoksen seuranta

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T [Pohjois-Satakunnan Massahake Oy, Kankaanpaeae (Finland)

    1997-12-31

    First thinnings of high harvesting costs and low timber accumulation have often remained unharvested in Northern Satakunta due to unprofitability of harvesting. One possible solution for the problem is a harvesting chain based on partial-tree harvesting combined with the MASSAHAKE method. The pulpwood-chipping plant owned by Pohjois-Satakunnan MASSAHAKE Oy started operation in May 1995. The objective of this research is to clear-up the technical operability and profitability of the Kankaanpaeae demonstration plant, and the suitability of the products for industrial purposes. The second aim is to develop a delivery method, based on partial-tree harvesting, and the delivery organisation suitable for the conditions in Pohjois-Satakunta. The wood delivery of the MASSAHAKE is concentrated to first thinning forests. The first thinning area, given in the felling plan, located at the delivery area of MASSAHAKE, is 8870 ha/a. This corresponds to 283 000 m{sup 3} pulpwood, the total amount of biomass being 360 000 m{sup 3}. Felling is mainly carried out as labour input using conveyance-felling method. The biomass yield in typical birch first-thinning cut as partial-trees with top diameter of 4 cm is about 40 % higher than in harvesting with short-wood method. The unit costs of harvesting are about a third lower

  12. Follow-up study of the MASSAHAKE-demonstration plant; MASSAHAKE-demonstraatiolaitoksen seuranta

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T. [Pohjois-Satakunnan Massahake Oy, Kankaanpaeae (Finland)

    1996-12-31

    First thinnings of high harvesting costs and low timber accumulation have often remained unharvested in Northern Satakunta due to unprofitability of harvesting. One possible solution for the problem is a harvesting chain based on partial-tree harvesting combined with the MASSAHAKE method. The pulpwood-chipping plant owned by Pohjois-Satakunnan MASSAHAKE Oy started operation in May 1995. The objective of this research is to clear-up the technical operability and profitability of the Kankaanpaeae demonstration plant, and the suitability of the products for industrial purposes. The second aim is to develop a delivery method, based on partial-tree harvesting, and the delivery organisation suitable for the conditions in Pohjois-Satakunta. The wood delivery of the MASSAHAKE is concentrated to first thinning forests. The first thinning area, given in the felling plan, located at the delivery area of MASSAHAKE, is 8870 ha/a. This corresponds to 283 000 m{sup 3} pulpwood, the total amount of biomass being 360 000 m{sup 3}. Felling is mainly carried out as labour input using conveyance-felling method. The biomass yield in typical birch first-thinning cut as partial-trees with top diameter of 4 cm is about 40 % higher than in harvesting with short-wood method. The unit costs of harvesting are about a third lower

  13. Bayesian calibration of power plant models for accurate performance prediction

    International Nuclear Information System (INIS)

    Boksteen, Sowande Z.; Buijtenen, Jos P. van; Pecnik, Rene; Vecht, Dick van der

    2014-01-01

    Highlights: • Bayesian calibration is applied to power plant performance prediction. • Measurements from a plant in operation are used for model calibration. • A gas turbine performance model and steam cycle model are calibrated. • An integrated plant model is derived. • Part load efficiency is accurately predicted as a function of ambient conditions. - Abstract: Gas turbine combined cycles are expected to play an increasingly important role in the balancing of supply and demand in future energy markets. Thermodynamic modeling of these energy systems is frequently applied to assist in decision making processes related to the management of plant operation and maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities and plant operators make decisions with limited or no regard of uncertainties. As the steady integration of wind and solar energy into the energy market induces extra uncertainties, part load operation and reliability are becoming increasingly important. In the current study, methods are proposed to not only quantify various types of uncertainties in measurements and plant model parameters using measured data, but to also assess their effect on various aspects of performance prediction. The authors aim to account for model parameter and measurement uncertainty, and for systematic discrepancy of models with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan is used, which is especially suitable for high-dimensional industrial problems. The article derives a calibrated model of the plant efficiency as a function of ambient conditions and operational parameters, which is also accurate in part load. The article shows that complete statistical modeling of power plants not only enhances process models, but can also increases confidence in operational decisions

  14. Coal-fired CCS demonstration plants, 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    The present report reviews activities taking place focused on the eventual large-scale deployment of carbon capture systems on coal-fired power plants. With this aim in mind, there are three main CO2 capture technology streams currently being developed and tested; these comprise pre-combustion capture, post-combustion capture, and systems based on oxyfuel technology. Although numerous other capture systems have been proposed, these three are currently the focus of most RD&D efforts and this report concentrates on these. More speculative technologies still at early stages in their development are not addressed. The overall aims of this report are to provide an update of recent technological developments in each of the main categories of CO2 capture, and to review the current state of development of each, primarily through an examination of larger-scale development activities taking place or proposed. However, where appropriate, data generated by smaller-scale testing is noted, especially where this is feeding directly into ongoing programmes aimed at developing further, or scaling-up the particular technology. Each is reviewed and the status of individual coal-based projects and proposals described. These are limited mainly to what are generally described as pilot and/or demonstration scale. Where available, learning experiences and operational data being generated by these projects is noted. Technology Readiness Levels (TRLs) of individual projects have been used to provide an indication of technology scale and maturity. For pre-combustion capture, post-combustion capture and oxyfuel systems, an attempt has been made to identify the technological challenges and gaps in the knowledge that remain, and to determine what technology developers are doing in terms of RD&D to address these. However, issues of commercial confidentiality have meant that in some cases, information in the public domain is limited, hence it has only been possible to identify overarching

  15. Performance management for nuclear power plant operators

    International Nuclear Information System (INIS)

    Fan Pengfei

    2014-01-01

    Fuel was loaded to Unit 3 of the second power plant in May 2010. The Second Operation Division stepped in the operation stage from production preparation and commissioning and exploration of performance management was started. By means of performance evaluation, a closed loop of performance management was formed, staff enthusiasm improved, and potential capability inspired through evaluation, analysis and improvement. The performance evaluation covers attitude, skill, efficiency, performance, teamwork sense, cooperation, etc. Quantitative appraisal was carried out through 31 objective indicators of the working process and results. According to the evaluation results and personal interviews, indicators were modified. Through the performance evaluation, positive guidance is provided to the employees to promote the development of employees, departments and the enterprise. (authors)

  16. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    Science.gov (United States)

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  17. Comparative analysis of species-based specificity in Sr 90 and Cs 137 accumulation demonstrated by ligneous plant forest communities

    International Nuclear Information System (INIS)

    Martinovich, B.S.; Vlasov, V.K.; Sak, M.M.; Golushko, R.M.; Afmogenov, A.M.; Kirykhin, O.V.

    2004-01-01

    The authors provided field-proven study of Sr 90 and Cs 137 absorption activity demonstrated by Pinus silvestris L.; Piceae abies (L.) Roth.; Quercus rubra L.; Acer platanoides L.; Betula pendula Roth.; Tilia cordata Mill, under identical habitat conditions. The above plants were examined after 5-year growth period on radionuclide-contaminated soil. To a great extent, such parameters as radionuclide accumulation in experimental plants and accumulation activity were determined by the plants' bio-ecological properties. (Authors)

  18. Demonstration of IGCC features - plant integration and syngas combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, F.; Huth, M.; Karg, J.; Schiffers, U. [Siemens AG Power Generation (KWU), Erlanger/Muelheim (Germany)

    2000-07-01

    Siemens is involved in three IGCC plants in Europe that are currently in operation. Against the background of the Puertollano and Buggenum plants, some of the specific new features of fully integrated IGCC power plants are discussed, including: requirements and design features of the gas turbine syngas supply system; gas turbine operating experience with air extraction for the air separation unit from the gas turbine air compressor; and design requirements and operational features of the combustion system. 7 refs., 17 figs., 1 tab.

  19. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  20. Solar power plant performance evaluation: simulation and experimental validation

    Science.gov (United States)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  1. Predictors of operator performance at a simulated nuclear power plant control task

    International Nuclear Information System (INIS)

    Spettell, C.M.

    1986-01-01

    Male undergraduates participated in two experiments as operators of a simple dynamic nuclear power plant simulated on a personal computer. Their task involved monitoring the temperature and power output of the plant and controlling the flow of coolants and the position of the control rods to ensure that the plant operated at the desired temperature and output levels. Quality of performance was defined as the operator's ability to minimize the deviations in temperature and output from optimal values during the trials. Operator inputs and the status of all plant variables were recorded on-line every two seconds. Based on a review of human factors engineering and psychological literature, a number of personality, background, and process variables were measured and correlated with operator performance. Results of both experiments indicated that the strongest predictors of operator performance were the rate, magnitude, and accuracy of operator inputs. Input rate and magnitude were negatively related to overall performance; input accuracy was positively related to performance. These process variables and overall performance were relatively stable across trials of varying difficulty

  2. Operation and performance of the ICARUS-T600 cryogenic plant at Gran Sasso underground Laboratory

    CERN Document Server

    Antonello, M.; Baibussinov, B.; Boffelli, F.; Bubak, A.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieślik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dermenev, A.; Disdier, J.M.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.R.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Sulej, R.; Szarska, M.; Terrani, M.; Torti, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.

    2015-12-04

    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with the excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long-term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during Spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid Argon. Overall plant performance and stability during the long-term underground operation are discusse...

  3. Anatomy of event and human performance management in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Jinhua

    2014-01-01

    This article analyzes the occurrence mechanism of events in nuclear power plants, and explains the four factors of human errors and the relations among them, then probes into the occurrence mechanism and characteristics of human errors in nuclear power plants. Moreover, the article clarifies that the principle of human performance training in nuclear power plants is all-member training, and that the implementation approach is to develop different human performance tools for different staff categories as workers, knowledge workers and supervisors, which are categorized based on characteristics of work of different staff. (author)

  4. Application of Advanced Technology to Improve Plant Performance. Safety and Performance in Current NPPs

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Advances in computer technologies, signal processing, analytical modeling, and the advent of wireless sensors have provided the nuclear industry with ample means to automate and optimize maintenance activities and improve safety, efficiency, and availability, while reducing costs and radiation exposure to maintenance personnel. This paper provides a review of these developments and presents examples of their use in the nuclear power industry and the financial and safety benefits that they have produced. As the current generation of nuclear power plants have passed their mid-life, increased monitoring of their health is critical to their safe operation. This is especially true now that license renewal of nuclear power plants has accelerated, allowing some plants to operate up to 60 years or more. Furthermore, many utilities are maximizing their power output through uprating projects and retrofits. This puts additional demand and more stress on the plant equipment such as the instrumentation and control (I and C) systems and the reactor internal components making them more vulnerable to the effects of aging, degradation, and failure. In the meantime, the nuclear power industry is working to reduce generation costs by adopting condition-based maintenance strategies and automation of testing activities. These developments have stimulated great interest in on-line monitoring (OLM) technologies and new diagnostic and prognostic methods to anticipate, identify, and resolve equipment and process problems and ensure plant safety, efficiency, and immunity to accidents. The foundation for much of the required technologies has already been established through 40 years of research and development (R and D) efforts performed by numerous organizations, scientists, and engineers around the world including the author. This paper provides examples of these technologies and demonstrates how the gap between some of the more important R and D efforts and end users have been filled

  5. The materials concept in German light water reactors. A contribution to plant safety, economic performance and damage prevention

    International Nuclear Information System (INIS)

    Ilg, Ulf

    2008-01-01

    Major decisions taken as early as in the planning and construction phases of nuclear power plants may influence overall plant life. Component quality at the beginning of plant life is determined very much also by a balanced inclusion of the 'design, choice of materials, manufacturing and inspection' elements. One example of the holistic treatment of design, choice of material, and manufacture of important safety-related components in pressurized water reactors is the reactor pressure vessel (RPV) in which the ferritic compound tubes, with inside claddings, for the control rod drive nozzles are screwed into the vessel top. Also the choice of Incoloy 800 for the steam generator tubes, and the design of the main coolant pipes with inside claddings as seamless pipe bends / straight pipes with integrated nozzles connected to mixed welds with austenitic pipes are other special design features of the Siemens/KWU plants. A demonstrably high quality standard by international comparison to this day has been exhibited by the austenitic RPV internals of boiling water reactors, which were made of a low-carbon Nb-stabilized austenitic steel grade by optimum manufacturing technologies. The same material is used for backfitting austenitic pipes. Reliable and safe operation of German nuclear power plants has been demonstrated for more than 4 decades. One major element in this performance is the materials concept adopted in Germany also in the interest of damage prevention. (orig.)

  6. Overall performance assessment of a combined cycle power plant: An exergo-economic analysis

    International Nuclear Information System (INIS)

    Sahin, Ahmet Z.; Al-Sharafi, Abdullah; Yilbas, Bekir S.; Khaliq, Abdul

    2016-01-01

    Highlights: • An exergo-economic analysis is carried out for a combined cycle power plant. • An overall performance index (OPI) is defined to analyze the power plant. • Four performance indicators and three scenarios are considered in the analysis. • The optimum configuration of the power plant differs for each scenarios considered. - Abstract: An exergo-economic analysis is carried out for a combined cycle power plant using the first law and the second law of thermodynamics, and the economic principles while incorporating GT PRO/PEACE Software Packages. An overall performance index (OPI) is defined to assess and analyze the optimum operational and design configurations of the power plant. Four performance indicators are considered for the analysis; namely, energy efficiency (ENE), exergy efficiency (EXE), levelized cost of electricity (COE), and the total investment (TI) cost. Three possible scenarios are considered in which different weight factor is assigned to the performance indicators when assessing the performance. These scenarios are: (i) the conventional case in which the levelized cost of electricity is given a high priority, (ii) environmental conscious case in which the exergy efficiency is given a high priority, and (iii) the economical case in which the total cost of investment is given a high priority. It is shown that the optimum size and the configuration of the power plant differ for each scenarios considered. The selection and optimization of the size and configuration of the power plant are found to be depending on the user priorities and the weight factors assigned to the performance indicators.

  7. Wood gasification demonstration plant in the Schwaebische Alb mountains; Demonstrationsprojekt zur Holzvergasung auf der Schwaebischen Alb

    Energy Technology Data Exchange (ETDEWEB)

    Naab, Peter; Bernhart, Martin [Energieversorgung Filstal GmbH und Co. KG, Goeppingen (Germany)

    2009-12-15

    From 2011, the demonstration plant ''Technologieplattform Bioenergie und Methan (TBM) will produce a hydrogen-rich fuel gas from wood, biomass residues and steam in the intercommunal industrial area ''Gewerbepark Schwaebische Alb'' near Geislingen-Tuerkheim in the German state of Baden-Wuerttemberg. (orig.)

  8. Safety demonstration tests on pressure rise in ventilation system and blower integrity of a fuel-reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Junichi; Suzuki, Motoe; Tsukamoto, Michio; Koike, Tadao; Nishio, Gunji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    In JAERI, the demonstration test was carried out as a part of safety researches of the fuel-reprocessing plant using a large-scale facility consist of cells, ducts, dumpers, HEPA filters and a blower, when an explosive burning due to a rapid reaction of thermal decomposition for solvent/nitric acid occurs in a cell of the reprocessing plant. In the demonstration test, pressure response propagating through the facility was measured under a blowing of air from a pressurized tank into the cell in the facility to elucidate an influence of pressure rise in the ventilation system. Consequently, effective pressure decrease in the facility was given by a configuration of cells and ducts in the facility. In the test, transient responses of HEPA filters and the blower by the blowing of air were also measured to confirm the integrity. So that, it is confirmed that HEPA filters and the blower under pressure loading were sufficient to maintain the integrity. The content described in this report will contribute to safety assessment of the ventilation system in the event of explosive burning in the reprocessing plant. (author)

  9. Effects of various planting ratios on the performance of maize and ...

    African Journals Online (AJOL)

    The experiment was conducted at the Teaching and Research Farm of Ambrose Alli University, Ekpoma to evaluate the performance of maize and cowpea planted at various replacement ratios. Weight of grains per plant and grain yield were higher in cowpea in maize-cowpea intercrop planted in ratio 2:1. Based on the ...

  10. Prototype CIRCE plant - industrial demonstration of heavy water production from reformed hydrogen source

    International Nuclear Information System (INIS)

    Spagnolo, D.A.; Boniface, H.A.; Sadhankar, R.R.; Everatt, A.E.; Miller, A.I.; Blouin, J.

    2002-01-01

    Heavy water (D 2 0) production has been dominated by the Girdler-Sulphide (G-S) process, which suffers several intrinsic disadvantages that lead to high production costs. Processes based on hydrogen/water exchange have become more attractive with the development of proprietary wetproofed catalysts by AECL. One process that is synergistic with industrial hydrogen production by steam methane reforming (SMR), the Combined Industrial Reforming and Catalytic Exchange (CIRCE) process, offers the best prospect for commercialization. SMRs are common globally in the oil-upgrading and ammonia industries. To study the CIRCE process in detail, AECL, in collaboration with Air Liquide Canada, constructed a prototype CIRCE plant (PCP) in Hamilton, Ontario. The plant became fully operational in 2000 July and is expected to operate to at least late fall of 2002. To-date, plant operation has confirmed the adequacy of the design and the capability of enriching deuterium to produce heavy water without compromising hydrogen production. The proprietary wetproofed catalyst has performed as expected, both in activity and in robustness. (author)

  11. Estimation of uncertainty bounds for the future performance of a power plant

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2009-01-01

    on recent data and the other is based on operating points as well. The third proposed scheme uses dynamical models of the prediction uncertainties, like in H-infinity-control. The proposed schemes are subsequently applied to experimental data from a coal-fired power plant. {Two sets of data from an actual......} the future performance of these plants is that available models of the plants are uncertain. In this paper three schemes for predicting uncertain dynamical systems are presented. The schemes estimate upper and lower bounds on the system performance. Two of the schemes are statistically based, one only based......Prediction of the future performance of large-scale power plants can be very relevant for the operators of these plants, as the predictions can indicate possible problems or failures due to current operating conditions and/or future possible operating conditions. {A problem in predicting...

  12. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L. and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-09-01

    Full Text Available Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L., and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

  13. Performance evaluation and economic analysis of a gas turbine power plant in Nigeria

    International Nuclear Information System (INIS)

    Oyedepo, S.O.; Fagbenle, R.O.; Adefila, S.S.; Adavbiele, S.A.

    2014-01-01

    Highlights: • We evaluate performance and economic analysis of a gas turbine power plant in Nigeria. • We examine the shortfall of energy generated and compared with the standard value. • Generation loss resulted in revenue loss of the plant. • Improvement in general housekeeping of the plant will improve performance indices. - Abstract: In this study, performance evaluation and economic analysis (in terms of power outage cost due to system downtime) of a gas turbine power plant in Nigeria have been carried out for the period 2001–2010. The thermal power station consists of nine gas turbine units with total capacity of 301 MW (9 × 31.5 MW). The study reveals that 64.3% of the installed capacity was available in the period. The percentage of shortfall of energy generated in the period ranged from 4.18% to 14.53% as against the acceptable value of 5–10%. The load factor of the plant is between 20.8% and 78.2% as against international best practice of 80%. The average availability of the plant for the period was about 64% as against industry best practice of 95%, while the average use factor was about 92%. The capacity factor of the plant ranged from 20.8% to 78.23% while the utilization factor ranged from 85.47% to 95.82%. For the ten years under review, there was energy generation loss of about 35.7% of expected energy generation of 26.411 TW h with consequent plant performance of 64.3%. The study further reveals that the 35.7% of generation loss resulted in revenue loss of about M$251 (approximately b▪40). The simple performance indicator developed to evaluate the performance indices and outage cost for the station can also be applicable to other power stations in Nigeria and elsewhere. Measures to improve the performance indices of the plant have been suggested such as training of operation and maintenance (O and M) personnel regularly, improvement in O and M practices, proper spare parts inventory and improvement in general housekeeping of the

  14. Solar power plant performance evaluation: simulation and experimental validation

    International Nuclear Information System (INIS)

    Natsheh, E M; Albarbar, A

    2012-01-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P and O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  15. Early Site Permit Demonstration Program: Station design alternatives report

    International Nuclear Information System (INIS)

    1993-03-01

    This report provides the results of investigating the basis for including Station Design Alternatives (SDAs) in the regulatory guidance given for nuclear plant environmental reports (ERs), explains approaches or processes for evaluating SDAs at the early site permit (ESP) stage, and applies one of the processes to each of the ten systems or subsystems considered as SDAS. The key objective o this report s to demonstrate an adequate examination of alternatives can be performed without the extensive development f design data. The report discusses the Composite Suitability Approach and the Established Cutoff Approach in evaluating station design alternatives and selects one of these approaches to evaluate alternatives for each of the plant or station that were considered. Four types of ALWRs have been considered due to the availability of extensive plant data: System 80+, AP600, Advanced Boiling Reactor (ABWR), and Simplified Boiling Water Reactor (SBWR). This report demonstrates the feasibility of evaluating station design alternatives when reactor design detail has not been determined, quantitatively compares the potential ental impacts of alternatives, and focuses the ultimate selection of a alternative on cost and applicant-specific factors. The range of alternatives system is deliberately limited to a reasonable number to demonstrate the or to the three most commonly used at operating plants

  16. Performance objectives and criteria for plant evaluations

    International Nuclear Information System (INIS)

    1983-04-01

    Maintenance organization and administration should ensure effective implementation and control of maintenance activities. The criteria are: A. The organizational structure is clearly defined. B. Staffing and resources are sufficient to accomplish assigned tasks. C. Responsibilities and authority of each management, supervisory, and professional position are clearly defined. D. Personnel clearly understand their authority, responsibilities, accountabilities, and interfaces with supporting groups. E. Administrative controls are employed for maintenance activities important to plant safety and reliability. F. Performance appraisals are effectively utilized to enhance individual performance

  17. One gigasample per second transient recorder: a performance demonstration

    International Nuclear Information System (INIS)

    Linnenbrink, T.E.; Gradl, D.A.; Ritt, D.M.; DeWitte, G.J.; Hutton, J.D.

    1982-01-01

    The performance demonstrated by a one gigasample per second (1 Gs/s) transient recorder currently in advanced development portends an important new instrument for recording single transient data. A Charge-Coupled Device (CCD) is used to sample a continuous analog signal. Samples acquired at the full sampling rate (1 Gs/s) are temporarily stored in the CCD, then read out at a slow rate (e.g., 250 Ks/s) into a conventional analog-to-digital converter prior to storage in nonvolatile, digital memory. Enhanced circuitry and techniques developed over the past three years have yielded higher performance than originally anticipated. Accordingly, the target specification has been revised to reflect higher expectations

  18. Performance Demonstration Program Plan for the WIPP Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-02-01

    The Performance Demonstration Program is designed to ensure that compliance with the Quality Assurance Objective, identified in the Quality Assurance Program Plan for the WIPP Experimental-Waste Characterization Program (QAPP), is achieved. This Program Plan is intended for use by the WPO to assess the laboratory support provided for the characterization of WIPP TRU waste by the storage/generator sites. Phase 0 of the Performance Demonstration Program encompasses the analysis of headspace gas samples for inorganic and organic components. The WPO will ensure the implementation of this plan by designating an independent organization to coordinate and provide technical oversight for the program (Program Coordinator). Initial program support, regarding the technical oversight and coordination functions, shall be provided by the USEPA-ORP. This plan identifies the criteria that will be used for the evaluation of laboratory performance, the responsibilities of the Program Coordinator, and the responsibilities of the participating laboratories. 5 tabs

  19. Application of balanced score card in the development of performance indicator system in nuclear power plant

    International Nuclear Information System (INIS)

    Shen Shuguang; Huang Fang; Fang Zhaoxia

    2013-01-01

    Performance indicator, which is one of ten performance monitoring tools recommended by WANO performance improvement model, has become an effective tool for performance improvement of nuclear power plant. At present, performance indicator system has been built in nuclear power plant. However, how to establish the performance indicator system that is reasonable and applicable for plant is still a question to be discussed. Performance indictor is closely tied to the strategic direction of a corporation by a balanced score card, and the performance indicator system is established from the point of performance management and strategic development. The performance indicator system of nuclear power plant is developed by introducing the balanced score card, and can be as a reference for other domestic nuclear power plants. (authors)

  20. Do the Czech Production Plants Measure the Performance of Energy Processes?

    Directory of Open Access Journals (Sweden)

    Zuzana Tučková

    2016-04-01

    Full Text Available The research was focused to the actual situation in Performance Measurement of the energy processes in Czech production plants. The results are back – upped by the previous researches which were aimed to performance measurement methods usage in the whole organizational structure of the plants. Although the most of big industrial companies declared using of modern Performance Measurements methods, the previous researches shown that it is not purely true. The bigger differences were found in the energy area – energy processes. The authors compared the Energy concepts of European Union (EU and Czech Republic (CZ which are very different and do not create any possibilities for manager’s clear decision in the process management strategy of energy processes in their companies. Next step included the Energy department’s analysis. The significant part of energy processes in the production plants is still not mapped, described and summarized to one methodical manual for managing and performance measurement.

  1. Effect of excess air on second-generation PFB combustion plant performance and economics

    International Nuclear Information System (INIS)

    Robertson, A.; Garland, R.; Newby, R.; Rehmat, A.; Rubow, L.; Bonk, D.

    1990-01-01

    This paper presents a conceptual design of a 1.4-MPa (14-atm) coal-fired second-generation pressurized fluidized bed (PFB) combustion plant and identifies the performance and economic changes that result as the excess air and thus gas turbine-to-steam turbine power ratio, is changed. The performance of these plants, another second- generation PFB combustion plant, and a conventional pulverized-coal (PC)-fired plant with wet limestone flue gas desulfurization is compared. Depending upon the conditions selected, the PFB combustion plant can achieve a 45 percent efficiency (based on the higher heating value of the coal used as fuel) and a cost of electricity at least 20 percent lower than that of the conventional PC-fired plant

  2. CO2 control technology effects on IGCC plant performance and cost

    International Nuclear Information System (INIS)

    Chen Chao; Rubin, Edward S.

    2009-01-01

    As part of the USDOE's Carbon Sequestration Program, an integrated modeling framework has been developed to evaluate the performance and cost of alternative carbon capture and storage (CCS) technologies for fossil-fueled power plants in the context of multi-pollutant control requirements. This paper uses the newly developed model of an integrated gasification combined cycle (IGCC) plant to analyze the effects of adding CCS to an IGCC system employing a GE quench gasifier with water gas shift reactors and a Selexol system for CO 2 capture. Parameters of interest include the effects on plant performance and cost of varying the CO 2 removal efficiency, the quality and cost of coal, and selected other factors affecting overall plant performance and cost. The stochastic simulation capability of the model is also used to illustrate the effect of uncertainties or variability in key process and cost parameters. The potential for advanced oxygen production and gas turbine technologies to reduce the cost and environmental impacts of IGCC with CCS is also analyzed

  3. The current status of research and development concerning steam generator acoustic leak detection for the demonstration FBR plant

    International Nuclear Information System (INIS)

    Higuchi, Masahisa

    1990-01-01

    The Japan Atomic Power Co. (JAPC) started the research and development into Acoustic Leak Detection for the Demonstration FBR (D-FBR) plant in 1989. Acoustic Leak Detection is expected as a water leak detection system in the Steam Generator for the first D-FBR plant. JAPC is presently analyzing data on Acoustic Leak Detection in order to form some basic concepts and basic specifications about leak detection. Both low frequency types and high frequency types are selected as candidates for Acoustic Leak Detection. After a review of both types, either one will be selected for the D-FBT plant. A detailed Research and Development plan on Acoustic Leak Detection, which should be carried out prior to starting the construction of the D-FBR plant, is under review. (author). 3 figs, 2 tabs

  4. Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs

    DEFF Research Database (Denmark)

    Jeppsson, Ulf; Rosen, Christian; Alex, Jens

    2006-01-01

    The COST/IWA benchmark simulation model has been available for seven years. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the benchmark has resulted in more than 100 publications, not only in Europe but also...... worldwide, demonstrates the interest in such a tool within the research community In this paper, an extension of the benchmark simulation model no 1 (BSM1) is proposed. This extension aims at facilitating control strategy development and performance evaluation at a plant-wide level and, consequently...... the changes, the evaluation period has been extended to one year. A prolonged evaluation period allows for long-term control strategies to be assessed and enables the use of control handles that cannot be evaluated in a realistic fashion in the one-week BSM1 evaluation period. In the paper, the extended plant...

  5. Demonstration test of in-service inspection methods

    International Nuclear Information System (INIS)

    Takumi, Kenji

    1987-01-01

    The major objectives of the project are: (1) to demonstrate the reliability of a manual ultrasonic flaw detector and techniques that are used in operating light water reactor plants and (2) to demonstrate the performance and reliability of an automatic ultrasonic flaw detector that is designed to shorten the time required for ISI work and reduce the exposure risk of inspection personnel. The test project consists of three stages. In the first stage, which ended in 1982, defects were added intentionally to a model structure the same in size as a typical 1.1 million kW BWR plant and manual ultrasonic flaw detection tensting was performed. In the second stage, completed in 1984, automatic eddy-current flaw detection testing was carried out for defects in heat transfer piping of a PWP steam generator. In the third stage, which started in 1981 and ended in March 1987, a newly developed automatic ultrasonic flaw detector is applied to testing of defects used for the manual detector performance evaluation. Results have shown that the automatic eddy-current flaw detector under test has an adequately stable performance for practical uses, with a very high reproducibility to permit close inspection of secular deterioration in heat transfer pipes. It has also revealed that both the manual and automatic ultrasonic flaw detectors under test can detect all defects that do not comply with the ASME standards. (Nogami, K.)

  6. Performance assessment of non-self-regulating controllers in a cogeneration power plant

    International Nuclear Information System (INIS)

    Howard, Rachelle; Cooper, Douglas J.

    2009-01-01

    This work details a novel method for assessing the performance of a PI (proportional-integral) feedback controller when the process displays non-self-regulating dynamic behavior. By applying an intuitive process control-based pattern recognition method to the autocorrelation function of the process measurement signal, the controller's disturbance rejection performance can automatically be categorized. Stochastic data collected over days or weeks is analyzed to compute an index descriptive of current controller performance. If the control response has drifted from a user-defined target value, the analysis further provides a guide for tuning adjustments to restore desired performance. Significant aspects of this approach are that no plant disruption or process knowledge is required for evaluation. Classic examples of non-self-regulating behavior include certain liquid level control loops and pressure control loops which are prevalent in cogeneration power plants. In this work, we detail how the performance assessment method was used to improve performance of such controllers in the University of Connecticut's power plant.

  7. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 6, appendices A, B, and C

    International Nuclear Information System (INIS)

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events (including internal flooding, but excluding internal fire). The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, reviewed the WE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. In particular, these results are assessed in relation to the design and operational characteristics of the various reactor and containment types, and by comparing the IPEs to probabilistic risk assessment characteristics. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants

  8. Computer Program Application Study for Newly Constructed Fossil Power Plant Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Park, Jong Jeng [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    The power plant is affected in its availability and economy significantly by the equipment degraded gradually as operation continues, which makes it quite important to evaluate the plant performance more accurately and analyze its effects to the plant economy quantitatively. The methodology thereof includes many calculation steps and requires huge man hours and efforts but would produce relatively less precise results than desired. The object of the project first aims to figure out a methodology which can analyze numerically the inherent effects of each equipment on the cycle performance as well as its performance evaluation and which further helps to determine more reasonable investment for the effective plant economy. Another aspect of the project results in the implementation of the methodology which is embodied in the sophisticated computer programs based on the conventional personal computer with the interactive graphic user interface facilities. (author). 44 refs., figs.

  9. Computer Program Application Study for Newly Constructed Fossil Power Plant Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Park, Jong Jeng [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The power plant is affected in its availability and economy significantly by the equipment degraded gradually as operation continues, which makes it quite important to evaluate the plant performance more accurately and analyze its effects to the plant economy quantitatively. The methodology thereof includes many calculation steps and requires huge man hours and efforts but would produce relatively less precise results than desired. The object of the project first aims to figure out a methodology which can analyze numerically the inherent effects of each equipment on the cycle performance as well as its performance evaluation and which further helps to determine more reasonable investment for the effective plant economy. Another aspect of the project results in the implementation of the methodology which is embodied in the sophisticated computer programs based on the conventional personal computer with the interactive graphic user interface facilities. (author). 44 refs., figs.

  10. Advanced digital technology - improving nuclear power plant performance through maintainability

    International Nuclear Information System (INIS)

    Ford, J.L.; Senechal, R.R.; Altenhein, G.D.; Harvey, R.P.

    1998-01-01

    In today's energy sector there is ever increasing pressure on utilities to operate power plants at high capacity factors. To ensure nuclear power is competitive into the next century, it is imperative that strategic design improvements be made to enhance the performance of nuclear power plants. There are a number of factors that affect a nuclear power plant's performance; lifetime maintenance is one of the major contributors. The maturing of digital technology has afforded ABB the opportunity to make significant design improvements in the area of maintainability. In keeping with ABB's evolutionary advanced nuclear plant design approach, digital technology has systematically been incorporated into the control and protection systems of the most recent Korean nuclear units in operation and under construction. One example of this was the multi-functional design team approach that was utilized for the development of ABB's Digital Plant Protection System (DPPS). The design team consisted of engineers, maintenance technicians, procurement specialists and manufacturing personnel in order to provide a complete perspective on all facets of the design. The governing design goals of increased reliability and safety, simplicity of design, use of off-the-shelf products and reduced need for periodic surveillance testing were met with the selection of proven ABB-Advant Programmable Logic Controllers (PLCs) as the heart of the DPPS. The application of digital PLC technology allows operation for extended periods without requiring routine maintenance or re-calibration. A well documented commercial dedication program approved by the United States Nuclear Regulatory Commission (US NRC) as part of the System 80+ TM Advanced Light Water Reactor Design Certification Program, allowed the use of off-the shelf products in the design of the safety protection system. In addition, a number of mechanical and electrical improvements were made which support maintainability. The result is a DPPS

  11. National demonstration of full reactor coolant system (RCS) chemical decontamination at Indian Point 2

    Energy Technology Data Exchange (ETDEWEB)

    Trovato, S.A.; Parry, J.O. [Consolidated Edison Co., New York, NY (United States)

    1995-03-01

    Key to the safe and efficient operation of the nation`s civilian nuclear power plants is the performance of maintenance activities within regulations and guidelines for personnel radiation exposure. However, maintenance activities, often performed in areas of relatively high radiation fields, will increase as the nation`s plant age. With the Nuclear Regulatory Commission (NRC) lowering the allowable radiation exposure to plant workers in 1994 and considering further reductions and regulations in the future, it is imperative that new techniques be developed and applied to reduce personnel exposure. Full primary system chemical decontamination technology offers the potential to be single most effective method of maintaining workers exposure {open_quotes}as low as reasonably achievable{close_quotes} (ALARA) while greatly reducing plant operation and maintenance (O&M) costs. A three-phase program underway since 1987, has as its goal to demonstrate that full RCS decontamination is a visible technology to reduce general plant radiation levels without threatening the long term reliability and operability of a plant. This paper discusses research leading to and plans for a National Demonstration of Full RCS Chemical Decontamination at Indian Point 2 nuclear generating station in 1995.

  12. Training and plant performance: a strategic planning partnership

    International Nuclear Information System (INIS)

    Coe, R.P.

    1987-01-01

    The nuclear industry as a whole, and specifically GPU Nuclear, is refocusing its attention on performance indicators. This standardized assessment of plant operational performance surfaces numerous examples of how performance-based training positively impacts plant performance. Numerous examples of high dollar savings range from scram reduction programs to reducing personnel rem exposures. The deeper the authors look the more they find that training is making a difference. The question now is, how long can they continue to afford the ever increasing demands of the pursuit of excellence. Early in 1985, the Training and Education Department at GPU Nuclear proactively began its strategic planning effort in order to address the increasing industry initiatives while facing flat or reduced commitments of resources. The Training Strategic Plan addresses detailed plans for each of the following areas: curriculum planning; program development; training and education organizational structure; training and education administrative procedures; training advisory structure and priority process; financial strategies. All of the above strategies are designed to assure training effectiveness. With the nuclear option under such strong public scrutiny, it is in the best interest of all of the nuclear utilities to assure the most cost effective approach to successful operation while achieving their standards of excellence

  13. Controlling system for an experimental demonstration plant for energy conversion using PEMFCs

    International Nuclear Information System (INIS)

    Culcer, Mihail; Iliescu, Mariana; Stefanescu, Ioan; Raceanu, Mircea; Enache, Adrian; Patularu, Laurentiu

    2006-01-01

    Full text: In the last decades of the previous century, due to global environmental problems, energy security and supply issues, many studies were conducted to investigate the uses for hydrogen energy and facilitate its penetration as an energy carrier. Subsequently, many industries worldwide began developing and producing hydrogen, hydrogen-powered vehicles, hydrogen fuel cells, and other hydrogen-based technologies. In view of the substantial long-term public and private benefits arising from hydrogen and fuel cells, the European Union and national governments throughout Europe, including the Romanian one, are working towards developing a consistent policy framework preparing the transition to a hydrogen based economy. ICIT Rm Valcea developed a research program on energy conversion using fuel cells, a project supported by the Romanian Ministry of Education and Research within the National R and D Program. An experimental demonstration pilot plant of energy conversion using PEMFCs and hydrogen producing via steam methane reforming (SMR) was achieved in order to investigate the development of small-scale SMR technologies and to allow testing and developing of specific components. The paper deals with the dedicated controlling system that provides automated data acquisition, manual or 'on line' operational control, gas management, humidification, temperature and flow controls of the pilot plant. (authors)

  14. Pre-project study on a demonstration plant for seawater desalination using a nuclear heating reactor in Morocco

    International Nuclear Information System (INIS)

    Achour, M.

    2000-01-01

    This paper gives in the first part detailed information on the pre-project study on a demonstration plant for seawater desalination using heating reactor implemented by both Moroccan and Chinese sides. The main findings of the pre-project study are given in the second part. (author)

  15. Operating trends and performance of nuclear power plants in IAEA member states

    International Nuclear Information System (INIS)

    Galori, F.

    1984-01-01

    The present status and short-term development of nuclear power programmes in IAEA member states is reviewed. A description of the IAEA Power Reactor Information System (PRIS) is given and the objectives for data collection and treatment are discussed. As indicated by the reports at the IAEA International Conference on Nuclear Power experience in 1982, there are considerable differences in the performances of nuclear power plants even within classes of plants which technically should be very similar and thus perform equally well. PRIS permist at least some preliminary conclusions about the reasons for differences to be drawn. It is becoming clear that reasons for good or bad performance must be sought in a number of factors including: type of plant (on-load/off-load refuelling, GCR, PHWR, LWR); age and vintage of plant; manufacturer of the main plant system; degree of standardization in plant and construction; competence of operating organization; regulatory climate. Analysis of the reported outages shows that major problems are: stress corrosion cracking in primary piping, also denting and wall thinning in tubes of steam generators; thermal fatigue cracking in the feedwater system and excessive errosion/corrosion problems in turbines. It is emphasized that international cooperation is important for creating an effective system for learning from operating experience

  16. Construction and start-up of a 250 kW natural gas fueled MCFC demonstration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, R.A.; Carter, J.; Rivera, R.; Otahal, J. [San Diego Gas & Electric, CA (United States)] [and others

    1996-12-31

    San Diego Gas & Electric (SDG&E) is participating with M-C Power in the development and commercialization program of their internally manifolded heat exchanger (IMHEX{reg_sign}) carbonate fuel cell technology. Development of the IMHEX technology base on the UNOCAL test facility resulted in the demonstration of a 250 kW thermally integrated power plant located at the Naval Air Station at Miramar, California. The members of the commercialization team lead by M-C Power (MCP) include Bechtel Corporation, Stewart & Stevenson Services, Inc., and Ishikawajima-Harima Heavy Industries (IHI). MCP produced the fuel cell stack, Bechtel was responsible for the process engineering including the control system, Stewart & Stevenson was responsible for packaging the process equipment in a skid (pumps, desulfurizer, gas heater, turbo, heat exchanger and stem generator), IHI produced a compact flat plate catalytic reformer operating on natural gas, and SDG&E assumed responsibility for plant construction, start-up and operation of the plant.

  17. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  18. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  19. Performance of Generating Plant: New Metrics for Industry in Transition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    This report is the result of the work of the Performance of Generating Plant task force of the World Energy Council. The report examines the challenges of measuring and improving performance and considers some of the issues related to this field.

  20. A case study of radial jetting technology for enhancing geothermal energy systems at Klaipeda geothermal demonstration plant

    NARCIS (Netherlands)

    Nair, R.; Peters, E.; Sliaupa, S.; Valickas, R.; Petrauskas, S.

    2017-01-01

    In 1996 a geothermal energy project was initiated at Klaipėda, Lithuania, to demonstrate the feasibility of using low enthalpy geothermal water as a renewable energy resource in district heating systems. The Klaipėda geothermal plant is situated within the West Lithuanian geothermal anomaly with a

  1. EnergiTools(R) - a power plant performance monitoring and diagnosis tool

    International Nuclear Information System (INIS)

    Ancion, P.V.; Bastien, R.; Ringdahl, K.

    2000-01-01

    Westinghouse EnergiTools(R) is a performance diagnostic tool for power generation plants that combines the power of on-line process data acquisition with advanced diagnostics methodologies. The system uses analytical models based on thermodynamic principles combined with knowledge of component diagnostic experts. An issue in modeling expert knowledge is to have a framework that can represent and process uncertainty in complex systems. In such experiments, it is nearly impossible to build deterministic models for the effects of faults on symptoms. A methodology based on causal probabilistic graphs, more specifically on Bayesian belief networks, has been implemented in EnergiTools(R) to capture the fault-symptom relationships. The methodology estimates the likelihood of the various component failures using the fault-symptom relationships. The system also has the ability to use neural networks for processes that are difficult to model analytically. An application is the estimation of the reactor power in nuclear power plant by interpreting several plant indicators. EnergiTools(R) is used for the on-line performance monitoring and diagnostics at Vattenfall Ringhals nuclear power plants in Sweden. It has led to the diagnosis of various performance issues with plant components. Two case studies are presented. In the first case, an overestimate of the thermal power due to a faulty instrument was found, which led to a plant operation below its optimal power. The paper shows how the problem was discovered, using the analytical thermodynamic calculations. The second case shows an application of EnergiTools(R) for the diagnostic of a condenser failure using causal probabilistic graphs

  2. Standard guide to In-Plant performance evaluation of Hand-Held SNM monitors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This guide is one of a series on the application and evaluation of special nuclear material (SNM) monitors. Other guides in the series are listed in Section 2, and the relationship of in-plant performance evaluation to other procedures described in the series is illustrated in Fig. 1. Hand-held SNM monitors are described in of Guide C1112, and performance criteria illustrating their capabilities can be found in Appendix X1. 1.2 The purpose of this guide to in-plant performance evaluation is to provide a comparatively rapid procedure to verify that a hand-held SNM monitor performs as expected for detecting SNM or alternative test sources or to disclose the need for repair. The procedure can be used as a routine operational evaluation or it can be used to verify performance after a monitor is calibrated. 1.3 In-plant performance evaluations are more comprehensive than daily functional tests. They take place less often, at intervals ranging from weekly to once every three months, and derive their result fr...

  3. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India

    Directory of Open Access Journals (Sweden)

    B. Shiva Kumar

    2015-11-01

    Full Text Available The growing energy demand in developing nations has triggered the issue of energy security. This has made essential to utilize the untapped potential of renewable resources. Grid connected PV systems have become the best alternatives in renewable energy at large scale. Performance analysis of these grid connected plants could help in designing, operating and maintenance of new grid connected systems. A 10 MW photovoltaic grid connected power plant commissioned at Ramagundam is one of the largest solar power plants with the site receiving a good average solar radiation of 4.97 kW h/m2/day and annual average temperature of about 27.3 degrees centigrade. The plant is designed to operate with a seasonal tilt. In this study the solar PV plant design aspects along with its annual performance is elaborated. The various types of power losses (temperature, internal network, power electronics, grid connected etc. and performance ratio are also calculated. The performance results of the plant are also compared with the simulation values obtained from PV syst and PV-GIS software. The final yield (Y F of plant ranged from 1.96 to 5.07 h/d, and annual performance ratio (PR of 86.12%. It has 17.68% CUF with annual energy generation of 15798.192 MW h/Annum.

  4. Exergetic performance analysis of a Dora II geothermal power plant in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ganjehsarabi, Hadi; Gungor, Ali [Department of Mechanical Engineering, Faculty of Engineering, Ege University (Turkey); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario (Canada)

    2011-07-01

    In the energy sector there is an urgent need to produce energy from renewable energy sources due to the rising demand, the depletion of fossil fuels and their effects on the environment. Geothermal power is a well-established energy resource and the aim of this research was to examine the energetic performance of a geothermal power plant. The studied power plant, Dora II, has a 9.5 MW power output and is situated in Aydin, Turkey. An evaluation of the plant's performance was carried out using an exergy analysis method on each of the plant's components. Results showed that the highest exergy destruction occurs in brine re-injection while the preheater had the best exergy efficiency; the plant had an overall exergetic efficiency of 29.6%. This study highlighted the components where significant exergy destructions take place so actions could be taken to improve the overall efficiency.

  5. Application and demonstration of oxyfuel combustion technologies to the existing power plant in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Terutoshi; Yamada, Toshihiko; Watanabe, Shuzo; Kiga, Takashi; Gotou, Takahiro [IHI Corporation, Tokyo (Japan). Power Plant Div.; Misawa, Nobuhiro [Electric Power Development Co., Ltd., Tokyo (Japan); Spero, Chris [CS Energy Ltd, Brisbane (Australia)

    2013-07-01

    Oxyfuel combustion is able to directly make the highly concentrated CO{sub 2} from the flue gas of pulverized coal fired power plant and, therefore, is expected as one of the promising technologies for CO{sub 2} capture. We are advancing the Oxyfuel combustion demonstration project, which is called Callide Oxyfuel Project, with the support of both Australian and Japanese governments. Currently the boiler retrofit work is completed and the commissioning in air combustion is going on. In this paper, we introduce the general outline of the Callide Oxyfuel Project and its progress.

  6. Analysis of human performance problems at the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1988-01-01

    The last five years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). Thus, the study covers 165 scrams and 1318 LERs. As general results, 39% of the scrams and 27% of the LERs, as an average for the years 1983-1987, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Procedures not followed, Work place ergonomics and Human variability

  7. Prototype CIRCE plant-industrial demonstration of heavy-water production from a reformed hydrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, D.A.; Boniface, H.A.; Sadhankar, R.R.; Everatt, A.E.; Miller, A.I. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Blouin, J. [Air Liquide Canada, Hamilton, Ontario (Canada)

    2002-09-01

    Heavy-water (D{sub 2}0) production has been dominated by the Girdler-Sulphide (G-S) process, which suffers several intrinsic disadvantages that lead to high production costs. Processes based on hydrogen/water exchange have become more attractive with the development of proprietary wetproofed catalysts by AECL. One process that is synergistic with industrial hydrogen production by steam methane reforming (SMR), the combined industrial reforming and catalytic exchange (CIRCE) process, offers the best prospect for commercialization. SMRs are common globally in the oil upgrading and ammonia industries. To study the CIRCE process in detail, AECL, in collaboration with Air Liquide Canada, constructed a prototype CIRCE plant (PCP) in Hamilton, ON. The plant became fully operational in 2000 July and is expected to operate to at least the late fall of 2002. To date, plant operation has confirmed the adequacy of the design and the capability of enriching deuterium to produce heavy water without compromising hydrogen production. The proprietary wetproofed catalyst has performed as expected, both in activity and in robustness. (author)

  8. Prototype CIRCE plant-industrial demonstration of heavy-water production from a reformed hydrogen source

    International Nuclear Information System (INIS)

    Spagnolo, D.A.; Boniface, H.A.; Sadhankar, R.R.; Everatt, A.E.; Miller, A.I.; Blouin, J.

    2002-09-01

    Heavy-water (D 2 0) production has been dominated by the Girdler-Sulphide (G-S) process, which suffers several intrinsic disadvantages that lead to high production costs. Processes based on hydrogen/water exchange have become more attractive with the development of proprietary wetproofed catalysts by AECL. One process that is synergistic with industrial hydrogen production by steam methane reforming (SMR), the combined industrial reforming and catalytic exchange (CIRCE) process, offers the best prospect for commercialization. SMRs are common globally in the oil upgrading and ammonia industries. To study the CIRCE process in detail, AECL, in collaboration with Air Liquide Canada, constructed a prototype CIRCE plant (PCP) in Hamilton, ON. The plant became fully operational in 2000 July and is expected to operate to at least the late fall of 2002. To date, plant operation has confirmed the adequacy of the design and the capability of enriching deuterium to produce heavy water without compromising hydrogen production. The proprietary wetproofed catalyst has performed as expected, both in activity and in robustness. (author)

  9. Study on evaluation index system of operational performance of municipal wastewater treatment plants in China

    Science.gov (United States)

    Xiaoxin, Zhang; Jin, Huang; Ling, Lin; Yan, Li

    2018-05-01

    According to the undeveloped evaluation method for the operational performance of the municipal wastewater treatment plants, this paper analyzes the policies related to sewage treatment industry based on the investigation of the municipal wastewater treatment plants. The applicable evaluation method for the operational performance was proposed from environmental protection performance, resources and energy consumption, technical and economic performance, production management and main equipment, providing a reliable basis for scientific evaluation of the operation as well as improving the operational performance of municipal wastewater treatment plant.

  10. Plant Phenotype Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  11. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  12. Performance of mashbean intercropped in cotton planted in different planting patterns

    International Nuclear Information System (INIS)

    Khan, M.B.; Ahmad, S.; Khaliq, A.

    2004-01-01

    Performance of mashbean as intercrop in cotton was studied at the Agronomic Research Area University of Agriculture, Faisalabad (Pakistan) during the years 1996-1997 and 1997-98. cotton variety NIAB 78 was planted in 80-cm apart single rows and 120-cm spaced double row strips. Experiment was laid out in a RCBD with four replications. Net plot size was 7 m x 4.8 m. Mashbean was sown as intercrop in the space between 80-cm apart single rows as well as 120-cm spaced double row strips. Mashbean was also sown as a sole crop (P/sub 3/). The inter crops produce substantially smaller yields when grown in association with cotton in either planting pattern compared to the sole crop yields. However, additional produce obtained from intercrop compensated the losses in cotton production. Intercropping of mashbean, in 120-cm apart double row strips of cotton proved to be feasible as well as convenient for farm operations. (author)

  13. The performance of plant species in removing nutrients from ...

    African Journals Online (AJOL)

    2011-10-26

    Oct 26, 2011 ... but offered no explicit guidance about how these water quality targets might be achieved. ... the limited knowledge that exists about the performance of local plant ...... reuse: designing biofiltration systems for reliable treatment.

  14. Reliability demonstration test planning using bayesian analysis

    International Nuclear Information System (INIS)

    Chandran, Senthil Kumar; Arul, John A.

    2003-01-01

    In Nuclear Power Plants, the reliability of all the safety systems is very critical from the safety viewpoint and it is very essential that the required reliability requirements be met while satisfying the design constraints. From practical experience, it is found that the reliability of complex systems such as Safety Rod Drive Mechanism is of the order of 10 -4 with an uncertainty factor of 10. To demonstrate the reliability of such systems is prohibitive in terms of cost and time as the number of tests needed is very large. The purpose of this paper is to develop a Bayesian reliability demonstrating testing procedure for exponentially distributed failure times with gamma prior distribution on the failure rate which can be easily and effectively used to demonstrate component/subsystem/system reliability conformance to stated requirements. The important questions addressed in this paper are: With zero failures, how long one should perform the tests and how many components are required to conclude with a given degree of confidence, that the component under test, meets the reliability requirement. The procedure is explained with an example. This procedure can also be extended to demonstrate with more number of failures. The approach presented is applicable for deriving test plans for demonstrating component failure rates of nuclear power plants, as the failure data for similar components are becoming available in existing plants elsewhere. The advantages of this procedure are the criterion upon which the procedure is based is simple and pertinent, the fitting of the prior distribution is an integral part of the procedure and is based on the use of information regarding two percentiles of this distribution and finally, the procedure is straightforward and easy to apply in practice. (author)

  15. A Design Tool for Matching UAV Propeller and Power Plant Performance

    Science.gov (United States)

    Mangio, Arion L.

    A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.

  16. Plant corrosion: prediction of materials performance

    International Nuclear Information System (INIS)

    Strutt, J.E.; Nicholls, J.R.

    1987-01-01

    Seventeen papers have been compiled forming a book on computer-based approaches to corrosion prediction in a wide range of industrial sectors, including the chemical, petrochemical and power generation industries. Two papers have been selected and indexed separately. The first describes a system operating within BNFL's Reprocessing Division to predict materials performance in corrosive conditions to aid future plant design. The second describes the truncation of the distribution function of pit depths during high temperature oxidation of a 20Cr austenitic steel in the fuel cladding in AGR systems. (U.K.)

  17. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  18. Impact of aging and material structure on CANDU plant performance

    International Nuclear Information System (INIS)

    Nadeau, E.; Ballyk, J.; Ghalavand, N.

    2011-01-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  19. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    Energy Technology Data Exchange (ETDEWEB)

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media and rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.

  20. Control of hydrogen sulfide emission from geothermal power plants. Volume III. Final report: demonstration plant equipment descriptions, test plan, and operating instructions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F.C.; Harvey, W.W.; Warren, R.B.

    1977-01-01

    The elements of the final, detailed design of the demonstration plant for the copper sulfate process for the removal of hydrogen sulfide from geothermal steam are summarized. Descriptions are given of all items of equipment in sufficient detail that they can serve as purchase specifications. The process and mechanical design criteria which were used to develop the specifications, and the process descriptions and material and energy balance bases to which the design criteria were applied are included. (MHR)

  1. Low Proportion of Dietary Plant Protein among Athletes with Premenstrual Syndrome-Related Performance Impairment.

    Science.gov (United States)

    Yamada, Keiko; Takeda, Takashi

    2018-02-01

    Premenstrual syndrome (PMS) is psychosomatic disorder that are limited to the late luteal phase in the menstrual cycle. PMS could impair athletic performance. To investigate associations between proportions of dietary plant and animal protein and PMS-related impairment of athletic performance, we surveyed 135 female athletes aged 18-23 years attending Kindai University. Participants belonged to authorized university clubs, all of which have high rankings in Japanese university sports. Participants completed self-administered questionnaires on diet history, demographics, and PMS-related impairment of athletic performance. Total protein, animal protein, and plant protein intake were examined, and the proportion of dietary plant protein was calculated for each participant. We divided athletes into two groups: those without PMS-related impairment of athletic performance (n = 117) and those with PMS-related performance impairment (n = 18). A t-test was used to compare mean values and multivariable adjusted mean values between groups; adjustment variables were energy intake, body mass index, and daily training duration. Total protein intake was not significantly different between the groups. However, athletes whose performance was affected by PMS reported higher intake of animal protein (mean 50.6 g) than athletes whose performance was unaffected by PMS (mean 34.9 g). Plant protein intake was lower among athletes with PMS-related impairment (mean 25.4 g) than among athletes without impairment (mean 26.9 g). The proportion of dietary plant protein was lower among athletes with PMS-related impairment (39.3%) than those without impairment (45.9%). A low proportion of dietary plant protein may cause PMS-related athletic impairment among athletes.

  2. Development of a dynamical systems model of plant programmatic performance on nuclear power plant safety risk

    International Nuclear Information System (INIS)

    Hess, Stephen M.; Albano, Alfonso M.; Gaertner, John P.

    2005-01-01

    Application of probabilistic risk assessment (PRA) techniques to model nuclear power plant accident sequences has provided a significant contribution to understanding the potential initiating events, equipment failures and operator errors that can lead to core damage accidents. Application of the lessons learned from these analyses has resulted in significant improvements in plant operation and safety. However, this approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. The research described in this paper presents an alternative approach to addressing this issue. In this paper we propose a dynamical systems model that describes the interaction of important plant processes on nuclear safety risk. We discuss development of the mathematical model including the identification and interpretation of significant inter-process interactions. Next, we review the techniques applicable to analysis of nonlinear dynamical systems that are utilized in the characterization of the model. This is followed by a preliminary analysis of the model that demonstrates that its dynamical evolution displays features that have been observed at commercially operating plants. From this analysis, several significant insights are presented with respect to the effective control of nuclear safety risk. As an important example, analysis of the model dynamics indicates that significant benefits in effectively managing risk are obtained by integrating the plant operation and work management processes such that decisions are made utilizing a multidisciplinary and collaborative approach. We note that although the model was developed specifically to be applicable to nuclear power plants, many of the insights and conclusions obtained are likely applicable to other process industries

  3. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs

  4. Site-Specific Analyses for Demonstrating Compliance with 10 CFR 61 Performance Objectives - 12179

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, C.J.; Esh, D.W.; Yadav, P.; Carrera, A.G. [U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) is proposing to amend its regulations at 10 CFR Part 61 to require low-level radioactive waste disposal facilities to conduct site-specific analyses to demonstrate compliance with the performance objectives in Subpart C. The amendments would require licensees to conduct site-specific analyses for protection of the public and inadvertent intruders as well as analyses for long-lived waste. The amendments would ensure protection of public health and safety, while providing flexibility to demonstrate compliance with the performance objectives, for current and potential future waste streams. NRC staff intends to submit proposed rule language and associated regulatory basis to the Commission for its approval in early 2012. The NRC staff also intends to develop associated guidance to accompany any proposed amendments. The guidance is intended to supplement existing low-level radioactive waste guidance on issues pertinent to conducting site-specific analyses to demonstrate compliance with the performance objectives. The guidance will facilitate implementation of the proposed amendments by licensees and assist competent regulatory authorities in reviewing the site-specific analyses. Specifically, the guidance provides staff recommendations on general considerations for the site-specific analyses, modeling issues for assessments to demonstrate compliance with the performance objectives including the performance assessment, intruder assessment, stability assessment, and analyses for long-lived waste. This paper describes the technical basis for changes to the rule language and the proposed guidance associated with implementation of the rule language. The NRC staff, per Commission direction, intends to propose amendments to 10 CFR Part 61 to require licensees to conduct site-specific analyses to demonstrate compliance with performance objectives for the protection of public health and the environment. The amendments would require a

  5. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  6. Method discussion of the performance evaluation on nuclear plant cable

    International Nuclear Information System (INIS)

    Lu Yongfang; Zhong Weixia; Sun Jiansheng; Liu Jingping

    2014-01-01

    A stock cable, which is same as the nuclear plant cable in service, was treated by thermal aging. After that, the mechanical property, the flame retardant property, the anti-oxidation were measured, and relationships between them due to the thermal aging were established. By those analysis, evaluating the in-service cable performance in nuclear plant and calculating its remaining life. Furthermore, the feasibility of this method was disscussed. (authors)

  7. Fuel performance of licensed nuclear power plants through 1974

    International Nuclear Information System (INIS)

    Bobe, P.E.

    1976-01-01

    General aspects of fuel element design and specific design data for typical Pressurized and Boiling Water Reactors are presented. Based on a literature search, failure modes and specific failures incurred through December 31, 1974 are described, together with a discussion of those problems which have had a significant impact upon plant operation. The relationship between fuel element failures and the resultant coolant activity/radioactive gaseous effluents upon radiation exposure, plant availability and capacity factors, economic impact, and waste management, are discussed. An assessment was made regarding the generation, availability, and use of fuel performance data

  8. Exergetic performance analysis of an ice-cream manufacturing plant: A comprehensive survey

    International Nuclear Information System (INIS)

    Dowlati, Majid; Aghbashlo, Mortaza; Mojarab Soufiyan, Mohamad

    2017-01-01

    In this study, a comprehensive exergetic performance analysis of an ice-cream manufacturing plant was conducted in order to pinpoint the locations of thermodynamic inefficiencies. Exergetic performance parameters of each subunit of the plant were determined and illustrated individually through writing and solving energy and exergy balance equations on the basis of real operational data. The required data were acquired from a local ice-cream factory located in Tehran, Iran. The plant included three main subsystems including water steam generator, refrigeration system, and ice-cream production line. An attempt was also made to quantify the specific exergy destruction of the ice-cream manufacturing process. The functional exergetic efficiency of the water steam generator, refrigeration system, and ice-cream production line was determined at 17.45%, 25.52%, and 5.71%, respectively. The overall functional exergetic efficiency of the process was found to be 2.15%, while the specific exergy destruction was calculated as 719.80 kJ/kg. In general, exergy analysis and its derivatives could provide invaluable information over the conventional energy analysis, suggesting potential locations for the plant performance improvement. - Highlights: • An ice-cream manufacturing plant was exergetically analyzed using the actual data. • Water steaming unit had the highest irreversibility rate among the plant subunits. • The specific exergy destruction of the ice-cream manufacturing was 719.80 kJ/kg. • The overall process exergetic efficiency of the process was found to be 2.15%.

  9. Safety assessment, safety performance indicators at the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Baji, C.; Vamos, G.; Toth, J.

    2001-01-01

    The Paks Nuclear Power Plant has been using different methods of safety assessment (event analysis, self-assessment, probabilistic safety analysis), including performance indicators characterizing both operational and safety performance since the early years of operation of the plant. Regarding the safety performance, the indicators include safety system performance, number of scrams, release of radioactive materials, number of safety significant events, industrial safety indicator, etc. The Paks NPP also reports a set of ten indicators to WANO Performance Indicator Programme which, among others, include safety related indicators as well. However, a more systematic approach to structuring and trending safety indicators is needed so that they can contribute to the enhancement of the operational safety. A more comprehensive set of indicators and a systematic evaluation process was introduced in 1996. The performance indicators framework proposed by the IAEA was adapted to Paks in this year to further improve the process. Safety culture assessment and characterizing safety culture is part of the assessment process. (author)

  10. Overview of human performance improvement initiatives in Nuclear Power Plants (NPPs )

    International Nuclear Information System (INIS)

    Sharma, Ashok Kumar

    2006-01-01

    Nuclear Power Plants (NPPs) are very complex systems. Diverse, multiple and redundant technological systems are used for effective control and safety of the NPPs. The increased numbers of such systems require increased operator attention. Additionally, the control stations (man-machine interfaces) are to be kept manageable in size. This sometimes reduces the scope for truly ergonomic design. These limitations, coupled with the shortcomings of human nature, led to unintended human performance problems and errors resulting into poor plant performance worldwide. Some organisational weaknesses, managerial decisions and latent errors also aided and abetted human errors. In view of this, a need was felt for development of performance culture at all levels in NPP organisations. Towards this end, ready-to-use performance improvement tools were developed and used for individual performers, supervisors and managers in the NPPs. This paper describes the experiences of the global nuclear electricity generating industry towards human performance improvement and error reduction. (author)

  11. Individual plant examination program: Perspectives on reactor safety and plant performance. Parts 2--5: Final report; Volume 2

    International Nuclear Information System (INIS)

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC's overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively

  12. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 1: Final summary report; Volume 1

    International Nuclear Information System (INIS)

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC's overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively

  13. Individual plant examination program: Perspectives on reactor safety and plant performance. Parts 2--5: Final report; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  14. Demonstration, testing and evaluation of nonintrusive characterization technologies at operable Unit 2 of Rocky Flats Plant. Final report

    International Nuclear Information System (INIS)

    1994-09-01

    A three-dimensional (3-D), high-resolution (HR) seismic reflection evaluation was conducted at the Rocky Flats Plant (RFP), near Golden, Colorado, to demonstrate the applicability of nonintrusive characterization techniques to detect buried objects, contamination, and geological/hydrological features at RFP. The evaluation was conducted as part of the U.S. Department of Energy's (DOE) request for demonstration, testing and evaluation (DT ampersand E) of nonintrusive techniques, under DOE Program Research and Development Announcement (PRDA) No. DE-RA05-09OR22000

  15. Demonstration, testing and evaluation of nonintrusive characterization technologies at operable Unit 2 of Rocky Flats Plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    A three-dimensional (3-D), high-resolution (HR) seismic reflection evaluation was conducted at the Rocky Flats Plant (RFP), near Golden, Colorado, to demonstrate the applicability of nonintrusive characterization techniques to detect buried objects, contamination, and geological/hydrological features at RFP. The evaluation was conducted as part of the U.S. Department of Energy`s (DOE) request for demonstration, testing and evaluation (DT&E) of nonintrusive techniques, under DOE Program Research and Development Announcement (PRDA) No. DE-RA05-09OR22000.

  16. 40 CFR 450.24 - New source performance standards reflecting the best available demonstrated control technology...

    Science.gov (United States)

    2010-07-01

    ... performance standards reflecting the best available demonstrated control technology (NSPS). Any new source... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards reflecting the best available demonstrated control technology (NSPS). 450.24 Section 450.24 Protection of...

  17. Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by, the host plant.

    Science.gov (United States)

    Uyi, Osariyekemwen O; Zachariades, Costas; Heshula, Lelethu U; Hill, Martin P

    2018-01-01

    Host plant phenology (as influenced by seasonality) and light-mediated changes in the phenotypic and phytochemical properties of leaves have been hypothesised to equivocally influence insect herbivore performance. Here, we examined the effects of seasonality, through host plant phenology (late growth-season = autumn vs flowering-season = winter) and light environment (shade vs full-sun habitat) on the leaf characteristics of the invasive alien plant, Chromolaena odorata. In addition, the performance of a specialist folivore, Pareuchaetes insulata, feeding on leaves obtained from both shaded and full-sun habitats during autumn and winter, was evaluated over two generations. Foliar nitrogen and magnesium contents were generally higher in shaded plants with much higher levels during winter. Leaf water content was higher in shaded and in autumn plants. Total non-structural carbohydrate (TNC) and phosphorus contents did not differ as a function of season, but were higher in shaded foliage compared to full-sun leaves. Leaf toughness was noticeably higher on plants growing in full-sun during winter. With the exception of shaded leaves in autumn that supported the best performance [fastest development, heaviest pupal mass, and highest growth rate and Host Suitability Index (HSI) score], full-sun foliage in autumn surprisingly also supported an improved performance of the moth compared to shaded or full-sun leaves in winter. Our findings suggest that shaded and autumn foliage are nutritionally more suitable for the growth and reproduction of P. insulata. However, the heavier pupal mass, increased number of eggs and higher HSI score in individuals that fed on full-sun foliage in autumn compared to their counterparts that fed on shaded or full-sun foliage in winter suggest that full-sun foliage during autumn is also a suitable food source for larvae of the moth. In sum, our study demonstrates that seasonal and light-modulated changes in leaf characteristics can affect insect

  18. Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by, the host plant.

    Directory of Open Access Journals (Sweden)

    Osariyekemwen O Uyi

    Full Text Available Host plant phenology (as influenced by seasonality and light-mediated changes in the phenotypic and phytochemical properties of leaves have been hypothesised to equivocally influence insect herbivore performance. Here, we examined the effects of seasonality, through host plant phenology (late growth-season = autumn vs flowering-season = winter and light environment (shade vs full-sun habitat on the leaf characteristics of the invasive alien plant, Chromolaena odorata. In addition, the performance of a specialist folivore, Pareuchaetes insulata, feeding on leaves obtained from both shaded and full-sun habitats during autumn and winter, was evaluated over two generations. Foliar nitrogen and magnesium contents were generally higher in shaded plants with much higher levels during winter. Leaf water content was higher in shaded and in autumn plants. Total non-structural carbohydrate (TNC and phosphorus contents did not differ as a function of season, but were higher in shaded foliage compared to full-sun leaves. Leaf toughness was noticeably higher on plants growing in full-sun during winter. With the exception of shaded leaves in autumn that supported the best performance [fastest development, heaviest pupal mass, and highest growth rate and Host Suitability Index (HSI score], full-sun foliage in autumn surprisingly also supported an improved performance of the moth compared to shaded or full-sun leaves in winter. Our findings suggest that shaded and autumn foliage are nutritionally more suitable for the growth and reproduction of P. insulata. However, the heavier pupal mass, increased number of eggs and higher HSI score in individuals that fed on full-sun foliage in autumn compared to their counterparts that fed on shaded or full-sun foliage in winter suggest that full-sun foliage during autumn is also a suitable food source for larvae of the moth. In sum, our study demonstrates that seasonal and light-modulated changes in leaf characteristics can

  19. Contributions of welding technology to power plant performance

    International Nuclear Information System (INIS)

    Childs, W.J.

    1995-01-01

    Welding repairs can be a very major factor in the time and cost of maintenance outages of a power plant. The use of advanced equipment and procedures for welding can contribute significantly to reducing maintenance costs and increasing reliability. Plant failures have too often been caused by problems associated with welding, some due to improper choice of base materials, others due to welding defects. For example, stress corrosion cracking in weldments in BWR austenitic stainless steel piping was a major source of loss of availability in the 1980s. Examples of the use of improved welding equipment and procedures has been demonstrated to reduce outage time and improved weld integrity in several major areas. New welding techniques, such as laser welding, have the potential for addressing maintenance problems that can not be addressed at all with conventional welding technology and/or may provide a means of reducing greatly the time and cost of welding fabrications or repair. Methods of ensuring that the best available technology is applied in weld repair is a major problem today in the utility industry. Solutions need to be sought to remedy this situation. The key role of welding in minimizing plant outages is being recognized and steps taken to further the development and use of optimum technology

  20. Gasification Plant Cost and Performance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air

  1. Operational safety performance and economical efficiency evaluation for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang

    2012-01-01

    The economical efficiency of nuclear power includes a series of environmental parameters, for example, cleanliness. Nuclear security is the precondition and guarantee for its economy, and both are the direct embodiment of the social benefits of nuclear power. Through analyzing the supervision and management system on the effective operation of nuclear power plants, which has been put forward by the International Atomic Energy Agency (IAEA), the World Association of Nuclear Operators (WANO), the U.S. Nuclear Regulatory Commission (NRC), and other organizations, a set of indexs on the safety performance and economical efficiency of nuclear power are explored and established; Based on data envelopment analysis, a DEA approach is employed to evaluate the efficiency of the operation performance of several nuclear power plants, Some primary conclusion are achieved on the basis of analyzing the threshold parameter's sensitivity and relativity which affected operational performance. To address the conflicts between certain security and economical indicators, a multi-objective programming model is established, where top priority is given to nuclear safety, and the investment behavior of nuclear power plant is thereby optimized. (authors)

  2. Performance indicators and indices of sludge management in urban wastewater treatment plants.

    Science.gov (United States)

    Silva, C; Saldanha Matos, J; Rosa, M J

    2016-12-15

    Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  4. Interplant coordination, supply chain integration, and operational performance of a plant in a manufacturing network

    DEFF Research Database (Denmark)

    Yang, Cheng; Chaudhuri, Atanu; Farooq, Sami

    2016-01-01

    Purpose The objective of this paper is to investigate the relationships at the level of plant in a manufacturing network, labelled as networked plant in the paper, between (1) inter-plant coordination and operational performance, (2) supply chain integration (SCI) and operational performance......, and (3) inter-plant coordination and SCI. Design/methodology/approach This paper is developed based on the data obtained from the sixth version of International Manufacturing Strategy Survey (IMSS VI). Specifically, this paper uses a subset of the IMSS VI data set from the 606 plants that identified...

  5. Assessment of Plant-Probiotic Performance of Novel Endophytic Bacillus sp. in Talc-Based Formulation.

    Science.gov (United States)

    Basheer, Jasim; Ravi, Aswani; Mathew, Jyothis; Krishnankutty, Radhakrishnan Edayileveettil

    2018-01-25

    Endophytic bacteria are considered to have a plethora of plant growth promoting and anti-phytopathogenic traits to live within the plants. Hence, they have immense promises for plant probiotic development. In the current study, plant probiotic endophytic Bacillus sp. CaB5 which has been previously isolated from Capsicum annuum was investigated for its performance in talc-based formulation. For this, CaB5 was made into formulation with sterile talc, calcium carbonate, and carboxymethyl cellulose. The viability analysis of the formulation by standard plate count and fluorescence methods has confirmed the stable microbial count up to 45 days. Plant probiotic performance of the prepared formulation was analyzed on cowpea (Vigna unguiculata) and lady's finger (Abelmoschus esculentus). The results showed the formulation treatment to have enhancement effect on seed germination as well as plant growth in both selected plants. The results highlight the potential of CaB5-based formulation for field application to enhance growth of economically important plants.

  6. Simulation analysis of capacity and performance improvement in wastewater treatment plants: Case study of Alexandria eastern plant

    Science.gov (United States)

    Moursy, Aly; Sorour, Mohamed T.; Moustafa, Medhat; Elbarqi, Walid; Fayd, Mai; Elreedy, Ahmed

    2018-05-01

    This study concerns the upgrading of a real domestic wastewater treatment plant (WWTP) supported by simulation. The main aims of this work are to: (1) decide between two technologies to improve WWTP capacity and its nitrogen removal efficiency; membrane bioreactor (MBR) and integrated fixed film activated sludge (IFAS), and (2) perform a cost estimation analysis for the two proposed solutions. The model used was calibrated based on data from the existing WWTP, namely, Eastern plant and located in Alexandria, Egypt. The activated sludge model No. 1 (ASM1) was considered in the model analysis by GPS-X 7 software. Steady-state analysis revealed that high performances corresponded to high compliance with Egyptian standards were achieved by the two techniques; however, MBR was better. Nonetheless, the two systems showed poor nitrogen removal efficiency according to the current situation, which reveals that the plant needs a modification to add an anaerobic treatment unit before the aerobic zone.

  7. Comparative exergetic performance analysis for certain thermal power plants in Serbia

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2016-01-01

    Full Text Available Traditional methods of analysis and calculation of complex thermal systems are based on the first law of thermodynamics. These methods use energy balance for a system. In general, energy balances do not provide any information about internal losses. In contrast, the second law of thermodynamics introduces the concept of exergy, which is useful in the analysis of thermal systems. Exergy is a measure for assessing the quality of energy, and allows one to determine the location, cause, and real size of losses incurred as well as residues in a thermal process. The purpose of this study is to comparatively analyze the performance of four thermal power plants from the energetic and exergetic viewpoint. Thermodynamic models of the plants are developed based on the first and second law of thermodynamics. The primary objectives of this paper are to analyze the system components separately and to identify and quantify the sites having largest energy and exergy losses. Finally, by means of these analyses, the main sources of thermodynamic inefficiencies as well as a reasonable comparison of each plant to others are identified and discussed. As a result, the outcomes of this study can provide a basis for the improvement of plant performance for the considered thermal power plants.

  8. Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance

    Science.gov (United States)

    Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.

  9. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    Energy Technology Data Exchange (ETDEWEB)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

    1996-04-01

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

  10. Accelerator production of tritium plant design and supporting engineering development and demonstration work

    International Nuclear Information System (INIS)

    Lisowski, P.W.

    1997-11-01

    Tritium is an isotope of hydrogen with a half life of 12.3 years. Because it is essential for US thermonuclear weapons to function, tritium must be periodically replenished. Since K reactor at Savannah River Site stopped operating in 1988, tritium has been recycled from dismantled nuclear weapons. This process is possible only as long as many weapons are being retired. Maintaining the stockpile at the level called for in the present Strategic Arms Reduction Treaty (START-I) will require the Department of Energy to have an operational tritium production capability in the 2005--2007 time frame. To make the required amount of tritium using an accelerator based system (APT), neutrons will be produced through high energy proton reactions with tungsten and lead. Those neutrons will be moderated and captured in 3 He to make tritium. The APT plant design will use a 1,700 MeV linear accelerator operated at 100 mA. In preparation for engineering design, starting in October 1997 and subsequent construction, a program of engineering development and demonstration is underway. That work includes assembly and testing of the first 20 MeV of the low energy plant linac at 100 mA, high-energy linac accelerating structure prototyping, radiofrequency power system improvements, neutronic efficiency measurements, and materials qualifications

  11. The performance trends of nuclear power plants worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Glorian, D. [Electricite de France (EDF), 93 - Saint-Denis (France)

    2001-07-01

    Looking back to the worldwide operating experience feedback, which performance trends and conclusions could be drawn up? What is the specific situation of the French nuclear units, in comparison with the average worldwide performance? The performance of a unit or group of facilities is measured not only in technical terms (safety, availability, load control capability), but also from an economic and financial standpoint (operating and maintenance costs, fuel costs, etc). Performance in terms of radiological protection and on-the-job safety, as well as environmental protection, is also monitored in order to give the broadest possible overview of nuclear power plant performance. The main technical results are presented on the basis of selected performance indicators. The results obtained by French units are benchmarked against those of other PWR facilities in operation around the world, in accordance with comparisons made by the World Association of Nuclear Operators (WANO). (author)

  12. The performance trends of nuclear power plants worldwide

    International Nuclear Information System (INIS)

    Glorian, D.

    2001-01-01

    Looking back to the worldwide operating experience feedback, which performance trends and conclusions could be drawn up? What is the specific situation of the French nuclear units, in comparison with the average worldwide performance? The performance of a unit or group of facilities is measured not only in technical terms (safety, availability, load control capability), but also from an economic and financial standpoint (operating and maintenance costs, fuel costs, etc). Performance in terms of radiological protection and on-the-job safety, as well as environmental protection, is also monitored in order to give the broadest possible overview of nuclear power plant performance. The main technical results are presented on the basis of selected performance indicators. The results obtained by French units are benchmarked against those of other PWR facilities in operation around the world, in accordance with comparisons made by the World Association of Nuclear Operators (WANO). (author)

  13. Biochar Improves Performance of Plants for Mine Soil Revegetation

    Science.gov (United States)

    Biochar (the solid by-product of pyrolysis of biomass), has the potential to improve plant performance for revegetation of mine soils by improving soil chemistry, fertility, moisture holding capacity and by binding heavy metals. We investigated the effect of gasified conifer sof...

  14. Analyses to demonstrate the thermal performance of the CASTOR KN12

    International Nuclear Information System (INIS)

    Diersch, R.; Weiss, M.; Tso, C.F.; Powell, D.; Choy, B.I.; Lee, H.Y.

    2004-01-01

    The CASTOR registered KN-12 is a new cask design of GNB for dry and wet transportation of up to 12 PWR spent nuclear fuel assemblies in Korea. It complies with the requirements of 10 CFR 71 [1] and IAEA ST-1 [2] for TYPE B(U)F packages. It received its transport license from the Korean Competent Authority KINS in July 2002 and is now in use in South Korea. Demonstration of the cask's compliance with the regulatory requirements in the area of thermal performance has been carried out by a combination of testing carried out by Korea Atomic Energy Research Institute and analyses carried out by Arup. This paper describes the analyses to demonstrate the thermal performance of the cask and compliance with regulatory requirements under normal and hypothetical accident conditions of transport. Other aspects of the design of the CASTOR registered KN12 are presented in other papers at this conference

  15. Feed intake, growth performance and digestibility in goats fed whole corn plant silage and Napier grass

    Directory of Open Access Journals (Sweden)

    Khaing, K.T.

    2015-06-01

    Full Text Available Shortage and inconsistent quality of forage in developing countries are the major constraints to the development of ruminant sector. To overcome these problems, feeding of ruminants with conserved forages is an important feeding strategy to ensure the success of ruminant production in the third world countries. The use of whole corn plant as silage has drawn many attention due to high protein efficiency, relatively high digestible energy and total digestible nutrients. Thus, the objective of this study was to determine feed intake, growth performance and nutrients digestibility in goats fed different inclusion level of whole corn plant silage to Napier grass based diets. Fifteen male Boer cross goats around six months old and approximately 18.54 ? 1.83 kg of body weight were used as experimental animals. The goats were assigned into five treatment groups consisted of different proportions of Napier grass (G and whole plant corn silage (CS ?T1:100/0 G/CS; T2:75/25 G/CS; T3:50/50 G/CS; T4:25/75 G/CS and T5:0/100 G/CS. The increase of corn silage to Napier grass proportion demonstrates increase in dry matter intake and growth performance in the goats. The highest nutrient digestibility was observed in T5:0/100 G/CS and T3:50/50 G/CS. It can be concluded that high proportion of corn silage to grass diets had resulted in increases in feed intake and growth performance of goats. Feeding the animals with T5 and T3 resulted in high nutrient utilization compared to other treatments. However, the highest growth performance was observed in animals that were fed with T5 diets.

  16. Planning a demonstration

    International Nuclear Information System (INIS)

    Torok, R.C.; Wilkinson, C.D.

    1992-01-01

    Operating nuclear power plants are increasingly recognizing the need to upgrade existing plant instrumentation and control systems to address the obsolescence of existing equipment and components. This paper reports that operating problems have provided the initial incentive for upgrading I and C systems. However, obsolescence is not the whole story. Each I and C upgrade offers the promise of improved operating performance by reducing down-time during plant outages and by implementing new features that are possible with computer-based technology. I and C upgrades using modern technology have the potential for: higher system reliability and plant availability; reductions in the number of single failure points; use of fault tolerant and self-diagnosis capabilities; improved control system stability and response time; improved accuracy of performance indictors and control signals; and a measurable reduction in operating and maintenance costs

  17. A Review on Plants Used for Improvement of Sexual Performance and Virility

    Directory of Open Access Journals (Sweden)

    Nagendra Singh Chauhan

    2014-01-01

    Full Text Available The use of plant or plant-based products to stimulate sexual desire and to enhance performance and enjoyment is almost as old as the human race itself. The present paper reviews the active, natural principles, and crude extracts of plants, which have been useful in sexual disorders, have potential for improving sexual behaviour and performance, and are helpful in spermatogenesis and reproduction. Review of refereed journals and scientific literature available in electronic databases and traditional literature available in India was extensively performed. The work reviews correlation of the evidence with traditional claims, elucidation, and evaluation of a plausible concept governing the usage of plants as aphrodisiac in total. Phytoconstituents with known structures have been classified in appropriate chemical groups and the active crude extracts have been tabulated. Data on their pharmacological activity, mechanism of action, and toxicity are reported. The present review provides an overview of the herbs and their active molecule with claims for improvement of sexual behaviour. A number of herbal drugs have been validated for their effect on sexual behavior and fertility and can therefore serve as basis for the identification of new chemical leads useful in sexual and erectile dysfunction.

  18. Artificial neural network model for prediction of safety performance indicators goals in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Kelling C.; Nunes, Wallace W. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, Nilopolis, RJ (Brazil). Lab. de Aplicacoes Computacionais; Machado, Marcelo D., E-mail: dornemd@eletronuclear.gov.b [ELETROBRAS Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear - GCN.T

    2011-07-01

    Safety performance indicators have been developed to provide a quantitative indication of the performance and safety in various industry sectors. These indexes can provide assess to aspects ranging from production, design, and human performance up to management issues in accordance with policy, objectives and goals of the company. The use of safety performance indicators in nuclear power plants around the world is a reality. However, it is necessary to periodically set goal values. Such goals are targets relating to each of the indicators to be achieved by the plant over a predetermined period of operation. The current process of defining these goals is carried out by experts in a subjective way, based on actual data from the plant, and comparison with global indices. Artificial neural networks are computational techniques that present a mathematical model inspired by the neural structure of intelligent organisms that acquire knowledge through experience. This paper proposes an artificial neural network model aimed at predicting values of goals to be used in the evaluation of safety performance indicators for nuclear power plants. (author)

  19. Artificial neural network model for prediction of safety performance indicators goals in nuclear plants

    International Nuclear Information System (INIS)

    Souto, Kelling C.; Nunes, Wallace W.; Machado, Marcelo D.

    2011-01-01

    Safety performance indicators have been developed to provide a quantitative indication of the performance and safety in various industry sectors. These indexes can provide assess to aspects ranging from production, design, and human performance up to management issues in accordance with policy, objectives and goals of the company. The use of safety performance indicators in nuclear power plants around the world is a reality. However, it is necessary to periodically set goal values. Such goals are targets relating to each of the indicators to be achieved by the plant over a predetermined period of operation. The current process of defining these goals is carried out by experts in a subjective way, based on actual data from the plant, and comparison with global indices. Artificial neural networks are computational techniques that present a mathematical model inspired by the neural structure of intelligent organisms that acquire knowledge through experience. This paper proposes an artificial neural network model aimed at predicting values of goals to be used in the evaluation of safety performance indicators for nuclear power plants. (author)

  20. Performance of Canadian commercial nuclear units and heavy water plants

    International Nuclear Information System (INIS)

    Woodhead, L.W.; Ingolfsrud, L.J.

    The operating history of Canadian commercial CANDU type reactors, i.e. Pickering generating station-A, is described. Capacity factors and unit energy costs are analyzed in detail. Equipment performance highlights are given. The performance of the two Canadian heavy water plants is described and five more are under construction or planned. (E.C.B.)

  1. Host-plant preference and performance of the vine weevil Otiorhynchus sulcatus

    NARCIS (Netherlands)

    van Tol, R.W.H.M.; van Dijk, N.; Sabelis, M.W.

    2004-01-01

    The relationship between reproductive performance and preference for potential host plants of the vine weevil is investigated, as shown in tests on contact (or feeding) preference, presented herein, and tests on olfactory preference, published elsewhere. Assessment of reproductive performance shows

  2. Host plant preference and performance of the vine weevil Otiorhynchus sulcatus

    NARCIS (Netherlands)

    Tol, van R.W.H.M.; Dijk, van N.; Sabelis, M.W.

    2004-01-01

    1. The relationship between reproductive performance and preference for potential host plants of the vine weevil is investigated, as shown in tests on contact (or feeding) preference, presented herein, and tests on olfactory preference, published elsewhere. 2. Assessment of reproductive performance

  3. Hanford radiochemical site decommissioning demonstration program

    International Nuclear Information System (INIS)

    Nelson, D.C.

    1971-01-01

    A program is proposed for the innovation, development, and demonstration of technologies necessary to decommission the Hanford radiochemical plant area to the extent that the sites can have unrestricted public access. The five tasks selected for development and demonstration of restoration techniques were restoration of a burial ground, decommissioning of a separations plant, restoration of a separations plant waste interim storage tank farm, restoration of a liquid disposal area, and disposal of large contaminated equipment. Process development requirements are tabulated and discussed. A proposed schedule and estimated costs are given

  4. Performance analysis of US coal-fired power plants by measuring three DEA efficiencies

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika; Ueno, Takahiro

    2010-01-01

    Data Envelopment Analysis (DEA) has been widely used for performance evaluation of many organizations in private and public sectors. This study proposes a new DEA approach to evaluate the operational, environmental and both-unified performance of coal-fired power plants that are currently operating under the US Clean Air Act (CAA). The economic activities of power plants examined by this study are characterized by four inputs, a desirable (good) output and three undesirable (bad) outputs. This study uses Range-Adjusted Measure (RAM) because it can easily incorporate both desirable and undesirable outputs in the unified analytical structure. The output unification proposed in this study has been never investigated in the previous DEA studies even though such a unified measure is essential in guiding policy makers and corporate leaders. Using the proposed DEA approach, this study finds three important policy implications. First, the CAA has been increasingly effective on their environmental protection. The increased environmental performance leads to the enhancement of the unified efficiency. Second, the market liberalization/deregulation was an important business trend in the electric power industry. Such a business trend was legally prepared by US Energy Policy Act (EPAct). According to the level of the market liberalization, the United States is classified into regulated and deregulated states. This study finds that the operational and unified performance of coal-fired power plants in the regulated states outperforms those of the deregulated states because the investment on coal-fired power plants in the regulated states can be utilized as a financial tool under the rate-of-return criterion of regulation. The power plants in the deregulated states do not have such a regulation premium. Finally, plant managers need to balance between their environmental performance and operational efficiency.

  5. Demonstration of direct internal reforming for MCFC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Aasberg-Petersen, K.; Christensen, P.S.; Winther, S.K. [HALDOR TOPSOE A/S, Lynby (Denmark)] [and others

    1996-12-31

    The conversion of methane into hydrogen for an MCFC by steam reforming is accomplished either externally or internally in the stack. In the case of external reforming the plant electrical efficiency is 5% abs. lower mainly because more parasitic power is required for air compression for stack cooling. Furthermore, heat produced in the stack must be transferred to the external reformer to drive the endothermic steam reforming reaction giving a more complex plant lay-out. A more suitable and cost effective approach is to use internal steam reforming of methane. Internal reforming may be accomplished either by Indirect Internal Reforming (DIR) and Direct Internal Reforming (DIR) in series or by DIR-only as illustrated. To avoid carbon formation in the anode compartment higher hydrocarbons in the feedstock are converted into hydrogen, methane and carbon oxides by reaction with steam in ail adiabatic prereformer upstream the fuel cell stack. This paper discusses key elements of the desire of both types of internal reforming and presents data from pilot plants with a combined total of more than 10,000 operating hours. The project is being carried out as part of the activities of the European MCFC Consortium ARGE.

  6. Suitability of second pass RO as a substitute for high quality MSF product water in Nuclear Desalination Demonstration Plant

    International Nuclear Information System (INIS)

    Murugan, V.; Venkatesh, P.; Balasubramanian, C.; Nagaraj, R.; Yadav, Manoj Kumar; Prabhakar, S.; Tewari, P.K.

    2012-01-01

    Nuclear Desalination Demonstration Plant at Kalpakkam consists of both Multi Stage Flash Distillation (MSF) and Seawater Reverse Osmosis (SWRO) process to produce desalinated water. It supplies part of highly pure water from MSF to Madras Atomic Power Station for its boiler feed requirements and remaining water is blend with SWRO product water and sent to other common facilities located inside Kalpakkam campus. A critical techno-economic analysis is carried out to find out the suitability of second pass RO to sustain the availability of highly pure water in case of MSF plant shutdown. (author)

  7. Impact of aging and material structure on CANDU plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, E.; Ballyk, J.; Ghalavand, N. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  8. 40 CFR 63.7940 - By what date must I conduct performance tests or other initial compliance demonstrations?

    Science.gov (United States)

    2010-07-01

    ... compliance is not demonstrated using a performance test or design evaluation, you must demonstrate initial... performance tests or other initial compliance demonstrations? 63.7940 Section 63.7940 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS...

  9. Reducing the occurrence of plant events through improved human performance

    International Nuclear Information System (INIS)

    Ross, T.; Burkhart, A.D.

    1993-01-01

    During a routine control room surveillance, the reactor operator is distracted by an alarming secondary annunciator and a telephone call. When the reactor operator resumes the surveillance, he inadvertently performs the procedural steps out of order. This causes a reportable nuclear event. How can procedure-related human performance problems such as this be prevented? The question is vitally important for the nuclear industry. The U.S. Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data observed, open-quotes With the perceived reduction in the number of events caused by equipment failures, INPO and other industry groups and human performance experts agree that a key to continued improvement in plant performance and safety is improved human performance.close quotes In fact, open-quotes more than 50% of the reportable events occurring at nuclear power plants involve human error.close quotes Prevention (or correction) of a human performance problem is normally based on properly balancing the following three factors: (1) supervisory involvement; (2) personnel training; and (3) procedures. The nuclear industry is implementing a formula known as ACME, which better balances supervisory involvement, personnel training, and procedures. Webster's New World Dictionary defines acme as the highest point, the peak. ACME human performance is the goal: ACME Adherence to and use of procedures; Self-Checking; Management Involvement; and Event Investigations

  10. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. (Ebasco Services, Inc., Bellevue, WA (USA))

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  11. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    International Nuclear Information System (INIS)

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V.

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs

  12. Planning for risk-informed/performance-based fire protection at nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Najafi, B.; Parkinson, W.J.; Lee, J.A.

    1997-12-01

    This document presents a framework for discussing issues and building consensus towards use of fire modeling and risk technology in nuclear power plant fire protection program implementation. The plan describes a three-phase approach: development of core technologies, implementation of methods, and finally, case studies and pilot applications to verify viability of such methods. The core technologies are defined as fire modeling, fire and system tests, use of operational data, and system and risk techniques. The implementation phase addresses the programmatic issues involved in implementing a risk-informed/performance-based approach in an integrated approach with risk/performance measures. The programmatic elements include: (1) a relationship with fire codes and standards development as defined by the ongoing effort of NFPA for development of performance-based standards; (2) the ability for NRC to undertake inspection and enforcement; and (3) the benefit to utilities in terms of cost versus safety. The case studies are intended to demonstrate applicability of single issue resolution while pilot applications are intended to check the applicability of the integrated program as a whole

  13. Closing the sky. The total dismantling of the Jose Cabrera nuclear power plant demonstrates maturity in the nuclear sector

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2015-01-01

    This article aims to put the situation of the decommissioning of nuclear power plants in the world into perspective as an already consolidated activity and with an important future of industrial activity. The decommissioning project that Enresa is currently performing in the old Jose Cabrera plant is being explained in detail, by providing data of the newest and most relevant technical aspects as well as the lessons learned to be reusable in other decommissioning projects. The previous background, the project planning, the activities performed and those still to be done as well as their timing are being explained in detail. (Author)

  14. Numerical indicators of nuclear power plant safety performance

    International Nuclear Information System (INIS)

    1991-04-01

    The workshop was attended by representatives from twenty-two Member States operating nuclear power plants (NPP). The current status of the development and use of numerical indicators of NPP safety performance was presented. A consensus on the benefits of use of numerical indicators was reached. The Technical Committee Meeting reviewed the progress in the development and use of performance indicators and identified them as the most appropriate ones for international use. The purpose of this document is to summarize the discussions held and conclusions reached in both meetings. Lists of participants and all the papers of both meetings are presented

  15. Performance and Simulation of a Stand-alone Parabolic Trough Solar Thermal Power Plant

    Science.gov (United States)

    Mohammad, S. T.; Al-Kayiem, H. H.; Assadi, M. K.; Gilani, S. I. U. H.; Khlief, A. K.

    2018-05-01

    In this paper, a Simulink® Thermolib Model has been established for simulation performance evaluation of Stand-alone Parabolic Trough Solar Thermal Power Plant in Universiti Teknologi PETRONAS, Malaysia. This paper proposes a design of 1.2 kW parabolic trough power plant. The model is capable to predict temperatures at any system outlet in the plant, as well as the power output produced. The conditions that are taken into account as input to the model are: local solar radiation and ambient temperatures, which have been measured during the year. Other parameters that have been input to the model are the collector’s sizes, location in terms of latitude and altitude. Lastly, the results are presented in graphical manner to describe the analysed variations of various outputs of the solar fields obtained, and help to predict the performance of the plant. The developed model allows an initial evaluation of the viability and technical feasibility of any similar solar thermal power plant.

  16. Use of audits and reviews to improve plant performance, INPO'S experience

    International Nuclear Information System (INIS)

    Mc Coy, C.K.

    1986-01-01

    INPO's primary mission is to assist utilities in improving their nuclear plants performance. Consequently, the author has viewed utility audits and reviews as potential tools for improving plant performance. He has attempted to find examples where these tools are used effectively, and to find common elements of effective utility audit and review programs. One thing the author noted was that the words ''audit'' and ''review'' were not consistently used or understood. So to begin, he likes to stick to Webster's definitions in the context of nuclear power activities. First, Webster defines the verb audit as ''to examine with intent to verify.'' In this context this means to verify compliance with requirements. Second, Webster defines a review as ''a general survey'' or ''a critical evaluation.'' In this context this means an evaluation of an activity or program for effectiveness in accomplishing its intended purpose. INPO's evaluations are reviews, not audits, and they are intended to provide information to utility managers upon which they may make changes to improve performance. INPO does make ''recommendations'' based on effective practices seen at other plants, but the author insists that line management develop the corrective action. INPO provides follow-up at the next evaluation to ensure the corrective actions taken by management were effective. INPO bases most of its findings on observations of work and conditions in the plant as noted by knowledgeable personnel trained in observation techniques

  17. On-Line Monitoring of Instrument Channel Performance in Nuclear Power Plant Using PEANO

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Hoffmann, Mario; Shankar, Ramesh; Davis, Eddie L.

    2002-01-01

    On-Line monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and EPRI experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. On-Line monitoring of instrument channels provides information about the condition of the monitored channels through accurate, more frequent monitoring of each channel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. On-line monitoring of these channels can provide an assessment of instrument performance and provide a basis for determining when adjustments are necessary. Elimination or reduction of unnecessary field calibrations can reduce associated labor costs, reduce personnel radiation exposure and reduce the potential for miss-calibration. PEANO is a system for on-line calibration monitoring developed in the years 1995-2000 at the Institutt for energiteknikk (IFE), Norway, which makes use of Artificial Intelligence techniques for its purpose. The system has been tested successfully in Europe in off-line tests with EDF (France), Tecnatom (Spain) and ENEA (Italy). PEANO is currently installed and used for on-line monitoring at the HBWR reactor in Halden. This paper describes the results of performance tests on PEANO with real data from a US PWR plant, in the framework of a co-operation among IFE, EPRI and Edan Engineering, to evaluate the potentials of PEANO for future installations in US nuclear plants. (authors)

  18. The design and operation of a continuous ion-exchange demonstration plant for the recovery of uranium

    International Nuclear Information System (INIS)

    Craig, W.M.; Douglas, M.E.E.; Louw, G.D.

    1978-01-01

    A description is given of the design of the continuous ion-exchange demonstration plant at Blyvooruitzicht Gold Mine, including details of the process design, the column construction, and the control system. The operating and process results gathered over a period of seventeen months are summarized, and devolopment work and modifications to the process are discussed. It is concluded that the system comprising continuous loading and continuous elution is technically feasible and can be scaled up with confidence [af

  19. Review of the Vortec soil remediation demonstration program

    International Nuclear Information System (INIS)

    Patten, J.S.

    1994-01-01

    The principal objective of the METC/Vortec program is to develop and demonstrate the effectiveness of the Vortec CMS in remediating soils contaminated with hazardous materials and/or low levels of radionuclides. To convincingly demonstrate the CMS's capability, a Demonstration Plant will be constructed and operated at a DOE site that has a need for the remediation of contamination soil. The following objectives will be met during the program: (1) establish the glass chemistry requirements to achieve vitrification of contaminated soils found at the selected DOE site; (2) complete the design of a fully integrated soil vitrification demonstration plant with a capacity to process 25 TPD of soil; (3) establish the cost of a fully integrated soil demonstration plant with a capacity to process 25 TPD of soil; (4) construct and operate a fully integrated demonstration plant; (5) analyze all influent and effluent streams to establish the partitioning of contaminants and to demonstrate compliance with all applicable health, safety, and environmental requirements; (6) demonstrate that the CMS technology has the capability to produce a vitrified product that will immobilize the hazardous and radionuclide materials consistent with the needs of the specific DOE waste repositories

  20. How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.

    Science.gov (United States)

    Haldeman, Janice H.; Ellis, Jane P.

    1988-01-01

    Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)

  1. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations.

    Science.gov (United States)

    Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L

    2013-05-01

    The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.

  2. Improvement of the nuclear plant analyzer for Korean Standard Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Sung Soo; Han, Byoung Sub; Suh, Jae Seung; Son, Dae Seong

    2005-04-01

    Accurate analysis of the operating characteristics of Nuclear Power Plants provides valuable information for both norman and abnormal operation. The information can be used for the enhancement of plant performance and safety. Usually, such analysis is performed using computer codes used for plant design or simulators. However, their usages are limited because special expertise is required to use the computer codes and simulators are not portable. Therefore, it deemed necessary to develop an NPA which minimizes those limitations and can be used for the analysis and simulation of Nuclear Power Plants. The purpose of this study is to develop a real-time best-estimate NPA for the Korean Nuclear Power Plants(KSNP). The NPA is an interactive, high fidelity engineering simulator. NPA combines the process model simulating the plant behavior with the latest computer technology such as Graphical User Interface(GUI) and simulation executive for enhanced user interface. The process model includes models for a three-dimensional reactor core, the NSSS, secondary system including turbine and feedtrain, safety auxiliary systems, and various control systems. Through the verification and validation of the NPA, it was demonstrated that the NPA can realistically simulate the plant behaviors during transient and accident conditions

  3. Study on Biodiesel plants growth performance and tolerance to ...

    African Journals Online (AJOL)

    Abstract. In this research, we studied the growth performance and tolerance of three biodiesel plants namely; Jatropha curcas, Moringa oleifera and Ricinus communis to water stress. Research conducted on the three different soils from Kaita, Jibiya and Mai'adua in the semi-desert environments of Katsina State, Nigeria.

  4. Good practices for improved nuclear power plant performance

    International Nuclear Information System (INIS)

    1989-04-01

    This report provides an overview of operational principles, practice and improvements which have contributed to good performance of eight selected world nuclear power stations. The IAEA Power Reactor Information System (PRIS) was used to identify a population of good performers. It is recognized that there are many other good performing nuclear power stations not included in this report. Specific criteria described in the introduction were used in selecting these eight stations. The information contained in this report was obtained by the staff from IAEA, Division of Nuclear Power. This was accomplished by visits to the stations and visits to a number of utility support groups and three independent organizations which provide support to more than one utility. The information in this report is intended as an aid for operating organizations to identify possible improvement initiatives to enhance plant performance. Figs and tabs

  5. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flores, Gregg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Jy-An [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanborn, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spears, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klymyshyn, Nick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  6. HTTR demonstration test plan for industrial utilization of nuclear heat

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Yan, Xing L.; Kubo, Shinji; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2014-09-01

    Japan Atomic Energy Agency has been conducting research and development with a central focus on the utilization of High Temperature engineering Test Reactor (HTTR), the first High Temperature Gas-cooled Reactor (HTGR) in Japan, towards the realization of industrial use of nuclear heat. Several studies have made on the integration of the HTTR with thermochemical iodine-sulfur process and steam methane reforming hydrogen production plant (H 2 plant) as well as helium gas turbine power conversion system. In addition, safety standards for coupling a H 2 plant to a nuclear facility has been investigated. Based on the past design information, the present study identified test items to be validated in the HTTR demonstration test to accomplish a formulation of safety requirement and design consideration for coupling a H 2 plant to a nuclear facility as well as confirmation of overall performance of helium gas turbine system. In addition, plant concepts for the heat utilization system to be connected with the HTTR are investigated. (author)

  7. Building and application of the performance diagnosis system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.; Kanbara, K.; Sugawara, Y.

    2010-01-01

    To achieve a low-carbon society, we promote utilization of nuclear energy, which plays a zero-emission power generation. Therefore the nuclear power plants have been imposed a stable supply of electricity. The condition based maintenance (CBM) is effective in order to maintain a stable operation of the nuclear power plants. We built the performance diagnosis system based on the heat and mass balance calculation as one of supporting tools for the CBM. Moreover we note that the performance diagnosis system is built for steam turbine cycle operating with saturated steam conditions. (author)

  8. The use of plant models in deep learning: an application to leaf counting in rosette plants.

    Science.gov (United States)

    Ubbens, Jordan; Cieslak, Mikolaj; Prusinkiewicz, Przemyslaw; Stavness, Ian

    2018-01-01

    Deep learning presents many opportunities for image-based plant phenotyping. Here we consider the capability of deep convolutional neural networks to perform the leaf counting task. Deep learning techniques typically require large and diverse datasets to learn generalizable models without providing a priori an engineered algorithm for performing the task. This requirement is challenging, however, for applications in the plant phenotyping field, where available datasets are often small and the costs associated with generating new data are high. In this work we propose a new method for augmenting plant phenotyping datasets using rendered images of synthetic plants. We demonstrate that the use of high-quality 3D synthetic plants to augment a dataset can improve performance on the leaf counting task. We also show that the ability of the model to generate an arbitrary distribution of phenotypes mitigates the problem of dataset shift when training and testing on different datasets. Finally, we show that real and synthetic plants are significantly interchangeable when training a neural network on the leaf counting task.

  9. Performance Analysis of 20MW gas turbine power plant by Energy and Exergy Methods

    International Nuclear Information System (INIS)

    Lebele-Alawa, B. T.; Asuo, J. M.

    2013-01-01

    Energy and exergy analysis were conducted to evaluate the optimal performance of a 20 MW gas turbine power plant. The energy analysis was based on First Law of Thermodynamics, while the exergy method used both First and Second Laws of Thermodynamics. The locations and magnitude of losses which inhibited the performance of the power plant were identified by balance system equations. The internal losses associated with each plant component were estimated for improvement to be made to such component for maximum power output. The energy efficiency was 20.73 %, while the exergeric efficiency was 16.39 %; but the exergy loss of 38.62 % in the combustor was the largest among the components of plant. (au)

  10. Nuclear safety: operational aspects. 1. Demonstrating the Link Between Safety Culture and Competitiveness

    International Nuclear Information System (INIS)

    Chakoff, H. Elliot; Slider, James E.

    2001-01-01

    More than 20 years ago, we demonstrated a methodology for distinguishing the safety cultures of nuclear power plants. Using the content of licensee event reports, the methodology led to the identification of metrics that could be used to partition 12 pilot plants into better and poorer performers. The partitioning was validated by U.S. Nuclear Regulatory Commission (NRC) experts and shown to be statistically significant at the 95% level of confidence. We wanted to know if the passage of time had validated the differences in performance identified by the original methodology. Our follow-up confirmed the validity of the methodology and also revealed an order of magnitude difference in the long-term survival probability of the 12 pilot plants. The lessons learned from these studies could help plant owners improve safety culture and competitiveness in today's Darwinian marketplace. The original study sought to determine if it was possible to distinguish between better- and poorer-performing plants. The study found it was possible and developed a methodology for doing so. Key breakthroughs included the following: 1. recognizing that safety performance is a stochastic process; thus, performance data must be evaluated using appropriate methods; 2. developing a model for interpreting and transforming raw data into a root-cause domain; 3. maintaining a rigorous model design logic and selecting analytical tools and procedures consistent with that logic; 4. determining that the number of low significance events is an unreliable measure of performance; 5. recognizing that it is the relationship between events that is crucial to understanding performance and risk. Metrics were developed using a test population of 12 plants selected and grouped as 'good' or 'poor' performers by NRC's most senior inspectors. The test population included three plants that had significant events in a 2-yr period and nine that had none. The metrics validated differences in performance hypothesized

  11. Comparative study of the performance of Jute plant ( Corchorus ...

    African Journals Online (AJOL)

    This experiment was carried out in the green house at the College of Agricultural Sciences, Olabisi Onabanjo University, Yewa Campus, to assess the performance of jute plant (Corchorus olitorius L.) on three soil-use types (viz; farmland soil, cocoa plantation soil and residential or home garden soil) treated with five ...

  12. Enhancing nuclear power plant performance through the use of artificial intelligence

    International Nuclear Information System (INIS)

    Maren, A.J.; Miller, L.F.; Tsoukalas, L.H.; Uhrig, R.E.; Upadhyaya, B.R.

    1992-01-01

    The objective of this research was to advance the state-of-the-art of applying artificial intelligence technology (both expert systems and neural networks) to enhancing the performance (safety, efficiency, control and management) of nuclear power plants. A second, but equally important objective, was to build a broadly based critical mass of expertise in the artificial intelligence field that can be brought to bear on the technology of nuclear power plants

  13. Plant fertilization interacts with life history: variation in stoichiometry and performance in nettle-feeding butterflies.

    Directory of Open Access Journals (Sweden)

    Hélène Audusseau

    Full Text Available Variation in food stoichiometry affects individual performance and population dynamics, but it is also likely that species with different life histories should differ in their sensitivity to food stoichiometry. To address this question, we investigated the ability of the three nettle-feeding butterflies (Aglais urticae, Polygonia c-album, and Aglais io to respond adaptively to induced variation in plant stoichiometry in terms of larval performance. We hypothesized that variation in larval performance between plant fertilization treatments should be functionally linked to species differences in host plant specificity. We found species-specific differences in larval performance between plant fertilization treatments that could not be explained by nutrient limitation. We showed a clear evidence of a positive correlation between food stoichiometry and development time to pupal stage and pupal mass in A. urticae. The other two species showed a more complex response. Our results partly supported our prediction that host plant specificity affects larval sensitivity to food stoichiometry. However, we suggest that most of the differences observed may instead be explained by differences in voltinism (number of generations per year. We believe that the potential of some species to respond adaptively to variation in plant nutrient content needs further attention in the face of increased eutrophication due to nutrient leakage from human activities.

  14. Development of hot water utilizing power plant in fiscal 1998. Development of a binary cycle power generation plant (development of a 10-MW class plant); 1998 nendo nessui riyo hatsuden plant nado kaihatsu. Binary cycle hatsuden plant no kaihatsu (10MW kyu plant no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper summarizes the achievements in fiscal 1998 on developing a 10-MW geothermal power plant in the Hohi-Sugawara area being a representative area of middle-to-high temperature hot water resources. In designing the plant, domestic and overseas surveys were carried out on media suitable for binary cycle power plants, thermal cycle characteristics, construction cost, environmental effects, safety, operation, maintenance and control. Latest technologies were also surveyed and analyzed. The plant construction performed development construction around the testing devices, new construction of a plant control room building, constructions for installing electrical machines including the hot water system testing devices, river water intake facility construction, and cooling water intake facility installing construction. The environmental effect investigation included investigations on rain falls, river flow rates, hot springs, spring water, monitoring during the construction, and the state of transplantation of precious plants, and observation on groundwater variation. In verifying the geothermal water pumping system, factory tests were carried out on DHP3 demonstration machine which couples the pump section of a down-hole pump with the motor section, whose performance and functions were verified. (NEDO)

  15. Worldwide nuclear plant performance revisited. An analysis of 1978-81

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S [Sussex Univ., Brighton (UK). Science Policy Research Unit

    1982-12-01

    Analysis of recent nuclear plant performance, by country and manufacturer, confirms trends and differences in performance identified in the author's previous analysis. The crucial roles of electric utilities and vendors in ensuring high quality of design, construction, operation and maintenance are identified. Evidence is also presented suggesting that technological leadership is passing from the USA to Europe, although Japan may also emerge as an important reactor supplier.

  16. An empirical analysis of nuclear power plant organization and its effect on safety performance

    International Nuclear Information System (INIS)

    Thurber, J.A.

    1985-01-01

    The paper documents work performed on three tasks. The first task concerned the creation of measures of organizational structure. An earlier review of the literature supported the position that organizational structure (e.g., the way the work of the organization is divided, administered, and coordinated) is a likely determinant of plant safety performance. While data were not available on some salient dimensions of organizational structure, Final Safety Analysis Reports (FSARs), Technical Specifications, and a survey of plant technical resources allowed for measurement on three primary dimensions. These are the vertical structure of the plant (e.g., the number of ranks and the ratio of supervisors to subordinates), the horizontal structure of the plant (e.g., the way the organization is divided into administrative and work units), and the coordinative structure of the plant (e.g., the ways that work units are linked)

  17. Inulin in Medicinal Plants II : Determination of Inulin in Medicinal Plants by High-Performance Gel Chromatography - Seasonal Variations in Inulin Content

    OpenAIRE

    太田, 長世; 三野, 芳紀; NAGAYO, OTA; YOSHIKI, MINO; 大阪薬科大学; 大阪薬科大学; Osaka College of Pharmacy; Osaka College of Pharmacy

    1980-01-01

    A high-performance gel chromatographic procedure for the analysis of inulin in medicinal plants (0.001% for 1% absorption) was established by combining gel chromatography(TSK-G3000PW with distilled water as a mobile phase) with colorimetry (HCl-resorcin reaction). Quantitative studies on inulin contents in medicinal plants of the Gampanulaceae and Compositae families in various growth stages was performed according to the present method. In general, inulin contents of the underground parts de...

  18. Demonstration testing and evaluation of in situ heating of soil

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes the Quality Assurance Project Plan (QAPP) for IITRI Project C06787 entitled open-quotes Demonstration Testing and Evaluation of In Situ Heating of Soilclose quotes. A work plan for the above mentioned work was previously submitted. This QAPP describes the sampling and analysis of soil core-samples obtained from the K-25 Site (Oak Ridge Gaseous Diffusion Plant) where an in-situ heating and soil decontamination demonstration experiment will be performed. Soil samples taken before and after the experiment will be analyzed for selected volatile organic compounds. The Work Plan mentioned above provides a complete description of the demonstration site, the soil sampling plan, test plan, etc

  19. Demonstration test on the safety of a cell ventilation system during a hypothetical explosive burning in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Nishio, Gunji; Takada, Junichi; Tsukamoto, Michio; Koike, Tadao

    1993-01-01

    To demonstrate the safety of an air ventilation system of cells in a fuel reprocessing plant under a postulated explosive burning caused by solvent fire or by thermal decomposition of nitrated solvent, four types of demonstration tests have been conducted using a large-scale facility simulating a cell ventilation system of an actual reprocessing plant, thus revealing effective mitigation by cell and duct structures on the pressure and temperature pulses generated by explosive burning. In boilover burning tests, solvent fire in a model cell was observed with various sizes of burning surface area as a main parameter, and analysis was performed on the factors dominating the magnitude of boilover burning, revealing that the magnitude strongly depends on accumulated amounts and their ratio of oxygen and solvent vapor present in the cell. In deflagration tests, solid rocket fuel was burned in the cell to simulate the explosive source. The generated pressure and temperature pulses were effectively declined by the cell and duct structures and the integrity of the ventilation system was kept. In blower tests, a centrifugal turbo blower was imposed by a lump of air with a larger flow rate than the rated one by about six times to observe the transient response of the blower fan and motor. It was found that integrity of the blower was kept. In pressure transient tests, compressed air was blown into the cell to induce a mild transient state of fluid dynamics inside the facility, and a variety of data were successfully obtained to be used for the verification and improvement of a computer code. In all the tests, transient overloading of gas caused no damage on HEPA filters, and overloading on the blower motor was avoided either by the slipping of transmission belt or by the acceleration of blower fan rotation during peak flow. (author)

  20. Evaluation of gaseous emissions produced in the tests on the demonstration plant for sludge drying and incineration

    International Nuclear Information System (INIS)

    Lotito, V.; Spinosa, L.; Antonacci, R.; Mininni, G.

    2001-01-01

    Incineration is a valid alternative to other more diffused disposal systems (agricultural use, landfill), when they cannot be applied due to high pollutants concentrations or other unforeseeable constraints. However, it can cause severe air pollution by inorganic (heavy metals) and organic (PAHs, PCDDs, PCDFs) pollutants, particulate, NO x , CO and acidic compounds; this fact has raised public concern about incineration and has hindered a wider application of this practice. Water Research Institute of Italian National Research Council realised a demonstration plant mainly consisting of a fluidized bed furnace, a rotary kiln furnace, a dryer with heat recovery section, particulate and acidic compounds removal apparatuses, and set up a research programme to demonstrate that incineration is a safe operation and can comply the relevant legislation, as far as organic and inorganic micropollutants are concerned. A total of 40 tests were carried out (30 with the fluidized bed furnace and 10 with rotary kiln one) treating dewatered sludges (in many cases with the addition of high chlorinated compounds and Cu salts) or dried ones, under different operating conditions (furnace temperature, after-burner temperature, chlorine concentration). Particulate concentrations, and consequently heavy metals concentrations, at the stack resulted in any case under legal limits. As far as conventional pollutants are concerned, only HCl and CO overcame sometimes standards, mainly due to temporary operating up-sets. PAHs concentration resulted quite constant, thus demonstrating that tests were operated in steady-state and satisfactory conditions. Also dioxins and furans overcame sometimes standards, but no correlation was found with more severe tests conditions; it happened when plant up-set conditions occurred. Operation resulted quite satisfactory, but dryer operation required constant operators attention. In rotary kiln furnace a build up of solidified ashes occurred in counter

  1. Fuel performance experience at TVO nuclear power plant

    International Nuclear Information System (INIS)

    Patrakka, E.T.

    1985-01-01

    TVO nuclear power plant consists of two BWR units of ASEA-ATOM design. The fuel performance experience extending through six cycles at TVO I and four cycles at TVO II is reported. The experience obtained so far is mainly based on ASEA-ATOM 8 x 8 fuel and has been satisfactory. Until autumn 1984 one leaking fuel assembly had been identified at TVO I and none at TVO II. Most of the problems encountered have been related to leaf spring screws and channel screws. The experience indicates that satisfactory fuel performance can be achieved when utilizing strict operational rules and proper control of fuel design and manufacture. (author)

  2. Nuclear power plant performance monitoring using Data Validation and Reconciliation (DVR). Application at the Brazilian Angra 2 PWR plant

    International Nuclear Information System (INIS)

    Tran Quang, Anh Tho; Closon, Hervé; Chares, Robert; Azola, Edson

    2011-01-01

    Operational decisions related to plant performance monitoring mainly result from raw process measurement analysis. When first signs of sub-optimal behavior occur, traditional methods mainly focus on the observation of selective pieces of information. The main disadvantages of these methods are: Investigation efforts are required to localize the problems, entailing time losses and costs; Validity and reliability of the pieces of information cannot be checked as long as the measurements are observed individually. The problem is not the lack of methods and techniques but rather a lack of reliable and consistent data and information across the entire plant. To overcome drawbacks of traditional methods, measurements are considered as interacting with one another. When related to the other measurements of the plant, the observed information becomes of an interest: its incoherency to the others identifies and localizes a problem. The Data Validation and Reconciliation technology (DVR) is based on an advanced process data coherency treatment. By using all available plant information and by closing the plant heat and mass balances based on rigorous thermodynamics, the method generates: A single set of reliable and most accurate plant process data; Alarms for incoherent measurements, highlighting potential problems; Alarms for equipment and process performance degradation; Alarms for faulty and drifting measurements. The use of the advanced DVR software package VALI offers various benefits as it allows to base operational decisions on reliable and accurate data. (author)

  3. The role of human performance in safe operation of complex plants

    International Nuclear Information System (INIS)

    Preda, Irina Aida; Lazar, Roxana Elena; Croitoru, Cornelia

    1999-01-01

    According to statistics, about 20-30% from the failures occurring in plants are caused directly or indirectly by human errors. Furthermore, it was established that 10-15 percents of the global failures are related to the human errors. These are mainly due to the wrong actions, maintenance errors, and misinterpretation of instruments. The human performance is influenced by: professional ability, complexity and danger of the plant, experience in the same working place, level of skills, events in personal and/or professional life, discipline, social ambience and somatic health. The human performances assessment in the probabilistic safety assessment offers the possibility of evaluation for human contribution to the events sequences outcome. A human error may be recovered before the unwanted consequences had been occurred on system. This paper presents the possibilities to use the probabilistic methods (event tree, fault tree) to identify the solution for human reliability improvement in order to minimise the risk in industrial plant operation. Also, are defined the human error types and their causes and the 'decision tree method' is presented as technique in our analyses for human reliability assessment. The exemplification of human error analysis method was achieved based on operation data for Valcea heavy water pilot plant. (authors)

  4. Performance of Generating Plant: Managing the Changes. Part 4: Markets and Risk Management Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Terry; Loedolff, Gerhard; Griffin, Rob; Kydd, Robert; Micali, Vince [Eskom (South Africa)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 4 (WG4). WG4 will monitor the development of power markets, in particular from the market risk management point of view, including operational risks. It will assess various risk management strategies used by market players around the world and develop recommendations for a wider deployment of successful strategies. The report covers the project approach and outcomes.

  5. Application of the performance-goal based approach for establishing the SSE site specific response spectrum for new nuclear power plants in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Nhleko, Sifiso, E-mail: snhleko@nnr.co.za [National Nuclear Regulator of South Africa (South Africa)

    2013-02-15

    Highlights: ► Criteria for import of performance goals defined in ASCE 43-05 are established. ► Derivation of performance goals from radiological safety criteria is demonstrated. ► Evaluation of mean exceedance frequencies from performance goals is illustrated. ► Simple formulae for the definition of a capable fault are presented. -- Abstract: Nuclear installation license holders in South Africa have become increasingly interested in the performance-goal based approach defined in the American Society of Civil Engineering Standard ASCE/SEI 43-05 for establishing the safe shutdown earthquake (SSE) site specific design response spectrum (SSRS) for new nuclear power plants. This approach has been adopted by the U.S. Nuclear Regulatory Commission (NRC) and has now been followed at more than 20 sites in that country. Quantitative performance goals are required when establishing seismic design basis parameters using the performance-goal based approach. However, the quantitative performance goals recommended in ASCE/SEI 43-05 were established based on country-specific operating experience and seismic probabilistic risk assessment (SPRA) applications conducted for existing plants designed and operated to meet specific safety criteria, set by a specific regulatory body. Whilst ASCE/SEI 43-05 provides enough flexibility for the selection of other user-specified quantitative performance goals, there is no guidance on how quantitative performance goals should be established in the absence of extensive operational experience accompanied by data derived from rigorous SPRA applications. This paper presents two practical approaches that can be used to provide a technical basis and to demonstrate the derivation of quantitative values of target performance goals when no data related to past and present operational experience exist to justify technical specifications.

  6. Summary performance assessment of in situ remediation technologies demonstrated at Savannah River

    International Nuclear Information System (INIS)

    Rosenberg, N.D.; Robinson, B.A.; Birdsell, K.H.; Travis, B.J.

    1994-06-01

    The Office of Technology Development (OTD) in the Department of Energy's (DOE) Office of Environmental Restoration and Waste Management is investigating new technologies for ''better, faster, cheaper, safer'' environmental remediation. A program at DOE's Savannah River site was designed to demonstrate innovative technologies for the remediation of volatile organic compounds (VOCs) at nonarid sites. Two remediation technologies, in situ air stripping and in situ bioremediation--both using horizontal wells, were demonstrated at the site between 1990--1993. This brief report summarizes the conclusions from three separate modeling studies on the performance of these technologies

  7. Recovery of mercury and other metals from used dry battery cells -the CJC demonstration plant in Hokkaido, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Naomichi; Gotoh, Sukehiro; Yajima, Takenori

    1987-01-01

    The present paper deals with a project associated with the Clean Japan Center Demonstration plant, which was financially supported by the National Government and constructed recently at Itomuka, Hokkaido, for the purpose of the proper disposal of and resource recovery from mainly used dry battery cells or wastes containing mercury (Hg) and other hazardous substances. The process details are also given.

  8. Performance review: PBMR closed cycle gas turbine power plant

    International Nuclear Information System (INIS)

    Pradeep Kumar, K.N.; Tourlidakis, A.; Pilidis, P.

    2001-01-01

    Helium is considered as one of the ideal working fluid for closed cycle using nuclear heat source due to its low neutron absorption as well as high thermodynamic properties. The commercial viability of the Helium turbo machinery depends on operational success. The past attempts failed due to poor performances manifested in the form of drop in efficiency, inability to reach maximum load, slow response to the transients etc. Radical changes in the basic design were suggested in some instances as possible solutions. A better understanding of the operational performance is necessary for the detailed design of the plant and the control systems. This paper describes the theory behind the off design and transient modelling of a closed cycle gas turbine plant. A computer simulation model has been created specifically for this cycle. The model has been tested for various turbine entry temperatures along the steady state and its replications at various locations were observed. The paper also looks at the various control methods available for a closed cycle and some of the options were simulated. (author)

  9. Two practical incineration-alternative prototype demonstrations for TSCA and RCRA wastes

    International Nuclear Information System (INIS)

    Coogan, J.J.; Kang, M.; Rosocha, L.A.; Tennant, R.A.; Cage, M.R.; Gill, J.T.

    1994-01-01

    Results from two pilot-scale demonstrations will be presented. The first was performed at the DOE's Savannah River Site where a trailer mounted silent discharge plasma (SDP) system was used to destroy hazardous compounds from the off-gas stream of a soil vapor extraction system. In the second, pilot-plant tests of a two-stage, combined packed-bed silent discharge plasma (PBR/SDP) treatment process were performed for PCB surrogates contained in both kerosene and hydraulic fluid

  10. Variation in plant defense suppresses herbivore performance

    Science.gov (United States)

    Pearse, Ian; Paul, Ryan; Ode, Paul J.

    2018-01-01

    Defensive variability of crops and natural systems can alter herbivore communities and reduce herbivory. However, it is still unknown how defense variability translates into herbivore suppression. Nonlinear averaging and constraints in physiological tracking (also more generally called time-dependent effects) are the two mechanisms by which defense variability might impact herbivores. We conducted a set of experiments manipulating the mean and variability of a plant defense, showing that defense variability does suppress herbivore performance and that it does so through physiological tracking effects that cannot be explained by nonlinear averaging. While nonlinear averaging predicted higher or the same herbivore performance on a variable defense than on an invariable defense, we show that variability actually decreased herbivore performance and population growth rate. Defense variability reduces herbivore performance in a way that is more than the average of its parts. This is consistent with constraints in physiological matching of detoxification systems for herbivores experiencing variable toxin levels in their diet and represents a more generalizable way of understanding the impacts of variability on herbivory. Increasing defense variability in croplands at a scale encountered by individual herbivores can suppress herbivory, even if that is not anticipated by nonlinear averaging.

  11. Demonstration of a Porous Tube Hydroponic System to Control Plant Moisture and Growth

    Science.gov (United States)

    Dreschel, T. W.; Hall, C. R.; Foster, T. E.

    2003-01-01

    Accurate remote detection of plant health indicators such as moisture, plant pigment concentrations, photosynthetic flux, and other biochemicals in canopies is a major goal in plant research. Influencing factors include complex interactions between wavelength dependent absorbing and scattering features from backgrounds as well as canopy biochemical and biophysical constituents. Accurately controlling these factors in outdoor field studies is difficult. Early testing of a porous tube plant culture system has indicated that plant biomass production, biomass partitioning, and leaf moisture of plants can be controlled by precisely managing the root water potential. Managing nutrient solution chemistry can also control plant pigments, biochemical concentrations, plant biomass production, and photosynthetic rates. A test bed was developed which utilized the porous tube technology with the intent of evaluating remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements for their ability to detect small differences in plant water status. Spectral analysis was able to detect small differences in the mean leaf water content between the treatments. However these small differences were not detectable in the gas-exchange or fluorescence measurements.

  12. Performance analysis of photovoltaic plants installed in dairy cattle farms

    Directory of Open Access Journals (Sweden)

    Remo Alessio Malagnino

    2015-06-01

    Full Text Available Electric production from renewable resources, such as solar photovoltaic (PV, is playing an increasingly essential role in the agricultural industry because of the progressive increase in the energy price from fossil fuels and the simultaneous decrease in the income deriving from farming activities. A central issue in the sustainable diffusion of PV technologies is represented by the actual energy efficiency of a PV system. For these reasons, a performance analysis has been carried out in order to assess the potentials offered by different PV plants within a defined geographical context with the aim of investigating the impact of each component has on the PV generator global efficiency and defining the main technical parameters that allow to maximise the annual specific electric energy yield of an architectonically integrated plant, installed in a dairy house, compared to a ground-mounted plant. The annual performances of three grid connected PV plants installed in the same dairy cattle farm have been analysed: two are architectonically integrated plants - i.e., a rooftop unidirectional and a multi-field systems (both 99 kWp - and the other is a ground-mounted plant (480 kWp. Furthermore, the electrical performances, estimated by the photovoltaic geographical information system (PVGIS, developed by the EU Joint Research Centre, and by an analytical estimation procedure (AEP, developed on the basis of a meteo-climatic database related to the records of the nearest weather station and integrated by the components’ technical specifications, have been compared with the actual yields. The best annual performance has been given by the ground-mounted PV system, with an actual increase of 26% and in the range of 6÷12% according to different estimations, compared to the integrated systems, which were globally less efficient (average total loss of 26÷27% compared to 24% of the ground-mounted system. The AEP and PVGIS software estimates showed a good

  13. Demonstration of a repository performance assessment capability at the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Codell, R.; Eisenberg, N.; McCartin, T.; Park, J.

    1991-01-01

    In order to better review licensing submittals for a High-Level Waste Repository, the US Nuclear Regulatory Commission staff has expanded and improved its capability to conduct performance assessments. A demonstration of this capability used the limited data from Yucca Mountain, Nevada to investigate a small set of scenario classes. Models of release and transport of radionuclides from a repository via the groundwater and direct release pathways provided preliminary estimates of releases to the accessible environment for a 10,000 year simulation time. Latin hypercube sampling of input parameters was used to express results as distributions and to investigate model sensitivities. This methodology demonstration should not be interpreted as an estimate of performance of the proposed repository at Yucca Mountain, Nevada

  14. Nuclear Desalination Demonstration Project (NDDP) in India

    International Nuclear Information System (INIS)

    Tewari, P.K.; Misra, B.M.

    2001-01-01

    In order to gainfully employ the years of experience and expertise in various aspects of desalination activity, BARC (India) has undertaken installation of a hybrid nuclear desalination plant coupled to 170 MW(e) PHWR station at Kalpakkam, Chennai in the Southeast coast of India. The integrated system, called the Nuclear Desalination Demonstration Project (NDDP), will thus meet the dual needs of process water for nuclear power plant and drinking water for the neighbouring people. NDDP aims for demonstrating the safe and economic production of good quality water by nuclear desalination of seawater. It comprises a 4500 m 3 /d Multistage Flash (MSF) and a 1800 m 3 /d Reverse Osmosis (RO) plant. MSF section uses low pressure steam from Madras Atomic Power Station (MAPS), Kalpakkam. The objectives of the NDDP (Kalpakkam) are as follows: to establish the indigenous capability for the design, manufacture, installation and operation of nuclear desalination plants; to generate necessary design inputs and optimum process parameters for large scale nuclear desalination plant; to serve as a demonstration project to IAEA welcoming participation from interested member states. The hybrid plant is envisaged to have a number of advantages: a part of high purity desalted water produced from MSF plant will be used for the makeup demineralised water requirement (after necessary polishing) for the power station; blending of the product water from RO and MSF plants would provide requisite quality drinking water; the RO plant will continue to be operated to provide the water for drinking purposes during the shutdown of the power station

  15. Thermoeconomic Optimization of an Irreversible Novikov Plant Model under Different Regimes of Performance

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pacheco-Paez

    2017-03-01

    Full Text Available The so-called Novikov power plant model has been widely used to represent some actual power plants, such as nuclear electric power generators. In the present work, a thermo-economic study of a Novikov power plant model is presented under three different regimes of performance: maximum power (MP, maximum ecological function (ME and maximum efficient power (EP. In this study, different heat transfer laws are used: The Newton’s law of cooling, the Stefan–Boltzmann radiation law, the Dulong–Petit’s law and another phenomenological heat transfer law. For the thermoeconomic optimization of power plant models, a benefit function defined as the quotient of an objective function and the total economical costs is commonly employed. Usually, the total costs take into account two contributions: a cost related to the investment and another stemming from the fuel consumption. In this work, a new cost associated to the maintenance of the power plant is also considered. With these new total costs, it is shown that under the maximum ecological function regime the plant improves its economic and energetic performance in comparison with the other two regimes. The methodology used in this paper is within the context of finite-time thermodynamics.

  16. Pulsatile fluidic pump demonstration and predictive model application

    International Nuclear Information System (INIS)

    Morgan, J.G.; Holland, W.D.

    1986-04-01

    Pulsatile fluidic pumps were developed as a remotely controlled method of transferring or mixing feed solutions. A test in the Integrated Equipment Test facility demonstrated the performance of a critically safe geometry pump suitable for use in a 0.1-ton/d heavy metal (HM) fuel reprocessing plant. A predictive model was developed to calculate output flows under a wide range of external system conditions. Predictive and experimental flow rates are compared for both submerged and unsubmerged fluidic pump cases

  17. Indicator methods to evaluate the hygienic performance of industrial scale operating Biowaste Composting Plants.

    Science.gov (United States)

    Martens, Jürgen

    2005-01-01

    The hygienic performance of biowaste composting plants to ensure the quality of compost is of high importance. Existing compost quality assurance systems reflect this importance through intensive testing of hygienic parameters. In many countries, compost quality assurance systems are under construction and it is necessary to check and to optimize the methods to state the hygienic performance of composting plants. A set of indicator methods to evaluate the hygienic performance of normal operating biowaste composting plants was developed. The indicator methods were developed by investigating temperature measurements from indirect process tests from 23 composting plants belonging to 11 design types of the Hygiene Design Type Testing System of the German Compost Quality Association (BGK e.V.). The presented indicator methods are the grade of hygienization, the basic curve shape, and the hygienic risk area. The temperature courses of single plants are not distributed normally, but they were grouped by cluster analysis in normal distributed subgroups. That was a precondition to develop the mentioned indicator methods. For each plant the grade of hygienization was calculated through transformation into the standard normal distribution. It shows the part in percent of the entire data set which meet the legal temperature requirements. The hygienization grade differs widely within the design types and falls below 50% for about one fourth of the plants. The subgroups are divided visually into basic curve shapes which stand for different process courses. For each plant the composition of the entire data set out of the various basic curve shapes can be used as an indicator for the basic process conditions. Some basic curve shapes indicate abnormal process courses which can be emended through process optimization. A hygienic risk area concept using the 90% range of variation of the normal temperature courses was introduced. Comparing the design type range of variation with the

  18. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... reference tracking and disturbance rejection in an economically optimal way. The performance function is chosen as a mixture of the `1-norm and a linear weighting to model the economics of the system. Simulations show a significant improvement of the performance of the MPC compared to the current...

  19. Regulatory basis for the Waste Isolation Pilot Plant performance assessment

    International Nuclear Information System (INIS)

    Howard, Bryan A.; Crawford, M.B.; Galson, D.A.; Marietta, Melvin G.

    2000-01-01

    The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA to demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal

  20. Developing an economic performance system to enhance nuclear power plant competitiveness

    International Nuclear Information System (INIS)

    2002-01-01

    In 1999 about 16% of the world's electricity was produced by nuclear power, and the total worldwide operating experience of nuclear power plants was over 9200 reactor-years. Some 16 countries are dependent on nuclear power for more than 25% of their electricity generation. In some countries deregulation of the electricity market has either happened or is currently ongoing, while in others it is planned for the future. Nevertheless, many countries are already facing open electricity markets and operating costs are under unprecedented pressure, with competition expected to come soon to the nuclear industry worldwide. To a certain extent, however, the industry has already prepared or is currently preparing to face competition. This report is primarily intended for nuclear power plant and utility managers. It discusses the means and principal issues for the development of the nuclear economic performance international system (NEPIS), which should enhance nuclear power plant competitiveness. The following issues are addressed: The major transformations occurring in the electricity generation industry that require reductions in operations and maintenance costs at nuclear utilities; The methods that nuclear plant management use to identify and justify the economic optimum level of a plant and its use of resources; The value of collecting cost and performance data and the analysis techniques that use that data; The cost data required to be collected; The difficulty of collecting data with existing cost accounting systems; The new cost accounting and collection systems that will be required, The cost effectiveness of the overall process. This report also presents the preliminary results of a pilot project that was established to collect cost data on a few nuclear power plants and was used to verify the adequacy of the definitions and terminology set for NEPIS

  1. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    2011-01-01

    Full Text Available One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.

  2. Exchange of availability/performance data on base-load gas turbine and combined cycle plant

    Energy Technology Data Exchange (ETDEWEB)

    Jesuthasan, D.K.; Kaupang, B.M. (Tenaga Nasional Berhad (Malaysia))

    1992-09-01

    This paper describes the recommendations developed to facilitate the international exchange of availability performance data on base-load gas turbines and combined cycle plant. Standardized formats for the collection of plant availability statistics, recognizing the inherent characteristics of gas turbines in simple and combined cycle plants are presented. The formats also allow for a logical expansion of the data collection detail as that becomes desirable. To assist developing countries in particular, the approach includes basic formats for data collection needed for international reporting. In addition, the participating utilities will have a meaningful database for internal use. As experience is gained with this data colletion system, it is expected that additional detail may be accommodated to enable further in-depth performance analysis on the plant and on the utility level. 2 refs., 2 tabs., 11 apps.

  3. National approach to economic performance indicators for nuclear power plants: USA

    International Nuclear Information System (INIS)

    2006-01-01

    The structure of the US electric power industry comprises a combination of traditional electric utilities and less traditional electricity producing companies. The electric utilities include investor owned, publicly owned, federal and cooperative firms. Approximately three quarters of the electricity generated by utilities is generated by investor owned companies. These utilities are, for the most part, franchised monopolies that have an obligation to provide electricity to all customers within a service area. Most provide for the generation, transmission and distribution of electricity, although the distinctions between these services are breaking down as the electricity industry becomes more deregulated. The shares are publicly traded and their areas of business operation are expanding into new ones, sometimes unrelated to the provision of electricity or even energy. Under deregulation and open market pricing of electricity, the business and financial success of operating nuclear plants must be considered to a much greater extent along with the successful achievement of safety and reliability objectives. In developing strategic and operational goals, nuclear plant managers are required to embrace clear and measurable business objectives and goals that not only assure the achievement of safety and reliability but, in addition, eliminate unnecessary costs and identify investment opportunities. These goals must balance operating and safety risk while optimizing plant revenues and earnings and ultimately ensure the profitability of electricity generating facilities. In doing so, it is essential that plant managers articulate goal achievement through the application of effective, measurable, economic performance indicators. Individual nuclear plants will sell their output competing on electricity price, ultimately to ensure the safe, reliable and economic dispatch of their generation either onto open spot markets or by competitive bidding for bilateral contracts. In

  4. Start-up performance of parabolic trough concentrating solar power plants

    DEFF Research Database (Denmark)

    Ferruzza, Davide; Topel, Monika; Basaran, Ibrahim

    2017-01-01

    Concentrating solar power plants, even though they can be integrated with thermal energy storage, are still subjected to cyclic start-up and shut-downs. As a consequence, in order to maximize their profitability and performance, the flexibility with respect to transient operations is essential...

  5. Performance of 'Rocha' and 'Santa Maria' pears as affected by planting density

    Directory of Open Access Journals (Sweden)

    Mateus da Silveira Pasa

    2015-02-01

    Full Text Available The objective of this work was to evaluate the performance of 'Rocha' and 'Santa Maria' pears at two planting densities. The experiment was carried out during the 2011/2012, 2012/2013, and 2013/2014 growing seasons, in one-year-old orchards (2011/2012 of 'Rocha' and 'Santa Maria' pears, trained in a central-leader system and planted in two densities (2,000 and 4,000 trees per hectare. The assessed parameters were: production per hectare, production per tree, yield efficiency, number of fruit per tree, average fruit weight, trunk diameter increment, fruit firmness, and soluble solid contents. The cumulative yield of 'Rocha' is greater at the higher planting density, whereas the yield efficiency of 'Santa Maria' increases at the lower planting density, as the trees get more mature. Trunk diameter of 'Rocha' also increases at the lower planting density. However, fruit quality parameters in both cultivars are little affected by planting density.

  6. Proceedings of the workshop on better nuclear plant maintenance: improving human and organisational performance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-05

    A significant proportion of nuclear plant events is attributable to failures that take place during maintenance and periodic testing. Human and organisational factors are frequently identified as making a major contribution to these events. Despite this recognition, licensee and regulatory oversight in the human and organisational area has tended to focus more on operational matters than maintenance. Owing to the importance of human and organisational performance on nuclear plant maintenance, the CSNI Special Experts' Group on Human and Organisational Factors (SEGHOF) hosted a workshop entitled 'Better nuclear plant maintenance: improving human and organisational performance'. The workshop provided an international forum for staff from nuclear plants, research bodies, and regulators to discuss human and organisational challenges to maintenance, and initiatives to support effective performance. Over 60 participants from about 20 countries participated. The workshop was divided into five sessions: 1) International guidance to improve maintenance performance; 2) Lessons learned through maintenance operating experience; 3) Licensee initiatives to support reliable maintenance; 4) Regulatory approaches to assuring effective licensee maintenance; and 5) Recent trends and their impact on maintenance. Sessions commenced with oral presentations of papers followed by break-out and plenary discussions. Session 4 on regulatory approaches included short presentations from ten regulatory bodies and was followed by discussion comparing these approaches. The main findings of the workshop concern: the retirements of experienced staff; the increasing use of contractors to perform maintenance activities; the use of skill-broadening in maintenance; the role of supervisors at the plant level; the organisational changes that are used to optimise the use of plant staff resources; the effective planning of maintenance tasks; the time allowed to complete maintenance tasks; the development

  7. Computerized heat balance models to predict performance of operating nuclear power plants

    International Nuclear Information System (INIS)

    Breeding, C.L.; Carter, J.C.; Schaefer, R.C.

    1983-01-01

    The use of computerized heat balance models has greatly enhanced the decision making ability of TVA's Division of Nuclear Power. These models are utilized to predict the effects of various operating modes and to analyze changes in plant performance resulting from turbine cycle equipment modifications with greater speed and accuracy than was possible before. Computer models have been successfully used to optimize plant output by predicting the effects of abnormal condenser circulating water conditions. They were utilized to predict the degradation in performance resulting from installation of a baffle plate assembly to replace damaged low-pressure blading, thereby providing timely information allowing an optimal economic judgement as to when to replace the blading. Future use will be for routine performance test analysis. This paper presents the benefits of utility use of computerized heat balance models

  8. Technology and testing for the extension of plant life

    International Nuclear Information System (INIS)

    Blumer, U.R.; Edelmann, X.

    1988-01-01

    This paper describes selected portions of a recommended program for the application of equipment-manufacturing-related technology and testing for the extension of life for operating nuclear power plants. It is appropriate to mention that the Swiss nuclear plants, their staffs, and the supporting Swiss nuclear industry are rightfully proud of their record of performance. Plant staffs have been intimately involved in system and equipment design and engineering from the very beginnings of their plants. Maintenance of the plant systems and equipment is referred to as engineering rather than maintenance, because it is viewed as a technical effort and an extension of the original plant and equipment design and construction effort. Care, competence, cleanliness, and attention to detail have been bywords for the Swiss plants. Success has been demonstrated through enviable availability performance. With operation and availability capability already demonstrated, the Swiss are now turning their attention to the extension of plant life. This summary describes some aspects of this work, which is fundamentally based on the application of technology and testing skills developed for equipment manufacture and the original installation of this equipment in the plants, but has been enhanced by research and development (R and D) and an ongoing effort to serve utilities in their maintenance activities

  9. On the network protocol performance evaluation for large scale communication system of nuclear plant

    International Nuclear Information System (INIS)

    Song, K. S.; Lee, T. H.; Kim, H. R.; Kim, D. H.; Ku, I. S.

    1998-01-01

    Computer technology has been dramatically advanced and it is now natural to apply digital network technology into nuclear plants. Communication architecture for nuclear plant defines the coordination of safety reactor control, balance of plant, subsystem utilities, and plant monitoring functions, and how they are connected and their user interface to guarantee plant performance and guarantee safety requirements. Therefore, to implement a digital network for control and monitoring systems of advanced nuclear plant needs systematic design and evaluation procedures because of responsive and hard real-time process characteristics of nuclear plant. In this paper, we evaluate several digital network protocols in terms of network delay, link failure effects to hard real-time requirements with full scale traffic

  10. MANUFACTURING AND CONTINUOUS IMPROVEMENT PERFORMANCE LEVEL IN PLANTS OF MEXICO; A COMPARATIVE ANALYSIS AMONG LARGE AND MEDIUM SIZE PLANTS

    OpenAIRE

    Carlos Monge; Jesús Cruz

    2015-01-01

    A random and statistically significant sample of 40 medium (12) and large (28) manufacturing plants of Apodaca, Mexico were surveyed using a structured and validated questionnaire to investigate the level of implementation of lean manufacturing, sustainable manufacturing, continuous improvement and operational efficiency and environmental responsibility in them, it is important to mention it was found that performance in the mentioned philosophies, on the two categories of plants is low, howe...

  11. Crew Situation Awareness, Diagnoses, and Performance in Simulated Nuclear Power Plant Process Disturbances

    International Nuclear Information System (INIS)

    Sebok, Angelia; Kaarstad, Magnhild

    1998-01-01

    Research was conducted at the OECD Halden Reactor Project to identify issues in crew performance in complex simulated nuclear power plant scenarios. Eight crews of operators participated in five scenarios, administered over a two or three-day period. Scenarios required either rule-based or knowledge-based problem solving. Several performance parameters were collected, including Situation Awareness (SA), objective performance, rated crew performance, and crew diagnoses. The purpose of this study was to investigate differences in performance measures in knowledge-based and rule-based scenarios. Preliminary data analysis revealed a significant difference in crew SA between the two scenario types: crews in the rule-based scenarios had significantly higher SA then crews in the knowledge-based scenarios. Further investigations were initiated to determine if crews performed differently, in terms of objective performance, rated crew performance, and diagnoses, between the scenario types. Correlations between the various crew performance measurements were calculated to reveal insights into the nature of SA, performance, and diagnoses. The insights into crew performance can be used to design more effective interfaces and operator performance aids, thus contributing to enhanced crew performance and improved plant safety. (authors)

  12. 40 CFR 63.5991 - By what date must I conduct an initial compliance demonstration or performance test?

    Science.gov (United States)

    2010-07-01

    ... compliance demonstration or performance test? 63.5991 Section 63.5991 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire... initial compliance demonstration or performance test? (a) If you have a new or reconstructed affected...

  13. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...

  14. Noise Performance Evaluation of the Candidate Digitizers for the MAJORANA DEMONSTRATOR

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao

    2011-03-16

    The noise performance evaluation of the two digitizer cards being considered for the MAJORANA DEMONSTRATOR (MJD) is presented in this document. The procurement of the data acquisition electronics for the MJD is scheduled to happen this year. At the time of writing this document, there are two candidate digitizer electronic boards. One aspect that is being considered by the collaboration is the feasibility of using the MJD for dark matter searches. The feasibility of using the MJD for this application is going to be dictated by the ability of the demonstrator to reach sub-keV energy resolution. One of the potential sources of noise in the MJD is the data acquisition system. This document will is concluded with a recommendation for the final digitizer board by comparing the noise performance of the two electronics systems. Noise parameters such as the effective number of bits, input range linearity and signal to noise ratio are experimentally determined. The two digitizer cards feature different on-board digital signal processing and these features are compared. The experimental set-up was also used to identify sources of noise. This paper describes these sources of noise in the data acquisition system, along with mitigation strategies. Issues such as grounding and wiring scheme have an impact in the overall data acquisition system performance and are discussed in detail. As a conclusion, the suitability of each one of the cards to become the back bone of the data acquisition system of the MJD is discussed.

  15. 8 years of CPV: ISFOC CPV plants, long-term performance analysis and results

    Science.gov (United States)

    Martínez, María; Sánchez, Daniel; Calvo-Parra, Gustavo; Gil, Eduardo; Hipólito, Ángel; de Gregorio, Fernando; de la Rubia, Oscar

    2017-09-01

    ISFOC is an R&D center focused on CPV in Puertollano (Spain). It was founded in 2006 and has 2.3MW of CPV plants in operation and connected to the grid since 2008. Therefore, for the time of the conference ISFOC has more than 8 years of real operation data. The performance analysis has been focused on ISFOC - La Nava CPV plant: 800kW of Concentrix (Soitec), SolFocus and Isofotón and one flat PV plant mounted on two-axis tracker. The main result obtained is that the rate of performance decrease obtained for a mature CPV technology and IEC 62108 certified is in the range of flat PV values, this means that the CPV technology does not present higher degradation rates than flat PV.

  16. Long-term performance of grid-connected photovoltaic plant - Appendix 1: normalised annual statistics; Langzeitverhalten von netzgekoppelten Photovoltaikanlagen 2 (LZPV2). Anhang 1: Normierte Jahresstatistiken

    Energy Technology Data Exchange (ETDEWEB)

    Renken, C.; Haeberlin, H.

    2003-07-01

    This is second part of a four-part final report for the Swiss Federal Office of Energy (SFOE) made by the University of Applied Sciences in Burgdorf, Switzerland. This report presents the findings of a project begun in 1992 that monitored the performance of around 40 photovoltaic (PV) installations in Switzerland, including the demonstration installation on Mont Soleil and three test installations using modern thin-film technologies. The specific performance of the plant and reductions in yield caused mostly by increasing soiling of the modules over the years were monitored. This extensive first appendix to the report describes the plant monitored in detail, presents the results of various performance measurements made and discusses the two monitoring concepts used. The specific yields over the years are presented in graphical form. Also, the meteorological equipment installed at the University of Applied Science in Burgdorf that was used to provide reference values is described.

  17. Performance optimization of the Växtkraft biogas production plant

    International Nuclear Information System (INIS)

    Thorin, Eva; Lindmark, Johan; Nordlander, Eva; Odlare, Monica; Dahlquist, Erik; Kastensson, Jan; Leksell, Niklas; Pettersson, Carl-Magnus

    2012-01-01

    Highlights: ► Pre-treatment of ley crop can increase the biogas plant performance. ► Membrane filtration can increase the capacity of the biogas plant. ► Mechanical pre-treatment of the ley crop shows the highest energy efficiency. ► Using a distributor to spread the residues as fertilizer show promising results. -- Abstract: All over the world there is a strong interest and also potential for biogas production from organic residues as well as from different crops. However, to be commercially competitive with other types of fuels, efficiency improvements of the biogas production process are needed. In this paper, results of improvements studies done on a full scale co-digestion plant are presented. In the plant organic wastes from households and restaurants are mixed and digested with crops from pasture land. The areas for improvement of the plant addressed in this paper are treatment of the feed material to enhance the digestion rate, limitation of the ballast of organics in the water stream recirculated in the process, and use of the biogas plant residues at farms. Results from previous studies on pre-treatment and membrane filtration of recirculated process water are combined for an estimation of the total improvement potential. Further, the possibility of using neural networks to predict biogas production using historical data from the full-scale biogas plant was investigated. Results from an investigation using the process residues as fertilizer are also presented. The results indicate a potential to increase the biogas yield from the process with up to over 30% with pre-treatment of the feed and including membrane filtration in the process. Neural networks have the potential to be used for prediction of biogas production. Further, it is shown that the residues from biogas production can be used as fertilizers but that the emission of N 2 O from the fertilized soil is dependent on the soil type and spreading technology.

  18. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  19. Advanced nuclear power plant regulation using risk-informed and performance-based methods

    International Nuclear Information System (INIS)

    Modarres, Mohammad

    2009-01-01

    This paper proposes and discusses implications of a largely probabilistic regulatory framework using best-estimate, goal-driven, risk-informed, and performance-based methods. This framework relies on continuous probabilistic assessment of performance of a set of time-dependent, safety-critical systems, structures, components, and procedures that assure attainment of a broad set of overarching technology-neutral protective, mitigative, and preventive goals under all phases of plant operations. In this framework acceptable levels of performance are set through formal apportionment so that they are commensurate with the overarching goals. Regulatory acceptance would be the based on the confidence level with which the plant conforms to these goals and performance objectives. The proposed framework uses the traditional defense-in-depth design and operation regulatory philosophy when uncertainty in conforming to specific goals and objectives is high. Finally, the paper discusses the steps needed to develop a corresponding technology-neutral regulatory approach from the proposed framework

  20. Technical Bases to Consider for Performance and Demonstration Testing of Space Fission Reactors

    International Nuclear Information System (INIS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-01-01

    Performance and demonstration testing are critical to the success of a space fission reactor program. However, the type and extent to which testing of space reactors should be performed has been a point of discussion within the industry for many years. With regard to full power ground nuclear tests, questions such as 'Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Will the test article accurately represent the flight system? Are the costs too restrictive?' have been debated for decades. There are obvious benefits of full power ground nuclear testing such as obtaining systems integrated reliability data on a full-scale, complete end-to-end system. But these benefits come at some programmatic risk. In addition, this type of testing does not address safety related issues. This paper will discuss and assess these and other technical considerations essential in deciding which type of performance and demonstration testing to conduct on space fission reactor systems. (authors)

  1. Designing Scholarships to Improve College Success: Final Report on the Performance-Based Scholarship Demonstration

    Science.gov (United States)

    Mayer, Alexander K.; Patel, Reshma; Rudd, Timothy; Ratledge, Alyssa

    2015-01-01

    Performance-based scholarships have two main goals: (1) to give students more money for college; and (2) to provide incentives for academic progress. MDRC launched the Performance-Based Scholarship (PBS) Demonstration in 2008 to evaluate the effectiveness of these scholarships in a diverse set of states, institutions, and low-income student…

  2. Global sensitivity analysis in wastewater treatment plant model applications: Prioritizing sources of uncertainty

    DEFF Research Database (Denmark)

    Sin, Gürkan; Gernaey, Krist; Neumann, Marc B.

    2011-01-01

    This study demonstrates the usefulness of global sensitivity analysis in wastewater treatment plant (WWTP) design to prioritize sources of uncertainty and quantify their impact on performance criteria. The study, which is performed with the Benchmark Simulation Model no. 1 plant design, complements...... insight into devising useful ways for reducing uncertainties in the plant performance. This information can help engineers design robust WWTP plants....... a previous paper on input uncertainty characterisation and propagation (Sin et al., 2009). A sampling-based sensitivity analysis is conducted to compute standardized regression coefficients. It was found that this method is able to decompose satisfactorily the variance of plant performance criteria (with R2...

  3. Implementation trial of high performance trace analysis/environmental sampling (HPTA/ES) in uranium centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Nackaerts, H.; Kloeckner, W.; Landresse, G.; MacLean, F.; Betti, M.; Forcina, V.; Hiernaut, T.; Tamborini, G.; Koch, L.; Schenkel, R.

    1999-01-01

    Field trials have demonstrated that the analysis of particles upon swipes obtained from inside nuclear installations provides clear signatures of past operations in that installation. This can offer a valuable tool for gaining assurance regarding the compliance with declared activities and the absence of undeclared activities (e.g. enrichment, reprocessing, and reactor operation) at such sites. This method, known as 'Environmental Sampling' (ES) or 'High Performance Trace Analysis' (HPTA) in EURATOM terminology, is at present being evaluated by the EURATOM Safeguards Directorate (ESD) in order to assess its possible use in nuclear installations within the European Union. It is expected that incorporation of HPTA/ES of sample collection and analysis into routine inspection activities will allow EURATOM to improve the effectiveness of safeguards in these installations and hopefully save inspection resources as well. The EURATOM Safeguards Directorate has therefore performed implementation trials involving the collection of particles by the so-called swipe sampling method in uranium centrifuge enrichment plants and hot cells in the European Union. These samples were subsequently analysed by the Joint Research Centre, Institute for Transuranium Elements (ITU) in Karlsruhe. Sampling points were chosen on the basis of the activities performed in the vicinity and by considering the possible ways through which particles are released, diffused and transported. The aim was to test the efficiency of the method as regards: the collection of enough representative material; the identification of a large enough number of uranium particles; the accurate measurement of the enrichment of the uranium particles found on the swipe; the representativity of the results in respect of past activities in the plant; the capability of detecting whether highly enriched uranium has been produced, used or occasionally transported in a location where low enriched uranium is routinely produced in

  4. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  5. Siphon-based turbine - Demonstration project: hydropower plant at a paper factory in Perlen, Switzerland; Demonstrationsprojekt Saugheber - Turbinen. Wasserturbinenanlage Papierfabrik Perlen (WTA-PF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the demonstration project that concerned the re-activation and refurbishing of a very low-head hydropower installation. The functional principles of the siphon-turbine used are explained and the potential for its use at many low-head sites examined. The authors are of the opinion that innovative technology and simple mechanical concepts could be used to reactivate out-of-use hydropower plant or be used to refurbish existing plant to provide increased efficiency and reliability. Various other points that are to be considered when planning the refurbishment of a hydropower plant such as retaining mechanical and hydraulic symmetry in the plant are listed and concepts for reducing operating costs are discussed. Figures on the three runner-regulated turbines installed in Perlen are quoted.

  6. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F.; Villette, B. [CEA, DAM, DIF, F-91297 Arpajon (France); Michel, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Giraldez, E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; and others

    2014-07-15

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  7. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Science.gov (United States)

    Philippe, F.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Villette, B.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; Michel, P.; Frenje, J.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Sorce, C.; Stoeckl, C.; Nikroo, A.; Giraldez, E.

    2014-07-01

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  8. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    International Nuclear Information System (INIS)

    Philippe, F.; Villette, B.; Michel, P.; Petrasso, R.; Stoeckl, C.; Giraldez, E.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.

    2014-01-01

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results

  9. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Tassin, V. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Depierreux, S. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Gauthier, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Masson-Laborde, P. E. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Monteil, M. C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Seytor, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Villette, B. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Lasinski, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ross, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Amendt, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doeppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wallace, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Michel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu-Johnson, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Glebov, V. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Sorce, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Stoeckl, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Nikroo, A. [General Atomics, San Diego, CA (United States); Giraldez, E. [General Atomics, San Diego, CA (United States)

    2014-07-25

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  10. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk

    2012-05-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  11. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk; Thu, Kyaw; Bhatia, Hitasha Kaur; Bhatia, Charanjit Singh; Ng, K. C.

    2012-01-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  12. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-04-01

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is being implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.

  13. Development of radiological performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, B.S.; Jung, K.H.; Lee, S.H.; Jang, S.Y.

    2000-01-01

    The purpose of this work was to improve the regulatory approach to check the licensee's compliance with regulation regarding radiation protection in operating nuclear power plants (NPPs). The current domestic inspection program for NPPs requires inspectors to conduct compliance-inspection for the systems/equipment and the procedures of NPPs. In this work, we have developed a set of draft radiological performance indicators (PIs) to assess radiation safety in NPPs. The development of PIs was based on the concept that the licensees' implementation of the radiation protection program in NPPs should be able to achieve the goal of radiation protection which the International Commission on Radiological Protection (ICRP) has recommended as ICRP 60 (1991). We selected and/or developed the radiological performance indicators considering the radiation exposure network (source-environment-receptor) for NPPs. The PIs intend to be applied only to normal exposure due to normal operations including transient operational conditions, but not to potential exposure due to accidents. Also, we have chosen the receptor as workers who are occupationally exposed to radiation as well as the members of public who are exposed to radiation from radioactive effluents. The PIs intend to track the past performance rather than to expect the future performance. Finally, the individual PIs do not verify the root cause of the trend of performance; however, they provide the basis for deciding whether the procedures and work management have been properly implemented. Currently a set of 21 draft PIs has been developed for the exposure network in NPPs. For the receptor, the PIs are divided into worker individual dose, worker collective dose and public individual dose. For the environment, the PIs are related to the dose rates of controlled areas, radioactive material concentrations in controlled areas, radioactive contamination in controlled areas and at exit points, and radioactive effluent

  14. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    OpenAIRE

    Carrio Argos, Fernando; Valero, Alberto

    2015-01-01

    The Tile Calorimeter PreProcessor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the front-end electronics of the TileCal Demonstrator module, as well as for configur...

  15. Studying effect of heating plant parameters on performances of a geothermal-fuelled series cogeneration plant based on Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Habka, Muhsen; Ajib, Salman

    2014-01-01

    Highlights: • We analyzed performances of a series ORC–CHP plant versus the heating plant parameters. • ORC–CHP power is destructed when raising the heat demand or the return temperature. • Only the high supply temperatures of the heating plant affect negatively the performances. • Reducing the return temperature optimizes both the energetic and exergetic criteria. • Increasing the heat demand improves the exergetic efficiency of the total CHP system. - Abstract: The present work aims to analyze the performance characteristics of the series Combined Heat and Power (CHP) system based on Organic Rankine Cycle (ORC) under influence of the heating plant parameters without considering the chemistry of the geothermal water considered as heat source. For evaluation, energetic and exergetic criteria along with the heat transfer capacities have been determined, and also the working fluid R134a has been used. The results showed that increasing the heat demand or the return temperature and only the high supply temperatures lead to destruct the net power generated by the ORC–CHP system. While, influence of the last parameters on the total exergy efficiency and losses is different; whereas raising the heat demands optimizes these exergetic indicators, variation of the supply temperature leads to an optimum for these performances. Since increasing the return temperature has purely negative impacts on all exergetic and energetic criteria, the latter can be improved by reducing this temperature with attention to the heat transfer capacities. Thus, reduction of the return temperature about 5 °C lowers the exhausted stream losses by app. 25% and enhances the power generation by app. 52% and the total exergy efficiency by 9%

  16. The development and evaluation of programmatic performance indicators associated with maintenance at nuclear power plants

    International Nuclear Information System (INIS)

    Wreathall, J.; Fragola, J.; Appignani, P.; Burlile, G.; Shen, Y.

    1990-05-01

    This report summarizes the development and evaluation of programmatic performance indicators of maintenance. These indicators were selected by: (1) creating a formal framework of plant processes; (2) identifying features of plant behavior considered important to safety; (3) evaluating existing indicators against these features; and (4) performing statistical analyses for the selected indicators. The report recommends additional testing. 32 refs., 29 figs., 11 tabs

  17. Nuclear power plant licensing in Canada

    International Nuclear Information System (INIS)

    Tong, J.S.C.; Waddington, J.G.

    1997-01-01

    The Canadian nuclear power plant licensing practice which has evolved over three decades provides a regulatory framework that promotes safe design and operation of CANDU power plants. From the very outset, it recognizes the need for simple and reliable safety systems which are separate from the systems that are normally used to produce electricity. Further, it requires the reliability of safety systems be demonstrated by routine tests during plant operation. Over the three decades, the analysis requirements to demonstrate the performance and reliability of plant systems that have a role in the detection and mitigating of accidents have also evolved. Today's requirements are defined in consultative documents C-6 and C-98. One recurring theme throughout the evolution of the licensing practice is the maxim of prescribing only basic safety requirements and rules so that designers and operators have the freedom to devise the best possible design features and operating practices

  18. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-01-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3 1/2 year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc 99 ) (activities up to 926 pCi/L)

  19. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J. [Oak Ridge National Lab., TN (United States); Houk, T. [Lockheed Martin Energy Systems, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  20. Role of organizational leadership in plant life management

    International Nuclear Information System (INIS)

    Mohindra, R.K.; Chou, Q.B.

    2007-01-01

    The nuclear power plant (NPP) operational trend shows that the plants of the same design and brought to service about the same time demonstrate a wide range of life time operational performance. Based on years of performance assessment experience from various types of industry audits, it can be seen that there is a strong relationship between organizational leadership and the good performing plants. A review based on this relationship is provided to suggest important characteristics needed in management and leadership team for an organization to have a successful life management program in a NPP. The required characteristics and attributes are discussed in the following three important organizational elements: Environment, People and Process

  1. Some recent human performance issues at U.S. nuclear plants

    International Nuclear Information System (INIS)

    Kauffman, John V.

    1998-01-01

    Some recent events at U.S. operating nuclear power plants revealed interesting human performance issues. Events discussed in this paper are: (1) a September 1996 event at Clinton, (2) a February 1997 event at Zion 1, and (3) March 1997 operator failures of 'in-house' examinations at LaSalle. The specific human performance weaknesses exhibited in these events, some underlying organizational or institutional issues and factors which influenced operators and their management, and implications regarding regulatory oversight are discussed. (author)

  2. Subsurface barrier demonstration test strategy and performance specification

    International Nuclear Information System (INIS)

    Treat, R.L.; Cruse, J.M.

    1994-05-01

    This document was developed to help specify a major demonstration test project of subsurface barrier systems supporting the Tank Waste Remediation System (TWRS) Program. The document focuses discussion on requirements applicable to demonstration of three subsurface barrier concepts: (1) Injected Material, (2) Cryogenic, and (3) Desiccant. Detailed requirements are provided for initial qualification of a technology proposal followed by the pre-demonstration and demonstration test requirements and specifications. Each requirement and specification is accompanied by a discussion of the rationale for it. The document also includes information on the Hanford Site tank farms and related data; the related and currently active technology development projects within the DOE's EM-50 Program; and the overall demonstration test strategy. Procurement activities and other preparations for actual demonstration testing are on hold until a decision is made regarding further development of subsurface barriers. Accordingly, this document is being issued for information only

  3. Performance analysis of conventional and sloped solar chimney power plants in China

    International Nuclear Information System (INIS)

    Cao Fei; Zhao Liang; Li Huashan; Guo Liejin

    2013-01-01

    The solar chimney power plant (SCPP) has been accepted as one of the most promising approaches for future large-scale solar energy applications. This paper reports on a heat transfer model that is used to compare the performance of a conventional solar chimney power plant (CSCPP) and two sloped solar chimney power plants (SSCPPs) with the collector oriented at 30° and 60°, respectively. The power generation from SCPPs at different latitudes in China is also analyzed. Results indicate that the larger solar collector angle leads to improved performance in winter but results in lower performance in summer. It is found that the optimal collector angle to achieve the maximum power in Lanzhou, China, is around 60°. Main factors that influence the performance of SCPPs also include the system height and the air thermophysical characteristics. The ground energy loss, reflected solar radiation, and kinetic loss at the chimney outlet are the main energy losses in SCPPs. The studies also show SSCPPs are more suitable for high latitude regions in Northwest China, but CSCPPs are suggested to be built in southeastern and eastern parts of China with the combination to the local agriculture. - Highlights: ► The optimum collector angle for maximum power generation is 60° in Lanzhou. ► Main parameters influencing performances are the system height and air property. ► Ground loss, reflected loss and outlet kinetic loss are the main energy losses. ► The sloped styles are suitable for Northwest China. ► The conventional styles are suitable for Southeast and East China.

  4. The Waste Isolation Pilot Plant Performance Assessment Program

    International Nuclear Information System (INIS)

    Myers, J.; Coons, W.E.; Eastmond, R.; Morse, J.; Chakrabarti, S.; Zurkoff, J.; Colton, I.D.; Banz, I.

    1986-01-01

    The Waste Isolation Pilot Plant (WIPP) Performance Assessment Program involves a comprehensive analysis of the WIPP project with respect to the recently finalized Environmental Protection Agency regulations regarding the long-term geologic isolation of radioactive wastes. The performance assessment brings together the results of site characterization, underground experimental, and environmental studies into a rigorous determination of the performance of WIPP as a disposal system for transuranic radioactive waste. The Program consists of scenario development, geochemical, hydrologic, and thermomechanical support analyses and will address the specific containment and individual protection requirements specified in 40 CFR 191 sub-part B. Calculated releases from these interrelated analyses will be reported as an overall probability distribution of cumulative release resulting from all processes and events occurring over the 10,000 year post-closure period. In addition, results will include any doses to the public resulting from natural processes occurring over the 1,000 year post-closure period. The overall plan for the WIPP Performance Assessment Program is presented along with approaches to issues specific to the WIPP project

  5. The role of human performance in the safety complex plants' operation

    International Nuclear Information System (INIS)

    Preda, Irina Aida; Lazar, Roxana Elena; Croitoru, Cornelia

    1999-01-01

    According to statistics, about 20-30% from the failures occurred in the plants are caused directly or indirectly by human errors. Furthermore, it was established that 10-15% of the global failures are related with the human errors. These are mainly due to the wrong actions, maintenance errors, and misinterpretation of instruments. The human performance is influenced by: professional ability, complexity and danger to the plant experience in the working place, level of skills, events in personal and/or professional life, discipline, social ambience, somatic health. The human performances' assessment in the probabilistic safety assessment offers the possibility of evaluation of human contribution to the events sequences outcome. Not all the human errors have impact on the system. A human error may be recovered before the unwanted consequences had been occurred on system. This paper presents the possibilities to use the probabilistic method (event tree, fault tree) to identify the solutions for human reliability improved in order to minimize the risk in industrial plants' operation. Also, the human error types and their causes are defined and the 'decision tree method' as technique in our analysis for human reliability assessment is presented. The exemplification of human error analysis method was achieved based on operation data for Valcea Heavy Water Pilot Plant. As initiating event for the accident state 'the steam supply interruption' event has been considered. The human errors' contribution was analysed for the accident sequence with the worst consequences. (authors)

  6. Reliability database development and plant performance improvement effort at Korea Hydro and Nuclear Power Co

    International Nuclear Information System (INIS)

    Oh, S. J.; Hwang, S. W.; Na, J. H.; Lim, H. S.

    2008-01-01

    Nuclear utilities in recent years have focused on improved plant performance and equipment reliability. In U.S., there is a movement toward process integration. Examples are INPO AP-913 equipment reliability program and the standard nuclear performance model developed by NEI. Synergistic effect from an integrated approach can be far greater than as compared to individual effects from each program. In Korea, PSA for all Korean NPPs (Nuclear Power Plants) has been completed. Plant performance monitoring and improvement is an important goal for KHNP (Korea Hydro and Nuclear Power Company) and a risk monitoring system called RIMS has been developed for all nuclear plants. KHNP is in the process of voluntarily implementing maintenance rule program similar to that in U.S. In the future, KHNP would like to expand the effort to equipment reliability program and to achieve highest equipment reliability and improved plant performance. For improving equipment reliability, the current trend is moving toward preventive/predictive maintenance from corrective maintenance. With the emphasis on preventive maintenance, the failure cause and operation history and environment are important. Hence, the development of accurate reliability database is necessary. Furthermore, the database should be updated regularly and maintained as a living program to reflect the current status of equipment reliability. This paper examines the development of reliability database system and its application of maintenance optimization or Risk Informed Application (RIA). (authors)

  7. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    Bailescu, A.; Barbu, A.; Din, F.; Dinuta, G.; Dumitru, I.; Musetoiu, A.; Serban, G.; Tomescu, A.

    2013-01-01

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  8. Wave energy : from demonstration to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Wave Energy Centre is a non-profit organization dedicated to the development and marketing of ocean wave energy devices through technical and strategic support to companies and research and development institutions. WEC provides access to researchers to associated test infrastructures for testing and demonstration of wave energy structures. This presentation described the current status of wave energy. Public policies that support wave energy were also highlighted. Wave energy technology is currently in the demonstration phase, with several pilot plants and prototypes in service around the world. The first 2 offshore shoreline ocean wave current pilot plants were constructed in 2000. This presentation identified the 12 near or offshore pilot plants that were in operation by 2007. The pilot plants represent 5 basic different concepts with many different designs. The world's first commercial park was launched in 2007 in Portugal. The Pelamis wave farm uses three Pelamis P-750 machines with a capacity of 2.25 megawatts. figs.

  9. Oviposition Preference for Young Plants by the Large Cabbage Butterfly (Pieris brassicae ) Does not Strongly Correlate with Caterpillar Performance.

    Science.gov (United States)

    Fei, Minghui; Harvey, Jeffrey A; Yin, Yi; Gols, Rieta

    2017-06-01

    The effects of temporal variation in the quality of short-lived annual plants on oviposition preference and larval performance of insect herbivores has thus far received little attention. This study examines the effects of plant age on female oviposition preference and offspring performance in the large cabbage white butterfly Pieris brassicae. Adult female butterflies lay variable clusters of eggs on the underside of short-lived annual species in the family Brassicaceae, including the short-lived annuals Brassica nigra and Sinapis arvensis, which are important food plants for P. brassicae in The Netherlands. Here, we compared oviposition preference and larval performance of P. brassicae on three age classes (young, mature, and pre-senescing) of B. nigra and S. arvensis plants. Oviposition preference of P. brassicae declined with plant age in both plant species. Whereas larvae performed similarly on all three age classes in B. nigra, preference and performance were weakly correlated in S. arvensis. Analysis of primary (sugars and amino acids) and secondary (glucosinolates) chemistry in the plant shoots revealed that differences in their quality and quantity were more pronounced with respect to tissue type (leaves vs. flowers) than among different developmental stages of both plant species. Butterflies of P. brassicae may prefer younger and smaller plants for oviposition anticipating that future plant growth and size is optimally synchronized with the final larval instar, which contributes >80% of larval growth before pupation.

  10. The performance of a Solar Aided Power Generation plant with diverse “configuration-operation” combinations

    International Nuclear Information System (INIS)

    Qin, Jiyun; Hu, Eric; Nathan, Graham J.

    2016-01-01

    Highlights: • Four configurations of solar preheaters have been proposed. • Three typical operation strategies of solar preheaters have been identified. • 12 “configuration-operation” combinations has been proposed. • There are superior combinations to achieve the highest solar thermal performance. - Abstract: Solar Aided Power Generation is an efficient way to integrate solar thermal energy into a fossil fuel fired power plant for solar power generation purposes. In this particular power plant, the solar heat is used to displace the extraction steam to preheat the feedwater to the boiler. The heat exchanger, which facilitates the heat exchange between the solar heat carried by the heat transfer fluid and the feedwater, is termed a solar preheater. Four possible configurations of the solar preheater, namely Parallel 1, Parallel 2, Series 1 and Series 2, are proposed in this paper. In this type of plant, the extraction steam flow rates must be adjusted according to the solar input. The ways to control the extraction steam flow rates are termed solar preheater operation strategies. Three typical strategies: the Constant Temperature control, Variable Temperature control with high to low temperature feedwater heater displacement and Variable Temperature control with low to high temperature feedwater heater displacement have been identified. Each configuration can be operated with one of the three strategies, resulting in twelve “configuration-operation” combinations/scenarios (shown in Table 1). Previous assessments and modelling of such a plant have only been based on a single combination. In this paper, a Solar Aided Power Generation plant, modified from a typical 300 MW power plant, is used to understand the plant’s performance for all twelve of the available combinations. The results show that the instantaneous and annual technical performances of such a plant are dependent on the combinations used. The scenario 10 (Table 1) is superior to the

  11. Efficiency in Midwest US corn ethanol plants: A plant survey

    International Nuclear Information System (INIS)

    Perrin, Richard K.; Fretes, Nickolas F.; Sesmero, Juan Pablo

    2009-01-01

    Continuation of policy support for the US corn ethanol industry is being debated due to doubts about the greenhouse gas effects of the industry and the effects of the industry on food prices. Yet there is no publicly available data on the economic and technical performance of the current generation of plants, which constitute the overwhelming majority of the industry. This study helps to fill that gap. Seven recently constructed ethanol plants in seven Midwest US states provided details on input requirements and operating costs during 2006 and 2007. Results show that technical performance is substantially better than current estimates available in the literature. Average net operating returns exceeded capital costs during the survey period, but price changes by mid-2008 reduced these margins to near zero. While the economic performance of the industry is currently viable, this study demonstrates that it can be threatened by current price trends, and certainly would be in the absence of current subsidies

  12. Risk-based safety performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Chakraborty, S.; Prohaska, G.; Flodin, Y.; Grint, G.; Habermacher, H.; Hallman, A.; Isasia, R.; Melendez, E.; Verduras, E.; Karsa, Z.; Khatib-Rahbar, M.; Koeberlein, K.; Schwaeger, C.; Matahri, N.; Moravcik, I.; Tkac, M.; Preston, J.

    2003-01-01

    In a Concerted Action (CA), sponsored by the European Commission within its 5th Framework Program, a consortium of eleven partners from eight countries has reviewed and evaluated the application of Safety Performance Indicators (SPIs), which - in combination with other tools - can be used to monitor and improve the safety of nuclear power plants. The project was aimed at identification of methods that can be used in a risk-informed regulatory system and environment, and to exploit PSA techniques for the development and use of meaningful additional/alternative SPIs. The CA included the review of existing indicator systems, and the collection of information on the experience from indicator systems by means of a specific questionnaire. One of the most important and challenging issues for nuclear plant owners and/or regulators is to recognize early signs of deterioration in safety performance, caused by influences from management, organization and safety culture (MOSC), before actual events and/or mishaps take place. Most of the existing SPIs as proposed by various organizations are considered as 'lagging' indicators, that is, they are expected to show an impact only when a downward trend has already started. Furthermore, most of the available indicators are at a relatively high level, such that they will not provide useful information on fundamental weaknesses causing the problem in the first place. Regulators' and utilities' views on the use of a Safety Performance Indicator System have also been a part of the development of the CA. (author)

  13. Bus Accessing Performance Evaluation for Plant Control System

    International Nuclear Information System (INIS)

    Chung, Yang Mook

    2005-01-01

    The PCS system with 44 communication masters(CM) which process more than 30000 input and output signals, designed and manufactured by HF Contorols Corporation, is applied to UCN No. 5,6 nuclear power plant for the first time. In the process of system operation, the numerous problems have been issued and investigated and fixed so far. To share a understanding for digital communication system, UCN PCS communication methods are described herein through comparisons between the different priority techniques as well as the results of performance tests

  14. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Douglas Energy Company, Placentia, CA (United States)

    2000-09-01

    % after implementations of this method in March 2000. However, failures of instrumentation and control system components led to additional plant down time and damage to the bearings and seals. The enthalpy and pressure of well 103 declined substantially from the inception of the project. When the project was started the wellhead pressure and enthalpy were 760 psig and 882 Btu/lb respectively. At the time the plant was placed in standby the corresponding values were only 525 psig and 658 Btu/lb. This reduced the available plant power to only 400 kWe making the project economically unfeasible. However, replacement of the existing rotor with the Dual Pressure Rotor and replacement of the bearings and seals will enable the existing Biphase turbine to produce 1190 kWe at the present well conditions without the backpressure steam turbine. Operation with the present staff can then be sustained by selling power under the existing Agreement with CFE. Implementation of this option is recommended with operation of the facility to continue as a demonstration plant. Biphase turbine theory, design and performance are reported herein. The construction of the Biphase turbine and power plant and operational experience are detailed. Improvements in the Biphase turbine are indicated and analyzed. The impact of Biphase techonology on geothermal power production is discussed and recommendations made.

  15. Large-scale demonstration of reliability centered maintenance at two nuclear generating stations

    International Nuclear Information System (INIS)

    Gaertner, J.P.; Edgar, C.; Rodin, M.E.

    1989-01-01

    This paper reports that after successful single-system pilot applications of Reliability Centered Maintenance (RCM) at various utilities, EPRI with Rochester Gas and Electric and Southern California Edison is undertaking multiple-system applications of RCM at their respective nuclear plants. The objective is to demonstrate the feasibility and cost-effectiveness of large-scale RCM application. In addition, each utility has plant-specific objectives to improve maintenance and plant availability. Each project has selected a prioritized list of some 15-20 systems on which to perform RCM. Each project is employing somewhat different RCM analysis methods, both of which conform to a global RCM definition applicable to all EPRI RCM work to date. Each project has developed important insights for improving cost and value of future analyses. Both projects will have applied the RCM process, including implementation, on several plant systems by April 1989

  16. Improvement of performance operation and cycle efficiency of Al Anbar combined power plant

    International Nuclear Information System (INIS)

    Jabbar, Mohammed Q.

    2014-01-01

    The present work will be focusing on available solution which can serve to increase total efficiency of Al Anbar combined cycle power plant - CCPP, and thus to improve the operation performance as much as possible in order to decrease hydrocarbon, CO2, NOx emissions to environment.The simulation and calculations were performed by program software cycle-tempo software. The results were compared with basic design of Alanbar power plant after making modernization with solar tower receiver system-STRS, which represented a heat source in preheat process for a compressor air. Key Words: CCPP, STRS, Solar potential energy, fuel consumption, hydrocarbon emission

  17. Performance analysis of an integrated gas-, steam- and organic fluid-cycle thermal power plant

    International Nuclear Information System (INIS)

    Oko, C.O.C.; Njoku, I.H.

    2017-01-01

    This paper presents the performance analysis of an existing combined cycle power plant augmented with a waste heat fired organic Rankine cycle power plant for extra power generation. This was achieved by performing energy and exergy analysis of the integrated gas-, steam- and organic fluid-cycle thermal power plant (IPP). Heat source for the subcritical organic Rankine cycle (ORC) was the exhaust flue gases from the heat recovery steam generators of a 650 MW natural gas fired combined cycle power plant. The results showed that extra 12.4 MW of electricity was generated from the attached ORC unit using HFE7100 as working fluid. To select ORC working fluid, ten isentropic fluids were screened and HFE7100 produced the highest net power output and cycle efficiency. Exergy and energy efficiencies of the IPP improved by 1.95% and 1.93%, respectively. The rate of exergy destruction in the existing combined cycle plant was highest in the combustion chamber, 59%, whereas in the ORC, the highest rate of exergy destruction occurred in the evaporator, 62%. Simulations showed exergy efficiency of the IPP decreased with increasing ambient temperature. Exit stack flue gas temperature reduced from 126 °C in the combined cycle power plant to 100 °C in the integrated power plant. - Highlights: • Combined cycle plant retrofitted with ORC produced extra 12.4 MW electric power. • ORC is powered with low temperature flue gas from an existing combined cycle plant. • Exergy destruction rate in integrated plant(IPP) is less than in combined plant. • Exit stack temperature of the IPP has less environmental thermal pollution. • Exergy and energy efficiencies of the IPP improved by 1.95% and 1.93%, respectively.

  18. Performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance. Performance evaluation examples

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Society of Civil Engineers has updated performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance in June 2005. Based on experimental and analytical considerations, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been incorporated in new recommendations. This document shows outdoor civil structures earthquake resistance and endurance performance evaluation examples based on revised recommendations. (T. Tanaka)

  19. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  20. Construction and performance tests of Helium Engineering Demonstration Loop (HENDEL) for VHTR

    International Nuclear Information System (INIS)

    Hishida, M.; Tanaka, T.; Shimomura, H.; Sanokawa, K.

    1984-01-01

    A helium engineering demonstration loop (HENDEL) was constructed and operated in JAERI in order to develop the high-temperature key components of an experimental very high temperature gas cooled reactor, like fuel stack, in-core reactor structure, hot gas duct, intermediate heat exchanger. Performance tests as well as demonstration of integrity are carried out with large-size or actual-size models of key components. The key components to be tested in HENDEL are: fuel stack and control rod; core supporting structure, or bottom structure of rector core exposed to direct impingement of high temperature core outlet flow; reactor internal components and structure; high temperature components in heat removal system (primary and secondary cooling systems)

  1. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    International Nuclear Information System (INIS)

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the target contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs

  2. Simultaneous Downregulation of MTHFR and COMT in Switchgrass Affects Plant Performance and Induces Lesion-Mimic Cell Death

    Directory of Open Access Journals (Sweden)

    Sijia Liu

    2017-06-01

    Full Text Available Switchgrass (Panicum virgatum has been developed into a model lignocellulosic bioenergy crop. Downregulation of caffeic acid O-methyltransferase (COMT, a key enzyme in lignin biosynthesis, has been shown to alter lignification and increase biofuel yield in switchgrass. Methylenetetrahydrofolate reductase (MTHFR mediates C1 metabolism and provides methyl units consumed by COMT. It was predicted that co-silencing of MTHFR and COMT would impact lignification even more than either of the single genes. However, our results showed that strong downregulation of MTHFR in a COMT-deficient background led to altered plant growth and development, but no significant change in lignin content or composition was found when compared with COMT plants. Another unexpected finding was that the double MTHFR/COMT downregulated plants showed a novel lesion-mimic leaf phenotype. Molecular analyses revealed that the lesion-mimic phenotype was caused by the synergistic effect of MTHFR and COMT genes, with MTHFR playing a predominant role. Microarray analysis showed significant induction of genes related to oxidative and defense responses. The results demonstrated the lack of additive effects of MTHFR and COMT on lignification. Furthermore, this research revealed an unexpected role of the two genes in the modulation of lesion-mimic cell death as well as their synergistic effects on agronomic performance.

  3. Simultaneous Downregulation of MTHFR and COMT in Switchgrass Affects Plant Performance and Induces Lesion-Mimic Cell Death.

    Science.gov (United States)

    Liu, Sijia; Fu, Chunxiang; Gou, Jiqing; Sun, Liang; Huhman, David; Zhang, Yunwei; Wang, Zeng-Yu

    2017-01-01

    Switchgrass ( Panicum virgatum ) has been developed into a model lignocellulosic bioenergy crop. Downregulation of caffeic acid O -methyltransferase (COMT), a key enzyme in lignin biosynthesis, has been shown to alter lignification and increase biofuel yield in switchgrass. Methylenetetrahydrofolate reductase (MTHFR) mediates C1 metabolism and provides methyl units consumed by COMT. It was predicted that co-silencing of MTHFR and COMT would impact lignification even more than either of the single genes. However, our results showed that strong downregulation of MTHFR in a COMT -deficient background led to altered plant growth and development, but no significant change in lignin content or composition was found when compared with COMT plants. Another unexpected finding was that the double MTHFR/COMT downregulated plants showed a novel lesion-mimic leaf phenotype. Molecular analyses revealed that the lesion-mimic phenotype was caused by the synergistic effect of MTHFR and COMT genes, with MTHFR playing a predominant role. Microarray analysis showed significant induction of genes related to oxidative and defense responses. The results demonstrated the lack of additive effects of MTHFR and COMT on lignification. Furthermore, this research revealed an unexpected role of the two genes in the modulation of lesion-mimic cell death as well as their synergistic effects on agronomic performance.

  4. The first in Poland demonstrative ORC power plant of low power output

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Wladyslaw; Borsukiewicz-Gozdur, Aleksandra; Stachel, Aleksander A. [West Pomeranian Univ. of Technology, Szczecin (Poland); Klonowicz, Wojciech; Hanausek, Pawel [Turboservice Sp. z o.o., Lodz (Poland); Klonowicz, Piotr; Magiera, Radomir [Lodz Univ. of Technology (Poland)

    2010-07-01

    A description of the power plant working according to the organic Clausius-Rankine cycle (ORC) and developed at the Department of Heat Engineering (KTC), West Pomeranian University of Technology in Szczecin, is presented. The ORC power plant is powered by the low temperature heat of hot water with the temperature of up to 100 C. The hot water heat is here converted into mechanical energy that is generated by a turbine and used to drive a centrifugal air compressor. The ORC turbine is supplied with dry, saturated vapour of the R227ea working fluid of low boiling point. The working fluid vapour is generated in a combined preheater-evaporator heat exchanger. The results of calculations and experimental measurements are presented and supplemented with conclusions derived from the ORC power plant operation. Perspective modernization of the ORC power plant scheme is also outlined. (orig.)

  5. Demonstration of hydrogen society in Nakskov. Final report; Denmark; Demonstratorium - Brintsamfundet i Nakskov. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Bech-Madsen, J. (IRD Fuel Cell Technology, Svendborg (DK)); Krogh Jensen, J. (Baltic Sea Solutions, Bass, Holeby (DK))

    2008-02-15

    This report summarizes results from the 'Demonstration of hydrogen in Nakskov' project. The project has established a demonstration of the Hydrogen Community in Nakskov. The demonstration facility is located at the entrance to Nakskov Genbrugsplads which has a lot of visitors. At this location information boards help visitors get acquainted with the technology and the function of the plant. It is likely that the majority of the citizens of West Lolland has visited the demonstration plant. The demonstration plant includes the following elements: 1) Container buildings for control and monitoring as well as housing of the process equipment. The containers are fully equipped with electricity, water and water treatment systems, drains, ventilation, cooling and heating systems and extensive safety systems. 2) Two fully automated PEM-CHP fuel cell units of 2 kW and 7.5 kW. 3) Two PEM-electrolysers for hydrogen and oxygen production for use in fuel cells and stimulation of aerobe processes in a waste water treatment system. 4) Low pressure storage steel tanks for oxygen and hydrogen. 5) Gas distribution grid for transporting oxygen and hydrogen from the electrolysers to the storage tanks and back to the fuel cells. 6) Official Authority approvals of the total demonstration facility comprising municipal building permission. Approval of zone classification and storage of hydrogen and oxygen, by the Lolland fire chief, February 1. 2007. Environmental evaluation and Environmental Impact assesment screening of the project performed by the regional county (Storstroms Amt), November 13. 2006. Project approval of hydrogen production and fuel cell plant by the Danish Safety Technology Authority, May 2. 2007. (au)

  6. Optimized solar heat production in a liberalised electricity market. Demonstration of full-scale plant in Braedstrup; Optimeret solvarmeproduktion i et liberaliseret elmarked. Demonstration af fuldskalaanlaeg i Braedstrup

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.A. (PlanEnergi, Skoerping (Denmark)); Kristensen, Per (Braedstrup Fjernvarme, Braedstrup (Denmark)); Furbo, S. (Danmarks Tekniske Univ. DTU BYG, Kgs. Lyngby (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Holm, L. (Marstal Fjernvarme, Marstal (Denmark)); Schmidt, T. (Steinbeis-Research Institute for Solar and Sustainable Thermal Systems, Stuttgart (Denmark))

    2009-03-15

    The project demonstrates for the first time a combination between CHP and solar power systems. 8,019 m2 solar collectors producing 8% of the annual consumption in Braedstrup, Denmark, and nearly the total consumption on a good summer day were combined with a natural gas-fired CHP plant. An optimised ARCON HT2006 collector was developed for this purpose, and the control system was designed to ensure that supply-pipe temperature from solar collectors is always as low as possible and that the temperature in the existing water storage tank does not drop below 90 deg. C. (ln)

  7. Development and utilization of indicators to summarize and represent performance of nuclear power plants

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi; Kakubari, Yukihiro; Kikkawa, Shigeru

    1996-01-01

    We have developed eight performance indicators (PIs) that enable quantitative and overall comprehension of operating performance. Among these eight indicators there are 'capability factor' 'incidents and failures' and 'radiation exposure and radioactive wastes', all used to represent the safety and reliability of a nuclear power plant. Results of analysis and evaluation by means of these PIs are distributed to the regulatory agency and other organizations every year, for the benefit of all involved. We have also been examining a technique that may allow synthesis of these PIs into a single, simpler comprehensive indicator that covers all aspects of plant performance. In this report, we present analysis and evaluation of the PIs, the technique to provide a comprehensive performance indicators and actual application. (author)

  8. Studies on Steam Absorption Chillers Performance at a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2014-07-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers can be of either single-effect or double effect configuration and the coefficient of performance (COP depends on the selection made. The COP varies from 0.7 to 1.2 depending on the types of chillers. Single effect chillers normally have COP in the range of 0.68 to 0.79. Double effect chillers COP are higher and can reach 1.2. However due to factors such as inappropriate operations and maintenance practices, COP could drop over a period of time. In this work the performances of double effect steam absorption chillers at a cogeneration plant were studied. The study revealed that during the period of eleven years of operation the COP of the chillers deteriorated from 1.25 to 0.6. Regression models on the operation data indicated that the state of deterioration was projected to persist. Hence, it would be recommended that the chillers be considered for replacement since they had already undergone a series of costly repairs.

  9. The operation of nuclear power plants

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The duties to be performed in managing the operation of a nuclear power plant are highly diverse, as will be explained in this contribution by the examples of the Grafenrheinfeld Nuclear Power Station. The excellent safety record and the high availabilities of German nuclear power plants demonstrate that their operators have adopted the right approaches. Systematic evaluation of the operating experience accumulated inhouse and in other plants is of great significance in removing weak spots and improving operation. The manifold and complex activities in the structure of organization and of activities in a nuclear power plant require a high degree of division of labor. (orig.) [de

  10. Innovative applications of technology for nuclear power plant productivity improvements

    International Nuclear Information System (INIS)

    Naser, J. A.

    2012-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  11. Tidd PFBC demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Marrocco, M. [American Electric Power, Columbus, OH (United States)

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent of sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.

  12. Application of digital control in Japanese PWR Plants

    International Nuclear Information System (INIS)

    Taguchi, S.; Kondo, Y.; Teranishi, S.; Matsumiya, M.; Takashima, M.; Nagai, T.

    1986-01-01

    More reliable and flexible control system to improve the plant availability and operability is constantly demanded. In order to answer the demands, digital control systems are being applied to Japanese PWR plants. Microprocessor-based digital control systems are widely used in other industries and show good performance. The digital control system has been already applied to the chemical and volume control system and the radioactive waste disposal system in the operating plants. These systems have been working as expected and demonstrating good performances. The digital control system for the reactor control system, which is the main control system of the PWR plants, is being developed. The design of the system has been already finished and the verification/validation process is now in progress

  13. Environmental assessment for the electric and hybrid vehicle demonstration project, performance standards and financial incentives

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, S. J.

    1978-10-01

    The assessment is concerned with the impacts of the demonstration of electric and hybrid vehicles acquired to fulfill certain requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act, PL 94-413 as amended. The financial incentives programs and vehicle performance standards associated with the demonstration are also covered. Not included is an assessment of the long term effects of EHV commercialization and of the research and development program being carried out simultaneously with the demonstration, also in response to PL 94-413. These federal actions will be included in a programmatic environmental assessment scheduled for completion in FY 79.

  14. China's precarious synthetic natural gas demonstration

    International Nuclear Information System (INIS)

    Yang, Chi-Jen

    2015-01-01

    In 2013, China's national government abandoned its previous cautious policy and started to promote large-scale deployment of coal-based synthetic natural gas (SNG). Coal-based SNG is both carbon-intensive and very water-intensive. Driven by a smog crisis and the recession of coal industry, China's 2013 policy change is major setback in its long-term efforts in carbon mitigation and water conservation. The government of China made the policy change before the commercial commencement of China's first SNG demonstration plant. Since the commencement of China's SNG demonstration plant, many problems have started to appear. In this article, I discuss the nature of demonstration project and explain the danger in starting a crash program without evaluating the demonstration comprehensively and transparently. - Highlights: • China is promoting large-scale commercialization of synthetic natural gas (SNG) plants. • The push for commercialization started before the startup of its first SNG demonstration. • A crash SNG program is both financially risky and environmental detrimental. • China should reconsider its SNG policy and adopt a more cautious approach

  15. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  16. Conceptual design of a Demonstration Tokamak Hybrid Reactor (DTHR), September 1978

    International Nuclear Information System (INIS)

    Kelley, J.L.

    1978-12-01

    The flexibility of the fusion hybrid reactor to function as a fuel production facility, power plant, waste disposal burner or combinations of all of these, as well as the reactor's ability to use proliferation resistant fuel cycles, has provided the incentive to assess the feasibility of a near-term demonstration plant. The goals for a Demonstration Tokamak Hybrid Reactor (DTHR) were established and an initial conceptual design was selected. Reactor performance and economics were evaluated and key developmental issues were assessed. The study has shown that a DTHR is feasible in the late 1980's, a significant quantity of fissile fuel could be produced from fertile thorium using present day fission reactor blanket technology, and a large number of commercially prototypical components and systems could be developed and operationally verified. The DTHR concept would not only serve as proof-of-principle for hybrid technology, but could be operated in the ignited mode and provide major advancements for pure fusion technology

  17. Sulfur gained from flue gas, a demonstration unit of the Wellman-Lord process annexed to a black coal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, H

    1977-12-16

    Details of reducing air pollution by desulfurization of flue gases are presented. The demonstration unit is annexed to a 115 MW block at the Gary power plant in Indiana, USA. A second unit is being installed at the larger coal power plant in San Juan, New Mexico. The Wellman-Lord technology achieves a higher than 90% desulfurization of industrial waste gases. The technology is based on washing the gases with sodium sulfide. The resulting concentrated sulfur dioxide gas is used for pure sulfur and sulfuric acid production. Sodium sulfate is another commercial by-product obtained from the sodium sulfide regeneration cycle. Chemical details and the technological flow sheet are discussed. Electricity production costs in the power plants due to desulfurization of waste gases will increase by an estimated 15%. Advantages, in addition to reducing air pollution and marketing sulfur products, are also seen in the absence of sulfur containing wastes for disposal. (In German)

  18. Haida Gwaii / Queen Charlotte Islands demonstration tidal power plant feasibility study : summary results

    Energy Technology Data Exchange (ETDEWEB)

    Tu, A. [BC Hydro, Burnaby, BC (Canada)

    2008-07-01

    Remote communities may benefit from using tidal energy in terms of reduced diesel fuel consumption and the associated greenhouse gas emissions. A study was conducted to assess the feasibility for a tidal demonstration project on the Haida Gwaii, Queen Charlotte Islands. Candidate communities were scanned for resource potential, load profile, infrastructure distribution and community interest. This presentation focused on choosing an appropriate site for a given tidal power technology. Three hotspots in Masset Sound were identified as well as one hotspot at Juskatla Narrows. Technology providers were solicited for information on unit performance, cost, and trials to date. The presentation noted that demonstration or future commercial deployment is limited by resource and by the ability of the grid to accommodate tidal power. The presentation concluded with next steps which include publishing the study. tabs., figs.

  19. Team performance measures for abnormal plant operations

    International Nuclear Information System (INIS)

    Montgomery, J.C.; Seaver, D.A.; Holmes, C.W.; Gaddy, C.D.; Toquam, J.L.

    1990-01-01

    In order to work effectively, control room crews need to possess well-developed team skills. Extensive research supports the notion that improved quality and effectiveness are possible when a group works together, rather than as individuals. The Nuclear Regulatory Commission (NRC) has recognized the role of team performance in plant safety and has attempted to evaluate licensee performance as part of audits, inspections, and reviews. However, reliable and valid criteria for team performance have not yet been adequately developed. The purpose of the present research was to develop such reliable and valid measures of team skills. Seven dimensions of team skill performance were developed on the basis of input from NRC operator licensing examiners and from the results of previous research and experience in the area. These dimensions included two-way communications, resource management, inquiry, advocacy, conflict resolution/decision-making, stress management, and team spirit. Several different types of rating formats were developed for use with these dimensions, including a modified Behaviorally Anchored Rating Scale (BARS) format and a Behavioral Frequency format. Following pilot-testing and revision, observer and control room crew ratings of team performance were obtained using 14 control room crews responding to simulator scenarios at a BWR and a PWR reactor. It is concluded, overall, that the Behavioral Frequency ratings appeared quite promising as a measure of team skills but that additional statistical analyses and other follow-up research are needed to refine several of the team skills dimensions and to make the scales fully functional in an applied setting

  20. Demolition Range Noise Abatement Technique Demonstration and Evaluation for the McAlester Army Ammunition Plant; TOPICAL

    International Nuclear Information System (INIS)

    CALDERONE, JAMES J.; GARBIN H, DOUGLAS

    2001-01-01

    Public concern regarding the effects of noise generated by the detonation of excess and obsolete explosive munitions at U.S. Army demolition ranges is a continuing issue for the Army's demilitarization and disposal groups. Recent concerns of citizens living near the McAlester Army Ammunition Plant (MCAAP) in Oklahoma have lead the U.S. Army Defense Ammunition Center (DAC) to conduct a demonstration and evaluation of noise abatement techniques that could be applied to the MCAAP demolition range. With the support of the DAC, MCAAP, and Sandia National Laboratories (SNL), three types of noise abatement techniques were applied: aqueous foams, overburden (using combinations of sand beds and dirt coverings), and rubber or steel blast mats. Eight test configurations were studied and twenty-four experiments were conducted on the MCAAP demolition range in July of 2000. Instrumentation and data acquisition systems were fielded for the collection of near-field blast pressures, far-field acoustic pressures, plant boundary seismic signals, and demolition range meteorological conditions. The resulting data has been analyzed and reported, and a ranking of each technique's effects has been provided to the DAC

  1. Minimal watering regime impacts on desert adapted green roof plant performance

    Science.gov (United States)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    soil moisture readings on each green roof to analyze the spatial and temporal covariance of water and temperature. We link these patterns in soil moisture to measures of plant performance with weekly hyperspectral images (NDVI - Normalized Difference Vegetation Index) of each green roof. The data will allow us to determine the minimal amount of water use required for successful green roofs and healthy green roof plants. Preliminary data from a five week pilot study in the 2011 summer monsoon has shown a variation in NDVI by species. H. parviflora displayed the highest NDVI values, while D. pentachaeta and C. eriophylla shared similar, lower NDVI values. In general, the comparison of soil moisture and NDVI values expressed a very weak positive relationship but stronger species specific responses. D. pentachaeta demonstrated the strongest response to soil water and H. parviflora displayed the weakest response.

  2. Plant operator performance evaluation based on cognitive process analysis experiment

    International Nuclear Information System (INIS)

    Ujita, H.; Fukuda, M.

    1990-01-01

    This paper reports on an experiment to clarify plant operators' cognitive processes that has been performed, to improve the man-machine interface which supports their diagnoses and decisions. The cognitive processes under abnormal conditions were evaluated by protocol analyses interviews, etc. in the experiment using a plant training simulator. A cognitive process model is represented by a stochastic network, based on Rasmussen's decision making model. Each node of the network corresponds to an element of the cognitive process, such as observation, interpretation, execution, etc. Some observations were obtained as follows, by comparison of Monte Carlo simulation results with the experiment results: A process to reconfirm the plant parameters after execution of a task and feedback paths from this process to the observation and the task definition of next task were observed. The feedback probability average and standard deviation should be determined for each incident type to explain correctly the individual differences in the cognitive processes. The tendency for the operator's cognitive level to change from skill-based to knowledge-based via rule-based behavior was observed during the feedback process

  3. Dynamic performance of concrete undercut anchors for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahrenholtz, Christoph, E-mail: christoph@mahrenholtz.net; Eligehausen, Rolf

    2013-12-15

    Graphical abstract: - Highlights: • Behavior of undercut anchors under dynamic actions simulating earthquakes. • First high frequency load and crack cycling tests on installed concrete anchors ever. • Comprehensive review of anchor qualification for Nuclear Power Plants. - Abstract: Post-installed anchors are widely used for structural and nonstructural connections to concrete. In many countries, concrete anchors used for Nuclear Power Plants have to be qualified to ensure reliable behavior even under extreme conditions. The tests required for qualification of concrete anchors are carried out at quasi-static loading rates well below the rates to be expected for dynamic actions deriving from earthquakes, airplane impacts or explosions. To investigate potentially beneficial effects of high loading rates and cycling frequencies, performance tests on installed undercut anchors were conducted. After introductory notes on anchor technology and a comprehensive literature review, this paper discusses the qualification of anchors for Nuclear Power Plants and the testing carried out to quantify experimentally the effects of dynamic actions on the load–displacement behavior of undercut anchors.

  4. Performance test of condensate polishing system for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    You Zhaojin; Qian Shijun; Lu Ruiting

    1995-11-01

    The flow chart, resin performance and water quality specifications of the condensate polishing system for Qinshan Nuclear Power Plant (QNPP) are briefly described. The initial regeneration process and the following service of the condensate polishing system are introduced. And the ability to remove corrosion products and ionic impurities of the condensate polishing system are verified during start-up, normal power operation and condenser leakage of the plant. The result shows that the performance of condensate polishing system in QNPP can completely meet the design requirements. Especially during the start-up of the unit or the leakage of the condenser, despite the inlet water quality of the polishers is far worse than the specified standard, the outlet water quality is still controlled within the indexes. Finally, several existing problems, such as 'volume ratio between resins is not optimum' and 'the inert resin and anion resin can not be stratified completely', in the condensate polishing system are also discussed. (4 refs., 1 fig., 8 tabs.)

  5. Research project implementation of a risk-based performance monitoring system for nuclear power plants: Phase II - Type-D indicators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T. [EQE International. Inc., Evergreen, CO (United States); Khatib-Rahbar, M. [Energy Research, Inc., Rockville, MD (United States); Erikson, H. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    1999-02-01

    developed and implemented in a practical manner, then it would lead to the recognition that there would be a positive basis for proceeding with investigation of subsequent aspects of the performance monitoring system. These subsequent aspects have been identified as consisting of the two remaining parts of the overall performance monitoring research investigation, described as follows. Part 3 is intended to demonstrate the detailed implementation of the overall PSA-based performance monitoring approach, including application of the Type-D quantitative relationships to a case-study plant; and Part 4 is intended to develop programmatic and decision making guidelines, as well as needed software, for implementing the performance monitoring system at all Swedish NPPs, and for making regulatory use of the system. Since success has been achieved in the present Part-2 investigation (as well as in the earlier Part-1 study), it can be concluded that there is indeed a positive basis for pursuing subsequent development of the performance monitoring system. Consequently, it is recommended that the subsequent aspects of the research investigation be undertaken. Since the effort has broad applicability to plant operators and regulators, and the potential for significant benefits with respect to safety management and related decision making, it is also recommended that opportunities for collaboration on future efforts be sought 17 refs, figs, tabs

  6. Research project implementation of a risk-based performance monitoring system for nuclear power plants: Phase II - Type-D indicators. Final report

    International Nuclear Information System (INIS)

    Sewell, R.T.; Khatib-Rahbar, M.; Erikson, H.

    1999-02-01

    developed and implemented in a practical manner, then it would lead to the recognition that there would be a positive basis for proceeding with investigation of subsequent aspects of the performance monitoring system. These subsequent aspects have been identified as consisting of the two remaining parts of the overall performance monitoring research investigation, described as follows. Part 3 is intended to demonstrate the detailed implementation of the overall PSA-based performance monitoring approach, including application of the Type-D quantitative relationships to a case-study plant; and Part 4 is intended to develop programmatic and decision making guidelines, as well as needed software, for implementing the performance monitoring system at all Swedish NPPs, and for making regulatory use of the system. Since success has been achieved in the present Part-2 investigation (as well as in the earlier Part-1 study), it can be concluded that there is indeed a positive basis for pursuing subsequent development of the performance monitoring system. Consequently, it is recommended that the subsequent aspects of the research investigation be undertaken. Since the effort has broad applicability to plant operators and regulators, and the potential for significant benefits with respect to safety management and related decision making, it is also recommended that opportunities for collaboration on future efforts be sought

  7. A Performance Measurement Tool Leading Wastewater Treatment Plants toward Economic Efficiency and Sustainability

    Directory of Open Access Journals (Sweden)

    Andrea Guerrini

    2016-11-01

    Full Text Available Wastewater treatment is an important link in the water cycle that allows for water sanitation and reuse, facilitates energy generation, and allows for the recovery of products from waste. The scientific community has paid significant attention to wastewater treatment, especially from a technical point of view. Extensive literature is available on new technologies, processes, and materials to improve wastewater treatment. However, scant studies have been conducted in the management field focusing on the development of a performance measurement tool that supports plant managers. The current article addresses this literature gap, developing a reporting tool that integrates technical and cost measures and implements it in a large wastewater utility. The tool successfully identifies cause and effect linkages among key plant performance drivers and supports management in finding activities with poor performance and allows them to delay non-relevant measures of control.

  8. 75 Easy Life Science Demonstrations. Teacher Book.

    Science.gov (United States)

    Kardos, Thomas

    This book is a collection of life science classroom demonstrations. Explanations that review key concepts are included. Topics are: stimulus and response; gravitropism; phototropism; living organisms; carbon dioxide; gases emitted by plants; greenhouse effect; stomata; transpiration; leaf skeletons; seed growth; water evaporation in plants; carbon…

  9. Feasibility of quantitative performance measures for evaluating nuclear power plant operators

    International Nuclear Information System (INIS)

    Carter, R.J.; Connelly, E.M.; Krois, P.A.

    1989-01-01

    A more valid measure of team performance in nuclear power plants is needed. A study is described which was oriented towards evaluating the feasibility of synthesizing performance measures by deriving measures for crews responding to an off-normal event in a full-scope simulator. The thesis was that performance assessment is based on the subjective judgment of training instructors. The procedure used to synthesize the performance measure consisted of: identification of the factors believed to be important to performance assessment, development of example crew performances and ratings on each by instructors, and derivation of the measure by capturing the instructors' assessment rules. A performance measure was derived which explains nearly all of the variance of the instructors' team performance assessments. There is reason to believe that this method of synthesizing measures can be applied to other events. 7 tabs

  10. The Daya Bay nuclear power plant performance. An example of international cooperation

    International Nuclear Information System (INIS)

    Hertzog, D.

    1998-01-01

    Technology transfer is an integral part of Framatome's general approach to its Chinese partners for the Daya Bay, Ling Ao, and Qinshan phase 2 nuclear power plant projects. It has been the subject of major operations covering all activities relevant to project management, design and engineering, manufacturing, and maintenance know-how. This presentation is more particularly devoted to nuclear island maintenance knowledge, which has been extensively transferred by Framatome to the Daya Bay plant owner over a period of four years, through a program including the constitution of mixed Franco-Chinese teams to handle plant maintenance, shadow training of Chinese specialists in the maintenance work performed by Framatome or its subcontractors in France, and theoretical training sessions on equipment mockups in China and France. (author)

  11. Demonstration of a performance assessment methodology for nuclear waste isolation in basalt formations

    International Nuclear Information System (INIS)

    Bonano, E.J.; Davis, P.A.

    1988-01-01

    This paper summarizes the results of the demonstration of a performance assessment methodology developed by Sandia National Laboratories, Albuquerque for the US Nuclear Regulatory Commission for use in the analysis of high-level radioactive waste disposal in deep basalts. Seven scenarios that could affect the performance of a repository in basalts were analyzed. One of these scenarios, normal ground-water flow, was called the base-case scenario. This was used to demonstrate the modeling capabilities in the methodology necessary to assess compliance with the ground-water travel time criterion. The scenario analysis consisted of both scenario screening and consequence modeling. Preliminary analyses of scenarios considering heat released from the waste and the alteration of the hydraulic properties of the rock mass due to loads created by a glacier suggested that these effects would not be significant. The analysis of other scenarios indicated that those changing the flow field in the vicinity of the repository would have an impact on radionuclide discharges, while changes far from the repository may not be significant. The analysis of the base-case scenario was used to show the importance of matrix diffusion as a radionuclide retardation mechanism in fractured media. The demonstration of the methodology also included an overall sensitivity analysis to identify important parameters and/or processes. 15 refs., 13 figs., 2 tabs

  12. Design of benign matrix drums for the non-destructive assay performance demonstration program for the National TRU Program

    International Nuclear Information System (INIS)

    Becker, G.K.

    1996-09-01

    Regulatory compliance programs associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) require the collection of waste characterization data of known quality to support repository performance assessment, permitting, and associated activities. Blind audit samples, referred to as PDP (performance demonstration program) samples, are devices used in the NDA PDP program to acquire waste NDA system performance data per defined measurement routines. As defined under the current NDA PDP Program Plan, a PDP sample consists of a DOT 17C 55-gallon PDP matrix drum configured with insertable radioactive standards, working reference materials (WRMs). The particular manner in which the matrix drum and PDP standard(s) are combined is a function of the waste NDA system performance test objectives of a given cycle. The scope of this document is confined to the design of the PDP drum radioactive standard internal support structure, the matrix type and the as installed configuration. The term benign is used to designate a matrix possessing properties which are nominally non-interfering to waste NDA measurement techniques. Measurement interference sources are technique specific but include attributes such as: high matrix density, heterogeneous matrix distributions, matrix compositions containing high moderator/high Z element concentrations, etc. To the extent practicable the matrix drum design should not unduly bias one NDA modality over another due to the manner in which the matrix drum configuration manifests itself to the measurement system. To this end the PDP matrix drum configuration and composition detailed below is driven primarily by the intent to minimize the incorporation of matrix attributes known to interfere with fundamental waste NDA modalities, i.e. neutron and gamma based techniques

  13. Online operations optimization of waste incineration plants. Phase 3: Control concept and demonstration; Online driftsoptimering af affaldsfyrede anlaeg. Fase 3: Reguleringskoncept og demonstration. Hovedrapport ver. C

    Energy Technology Data Exchange (ETDEWEB)

    Boecher Poulsen, K.; Rassing Stoltze, K.; Solberg, B.; Hansen, Lars Henrik (DONG Energy (Denmark)); Cramer, J.; Andreasen, L.B. (FORCE Technology (Denmark)); Nymann Thomsen, S.; West, F. (Babcock and Wilcox Voelund (Denmark)); Clausen, S.; Fateev, A. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2010-06-15

    The long-term vision of the project is to develop a system for online optimisation of waste incineration. The fundamental idea is to base the system on advanced measuring technique, dynamic process models and advanced control technique. In the present phase 3 project the intention is to implement several of the improvement measures specified in phase 2 - both at Haderslev CHP Plant and at Reno-Nord - and not least evaluate the results from the two widely different plants. In addition to that, it is essential to test the new NIR camera system online at Reno-Nord and to carry out a complete measuring campaign where dynamic characteristics are pursued and must be compared with similar tests from phase 2 at Haderslev CHP Plant. The measuring campaign at Reno-Nord was performed differently from phase 2 at Haderslev CHP Plant, i.e. at Reno-Nord both traditional manual steps in series with input (pusher, grate, primary air) and manual control and pseudo random parallel pulse effects of all input with partly automatic control were performed. Pulse effects are made automatically from a sequence in the control room. The new method requires considerably less involvement from operating staff and engineers during the tests, and it is capable of producing good model estimation data as the control will automatically lead the incineration back to the fixed incineration point. The disadvantage is that it is difficult to follow the quality of the boiler responses in the process because of several concurrent step effects. Therefore, another data processing is necessary to be able to estimate the correct dynamic models and extract dynamic furnace characteristics. However, the potential of the new method is that it can be activated directly by the operating staff from the control room and that it is capable of operating for a long time with eg considerably different fuel types. As to modelling, both SISO (single input single output) and MIMO (multi input multi output) model estimates

  14. The thermal oxide reprocessing plant at Sellafield: three years of active operation in the chemical separation plant

    International Nuclear Information System (INIS)

    Philips, C.

    1998-01-01

    The Thermal Oxide Reprocessing Plant at British Nuclear Fuels' Sellafield site started operating in March 1994 with the shearing of its first irradiated fuel. In January 1995 the Chemical Separation part of the plant commenced processing the irradiated fuel feed solution that had been produced in the previous year by the Head End plant. By the Spring of 1998 over 1400 t of irradiated fuel has been reprocessed in Thorp, and the plant is being steadily and successfully ramped up to its normal operating throughput. The performance of the Thorp Chemical Separation Plant has been excellent, with the solvent extraction contactors performing as predicted by the extensive development programme. In particular the uranium-plutonium separation stage, which received intensive development to deal with the effects of the fission product technetium, has given an overall separation performance well in excess of the minimum flowsheet requirement. Decontamination of the uranium and plutonium products from fission products has in general been better than flowsheet requirements and the solvent extraction equipment has operated stably under the automatic controls developed during the R and D programme. Discharges of contaminants to waste streams have generally been in line with, or better than, expectation. This paper compares with flowsheet predictions a range of the key fission product and transuranic decontamination factors achieved in Thorp, shows how waste stream discharges are a small fraction of Sellafield Site discharge limits, demonstrates how uranium - plutonium separation performance has compared with expectation and summarises the overall performance of the Chemical Separation Plant. (author)

  15. Evaluation and improvement of wastewater treatment plant performance using BioWin

    Science.gov (United States)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  16. Shaking table test study on seismic performance of dehydrogenation fan for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Kaiyan; Shi Weixing; Cao Jialiang; Wang Yang

    2011-01-01

    Seismic performance of the dehydrogenation fan for nuclear power plants was evaluated based on the shaking table test of earthquake simulation. Dynamic characteristics including the orthogonal tri-axial fundamental frequencies and equivalent damping ratios were measured by the white noise scanning method. Artificial seismic waves were generated corresponding to the floor acceleration response spectra for nuclear power plants. Furthermore, five OBE and one SSE shaking table tests for dehydrogenation fan were performed by using the artificial seismic waves as the seismic inputs along the orthogonal axis simultaneity. Operating function of dehydrogenation fan was monitored and observed during all seismic tests, and performance indexes of dehydrogenation fan were compared before and after seismic tests. The results show that the structural integrity and operating function of the dehydrogenation fan are perfect during all seismic tests; and the performance indexes of the dehydrogenation fan can remain consistent before and after seismic tests; the seismic performance of the dehydrogenation fan can satisfy relevant technical requirements. (authors)

  17. Plant host finding by parasitic plants: a new perspective on plant to plant communication.

    Science.gov (United States)

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-11-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much debated. To date, nearly all studies of volatile-mediated interactions among plant species have focused on the reception of herbivore-induced volatiles by neighboring plants. We recently documented volatile effects in another system, demonstrating that the parasitic plant Cuscuta pentagona uses volatile cues to locate its hosts. This finding may broaden the discussion regarding plant-to-plant communication, and suggests that new classes of volatile-meditated interactions among plant species await discovery.

  18. Performance-based evaluation of graphic displays for nuclear-power-plant control rooms

    International Nuclear Information System (INIS)

    Petersen, R.J.; Banks, W.W.; Gertman, D.I.

    1982-01-01

    This paper reports several methodologies for evaluating the perceptual and perceptual/decision making aspects of displays used in the control rooms of nuclear power plants. This NRC funded study focuses upon the Safety Parameter Display System (SPDS) and relates the utility of the display to objective performance and preference measures obtained in experimental conditions. The first condition is a traditional laboratory setting where classical experimental methodologies can be employed. The second condition is an interactive control room simulation where the operator's performance is assessed while he/she operates the simulator. The third condition is a rating scale designed to assess operator preferences and opinions regarding a variety of display formats. The goal of this study is the development of a cost-efficient display evaluation methodology which correlates highly with the operator's ability to control a plant

  19. Phenotypic performance of transgenic potato (Solanum tuberosum L.) plants with pyramided rice cystatin genes (OCI and OCII)

    Science.gov (United States)

    The evaluation of transgenic plants commonly carried out under controlled conditions in culture rooms and greenhouses can give valuable information about the influence of introduced genes on transgenic plant phenotype. However, an overall assessment of plant performance can only be made by testing t...

  20. Remote maintenance demonstration tests at a pilot plant for high level waste vitrification

    International Nuclear Information System (INIS)

    Selig, M.

    1984-01-01

    The remote maintenance and replacement technique designed for a radioactive vitrification plant have been developed and tested in a full scale handling mockup and in an inactive pilot plants by the Central Engineering Department of the Karlsruhe Nuclear Research Center. As a result of the development work and the tests it has been proved that the remote maintenance technique and remote handling equipment can be used without any technical problems and are suited for application in a radioactive waste vitrification plant