WorldWideScience

Sample records for demonstrated potent activity

  1. The Second-Generation Exportin-1 Inhibitor KPT-8602 Demonstrates Potent Activity against Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Vercruysse, Thomas; De Bie, Jolien; Neggers, Jasper E; Jacquemyn, Maarten; Vanstreels, Els; Schmid-Burgk, Jonathan L; Hornung, Veit; Baloglu, Erkan; Landesman, Yosef; Senapedis, William; Shacham, Sharon; Dagklis, Antonis; Cools, Jan; Daelemans, Dirk

    2016-10-25

    Purpose: Human exportin-1 (XPO1) is the key nuclear-cytoplasmic transport protein that exports different cargo proteins out of the nucleus. Inducing nuclear accumulation of these proteins by inhibiting XPO1 causes cancer cell death. First clinical validation of pharmacological inhibition of XPO1 was obtained with the Selective Inhibitor of Nuclear Export (SINE) compound selinexor (KPT-330) demonstrating activity in phase-II/IIb clinical trials when dosed 1 to 3 times weekly. The second-generation SINE compound KPT-8602 shows improved tolerability and can be dosed daily. Here, we investigate and validate the drug-target interaction of KPT-8602 and explore its activity against acute lymphoblastic leukemia (ALL).Experimental Design: We examined the effect of KPT-8602 on XPO1 function and XPO1-cargo as well as on a panel of leukemia cell lines. Mutant XPO1 leukemia cells were designed to validate KPT-8602's drug-target interaction. In vivo, anti-ALL activity was measured in a mouse ALL model and patient-derived ALL xenograft models.Results: KPT-8602 induced caspase-dependent apoptosis in a panel of leukemic cell lines in vitro Using CRISPR/Cas9 genome editing, we demonstrated the specificity of KPT-8602 for cysteine 528 in the cargo-binding groove of XPO1 and validated the drug target interaction. In vivo, KPT-8602 showed potent anti-leukemia activity in a mouse ALL model as well as in patient-derived T- and B-ALL xenograft models without affecting normal hematopoiesis.Conclusions: KPT-8602 is highly specific for XPO1 inhibition and demonstrates potent anti-leukemic activity supporting clinical application of the second-generation SINE compound for the treatment of ALL. Clin Cancer Res; 1-14. ©2016 AACR.

  2. Tocotrienol-Rich Fraction from Rice Bran Demonstrates Potent Radiation Protection Activity

    Directory of Open Access Journals (Sweden)

    Kimberly J. Krager

    2015-01-01

    Full Text Available The vitamin E analogs δ-tocotrienol (DT3 and γ-tocotrienol (GT3 have significant protective and mitigative capacity against the detrimental effects of ionizing radiation (IR. However, the expense of purification limits their potential use. This study examined the tocotrienol-rich fraction of rice bran (TRFRB isolated from rice bran deodorizer distillate, a rice oil refinement waste product, to determine its protective effects against IR induced oxidative damage and H2O2. Several cell lines were treated with tocotrienols or TRFRB prior to or following exposure to H2O2 or IR. To determine the radioprotective capacity cells were analyzed for morphology, mitochondrial bioenergetics, clonogenic survival, glutathione oxidation, cell cycle, and migration rate. TRFRB displayed similar antioxidant activity compared to pure tocotrienols. Cells pretreated with TRFRB or DT3 exhibited preserved cell morphology and mitochondrial respiration when exposed to H2O2. Oxidized glutathione was decreased in TRFRB treated cells exposed to IR. TRFRB reversed mitochondrial uncoupling and protected cells migration rates following IR exposure. The protective antioxidant capacity of TRFRB treated cells against oxidative injury was similar to that of purified DT3. TRFRB effectively protects normal cells against IR induced injury suggesting that rice bran distillate may be an inexpensive and abundant alternate source.

  3. Antibody-Dependent Cell-Mediated Cytotoxicity Effector-Enhanced EphA2 Agonist Monoclonal Antibody Demonstrates Potent Activity against Human Tumors

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Bruckheimer

    2009-06-01

    Full Text Available EphA2 is a receptor tyrosine kinase that has been shown to be overexpressed in a variety of human tumor types. Previous studies demonstrated that agonist monoclonal antibodies targeting EphA2 induced the internalization and degradation of the receptor, thereby abolishing its oncogenic effects. In this study, the in vitro and in vivo antibody-dependent cell-mediated cytotoxicity (ADCC activity of EphA2 effector-enhanced agonist monoclonal antibodies was evaluated. With tumor cell lines and healthy human peripheral blood monocytes, the EphA2 antibodies demonstrated ∼80% tumor cell killing. In a dose-dependent manner, natural killer (NK cells were required for the in vitro ADCC activity and became activated as demonstrated by the induction of cell surface expression of CD107a. To assess the role of NK cells on antitumor efficacy in vivo, the EphA2 antibodies were evaluated in xenograft models in severe compromised immunodeficient (SCID mice (which have functional NK cells and monocytes and SCID nonobese diabetic (NOD mice (which largely lack functional NK cells and monocytes. Dosing of EphA2 antibody in the SCID murine tumor model resulted in a 6.2-fold reduction in tumor volume, whereas the SCID/nonobese diabetic model showed a 1.6-fold reduction over the isotype controls. Together, these results demonstrate that the anti-EphA2 monoclonal antibodies may function through at least two mechanisms of action: EphA2 receptor activation and ADCC-mediated activity. These novel EphA2 monoclonal antibodies provide additional means by which host effector mechanisms can be activated for selective destruction of EphA2-expressing tumor cells.

  4. Two new proanthocyanidin trimers isolated from Cistus incanus L. demonstrate potent anti-inflammatory activity and selectivity to cyclooxygenase isoenzymes inhibition.

    Science.gov (United States)

    Mansoor, K A; Matalka, K Z; Qa'dan, F S; Awad, R; Schmidt, M

    2016-09-01

    Two new proanthocyanidin trimers have been isolated from Cistus incanus herb; gallocatechin-(4α→6)-gallocatechin-(4α→8)-gallocatechin (compound 1) and epigallocatechin-3-O-gallate-(4ß→8)-epigallocatechin-3-O-gallate-(4ß→8)-gallocatechin (compound 2). The structures were determined on the basis of 1D- and 2D-NMR (HSQC, HMBC) of their peracetylated derivatives, MALDI-TOF-MS and by acid-catalysed degradation with phloroglucinol. A more abundant proanthocyanidin oligomer was also isolated, purified and its chemical constitution studied by (13)C-NMR and phloroglucinol degradation. The mean molecular weight of the polymer was estimated to be about 7 to 8 flavan-3-ol-units with a ratio of procyanidin : prodelphinidin units at 1:5, some of which are derivatised by gallic acid. Water extract and higher oligomeric proanthocyanidin fractions of C. incanus significantly inhibited TPA-induced oedema when applied topically at doses of 0.5 and 1 mg/ear in mice. Furthermore, the extracts and the pure compounds inhibited COX-1 and COX-2 activities. In addition, compound 2 exhibited an IC50 of 4.5 μM against COX-2 indicating its high selectivity towards COX-2.

  5. Benzoylphenylurea sulfur analogues with potent antitumor activity.

    Science.gov (United States)

    Hallur, Gurulingappa; Jimeno, Antonio; Dalrymple, Susan; Zhu, Tao; Jung, M Katherine; Hidalgo, Manuel; Isaacs, John T; Sukumar, Saraswati; Hamel, Ernest; Khan, Saeed R

    2006-04-06

    A novel series of BPU analogues were synthesized and evaluated for antitumor activity. In particular, BPU sulfur analogues 6n and 7d were shown to possess up to 10-fold increased potency, when compared to 1 (NSC-639829), against cancer cell lines. 6n was more effective than 1 in causing apoptosis of MCF-7 cells. When compared to other drugs with a similar mechanism of action, 6n retained significant ability to inhibit tubulin assembly, with an IC(50) of 2.1 microM.

  6. Tricin from a malagasy connaraceous plant with potent antihistaminic activity.

    Science.gov (United States)

    Kuwabara, Hidenori; Mouri, Kyoko; Otsuka, Hideaki; Kasai, Ryoji; Yamasaki, Kazuo

    2003-09-01

    The bioassay-guided separation of a Malagasy plant, Agelaea pentagyna, led to the isolation of a flavonoid, tricin (1), with potent inhibitory activity toward exocytosis from antigen-stimulated rat leukemia basophils (RBL-2H3). The structure-activity relationships among structurally related natural and synthetic flavonoids are also discussed.

  7. Demonstration of Active Combustion Control

    Science.gov (United States)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  8. Discovery of highly potent and selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonists containing an isoxazolylpyridine ether scaffold that demonstrate antidepressant-like activity. Part II.

    Science.gov (United States)

    Yu, Li-Fang; Eaton, J Brek; Fedolak, Allison; Zhang, Han-Kun; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J; Kozikowski, Alan P

    2012-11-26

    In our continued efforts to develop α4β2-nicotinic acetylcholine receptor (nAChR) partial agonists as novel antidepressants having a unique mechanism of action, structure-activity relationship (SAR) exploration of certain isoxazolylpyridine ethers is presented. In particular, modifications to both the azetidine ring present in the starting structure 4 and its metabolically liable hydroxyl side chain substituent have been explored to improve compound druggability. The pharmacological characterization of all new compounds has been carried out using [(3)H]epibatidine binding studies together with functional assays based on (86)Rb(+) ion flux measurements. We found that the deletion of the metabolically liable hydroxyl group or its replacement by a fluoromethyl group not only maintained potency and selectivity but also resulted in compounds showing antidepressant-like properties in the mouse forced swim test. These isoxazolylpyridine ethers appear to represent promising lead candidates in the design of innovative chemical tools containing reporter groups for imaging purposes and of possible therapeutics.

  9. An armed oncolytic adenovirus system,ZD55-gene,demonstrating potent antitumoral efficacy

    Institute of Scientific and Technical Information of China (English)

    ZI LAI ZHANG; WEI GUO ZOU; CHUN XIA LUO; BING HUA LI; JIN HUI WANG; LAN YING SUN; QI JUN QIAN; XIN YUAN LIU

    2003-01-01

    ONYXONYX-015 is an attractive therapeutic adenovirus for cancer because it can selectively replicate in tumor cells and kill them.To date,clinicaltrials of this adenovirus have demonstrated marked safety but not potent enough when it was used alone.In this paper,we put forward a novel concept of Gene-Viro Therapy strategy and in this way,we constructed an armed therapeutic onco1ytic adenovirus system,ZD55-gene,whichis not only deleted of E1B 55-kD gene similar to ONYX-015,but also armed with foreign antitumor gene.ZD55-gene exhibited similar cytopathic effects and replication Kinetics to that of ONYX-015 in vitro.Importantly,the carried gene 1s expressed and the expression level can increase with the replication of virus.Consequently,a significant antitumoral efficacy was observed when ZD55-CD/5-FU was used as an example in nude mice with subcutaneous human SW620 colon cancer.Our data demonstratedthat ZD55-gene,which utilizingthe Gene-ViroTherapy strategy,is more efficacious than each individual component in vivo.

  10. Potent Systemic Anticancer Activity of Adenovirally Expressed EGFR-Selective TRAIL Fusion Protein

    NARCIS (Netherlands)

    Bremer, Edwin; van Dam, Gooitzen M.; de Bruyn, Marco; van Riezen, Manon; Dijkstra, Marike; Kamps, Gera; Helfrich, Wijnand; Haisma, Hidde

    2008-01-01

    Previously, we demonstrated potent tumor cell-selective pro-apoptotic activity of scFv425:sTRAIL, a recombinant fusion protein comprised of EGFR-directed antibody fragment (scFv425) genetically fused to human soluble TNF-related apoptosis-inducing ligand (sTRAIL). Here, we report on the promising th

  11. Deoxygedunin, a natural product with potent neurotrophic activity in mice.

    Directory of Open Access Journals (Sweden)

    Sung-Wuk Jang

    Full Text Available Gedunin, a family of natural products from the Indian neem tree, possess a variety of biological activities. Here we report the discovery of deoxygedunin, which activates the mouse TrkB receptor and its downstream signaling cascades. Deoxygedunin is orally available and activates TrkB in mouse brain in a BDNF-independent way. Strikingly, it prevents the degeneration of vestibular ganglion in BDNF -/- pups. Moreover, deoxygedunin robustly protects rat neurons from cell death in a TrkB-dependent manner. Further, administration of deoxygedunin into mice displays potent neuroprotective, anti-depressant and learning enhancement effects, all of which are mediated by the TrkB receptor. Hence, deoxygedunin imitates BDNF's biological activities through activating TrkB, providing a powerful therapeutic tool for treatment of various neurological diseases.

  12. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity.

    Directory of Open Access Journals (Sweden)

    Paula Monteiro Souza

    Full Text Available The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05 tyrosinase inhibitory activity exhibiting the IC₅₀ value of 11.88 µg/mL, compared to kojic acid (IC₅₀ value of 13.14 µg/mL. Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC₅₀ value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations.

  13. Acylthiourea, acylurea, and acylguanidine derivatives with potent hedgehog inhibiting activity.

    Science.gov (United States)

    Solinas, Antonio; Faure, Hélène; Roudaut, Hermine; Traiffort, Elisabeth; Schoenfelder, Angèle; Mann, André; Manetti, Fabrizio; Taddei, Maurizio; Ruat, Martial

    2012-02-23

    The Smoothened (Smo) receptor is the major transducer of the Hedgehog (Hh) signaling pathway. On the basis of the structure of the acylthiourea Smo antagonist (MRT-10), a number of different series of analogous compounds were prepared by ligand-based structural optimization. The acylthioureas, originally identified as actives, were converted into the corresponding acylureas or acylguanidines. In each series, similar structural trends delivered potent compounds with IC(50) values in the nanomolar range with respect to the inhibition of the Hh signaling pathway in various cell-based assays and of BODIPY-cyclopamine binding to human Smo. The similarity of their biological activities, in spite of discrete structural differences, may reveal the existence of hydrogen-bonding interactions between the ligands and the receptor pocket. Biological potency of compounds 61, 72, and 86 (MRT-83) were comparable to those of the clinical candidate GDC-0449. These findings suggest that these original molecules will help delineate Smo and Hh functions and can be developed as potential anticancer agents.

  14. Synthetic galactomannans with potent anti-HIV activity.

    Science.gov (United States)

    Budragchaa, Davaanyam; Bai, Shiming; Kanamoto, Taisei; Nakashima, Hideki; Han, Shuqin; Yoshida, Takashi

    2015-10-05

    Ring-opening polymerization of a new 1,6-anhydro disaccharide monomer, 1, 6-anhydro-2, 3-di-O-benzyl-4-O-(2', 3', 4', 6'-tetra-O-benzyl-α-d-galactopyranosyl)-α-d-mannopyranose, was carried out using PF5 as a catalyst under high vacuum at -60°C to give galactose branched mannopyranan (synthetic galactomannan), 4-O-α-d-galactopyranosyl-(1→6)-α-d-mannopyranan, after debenzylation with Na in liquid NH3. The ring-opening copolymerization with 1, 6-anhydro-tri-O-benzyl-α-d-mannopyranose in various feeds was also performed to give synthetic galactomannans with various proportions of galactose branches. After sulfation, sulfated synthetic galactomannans were found to have anti-HIV activity and cytotoxicity as high and low as those of standard curdlan and dextran sulfates, respectively, which are potent anti-HIV sulfated polysaccharides with low cytotoxicity. The anti-HIV mechanism of sulfated synthetic galactomannans used by poly-l-lysine as a model peptide of the HIV surface protein was estimated by using SPR, DSL, and zeta potential measurements, revealing the electrostatic interaction between negatively charged sulfate groups and positively charged amino groups.

  15. The analgesic activity of Bestatin as a potent APN inhibitor

    Directory of Open Access Journals (Sweden)

    Mei-Rong Jia

    2010-06-01

    Full Text Available Bestatin, a small molecular weight dipeptide, is a potent inhibitor of various aminopeptidases as well as LTA4 hydrolase. Various physiological functions of Bestatin have been identified, viz.: (1 an immunomodifier for enhancing the proliferation of normal human bone marrow granulocyte–macrophage progenitor cells to form CFU-GM colonies; Bestatin exerts a direct stimulating effect on lymphocytes via its fixation on the cell surface and an indirect effect on monocytes via aminopeptidase B inhibition of tuftsin catabolism; (2 an immunorestorator and curative or preventive agent for spontaneous tumor; Bestatin alone or its combination with chemicals can prolongate the disease-free interval and survival period in adult acute or chronic leukemia, therefore, it was primarily marketed in 1987 in Japan as an anticancer drug and servers as the only marketed inhibitor of Aminopeptidase N (APN/CD13 to cure leukemia to date; (3 a pan-hematopoietic stimulator and restorator; Bestatin promotes granulocytopoiesis and thrombocytopoiesis in vitro and restores them in myelo-hypoplastic men; (4 an inhibitor of several natural opioid peptides. Based on the knowledge that APN can cleave several bioactive neuropeptides such as Met-enkaphalins, Leu-enkaphalins, β-Endorphin, and so on, the antiaminopeptidase action of Bestatin also allows it to protect endopeptides against their catabolism, exhibiting analgesic activity. Although many scientific studies and great accomplishments have been achieved in this field, a large amount of problems are unsolved. This article reviews the promising results obtained for future development of the analgesic activity of Bestatin that can be of vital interest in a number of severe and chronic pain syndromes.

  16. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells.

    Science.gov (United States)

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T C; Imren, Suzan; Lam, Vivian; Poon, Grace F T; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William; Krystal, Gerald

    2016-05-26

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light-inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation-dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell-depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML.

  17. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase With Potent Antimelanoma Activity

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.-L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.

    2009-05-26

    BRAF{sup V600E} is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting 'active' protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf{sup V600E} with an IC{sub 50} of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf{sup V600E} kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf{sup V600E}-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf{sup V600E}-positive cells. In B-Raf{sup V600E}-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf{sup V600E}-driven tumors.

  18. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro

    Science.gov (United States)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.

    2012-09-01

    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  19. Novel Radiolytic Rotenone Derivative, Rotenoisin B with Potent Anti-Carcinogenic Activity in Hepatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Srilatha Badaboina

    2015-07-01

    Full Text Available Rotenone, isolated from roots of derris plant, has been shown to possess various biological activities, which lead to attempting to develop a potent drug against several diseases. However, recent studies have demonstrated that rotenone has the potential to induce several adverse effects such as a neurodegenerative disease. Radiolytic transformation of the rotenone with gamma-irradiation created a new product, named rotenoisin B. The present work was designed to investigate the anticancer activity of rotenoisin B with low toxicity and its molecular mechanism in hepatic cancer cells compared to a parent compound, rotenone. Our results showed rotenoisin B inhibited hepatic cancer cells’ proliferation in a dose dependent manner and increased in apoptotic cells. Interestingly, rotenoisin B showed low toxic effects on normal cells compared to rotenone. Mitochondrial transmembrane potential has been decreased, which leads to cytochrome c release. Down regulation of anti-apoptotic Bcl-2 levels as well as the up regulation of proapoptotic Bax levels were observed. The cleaved PARP (poly ADP-ribose polymerase level increased as well. Moreover, phosphorylation of extracellular signal regulated kinase (ERK and p38 slightly up regulated and intracellular reactive oxygen species (ROS increased as well as cell cycle arrest predominantly at the G2/M phase observed. These results suggest that rotenoisin B might be a potent anticancer candidate similar to rotenone in hepatic cancer cells with low toxicity to normal cells even at high concentrations compared to rotenone.

  20. Synthesis and Evaluation of 2,4-Disubstituted Quinazoline Derivatives with Potent Anti-Angiogenesis Activities

    Directory of Open Access Journals (Sweden)

    Guangjin Yu

    2014-06-01

    Full Text Available A series of 2,4-disubstituted quinazoline derivatives were designed and synthesized. The biological results showed that most of quinazoline derivatives exhibited potent antiproliferative activities against a panel of three tumor cell lines and a good inhibitory effect against the adhesion and migration of human umbilical vein endothelial cells (HUVECs. Among these compounds, 11d was the most potent agent, that also exhibited the highest anti-angiogenesis activities in the chick embryo chorioallantoic membrane (CAM assay.

  1. Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1.

    Science.gov (United States)

    Zou, Li-Wei; Dou, Tong-Yi; Wang, Ping; Lei, Wei; Weng, Zi-Miao; Hou, Jie; Wang, Dan-Dan; Fan, Yi-Ming; Zhang, Wei-Dong; Ge, Guang-Bo; Yang, Ling

    2017-01-01

    Human carboxylesterase 1 (hCE1), one of the most important serine hydrolases distributed in liver and adipocytes, plays key roles in endobiotic homeostasis and xenobiotic metabolism. This study aimed to find potent and selective inhibitors against hCE1 from phytochemicals and their derivatives. To this end, a series of natural triterpenoids were collected and their inhibitory effects against human carboxylesterases (hCEs) were assayed using D-Luciferin methyl ester (DME) and 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB) as specific optical substrate for hCE1, and hCE2, respectively. Following screening of a series of natural triterpenoids, oleanolic acid (OA), and ursolic acid (UA) were found with strong inhibitory effects on hCE1 and relative high selectivity over hCE2. In order to get the highly selective and potent inhibitors of hCE1, a series of OA and UA derivatives were synthesized from OA and UA by chemical modifications including oxidation, reduction, esterification, and amidation. The inhibitory effects of these derivatives on hCEs were assayed and the structure-activity relationships of tested triterpenoids as hCE1 inhibitors were carefully investigated. The results demonstrated that the carbonyl group at the C-28 site is essential for hCE1 inhibition, the modifications of OA or UA at this site including esters, amides and alcohols are unbeneficial for hCE1 inhibition. In contrast, the structural modifications on OA and UA at other sites, such as converting the C-3 hydroxy group to 3-O-β-carboxypropionyl (compounds 20 and 22), led to a dramatically increase of the inhibitory effects against hCE1 and very high selectivity over hCE2. 3D-QSAR analysis of all tested triterpenoids including OA and UA derivatives provide new insights into the fine relationships linking between the inhibitory effects on hCE1 and the steric-electrostatic properties of triterpenoids. Furthermore, both inhibition kinetic analyses and docking simulations

  2. Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1

    Directory of Open Access Journals (Sweden)

    Li-Wei Zou

    2017-06-01

    Full Text Available Human carboxylesterase 1 (hCE1, one of the most important serine hydrolases distributed in liver and adipocytes, plays key roles in endobiotic homeostasis and xenobiotic metabolism. This study aimed to find potent and selective inhibitors against hCE1 from phytochemicals and their derivatives. To this end, a series of natural triterpenoids were collected and their inhibitory effects against human carboxylesterases (hCEs were assayed using D-Luciferin methyl ester (DME and 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB as specific optical substrate for hCE1, and hCE2, respectively. Following screening of a series of natural triterpenoids, oleanolic acid (OA, and ursolic acid (UA were found with strong inhibitory effects on hCE1 and relative high selectivity over hCE2. In order to get the highly selective and potent inhibitors of hCE1, a series of OA and UA derivatives were synthesized from OA and UA by chemical modifications including oxidation, reduction, esterification, and amidation. The inhibitory effects of these derivatives on hCEs were assayed and the structure-activity relationships of tested triterpenoids as hCE1 inhibitors were carefully investigated. The results demonstrated that the carbonyl group at the C-28 site is essential for hCE1 inhibition, the modifications of OA or UA at this site including esters, amides and alcohols are unbeneficial for hCE1 inhibition. In contrast, the structural modifications on OA and UA at other sites, such as converting the C-3 hydroxy group to 3-O-β-carboxypropionyl (compounds 20 and 22, led to a dramatically increase of the inhibitory effects against hCE1 and very high selectivity over hCE2. 3D-QSAR analysis of all tested triterpenoids including OA and UA derivatives provide new insights into the fine relationships linking between the inhibitory effects on hCE1 and the steric-electrostatic properties of triterpenoids. Furthermore, both inhibition kinetic analyses and docking

  3. Making Waves: Seismic Waves Activities and Demonstrations

    Science.gov (United States)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  4. Guidance manual for conducting technology demonstration activities

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  5. Tannins from Canarium album with potent antioxidant activity

    Institute of Scientific and Technical Information of China (English)

    Liang-liang ZHANG; Yi-ming LIN

    2008-01-01

    The contents of total phenolics and extractable condensed tannins in the leaves,twigs and stem bark of Canarium album were determined.The structural heterogeneity of condensed tannins from stem bark was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance (NMR) analyses.The results show the predominance of signals representative of procyanidins and prodelphinidins.In addition,epicatechin and epigallocatechin polymers with galloylated procyanidin or prodelphinidin were also observed.The tannins were screened for their potential antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) model systems.Tannins extracted from leaves,twigs and stem bark all showed a very good DPPH radical scavenging activity and ferric reducing power.

  6. Nobiletin: a citrus flavonoid displaying potent physiological activity.

    Science.gov (United States)

    Noguchi, Shuji; Atsumi, Haruka; Iwao, Yasunori; Kan, Toshiyuki; Itai, Shigeru

    2016-02-01

    Nobiletin [systematic name: 2-(3,4-dimethoxyphenyl)-5,6,7,8-tetramethoxy-4H-chromen-4-one; C21H22O8] is a flavonoid found in citrus peels, and has been reported to show a wide range of physiological properties, including anti-inflammatory, anticancer and antidementia activities. We have solved the crystal structure of nobiletin, which revealed that the chromene and arene rings of its flavone moiety, as well as the two methoxy groups bound to its arene ring, were coplanar. In contrast, the C atoms of the four methoxy groups bound to the chromene ring are out of the plane, making the molecule conformationally chiral. A comparison of the crystal structures of nobiletin revealed that it could adopt a variety of different conformations through rotation of the covalent bond between the chromene and arene rings, and the orientations of methoxy groups bound to the chromene ring.

  7. Synthesis and structure-activity relationships of potent 4-fluoro-2-cyanopyrrolidine dipeptidyl peptidase IV inhibitors.

    Science.gov (United States)

    Fukushima, Hiroshi; Hiratate, Akira; Takahashi, Masato; Mikami, Ayako; Saito-Hori, Masako; Munetomo, Eiji; Kitano, Kiyokazu; Chonan, Sumi; Saito, Hidetaka; Suzuki, Akio; Takaoka, Yuji; Yamamoto, Koji

    2008-04-01

    Dipeptidyl peptidase IV (DPP-IV) inhibitors are promising antidiabetic drugs, and several drugs are in the developmental stage. We previously reported that the introduction of fluorine to the 4-position of 2-cyanopyrrolidine enhanced the DPP-IV inhibitory effect. In the present report, we examined the structure-activity relationship (SAR) of 2-cyano-4-fluoropyrrolidine with N-substituted glycine at the 1-position. We report the identification of a potent and stable DPP-IV inhibitor (TS-021) with a long-term persistent plasma drug concentration and a potent antihyperglycemic activity.

  8. Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity.

    Science.gov (United States)

    Wang, Jian; Zhang, Li; Teng, Kunling; Sun, Shutao; Sun, Zhizeng; Zhong, Jin

    2014-04-01

    Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are widely produced by Gram-positive bacteria, including many species of the Bacillus group. In the present study, one novel gene cluster coding lantibiotic cerecidins was unveiled in Bacillus cereus strain As 1.1846 through genomic mining and PCR screening. The designated cer locus is different from that of conventional class II lantibiotics in that it included seven tandem precursor cerA genes, one modification gene (cerM), two processing genes (cerT and cerP), one orphan regulator gene (cerR), and two immunity genes (cerF and cerE). In addition, one unprecedented quorum sensing component, comQXPA, was inserted between cerM and cerR. The expression of cerecidins was not detected in this strain of B. cereus, which might be due to repressed transcription of cerM. We constitutively coexpressed cerA genes and cerM in Escherichia coli, and purified precerecidins were proteolytically processed with the endoproteinase GluC and a truncated version of putative serine protease CerP. Thus, two natural variants of cerecidins A1 and A7 were obtained which contained two terminal nonoverlapping thioether rings rarely found in lantibiotics. Both cerecidins A1 and A7 were active against a broad spectrum of Gram-positive bacteria. Cerecidin A7, especially its mutant Dhb13A, showed remarkable efficacy against multidrug-resistant Staphylococcus aureus (MDRSA), vancomycin-resistant Enterococcus faecalis (VRE), and even Streptomyces.

  9. An Undergraduate Laboratory Activity Demonstrating Bacteriophage Specificity

    Directory of Open Access Journals (Sweden)

    Mary E. Allen

    2013-02-01

    Full Text Available Bacteriophage are among the most diverse and numerous microbes inhabiting our planet. Yet many laboratory activities fail to engage students in meaningful exploration of their diversity, unique characteristics, and abundance. In this curriculum activity students use a standard plaque assay to enumerate bacteriophage particles from a natural sample and use the scientific method to address questions about host specificity and diversity. A raw primary sewage sample is enriched for bacteriophage using hosts in the family Enterobacteriaceae. Students hypothesize about host specificity and use quantitative data (serial dilution and plaque assay to test their hypotheses. Combined class data also help them answer questions about phage diversity. The exercise was field tested with a class of 47 students using pre- and posttests. For all learning outcomes posttest scores were higher than pretest scores at or below p = 0.01. Average individualized learning gain (G was also calculated for each learning outcome. Students’ use of scientific language in reference to bacteriophage and host interaction significantly improved (p = 0.002; G = 0.50. Improved means of expression helped students construct better hypotheses on phage host specificity (G = 0.31, p = 0.01 and to explain the plaque assay method (G = 0.33, p = 0.002. At the end of the exercise students also demonstrated improved knowledge and understanding of phage specificity as related to phage therapy in humans (p < 0.001; G = 51.

  10. Discovery of indole-based tetraarylimidazoles as potent inhibitors of urease with low antilipoxygenase activity.

    Science.gov (United States)

    Naureen, Sadia; Chaudhry, Faryal; Asif, Nadia; Munawar, Munawar Ali; Ashraf, Muhammad; Nasim, Faizul Hassan; Arshad, Humera; Khan, Misbahul Ain

    2015-09-18

    A series of tetraarylimidazoles (5A-5O) were prepared by one pot four component condensation reactions of 2-arylindole-3-carbaldehydes, substituted anilines, benzil and ammonium acetate in acetic acid. The synthesized compounds exhibited potent antiurease activity with IC50 values ranging from 0.12 ± 0.06 μM to 29.12 ± 0.18 μM as compared with thiourea. However, low inhibition profiles were observed for lipoxygenase. The data show that tetraarylimidazoles containing a substituted 2-penylindole have emerged as a new class of potent inhibitors of urease enzyme.

  11. Mirror-image organometallic osmium arene iminopyridine halido complexes exhibit similar potent anticancer activity.

    Science.gov (United States)

    Fu, Ying; Soni, Rina; Romero, María J; Pizarro, Ana M; Salassa, Luca; Clarkson, Guy J; Hearn, Jessica M; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J

    2013-11-04

    Four chiral Os(II) arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 2, (S)-ImpyMe: N-(2-pyridylmethylene)-(S)-1-phenylethylamine) and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 4, (R)-ImpyMe: N-(2-pyridylmethylene)-(R)-1-phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 1, and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 3. The two iodido complexes were evaluated in the National Cancer Institute 60-cell-line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D-758116/1) and 4 (NSC: D-758118/1), share surprisingly similar cancer cell selectivity patterns with the anti-microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4, an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer-hydrogenation catalysts for imine reduction.

  12. Larvicidal activity of Cymbopogon citratus (DC) Stapf. and Croton macrostachyus Del. against Anopheles arabiensis Patton, a potent malaria vector.

    Science.gov (United States)

    Karunamoorthi, K; Ilango, K

    2010-01-01

    Methanol leaf extracts of two Ethiopian traditional medicinal plants viz., Lomisar [vernacular name (local native language, Amharic); Cymbopogon citratus (DC) Stapf. (Poaceae)] and Bisana [vernacular name (local native language, Amharic); Croton macrostachyus Del. (Euphorbiaceae)] were screened for larvicidal activity against late third instar larvae of Anopheles arabiensis Patton, a potent malaria vector in Ethiopia. The larval mortality was observed 24 h of post treatment. Both plant extracts demonstrated varying degrees of larvicidal activity against Anopheles arabiensis. Cymbopogon citratus extract has exhibited potent larvicidal activity than Croton macrostachyus at lower concentrations. The LC50 and LC90 values of Cymbopogon citratus were 74.02 and 158.20 ppm, respectively. From this data, a chi-square value 2.760 is significant at the P < 0.05 level. While, the LC50 and LC90 values of Croton macrostachyus were 89.25 and 224.98 ppm, respectively and the chi-square value 1.035 is significant at the P < 0.05 level. The present investigation establishes that these plant extracts could serve as potent mosquito larvicidal agents against Anopheles arabiensis. However, their mode of actions and larvicidal efficiency under the field conditions should be scrutinized and determined in the near future.

  13. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yang-Chang [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China); Sureshbabu, Munisamy; Fang, Yao-Ching; Wu, Yi-Hsiu [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Lan, Yu-Hsuan [School of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Chang, Fang-Rong [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Ya-Wen [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2013-02-01

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changes in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.

  14. Allorestricted cytotoxic T cells specific for human CD45 show potent antileukemic activity.

    Science.gov (United States)

    Amrolia, Persis J; Reid, Steven D; Gao, Liquan; Schultheis, Beate; Dotti, Gianpietro; Brenner, Malcolm K; Melo, Junia V; Goldman, John M; Stauss, Hans J

    2003-02-01

    Recent advances have made haploidentical transplantation for leukemia feasible, but the rigorous T-cell depletion used contributes to the high relapse rates observed. We have attempted to improve the graft-versus-leukemia (GVL) effect by generating allorestricted cytotoxic T lymphocytes (CTLs) directed against human CD45. Such CTLs should recognize patient hematopoietic cells including leukemia, enhancing donor cell engraftment and improving the GVL effect, but they should not recognize host nonhematopoietic tissues or donor cells from the graft. Using the T2 binding assay, 4 CD45-derived peptides were found to bind HLA-A2 molecules. These peptides were used to generate cytotoxic T-cell lines from HLA-A2(-) donors by sequential stimulation with peptide-pulsed HLA-A2(+) stimulators, and the lines obtained were screened for peptide-specific cytotoxicity. Using one of these peptides (P1218), it was possible to generate peptide-specific, allorestricted CTLs in 3 of 7 responders. P1218-specific CTL lines show potent cytotoxicity against hematopoietic cell lines coexpressing HLA-A2 and CD45 but not CD45 loss variants. Studies with stable transfectants of 293 cells demonstrated recognition by P1218-specific CTLs of endogenously expressed CD45. Likewise P1218-specific CTLs recognized peripheral blood mononuclear cells (PBMCs) from HLA-A2(+) patients with chronic myeloid leukemia (CML) and leukemic blasts in HLA-A2(+) patients with acute myeloid leukemia (AML), but they were unable to lyse HLA-A2(+) fibroblasts or HLA-A2(-) normal PBMCs. Coculture of CD34(+) PBMCs and bone marrow mononuclear cells (BMMCs) with P1218-specific CTL significantly inhibited colony-forming unit-granulocyte macrophage (CFU-GM) formation in HLA-A2(+) healthy controls and CML patients but resulted in no significant inhibition in HLA-A2(-) healthy controls. These studies demonstrate that P1218-specific cytotoxic T lymphocytes (CTLs) have potent activity against leukemic progenitors and suggest that

  15. Metofluthrin: a potent new synthetic pyrethroid with high vapor activity against mosquitoes.

    Science.gov (United States)

    Ujihara, Kazuya; Mori, Tatsuya; Iwasaki, Tomonori; Sugano, Masayo; Shono, Yoshinori; Matsuo, Noritada

    2004-01-01

    (1R)-trans-Norchrysanthemic acid fluorobenzyl esters are synthesized and their structure-activity relationships are discussed. These esters show outstanding insecticidal activity against mosquitoes. In particular, the 2,3,5,6-tetrafluoro-4-methoxymethylbenzyl analog (metofluthrin) exhibits the highest potency, being approximately forty times as potent as d-allethrin in a mosquito coil formulation when tested against southern house mosquitoes (Culex quinquefasciatus). Metofluthrin also exhibits a significant vapor action at room temperature.

  16. Organotins Are Potent Activators of PPARγ and Adipocyte Differentiation in Bone Marrow Multipotent Mesenchymal Stromal Cells

    OpenAIRE

    2011-01-01

    Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator–activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazo...

  17. Novel iodoacetamido benzoheterocyclic derivatives with potent antileukemic activity are inhibitors of STAT5 phosphorylation

    Science.gov (United States)

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Prencipe, Filippo; Lopez-Cara, Carlota; Rondanin, Riccardo; Simoni, Daniele; Hamel, Ernest; Grimaudo, Stefania; Pipitone, Rosaria Maria; Meli, Maria; Tolomeo, Manlio

    2015-01-01

    Signal Transducer and Activator of Transcription 5 (STAT5) protein, a component of the STAT family of signaling proteins, is considered to be an attractive therapeutic target because of its involvement in the progression of acute myeloid leukemia. In an effort to discover potent molecules able to inhibit the phosphorylation-activation of STAT5, twenty-two compounds were synthesized and evaluated on the basis of our knowledge of the activity of 2-(3′,4′,5′-trimethoxybenzoyl)-3-iodoacetamido-6-methoxybenzo[b]furan derivative 1 as a potent STAT5 inhibitor. Most of these molecules, structurally related to compound 1, were characterized by the presence of a common 3′,4′,5′-trimethoxybenzoyl moiety at the 2-position of different benzoheterocycles such as benzo[b]furan, benzo[b]thiophene, indole and N-methylindole. Effects on biological activity of the iodoacetamido group and of different moieties (methyl and methoxy) at the C-3 to C-7 positions were examined. In the series of benzo[b]furan derivatives, moving the iodoacetylamino group from the C-4 to the C-5 or C-6 positions did not significantly affect antiproliferative activity. Compounds 4, 15, 20 and 23 blocked STAT5 signals and induced apoptosis of K562 BCR–ABL positive cells. For compound 23, the trimethoxybenzoyl moiety at the 2-position of the benzo[b]furan core was not essential for potent inhibition of STAT5 activation. PMID:26629859

  18. A novel, potent, oral active and safe antinociceptive pyrazole targeting kappa opioid receptors.

    Science.gov (United States)

    Trevisan, Gabriela; Rossato, Mateus F; Walker, Cristiani I B; Oliveira, Sara M; Rosa, Fernanda; Tonello, Raquel; Silva, Cássia R; Machado, Pablo; Boligon, Aline A; Martins, Marcos A P; Zanatta, Nilo; Bonacorso, Hélio G; Athayde, Margareth L; Rubin, Maribel A; Calixto, João B; Ferreira, Juliano

    2013-10-01

    Pyrazole compounds are an intriguing class of compounds with potential analgesic activity; however, their mechanism of action remains unknown. Thus, the goal of this study was to explore the antinociceptive potential, safety and mechanism of action of novel 1-pyrazole methyl ester derivatives, which were designed by molecular simplification, using in vivo and in vitro methods in mice. First, tree 1-pyrazole methyl ester derivatives (DMPE, MPFE, and MPCIE) were tested in the capsaicin test and all presented antinociceptive effect; however the MPClE (methyl 5-trichloromethyl-3-methyl-1H-pyrazole-1-carboxylate) was the most effective. Thus, we selected this compound to assess the effects and mechanisms in subsequent pain models. MPCIE produced antinociception when administered by oral, intraperitoneal, intrathecal and intraplantar routes and was effective in the capsaicin and the acetic acid-induced nociception tests. Moreover, this compound reduced the hyperalgesia in diverse clinically-relevant pain models, including postoperative, inflammatory, and neuropathic nociception in mice. The antinociception produced by orally administered MPClE was mediated by κ-opioid receptors, since these effects were prevented by systemically pre-treatment with naloxone and the κ-opioid receptor antagonist nor-binaltorphimine. Moreover, MPCIE prevented binding of the κ-opioid ligand [(3)H]-CI-977 in vitro (IC₅₀ of 0.68 (0.32-1.4) μM), but not the TRPV1 ([(3)H]-resiniferatoxin) or the α₂-adrenoreceptor ([(3)H]-idazoxan) binding. Regarding the drug-induced side effects, oral administration of MPClE did not produce sedation, constipation or motor impairment at its active dose. In addition, MPCIE was readily absorbed after oral administration. Taken together, these results demonstrate that MPClE is a novel, potent, orally active and safe analgesic drug that targets κ-opioid receptors.

  19. Simple Activity Demonstrates Wind Energy Principles

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)

  20. Structural analysis of proanthocyanidins isolated from fruit stone of Chinese hawthorn with potent antityrosinase and antioxidant activity.

    Science.gov (United States)

    Chai, Wei-Ming; Chen, Chih-Min; Gao, Yu-Sen; Feng, Hui-Ling; Ding, Yu-Mei; Shi, Yan; Zhou, Han-Tao; Chen, Qing-Xi

    2014-01-08

    Proanthocyanidins were isolated from fruit stone of Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.). Their structures were analyzed and elucidated by methods of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS). The results demonstrated that these compounds are complicated mixtures of homo- and heteropolymers consisting of procyanidin/procyanidin gallate and prodelphinidin. They possessed structural heterogeneity in monomer units, polymer length, and interflavan linkage (A-type and B-type). Their antityrosinase and antioxidant activity were then investigated. The results revealed that they can inhibit tyrosinase activities, including the monophenolase activity and the diphenolase activity. In addition, proanthocyanidins possessed potent antioxidant activity. Our studies revealed that proanthocyanidins isolated from fruit stone of Chinese hawthorn may be applied in food, agriculture, pharmaceutical, and cosmetic industries.

  1. 8-hydroxydihydrochelerythrine and 8-hydroxydihydrosanguinarine with a potent acetylcholinesterase inhibitory activity from Chelidonium majus L.

    Science.gov (United States)

    Cho, Kyung-Mi; Yoo, Ick-Dong; Kim, Won-Gon

    2006-11-01

    Ethanol extract of the aerial portion of Chelidonium majus L. inhibited acetylcholinesterase (AChE) activity without a significant inhibition of butyrylcholinesterase (BuChE). Using mass spectrometry and NMR studies, three active constituents were isolated and identified: 8-hydroxydihydrochelerythrine (1), 8-hydroxydihydrosanguinarine (2), and berberine (3). Compounds 1-3 showed potent inhibitory activity against AChE, with IC50 (microM) values of 0.61-1.85. Compound 1 exhibited competitive and selective inhibition for AChE.

  2. Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases.

    Science.gov (United States)

    Knutson, Mitchell D; Leeuwenburgh, Christiaan

    2008-10-01

    Studies show that the plant polyphenol resveratrol can extend the life span of yeast, worms, flies, and fish. It also mitigates the metabolic dysfunction of mice fed high-fat diets. Resveratrol appears to mediate these effects partly by activating SIRT1, a deacetylase enzyme that regulates the activity of several transcriptional factors and enzymes responsive to nutrient availability. However, few foods contain resveratrol and humans metabolize it extensively, resulting in very low systemic bioavailability. Substantial research effort now focuses on identifying and testing more bioavailable and potent activators of SIRT1 for use as pharmacologic interventions in aging and age-related disorders.

  3. Cucurbitacins-type triterpene with potent activity on mouse embryonic fibroblast from Cucumis prophetarum, cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Seif-Eldin N Ayyad

    2011-01-01

    Full Text Available Background: Higher plants are considered as a well-known source of the potent anticancer metabolites with diversity of chemical structures. For instance, taxol is an amazing diterpene alkaloid had been lunched since 1990. Objective: To isolate the major compounds from the fruit extract of Cucumis prophetarum, Cucurbitaceae, which are mainly responsible for the bioactivities as anticancer. Materials and Methods: Plant material was shady air dried, extracted with equal volume of chloroform/methanol, and fractionated with different adsorbents. The structures of obtained pure compounds were elucidated with different spectroscopic techniques employing 1D ( 1 H and 13 C and 2D (COSY, HMQC and HMBC NMR (Nuclear Magnetic Resonance Spectrometry and ESI-MS (Eelectrospray Ionization Mass Spectrometry spectroscopy. The pure isolates were tested towards human cancer cell lines, mouse embryonic fibroblast (NIH3T3 and virally transformed form (KA3IT. Results: Two cucurbitacins derivatives, dihydocucurbitacin B (1 and cucurbitacin B (2, had been obtained. Compounds 1 and 2 showed potent inhibitory activities toward NIH3T3 and KA31T with IC 50 0.2, 0.15, 2.5 and 2.0 μg/ml, respectively. Conclusion: The naturally cucurbitacin derivatives (dihydocucurbitacin B and cucurbitacin B showed potent activities towards NIH3T3 and KA31T, could be considered as a lead of discovering a new anticancer natural drug.

  4. Chinese Herbal Preparation Xuebijing Potently Inhibits Inflammasome Activation in Hepatocytes and Ameliorates Mouse Liver Ischemia-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Xiqiang Liu

    Full Text Available The Chinese herb preparation Xuebijing injection (XBJ has been widely used in the management of various septic disorders or inflammation-related conditions, however the molecular mechanism of its anti-inflammatory effect remains largely elusive. In the current study, we found that XBJ treatment potently ameliorated mouse hepatic ischemia-reperfusion (IR injury, manifested as decreased liver function tests (LDH, ALT, AST, improved inflammation and less hepatocyte apoptosis. Notably, XBJ markedly inhibited inflammasome activation and IL-1 production in mouse livers subjected to IRI, even in the absence of Kupffer cells, suggesting Kupffer cells are not necessary for hepatic inflammasome activation upon Redox-induced sterile inflammation. This finding led us to investigate the role of XBJ on hepatocyte apoptosis and inflammasome activation using an in vitro hydrogen peroxide (H2O2-triggered hepatocyte injury model. Our data clearly demonstrated that XBJ potently inhibited apoptosis, as well as caspase-1 cleavage and IL-1β production in a time- and dose-dependent manner in isolated hepatocytes, suggesting that in addition to its known modulatory effect on NF-κB-dependent inflammatory gene expression, it also has a direct impact on hepatocyte inflammasome activation. The current study not only deepens our understanding of how XBJ ameliorates inflammation and apoptosis, but also has immediate practical significance in many clinical situations such as partial hepatectomy, liver transplantation, etc.

  5. Potent free radical scavenging activity of propol isolated from Brazilian propolis.

    Science.gov (United States)

    Basnet, P; Matsuno, T; Neidlein, R

    1997-01-01

    We evaluated free radical scavenging activity of the water, methanol and chloroform extracts of propolis in 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and xanthine-xanthine oxidase (XOD) generated superoxide anion assay systems. The free radical scavenging activity guided fractionation and chemical analysis led to the isolation of a new compound, propol (3-[4-hydroxy-3-(3-oxo-but-1-enyl)-phenyl]-acrylic acid) from the water extract, which was more potent than most common antioxidants such as vitamin C and vitamin E (alpha-tocopherol) in these assay systems.

  6. Pyrazolo Derivatives as Potent Adenosine Receptor Antagonists: An Overview on the Structure-Activity Relationships

    Directory of Open Access Journals (Sweden)

    Siew Lee Cheong

    2011-01-01

    Full Text Available In the past few decades, medicinal chemistry research towards potent and selective antagonists of human adenosine receptors (namely, A1, A2A, A2B, and A3 has been evolving rapidly. These antagonists are deemed therapeutically beneficial in several pathological conditions including neurological and renal disorders, cancer, inflammation, and glaucoma. Up to this point, many classes of compounds have been successfully synthesized and identified as potent human adenosine receptor antagonists. In this paper, an overview of the structure-activity relationship (SAR profiles of promising nonxanthine pyrazolo derivatives is reported and discussed. We have emphasized the SAR for some representative structures such as pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines; pyrazolo-[3,4-c] or -[4,3-c]quinolines; pyrazolo-[4,3-d]pyrimidinones; pyrazolo-[3,4-d]pyrimidines and pyrazolo-[1,5-a]pyridines. This overview not only clarifies the structural requirements deemed essential for affinity towards individual adenosine receptor subtypes, but it also sheds light on the rational design and optimization of existing structural templates to allow us to conceive new, more potent adenosine receptor antagonists.

  7. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Science.gov (United States)

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C; Manubens, Augusto; De Ioannes, Alfredo E; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+) lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.

  8. A Novel Immunomodulatory Hemocyanin from the Limpet Fissurella latimarginata Promotes Potent Anti-Tumor Activity in Melanoma

    Science.gov (United States)

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C.; Manubens, Augusto; De Ioannes, Alfredo E.; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy. PMID

  9. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Directory of Open Access Journals (Sweden)

    Sergio Arancibia

    Full Text Available Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH. This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH and the Concholepas hemocyanin (CCH. FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer

  10. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels.

    Science.gov (United States)

    Knaus, H G; McManus, O B; Lee, S H; Schmalhofer, W A; Garcia-Calvo, M; Helms, L M; Sanchez, M; Giangiacomo, K; Reuben, J P; Smith, A B

    1994-05-17

    Tremorgenic indole alkaloids produce neurological disorders (e.g., staggers syndromes) in ruminants. The mode of action of these fungal mycotoxins is not understood but may be related to their known effects on neurotransmitter release. To determine whether these effects could be due to inhibition of K+ channels, the interaction of various indole diterpenes with high-conductance Ca(2+)-activated K+ (maxi-K) channels was examined. Paspalitrem A, paspalitrem C, aflatrem, penitrem A, and paspalinine inhibit binding of [125I]charybdotoxin (ChTX) to maxi-K channels in bovine aortic smooth muscle sarcolemmal membranes. In contrast, three structurally related compounds, paxilline, verruculogen, and paspalicine, enhanced toxin binding. As predicted from the binding studies, covalent incorporation of [125I]ChTX into the 31-kDa subunit of the maxi-K channel was blocked by compounds that inhibit [125I]ChTX binding and enhanced by compounds that stimulate [125I]ChTX binding. Modulation of [125I]ChTX binding was due to allosteric mechanisms. Despite their different effects on binding of [125I]ChTX to maxi-K channels, all compounds potently inhibited maxi-K channels in electrophysiological experiments. Other types of voltage-dependent or Ca(2+)-activated K+ channels examined were not affected. Chemical modifications of paxilline indicate a defined structure-activity relationship for channel inhibition. Paspalicine, a deshydroxy analog of paspalinine lacking tremorgenic activity, also potently blocked maxi-K channels. Taken together, these data suggest that indole diterpenes are the most potent nonpeptidyl inhibitors of maxi-K channels identified to date. Some of their pharmacological properties could be explained by inhibition of maxi-K channels, although tremorgenicity may be unrelated to channel block.

  11. Dioscorea bulbifera Mediated Synthesis of Novel AucoreAgshell Nanoparticles with Potent Antibiofilm and Antileishmanial Activity

    Directory of Open Access Journals (Sweden)

    Sougata Ghosh

    2015-01-01

    Full Text Available Dioscorea bulbifera is a potent medicinal plant used in both Indian and Chinese traditional medicine owing to its rich phytochemical diversity. Herein, we report the rapid synthesis of novel AucoreAgshell nanoparticles by D. bulbifera tuber extract (DBTE. AucoreAgshell NPs synthesis was completed within 5 h showing a prominent peak at 540 nm. HRTEM analysis revealed 9 nm inner core of elemental gold covered by a silver shell giving a total particle diameter upto 15 nm. AucoreAgshellNPs were comprised of 57.34±1.01% gold and 42.66±0.97% silver of the total mass. AucoreAgshellNPs showed highest biofilm inhibition upto 83.68±0.09% against A. baumannii. Biofilms of P. aeruginosa, E. coli, and S. aureus were inhibited up to 18.93±1.94%, 22.33±0.56%, and 30.70±1.33%, respectively. Scanning electron microscopy (SEM and atomic force microscopy (AFM confirmed unregulated cellular efflux through pore formation leading to cell death. Potent antileishmanial activity of AucoreAgshellNPs (MIC=32 µg/mL was confirmed by MTT assay. Further SEM micrographs showed pronounced deformity in the spindle shaped cellular morphology changing to spherical. This is the first report of synthesis, characterization, antibiofilm, and antileishmanial activity of AucoreAgshellNPs synthesized by D. bulbifera.

  12. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tajima, Shigeru [Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640 (Japan); Hikono, Hirokazu; Saito, Takehiko [Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  13. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins.

    Science.gov (United States)

    Rebensburg, Stephanie; Helfer, Markus; Schneider, Martha; Koppensteiner, Herwig; Eberle, Josef; Schindler, Michael; Gürtler, Lutz; Brack-Werner, Ruth

    2016-02-02

    Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles.

  14. Basis Tetrapeptides as Potent Intracellular Inhibitors of type A Botulinum Neurotoxin Protease Activity

    Energy Technology Data Exchange (ETDEWEB)

    Hale, M.; Swaminathan, S.; Oyler, G.; Ahmed, S. A.

    2011-01-21

    Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.

  15. Discovery of 2-(4-sulfonamidophenyl)-indole 3-carboxamides as potent and selective inhibitors with broad hepatitis C virus genotype activity targeting HCV NS4B.

    Science.gov (United States)

    Zhang, Nanjing; Turpoff, Anthony; Zhang, Xiaoyan; Huang, Song; Liu, Yalei; Almstead, Neil; Njoroge, F George; Gu, Zhengxian; Graci, Jason; Jung, Stephen P; Pichardo, John; Colacino, Joseph; Lahser, Fred; Ingravallo, Paul; Weetall, Marla; Nomeir, Amin; Karp, Gary M

    2016-01-15

    A novel series of 2-(4-sulfonamidophenyl)-indole 3-carboxamides was identified and optimized for activity against the HCV genotype 1b replicon resulting in compounds with potent and selective activity. Further evaluation of this series demonstrated potent activity across HCV genotypes 1a, 2a and 3a. Compound 4z had reduced activity against HCV genotype 1b replicons containing single mutations in the NS4B coding sequence (F98C and V105M) indicating that NS4B is the target. This novel series of 2-(4-sulfonamidophenyl)-indole 3-carboxamides serves as a promising starting point for a pan-genotype HCV discovery program.

  16. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.

    Science.gov (United States)

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P

    2012-06-01

    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  17. Potent SIRT1 enzyme-stimulating and anti-glycation activities of polymethoxyflavonoids from Kaempferia parviflora.

    Science.gov (United States)

    Nakata, Asami; Koike, Yuka; Matsui, Hirofumi; Shimadad, Tsutomu; Aburada, Masaki; Yang, Jinwei

    2014-09-01

    The SIRT1 enzyme-stimulating and anti-glycation activities of Kaempferia parviflora extract and its main polymethoxyflavonoids were evaluated in vitro. K. parviflora extract elevated SIRT1 catalytic activity by eight- and 17-fold at 20 μg/mL and 100 μg/mL, respectively, compared with vehicle only. Two major polymethoxyflavonoids, 3,5,7,3',4'-pentamethoxyflavone (4) and 5,7,4'-trimethoxyflavone (5), were isolated from this extract and are four- and fivefold more potent than resveratrol, hitherto the strongest known natural SIRT1 activator. In addition, the anti-glycation activity of K. parviflora extract was observed to be seven times more effective than aminoguanidine, a clinical anti-diabetes drug. 3,5,7,3',4'-Pentamethoxyflavone (4) and 5,7,4'-trimethoxyflavone (5) showed the strongest anti-glycation activity among the tested polymethoxyflavonoids. Further comparison of the activity of these structurally related polymethoxyflavonoids revealed a possible structure-activity relationship, in particular, for the contribution of methoxy moieties.

  18. Draft Genome Sequence of Pseudomonas sp. Strain In5 Isolated from a Greenlandic Disease Suppressive Soil with Potent Antimicrobial Activity

    DEFF Research Database (Denmark)

    Hennessy, Rosanna C.; Glaring, Mikkel Andreas; Frydenlund Michelsen, Charlotte;

    2015-01-01

    Pseudomonas sp. In5 is an isolate of disease suppressive soil with potent activity against pathogens. Its antifungal activity has been linked to a gene cluster encoding nonribosomal peptide synthetases producing the peptides nunamycin and nunapeptin. The genome sequence will provide insight...... into the genetics behind the antimicrobial activity of this strain....

  19. Biotin analogues with antibacterial activity are potent inhibitors of biotin protein ligase.

    Science.gov (United States)

    Soares da Costa, Tatiana P; Tieu, William; Yap, Min Y; Zvarec, Ondrej; Bell, Jan M; Turnidge, John D; Wallace, John C; Booker, Grant W; Wilce, Matthew C J; Abell, Andrew D; Polyak, Steven W

    2012-06-14

    There is a desperate need to develop new antibiotic agents to combat the rise of drug-resistant bacteria, such as clinically important Staphylococcus aureus. The essential multifunctional enzyme, biotin protein ligase (BPL), is one potential drug target for new antibiotics. We report the synthesis and characterization of a series of biotin analogues with activity against BPLs from S. aureus, Escherichia coli, and Homo sapiens. Two potent inhibitors with K i 20-fold selectivity between the isozymes were identified and characterized. The antibacterial mode of action was shown to be via inhibition of BPL. The bimolecular interactions between the BPL and the inhibitors were defined by surface plasmon resonance studies and X-ray crystallography. These findings pave the way for second-generation inhibitors and antibiotics with greater potency and selectivity.

  20. Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase.

    Science.gov (United States)

    Lee, Yu-Ting; Cui, Chang-Jun; Chow, Eve W L; Pue, Nason; Lonhienne, Thierry; Wang, Jian-Guo; Fraser, James A; Guddat, Luke W

    2013-01-10

    The sulfonylurea herbicides exert their activity by inhibiting plant acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acid biosynthesis pathway. It has previously been shown that if the gene for AHAS is deleted in Candida albicans , attenuation of virulence is achieved, suggesting AHAS as an antifungal drug target. Herein, we have cloned, expressed, and purified C. albicans AHAS and shown that several sulfonylureas are inhibitors of this enzyme and possess antifungal activity. The most potent of these compounds is ethyl 2-(N-((4-iodo-6-methoxypyrimidin-2-yl)carbamoyl)sulfamoyl)benzoate (10c), which has a K(i) value of 3.8 nM for C. albicans AHAS and an MIC₉₀ of 0.7 μg/mL for this fungus in cell-based assays. For the sulfonylureas tested there was a strong correlation between inhibitory activity toward C. albicans AHAS and fungicidal activity, supporting the hypothesis that AHAS is the target for their inhibitory activity within the cell.

  1. Reorienting the Fab domains of trastuzumab results in potent HER2 activators.

    Directory of Open Access Journals (Sweden)

    Justin M Scheer

    Full Text Available The structure of the Fab region of antibodies is critical to their function. By introducing single cysteine substitutions into various positions of the heavy and light chains of the Fab region of trastuzumab, a potent antagonist of HER2, and using thiol chemistry to link the different Fabs together, we produced a variety of monospecific F(ab'(2-like molecules with activities spanning from activation to inhibition of breast tumor cell growth. These isomers (or bis-Fabs of trastuzumab, with varying relative spatial arrangements between the Fv-regions, were able to either promote or inhibit cell-signaling activities through the PI3K/AKT and MAPK pathways. A quantitative phosphorylation mapping of HER2 indicated that the agonistic isomers produced a distinct phosphorylation pattern associated with activation. This study suggests that antibody geometric isomers, found both in nature and during synthetic antibody development, can have profoundly different biological activities independent of their affinities for their target molecules.

  2. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity.

    Science.gov (United States)

    Ahn, Mija; Gunasekaran, Pethaiah; Rajasekaran, Ganesan; Kim, Eun Young; Lee, Soo-Jae; Bang, Geul; Cho, Kun; Hyun, Jae-Kyung; Lee, Hyun-Ju; Jeon, Young Ho; Kim, Nam-Hyung; Ryu, Eun Kyoung; Shin, Song Yub; Bang, Jeong Kyu

    2017-01-05

    In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents.

  3. Quinoxaline N-oxide containing potent angiotensin II receptor antagonists: synthesis, biological properties, and structure-activity relationships.

    Science.gov (United States)

    Kim, K S; Qian, L; Bird, J E; Dickinson, K E; Moreland, S; Schaeffer, T R; Waldron, T L; Delaney, C L; Weller, H N; Miller, A V

    1993-08-01

    A series of novel quinoxaline heterocycle containing angiotensin II receptor antagonist analogs were prepared. This heterocycle was coupled to the biphenyl moiety via an oxygen atom linker instead of a carbon atom. Many of these analogs exhibit very potent activity and long duration of effect. Interestingly, the N-oxide quinoxaline analog was more potent than the nonoxidized quinoxaline as in the comparison of compounds 5 vs 30. In order to improve oral activity, the carboxylic acid function of these compounds was converted to the double ester. This change did result in an improvement in oral activity as represented by compound 44.

  4. Novel 3-Oxazolidinedione-6-aryl-pyridinones as Potent, Selective, and Orally Active EP3 Receptor Antagonists.

    Science.gov (United States)

    Jin, Jian; Morales-Ramos, Angel; Eidam, Patrick; Mecom, John; Li, Yue; Brooks, Carl; Hilfiker, Mark; Zhang, David; Wang, Ning; Shi, Dongchuan; Tseng, Pei-San; Wheless, Karen; Budzik, Brian; Evans, Karen; Jaworski, Jon-Paul; Jugus, Jack; Leon, Lisa; Wu, Charlene; Pullen, Mark; Karamshi, Bhumika; Rao, Parvathi; Ward, Emma; Laping, Nicholas; Evans, Christopher; Leach, Colin; Holt, Dennis; Su, Xin; Morrow, Dwight; Fries, Harvey; Thorneloe, Kevin; Edwards, Richard

    2010-10-14

    High-throughput screening and subsequent optimization led to the discovery of novel 3-oxazolidinedione-6-aryl-pyridinones exemplified by compound 2 as potent and selective EP3 antagonists with excellent pharmacokinetic properties. Compound 2 was orally active and showed robust in vivo activities in overactive bladder models. To address potential bioactivation liabilities of compound 2, further optimization resulted in compounds 9 and 10, which maintained excellent potency, selectivity, and pharmacokinetic properties and showed no bioactivation liability in glutathione trapping studies. These highly potent, selective, and orally active EP3 antagonists are excellent tool compounds for investigating and validating potential therapeutic benefits from selectively inhibiting the EP3 receptor.

  5. Discovery of Metal Ions Chelator Quercetin Derivatives with Potent Anti-HCV Activities

    Directory of Open Access Journals (Sweden)

    Dongwei Zhong

    2015-04-01

    Full Text Available Analogues or isosteres of α,γ-diketoacid (DKA 1a show potent inhibition of hepatitis C virus (HCV NS5B polymerase through chelation of the two magnesium ions at the active site. The anti-HCV activity of the flavonoid quercetin (2 could partly be attributed to it being a structural mimic of DKAs. In order to delineate the structural features required for the inhibitory effect and improve the anti-HCV potency, two novel types of quercetin analogues, 7-O-arylmethylquercetins and quercetin-3-O-benzoic acid esters, were designed, synthesized and evaluated for their anti-HCV properties in cell-based assays. Among the 38 newly synthesized compounds, 7-O-substituted derivative 3i and 3-O-substituted derivative 4f were found to be the most active in the corresponding series (EC50 = 3.8 μM and 9.0 μΜ, respectively. Docking studies suggested that the quercetin analogues are capable of establishing key coordination with the two magnesium ions as well as interactions with residues at the active site of HCV NS5B.

  6. A chalcone with potent inhibiting activity against biofilm formation by nontypeable Haemophilus influenzae.

    Science.gov (United States)

    Kunthalert, Duangkamol; Baothong, Sudarat; Khetkam, Pichit; Chokchaisiri, Suwadee; Suksamrarn, Apichart

    2014-10-01

    Nontypeable Haemophilus influenzae (NTHi), an important human respiratory pathogen, frequently causes biofilm infections. Currently, resistance of bacteria within the biofilm to conventional antimicrobials poses a major obstacle to effective medical treatment on a global scale. Novel agents that are effective against NTHi biofilm are therefore urgently required. In this study, a series of natural and synthetic chalcones with various chemical substituents were evaluated in vitro for their antibiofilm activities against strong biofilm-forming strains of NTHi. Of the test chalcones, 3-hydroxychalcone (chalcone 8) exhibited the most potent inhibitory activity, its mean minimum biofilm inhibitory concentration (MBIC50 ) being 16 μg/mL (71.35 μM), or approximately sixfold more active than the reference drug, azithromycin (MBIC50 419.68 μM). The inhibitory activity of chalcone 8, which is a chemically modified chalcone, appeared to be superior to those of the natural chalcones tested. Significantly, chalcone 8 inhibited biofilm formation by all studied NTHi strains, indicating that the antibiofilm activities of this compound occur across multiple strong-biofilm forming NTHi isolates of different clinical origins. According to antimicrobial and growth curve assays, chalcone 8 at concentrations that decreased biofilm formation did not affect growth of NTHi, suggesting the biofilm inhibitory effect of chalcone 8 is non-antimicrobial. In terms of structure-activity relationship, the possible substituent on the chalcone backbone required for antibiofilm activity is discussed. These findings indicate that 3-hydroxychalcone (chalcone 8) has powerful antibiofilm activity and suggest the potential application of chalcone 8 as a new therapeutic agent for control of NTHi biofilm-associated infections.

  7. Attraction and activation of dendritic cells at the site of tumor elicits potent antitumor immunity.

    Science.gov (United States)

    Lapteva, Natalia; Aldrich, Melissa; Rollins, Lisa; Ren, Wenhong; Goltsova, Tatiana; Chen, Si-Yi; Huang, Xue F

    2009-09-01

    Tumor cells harbor unique genetic mutations, which lead to the generation of immunologically foreign antigenic peptide repertoire with the potential to induce individual tumor-specific immune responses. Here, we developed an in situ tumor vaccine with the ability to elicit antitumor immunity. This vaccine comprised an E1B-deleted oncolytic adenovirus expressing beta-defensin-2 (Ad-BD2-E1A) for releasing tumor antigens, recruiting and activating plasmacytoid dendritic cells (pDCs). Intratumoral injections of Ad-BD2-E1A vaccine inhibited primary breast tumor growth and blocked naturally occurring metastasis in mice. Ad-BD2-E1A vaccination induced potent tumor-specific T-cell responses. Splenic and intratumoral DCs isolated from Ad-BD2-E1A-immunized mice were able to stimulate or promote the differentiation of naive T cells into tumor-specific cytotoxic T cells. We further found that the increased numbers of mature CD45RA(+)CD8alpha(+)CD40(+) pDCs infiltrated into Ad-BD2-E1A-treated tumors. The antitumor effect of Ad-BD2-E1A vaccination was abrogated in toll-like receptor 4 (TLR4) deficient mice, suggesting the critical role of TLR4 in the induction of antitumor immunity by Ad-BD2-E1A. The results of this study indicate that in situ vaccination with the oncolytic BD2-expressing adenovirus preferentially attracts pDCs and promotes their maturation, and thus elicits potent tumor-specific immunity. This vaccine represents an attractive therapeutic strategy for the induction of individualized antitumor immunity.

  8. Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir.

    Science.gov (United States)

    Toksoy, Atiye; Sennefelder, Helga; Adam, Christian; Hofmann, Sonja; Trautmann, Axel; Goebeler, Matthias; Schmidt, Marc

    2017-02-17

    There is experimental and clinical evidence that some exanthematous allergic drug hypersensitivity reactions are mediated by drug-specific T cells. We hypothesized that the capacity of certain drugs to directly stimulate the innate immune system may contribute to generate drug-specific T cells. Here we analyzed whether abacavir, an HIV-1 reverse transcriptase inhibitor often inducing severe delayed-type drug hypersensitivity, can trigger innate immune activation that may contribute to its allergic potential. We show that abacavir fails to generate direct innate immune activation in human monocytes but potently triggers IL-1β release upon pro-inflammatory priming with phorbol ester or Toll-like receptor stimulation. IL-1β processing and secretion were sensitive to Caspase-1 inhibition, NLRP3 knockdown, and K(+) efflux inhibition and were not observed with other non-allergenic nucleoside reverse transcriptase inhibitors, identifying abacavir as a specific inflammasome activator. It further correlated with dose-dependent mitochondrial reactive oxygen species production and cytotoxicity, indicating that inflammasome activation resulted from mitochondrial damage. However, both NLRP3 depletion and inhibition of K(+) efflux mitigated abacavir-induced mitochondrial reactive oxygen species production and cytotoxicity, suggesting that these processes were secondary to NLRP3 activation. Instead, depletion of cardiolipin synthase 1 abolished abacavir-induced IL-1β secretion, suggesting that mitochondrial cardiolipin release may trigger abacavir-induced inflammasome activation. Our data identify abacavir as a novel inflammasome-stimulating drug allergen. They implicate a potential contribution of innate immune activation to medication-induced delayed-type hypersensitivity, which may stimulate new concepts for treatment and prevention of drug allergies.

  9. 3-Amido-3-aryl-piperidines: A Novel Class of Potent, Selective, and Orally Active GlyT1 Inhibitors.

    Science.gov (United States)

    Pinard, Emmanuel; Alberati, Daniela; Alvarez-Sanchez, Ruben; Brom, Virginie; Burner, Serge; Fischer, Holger; Hauser, Nicole; Kolczewski, Sabine; Lengyel, Judith; Mory, Roland; Saladin, Christian; Schulz-Gasch, Tanja; Stalder, Henri

    2014-04-10

    3-Amido-3-aryl-piperidines were discovered as a novel structural class of GlyT1 inhibitors. The structure-activity relationship, which was developed, led to the identification of highly potent compounds exhibiting excellent selectivity against the GlyT2 isoform, drug-like properties, and in vivo activity after oral administration.

  10. Design and synthesis of 4-substituted quinazolines as potent EGFR inhibitors with anti-breast cancer activity.

    Science.gov (United States)

    Ahmed, Marwa; Magdy, Naja

    2016-09-23

    Cancer is a major health problem to human beings around the world. Many quinazoline derivatives were reported to have potent cytotoxic activity. Our aim in this work is the discovery of potent epidermal growth factor receptor (EGFR) inhibitors with anti-breast cancer activity containing 4-substituted quinazoline pharmacophore. Novel series of 4-substituted 6,8-dibromo-2-(4-chlorophenyl)-quinazoline derivatives have been designed and synthesized. New derivatives were tested against MCF-7 (human breast carcinoma cell line) and screened for their inhibition activity against epidermal growth factor receptor tyrosine kinase (EGFR-TK). Most of the tested compounds show potent antiproliferative activity and EGFR-TK inhibitory activity. Compounds VIIIc and VIIIb exerted powerful cytotoxic activity (IC50 3.1 and 6.3 µM) with potent inhibitory percent (91.1 and 88.4%) against EGFR-TK. Compounds IX, VIIa, X, VIIb, VIc, V, IV, VIa and VIb showed promising cytotoxic effects with IC50 range (12-79 µM) with good activity against EGFR-TK with the inhibitory percent (85.4-60.8%). On the other hand, compounds VIIc, VIIIa exerted low cytotoxic effects as revealed from their IC50 value (124 and 144 µM) with low activity against EGFR-TK with inhibitory percent 30.6 and 29.1% respectively.

  11. Experimental active control results from the SPICES smart structure demonstrations

    Science.gov (United States)

    Flamm, David S.; Toth, G. K.; Chou, Kenneth C.; Heck, Larry P.; Nowlin, William C.; Titterton, Paul J., Sr.

    1996-05-01

    The final demonstrations of the ARPA SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) program test the control of two active vibration mounts manufactured from composites with embedded actuators and sensors. Both mount demonstrations address wide band control problems for real disturbances, one at low frequency and the other at high frequency. The control systems for both are two-level hierarchies, with an inner active damping augmentation loop and an outer vibration control loop. We first review the control design requirements for the demonstration and summarize our control design approach. Then we focus on presenting the experimental results of the final demonstrations. For the low frequency demonstration, two alternative control approaches were demonstrated, one involving finite impulse response modeling and the other state space modeling. For the high frequency demonstration only the finite impulse response modeling approach was used because of computational limitations due to the complex system dynamics.

  12. An active film-coating approach to enhance chemical stability of a potent drug molecule.

    Science.gov (United States)

    Desai, Divyakant; Rao, Venkatramana; Guo, Hang; Li, Danping; Stein, Daniel; Hu, Frank Y; Kiesnowski, Chris

    2012-01-01

    Peliglitazar, a PPAR α/γ agonist, was found to undergo acid as well as base catalyzed degradation. The acid catalyzed degradation led to the formation of benzylic alcohol and glycine carbamate and the base catalyzed degradation led to formation of p-hydroxyanisole and an amine degradant. In capsule formulations, the capsules with the lowest drug-loading exhibited maximum instability even at 25 °C/60% RH storage condition. Incorporation of pH-modifiers to maintain 'micro-environmental pH' acidic did not prevent the formation of the base-catalyzed degradants. Traditional dry granulated tablet formulation which is qualitatively similar to the capsule formulations showed the presence of acid-catalyzed degradants even without the presence of an acidifying agent. On the other hand, traditional wet granulated tablet formulation showed mainly base-catalyzed degradants. Stability problems of the tablet formulation were aggravated because the potent molecule required low tablet strengths which resulted in low drug to excipient ratio. To stabilize the molecule, an active film-coating approach was explored. In this approach, the drug was sprayed with the coating material onto non-active containing tablet cores. This approach of trapping the drug particles into the coating material provided tablets with satisfactory chemical stability. The stability enhancement observed in the active coating approach is attributed to the higher drug to excipient ratio in the film coat of non-reactive coating material compared to that in the traditional dry or wet granulated formulations.

  13. The indolylcoumarin COUFIN exhibits potent activity against renal carcinoma cells without affecting hematopoietic system.

    Science.gov (United States)

    Champelovier, Pierre; Barbier, Pascale; Daras, Etienne; Douillard, Soazig; Toussaint, Bertrand; Persoon, Virginie; Curri, Veronique; Peyrot, Vincent; Combes, Sebastien

    2014-01-01

    The present work describes the anticancer activity of a new indolylcoumarin named COUFIN and more specifically, its efficiency against clear cell renal carcinoma (CCRC). COUFIN inhibited microtubule formation and bound on tubulin to or near the colchicine site. In vitro, COUFIN showed potent anticancer activity on renal carcinoma cells (RCC) both in monolayer (2D culture) (IC50 of 88 ± 8 nM) and multicellular tumor spheroid (3D culture) (IC50 of 180 ± 20 nM). The compound blocked cell cycle transition at G2/M phase, induced a subsequent apoptotic process but did not modulate clonal growth of CFU-GM. On the other hand, the coumarin derivative decreased the activity of P-gp and BCRP but was not substrate for these ABC pumps. In vivo, the indolylcoumarin increased the survival rate after 3 weeks of treatment. Based on the present study, COUFIN was identified as a bifunctional molecule able to inhibit renal carcinoma cells proliferation without being effluxed by ABC proteins. Thus COUFIN could be a promising chemotherapeutic agent for treating tumor cells over-expressing efflux pumps and tumor cells irrigated by vessels lined with endothelial cells responsible of poor distribution of conventional anticancer agents.

  14. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma.

    Science.gov (United States)

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-02-02

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma.

  15. Secretory phospholipase A2 modified HDL rapidly and potently suppresses platelet activation.

    Science.gov (United States)

    Curcic, Sanja; Holzer, Michael; Pasterk, Lisa; Knuplez, Eva; Eichmann, Thomas O; Frank, Saša; Zimmermann, Robert; Schicho, Rudolf; Heinemann, Akos; Marsche, Gunther

    2017-08-14

    Levels of secretory phospholipases A2 (sPLA2) highly increase under acute and chronic inflammatory conditions. sPLA2 is mainly associated with high-density lipoproteins (HDL) and generates bioactive lysophospholipids implicated in acute and chronic inflammatory processes. Unexpectedly, pharmacological inhibition of sPLA2 in patients with acute coronary syndrome was associated with an increased risk of myocardial infarction and stroke. Given that platelets are key players in thrombosis and inflammation, we hypothesized that sPLA2-induced hydrolysis of HDL-associated phospholipids (sPLA2-HDL) generates modified HDL particles that affect platelet function. We observed that sPLA2-HDL potently and rapidly inhibited platelet aggregation induced by several agonists, P-selectin expression, GPIIb/IIIa activation and superoxide production, whereas native HDL showed little effects. sPLA2-HDL suppressed the agonist-induced rise of intracellular Ca(2+) levels and phosphorylation of Akt and ERK1/2, which trigger key steps in promoting platelet activation. Importantly, sPLA2 in the absence of HDL showed no effects, whereas enrichment of HDL with lysophosphatidylcholines containing saturated fatty acids (the main sPLA2 products) mimicked sPLA2-HDL activities. Our findings suggest that sPLA2 generates lysophosphatidylcholine-enriched HDL particles that modulate platelet function under inflammatory conditions.

  16. Structure-activity relationships of 1,3-benzoxazole-4-carbonitriles as novel antifungal agents with potent in vivo efficacy.

    Science.gov (United States)

    Kuroyanagi, Jun-ichi; Kanai, Kazuo; Horiuchi, Takao; Takeshita, Hiroshi; Kobayashi, Shozo; Achiwa, Issei; Yoshida, Kumi; Nakamura, Koichi; Kawakami, Katsuhiro

    2011-01-01

    A series of 1,3-benzoxazole-4-carbonitriles was synthesized and evaluated for its antifungal activity, solubility, and metabolic stability. Among those compounds, 4-cyano-N,N,5-trimethyl-7-[(3S)-3-methyl-3-(methylamino)pyrrolidin-1-yl]-6-phenyl-1,3-benzoxazole-2-carboxamide (16b) exhibited potent in vitro activity against Candida species, higher water solubility, and improved metabolic stability compared to lead compound 1. Compound 16b showed potent in vivo efficacy against mice Candida infection models and good bioavailability in rats.

  17. Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity

    Science.gov (United States)

    Gupta, Achla; Gomes, Ivone; Bobeck, Erin N.; Fakira, Amanda K.; Massaro, Nicholas P.; Sharma, Indrajeet; Cavé, Adrien; Hamm, Heidi E.; Parello, Joseph

    2016-01-01

    Among the opioid receptors, the κ-opioid receptor (κOR) has been gaining considerable attention as a potential therapeutic target for the treatment of complex CNS disorders including depression, visceral pain, and cocaine addiction. With an interest in discovering novel ligands targeting κOR, we searched natural products for unusual scaffolds and identified collybolide (Colly), a nonnitrogenous sesquiterpene from the mushroom Collybia maculata. This compound has a furyl-δ-lactone core similar to that of Salvinorin A (Sal A), another natural product from the plant Salvia divinorum. Characterization of the molecular pharmacological properties reveals that Colly, like Sal A, is a highly potent and selective κOR agonist. However, the two compounds differ in certain signaling and behavioral properties. Colly exhibits 10- to 50-fold higher potency in activating the mitogen-activated protein kinase pathway compared with Sal A. Taken with the fact that the two compounds are equipotent for inhibiting adenylyl cyclase activity, these results suggest that Colly behaves as a biased agonist of κOR. Behavioral studies also support the biased agonistic activity of Colly in that it exhibits ∼10-fold higher potency in blocking non–histamine-mediated itch compared with Sal A, and this difference is not seen in pain attenuation by these two compounds. These results represent a rare example of functional selectivity by two natural products that act on the same receptor. The biased agonistic activity, along with an easily modifiable structure compared with Sal A, makes Colly an ideal candidate for the development of novel therapeutics targeting κOR with reduced side effects. PMID:27162327

  18. Potent cardioprotective effect of the 4-anilinoquinazoline derivative PD153035: involvement of mitochondrial K(ATP channel activation.

    Directory of Open Access Journals (Sweden)

    Renata A Cavalheiro

    Full Text Available BACKGROUND: The aim of the present study was to evaluate the protective effects of the 4-anilinoquinazoline derivative PD153035 on cardiac ischemia/reperfusion and mitochondrial function. METHODOLOGY/PRINCIPAL FINDINGS: Perfused rat hearts and cardiac HL-1 cells were used to determine cardioprotective effects of PD153035. Isolated rat heart mitochondria were studied to uncover mechanisms of cardioprotection. Nanomolar doses of PD153035 strongly protect against heart and cardiomyocyte damage induced by ischemia/reperfusion and cyanide/aglycemia. PD153035 did not alter oxidative phosphorylation, nor directly prevent Ca(2+ induced mitochondrial membrane permeability transition. The protective effect of PD153035 on HL-1 cells was also independent of AKT phosphorylation state. Interestingly, PD153035 activated K(+ transport in isolated mitochondria, in a manner prevented by ATP and 5-hydroxydecanoate, inhibitors of mitochondrial ATP-sensitive K(+ channels (mitoK(ATP. 5-Hydroxydecanoate also inhibited the cardioprotective effect of PD153035 in cardiac HL-1 cells, demonstrating that this protection is dependent on mitoK(ATP activation. CONCLUSIONS/SIGNIFICANCE: We conclude that PD153035 is a potent cardioprotective compound and acts in a mechanism involving mitoK(ATP activation.

  19. One novel quinoxaline derivative as a potent human cyclophilin A inhibitor shows highly inhibitory activity against mouse spleen cell proliferation.

    Science.gov (United States)

    Li, Jian; Chen, Jing; Zhang, Li; Wang, Feng; Gui, Chunshan; Zhang, Li; Qin, Yu; Xu, Qiang; Liu, Hong; Nan, Fajun; Shen, Jingkang; Bai, Donglu; Chen, Kaixian; Shen, Xu; Jiang, Hualiang

    2006-08-15

    Cyclophilin A (CypA) is a ubiquitous cellular enzyme playing critical roles in many biological processes, and its inhibitor has been reported to have potential immunosuppressive activity. In this work, we reported a novel quinoxaline derivative, 2,3-di(furan-2-yl)-6-(3-N,N-diethylcarbamoyl-piperidino)carbonylamino quinoxaline (DC838, 3), which was confirmed to be a potent inhibitor against human CypA. By using the surface plasmon resonance (SPR) and fluorescence titration techniques, the kinetic analysis of CypA/DC838 interaction was quantitatively performed. CypA peptidyl prolyl cis-trans isomerase (PPIase) activity inhibition assay showed that DC838 demonstrated highly CypA PPIase inhibitory activity. In vivo assay results showed that DC838 could inhibit mouse spleen cell proliferation induced by concanavalin A (Con A). Molecular docking simulation further elucidated the specific DC838 binding to CypA at the atomic level. The current work should provide useful information in the discovery of immunosuppressor based on CypA inhibitor.

  20. Clinical adjuvant combinations stimulate potent B-cell responses in vitro by activating dermal dendritic cells.

    Directory of Open Access Journals (Sweden)

    Katie Matthews

    Full Text Available CD14(+ dermal DCs (CD14(+ DDCs have a natural capacity to activate naïve B-cells. Targeting CD14(+ DDCs is therefore a rational approach for vaccination strategies aimed at improving humoral responses towards poorly immunogenic antigens, for example, HIV-1 envelope glycoproteins (Env. Here, we show that two clinically relevant TLR ligand combinations, Hiltonol plus Resiquimod and Glucopyranosyl lipid A plus Resiquimod, potently activate CD14(+ DDCs, as shown by enhanced expression of multiple cytokines (IL-6, IL-10, IL-12p40 and TNF-α. Furthermore, the responses of CD14(+ DDCs to these TLR ligands were not compromised by the presence of HIV-1 gp120, which can drive immunosuppressive effects in vitro and in vivo. The above TLR ligand pairs were better than the individual agents at boosting the inherent capacity of CD14(+ DDCs to induce naïve B-cells to proliferate and differentiate into CD27(+ CD38(+ B-cells that secrete high levels of immunoglobulins. CD14(+ DDCs stimulated by these TLR ligand combinations also promoted the differentiation of Th1 (IFN-γ-secreting, but not Th17, CD4(+ T-cells. These observations may help to identify adjuvant strategies aimed at inducing better antibody responses to vaccine antigens, including, but not limited to HIV-1 Env.

  1. Design, Synthesis, and Inhibitory Activity of Potent, Photoswitchable Mast Cell Activation Inhibitors

    NARCIS (Netherlands)

    Velema, Willem A.; van der Toorn, Marco; Szymanski, Wiktor; Feringa, Ben L.

    2013-01-01

    Allergic reactions affect millions of people worldwide. The need for new and effective antiallergic agents is evident, and insight into the underlying mechanisms that lead to allergic events is necessary. Herein, we report the design, synthesis, and activity of photoswitchable mast cell activation

  2. Design, Synthesis, and Inhibitory Activity of Potent, Photoswitchable Mast Cell Activation Inhibitors

    NARCIS (Netherlands)

    Velema, Willem A.; van der Toorn, Marco; Szymanski, Wiktor; Feringa, Ben L.

    2013-01-01

    Allergic reactions affect millions of people worldwide. The need for new and effective antiallergic agents is evident, and insight into the underlying mechanisms that lead to allergic events is necessary. Herein, we report the design, synthesis, and activity of photoswitchable mast cell activation i

  3. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    Energy Technology Data Exchange (ETDEWEB)

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju; Flosi, William J.; Klein, Larry L.; Dekhtyar, Tatyana; Stoll, Vincent; Mamo, Mulugeta; Molla, Akhteruzzaman; Kempf, Dale J. (Abbott)

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.

  4. Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple's anticancer activity.

    Science.gov (United States)

    He, Xiangjiu; Liu, Rui Hai

    2007-05-30

    Bioactivity-guided fractionation of apple peels was used to determine the chemical identity of bioactive constituents. Thirteen triterpenoids were isolated, and their chemical structures were identified. Antiproliferative activities of the triterpenoids against human HepG2 liver cancer cells, MCF-7 breast cancer cells, and Caco-2 colon cancer cells were evaluated. Most of the triterpenoids showed high potential anticancer activities against the three human cancer cell lines. Among the compounds isolated, 2alpha-hydroxyursolic acid, 2alpha-hydroxy-3beta-{[(2E)-3-phenyl-1-oxo-2-propenyl]oxy}olean-12-en-28-oic acid, and 3beta-trans-p-coumaroyloxy-2alpha-hydroxyolean-12-en-28-oic acid showed higher antiproliferative activity toward HepG2 cancer cells. Ursolic acid, 2alpha-hydroxyursolic acid, and 3beta-trans-p-coumaroyloxy-2alpha-hydroxyolean-12-en-28-oic acid exhibited higher antiproliferative activity against MCF-7 cancer cells. All triterpenoids tested showed antiproliferative activity against Caco-2 cancer cells, especially 2alpha-hydroxyursolic acid, maslinic acid, 2alpha-hydroxy-3beta-{[(2E)-3-phenyl-1-oxo-2-propenyl]oxy}olean-12-en-28-oic acid, and 3beta-trans-p-coumaroyloxy-2alpha-hydroxyolean-12-en-28-oic acid, which displayed much higher antiproliferative activities. These results showed the triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for the anticancer activities of whole apples.

  5. A novel polypeptide from shark cartilage with potent anti-angiogenic activity.

    Science.gov (United States)

    Zheng, Lanhong; Ling, Peixue; Wang, Zheng; Niu, Rongli; Hu, Chaoxin; Zhang, Tianmin; Lin, Xiukun

    2007-05-01

    Using guanidine-HCl extraction, acetone precipitation, ultra-filtration and chromatography, a novel polypeptide with potent anti-angiogenic activity was purified from cartilage of the shark, Prionace glauca. N-terminal amino acid sequence analysis and SDS-PAGE revealed that the substance is a novel polypeptide with MW 15500 (PG155). The anti-angiogenic effects of PG155 were evaluated using zebrafish embryos model in vivo. Treatment of the embryos with 20 microg/ml PG155 resulted in a significant reduction in the growth of subintestinal vessels (SIVs). A higher dose resulted in almost complete inhibition of SIV growth, as observed by endogenous alkaline phosphatase (EAP) staining assay. An in vitro transwell experiment revealed that the polypeptide inhibited vascular endothelial growth factor (VEGF) induced migration and tubulogenesis of human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs in 20 microg/ml PG155 significantly decreased the density of migrated cells. Almost complete inhibition of cell migration was found when HUVECs were treated with 40-80 microg/ml PG155. PG155 (20 microg/ml) markedly inhibited the tube formation of HUVECs and a dose-dependent effect was also found when treatment of HUVECs with PG155 at the concentration from 20-160 microg/ml.

  6. Selective IRAK4 Inhibition Attenuates Disease in Murine Lupus Models and Demonstrates Steroid Sparing Activity.

    Science.gov (United States)

    Dudhgaonkar, Shailesh; Ranade, Sourabh; Nagar, Jignesh; Subramani, Siva; Prasad, Durga Shiv; Karunanithi, Preethi; Srivastava, Ratika; Venkatesh, Kamala; Selvam, Sabariya; Krishnamurthy, Prasad; Mariappan, T Thanga; Saxena, Ajay; Fan, Li; Stetsko, Dawn K; Holloway, Deborah A; Li, Xin; Zhu, Jun; Yang, Wen-Pin; Ruepp, Stefan; Nair, Satheesh; Santella, Joseph; Duncia, John; Hynes, John; McIntyre, Kim W; Carman, Julie A

    2017-02-01

    The serine/threonine kinase IL-1R-associated kinase (IRAK)4 is a critical regulator of innate immunity. We have identified BMS-986126, a potent, highly selective inhibitor of IRAK4 kinase activity that demonstrates equipotent activity against multiple MyD88-dependent responses both in vitro and in vivo. BMS-986126 failed to inhibit assays downstream of MyD88-independent receptors, including the TNF receptor and TLR3. Very little activity was seen downstream of TLR4, which can also activate an MyD88-independent pathway. In mice, the compound inhibited cytokine production induced by injection of several different TLR agonists, including those for TLR2, TLR7, and TLR9. The compound also significantly suppressed skin inflammation induced by topical administration of the TLR7 agonist imiquimod. BMS-986126 demonstrated robust activity in the MRL/lpr and NZB/NZW models of lupus, inhibiting multiple pathogenic responses. In the MRL/lpr model, robust activity was observed with the combination of suboptimal doses of BMS-986126 and prednisolone, suggesting the potential for steroid sparing activity. BMS-986126 also demonstrated synergy with prednisolone in assays of TLR7- and TLR9-induced IFN target gene expression using human PBMCs. Lastly, BMS-986126 inhibited TLR7- and TLR9-dependent responses using cells derived from lupus patients, suggesting that inhibition of IRAK4 has the potential for therapeutic benefit in treating lupus. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Discovery of novel protease activated receptors 1 antagonists with potent antithrombotic activity in vivo.

    Science.gov (United States)

    Perez, Michel; Lamothe, Marie; Maraval, Catherine; Mirabel, Etienne; Loubat, Chantal; Planty, Bruno; Horn, Clemens; Michaux, Julien; Marrot, Sebastien; Letienne, Robert; Pignier, Christophe; Bocquet, Arnaud; Nadal-Wollbold, Florence; Cussac, Didier; de Vries, Luc; Le Grand, Bruno

    2009-10-08

    Protease activated receptors (PARs) or thrombin receptors constitute a class of G-protein-coupled receptors (GPCRs) implicated in the activation of many physiological mechanisms. Thus, thrombin activates many cell types such as vascular smooth muscle cells, leukocytes, endothelial cells, and platelets via activation of these receptors. In humans, thrombin-induced platelet aggregation is mediated by one subtype of these receptors, termed PAR1. This article describes the discovery of new antagonists of these receptors and more specifically two compounds: 2-[5-oxo-5-(4-pyridin-2-ylpiperazin-1-yl)penta-1,3-dienyl]benzonitrile 36 (F 16618) and 3-(2-chlorophenyl)-1-[4-(4-fluorobenzyl)piperazin-1-yl]propenone 39 (F 16357), obtained after optimization. Both compounds are able to inhibit SFLLR-induced human platelet aggregation and display antithrombotic activity in an arteriovenous shunt model in the rat after iv or oral administration. Furthermore, these compounds are devoid of bleeding side effects often observed with other types of antiplatelet drugs, which constitutes a promising advantage for this new class of antithrombotic agents.

  8. A Novel Small Molecule, LLL12, Inhibits STAT3 Phosphorylation and Activities and Exhibits Potent Growth-Suppressive Activity in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Li Lin

    2010-01-01

    Full Text Available Constitutive activation of signal transducer and activator of transcription 3 (STAT3 signaling is frequently detected in cancer, promoting its emergence as a promising target for cancer treatment. Inhibiting constitutive STAT3 signaling represents a potential therapeutic approach. We used structure-based design to develop a nonpeptide, cell-permeable, small molecule, termed as LLL12, which targets STAT3. LLL12 was found to inhibit STAT3 phosphorylation (tyrosine 705 and induce apoptosis as indicated by the increases of cleaved caspase-3 and poly (ADP-ribose polymerase in various breast, pancreatic, and glioblastoma cancer cell lines expressing elevated levels of STAT3 phosphorylation. LLL12 could also inhibit STAT3 phosphorylation induced by interleukin-6 in MDA-MB-453 breast cancer cells. The inhibition of STAT3 by LLL12 was confirmed by the inhibition of STAT3 DNA binding activity and STAT3-dependent transcriptional luciferase activity. Downstream targets of STAT3, cyclin D1, Bcl-2, and survivin were also downregulated by LLL12 at both protein and messenger RNA levels. LLL12 is a potent inhibitor of cell viability, with half-maximal inhibitory concentrations values ranging between 0.16 and 3.09 µM, which are lower than the reported JAK2 inhibitor WP1066 and STAT3 inhibitor S3I-201 in six cancer cell lines expressing elevated levels of STAT3 phosphorylation. In addition, LLL12 inhibits colony formation and cell migration and works synergistically with doxorubicin and gemcitabine. Furthermore, LLL12 demonstrated a potent inhibitory activity on breast and glioblastoma tumor growth in a mouse xenograft model. Our results indicate that LLL12 may be a potential therapeutic agent for human cancer cells expressing constitutive STAT3 signaling.

  9. Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation

    Energy Technology Data Exchange (ETDEWEB)

    Soisson, Stephen M.; Parthasarathy, Gopalakrishnan; Adams, Alan D.; Sahoo, Soumya; Sitlani, Ayesha; Sparrow, Carl; Cui, Jisong; Becker, Joseph W. (Merck)

    2008-07-08

    The farnesoid X receptor (FXR), a member of the nuclear hormone receptor family, plays important roles in the regulation of bile acid and cholesterol homeostasis, glucose metabolism, and insulin sensitivity. There is intense interest in understanding the mechanisms of FXR regulation and in developing pharmaceutically suitable synthetic FXR ligands that might be used to treat metabolic syndrome. We report here the identification of a potent FXR agonist (MFA-1) and the elucidation of the structure of this ligand in ternary complex with the human receptor and a coactivator peptide fragment using x-ray crystallography at 1.9-{angstrom} resolution. The steroid ring system of MFA-1 binds with its D ring-facing helix 12 (AF-2) in a manner reminiscent of hormone binding to classical steroid hormone receptors and the reverse of the pose adopted by naturally occurring bile acids when bound to FXR. This binding mode appears to be driven by the presence of a carboxylate on MFA-1 that is situated to make a salt-bridge interaction with an arginine residue in the FXR-binding pocket that is normally used to neutralize bound bile acids. Receptor activation by MFA-1 differs from that by bile acids in that it relies on direct interactions between the ligand and residues in helices 11 and 12 and only indirectly involves a protonated histidine that is part of the activation trigger. The structure of the FXR:MFA-1 complex differs significantly from that of the complex with a structurally distinct agonist, fexaramine, highlighting the inherent plasticity of the receptor.

  10. Cissampelos pareira Linn: Natural Source of Potent Antiviral Activity against All Four Dengue Virus Serotypes.

    Directory of Open Access Journals (Sweden)

    Ruchi Sood

    2015-12-01

    Full Text Available Dengue, a mosquito-borne viral disease, poses a significant global public health risk. In tropical countries such as India where periodic dengue outbreaks can be correlated to the high prevalence of the mosquito vector, circulation of all four dengue viruses (DENVs and the high population density, a drug for dengue is being increasingly recognized as an unmet public health need.Using the knowledge of traditional Indian medicine, Ayurveda, we developed a systematic bioassay-guided screening approach to explore the indigenous herbal bio-resource to identify plants with pan-DENV inhibitory activity. Our results show that the alcoholic extract of Cissampelos pariera Linn (Cipa extract was a potent inhibitor of all four DENVs in cell-based assays, assessed in terms of viral NS1 antigen secretion using ELISA, as well as viral replication, based on plaque assays. Virus yield reduction assays showed that Cipa extract could decrease viral titers by an order of magnitude. The extract conferred statistically significant protection against DENV infection using the AG129 mouse model. A preliminary evaluation of the clinical relevance of Cipa extract showed that it had no adverse effects on platelet counts and RBC viability. In addition to inherent antipyretic activity in Wistar rats, it possessed the ability to down-regulate the production of TNF-α, a cytokine implicated in severe dengue disease. Importantly, it showed no evidence of toxicity in Wistar rats, when administered at doses as high as 2g/Kg body weight for up to 1 week.Our findings above, taken in the context of the human safety of Cipa, based on its use in Indian traditional medicine, warrant further work to explore Cipa as a source for the development of an inexpensive herbal formulation for dengue therapy. This may be of practical relevance to a dengue-endemic resource-poor country such as India.

  11. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity

    Directory of Open Access Journals (Sweden)

    Yeh Jiann-Yih

    2010-02-01

    that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus. Conclusions To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.

  12. Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi.

    Science.gov (United States)

    Pirttimaa, Minni; Nasereddin, Abedelmajeed; Kopelyanskiy, Dmitry; Kaiser, Marcel; Yli-Kauhaluoma, Jari; Oksman-Caldentey, Kirsi-Marja; Brun, Reto; Jaffe, Charles L; Moreira, Vânia M; Alakurtti, Sami

    2016-02-26

    Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.

  13. GMP-compliant, large-scale expanded allogeneic natural killer cells have potent cytolytic activity against cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Okjae Lim

    Full Text Available Ex vivo-expanded, allogeneic natural killer (NK cells can be used for the treatment of various types of cancer. In allogeneic NK cell therapy, NK cells from healthy donors must be expanded in order to obtain a sufficient number of highly purified, activated NK cells. In the present study, we established a simplified and efficient method for the large-scale expansion and activation of NK cells from healthy donors under good manufacturing practice (GMP conditions. After a single step of magnetic depletion of CD3(+ T cells, the depleted peripheral blood mononuclear cells (PBMCs were stimulated and expanded with irradiated autologous PBMCs in the presence of OKT3 and IL-2 for 14 days, resulting in a highly pure population of CD3(-CD16(+CD56(+ NK cells which is desired for allogeneic purpose. Compared with freshly isolated NK cells, these expanded NK cells showed robust cytokine production and potent cytolytic activity against various cancer cell lines. Of note, expanded NK cells selectively killed cancer cells without demonstrating cytotoxicity against allogeneic non-tumor cells in coculture assays. The anti-tumor activity of expanded human NK cells was examined in SCID mice injected with human lymphoma cells. In this model, expanded NK cells efficiently controlled lymphoma progression. In conclusion, allogeneic NK cells were efficiently expanded in a GMP-compliant facility and demonstrated potent anti-tumor activity both in vitro and in vivo.

  14. The Pharmacology of TUG-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism

    Science.gov (United States)

    Hudson, Brian D.; Shimpukade, Bharat; Mackenzie, Amanda E.; Butcher, Adrian J.; Pediani, John D.; Christiansen, Elisabeth; Heathcote, Helen; Tobin, Andrew B.; Ulven, Trond

    2013-01-01

    TUG-891 [3-(4-((4-fluoro-4′-methyl-[1,1′-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein–coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the therapeutic potential of this receptor. TUG-891 displayed similar signaling properties to the LCFA α-linolenic acid at human FFA4 across various assay end points, including stimulation of Ca2+ mobilization, β-arrestin-1 and β-arrestin-2 recruitment, and extracellular signal-regulated kinase phosphorylation. Activation of human FFA4 by TUG-891 also resulted in rapid phosphorylation and internalization of the receptor. While these latter events were associated with desensitization of the FFA4 signaling response, removal of TUG-891 allowed both rapid recycling of FFA4 back to the cell surface and resensitization of the FFA4 Ca2+ signaling response. TUG-891 was also a potent agonist of mouse FFA4, but it showed only limited selectivity over mouse FFA1, complicating its use in vivo in this species. Pharmacologic dissection of responses to TUG-891 in model murine cell systems indicated that activation of FFA4 was able to mimic many potentially beneficial therapeutic properties previously reported for LCFAs, including stimulating glucagon-like peptide-1 secretion from enteroendocrine cells, enhancing glucose uptake in 3T3-L1 adipocytes, and inhibiting release of proinflammatory mediators from RAW264.7 macrophages, which suggests promise for FFA4 as a therapeutic target for type 2 diabetes and obesity. Together, these results demonstrate both potential but also significant challenges that still need to be overcome to therapeutically target FFA4. PMID:23979972

  15. Activation of non-sensitizing or low-sensitizing fragrance substances into potent sensitizers - prehaptens and prohaptens.

    Science.gov (United States)

    Karlberg, Ann-Therese; Börje, Anna; Duus Johansen, Jeanne; Lidén, Carola; Rastogi, Suresh; Roberts, David; Uter, Wolfgang; White, Ian R

    2013-12-01

    Experimental and clinical studies have shown that fragrance substances can act as prehaptens or prohaptens. They form allergens that are more potent than the parent substance by activation outside or in the skin via abiotic (chemical and physical factors) and/or biotic activation, thus, increasing the risk of sensitization. In the present review a series of fragrance substances with well documented abiotic and/or biotic activation are given as indicative and illustrative examples of the general problem. Commonly used fragrance substances, also found in essential oils, autoxidize on contact with air, forming potent sensitizers that can be an important source for contact allergy to fragrances and fragranced products. Some of them can act as prohaptens and be activated in the skin as well. The experimental findings are confirmed in large clinical studies. When substances with structural alerts for acting as prohaptens and/or prehaptens are identified, the possibility of generating new potent allergens should be considered. Predictive testing should include activation steps. Further experimental and clinical research regarding activation of fragrance substances is needed to increase consumer safety. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Discovery of a Potent and Selective BCL-XL Inhibitor with in Vivo Activity.

    Science.gov (United States)

    Tao, Zhi-Fu; Hasvold, Lisa; Wang, Le; Wang, Xilu; Petros, Andrew M; Park, Chang H; Boghaert, Erwin R; Catron, Nathaniel D; Chen, Jun; Colman, Peter M; Czabotar, Peter E; Deshayes, Kurt; Fairbrother, Wayne J; Flygare, John A; Hymowitz, Sarah G; Jin, Sha; Judge, Russell A; Koehler, Michael F T; Kovar, Peter J; Lessene, Guillaume; Mitten, Michael J; Ndubaku, Chudi O; Nimmer, Paul; Purkey, Hans E; Oleksijew, Anatol; Phillips, Darren C; Sleebs, Brad E; Smith, Brian J; Smith, Morey L; Tahir, Stephen K; Watson, Keith G; Xiao, Yu; Xue, John; Zhang, Haichao; Zobel, Kerry; Rosenberg, Saul H; Tse, Chris; Leverson, Joel D; Elmore, Steven W; Souers, Andrew J

    2014-10-09

    A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.

  17. The Bruton Tyrosine Kinase (BTK) Inhibitor Acalabrutinib Demonstrates Potent On-Target Effects and Efficacy in Two Mouse Models of Chronic Lymphocytic Leukemia

    DEFF Research Database (Denmark)

    Herman, Sarah E M; Montraveta, Arnau; Niemann, Carsten U

    2017-01-01

    Purpose: Acalabrutinib (ACP-196) is a novel, potent, and highly selective Bruton tyrosine kinase (BTK) inhibitor, which binds covalently to Cys481 in the ATP-binding pocket of BTK. We sought to evaluate the antitumor effects of acalabrutinib treatment in two established mouse models of chronic ly...

  18. An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV and anti-cancer activities.

    Directory of Open Access Journals (Sweden)

    Ran He

    Full Text Available We recently reported that two artemisinin-derived dimers (dimer primary alcohol 606 and dimer sulfone 4-carbamate 832-4 are significantly more potent in inhibiting human cytomegalovirus (CMV replication than artemisinin-derived monomers. In our continued evaluation of the activities of artemisinins in CMV inhibition, twelve artemisinin-derived dimers and five artemisinin-derived monomers were used. Dimers as a group were found to be potent inhibitors of CMV replication. Comparison of CMV inhibition and the slope parameter of dimers and monomers suggest that dimers are distinct in their anti-CMV activities. A deoxy dimer (574, lacking the endoperoxide bridge, did not have any effect on CMV replication, suggesting a role for the endoperoxide bridge in CMV inhibition. Differences in anti-CMV activity were observed among three structural analogs of dimer sulfone 4-carbamate 832-4 indicating that the exact placement and oxidation state of the sulfur atom may contribute to its anti-CMV activity. Of all tested dimers, artemisinin-derived diphenyl phosphate dimer 838 proved to be the most potent inhibitor of CMV replication, with a selectivity index of approximately 1500, compared to our previously reported dimer sulfone 4-carbamate 832-4 with a selectivity index of about 900. Diphenyl phosphate dimer 838 was highly active against a Ganciclovir-resistant CMV strain and was also the most active dimer in inhibition of cancer cell growth. Thus, diphenyl phosphate dimer 838 may represent a lead for development of a highly potent and safe anti-CMV compound.

  19. Urolithins, Intestinal Microbial Metabolites of Pomegranate Ellagitannins, Exhibit Potent Antioxidant Activity in Cell-Based Assay

    Science.gov (United States)

    Many health benefits of pomegranate products have been attributed to the potent antioxidant action of their tannin components, mainly punicalagins and ellagic acid. While moving through the intestines, ellagitannins are metabolized by gut bacteria into urolithins that readily enter systemic circulat...

  20. A novel ribonuclease with potent HIV-1 reverse transcriptase inhibitory activity from cultured mushroom Schizophyllum commune.

    Science.gov (United States)

    Zhao, Yong-Chang; Zhang, Guo-Qing; Ng, Tzi-Bun; Wang, He-Xiang

    2011-10-01

    A 20-kDa ribonuclease (RNase) was purified from fresh fruiting bodies of cultured Schizophyllum commune mushrooms. The RNase was not adsorbed on Affi-gel blue gel but adsorbed on DEAE-cellulose and CM-cellulose. It exhibited maximal RNase activity at pH 6.0 and 70°C. It demonstrated the highest ribonucleolytic activity toward poly (U) (379.5 μ/mg), the second highest activity toward poly (C) (244.7 μ/mg), less activity toward poly (A) (167.4 μ/mg), and much weaker activity toward poly (G) (114.5 μ/mg). The RNase inhibited HIV-1 reverse transcriptase with an IC(50) of 65 μM. No effect on [(3)H-methyl]-thymidine uptake by lymphoma MBL2 cells and leukemia L1210 cells was observed at 100 μM concentration of the RNase. A comparison of RNases from S. commune and Volvariella volvacea revealed that they demonstrated some similarities in N-terminal amino acid sequence, optimum pH and polyhomoribonucleotide specificity. However, some differences in chromatographic behavior and molecular mass were observed.

  1. Hypoxia-activated pro-drug TH-302 exhibits potent tumor suppressive activity and cooperates with chemotherapy against osteosarcoma.

    Science.gov (United States)

    Liapis, Vasilios; Labrinidis, Agatha; Zinonos, Irene; Hay, Shelley; Ponomarev, Vladimir; Panagopoulos, Vasilios; DeNichilo, Mark; Ingman, Wendy; Atkins, Gerald J; Findlay, David M; Zannettino, Andrew C W; Evdokiou, Andreas

    2015-02-01

    Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, tumor hypoxia also offers treatment opportunities, exemplified by the development compounds that target hypoxic regions within tumors. TH-302 is a pro-drug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide (Br-IPM). When TH-302 is delivered to regions of hypoxia, Br-IPM, the DNA cross linking toxin, is released. In this study we assessed the cytotoxic activity of TH-302 against osteosarcoma cells in vitro and evaluated its anticancer efficacy as a single agent, and in combination with doxorubicin, in an orthotopic mouse model of human osteosarcoma (OS). In vitro, TH-302 was potently cytotoxic to osteosarcoma cells selectively under hypoxic conditions, whereas primary normal human osteoblasts were protected. Animals transplanted with OS cells directly into their tibiae and left untreated developed mixed osteolytic/osteosclerotic bone lesions and subsequently developed lung metastases. TH-302 reduced tumor burden in bone and cooperated with doxorubicin to protect bone from osteosarcoma induced bone destruction, while it also reduced lung metastases. TH-302 may therefore be an attractive therapeutic agent with strong activity as a single agent and in combination with chemotherapy against OS. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine2B Receptor Agonists: Implications for Drug Safety Assessment

    OpenAIRE

    Huang, Xi-Ping; Setola, Vincent; Yadav, Prem N; Allen, John A.; Rogan, Sarah C.; Hanson, Bonnie J.; Revankar, Chetana; Robers, Matt; Doucette, Chris; Roth, Bryan L.

    2009-01-01

    Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine2B (5-HT2B) receptor agonists. We have shown that activation of 5-HT2B receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscen...

  3. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Huan; Zuo, Dai-Ying; Bai, Zhao-Shi; Xu, Jing-Wen; Li, Zeng-Qiang [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang (China); Shen, Qi-Rong; Wang, Zhi-Wei [Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang (China); Zhang, Wei-Ge, E-mail: zhangweige2000@sina.com [Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang (China); Wu, Ying-Liang, E-mail: yingliang_1016@163.com [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang (China)

    2014-12-12

    Highlights: • COH-203 exhibits anti-hepatoma effects in vitro and in vivo with low toxicity. • COH-203 inhibits tubulin polymerization. • COH-203 induces mitotic arrest followed by mitotic slippage in BEL-7402 cells. • COH-203 induces p53-dependent senescence in BEL-7402 cells. - Abstract: 5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-3H-1, 2-dithiol-3-one (COH-203) is a novel synthesized analogue of combretastatin A-4 that can be classified as a microtubule inhibitor. In this study, we evaluated the anti-hepatoma effect of COH-203 in vitro and in vivo and explored the underlying molecular mechanisms. COH-203 was shown to be more effective in inhibiting the proliferation of liver cancer cells compared with normal liver cells. COH-203 also displayed potent anti-tumor activity in a hepatocellular carcinoma xenograft model without significant toxicity. Mechanistic studies demonstrated that treatment with COH-203 induced mitotic arrest by inhibiting tubulin polymerization in BEL-7402 liver cancer cells. Long-term COH-203 treatment in BEL-7402 cells led to mitotic slippage followed by senescence via the p14{sup Arf}–p53–p21 and p16{sup INK4α}–Rb pathways. Furthermore, suppression of p53 via pifithrin-α (p53 inhibitor) and p53-siRNA attenuated COH-203-induced senescence in BEL-7402 cells, suggesting that COH-203 induced senescence p53-dependently. In conclusion, we report for the first time that COH-203, one compound in the combretastatin family, promotes anti-proliferative activity through the induction of p-53 dependent senescence. Our findings will provide a molecular rationale for the development of COH-203 as a promising anti-tumor agent.

  4. Melaleuca alternifolia essential oil possesses potent anti-staphylococcal activity extended to strains resistant to antibiotics.

    Science.gov (United States)

    Ferrini, A M; Mannoni, V; Aureli, P; Salvatore, G; Piccirilli, E; Ceddia, T; Pontieri, E; Sessa, R; Oliva, B

    2006-01-01

    Melaleuca alternifolia Cheel essential oil (TTO) and its major component terpinen-4-ol were examined against a large number of clinical isolates of Staphylococcus aureus to establish their anti-staphylococcal activities. Classic and established procedures were used to study M.I.C., time-kill curves, synergism and mutational frequency. The anti-staphylococcal activity of terpinen-4-ol and TTO were superior to those of antibiotics belonging to the major families (all the tested drugs are for topical use or included in ointments, eye drops or used during surgery); terpinen 4-ol and TTO were active against strains resistant to mupirocin, fusidic acid, vancomycin, methicillin and linezolid. TTO and terpinen-4-ol were bactericidal as revealed by time-kill curves; the frequency of mutational frequency to TTO was < 2.9 x 10 9. The study demonstrates good anti-staphylococcal activity of TTO and terpinen-4-ol against a large number of S.aureus isolates and suggests the possible application of these agents for topical treatment of staphylococcal infections. This is the first extensive study on the anti-staphylococcal activity of TTO. The results suggest that this compound may have application as a topical agent for the control of superficial staphylococcal infections, including activity against organisms resistant to antibiotics which can be used, or are specific, for topical use.

  5. A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii.

    Science.gov (United States)

    Mohamed, Mohamed F; Brezden, Anna; Mohammad, Haroon; Chmielewski, Jean; Seleem, Mohamed N

    2017-07-31

    Antimicrobial peptides (AMPs) represent a promising therapeutic alternative for the treatment of antibiotic-resistant bacterial infections. The present study investigates the antimicrobial activity of new, rationally-designed derivatives of a short α-helical peptide, RR. From the peptides designed, RR4 and its D-enantiomer, D-RR4, emerged as the most potent analogues with a more than 32-fold improvement in antimicrobial activity observed against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Remarkably, D-RR4 demonstrated potent activity against colistin-resistant strains of P. aeruginosa (isolated from cystic fibrosis patients) indicating a potential therapeutic advantage of this peptide over several AMPs. In contrast to many natural AMPs, D-RR4 retained its activity under challenging physiological conditions (high salts, serum, and acidic pH). Furthermore, D-RR4 was more capable of disrupting P. aeruginosa and A. baumannii biofilms when compared to conventional antibiotics. Of note, D-RR4 was able to bind to lipopolysaccharide to reduce the endotoxin-induced proinflammatory cytokine response in macrophages. Finally, D-RR4 protected Caenorhabditis elegans from lethal infections of P. aeruginosa and A. baumannii and enhanced the activity of colistin in vivo against colistin-resistant P. aeruginosa.

  6. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism*

    Science.gov (United States)

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-01-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics. PMID:26013823

  7. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism.

    Science.gov (United States)

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-07-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics.

  8. Potent Antioxidative Activity of Lycopene: A Potential Role in Scavenging Hypochlorous Acid †

    OpenAIRE

    Pennathur, Subramaniam; Maitra, Dhiman; Byun, Jaeman; Sliskovic, Inga; Abdulhamid, Ibrahim; Saed, Ghassan M.; DIAMOND, MICHAEL P.; Abu-Soud, Husam M.

    2010-01-01

    Lycopene, a carotenoid found in tomatoes, is a proven anti-oxidant that may lower the risk of certain disorders including heart disease and cancer. Hypochlorous acid (HOCl) is an oxidant linked to tissue oxidation in cardiovascular disease and other inflammatory disorders through its ability to modify proteins, deoxyribonucleic acid, ribonucleic acid and lipids. Here we show that lycopene can function as a potent scavenger of HOCl at a wide range of concentrations that span various pathophysi...

  9. MIT(1), a black mamba toxin with a new and highly potent activity on intestinal contraction.

    Science.gov (United States)

    Schweitz, H; Pacaud, P; Diochot, S; Moinier, D; Lazdunski, M

    1999-11-19

    Mamba intestinal toxin (MIT(1)) isolated from Dendroaspis polylepis venom is a 81 amino acid polypeptide cross-linked by five disulphide bridges. MIT(1) has a very potent action on guinea-pig intestinal contractility. MIT(1) (1 nM) potently contracts longitudinal ileal muscle and distal colon, and this contraction is equivalent to that of 40 mM K(+). Conversely MIT(1) relaxes proximal colon again as potently as 40 mM K(+). The MIT(1)-induced effects are antagonised by tetrodotoxin (1 microM) in proximal and distal colon but not in longitudinal ileum. The MIT(1)-induced relaxation of the proximal colon is reversibly inhibited by the NO synthase inhibitor L-NAME (200 microM). (125)I-labelled MIT(1) binds with a very high affinity to both ileum and brain membranes (K(d)=1.3 pM and 0.9 pM, and B(max)=30 fmol/mg and 26 fmol/mg, respectively). MIT(1) is a very highly selective toxin for a receptor present both in the CNS and in the smooth muscle and which might be an as yet unidentified K(+) channel.

  10. Anthelmintic properties of traditional African and Caribbean medicinal plants: identification of extracts with potent activity against Ascaris suum in vitro

    Directory of Open Access Journals (Sweden)

    Williams Andrew R.

    2016-01-01

    Full Text Available Ascariasis affects more than 1 billion people worldwide, mainly in developing countries, causing substantial morbidity. Current treatments for Ascaris infection are based on mass drug administration (MDA with synthetic anthelmintic drugs such as albendazole, however continual re-infection and the threat of drug resistance mean that complementary treatment options would be highly valuable. Here, we screened ethanolic extracts from 29 medicinal plants used in Africa (Ghana and the Caribbean (US Virgin Islands for in vitro anthelmintic properties against Ascaris suum, a swine parasite that is very closely related to the human A. lumbricoides. A wide variety of activities were seen in the extracts, from negligible to potent. Extracts from Clausena anisata, Zanthoxylum zanthoxyloides and Punica granatum were identified as the most potent with EC50 values of 74, 97 and 164 μg/mL, respectively. Our results encourage further investigation of their use as complementary treatment options for ascariasis, alongside MDA.

  11. Anthelmintic properties of traditional African and Caribbean medicinal plants: identification of extracts with potent activity against Ascaris suum in vitro

    Science.gov (United States)

    Williams, Andrew R.; Soelberg, Jens; Jäger, Anna K.

    2016-01-01

    Ascariasis affects more than 1 billion people worldwide, mainly in developing countries, causing substantial morbidity. Current treatments for Ascaris infection are based on mass drug administration (MDA) with synthetic anthelmintic drugs such as albendazole, however continual re-infection and the threat of drug resistance mean that complementary treatment options would be highly valuable. Here, we screened ethanolic extracts from 29 medicinal plants used in Africa (Ghana) and the Caribbean (US Virgin Islands) for in vitro anthelmintic properties against Ascaris suum, a swine parasite that is very closely related to the human A. lumbricoides. A wide variety of activities were seen in the extracts, from negligible to potent. Extracts from Clausena anisata, Zanthoxylum zanthoxyloides and Punica granatum were identified as the most potent with EC50 values of 74, 97 and 164 μg/mL, respectively. Our results encourage further investigation of their use as complementary treatment options for ascariasis, alongside MDA. PMID:27301442

  12. Structure-activity relationship investigation for benzonaphthyridinone derivatives as novel potent Bruton's tyrosine kinase (BTK) irreversible inhibitors.

    Science.gov (United States)

    Wang, Beilei; Deng, Yuanxin; Chen, Yongfei; Yu, Kailin; Wang, Aoli; Liang, Qianmao; Wang, Wei; Chen, Cheng; Wu, Hong; Hu, Chen; Miao, Weili; Hur, Wooyoung; Wang, Wenchao; Hu, Zhenquan; Weisberg, Ellen L; Wang, Jinhua; Ren, Tao; Wang, Yinsheng; Gray, Nathanael S; Liu, Qingsong; Liu, Jing

    2017-09-08

    Through a structure-based drug design approach, a tricyclic benzonaphthyridinone pharmacophore was used as a starting point for carrying out detailed medicinal structure-activity relationhip (SAR) studies geared toward characterization of a panel of proposed BTK inhibitors, including 6 (QL-X-138), 7 (BMX-IN-1) and 8 (QL47). These studies led to the discovery of the novel potent irreversible BTK inhibitor, compound 18 (CHMFL-BTK-11). Kinetic analysis of compound 18 revealed an irreversible binding efficacy (kinact/Ki) of 0.01 μM(-1)s(-1). Compound 18 potently inhibited BTK kinase Y223 auto-phosphorylation (EC50 < 100 nM), arrested cell cycle in G0/G1 phase, and induced apoptosis in Ramos, MOLM13 and Pfeiffer cells. We believe these features would make 18 a good pharmacological tool for studying BTK-related pathologies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment.

    Science.gov (United States)

    Huang, Xi-Ping; Setola, Vincent; Yadav, Prem N; Allen, John A; Rogan, Sarah C; Hanson, Bonnie J; Revankar, Chetana; Robers, Matt; Doucette, Chris; Roth, Bryan L

    2009-10-01

    Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine(2B) (5-HT(2B)) receptor agonists. We have shown that activation of 5-HT(2B) receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscent of the fibrosis that typifies VHD. To identify current or future drugs that might induce VHD, we screened approximately 2200 U.S. Food and Drug Administration (FDA)-approved or investigational medications to identify 5-HT(2B) receptor agonists, using calcium-based high-throughput screening. Of these 2200 compounds, 27 were 5-HT(2B) receptor agonists (hits); 14 of these had previously been identified as 5-HT(2B) receptor agonists, including seven bona fide valvulopathogens. Six of the hits (guanfacine, quinidine, xylometazoline, oxymetazoline, fenoldopam, and ropinirole) are approved medications. Twenty-three of the hits were then "functionally profiled" (i.e., assayed in parallel for 5-HT(2B) receptor agonism using multiple readouts to test for functional selectivity). In these assays, the known valvulopathogens were efficacious at concentrations as low as 30 nM, whereas the other compounds were less so. Hierarchical clustering analysis of the pEC(50) data revealed that ropinirole (which is not associated with valvulopathy) was clearly segregated from known valvulopathogens. Taken together, our data demonstrate that patterns of 5-HT(2B) receptor functional selectivity might be useful for identifying compounds likely to induce valvular heart disease.

  14. Impurities contained in antifungal drug ketoconazole are potent activators of human aryl hydrocarbon receptor.

    Science.gov (United States)

    Grycová, Aneta; Dořičáková, Aneta; Dvořák, Zdeněk

    2015-12-03

    Antifungal drug ketoconazole is a mixture of (+)/(-) cis-enantiomers, which also contains several impurities. Ketoconazole was identified as an activator of aryl hydrocarbon receptor AhR by three independent research teams. In the current paper we demonstrate that impurities contained in ketoconazole preparations are strong activators of human AhR and inducers of CYP1A1. Impurity IMP-C had similar potency (EC50), but 10-15 times higher efficacy (magnitude of induction) towards AhR, comparing to (+)-ketoconazole, as revealed by gene reporter assay in AZ-AHR stably transfected cells. Impurities IMP-B and IMP-C, and in lesser extent IMP-E, induced a formation of AhR-DNA complex, as demonstrated by electromobility shift assay EMSA. Impurities IMP-C and IMP-E dose-dependently induced CYP1A1 mRNA after 24 h, and their effects were comparable to those by (+)-ketoconazole. The level of CYP1A1 protein in HepG2 cells was strongly increased by IMP-C after 48h. In conclusion, our data further elucidated molecular effects of ketoconazole towards AhR signaling pathway, with possible implications in ketoconazole role in skin chemoprevention and/or damage, involving AhR.

  15. Sertraline demonstrates fungicidal activity in vitro for Coccidioides immitis

    Directory of Open Access Journals (Sweden)

    Simon Paul

    2016-07-01

    Full Text Available Coccidioidomycosis causes substantial morbidity in endemic areas. Disseminated coccidioidomycosis is an AIDS defining condition and treatment often requires lifelong antifungal therapy. Sertraline, a widely used serotonin-reuptake inhibitor anti-depressant, has demonstrated activity against Candida and Cryptococcus sp. both in vitro and in vivo. To evaluate if sertraline has activity against Coccidioides, the minimal inhibitory concentration (MIC and minimal fungicidal concentration (MFC of sertraline for four clinical isolates of C. immitis were determined. Sertraline was observed to have an MIC range of 4–8 µg/ml and MFC also of 4–8 µg/ml for Coccidioides. These MIC and MFC results for C. immitis are similar to those reported for Cryptococcus sp. suggesting sertraline may potentially have utility for the treatment of coccidioidomycosis.

  16. Identification of a novel boronic acid as a potent, selective, and orally active hormone sensitive lipase inhibitor.

    Science.gov (United States)

    Ogiyama, Tomoko; Yamaguchi, Mitsuhiro; Kurikawa, Nobuya; Honzumi, Shoko; Yamamoto, Yuka; Sugiyama, Daisuke; Inoue, Shinichi

    2016-08-15

    Hormone sensitive lipase (HSL) is an attractive therapeutic target of dyslipidemia. We designed and synthesized several compounds as reversible HSL inhibitors with a focus on hydrophobic interactions, which was thought to be effective upon the HSL inhibitory activity. In these efforts, we identified boronated compound 12 showing a potent HSL inhibitory activity with an IC50 value of 7nM and a high selectivity against cholinesterases. Furthermore, compound 12 is the first boron containing HSL inhibitor that has shown an antilipolytic effect in rats after oral administration at 3mg/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Potent Activities of Roemerine against Candida albicans and the Underlying Mechanisms.

    Science.gov (United States)

    Ma, Chaoyu; Du, Faya; Yan, Lan; He, Gonghao; He, Jianchang; Wang, Chengying; Rao, Gaoxiong; Jiang, Yuanying; Xu, Guili

    2015-01-01

    Roemerine (RM) is an aporphine alkaloid isolated from the fresh rattan stem of Fibraurea recisa, and it has been demonstrated to have certain antifungal activity. This study aimed to investigate the antifungal activity of RM and the underlying mechanisms in Candida albicans (C. albicans). The in vitro antifungal activity of RM was evaluated by a series of experiments, including the XTT reduction assay, confocal laser scanning microscopy assay, scanning electron microscope assay. Results showed that 1 μg/mL RM inhibited biofilm formation significantly (p albicans in a dose-dependent manner. The biofilm-specific and hypha-specific genes such as YWP1, SAP5, SAP6, HWP1, ECE1 were up-regulated and EFG1 was down-regulated after 8 μg/mL RM treatment. Furthermore, the toxicity of RM was investigated using C. elegans worms, three cancer cells and one normal cell. The date showed that RM had no significant toxicity. In conclusion, RM could inhibited the formation of C. albicans biofilm in vitro, but it had no fungicidal effect on planktonic C. albicans cells, and the anti-biofilm mechanism may be related to the cAMP pathway.

  18. Potent Anti-Inflammatory Activity of Carbohydrate Polymer with Oxide of Zinc

    Science.gov (United States)

    Moreno-Eutimio, Mario Adan; Nieto-Velázquez, Nayeli Goreti; Espinosa-Monroy, Lorena; Torres-Ramos, Yessica; Montoya-Estrada, Araceli; Cueto, Jorge; Hicks, Juan Jose; Acosta-Altamirano, Gustavo

    2014-01-01

    Pebisut is a biological adhesive composed of naturally occurring carbohydrates combined with zinc oxide (ZnO) initially used as a coadjutant for healing of anastomoses. Likewise some works demonstrated that carbohydrate complexes exerts anti-inflammatory activity and it is widely known that ZnO modulate inflammation. However, the direct effects of Pebisut on isolated cells and acute inflammatory responses remained to be investigated. The present study evaluated anti-inflammatory effect of Pebisut using lipopolysaccharide (LPS) stimulated human mononuclear cells, chemotaxis, and cell infiltration in vivo in a murine model of peritonitis. Our data show that human cells treated with different dilutions of Pebisut release less IL-6, IL-1β, and IL-8 after LPS stimuli compared with the control treated cells. In addition, Pebisut lacked chemotactic activity in human mononuclear cells but was able to reduce chemotaxis towards CCL2, CCL5, and CXCL12 that are representative mononuclear cells chemoattractants. Finally, in a murine model of peritonitis, we found less number of macrophages (F4/80+) and T lymphocytes (CD3+) in peritoneal lavages from animals treated with Pebisut. Our results suggest that Pebisut has anti-inflammatory activity, which might have a beneficial effect during anastomoses healing or wounds associated with excessive inflammation. PMID:24757670

  19. Potent Activities of Roemerine against Candida albicans and the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Chaoyu Ma

    2015-09-01

    Full Text Available Roemerine (RM is an aporphine alkaloid isolated from the fresh rattan stem of Fibraurea recisa, and it has been demonstrated to have certain antifungal activity. This study aimed to investigate the antifungal activity of RM and the underlying mechanisms in Candida albicans (C. albicans. The in vitro antifungal activity of RM was evaluated by a series of experiments, including the XTT reduction assay, confocal laser scanning microscopy assay, scanning electron microscope assay. Results showed that 1 μg/mL RM inhibited biofilm formation significantly (p < 0.01 both in Spider medium and Lee’s medium. In addition, RM could inhibit yeast-to-hyphae transition of C. albicans in a dose-dependent manner. The biofilm-specific and hypha-specific genes such as YWP1, SAP5, SAP6, HWP1, ECE1 were up-regulated and EFG1 was down-regulated after 8 μg/mL RM treatment. Furthermore, the toxicity of RM was investigated using C. elegans worms, three cancer cells and one normal cell. The date showed that RM had no significant toxicity. In conclusion, RM could inhibited the formation of C. albicans biofilm in vitro, but it had no fungicidal effect on planktonic C. albicans cells, and the anti-biofilm mechanism may be related to the cAMP pathway.

  20. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities.

    Science.gov (United States)

    Srinivasan, Balasubramanian; Johnson, Thomas E; Lad, Rahul; Xing, Chengguo

    2009-11-26

    Chalcone is a privileged structure, demonstrating promising anti-inflammatory and anticancer activities. One potential mechanism is to suppress nuclear factor kappa B (NF-kappaB) activation. The structures of chalcone-based NF-kappaB inhibitors vary significantly that there is minimum information about their structure-activity relationships (SAR). This study aims to establish SAR of chalcone-based compounds to NF-kappaB inhibition, to explore the feasibility of developing simple chalcone-based potent NF-kappaB inhibitors, and to evaluate their anticancer activities. Three series of chalcones were synthesized in one to three steps with the key step being aldol condensation. These candidates demonstrated a wide range of NF-kappaB inhibitory activities, some of low micromolar potency, establishing that structural complexity is not required for NF-kappaB inhibition. Lead compounds also demonstrate potent cytotoxicity against lung cancer cells. Their cytotoxicities correlate moderately well with their NF-kappaB inhibitory activities, suggesting that suppressing NF-kappaB activation is likely responsible for at least some of the cytotoxicities. One lead compound effectively inhibits lung tumor growth with no signs of adverse side effects.

  1. Compounds from Sorindeia juglandifolia (Anacardiaceae exhibit potent anti-plasmodial activities in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Kamkumo Raceline G

    2012-11-01

    Full Text Available Abstract Background Discovering new lead compounds against malaria parasites is a crucial step to ensuring a sustainable global pipeline for effective anti-malarial drugs. As far as we know, no previous phytochemical or pharmacological investigations have been carried out on Sorindeia juglandifolia. This paper describes the results of an anti-malarial activity-driven investigation of the fruits of this Cameroonian plant. Methods Air-dried fruits were extracted by maceration using methanol. The extract was fractionated by flash chromatography followed by column chromatography over silica gel, eluting with gradients of hexane-ethyl acetate mixtures. Resulting fractions and compounds were tested in vitro against the Plasmodium falciparum chloroquine-resistant strain W2, against field isolates of P. falciparum, and against the P. falciparum recombinant cysteine protease falcipain-2. Promising fractions were assessed for acute toxicity after oral administration in mice. One of the promising isolated compounds was assessed in vivo against the rodent malaria parasite Plasmodium berghei. Results The main end-products of the activity-guided fractionation were 2,3,6-trihydroxy benzoic acid (1 and 2,3,6-trihydroxy methyl benzoate (2. Overall, nine fractions tested against P. falciparum W2 and falcipain-2 were active, with IC50 values of 2.3-11.6 μg/ml for W2, and 1.1-21.9 μg/ml for falcipain-2. Purified compounds (1 and (2 also showed inhibitory effects against P. falciparum W2 (IC50s 16.5 μM and 13.0 μM and falcipain-2 (IC50s 35.4 and 6.1 μM. In studies of P. falciparum isolates from Cameroon, the plant fractions demonstrated IC50 values of 0.14-19.4 μg/ml and compounds (1 and (2 values of 6.3 and 36.1 μM. In vivo assessment of compound (1 showed activity against P. berghei strain B, with mean parasitaemia suppressive dose and curative dose of 44.9 mg/kg and 42.2 mg/kg, respectively. Active fractions were found to be safe in mice after oral

  2. Rice Bran Protein as a Potent Source of Antimelanogenic Peptides with Tyrosinase Inhibitory Activity.

    Science.gov (United States)

    Ochiai, Akihito; Tanaka, Seiya; Tanaka, Takaaki; Taniguchi, Masayuki

    2016-10-28

    Rice (Oryza sativa) is consumed as a staple food globally, and rice bran, the byproduct, is an unused biomass that is ultimately discarded as waste. Thus, in the present study, a technique for producing tyrosinase inhibitory peptides from rice bran protein (RBP) was developed. Simultaneous treatment of RBP with chymotrypsin and trypsin produced numerous peptides. Subsequently, six tyrosinase inhibitory peptides were isolated from the hydrolysate fractions in a multistep purification protocol, and their amino acid sequences were determined. Three of these peptides had a C-terminal tyrosine residue and exhibited significant inhibitory effects against tyrosinase-mediated monophenolase reactions. Furthermore, peptide CT-2 (Leu-Gln-Pro-Ser-His-Tyr) potently inhibited melanogenesis in mouse B16 melanoma cells without causing cytotoxicity, suggesting the potential of CT-2 as an agent for melanin-related skin disorder treatment. The present data indicate that RBP is a potent source of tyrosinase inhibitory peptides and that simultaneous treatment of RBP with chymotrypsin and trypsin efficiently produces these peptides.

  3. Potent anti-inflammatory activity of novel microtubule-modulating brominated noscapine analogs.

    Science.gov (United States)

    Zughaier, Susu; Karna, Prasanthi; Stephens, David; Aneja, Ritu

    2010-02-11

    Noscapine, a plant-derived, non-toxic, over-the-counter antitussive alkaloid has tubulin-binding properties. Based upon the structural resemblance of noscapine to colchicine, a tubulin-binding anti-inflammatory drug, noscapine and its semi-synthetic brominated analogs were examined for in vitro anti-inflammatory activity. Brominated noscapine analogs were found to inhibit cytokine and chemokine release from macrophage cell lines but did not affect cell viability. Brominated noscapine analogs demonstrated anti-inflammatory properties in both TLR- and non-TLR induced in vitro innate immune pathway inflammation models, mimicking septic and sterile infection respectively. In addition, electron microscopy and immunoblotting data indicated that these analogs induced robust autophagy in human macrophages. This study is the first report to identify brominated noscapines as innate immune pathway anti-inflammatory molecules.

  4. Potent anti-inflammatory activity of novel microtubule-modulating brominated noscapine analogs.

    Directory of Open Access Journals (Sweden)

    Susu Zughaier

    Full Text Available Noscapine, a plant-derived, non-toxic, over-the-counter antitussive alkaloid has tubulin-binding properties. Based upon the structural resemblance of noscapine to colchicine, a tubulin-binding anti-inflammatory drug, noscapine and its semi-synthetic brominated analogs were examined for in vitro anti-inflammatory activity. Brominated noscapine analogs were found to inhibit cytokine and chemokine release from macrophage cell lines but did not affect cell viability. Brominated noscapine analogs demonstrated anti-inflammatory properties in both TLR- and non-TLR induced in vitro innate immune pathway inflammation models, mimicking septic and sterile infection respectively. In addition, electron microscopy and immunoblotting data indicated that these analogs induced robust autophagy in human macrophages. This study is the first report to identify brominated noscapines as innate immune pathway anti-inflammatory molecules.

  5. Isolation of bothrasperin, a disintegrin with potent platelet aggregation inhibitory activity, from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    Adrián Pinto

    2003-03-01

    Full Text Available The venom of Bothrops asper induces severe coagulation disturbances in accidentally envenomed humans. However, only few studies have been conducted to identify components that interact with the hemostatic system in this venom. In the present work, we fractionated B. asper venom in order to investigate the possible presence of inhibitors of platelet aggregation. Using a combination of gel filtration, anion-exchange chromatography, and reverse-phase high performance liquid chromatography, we isolated an acidic protein which shows a single chain composition, with a molecular mass of ~8 kDa, estimated by SDS-polyacrylamide gel electrophoresis. Its N-terminal sequence has high similarity to disintegrins isolated from different snake venoms, which are known to bind to cellular integrins such as the GPIIb/IIIa fibrinogen receptor on platelets. The purified protein exerted potent aggregation inhibitory activity on ADP-stimulated human platelets in vitro, with an estimated IC50 of 50 nM. This biological activity, together with the biochemical characteristics observed, demonstrate that the protein isolated from B. asper venom is a disintegrin, hereby named "bothrasperin". This is the first disintegrin isolated from Central American viperid snake species.El veneno de la serpiente Bothrops asper induce graves alteraciones de la coagulación en los humanos accidentalmente envenenados. Sin embargo, se han realizado pocos estudios para identificar los componentes del veneno que interactúan con el sistema hemostático. En el presente trabajo, fraccionamos el veneno de B. asper para investigar la posible presencia de inhibidores de la agregación plaquetaria. Empleando una combinación de técnicas cromatográficas (filtración en gel, intercambio aniónico y cromatografía líquida de alto desempeño en fase reversa, aislamos una proteína acídica de cadena simple, con una masa molecular de ~8 kDa, estimada mediante electroforesis en gel de poliacrilamida con

  6. Bacillus thuringiensis-derived Cry5B has potent anthelmintic activity against Ascaris suum.

    Directory of Open Access Journals (Sweden)

    Joseph F Urban

    Full Text Available Ascaris suum and Ascaris lumbricoides are two closely related geo-helminth parasites that ubiquitously infect pigs and humans, respectively. Ascaris suum infection in pigs is considered a good model for A. lumbricoides infection in humans because of a similar biology and tissue migration to the intestines. Ascaris lumbricoides infections in children are associated with malnutrition, growth and cognitive stunting, immune defects, and, in extreme cases, life-threatening blockage of the digestive tract and aberrant migration into the bile duct and peritoneum. Similar effects can be seen with A. suum infections in pigs related to poor feed efficiency and performance. New strategies to control Ascaris infections are needed largely due to reduced treatment efficacies of current anthelmintics in the field, the threat of resistance development, and the general lack of new drug development for intestinal soil-transmitted helminths for humans and animals. Here we demonstrate for the first time that A. suum expresses the receptors for Bacillus thuringiensis crystal protein and novel anthelmintic Cry5B, which has been previously shown to intoxicate hookworms and which belongs to a class of proteins considered non-toxic to vertebrates. Cry5B is able to intoxicate A. suum larvae and adults and triggers the activation of the p38 mitogen-activated protein kinase pathway similar to that observed with other nematodes. Most importantly, two moderate doses of 20 mg/kg body weight (143 nM/kg of Cry5B resulted in a near complete cure of intestinal A. suum infections in pigs. Taken together, these results demonstrate the excellent potential of Cry5B to treat Ascaris infections in pigs and in humans and for Cry5B to work effectively in the human gastrointestinal tract.

  7. Isopentenyl pyrophosphate-activated CD56+ {gamma}{delta} T lymphocytes display potent antitumor activity toward human squamous cell carcinoma.

    Science.gov (United States)

    Alexander, Alan A Z; Maniar, Amudhan; Cummings, Jean-Saville; Hebbeler, Andrew M; Schulze, Dan H; Gastman, Brian R; Pauza, C David; Strome, Scott E; Chapoval, Andrei I

    2008-07-01

    The expression of CD56, a natural killer cell-associated molecule, on alphabeta T lymphocytes correlates with their increased antitumor effector function. CD56 is also expressed on a subset of gammadelta T cells. However, antitumor effector functions of CD56(+) gammadelta T cells are poorly characterized. To investigate the potential effector role of CD56(+) gammadelta T cells in tumor killing, we used isopentenyl pyrophosphate and interleukin-2-expanded gammadelta T cells from peripheral blood mononuclear cells of healthy donors. Thirty to 70% of expanded gammadelta T cells express CD56 on their surface. Interestingly, although both CD56(+) and CD56(-) gammadelta T cells express comparable levels of receptors involved in the regulation of gammadelta T-cell cytotoxicity (e.g., NKG2D and CD94), only CD56(+) gammadelta T lymphocytes are capable of killing squamous cell carcinoma and other solid tumor cell lines. This effect is likely mediated by the enhanced release of cytolytic granules because CD56(+) gammadelta T lymphocytes expressed higher levels of CD107a compared with CD56(-) controls following exposure to tumor cell lines. Lysis of tumor cell lines is blocked by concanamycin A and a combination of anti-gammadelta T-cell receptor + anti-NKG2D monoclonal antibody, suggesting that the lytic activity of CD56(+) gammadelta T cells involves the perforin-granzyme pathway and is mainly gammadelta T-cell receptor/NKG2D dependent. Importantly, CD56-expressing gammadelta T lymphocytes are resistant to Fas ligand and chemically induced apoptosis. Our data indicate that CD56(+) gammadelta T cells are potent antitumor effectors capable of killing squamous cell carcinoma and may play an important therapeutic role in patients with head and neck cancer and other malignancies.

  8. Potent and Selective Monoamine Oxidase-B Inhibitory Activity: Fluoro- vs. Trifluoromethyl-4-hydroxylated Chalcone Derivatives.

    Science.gov (United States)

    Mathew, Bijo; Mathew, Githa Elizabeth; Uçar, Gülberk; Baysal, Ipek; Suresh, Jerad; Mathew, Sincy; Haridas, Abitha; Jayaprakash, Venkatesan

    2016-08-01

    For various neurodegenerative disorders like Alzheimer's and Parkinson's diseases, selective and reversible MAO-B inhibitors have a great therapeutic value. In our previous study, we have shown that a series of methoxylated chalcones with F functional group exhibited high binding affinity toward human monoamine oxidase-B (hMAO-B). In continuation of our earlier study and to extend the understanding of the structure-activity relationships, a series of five new chalcones were studied for their inhibition of hMAO. The results demonstrated that these compounds are reversible and selective hMAO-B inhibitors with a competitive mode of inhibition. The most active compound, (2E)-1-(4-hydroxyphenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-en-1-one, exhibited a Ki value of 0.33 ± 0.01 μm toward hMAO-B with a selectivity index of 26.36. A molecular docking study revealed that the presence of a H-bond network in hydroxylated chalcone with the N(5) atom of FAD is crucial for MAO-B selectivity and potency.

  9. Four experimental demonstrations of active vibration control for flexible structures

    Science.gov (United States)

    Phillips, Doug; Collins, Emmanuel G., Jr.

    1990-01-01

    Laboratory experiments designed to test prototype active-vibration-control systems under development for future flexible space structures are described, summarizing previously reported results. The control-synthesis technique employed for all four experiments was the maximum-entropy optimal-projection (MEOP) method (Bernstein and Hyland, 1988). Consideration is given to: (1) a pendulum experiment on large-amplitude LF dynamics; (2) a plate experiment on broadband vibration suppression in a two-dimensional structure; (3) a multiple-hexagon experiment combining the factors studied in (1) and (2) to simulate the complexity of a large space structure; and (4) the NASA Marshall ACES experiment on a lightweight deployable 45-foot beam. Extensive diagrams, drawings, graphs, and photographs are included. The results are shown to validate the MEOP design approach, demonstrating that good performance is achievable using relatively simple low-order decentralized controllers.

  10. Experimental demonstration of active vibration control for flexible structures

    Science.gov (United States)

    Phillips, Douglas J.; Hyland, David C.; Collins, Emmanuel G., Jr.

    1990-01-01

    Active vibration control of flexible structures for future space missions is addressed. Three experiments that successfully demonstrate control of flexible structures are described. The first is the pendulum experiment. The structure is a 5-m compound pendulum and was designed as an end-to-end test bed for a linear proof mass actuator and its supporting electronics. Experimental results are shown for a maximum-entropy/optimal-projection controller designed to achieve 5 percent damping in the first two pendulum modes. The second experiment was based upon the Harris Multi-Hex prototype experiment (MHPE) apparatus. This is a large optical reflector structure comprising a seven-panel array and supporting truss which typifies a number of generic characteristics of large space systems. The third experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center. The authors conclude with some remarks on the lessons learned from conducting these experiments.

  11. 6-Hydroxyflavone and derivatives exhibit potent anti-inflammatory activity among mono-, di- and polyhydroxylated flavones in kidney mesangial cells.

    Directory of Open Access Journals (Sweden)

    Xing Wang

    Full Text Available Inflammatory responses by kidney mesangial cells play a critical role in the glomerulonephritis. The anti-inflammatory potential of nineteen mono-, di- and polyhydroxylated flavones including fisetin, quercetin, morin, tricetin, gossypetin, apigenin and myricetin were investigated on rat mesangial cells with lipopolysaccharide (LPS as the inflammatory stimuli. 6-Hydroxyflavone and 4',6-dihydroxyflavone exhibited high activity with IC50 in the range of 2.0 μM, a much better inhibition potential in comparison to the well-studied polyhydroxylated flavones. Interestingly, the anti-inflammatory activity was not due to direct quenching of NO radicals. Investigation on derivatives with methylation, acetylation or sulfation of 6-hydroxyl group revealed that 6-methoxyflavone was the most potent with an IC50 of 192 nM. Mechanistic study indicated that the anti-inflammatory activity of 6-methoxyflavone arose via the inhibition of LPS-induced downstream inducible NO synthase in mesangial cells. The identification of 6-hydroxyflavone and 6-methoxyflavone with potent anti-inflammatory activity in kidney mesangial cells provides a new flavone scaffold and direction to develop naturally derived products for potential nephritis prevention and treatment.

  12. N-benzylimidazole carboxamides as potent, orally active stearoylCoA desaturase-1 inhibitors.

    Science.gov (United States)

    Atkinson, Karen A; Beretta, Elena E; Brown, Janice A; Castrodad, Mayda; Chen, Yue; Cosgrove, Judith M; Du, Ping; Litchfield, John; Makowski, Michael; Martin, Kelly; McLellan, Thomas J; Neagu, Constantin; Perry, David A; Piotrowski, David W; Steppan, Claire M; Trilles, Richard

    2011-03-15

    A potent, small molecule inhibitor with a favorable pharmacokinetic profile to allow for sustained SCD inhibition in vivo was identified. Starting from a low MW acyl guanidine (5a), identified with a RapidFire High-Throughput Mass Spectrometry (RF-MS) assay, iterative library design was used to rapidly probe the amide and tail regions of the molecule. Singleton synthesis was used to probe core changes. Biological evaluation of a SCD inhibitor (5b) included in vitro potency at SCD-1 and in vivo modulation of the plasma desaturation index (DI) in rats on a low essential fatty acid (LEFA) diet. In addition to dose-dependent decrease in DI, effects on rodent ocular tissue were noted. Therefore, in rat, these SCD inhibitors only recapitulate a portion of phenotype exhibited by the SCD-1 knockout mouse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-08-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  14. Discovery and Characterization of a Potent Interleukin-6 Binding Peptide with Neutralizing Activity In Vivo

    Science.gov (United States)

    Ranganath, Sheila; Bhandari, Ashok; Avitahl-Curtis, Nicole; McMahon, Jaimee; Wachtel, Derek; Zhang, Jenny; Leitheiser, Christopher; Bernier, Sylvie G.; Liu, Guang; Tran, Tran T.; Celino, Herodion; Tobin, Jenny; Jung, Joon; Zhao, Hong; Glen, Katie E.; Graul, Chris; Griffin, Aliesha; Schairer, Wayne C.; Higgins, Carolyn; Reza, Tammi L.; Mowe, Eva; Rivers, Sam; Scott, Sonya; Monreal, Alex; Shea, Courtney; Bourne, Greg; Coons, Casey; Smith, Adaline; Tang, Kim; Mandyam, Ramya A.; Masferrer, Jaime; Liu, David; Patel, Dinesh V.; Fretzen, Angelika; Murphy, Craig A.; Milne, G. Todd; Smythe, Mark L.; Carlson, Kenneth E.

    2015-01-01

    Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman’s Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology. PMID:26555695

  15. Discovery and Characterization of a Potent Interleukin-6 Binding Peptide with Neutralizing Activity In Vivo.

    Directory of Open Access Journals (Sweden)

    Sheila Ranganath

    Full Text Available Interleukin-6 (IL-6 is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman's Disease (CD and rheumatoid arthritis (RA. Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA and C-reactive protein (CRP. This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology.

  16. Synthesis and in vitro activity of dicationic indolyl diphenyl ethers as novel potent antibiotic agents against drug-resistant bacteria.

    Science.gov (United States)

    Chen, Xiaofang; Hu, Xinxin; Wu, Yanbin; Liu, Yonghua; Bian, Cong; Nie, Tongying; You, Xuefu; Hu, Laixing

    2017-02-15

    A series of 4,4'-bis-[2-(6-N-substituted-amidino)indolyl] diphenyl ether have been synthesized and tested for their in vitro antibacterial activity including a range of Gram-positive and Gram-negative pathogens and cytotoxicity. Most of these compounds have mainly shown anti-Gram positive bacteria activities especially against drug resistant bacterial strains MRSA, MRSE and VRE. The anti-MRSA and anti-MRSE activities of compound 7a and 7j were more potent than that of the lead compound 2, levofloxacin and vancomycin. Interestingly, 7j had greatly improved anti negative bacterial activity, especially for the producing NDM-1 Klebsiella pneumonia strain and less toxic than that of the lead compound 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia.

    Science.gov (United States)

    Kenderian, S S; Ruella, M; Shestova, O; Klichinsky, M; Aikawa, V; Morrissette, J J D; Scholler, J; Song, D; Porter, D L; Carroll, M; June, C H; Gill, S

    2015-08-01

    Patients with chemo-refractory acute myeloid leukemia (AML) have a dismal prognosis. Chimeric antigen receptor T (CART) cell therapy has produced exciting results in CD19+ malignancies and may overcome many of the limitations of conventional leukemia therapies. We developed CART cells to target CD33 (CART33) using the anti-CD33 single chain variable fragment used in gemtuzumab ozogamicin (clone My96) and tested the activity and toxicity of these cells. CART33 exhibited significant effector functions in vitro and resulted in eradication of leukemia and prolonged survival in AML xenografts. CART33 also resulted in human lineage cytopenias and reduction of myeloid progenitors in xenograft models of hematopoietic toxicity, suggesting that permanently expressed CD33-specific CART cells would have unacceptable toxicity. To enhance the viability of CART33 as an option for AML, we designed a transiently expressed mRNA anti-CD33 CAR. Gene transfer was carried out by electroporation into T cells and resulted in high-level expression with potent but self-limited activity against AML. Thus our preclinical studies show potent activity of CART33 and indicate that transient expression of anti-CD33 CAR by RNA modification could be used in patients to avoid long-term myelosuppression. CART33 therapy could be used alone or as part of a preparative regimen prior to allogeneic transplantation in refractory AML.

  18. Measles Edmonston Vaccine Strain Derivatives have Potent Oncolytic Activity against Osteosarcoma

    Science.gov (United States)

    Musibay, Evidio Domingo; Allen, Cory; Kurokawa, Cheyne; Hardcastle, Jayson J.; Aderca, Ileana; Msaouel, Pavlos; Bansal, Aditya; Jiang, Huailei; DeGrado, Timothy R.; Galanis, Evanthia

    2015-01-01

    Osteosarcoma is the most common primary bone tumor affecting children and young adults, and development of metastatic disease is associated with poor prognosis. The purpose of this study was to evaluate the antitumor efficacy of virotherapy with engineered measles virus (MV) vaccine strains in the treatment of osteosarcoma. Cell lines derived from pediatric patients with osteosarcoma (HOS, MG63, 143B, KHOS-312H, U2-OS and SJSA1) were examined for MV-GFP and MV-NIS gene expression and cytotoxicity as defined by syncytial formation, cell death, and eradication of cell monolayers: significant antitumor activity was demonstrated. Findings were correlated with in vivo efficacy in subcutaneous, orthotopic (tibial bone), and lung metastatic osteosarcoma xenografts treated with the MV derivative MV-NIS via the intratumoral (IT) or intravenous (IV) route. Following treatment, we observed decrease in tumor growth of subcutaneous xenografts (p=0.0374) and prolongation of survival in mice with orthotopic (posteosarcoma tumors (p=0.0207). Expression of the NIS transgene in MV-NIS infected tumors allowed for SPECT-CT and PET-CT imaging of virus infected tumors in vivo. Our data support the translational potential of MV-based virotherapy approaches in the treatment of recurrent and metastatic osteosarcoma. PMID:25394505

  19. Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship

    Science.gov (United States)

    Akhtar, Muhammad Nadeem; Sakeh, Nurshafika M.; Zareen, Seema; Gul, Sana; Lo, Kong Mun; Ul-Haq, Zaheer; Shah, Syed Adnan Ali; Ahmad, Syahida

    2015-04-01

    Browning of fruits and vegetables is a serious issue in the food industry, as it damages the organoleptic properties of the final products. Overproduction of melanin causes aesthetic problems such as melisma, freckles and lentigo. In this study, a series of chalcones (1-10) have been synthesized and examined for their tryrosinase inhibitory activity. The results showed that flavokawain B (1), flavokawain A (2) and compound 3 were found to be potential tyrosinase inhibitors, indicating IC50 14.20-14.38 μM values. This demonstrates that 4-substituted phenolic compound especially at ring A exhibited significant tyrosinase inhibition. Additionally, molecular docking results showed a strong binding affinity for compounds 1-3 through chelation between copper metal and ligands. The detailed molecular docking and SARs studies correlate well with the tyrosinase inhibition studies in vitro. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and single X-ray crystallographic techniques. These findings could lead to design and discover of new tyrosinase inhibitors to control the melanine overproduction and overcome the economic loss of food industry.

  20. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells.

    Science.gov (United States)

    Lefrançais, Emma; Duval, Anais; Mirey, Emilie; Roga, Stéphane; Espinosa, Eric; Cayrol, Corinne; Girard, Jean-Philippe

    2014-10-28

    Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-33(95-270), IL-33(107-270), and IL-33(109-270), were 30-fold more potent than full-length human IL-33(1-270) for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33-dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66-111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33-mediated responses in allergic asthma and other inflammatory diseases.

  1. Design, synthesis, and structure-activity relationship studies of novel thioether pleuromutilin derivatives as potent antibacterial agents.

    Science.gov (United States)

    Ling, Chenyu; Fu, Liqiang; Gao, Suo; Chu, Wenjing; Wang, Hui; Huang, Yanqin; Chen, Xiaoyan; Yang, Yushe

    2014-06-12

    A series of novel thioether pleuromutilin derivatives incorporating various heteroaromatic substituents into the C14 side chain have been reported. Structure-activity relationship (SAR) studies resulted in compounds 52 and 55 with the most potent in vitro antibacterial activity among the series (MIC = 0.031-0.063 μg/mL). Further optimization to overcome the poor water solubility of compound 55 resulted in compounds 87, 91, 109, and 110 possessing good in vitro antibacterial activity with increased hydrophilicity. Compound 114, the water-soluble phosphate prodrug of compound 52, was also prepared and evaluated. Among the derivatives, compound 110 showed moderate pharmacokinetic profiles and good in vivo efficacy in both MSSA and MRSA systemic infection models. Compound 110 was further evaluated in CYP450 inhibition assay and displayed intermediate in vitro inhibition of CYP3A4.

  2. Urolithins, intestinal microbial metabolites of Pomegranate ellagitannins, exhibit potent antioxidant activity in a cell-based assay.

    Science.gov (United States)

    Bialonska, Dobroslawa; Kasimsetty, Sashi G; Khan, Shabana I; Ferreira, Daneel

    2009-11-11

    Many health benefits of pomegranate products have been attributed to the potent antioxidant action of their tannin components, mainly punicalagins and ellagic acid. While moving through the intestines, ellagitannins are metabolized by gut bacteria into urolithins that readily enter systemic circulation. In this study, the antioxidant properties of seven urolithin derivatives were evaluated in a cell-based assay. This method is biologically more relevant because it reflects bioavailability of the test compound to the cells, and the antioxidant action is determined in the cellular environment. Our results showed that the antioxidant activity of urolithins was correlated with the number of hydroxy groups as well as the lipophilicity of the molecule. The most potent antioxidants are urolithins C and D with IC(50) values of 0.16 and 0.33 microM, respectively, when compared to IC(50) values of 1.1 and 1.4 microM of the parent ellagic acid and punicalagins, respectively. The dihydroxylated urolithin A showed weaker antioxidant activity, with an IC(50) value 13.6 microM, however, the potency was within the range of urolithin A plasma concentrations. Therefore, products of the intestinal microbial transformation of pomegranate ellagitannins may account for systemic antioxidant effects.

  3. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    Directory of Open Access Journals (Sweden)

    Yongjun Wang

    2016-04-01

    Full Text Available Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections.

  4. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    Science.gov (United States)

    Wang, Yongjun; Wang, Ling; Yang, Huali; Xiao, Haoliang; Farooq, Athar; Liu, Zhonghua; Hu, Min; Shi, Xiaoliu

    2016-01-01

    Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections. PMID:27128941

  5. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function.

    Science.gov (United States)

    Lin, Tzu-Kai; Man, Mao-Qiang; Santiago, Juan-Luis; Park, Kyungho; Roelandt, Truus; Oda, Yuko; Hupe, Melanie; Crumrine, Debra; Lee, Hae-Jin; Gschwandtner, Maria; Thyssen, Jacob P; Trullas, Carles; Tschachler, Erwin; Feingold, Kenneth R; Elias, Peter M

    2013-02-01

    Systemic antagonists of the histamine type 1 and 2 receptors (H1/2r) are widely used as anti-pruritics and central sedatives, but demonstrate only modest anti-inflammatory activity. Because many inflammatory dermatoses result from defects in cutaneous barrier function, and because keratinocytes express both Hr1 and Hr2, we hypothesized that H1/2r antagonists might be more effective if they were used topically to treat inflammatory dermatoses. Topical H1/2r antagonists additively enhanced permeability barrier homeostasis in normal mouse skin by the following mechanisms: (i) stimulation of epidermal differentiation, leading to thickened cornified envelopes; and (ii) enhanced epidermal lipid synthesis and secretion. As barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r antagonists likely oppose mast cell-derived histamines. In four immunologically diverse, murine disease models, characterized by either inflammation alone (acute irritant contact dermatitis, acute allergic contact dermatitis) or by prominent barrier abnormalities (subacute allergic contact dermatitis, atopic dermatitis), topical H1/2r agonists aggravated, whereas H1/2r antagonists improved, inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased inflammation and enhanced barrier function. These results could shift current paradigms of antihistamine utilization from a predominantly systemic to a topical approach.

  6. Zatosetron, a potent, selective, and long-acting 5HT3 receptor antagonist: synthesis and structure-activity relationships.

    Science.gov (United States)

    Robertson, D W; Lacefield, W B; Bloomquist, W; Pfeifer, W; Simon, R L; Cohen, M L

    1992-01-24

    Antagonists of 5HT3 receptors are clinically effective in treating nausea and emesis associated with certain oncolytic drugs, including cisplatin. Moreover, these agents may be useful in pharmacological management of several central nervous system disorders, including anxiety, schizophrenia, dementia, and substance abuse. Our studies on aroyltropanamides led to the discovery that dihydrobenzofuranyl esters and amides are potent 5HT3 receptor antagonists. Simple benzoyl derivatives of tropine and 3 alpha-aminotropane possessed weak 5HT3 receptor antagonist activity, as judged by blockade of bradycardia produced by iv injection of serotonin (5HT) to anesthetized rats. Within this series, use of benzofuran-7-carboxamide as the aroyl moiety led to a substantial increase of 5HT3 receptor affinity. The optimal 5HT3 receptor antagonist identified via extensive SAR studies was endo-5-chloro-2,3-dihydro-2,2-dimethyl-N-(8-methyl-8-azabicyclo[3.2.1]oc t- 3-yl)-7-benzofurancarboxamide (Z)-2-butenedioate (zatosetron maleate). The 7-carbamyl regiochemistry, dimethyl substitution, chloro substituent, and endo stereochemistry were all crucial elements of the SAR. Zatosetron maleate was a potent antagonist of 5HT-induced bradycardia in rats (ED50 = 0.86 micrograms/kg i.v.). Low oral doses of zatosetron (30 micrograms/kg) produced long-lasting antagonism of 5HT3 receptors, as evidenced by blockade of 5HT-induced bradycardia for longer than 6 h in rats. Moreover, this compound did not produce hemodynamic effects after i.v. administration to rats, nor did it block carbamylcholine-induced bradycardia in doses that markedly blocked 5HT3 receptors. Thus, zatosetron is a potent, selective, orally effective 5HT3 receptor antagonist with a long duration of action in rats.

  7. Prime-boost immunization of rabbits with HIV-1 gp120 elicits potent neutralization activity against a primary viral isolate.

    Directory of Open Access Journals (Sweden)

    Kristin M Narayan

    Full Text Available Development of a vaccine for HIV-1 requires a detailed understanding of the neutralizing antibody responses that can be experimentally elicited to difficult-to-neutralize primary isolates. Rabbits were immunized with the gp120 subunit of HIV-1 JR-CSF envelope (Env using a DNA-prime protein-boost regimen. We analyzed five sera that showed potent autologous neutralizing activity (IC50s at ∼10(3 to 10(4 serum dilution against pseudoviruses containing Env from the primary isolate JR-CSF but not from the related isolate JR-FL. Pseudoviruses were created by exchanging each variable and constant domain of JR-CSF gp120 with that of JR-FL or with mutations in putative N-glycosylation sites. The sera contained different neutralizing activities dependent on C3 and V5, C3 and V4, or V4 regions located on the glycan-rich outer domain of gp120. All sera showed enhanced neutralizing activity toward an Env variant that lacked a glycosylation site in V4. The JR-CSF gp120 epitopes recognized by the sera are generally distinct from those of several well characterized mAbs (targeting conserved sites on Env or other type-specific responses (targeting V1, V2, or V3 variable regions. The activity of one serum requires specific glycans that are also important for 2G12 neutralization and this serum blocked the binding of 2G12 to gp120. Our findings show that different fine specificities can achieve potent neutralization of HIV-1, yet this strong activity does not result in improved breadth.

  8. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity

    Directory of Open Access Journals (Sweden)

    Leticia Corrales

    2015-05-01

    Full Text Available Spontaneous tumor-initiated T cell priming is dependent on IFN-β production by tumor-resident dendritic cells. On the basis of recent observations indicating that IFN-β expression was dependent upon activation of the host STING pathway, we hypothesized that direct engagement of STING through intratumoral (IT administration of specific agonists would result in effective anti-tumor therapy. After proof-of-principle studies using the mouse STING agonist DMXAA showed a potent therapeutic effect, we generated synthetic cyclic dinucleotide (CDN derivatives that activated all human STING alleles as well as murine STING. IT injection of STING agonists induced profound regression of established tumors in mice and generated substantial systemic immune responses capable of rejecting distant metastases and providing long-lived immunologic memory. Synthetic CDNs have high translational potential as a cancer therapeutic.

  9. Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist

    Energy Technology Data Exchange (ETDEWEB)

    Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

    1986-01-13

    The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

  10. Design, synthesis and molecular docking of α,β-unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with antiproliferative activity.

    Science.gov (United States)

    Xu, Yun-Yun; Cao, Yi; Ma, Hailkuo; Li, Huan-Qiu; Ao, Gui-Zhen

    2013-01-15

    A type of novel α,β-unsaturated cyclohexanone analogous, which designed based on the curcumin core structure, have been discovered as potential EGFR inhibitors. These compounds exhibit potent antiproliferative activity in two human tumor cell lines (Hep G2 and B16-F10). Among them, compounds I(3) and I(12) displayed the most potent EGFR inhibitory activity (IC(50) = 0.43 μM and 1.54 μM, respectively). Molecular docking of I(12) into EGFR TK active site was also performed. This inhibitor nicely fitting the active site might well explain its excellent inhibitory activity.

  11. Rational design, synthesis and preliminary antitumor activity evaluation of a chlorambucil derivative with potent DNA/HDAC dual-targeting inhibitory activity.

    Science.gov (United States)

    Xie, Rui; Li, Yan; Tang, Pingwah; Yuan, Qipeng

    2017-09-15

    Histone deacetylases (HDACs) play a pivotal role not only in gene expression but also in DNA repair. Herein, we report the successful design, synthesis and evaluation of a chlorambucil derivative named vorambucil with a hydroxamic acid tail as a DNA/HDAC dual-targeting inhibitor. Vorambucil obtained both potent DNA and HDACs inhibitory activities. Molecular docking results supported the initial pharmacophoric hypothesis and rationalized the potent inhibitory activity of vorambucil against HDAC1, HDAC2 and HDAC6. Vorambucil showed potent antiproliferative activity against all the test four cancer cell lines with IC50 values of as low as 3.2-6.2μM and exhibited 5.0-18.3-fold enhanced antiproliferative activity than chlorambucil. Vorambucil also significantly inhibits colony formation of A375 cancer cells. Further investigation showed that vorambucil remarkably induced apoptosis and arrested the cell cycle of A375 cells at G2/M phase. Vorambucil could be a promising candidate and a useful tool to elucidate the role of those DNA/HDAC dual-targeting inhibitors for cancer therapy. Copyright © 2017. Published by Elsevier Ltd.

  12. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells

    Directory of Open Access Journals (Sweden)

    Lin Li

    2010-08-01

    Full Text Available Abstract Background Targeting Signal Transducer and Activator of Transcription 3 (STAT3 signaling is an attractive therapeutic approach for most types of human cancers with constitutively activated STAT3. A novel small molecular STAT3 inhibitor, FLLL32 was specifically designed from dietary agent, curcumin to inhibit constitutive STAT3 signaling in multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cells. Results FLLL32 was found to be a potent inhibitor of STAT3 phosphorylation, STAT3 DNA binding activity, and the expression of STAT3 downstream target genes in vitro, leading to the inhibition of cell proliferation as well as the induction of Caspase-3 and PARP cleavages in human multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cell lines. However, FLLL32 exhibited little inhibition on some tyrosine kinases containing SH2 or both SH2 and SH3 domains, and other protein and lipid kinases using a kinase profile assay. FLLL32 was also more potent than four previously reported JAK2 and STAT3 inhibitors as well as curcumin to inhibit cell viability in these cancer cells. Furthermore, FLLL32 selectively inhibited the induction of STAT3 phosphorylation by Interleukin-6 but not STAT1 phosphorylation by IFN-γ. Conclusion Our findings indicate that FLLL32 exhibits potent inhibitory activity to STAT3 and has potential for targeting multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cells expressing constitutive STAT3 signaling.

  13. Synthesis of mangiferin derivates and study their potent PTP1B inhibitory activity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has received considerable attention from the drug industry as a potential treatment fordiabetes mellitus. Mangiferin has been reported to possess significant antidiabetic activity. Based on the previous study, eight new mangiferin derivates were synthesized and evaluated for their PTP1B inhibitory activity. Some of them displayed good inhibitory activity on PTP1B.

  14. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    László Hackler

    Full Text Available C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma.

  15. POTENT INVITRO ANTI-HUMAN IMMUNODEFICIENCY VIRUS-1 ACTIVITY OF MODIFIED HUMAN SERUM ALBUMINS

    NARCIS (Netherlands)

    JANSEN, RW; MOLEMA, G; PAUWELS, R; SCHOLS, D; DECLERCQ, E; MEIJER, DKF

    1991-01-01

    A series of neoglycoproteins was synthesized by coupling of thiophosgene-activated p-aminophenyl derivatives [Biol. Cell. 47:95-110 (1983); J. Histochem. Cytochem. 32:1091-1094 (1984)] of various sugars to human serum albumin. The compounds were evaluated for their in vitro activity against human im

  16. Novel oxime-bearing coumarin derivatives act as potent Nrf2/ARE activators in vitro and in mouse model.

    Science.gov (United States)

    Chang, Ken-Ming; Chen, Huang-Hui; Wang, Tai-Chi; Chen, I-Li; Chen, Yu-Tsen; Yang, Shyh-Chyun; Chen, Yeh-Long; Chang, Hsin-Huei; Huang, Chih-Hsiang; Chang, Jang-Yang; Shih, Chuan; Kuo, Ching-Chuan; Tzeng, Cherng-Chyi

    2015-12-01

    We have designed and synthesized certain novel oxime- and amide-bearing coumarin derivatives as nuclear factor erythroid 2 p45-related factor 2 (Nrf2) activators. The potency of these compounds was measured by antioxidant responsive element (ARE)-driven luciferase activity, level of Nrf2-related cytoprotective genes and proteins, and antioxidant activity. Among them, (Z)-3-(2-(hydroxyimino)-2-phenylethoxy)-2H-chromen-2-one (17a) was the most active, and more potent than the positive t-BHQ in the induction of ARE-driven luciferase activity. Exposure of HSC-3 cells to various concentrations of 17a strongly increased Nrf2 nuclear translocation and the expression level of Nrf2-mediated cytoprotective proteins in a concentration-dependent manner. HSC-3 cells pretreated with 17a significantly reduced t-BOOH-induced oxidative stress. In the animal experiment, Nrf2-mediated cytoprotective proteins, such as aldo-keto reductase 1 subunit C-1 (AKR1C1), glutathione reductase (GR), and heme oxygenase (HO-1), were obviously elevated in the liver of 17a-treated mice than that of control. These results suggested that novel oxime-bearing coumarin 17a is able to activate Nrf2/ARE pathway in vivo and are therefore seen as a promising candidate for further investigation.

  17. The novel trisubstituted pyran derivative D-142 has triple monoamine reuptake inhibitory activity and exerts potent antidepressant-like activity in rodents

    Science.gov (United States)

    Dutta, Aloke K.; Gopishetty, Bhaskar; Gogoi, Sanjib; Ali, Solav; Zhen, Juan; Reith, Maarten

    2011-01-01

    Major depression disorder is a significant health problem with 10-20% of all adults suffering from this disease. The underlying causes of depression are still unclear and 15% of depressed patients are resistant to all known therapies. Monoamine therapies have so far been the most successful approach for treating depression. Triple monoamine reuptake inhibitors have recently been implicated in generation of potent antidepressant activity while possibly exhibiting a low side-effect profile in addition to treating anhedonia. The additional, previously under-appreciated involvement of dopaminergic systems in depression prompted our efforts to develop novel asymmetric trisubstituted and disubstituted pyran derivatives as triple reuptake inhibitors. One of the lead compounds, D-142, exhibited uptake inhibition (Ki) values of 29.3 nM, 14.7 nM and 37.4 nM for norepinephrine, serotonin and dopamine transporters, respectively. Its affinity for serotonin transporter was comparable to fluoxetine , a well known SSRI. In the rat forced swimming test, compound D-142 exhibited potent antidepressant activity in the dose range tested (2.5, 5 and 10 mg/kg) and was far more efficacious than the reference compound imipramine. In the mouse tail suspension test, compound D-142 reduced immobility in a dose (2.5, 5 and 10 mg/kg) dependent manner, indicating a potent antidepressant effect. In locomotor activity tests, compound D-142 did not exhibit any stimulation in the same dose ranges. In the extended CNS receptors screening assay this molecule exhibited little or no non-specific interaction in the CNS, indicating high specificity for monoamine transporters. These results advance D-142 as a potential potent antidepressant. PMID:21963455

  18. Benzoxazolone carboxamides as potent acid ceramidase inhibitors: Synthesis and structure-activity relationship (SAR) studies

    DEFF Research Database (Denmark)

    Bach, Anders

    2015-01-01

    be useful in the treatment of pathological conditions, such as cancer, in which ceramide levels are abnormally reduced. Here, we present a systematic SAR investigation of the benzoxazolone carboxamides, a recently described class of AC inhibitors that display high potency and systemic activity in mice. We...... examined a diverse series of substitutions on both benzoxazolone ring and carboxamide side chain. Several modifications enhanced potency and stability, and one key compound with a balanced activity-stability profile (14) was found to inhibit AC activity in mouse lungs and cerebral cortex after systemic...

  19. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice.

  20. Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidemic activity in zebrafish.

    Science.gov (United States)

    Jin, Seori; Cho, Kyung-Hyun

    2011-07-01

    Advanced glycation end products contribute to the pathogenesis of diabetic complications and atherosclerosis. Aqueous extracts of ground pepper, cinnamon, rosemary, ginger, and clove were analyzed and tested for anti-atherosclerotic activity in vitro and in vivo using hypercholesterolemic zebrafish. Cinnamon and clove extracts (at final 10 μg/mL) had the strongest anti-glycation and antioxidant activity in this study. Cinnamon and clove had the strongest inhibition of activity against copper-mediated low-density lipoprotein (LDL) oxidation and LDL phagocytosis by macrophages. Cinnamon or clove extracts had potent cholesteryl ester transfer protein (CETP) inhibitory activity in a concentration-dependent manner. They exhibited hypolipidemic activity in a hypercholesterolemic zebrafish model; the clove extract-treated group had a 68% and 80% decrease in serum cholesterol and TG levels, respectively. The clove extract-fed group had the smallest increase in body weight and height and the strongest antioxidant activity following a 5-week high cholesterol diet. Hydrophilic ingredients of cinnamon and clove showed potent activities to suppress the incidence of atherosclerosis and diabetes via strong antioxidant potential, prevention of apoA-I glycation and LDL-phagocytosis, inhibition of CETP, and hypolipidemic activity. These results suggest the potential to develop a new functional dietary agent to treat chronic metabolic diseases, such as hyperlipidemia and diabetes.

  1. Potent Free Radical Scavenging Activity of Propol Isolated from Brazilian Propolis

    National Research Council Canada - National Science Library

    Purusotam Basnet; Tetsuya Matsuno; Richard Neidlein

    1997-01-01

    ...) generated superoxide anion assay systems. The free radical scavenging activity guided fractionation and chemical analysis led to the isolation of a new compound, propol {3-[4-hydroxy-3-(3-oxo-but-1-enyl)-phenyl]-acrylic acid...

  2. Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines with potent photo-antiproliferative activity.

    Science.gov (United States)

    Spanò, Virginia; Giallombardo, Daniele; Cilibrasi, Vincenzo; Parrino, Barbara; Carbone, Anna; Montalbano, Alessandra; Frasson, Ilaria; Salvador, Alessia; Richter, Sara N; Doria, Filippo; Freccero, Mauro; Cascioferro, Stella; Diana, Patrizia; Cirrincione, Girolamo; Barraja, Paola

    2017-03-10

    Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines were synthesized as a new class of tricyclic system in which the pyridine ring is annelated to a cycloheptapyrrole scaffold, with the aim of obtaining new photosensitizing agents with improved antiproliferative activity and lower undesired toxic effects. A versatile synthetic pathway was approached, which allowed the isolation of derivatives of the title ring system with a good substitution pattern on the pyrrole moiety. Photobiological studies revealed that the majority of the new compounds showed a potent cytotoxic effect upon photoactivation with light of the proper wavelength, especially when decorated with a 2-ethoxycabonyl group and a N-benzyl substituted moiety, with EC50 values reaching the submicromolar level. The mechanism of action was evaluated.

  3. Halichoblelide D, a New Elaiophylin Derivative with Potent Cytotoxic Activity from Mangrove-Derived Streptomyces sp. 219807

    Directory of Open Access Journals (Sweden)

    Ying Han

    2016-07-01

    Full Text Available During our search for interesting bioactive secondary metabolites from mangrove actinomycetes, the strain Streptomyces sp. 219807 which produced a high elaiophylin yield of 4486 mg/L was obtained. A new elaiophylin derivative, halichoblelide D (1, along with seven known analogues 2–8 was isolated and identified from the culture broth. Their chemical structures were determined by detailed analysis of 1D and 2D NMR and HRMS data. The absolute configuration of halichoblelide D (1 was confirmed by comparing the CD spectrum with those of the reported analogues. Compounds 1–7 exhibited potent cytotoxic activities against HeLa and MCF-7 cells with IC50 values ranging from 0.19 to 2.12 μM.

  4. AZD-4547 exerts potent cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-expressing colorectal cancer cells.

    Science.gov (United States)

    Yao, Ting-Jing; Zhu, Jin-Hai; Peng, De-Feng; Cui, Zhen; Zhang, Chao; Lu, Pei-hua

    2015-07-01

    Colorectal cancer (CRC) causes significant mortalities worldwide. Fibroblast growth factor (FGF) receptor (FGFR) signaling is frequently dysregulated and/or constitutively activated in CRCs, contributing to cancer carcinogenesis and progression. Here, we studied the activity of AZD-4547, a novel and potent FGFR kinase inhibitor, on CRC cells. AZD-4547 inhibited CRC cell growth in vitro, and its activity correlated with the FGFR-1/2 expression level. AZD-4547 was cytotoxic and pro-apoptotic in FGFR-1/2-expressed CRC cell lines (NCI-H716 and HCT-116), but not in FGFR-1/2 null HT-29 cells. Further, AZD-4547 inhibited cell cycle progression and attenuated the activation of FGFR1-FGFR substrate 2 (FRS-2), ERK/mitogen-activated protein kinase (MAPK), and AKT/mammalian target of rapamycin (AKT/mTOR) signalings in NCI-H716 and HCT-116 cells. In vivo, AZD-4547 oral administration at effective doses inhibited NCI-H716 (high FGFR-1/2 expression) xenograft growth in nude mice. Phosphorylation of FGFR-1, AKT, and ERK1/2 in xenograft specimens was also inhibited by AZD-4547 administration. Thus, our preclinical studies strongly support possible clinical investigations of AZD-4547 for the treatment of CRCs harboring deregulated FGFR signalings.

  5. Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV.

    Science.gov (United States)

    Vamvaka, Evangelia; Arcalis, Elsa; Ramessar, Koreen; Evans, Abbey; O'Keefe, Barry R; Shattock, Robin J; Medina, Vicente; Stöger, Eva; Christou, Paul; Capell, Teresa

    2016-06-01

    Protein microbicides containing neutralizing antibodies and antiviral lectins may help to reduce the rate of infection with human immunodeficiency virus (HIV) if it is possible to manufacture the components in large quantities at a cost affordable in HIV-endemic regions such as sub-Saharan Africa. We expressed the antiviral lectin griffithsin (GRFT), which shows potent neutralizing activity against HIV, in the endosperm of transgenic rice plants (Oryza sativa), to determine whether rice can be used to produce inexpensive GRFT as a microbicide ingredient. The yield of (OS) GRFT in the best-performing plants was 223 μg/g dry seed weight. We also established a one-step purification protocol, achieving a recovery of 74% and a purity of 80%, which potentially could be developed into a larger-scale process to facilitate inexpensive downstream processing. (OS) GRFT bound to HIV glycans with similar efficiency to GRFT produced in Escherichia coli. Whole-cell assays using purified (OS) GRFT and infectivity assays using crude extracts of transgenic rice endosperm confirmed that both crude and pure (OS) GRFT showed potent activity against HIV and the crude extracts were not toxic towards human cell lines, suggesting they could be administered as a microbicide with only minimal processing. A freedom-to-operate analysis confirmed that GRFT produced in rice is suitable for commercial development, and an economic evaluation suggested that 1.8 kg/ha of pure GRFT could be produced from rice seeds. Our data therefore indicate that rice could be developed as an inexpensive production platform for GRFT as a microbicide component.

  6. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations.

    Science.gov (United States)

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet-visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed.

  7. Activity of potent and selective host defense peptide mimetics in mouse models of oral candidiasis.

    Science.gov (United States)

    Ryan, Lisa K; Freeman, Katie B; Masso-Silva, Jorge A; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G; Fatahzadeh, Mahnaz; Scott, Richard W; Diamond, Gill

    2014-07-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis.

  8. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens

    Science.gov (United States)

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L.; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60–70% killing) and A. baumannii (85–90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa, 60–80% E. cloacae and 20–60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa, but had reduced activity against biofilms of S. aureus and A. baumannii. Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae, and A. baumannii. Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections. PMID:28261570

  9. Benzoxazolone Carboxamides: Potent and Systemically Active Inhibitors of Intracellular Acid Ceramidase

    DEFF Research Database (Denmark)

    Pizzirani, Daniela*; Bach, Anders*; Realini, Natalia;

    2015-01-01

    The ceramides are a family of bioactive lipid-derived messengers involved in the control of cellular senescence, inflammation, and apoptosis. Ceramide hydrolysis by acid ceramidase (AC) stops the biological activity of these substances and influences survival and function of normal and neoplastic...

  10. Benzoxazolone Carboxamides: Potent and Systemically Active Inhibitors of Intracellular Acid Ceramidase

    DEFF Research Database (Denmark)

    Pizzirani, Daniela*; Bach, Anders*; Realini, Natalia

    2015-01-01

    The ceramides are a family of bioactive lipid-derived messengers involved in the control of cellular senescence, inflammation, and apoptosis. Ceramide hydrolysis by acid ceramidase (AC) stops the biological activity of these substances and influences survival and function of normal and neoplastic...

  11. Synthesis and Biological Activity of Isoflavone Derivatives from Chickpea as Potent Anti-Diabetic Agents

    Directory of Open Access Journals (Sweden)

    Pengshou Li

    2015-09-01

    Full Text Available A set of novel isoflavone derivatives from chickpea were synthesized. The structures of derivatives were identified by proton nuclear magnetic resonance (1H-NMR, carbon-13 (13C-NMR and mass spectrometry (MS spectral analyses. Their anti-diabetic activities were evaluated using an insulin-resistant (IR HepG2 cell model. Additionally, the structure-activity relationships of these derivatives were briefly discussed. Compounds 1c, 2h, 3b, and 5 and genistein exhibited significant glucose consumption-enhancing effects in IR-HepG2 cells. In addition, the combinations of genistein, 2h, and 3b (combination 6 and of 3b, genistein, and 1c (combination 10 exhibited better anti-diabetic activity than the individual compounds. At the same dosage, there was no difference in effect between the combination 10 and the positive control (p > 0.05. Aditionally, we found the differences between the combination 10 and combination 6 for the protective effect of HUVEC (human umbilical vein endothelial cells under high glucose concentration. The protective effects of combination 10 was stronger than combination 6, which suggested that combination 10 may have a better hypoglycemic activity in future studies. This study provides useful clues for the further design and discovery of anti-diabetic agents.

  12. Potent Chemopreventive/Antioxidant Activity Detected in Common Spices of the Apiaceae Family.

    Science.gov (United States)

    Jeyabalan, Jeyaprakash; Aqil, Farrukh; Soper, Lisa; Schultz, David J; Gupta, Ramesh C

    2015-01-01

    Spices are used worldwide, particularly in the Asian and Middle Eastern countries, and considered protective against degenerative diseases, including cancer. Here, we report the efficacy of aqueous and non-aqueous extracts of 11 Apiaceae spices for free radical-scavenging activity and to inhibit cytochrome P450s in two separate reactions involving: 1) 4-hydroxy-17ß-estradiol (4E2), DNA, and CuCl2 and 2) 17ß-estradiol, rat liver microsomes, cofactors, DNA and CuCl2. Oxidative DNA adducts resulting from redox cycling of 4E2 were analyzed by (32)P-postlabeling. Aqueous (5 mg/ml) and non-aqueous extracts (6 mg/ml) substantially inhibited (83-98%) formation of DNA adducts in the microsomal reaction. However, in nonmicrosomal reaction, only aqueous extracts showed the inhibitory activity (83-96%). Adduct inhibition was also observed at five-fold lower concentrations of aqueous extracts of cumin (60%) and caraway (90%), and 10-fold lower concentrations of carrot seeds (76%) and ajowan (90%). These results suggests the presence of 2 groups of phytochemicals: polar compounds that have free radical-scavenging activity and lipophilic compounds that selectively inhibit P450 activity associated with estrogen metabolism. Because most of these Apiaceae spices are used widely with no known toxicity, the phytochemicals from the Apiaceae spices used in foods may be potentially protective against estrogen-mediated breast cancer.

  13. Chemical constituents of Phragmanthera austroarabica A. G. Mill and J. A. Nyberg with potent antioxidant activity

    Directory of Open Access Journals (Sweden)

    Jihan M Badr

    2015-01-01

    Full Text Available Background: Phragmanthera austroarabica A.G. Mill. and J. A. Nyberg is a semi parasitic plant belonging to family Loranthaceae. It was collected from Saudi Arabia. It is widely used in folk medicine among the kingdom in treatment of various diseases including diabetes mellitus. Objective: The total alcoholic extract of P. austroarabica collected from Saudi Arabia was investigated for the chemical structure and prominent biological activity of the main constituents. Materials and Methods: Isolation of the active constituents was performed using different chromatographic techniques including column chromatography packed with silica or sephadex and preparative thin layer chromatography. The structures of the isolated compounds were established based on different spectroscopic data as mass spectrum, one-dimensional and two-dimensional nuclear magnetic resonance (correlation spectroscopy, heteronuclear single quantum coherence, and heteronuclear multiple-bond correlation. Results: Phytochemical investigation of the plant resulted in isolation of 12 compounds. The isolated compounds were identified as chrysophanic acid, emodin, chrysophanic acid-8-O-glucoside, emodin-8-O-glucoside, pectolinarigenin, quercetin, dillenetin-3-O-glucoside, catechin, catechin-4′-O-gallate, methyl gallate, lupeol and ursolic acid. All the isolated phenolic compounds revealed significant free radical scavenging activities when tested using 2,2-diphenyl-1-picrylhydrazyl reagent. Conclusion: The antioxidant activities of the isolated compounds can justify the use of P. austroarabica in traditional medicine for treatment of diabetes and verify its possible application as an antihyperglycemic drug.

  14. Mutagenic activity in disinfected waters and recovery of the potent bacterial mutagen "MX" from water by XAD resin adsorption

    Science.gov (United States)

    Backlund, Peter; Wondergem, Erik; Kronberg, Leif

    Chlorination of humic water generated mutagenic activity in the Ames test. The formation of the potent bacterial mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and mutagenic activity were favoured by acidic chlorination conditions and high chlorine doses. Chlorinated humic waters from different locations differed slightly in the level of mutagenicity as well as in the proportion of activity derived from MX. Chlorination of an industrially polluted surface water with a low content of humic material generated an approximately equal level of mutagenicity (per mg of DOC) as that of chlorinated humic water, but only a minor part (26%) of the activity could be explained by the presence of MX. The mutagenicity and the amount of MX generated were substantially lower when using combined treatment methods (ClO2+Cl2, O3+Cl2) or when substituting chlorine by monochloramine or chlorine dioxide. The recovery of MX by XAD adsorption from water acidified to pH 2 was found to be quantitative.

  15. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Salvioni L

    2017-03-01

    Full Text Available Lucia Salvioni,1 Elisabetta Galbiati,1 Veronica Collico,1 Giulia Alessio,1 Svetlana Avvakumova,1 Fabio Corsi,2,3 Paolo Tortora,1 Davide Prosperi,1 Miriam Colombo1 1Nanobiolab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, 2Biological and Clinical Science Department, University of Milan, Milano, 3Surgery Department, Breast Unit, IRCCS S Maugeri Foundation, Pavia, Italy Background: The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases.Methods: Water-soluble, negatively charged silver nanoparticles (AgNPs were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs.Results: In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells.Conclusion: We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared

  16. Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity.

    Science.gov (United States)

    Izumi, Erika; Ueda-Nakamura, Tânia; Veiga, Valdir F; Pinto, Angelo C; Nakamura, Celso Vataru

    2012-04-12

    To discover new possible therapies for Chagas' disease, we evaluated against all Trypanosoma cruzi life stages the in vitro trypanocidal and synergistic activity of terpenes isolated from Copaifera oleoresins collected in the Amazon and investigated their possible mechanism of action. Seven acid diterpenes and one sesquiterpene were tested. Terpenes promoted changes in oxidative metabolism followed by autophagic processes in the parasite cell leading to selective death. Furthermore, they were more effective against replicative forms, in particular amastigotes. A synergistic effect occurred. Cytotoxicity to erythrocytes and nucleated cells was moderate. This is the first study showing synergic activity between two terpenes against T. cruzi. Combinations of natural compounds can show high activity and may lead to new alternative treatments in the future.

  17. Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania

    DEFF Research Database (Denmark)

    Chen, M; Christensen, S B; Blom, J;

    1993-01-01

    Licochalcone A, an oxygenated chalcone isolated from the roots of Chinese licorice plant, inhibited the growth of both Leishmania major and Leishmania donovani promastigotes and amastigotes. The structure of the licochalcone A was established by mass and nuclear magnetic resonance spectroscopies...... that licochalcone A in concentrations that are nontoxic to host cells exhibits a strong antileishmanial activity and that appropriate substituted chalcones might be a new class of antileishmanial drugs....

  18. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma

    OpenAIRE

    2016-01-01

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated f...

  19. Agents related to a potent activator of the acetylcholine receptor of Electrophorus electricus.

    Science.gov (United States)

    Wassermann, N H; Erlanger, B F

    1981-09-01

    The synthesis of a number of compounds related to trans-3,3'-bis[alpha-(trimethylammonium)methyl]azobenzene dibromide (trans-3,3'-BisQ) (1) is described. Among the compounds are: [14C]-trans-3,3'-BisQ (1) diiodide, cis-3,3'-BisQ (2) dibromide, the trans-2,2' (7) and 4,4' (11) isomers of BisQ, 2,2', (12), 3,3' (13) and 4,4' (14) isomers of bis-benzyldimethylammonium analogues, and related compounds in which the azo bridge between the two aromatic rings is replaced by diketo and amide bridges. Of them all trans-3,3'-BisQ (1) was the most active cholinergic compound in the electroplax system of Electrophorus electricus; the pure cis isomer (2) was without activity. Intermediate activities were found for some of the other compounds and others were inhibitors. The relationship of the structure of these agents to a proposed conformation and topography of the binding site of the acetylcholine receptor (AChR) is discussed.

  20. Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro.

    Science.gov (United States)

    Tronina, Tomasz; Bartmańska, Agnieszka; Filip-Psurska, Beata; Wietrzyk, Joanna; Popłoński, Jarosław; Huszcza, Ewa

    2013-04-01

    Xanthohumol (1) and xanthohumol D (2) were isolated from spent hops. Isoxanthohumol (3) was obtained from xanthohumol by isomerisation in alkaline solution. Six metabolites were obtained as a result of transformation of xanthohumol (1) by selected fungal cultures. Their structures were established on the basis of their spectral data. One of them: 2″-(2'''-hydroxyisopropyl)-dihydrofurano-[4″,5″:3',4']-4',2-dihydroxy-6'-methoxy-α,β-dihydrochalcone (6) has not been previously reported in the literature. The antioxidant properties of hops flavonoids and xanthohumol derivatives were investigated using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The effects of these compounds on proliferation of MCF-7, PC-3 and HT-29 human cancer cell lines were determined by the SRB assay. With the exception of one metabolite, all tested compounds showed antiproliferative activity against the tested human cancer lines. α,β-Dihydroxanthohumol (4), obtained through the biotransformation of xanthohumol, showed higher antiproliferative activity against MCF-7 human breast carcinoma cell line than cisplatin, a widely used anticancer therapeutic agent, and a comparably high activity against PC-3 human prostate cancer cell line.

  1. Structural Basis of Binding and Rationale for the Potent Urease Inhibitory Activity of Biscoumarins

    Directory of Open Access Journals (Sweden)

    Muhammad Arif Lodhi

    2014-01-01

    Full Text Available Urease belongs to a family of highly conserved urea-hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and reactive cysteine residue in the active sites. In the current study we examined a series of biscoumarins 1–10 for their mechanisms of inhibition with the nickel containing active sites of Jack bean and Bacillus pasteurii ureases. All these compounds competitively inhibited Jack bean urease through interaction with the nickel metallocentre, as deduced from Michaelis-Menten kinetics, UV-visible absorbance spectroscopic, and molecular docking simulation studies. Some of the compounds behaved differently in case of Bacillus pasteurii urease. We conducted the enzyme kinetics, UV-visible spectroscopy, and molecular docking results in terms of the known protein structure of the enzyme. We also evaluated possible molecular interpretations for the site of biscoumarins binding and found that phenyl ring is the major active pharmacophore. The excellent in vitro potency and selectivity profile of the several compounds described combined with their nontoxicity against the human cells and plants suggest that these compounds may represent a viable lead series for the treatment of urease associated problems.

  2. Modified pectin from Theobroma cacao induces potent pro-inflammatory activity in murine peritoneal macrophage.

    Science.gov (United States)

    Amorim, Juliana C; Vriesmann, Lucia Cristina; Petkowicz, Carmen L O; Martinez, Glaucia Regina; Noleto, Guilhermina R

    2016-11-01

    In vitro effects of acetylated pectin (OP) isolated from cacao pod husks (Theobroma cacao L.), its partially deacetylated and de-esterified form (MOP), and a commercial homogalacturonan (PG) were investigated on murine peritoneal macrophages. MOP stood out among the studied pectins. After 48h of incubation, compared with the control group, it was able to promote significant macrophage morphological differentiation from resident to activated stage and also stimulated nitric oxide production, which reached a level of 85% of that of LPS stimulus. In the presence of the highest tested concentration of MOP (200μg·mL(-1)), the levels of the cytokines TNF-α (6h) and IL-12 and IL-10 (48h) increased substantially in relation to untreated cells. Our results show that the partial deacetylation and de-esterification of pectin extracted from cacao pod husks (T. cacao L.) produced a polymer with greater ability than its native form to activate macrophages to a cytotoxic phenotype. Like this, they provide the possibility of a therapeutic application to MOP, which could lead to a decreased susceptibility to microbial infection besides antitumor activity. Additionally, the present results also corroborate with the proposition of that the chemical modifications of the biopolymers can result in an improved molecule with new possibilities of application. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Marine actinomycete crude extracts with potent TRAIL-resistance overcoming activity against breast cancer cells.

    Science.gov (United States)

    Elmallah, Mohammed I Y; Micheau, Olivier; Eid, Mennat Allah G; Hebishy, Ali M S; Abdelfattah, Mohamed S

    2017-06-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent, as it can kill tumor cells selectively. In our search of bioactive natural products to overcome TRAIL-resistance, we isolated 47 actinomycete strains from different sediments and seawater samples collected from the Red Sea coast in Egypt and found four crude extracts (EGY1, EGY3, EGY24 and EGY34) displaying TRAIL sensitizing activity in the resistant breast cancer cell line MDA-MB-231. None of these crude extracts exhibited cytotoxic effect on normal mouse embryonic fibroblasts (MEF), with the exception of EGY34. Analysis of the signaling pathways underlying the sensitization of MDA-MB-231 cells to TRAIL-induced apoptosis, by western blotting, revealed that all crude extracts facilitated initiator caspase‑8/-10 activation upon TRAIL stimulation, but that in addition, EGY3 and EGY34, alone, induced strong ER-stress activation, with the appearance of BiP in the cytosolic extracts. Our results pave the way to the discovery and the development of marine-derived drugs for cancer therapy.

  4. An Experiential Learning Activity Demonstrating Normal and Phobic Anxiety

    Science.gov (United States)

    Canu, Will H.

    2008-01-01

    This article describes an activity for an undergraduate abnormal psychology course that used student-generated data to illustrate normal versus clinically significant anxiety responses related to specific phobias. Students (N = 37) viewed 14 images of low- or high-anxiety valence and rated their subjective response to each. Discussion in a…

  5. A novel sulfonamide agent, MPSP-001, exhibits potent activity against human cancer cells in vitro through disruption of microtubule

    Institute of Scientific and Technical Information of China (English)

    Zu-long LIU; Wei TIAN; Yong WANG; Shah KUANG; Xiao-min LUO; Qiang YU

    2012-01-01

    Aim:To evaluate the anti-cancer effects of a new sulfonamide derivative,2-(N-(3-chlorophenyl)-4-methoxyphenylsulfonarhido)-N-hydrox-ypropanamide (MPSP-001).Methods:Human cancer cell lines (HepG2,THP-1,K562,HGC-27,SKOV3,PANC-1,SW480,Kba,HeLa,A549,MDA-MB-453,and MCF-7) were examined.The cytotoxicity of MPSP-001 was evaluated using the WST-8 assay.Cell cycle distribution was examined with flow cytometry.Mitotic spindle formation was detected using immunofluorescence microscopy.Apoptosis-related proteins were examined with Western blot using specific phosphorylated protein antibodies.Competitive tubulin-binding assay was performed to test whether the compound competitively bound to the colchicine site.Molecular docking was performed to explore the possible binding conformation.Results:MPSP-001 potently inhibited the growth of the 12 different types of human cancer cells with the IC5o values ranging from 1.9 to 15.7 μmol/L.The compound exerted potent inhibition on the drug-resistant Kb/VCR and MCF-7/ADR cells,as on Kba and MCF-7 cells.In HeLa,HGC-27,A549,and other cells,the compound (5 μmol/L) caused cell cycle arrest at the G2/M phase,and subsequently induced cell apoptosis.In Hela cells,it prevented the mitotic spindle formation.Furthermore,the compound dose-dependently inhibited polymerization of tubulin in vitro,and directly bound to the colchicine-site of β-tubulin.Molecular docking predicted that the compound may form two hydrogen bonds to the binding pocket.The compound showed synergistic effects with colchicine and taxol in blocking mitosis of HeLa cells.Conclusion:MPSP-001 shows a broad-spectrum of anti-tumor efficacy in vitro and represents a novel structure with anti-microtubule activity.

  6. A New Octadecenoic Acid Derivative from Caesalpinia gilliesii Flowers with Potent Hepatoprotective Activity

    Science.gov (United States)

    Osman, Samir M.; El-Haddad, Alaadin E.; El-Raey, Mohamed A.; Abd El-Khalik, Soad M.; Koheil, Mahmoud A.; Wink, Michael

    2016-01-01

    Background: Caesalpinia gilliesii Hook is an ornamental shrub with showy yellow flowers. It was used in folk medicine due to its contents of different classes of secondary metabolites. In our previous study, dichloromethane extract of C. gilliesii flowers showed a good antioxidant activity. Aim of the Study: Isolation and identification of bioactive hepatoprotective compounds from C. gilliesii flowers dichloromethane fraction. Materials and Methods: The hepatoprotective activity of dichloromethane fraction and isolated compounds were studied in CCl4-intoxicated rat liver slices by measuring liver injury markers (alanine aminotransferase, aspartate aminotransferase and glutathione [GSH]). All compounds were structurally elucidated on the basis of electron ionization-mass spectrometry, one- and two-dimensional nuclear magnetic resonance. Results: A new 12,13,16-trihydroxy-14(Z)-octadecenoic acid was identified in addition to the known β-sitosterol-3-O-butyl, daucosterol, isorhamnetin, isorhamnetin-3-O-rhamnoside, luteolin-7,4’-dimethyl ether, genistein-5-methyl ether, luteolin-7-O-rhamnoside, isovanillic acid, and p-methoxybenzoic acid. Dichloromethane fraction and isorhamnetin were able to significantly protect the liver against intoxication. Moreover, the dichloromethane fraction and the isolated phytosterols induced GSH above the normal level. Conclusion: The hepatoprotective activity of C. gilliesii may be attributed to its high content of phytosterols and phenolic compounds. SUMMARY Bioactive Hepatoprotective phytosterols and phenolics from chloroform extract of Caesalpinia gilliesii Abbreviations used: ALT: Alanine Aminotransferase; AST: Aspartate aminotransferase; GSH: Glutathione; SC50: Scavenging Capacity 50 (SC 50); COSY: Correlation spectroscopy; NMR: Nuclear Magnetic Resonance; CC: Column chromatography; EI-MS: Electron-impact mass spectrometry; HSQC: Heteronuclear single-quantum correlation. PMID:27563221

  7. Synthesis and biological activity of trans-tiliroside derivatives as potent anti-diabetic agents.

    Science.gov (United States)

    Zhu, Yujin; Zhang, Yanjun; Liu, Yi; Chu, Hongwan; Duan, Hongquan

    2010-12-10

    A set of novel trans-tiliroside derivatives were synthesized. The structures of the derivatives were identified by their IR, 1H-NMR, and MS spectra analysis. Their anti-diabetic activities were evaluated on the insulin resistant (IR) HepG2 cell model. As a result, compounds 7a, 7c, 7h, and trans-tiliroside exhibited significant glucose consumption-enhancing effects in IR-HepG2 cells compared with the positive control (metformin). This research provides useful clues for further design and discovery of anti-diabetic agents.

  8. Synthesis and Biological Activity of trans-Tiliroside Derivatives as Potent Anti-Diabetic Agents

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2010-12-01

    Full Text Available A set of novel trans-tiliroside derivatives were synthesized. The structures of the derivatives were identified by their IR, 1H-NMR, and MS spectra analysis. Their anti-diabetic activities were evaluated on the insulin resistant (IR HepG2 cell model. As a result, compounds 7a, 7c, 7h, and trans-tiliroside exhibited significant glucose consumption-enhancing effects in IR-HepG2 cells compared with the positive control (metformin. This research provides useful clues for further design and discovery of anti-diabetic agents.

  9. Potent Intratype Neutralizing Activity Distinguishes Human Immunodeficiency Virus Type 2 (HIV-2) from HIV-1

    OpenAIRE

    Özkaya Şahin, Gülşen; Holmgren, Birgitta; da Silva, Zacarias; Nielsen, Jens; Nowroozalizadeh, Salma; Esbjörnsson, Joakim; Månsson, Fredrik; Andersson, Sören; Norrgren, Hans; Aaby, Peter; Jansson, Marianne; Fenyö, Eva Maria

    2012-01-01

    HIV-2 has a lower pathogenicity and transmission rate than HIV-1. Neutralizing antibodies could be contributing to these observations. Here we explored side by side the potency and breadth of intratype and intertype neutralizing activity (NAc) in plasma of 20 HIV-1-, 20 HIV-2-, and 11 dually HIV-1/2 (HIV-D)-seropositive individuals from Guinea-Bissau, West Africa. Panels of primary isolates, five HIV-1 and five HIV-2 isolates, were tested in a plaque reduction assay using U87.CD4-CCR5 cells a...

  10. Highly Potent, Water Soluble Benzimidazole Antagonist for Activated (alpha)4(beta)1 Integrin

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R D; Andrei, M; Lau, E Y; Lightstone, F C; Liu, R; Lam, K S; Kurth, M J

    2007-08-29

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin, activated constitutively in lymphoma, can be targeted with the bisaryl urea peptidomimetic antagonist 1 (LLP2A). However, concerns on its preliminary pharmacokinetic (PK) profile provided an impetus to change the pharmacophore from a bisaryl urea to a 2-arylaminobenzimidazole moiety resulting in improved solubility while maintaining picomolar potency [5 (KLCA4); IC{sub 50} = 305 pM]. With exceptional solubility, this finding has potential for improving PK to help diagnose and treat lymphomas.

  11. Synthesis and structure-activity relationship of thiobarbituric acid derivatives as potent inhibitors of urease.

    Science.gov (United States)

    Khan, Khalid Mohammed; Rahim, Fazal; Khan, Ajmal; Shabeer, Muhammad; Hussain, Shafqat; Rehman, Wajid; Taha, Muhammad; Khan, Momin; Perveen, Shahnaz; Choudhary, M Iqbal

    2014-08-01

    A series of thiobarbituric acid derivatives 1-27 were synthesized and evaluated for their urease inhibitory potential. Exciting results were obtained from the screening of these compounds 1-27. Compounds 5, 7, 8, 11, 16, 17, 22, 23 and 24 showed excellent urease inhibition with IC50 values 18.1 ± 0.52, 16.0 ± 0.45, 16.0 ± 0.22, 14.3 ± 0.27, 6.7 ± 0.27, 10.6 ± 0.17, 19.2 ± 0.29, 18.2 ± 0.76 and 1.61 ± 0.18 μM, respectively, much better than the standard urease inhibitor thiourea (IC₅₀=21 ± 0.11 μM). Compound 3, 4, 10, and 26 exhibited comparable activities to the standard with IC₅₀ values 21.4 ± 1.04 and 21.5 ± 0.61 μM, 22.8 ± 0.32, 25.2 ± 0.63, respectively. However the remaining compounds also showed prominent inhibitory potential The structure-activity relationship was established for these compounds. This study identified a novel class of urease inhibitors. The structures of all compounds were confirmed through spectroscopic techniques such as EI-MS and (1)H NMR.

  12. Synthesis, Docking and Biological Activities of Novel Hybrids Celecoxib and Anthraquinone Analogs as Potent Cytotoxic Agents

    Directory of Open Access Journals (Sweden)

    Maha S. Almutairi

    2014-12-01

    Full Text Available Herein, novel hybrid compounds of celecoxib and 2-aminoanthraquinone derivatives have been synthesized using condensation reactions of celecoxib with 2-aminoanthraquinone derivatives or 2-aminoanthraquinon with celecoxib derivatives. Celecoxib was reacted with different acid chlorides, 2-chloroethylisocyanate and bis (2-chloroethyl amine hydrochloride. These intermediates were then reacted with 2-aminoanthraquinone. Also the same different acid chlorides and 2-chloroethylisocyanate were reacted with 2-aminoanthraquinone and the resulting intermediates were reacted with celecoxib to give isomers for the previous compounds. The antitumor activities against hepatic carcinoma tumor cell line (HEPG2 have been investigated in vitro, and all these compounds showed promising activities, especially compound 3c, 7, and 12. Flexible docking studies involving AutoDock 4.2 was investigated to identify the potential binding affinities and the mode of interaction of the hybrid compounds into two protein tyrosine kinases namely, SRC (Pp60v-src and platelet-derived growth factor receptor, PDGFR (c-Kit. The compounds in this study have a preferential affinity for the c-Kit PDGFR PTK over the non-receptor tyrosine kinase SRC (Pp60v-src.

  13. Synthesis, Docking and Biological Activities of Novel Hybrids Celecoxib and Anthraquinone Analogs as Potent Cytotoxic Agents

    Science.gov (United States)

    Almutairi, Maha S.; Hegazy, Gehan H.; Haiba, Mogedda E.; Ali, Hamed I.; Khalifa, Nagy M.; Soliman, Abd El-mohsen M.

    2014-01-01

    Herein, novel hybrid compounds of celecoxib and 2-aminoanthraquinone derivatives have been synthesized using condensation reactions of celecoxib with 2-aminoanthraquinone derivatives or 2-aminoanthraquinon with celecoxib derivatives. Celecoxib was reacted with different acid chlorides, 2-chloroethylisocyanate and bis (2-chloroethyl) amine hydrochloride. These intermediates were then reacted with 2-aminoanthraquinone. Also the same different acid chlorides and 2-chloroethylisocyanate were reacted with 2-aminoanthraquinone and the resulting intermediates were reacted with celecoxib to give isomers for the previous compounds. The antitumor activities against hepatic carcinoma tumor cell line (HEPG2) have been investigated in vitro, and all these compounds showed promising activities, especially compound 3c, 7, and 12. Flexible docking studies involving AutoDock 4.2 was investigated to identify the potential binding affinities and the mode of interaction of the hybrid compounds into two protein tyrosine kinases namely, SRC (Pp60v-src) and platelet-derived growth factor receptor, PDGFR (c-Kit). The compounds in this study have a preferential affinity for the c-Kit PDGFR PTK over the non-receptor tyrosine kinase SRC (Pp60v-src). PMID:25490139

  14. SC-535, a Novel Oral Multikinase Inhibitor, Showed Potent Antitumor Activity in Human Melanoma Models

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2013-07-01

    Full Text Available Background: Melanoma is considered as one of the most aggressive and deadliest cancers and current targeted therapies of melanoma often suffer limited efficacy or drug resistance. Discovery of novel multikinase inhibitors as anti-melanoma drug candidates is still needed. Methods: In this investigation, we assessed the in vitro and in vivo anti-melanoma activities of SC-535, which is a novel small molecule multikinase inhibitor discovered by us recently. We analyzed inhibitory effects of SC-535 on various melanoma cell lines and human umbilical vascular endothelial cells (HUVEC in vitro. Tumor xenografts in athymic mice were used to examine the in vivo activity of SC-535. Results: SC-535 could efficiently inhibit vascular endothelial growth factor receptor (VEGFR 1/2/3, B-RAF, and C-RAF kinases. It showed significant antiangiogenic potencies both in vitro and in vivo and considerable anti-proliferative ability against several melanoma cell lines. Oral administration of SC-535 resulted in dose-dependent suppression of tumor growth in WM2664 and C32 xenograft mouse models. Studies of mechanisms of action indicated that SC-535 suppressed the tumor angiogenesis and induced G2/M phase cell cycle arrest in human melanoma cells. SC-535 possesses favorable pharmacokinetic properties. Conclusion: All of these results support SC-535 as a potential candidate for clinical studies in patients with melanoma.

  15. Synthesis of some new carbonitriles and pyrazole coumarin derivatives with potent antitumor and antimicrobial activities.

    Science.gov (United States)

    Hafez, Omiama M Abdel; Nassar, Mahmoud I; El-Kousy, Salah M; Abdel-Razik, Ayman F; Sherien, M M Atalla; El-Ghonemy, Mai M

    2014-01-01

    3-Acetyl-4-hydroxycoumarin (2) was reacted with some aldehydes (4-chlorobenzaldehyde, 4-bromobenzaldehyde, 5-methylfurfural) to afford the chalcones (3a-c). Cyclization of these chalcones with malononitrile in the presence of ammonium acetate afforded pyridine carbonitriles (4a-c), while the cyclization reaction of chalcones (3a-c) with ethyl cyanoacetate afforded the oxopyridine carbonitriles (5a-c). On the other hand, the chalcones (3a-c) reacted with hydrazine hydrate in alcohol to yield pyrazoles (6a-c), but when the same reaction is carried out in the presence of acetic acid, the acetyl pyrazole derivatives (7a-c) were obtained. Finally, the reaction of the chalcones (3a-c) with phenylhydrazine afforded phenylpyrazole derivatives (8a-c). The structures of synthesized compounds were confirmed by their micro analysis and spectral data (IR, NMR and MS). Twelve samples were evaluated for the human breast adenocarcinoma cytotoxicity, three of them showed moderate activity, the rest of the samples showed weak cytotoxic activity (very high IC50), but for the hepatocarcinoma cell lines four samples showed weak cytotoxic effect, while the rest of the compounds showed very weak effect. For antimicrobial study, three compounds proved to be the most promising against tested bacterial organisms.

  16. Biocatalytically Oligomerized Epicatechin with Potent and Specific Anti-proliferative Activity for Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ramaswamy Nagarajan

    2008-11-01

    Full Text Available Catechins, naturally occurring flavonoids derived from wine and green tea, are known to exhibit multiple health benefits. Epigallocatechin gallate (EGCG is one of the most widely investigated catechins, but its efficacy in cancer therapy is still inconsistent and limited. The poor stability of EGCG has contributed to the disparity in the reported anti-cancer activity and other beneficial properties. Here we report an innovative enzymatic strategy for the oligomerization of catechins (specifically epicatechin that yields stable, water-soluble oligomerized epicatechins with enhanced and highly specific anti-proliferative activity for human breast cancer cells. This one-pot oxidative oligomerization is carried out in ambient conditions using Horseradish Peroxidase (HRP as a catalyst yielding water-soluble oligo(epicatechins. The oligomerized epicatechins obtained exhibit excellent growth inhibitory effects against human breast cancer cells with greater specificity towards growth-inhibiting cancer cells as opposed to normal cells, achieving a high therapeutic differential. Our studies indicate that water-soluble oligomeric epicatechins surpass EGCG in stability, selectivity and efficacy at lower doses.

  17. Sulfated Alkyl Glucopyranans with Potent Antiviral Activity Synthesized by Ring-Opening Copolymerization of Anhydroglucose and Alkyl Anhydroglucose Monomers

    Directory of Open Access Journals (Sweden)

    Shiming Bai

    2015-01-01

    Full Text Available Sulfated glucopyranans having long alkyl groups were prepared by the ring-opening copolymerization of benzylated 1,6-anhydroglucopyranose with 3-O-octadecyl 1,6-anhydro-β-d-glucopyranose monomers, and subsequent deprotection and sulfation. Water-soluble sulfated glucopyranans with 2.8 and 4.7 mol% of 3-O-octadecyl group and lower molecular weights of M-n = 2.5 × 103–5.1 × 103 have potent anti-HIV activity at 0.05–1.25 μg/mL, even though sulfated polysaccharides with molecular weights below M-n = 6 × 103 had low anti-HIV activity. The interaction with poly-l-lysine as a model compound of proteins was analyzed by SPR, DSL, and zeta potential, indicating that the sulfated 3-O-octadecyl glucopyranans had high association and low dissociation rate constants, and the particle size increased after addition of poly-l-lysine. The anti-HIV activity was induced by electrostatic interaction between sulfate groups and amino groups of poly-l-lysine and by the synergistic effect of the hydrophobic long alkyl chain and hydrophilic sulfated group.

  18. Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity.

    Science.gov (United States)

    Porter, Richard H P; Jaeschke, Georg; Spooren, Will; Ballard, Theresa M; Büttelmann, Bernd; Kolczewski, Sabine; Peters, Jens-Uwe; Prinssen, Eric; Wichmann, Jürgen; Vieira, Eric; Mühlemann, Andreas; Gatti, Silvia; Mutel, Vincent; Malherbe, Pari

    2005-11-01

    Fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] is an atypical anxiolytic agent with unknown molecular target that has previously been demonstrated both in rodents and human to exert anxiolytic activity. Here, we report that fenobam is a selective and potent metabotropic glutamate (mGlu)5 receptor antagonist acting at an allosteric modulatory site shared with 2-methyl-6-phenylethynyl-pyridine (MPEP), the protypical selective mGlu5 receptor antagonist. Fenobam inhibited quisqualate-evoked intracellular calcium response mediated by human mGlu5 receptor with IC(50) = 58 +/- 2 nM. It acted in a noncompetitive manner, similar to MPEP and demonstrated inverse agonist properties, blocking 66% of the mGlu5 receptor basal activity (in an over expressed cell line) with an IC(50) = 84 +/- 13 nM. [(3)H]Fenobam bound to rat and human recombinant receptors with K(d) values of 54 +/- 6 and 31 +/- 4 nM, respectively. MPEP inhibited [(3)H]fenobam binding to human mGlu5 receptors with a K(i) value of 6.7 +/- 0.7 nM, indicating a common binding site shared by both allosteric antagonists. Fenobam exhibits anxiolytic activity in the stress-induced hyperthermia model, Vogel conflict test, Geller-Seifter conflict test, and conditioned emotional response with a minimum effective dose of 10 to 30 mg/kg p.o. Furthermore, fenobam is devoid of GABAergic activity, confirming previous reports that fenobam acts by a mechanism distinct from benzodiazepines. The non-GABAergic activity of fenobam, coupled with its robust anxiolytic activity and reported efficacy in human in a double blind placebo-controlled trial, supports the potential of developing mGlu5 receptor antagonists with an improved therapeutic window over benzodiazepines as novel anxiolytic agents.

  19. Bigelow Expandable Activity Module (BEAM) - ISS Inflatable Module Technology Demonstration

    Science.gov (United States)

    Dasgupta, Rajib; Munday, Steve; Valle, Gerard D.

    2014-01-01

    INNOVATION: BEAM is a pathway project demonstrating the design, fabrication, test, certification, integration, operation, on-orbit performance, and disposal of the first ever man-rated space inflatable structure. The groundwork laid through the BEAM project will support developing and launching a larger inflatable space structure with even greater mass per volume (M/V) advantages need for longer space missions. OVERVIEW: Inflatable structures have been shown to have much lower mass per volume ratios (M/V) when compared with conventional space structures. BEAM is an expandable structure, launched in a packed state, and then expanded once on orbit. It is a temporary experimental module to be used for gathering structural, thermal, and radiation data while on orbit. BEAM will be launched on Space X-8, be extracted from the dragon trunk, and will attach to ISS at Node 3- Aft. BEAM performance will be monitored over a two-year period and then BEAM will be jettison using the SSRMS.

  20. Potent trophic activity of spermidine supramolecular complexes in in vitro models

    Institute of Scientific and Technical Information of China (English)

    Carlo; A; Ghisalberti; Alberto; Morisetti; Alessandro; Bestetti; Gaetano; Cairo

    2013-01-01

    AIM:To test the growth-promoting activity of the polyamine spermidine bound to various polymeric compounds in supramolecular complexes.METHODS:A thiazolyl blue cell viability assay was used to determine the growth-promoting potency of spermidine-supramolecular complexes in a human skin fibroblast cell line exposed to spermidine and different spermidine-supramolecular complexes that were obtained by combining spermidine and polyanionic polymers or cyclodextrin.Reconstituted human vaginal epithelium was exposed to a specific spermidinesupramolecular complex,i.e.,spermidine-hyaluronan(HA)50,and cell proliferation was determined by Ki-67immunohistochemical detection.Transepithelial electrical resistance and histological analysis were also performed on reconstituted human vaginal epithelium to assess tissue integrity.RESULTS:The effect of spermidine and spermidinesupramolecular complexes was first tested in skin fi-broblasts.Spermidine displayed a reverse dose-related mode of activity with mmol/L growth inhibition,whereas 30%stimulation over basal levels was detected at mol/L and nmol/L levels.Novel spermidine-supramolecular complexes that formed between spermidine and polyanionic polymers,such as HA,alginate,and polymaleate,were then tested at variable spermidine concentrations and a fixed polymer level(0.1%w/v).Spermidine-supramolecular complexes stimulated the cell growth rate throughout the entire concentration range with maximal potency(up to 80%)at sub-mol/L levels.Similar results were obtained with spermidine-(-cyclodextrin),another type of spermidine-supramolecular complex.Moreover,the increased expression of Ki-67 in the reconstituted human vaginal epithelium exposed to spermidine-HA 50 showed that the mode of action behind the spermidine-supramolecular complexes was increased cell proliferation.Functional and morphological assessments of reconstituted human vaginal epithelium integrity did not show significant alterations after exposure to spermidine

  1. Rhamnazin, a novel inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yao [Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province (China); Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang Key Laboratory of Diabetes, No.1 Qianjing Road, Xihu District, Nanchang 330009, Jiangxi Province (China); Cai, Wei [Department of Medical Genetics, College of Basic Medical Science of Nanchang University, No.461 Bayi Road, Donghu District, Nanchang 330006, Jiangxi Province (China); Pei, Chong-gang, E-mail: profchonggangpei@163.com [Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province (China); Shao, Yi, E-mail: profyishao@163.com [Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province (China)

    2015-03-20

    Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer therapy. The identification of new drugs from natural products has a long and successful history. In this study, we described a novel VEGFR2 inhibitor, rhamnazin, which inhibits tumor angiogenesis and growth. Rhamnazin significantly inhibited proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in vitro as well as inhibited sprouts formation of rat aorta ring. In addition, it inhibited vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVECs. Moreover, rhamnazin could directly inhibit proliferation of breast cancer cells MDA-MB-231 in vitro and in vivo. Oral administration of rhamnazin at a dose of 200 mg/kg/day could markedly inhibited human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that rhamnazin inhibits angiogenesis and may be a promising anticancer drug candidate. - Highlights: • Rhamnazin inhibits the response of HUVECs to VEGF in vitro. • Rhamnazin inhibits VEGFR2 kinase activity and its downstream signaling. • Rhamnazin prevents the growth of MDA-MB-231 tumor and reduces micro-vessel density in vivo.

  2. Modified vaccinia virus Ankara exerts potent immune modulatory activities in a murine model.

    Directory of Open Access Journals (Sweden)

    Miriam Nörder

    Full Text Available BACKGROUND: Modified vaccinia virus Ankara (MVA, a highly attenuated strain of vaccinia virus, has been used as vaccine delivery vector in preclinical and clinical studies against infectious diseases and malignancies. Here, we investigated whether an MVA which does not encode any antigen (Ag could be exploited as adjuvant per se. METHODOLOGY/PRINCIPAL FINDINGS: We showed that dendritic cells infected in vitro with non-recombinant (nr MVA expressed maturation and activation markers and were able to efficiently present exogenously pulsed Ag to T cells. In contrast to the dominant T helper (Th 1 biased responses elicited against Ags produced by recombinant MVA vectors, the use of nrMVA as adjuvant for the co-administered soluble Ags resulted in a long lasting mixed Th1/Th2 responses. CONCLUSIONS/SIGNIFICANCE: These findings open new ways to potentiate and modulate the immune responses to vaccine Ags depending on whether they are co-administered with MVA or encoded by recombinant viruses.

  3. HIV-specific CD4-induced Antibodies Mediate Broad and Potent Antibody-dependent Cellular Cytotoxicity Activity and are Commonly Detected in Plasma from HIV-infected Humans

    Directory of Open Access Journals (Sweden)

    Katherine L. Williams

    2015-10-01

    Full Text Available HIV-specific antibodies (Abs can reduce viral burden by blocking new rounds of infection or by destroying infected cells via activation of effector cells through Fc–FcR interaction. This latter process, referred to as antibody-dependent cellular cytotoxicity (ADCC, has been associated with viral control and improved clinical outcome following both HIV and SIV infections. Here we describe an HIV viral-like particle (VLP-based sorting strategy that led to identification of HIV-specific memory B cells encoding Abs that mediate ADCC from a subtype A-infected Kenyan woman at 914 days post-infection. Using this strategy, 12 HIV-envelope-specific monoclonal antibodies (mAbs were isolated and three mediated potent ADCC activity when compared to well-characterized ADCC mAbs. The ADCC-mediating Abs also mediated antibody-dependent cell-mediated virus inhibition (ADCVI, which provides a net measure of Fc receptor-triggered effects against replicating virus. Two of the three ADCC-mediating Abs targeted a CD4-induced (CD4i epitope also bound by the mAb C11; the third antibody targeted the N-terminus of V3. Both CD4i Abs identified here demonstrated strong cross-clade breadth with activity against 10 of 11 envelopes tested, including those from clades A, B, C, A/D and C/D, whereas the V3-specific antibody showed more limited breadth. Variants of these CD4i, C11-like mAbs engineered to interrupt binding to FcγRs inhibited a measurable percentage of the donor's ADCC activity starting as early as 189 days post-infection. C11-like antibodies also accounted for between 18–78% of ADCC activity in 9 chronically infected individuals from the same cohort study. Further, the two CD4i Abs originated from unique B cells, suggesting that antibodies targeting this epitope can be commonly produced. Taken together, these data provide strong evidence that CD4i, C11-like antibodies develop within the first 6 months of infection and they can arise from unique B

  4. Vaccine with beta-defensin 2-transduced leukemic cells activates innate and adaptive immunity to elicit potent antileukemia responses.

    Science.gov (United States)

    Ma, Xiao-Tong; Xu, Bin; An, Li-Li; Dong, Cheng-Ya; Lin, Yong-Min; Shi, Yang; Wu, Ke-Fu

    2006-01-15

    Murine beta-defensin 2 (MBD2) is a small antimicrobial peptide of the innate immune system. Recent study showed that MBD2 could not only recruit immature dendritic cells but also activate them by Toll-like receptor 4 and thus may provide a critical link between the innate immune system and the adaptive immune response. In this report, we examined the antileukemia activity of MBD2 in a murine model of acute lymphoid leukemia (ALL) L1210. L1210 cells were engineered to secrete biologically functional MBD2. MBD2-modified L1210 (L1210-MBD2) showed significantly reduced leukemogenecity, resulting in a 80% rate of complete leukemia rejection. Inoculation of mice with L1210-MBD2 induced enhanced CTL and natural killer (NK) activity and augmented interleukin-12 and IFN-gamma production. All the recovered mice from the inoculation showed a protective immunity to the following challenge with parental L1210 cells and generate leukemia-specific memory CTL. Vaccines with irradiated L1210-MBD2 cells could cure 50% leukemia-bearing mice. Depletion of CD8+ T cells but not CD4+ T cells completely abrogated the antileukemia activity of MBD2. Interestingly, NK cells were also required for the MBD2-mediated antileukemia response, although ALL generally display a high degree of resistance to NK-mediated lysis. Our results suggest that MBD2 can activate both innate and adaptive immunity to generate potent antileukemia response, and MBD2 immunotherapy warrants further evaluation as a potential treatment for ALL.

  5. UMF-078: A modified flubendazole with potent macrofilaricidal activity against Onchocerca ochengi in African cattle

    Directory of Open Access Journals (Sweden)

    deC Bronsvoort Barend M

    2008-06-01

    Full Text Available Abstract Background Human onchocerciasis or river blindness, caused by the filarial nematode Onchocerca volvulus, is currently controlled using the microfilaricidal drug, ivermectin. However, ivermectin does not kill adult O. volvulus, and in areas with less than 65% ivermectin coverage of the population, there is no effect on transmission. Therefore, there is still a need for a macrofilaricidal drug. Using the bovine filarial nematode O. ochengi (found naturally in African cattle, the macrofilaricidal efficacy of the modified flubendazole, UMF-078, was investigated. Methods Groups of 3 cows were treated with one of the following regimens: (a a single dose of UMF-078 at 150 mg/kg intramuscularly (im, (b 50 mg/kg im, (c 150 mg/kg intraabomasally (ia, (d 50 mg/kg ia, or (e not treated (controls. Results After treatment at 150 mg/kg im, nodule diameter, worm motility and worm viability (as measured by metabolic reduction of tetrazolium to formazan declined significantly compared with pre-treatment values and concurrent controls. There was abrogation of embryogenesis and death of all adult worms by 24 weeks post-treatment (pt. Animals treated at 50 mg/kg im showed a decline in nodule diameter together with abrogated reproduction, reduced motility, and lower metabolic activity in isolated worms, culminating in approximately 50% worm mortality by 52 weeks pt. Worms removed from animals treated ia were not killed, but exhibited a temporary embryotoxic effect which had waned by 12 weeks pt in the 50 mg/kg ia group and by 24 weeks pt in the 150 mg/kg ia group. These differences could be explained by the different absorption rates and elimination half-lives for each dose and route of administration. Conclusion Although we did not observe any signs of mammalian toxicity in this trial with a single dose, other studies have raised concerns regarding neuro- and genotoxicity. Consequently, further evaluation of this compound has been suspended. Nonetheless

  6. PGH1, the Precursor for the Anti-Inflammatory Prostaglandins of the 1-series, Is a Potent Activator of the Pro-Inflammatory Receptor CRTH2/DP2

    Science.gov (United States)

    Schröder, Ralf; Xue, Luzheng; Konya, Viktoria; Martini, Lene; Kampitsch, Nora; Whistler, Jennifer L.; Ulven, Trond; Heinemann, Akos; Pettipher, Roy; Kostenis, Evi

    2012-01-01

    Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase. PMID:22442685

  7. PGH1, the precursor for the anti-inflammatory prostaglandins of the 1-series, is a potent activator of the pro-inflammatory receptor CRTH2/DP2.

    Directory of Open Access Journals (Sweden)

    Ralf Schröder

    Full Text Available Prostaglandin H(1 (PGH(1 is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA and the precursor for the 1-series of prostaglandins which are often viewed as "anti-inflammatory". Herein we present evidence that PGH(1 is a potent activator of the pro-inflammatory PGD(2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca(2+ flux studies reveal that PGH(1 activates CRTH2 as PGH(2, PGD(2 or PGD(1 do. The PGH(1 precursor DGLA and the other PGH(1 metabolites did not display such effect. PGH(1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH(1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH(1 mediates migration of and Ca(2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH(1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase.

  8. Enabling the Discovery and Virtual Screening of Potent and Safe Antimicrobial Peptides. Simultaneous Prediction of Antibacterial Activity and Cytotoxicity.

    Science.gov (United States)

    Kleandrova, Valeria V; Ruso, Juan M; Speck-Planche, Alejandro; Dias Soeiro Cordeiro, M Natália

    2016-08-08

    Antimicrobial peptides (AMPs) represent promising alternatives to fight against bacterial pathogens. However, cellular toxicity remains one of the main concerns in the early development of peptide-based drugs. This work introduces the first multitasking (mtk) computational model focused on performing simultaneous predictions of antibacterial activities, and cytotoxicities of peptides. The model was created from a data set containing 3592 cases, and it displayed accuracy higher than 96% for classifying/predicting peptides in both training and prediction (test) sets. The technique known as alanine scanning was computationally applied to illustrate the calculation of the quantitative contributions of the amino acids (in their respective positions of the sequence) to the biological effects of a defined peptide. A small library formed by 10 peptides was generated, where peptides were designed by considering the interpretations of the different descriptors in the mtk-computational model. All the peptides were predicted to exhibit high antibacterial activities against multiple bacterial strains, and low cytotoxicity against various cell types. The present mtk-computational model can be considered a very useful tool to support high throughput research for the discovery of potent and safe AMPs.

  9. KTN0158, a Humanized Anti-KIT Monoclonal Antibody, Demonstrates Biologic Activity against both Normal and Malignant Canine Mast Cells.

    Science.gov (United States)

    London, Cheryl A; Gardner, Heather L; Rippy, Sarah; Post, Gerald; La Perle, Krista; Crew, Linda; Lopresti-Morrow, Lori; Garton, Andrew J; McMahon, Gerald; LaVallee, Theresa M; Gedrich, Richard

    2016-11-04

    Purpose: KTN0158 is a novel anti-KIT antibody that potently inhibits wild-type and mutant KIT. This study evaluated the safety, biologic activity, and pharmacokinetic/pharmacodynamics profile of KTN0158 in dogs with spontaneous mast cell tumors (MCT) as a prelude to human clinical applications.Experimental Design: Cell proliferation, KIT phosphorylation, and mast cell degranulation were evaluated in vitro KTN0158 was administered to 4 research dogs to assess clinical effects and cutaneous mast cell numbers. Thirteen dogs with spontaneous MCT were enrolled into a prospective phase I dose-escalating open-label clinical study of KTN0158 evaluating 3 dose levels and 2 schedules and with weekly assessments for response and clinical toxicities.Results: KTN0158 was a potent inhibitor of human and dog KIT activation and blocked mast cell degranulation in vitro In dogs, KTN0158 was well tolerated and reduced cutaneous mast cell numbers in a dose-dependent manner. Clinical benefit of KTN0158 administration in dogs with MCT (n = 5 partial response; n = 7 stable disease) was observed regardless of KIT mutation status, and decreased KIT phosphorylation was demonstrated in tumor samples. Histopathology after study completion demonstrated an absence of neoplastic cells in the primary tumors and/or metastatic lymph nodes from 4 dogs. Reversible hematologic and biochemical adverse events were observed at doses of 10 and 30 mg/kg. The MTD was established as 10 mg/kg.Conclusions: KTN0158 inhibits KIT phosphorylation, demonstrates an acceptable safety profile in dogs, and provides objective responses in canine MCT patients with and without activating KIT mutations, supporting future clinical evaluation of KTN0158 in people. Clin Cancer Res; 1-10. ©2016 AACR.

  10. Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase.

    Science.gov (United States)

    Huang, Wei-Sheng; Liu, Shuangying; Zou, Dong; Thomas, Mathew; Wang, Yihan; Zhou, Tianjun; Romero, Jan; Kohlmann, Anna; Li, Feng; Qi, Jiwei; Cai, Lisi; Dwight, Timothy A; Xu, Yongjin; Xu, Rongsong; Dodd, Rory; Toms, Angela; Parillon, Lois; Lu, Xiaohui; Anjum, Rana; Zhang, Sen; Wang, Frank; Keats, Jeffrey; Wardwell, Scott D; Ning, Yaoyu; Xu, Qihong; Moran, Lauren E; Mohemmad, Qurish K; Jang, Hyun Gyung; Clackson, Tim; Narasimhan, Narayana I; Rivera, Victor M; Zhu, Xiaotian; Dalgarno, David; Shakespeare, William C

    2016-05-26

    In the treatment of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase positive (ALK+) non-small-cell lung cancer (NSCLC), secondary mutations within the ALK kinase domain have emerged as a major resistance mechanism to both first- and second-generation ALK inhibitors. This report describes the design and synthesis of a series of 2,4-diarylaminopyrimidine-based potent and selective ALK inhibitors culminating in identification of the investigational clinical candidate brigatinib. A unique structural feature of brigatinib is a phosphine oxide, an overlooked but novel hydrogen-bond acceptor that drives potency and selectivity in addition to favorable ADME properties. Brigatinib displayed low nanomolar IC50s against native ALK and all tested clinically relevant ALK mutants in both enzyme-based biochemical and cell-based viability assays and demonstrated efficacy in multiple ALK+ xenografts in mice, including Karpas-299 (anaplastic large-cell lymphomas [ALCL]) and H3122 (NSCLC). Brigatinib represents the most clinically advanced phosphine oxide-containing drug candidate to date and is currently being evaluated in a global phase 2 registration trial.

  11. Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity.

    Directory of Open Access Journals (Sweden)

    Francesca Avogadri

    Full Text Available BACKGROUND: Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs. METHODOLOGY/PRINCIPAL FINDINGS: VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2, which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors. CONCLUSIONS/SIGNIFICANCE: This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.

  12. Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity.

    Science.gov (United States)

    Avogadri, Francesca; Merghoub, Taha; Maughan, Maureen F; Hirschhorn-Cymerman, Daniel; Morris, John; Ritter, Erika; Olmsted, Robert; Houghton, Alan N; Wolchok, Jedd D

    2010-09-10

    Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs. VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors. This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.

  13. Pyrrocidine A, a metabolite of endophytic fungi, has a potent apoptosis-inducing activity against HL60 cells through caspase activation via the Michael addition.

    Science.gov (United States)

    Uesugi, Shota; Fujisawa, Nozomi; Yoshida, Jun; Watanabe, Mitsuru; Dan, Shingo; Yamori, Takao; Shiono, Yoshihito; Kimura, Ken-ichi

    2016-03-01

    Pyrrocidine A is a known antimicrobial compound produced by endophytic fungi and has a unique 13-membered macrocyclic alkaloid structure with an α,β-unsaturated carbonyl group. We have previously reported that pyrrocidine A shows potent cytotoxicity against human acute promyelocytic leukemia HL60 cells, and the activity is 70-fold higher than that of pyrrocidine B which is the analog lacking the α,β-unsaturated carbonyl group. Pyrrocidine A induced nuclear condensation, DNA fragmentation and caspase activation in HL60 cells. Since the DNA fragmentation was suppressed by pretreatment with the pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (z-VAD-fmk), caspase-mediated apoptosis contributes to pyrrocidine A-induced cytotoxicity. JFCR39 human cancer cells panel indicated that the mechanism of action of pyrrocidine A is different from other clinical anticancer drugs, and this compound broadly inhibited the growth of various cancer cell lines. The apoptosis induction by pyrrocidine A was suppressed by both N-acetyl-l-cysteine (NAC) and glutathione, both of which are thiol-containing antioxidants. Furthermore, pyrrocidine A directly bound to N-acetyl-l-cysteine methyl ester (NACM) through the Michael-type addition at the α,β-unsaturated carbonyl group and was detected by HPLC and liquid chromatography-ESI-tandem MS (LC-ESI-MS/MS) analyses. This indicates that this moiety is crucial for the potent apoptosis-inducing activity of pyrrocidine A.

  14. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity

    Science.gov (United States)

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei

    2015-01-01

    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency. PMID:26508306

  15. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, Rumen V.; Knatko, Elena V.; McLaughlin, Lesley A.; Henderson, Colin J. [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland (United Kingdom); Zheng, Suqing [Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794 (United States); Huang, Jeffrey T.-J. [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland (United Kingdom); Honda, Tadashi [Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794 (United States); Dinkova-Kostova, Albena T., E-mail: a.dinkovakostova@dundee.ac.uk [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland (United Kingdom); Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 (United States); Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 (United States)

    2015-09-25

    The acetylenic tricyclic bis(cyanoenone) TBE-31 is a highly potent cysteine targeting compound with a reversible covalent mode of action; its best-characterized target being Kelch-like ECH-associated protein-1 (Keap1), the cellular sensor for oxidants and electrophiles. TBE-31 reacts with cysteines of Keap1, impairing its ability to target nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) for degradation. Consequently, Nrf2 accumulates and orchestrates cytoprotective gene expression. In this study we investigated the pharmacokinetic and pharmacodynamic properties of TBE-31 in C57BL/6 mice. After a single oral dose of 10 μmol/kg (∼200 nmol/animal), the concentration of TBE-31 in blood exhibited two peaks, at 22.3 nM and at 15.5 nM, 40 min and 4 h after dosing, respectively, as determined by a quantitative stable isotope dilution LC-MS/MS method. The AUC{sub 0–24h} was 195.5 h/nmol/l, the terminal elimination half-life was 10.2 h, and the k{sub el} was 0.068 h{sup −1}. To assess the pharmacodynamics of Nrf2 activation by TBE-31, we determined the enzyme activity of its prototypic target, NAD(P)H:quinone oxidoreductase 1 (NQO1) and found it elevated by 2.4- and 1.5-fold in liver and heart, respectively. Continuous feeding for 18 days with diet delivering the same daily doses of TBE-31 under conditions of concurrent treatment with the immunosuppressive agent azathioprine had a similar effect on Nrf2 activation without any indications of toxicity. Together with previous reports showing the cytoprotective effects of TBE-31 in animal models of carcinogenesis, our results demonstrate the high potency, efficacy and suitability for chronic administration of cysteine targeting reversible covalent drugs. - Highlights: • TBE-31 is a cysteine targeting compound with a reversible covalent mode of action. • After a single oral dose, the blood concentration of TBE-31 exhibits two peaks. • Oral TBE-31 is a potent activator of Nrf2-dependent enzymes in

  16. PGH1, the precursor for the anti-inflammatory prostaglandins of the 1-series, is a potent activator of the pro-inflammatory receptor CRTH2/DP2

    DEFF Research Database (Denmark)

    Schröder, Ralf; Xue, Luzheng; Konya, Viktoria;

    2012-01-01

    Prostaglandin H(1) (PGH(1)) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as "anti-inflammatory". Herein we present evidence that PGH(1) is a potent activator of the pro-inflammatory PGD(2) receptor ...

  17. A Schiff base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway.

    Science.gov (United States)

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Gwaram, Nura Suleiman; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Looi, Chung Yeng; Ali, Hapipah Mohd; Abdul Majid, Nazia; Abdulla, Mahmood Ameen

    2014-01-01

    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.

  18. A Schiff Base-Derived Copper (II Complex Is a Potent Inducer of Apoptosis in Colon Cancer Cells by Activating the Intrinsic Pathway

    Directory of Open Access Journals (Sweden)

    Maryam Hajrezaie

    2014-01-01

    Full Text Available Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II complex on HT-29 colon cancer cells. The Cu(BrHAP2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87 μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25 μg/ml, the Cu(BrHAP2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.

  19. Anticonvulsant activity, neural tube defect induction, mutagenicity and pharmacokinetics of a new potent antiepileptic drug, N-methoxy-2,2,3,3-tetramethylcyclopropane carboxamide.

    Science.gov (United States)

    Sobol, Eyal; Yagen, Boris; Lamb, John G; White, H Steve; Wlodarczyk, Bogdan J; Finnell, Richard H; Bialer, Meir

    2007-01-01

    N-methoxy-2,2,3,3-tetramethylcyclopropane carboxamide (OM-TMCD) is a methoxyamide derivative of a cyclopropyl analogue of valproic acid (VPA). The structural considerations used in the design of OM-TMCD were aimed to enhance OM-TMCD anticonvulsant potency (compared to VPA) and to prevent VPA's two life-threatening side effects, i.e., induction of neural tube defects (NTDs) and hepatotoxicity. Following i.p. administration to rats OM-TMCD demonstrated a broad spectrum of anticonvulsant activity and showed better potency than VPA in the maximal electroshock seizure and subcutaneous pentylenetetrazole tests as well as in the hippocampal kindling model. OM-TMCD was inactive in the mouse 6-Hz test at 100 mg/kg dose. Teratogenicity studies performed in a SWV/Fnn-mouse model for VPA-induced-exencephaly showed that on the equimolar basis OM-TMCD possesses the same fetal toxicity and ability to induce NTDs as VPA, but since OM-TMCD is a much more potent anticonvulsant its activity/exencephaly formation ratio appears to be much more beneficial than that of VPA. OM-TMCD was found to be non-mutagenic and non-pro-mutagenic in the Ames test. It showed a beneficial pharmacokinetic profile in rats, having a high oral bioavailability of 75% and satisfactory values of clearance and volume of distribution. These results support further studies to fully characterize the therapeutic potential of OM-TMCD.

  20. Daphne oleoides Schreber ssp. oleoides Exhibits Potent Wound Healing Effect: Isolation of the Active Components and Elucidation of the Activity Mechanism

    Directory of Open Access Journals (Sweden)

    Ipek Süntar

    2014-03-01

    Full Text Available Ethnobotanical surveys revealed that Daphne oleoidesSchreber has been used against rheumatic pain and for wound healing in Turkish folk medicine. The aim of the present study is to verify the folkloric assertion of D. oleoides ssp. oleoides (DOO by bioassay-guided fractionation procedures leading to determination of the active component(s and to elucidate the activity mechanisms of the isolated compounds. The wound healing activity of the methanol extract, its subextracts, fractions and isolates was evaluated by using two different in vivo wound healing experimental techniques . Anti-inflammatory and antioxidant activities of the test materials were also evaluated. For the determination of the activity mechanisms, the isolated compounds were screened for hyaluronidase, collagenase and elastase enzyme inhibitory activities. The methanolic extract of DOO was found to possess potent wound healing activity. This extract was then subjected to successive solvent extractions with n-hexane, dichloromethane, ethyl acetate (EtOAc and n-butanol. EtOAc subextract yielded three compounds, quercetin 3-O-glucoside, triumbellin and rutarensin by using chromatographic separation techniques. The experimental study revealed that D. oleoides subsp. oleoides methanolic extract possesses significant wound healing effect and quercetin 3-O-glucoside was determined as the active component responsible from the activity.

  1. Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: Synthesis and biological characterization

    Institute of Scientific and Technical Information of China (English)

    Dan-qi CHEN; Xin WANG; Lin CHEN; Jin-xue HE; Ze-hong MIAO; Jing-kang SHEN

    2011-01-01

    Aim: Cytarabine is an efficient anticancer agent for acute myelogenous leukemia, but with short plasma half-life and rapid deamination to its inactive metabolite. The aim of this study was to design and synthesize novel cholic acid-cytarabine conjugates to improve its pharmacokinetic parameters.Methods: The in vitro stability of novel cholic acid-cytarabine conjugates was investigated in simulated gastric and intestinal fluid, mouse blood and liver homogenate using HPLC. The portacaval samples of the conjugates were examined in male Sprague-Dawley rats using LC/MS, and in vivo distribution was examined in male Kunming mice using LC/MS. Antitumor activities were tested in HL60 cells using MTT assay.Results: Cholic acid-cytarabine compounds with four different linkers were designed and synthesized. All the four cholic acid-cytarabine conjugates could release cytarabine when incubated with the simulated gastric and intestinal fluid, mouse blood and liver homoge-nate. The conjugates 6,/2, and 16 were present in the portacaval samples, whereas the conjugate 7 was not detected. The conju-gates 6 and 16 showed high specificity in targeting the liver (liver target index 34.9 and 16.3, respectively) and good absorption in vivo, as compared with cytarabine. In cytarabine-sensitive HL60 cells, the conjugates 6, 12, and 16 retained potent antitumor activities.Conclusion: Three novel cholic acid-cytarabine conjugates with good liver-targeting properties and absorption were obtained. Further optimization of the conjugates is needed in the future.

  2. LLY-507, a Cell-active, Potent, and Selective Inhibitor of Protein-lysine Methyltransferase SMYD2.

    Science.gov (United States)

    Nguyen, Hannah; Allali-Hassani, Abdellah; Antonysamy, Stephen; Chang, Shawn; Chen, Lisa Hong; Curtis, Carmen; Emtage, Spencer; Fan, Li; Gheyi, Tarun; Li, Fengling; Liu, Shichong; Martin, Joseph R; Mendel, David; Olsen, Jonathan B; Pelletier, Laura; Shatseva, Tatiana; Wu, Song; Zhang, Feiyu Fred; Arrowsmith, Cheryl H; Brown, Peter J; Campbell, Robert M; Garcia, Benjamin A; Barsyte-Lovejoy, Dalia; Mader, Mary; Vedadi, Masoud

    2015-05-29

    SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The CB2-preferring agonist JWH015 also potently and efficaciously activates CB1 in autaptic hippocampal neurons.

    Science.gov (United States)

    Murataeva, N; Mackie, K; Straiker, A

    2012-11-01

    The G protein coupled receptors CB(1) and CB(2) are targets for the psychoactive constituents of cannabis, chief among them Δ(9)-THC. They are also key components of the multifunctional endogenous cannabinoid signaling system. CB(1) and CB(2) receptors modulate a wide variety of physiological systems including analgesia, memory, mood, reward, appetite and immunity. Identification and characterization of selective CB(1) and CB(2) receptor agonists and antagonists will facilitate understanding the precise physiological and pathophysiological roles of cannabinoid receptors in these systems. This is particularly necessary in the case of CB(2) because these receptors are sparsely expressed and problematic to detect using traditional immunocytochemical approaches. 1-Propyl-2-methyl-3-(1-naphthoyl)indole (JWH015) is an aminoalkylindole that has been employed as a "CB(2)-selective" agonist in more than 40 published papers. However, we have found that JWH015 potently and efficaciously activates CB(1) receptors in neurons. Using murine autaptic hippocampal neurons, which express CB(1), but not CB(2) receptors, we find that JWH015 inhibits excitatory postsynaptic currents with an EC50 of 216nM. JWH015 inhibition is absent in neurons from CB(1)(-/-) cultures and is reversed by the CB(1) antagonist, SR141716 [200nM]. Furthermore, JWH015 partially occludes CB(1)-mediated DSE (∼35% remaining), an action reversed by the CB(2) antagonist, AM630 [1 and 3μM], suggesting that high concentrations of AM630 also antagonize CB(1) receptors. We conclude that while JWH015 is a CB(2)-preferring agonist, it also activates CB(1) receptors at experimentally encountered concentrations. Thus, CB(1) agonism of JWH015 needs to be considered in the design and interpretation of experiments that use JWH015 to probe CB(2)-signaling.

  4. Neutron activation analysis for the demonstration of amphibolite rock-weathering activity of a yeast.

    Science.gov (United States)

    Rades-Rohkohl, E; Hirsch, P; Fränzle, O

    1979-12-01

    Neutron activation analysis was employed in a survey of weathering abilities of rock surface microorganisms. A yeast isolated from an amphibolite of a megalithic grave was found actively to concentrate, in media and in or on cells, iron and other elements when grown in the presence of ground rock. This was demonstrated by comparing a spectrum of neutron-activated amphibolite powder (particle size, 50 to 100 mum) with the spectra of neutron-activated, lyophilized yeast cells which had grown with or without amphibolite powder added to different media. The most active yeast (IFAM 1171) did not only solubilize Fe from the rock powder, but significant amounts of Co, Eu, Yb, Ca, Ba, Sc, Lu, Cr, Th, and U were also mobilized. The latter two elements occurred as natural radioactive isotopes in this amphibolite. When the yeast cells were grown with neutron-activated amphibolite, the cells contained the same elements. Furthermore, the growth medium contained Fe, Co, and Eu which had been solubilized from the amphibolite. This indicates the presence, in this yeast strain, of active rockweathering abilities as well as of uptake mechanisms for solubilized rock components.

  5. T-cell receptor/CD28 engagement when combined with prostaglandin E2 treatment leads to potent activation of human T-cell leukemia virus type 1.

    Science.gov (United States)

    Dumais, Nancy; Paré, Marie-Eve; Mercier, Simon; Bounou, Salim; Marriot, Susan J; Barbeau, Benoit; Tremblay, Michel J

    2003-10-01

    Infection with human T-cell leukemia virus type 1 (HTLV-1) is characterized by long latency periods, indicating that viral gene expression is under tight control. There is presently little information available regarding the nature of extracellular stimuli that can transactivate the regulatory elements of HTLV-1 (i.e., long terminal repeat [LTR]). To gain insight into the biological importance of externally induced activation pathways in virus gene expression, primary and established T cells were transfected with HTLV-1-based reporter gene vectors and then were treated with agents that cross-linked the T-cell receptor (TCR) or the costimulatory CD28 molecule with prostaglandin E(2) (PGE(2)). We demonstrated that a potent induction of HTLV-1 LTR-driven reporter gene activity was seen only when the three agents were used in combination. Interestingly, similar observations were made when using C91/PL, a cell line that carries integrated HTLV-1 proviral DNA. This TCR-CD28-PGE(2)-mediated increase in virus transcription was dependent on protein kinase A activation and induction of the cAMP response element binding protein. Experiments with a mutated reporter construct further revealed the importance of the Tax-responsive elements in the HTLV-1 LTR in the observed up regulation of virus gene expression when TCR/CD28 engagement was combined with PGE(2) treatment. The protein tyrosine kinases p56(lck) and the transmembrane tyrosine phosphatase CD45 were all found to be involved in TCR-CD28-PGE(2)-directed increase in HTLV-1 LTR activity. This study presents new information on the possible mechanisms underlying reactivation of this retrovirus.

  6. Design, synthesis, and antibacterial activities of neomycin-lipid conjugates: polycationic lipids with potent gram-positive activity.

    Science.gov (United States)

    Bera, Smritilekha; Zhanel, George G; Schweizer, Frank

    2008-10-01

    Aminoglycoside antibiotics and cationic detergents constitute two classes of clinically important drugs and antiseptics. Their bacteriological and clinical efficacy, however, has decreased recently due to antibiotic resistance. We have synthesized aminoglycoside-lipid conjugates in which the aminoglycoside neomycin forms the cationic headgroup of a polycationic detergent. Our results show that neomycin-C16 and neomycin-C20 conjugates exhibit strong Gram-positive activity but reduced Gram-negative activity. The MIC of neomycin-C16 (C20) conjugates against methicillin-resistant Staphylococcus aureus (MRSA) is comparable to clinically used antiseptics.

  7. Discovery of bis-aryl urea derivatives as potent and selective Limk inhibitors: Exploring Limk1 activity and Limk1/ROCK2 selectivity through a combined computational study.

    Science.gov (United States)

    Cui, Jiaxin; Ding, Mei; Deng, Wei; Yin, Yan; Wang, Zhonghua; Zhou, Hong; Sun, Guofeng; Jiang, Yu; Feng, Yangbo

    2015-12-01

    Lim kinase (Limk), a proline/serine-rich sequence, can regulate the polymerization of the actin filaments by phosphorylating, and it is found to be highly involved in various human diseases. In this paper, 47 reported Limk1 inhibitors with bis-aryl urea scaffold were used to design potent and selective Limk inhibitors by computational approaches. Firstly, the structure-Limk1 activity relationship models (3D-QSAR) and structure-Limk1/ROCK2 selectivity relationship models (3D-QSSR) were developed and both 3D-QSAR and 3D-QSSR models showed good correlative and predictive abilities. Then, the molecular docking and molecular dynamics (MD) simulations were employed to validate the optimal docking conformation and explore the binding affinities. Finally, five new compounds were designed and all of them exhibited good Limk1 inhibition and Limk1/ROCK2 selectivity after synthesis and biological evaluation, which demonstrated that the obtained information from computational studies were valuable to guide Limk inhibitors' design.

  8. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation.

    Science.gov (United States)

    Padi, Satyanarayana S V; Shi, Xiang Q; Zhao, Yuan Q; Ruff, Michael R; Baichoo, Noel; Pert, Candace B; Zhang, Ji

    2012-01-01

    Chemokine signaling is important in neuropathic pain, with microglial cells expressing CCR2 playing a well-established key role. DAPTA, a HIV gp120-derived CCR5 entry inhibitor, has been shown to inhibit CCR5-mediated monocyte migration and to attenuate neuroinflammation. We report here that as a stabilized analog of DAPTA, the short peptide RAP-103 exhibits potent antagonism for both CCR2 (half maximal inhibitory concentration [IC50] 4.2 pM) and CCR5 (IC50 0.18 pM) in monocyte chemotaxis. Oral administration of RAP-103 (0.05-1 mg/kg) for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rats. Administered from days 8 to 12, RAP-103 (0.2-1 mg/kg) reverses already established hypersensitivity. RAP-103 relieves behavioral hypersensitivity, probably through either or both CCR2 and CCR5 blockade, because by using genetically deficient animals, we demonstrated that in addition to CCR2, CCR5 is also required for the development of neuropathic pain. Moreover, RAP-103 is able to reduce spinal microglial activation and monocyte infiltration, and to inhibit inflammatory responses evoked by peripheral nerve injury that cause chronic pain. Our findings suggest that targeting CCR2/CCR5 should provide greater efficacy than targeting CCR2 or CCR5 alone, and that dual CCR2/CCR5 antagonist RAP-103 has the potential for broad clinical use in neuropathic pain treatment.

  9. Screening the active constituents of Chinese medicinal herbs as potent inhibitors of Cdc25 tyrosine phosphatase, an activator of the mitosis-inducing p34cdc2 kinase

    Institute of Scientific and Technical Information of China (English)

    YANG Hua; ZHENG Shu; MEIJER Laurent; LI Shi-min; LECLERC Sophie; YU Lin-lin; CHENG Jin-quan; ZHANG Su-zhan

    2005-01-01

    Objective: To screen and evaluate the active constituents of Chinese medicinal herbs as potent inhibitors of Cdc25phosphatase. Methods: The affinity chromatography purified glutashione-S-transferase/Cdc25A phosphatase fusion protein and Cdc2/cyclin B from the extracts of starfish M phase oocytes are used as the cell cycle-specific targets for screening the antimitotic constituents. We tested 9 extracts isolated from the Chinese medicinal herbs and vegetables including the agents currently used in cancer treatment by measuring the inhibition of Cdc25A phosphatase and Cdc2 kinase activity. The antitumor activity of the extracts was also evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry.Results: Cdc25A inhibitory activity and antitumor activity are detected in the extracts isolated from three Chinese medicinal herbs Agrimonapilosa; Herba solani lyrati; Galla chinesis. Conclusion: We found three extracts isolated from Chinese medicinal herbs have potential inhibitory activity of Cdc25 phosphatase using a highly specific mechanism-based screen assay for antimitotic drug discovery.

  10. Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver.

    OpenAIRE

    Sardana, M K; Kappas, A

    1987-01-01

    Tin(IV)-protoporphyrin (Sn-protoporphyrin) potently inhibits heme degradation to bile pigments in vitro and in vivo, a property that confers upon this synthetic compound the ability to suppress a variety of experimentally induced and naturally occurring forms of jaundice in animals and humans. Utilizing rat liver heme oxygenase purified to homogeneity together with appropriate immunoquantitation techniques, we have demonstrated that Sn-protoporphyrin possesses the additional property of poten...

  11. Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density

    Directory of Open Access Journals (Sweden)

    Baumann Ingo

    2008-03-01

    Full Text Available Abstract Background Aqueous extracts from leaves of well known species of the Lamiaceae family were examined for their potency to inhibit infection by human immunodeficiency virus type 1 (HIV-1. Results Extracts from lemon balm (Melissa officinalis L., peppermint (Mentha × piperita L., and sage (Salvia officinalis L. exhibited a high and concentration-dependent activity against the infection of HIV-1 in T-cell lines, primary macrophages, and in ex vivo tonsil histocultures with 50% inhibitory concentrations as low as 0.004%. The aqueous Lamiaceae extracts did not or only at very high concentrations interfere with cell viability. Mechanistically, extract exposure of free virions potently and rapidly inhibited infection, while exposure of surface-bound virions or target cells alone had virtually no antiviral effect. In line with this observation, a virion-fusion assay demonstrated that HIV-1 entry was drastically impaired following treatment of particles with Lamiaceae extracts, and the magnitude of this effect at the early stage of infection correlated with the inhibitory potency on HIV-1 replication. Extracts were active against virions carrying diverse envelopes (X4 and R5 HIV-1, vesicular stomatitis virus, ecotropic murine leukemia virus, but not against a non-enveloped adenovirus. Following exposure to Lamiaceae extracts, the stability of virions as well as virion-associated levels of envelope glycoprotein and processed Gag protein were unaffected, while, surprisingly, sucrose-density equilibrium gradient analyses disclosed a marked increase of virion density. Conclusion Aqueous extracts from Lamiaceae can drastically and rapidly reduce the infectivity of HIV-1 virions at non-cytotoxic concentrations. An extract-induced enhancement of the virion's density prior to its surface engagement appears to be the most likely mode of action. By harbouring also a strong activity against herpes simplex virus type 2, these extracts may provide a basis

  12. Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores: A novel series of potent antimicrobial and anticancer agents.

    Science.gov (United States)

    Afifi, Tarek H; Okasha, Rawda M; Ahmed, Hany E A; Ilaš, Janez; Saleh, Tarek; Abd-El-Aziz, Alaa S

    2017-01-01

    The design of novel materials with significant biological properties is a main target in drug design research. Chromene compounds represent an interesting medicinal scaffold in drug replacement systems. This report illustrates a successful synthesis and characterization of two novel series of chromene compounds using multi-component reactions. The synthesis of the first example of azo chromophores containing chromene moieties has also been established using the same methodology. The antimicrobial activity of the new molecules has been tested against seven human pathogens including two Gm+ve, two Gm-ve bacteria, and four fungi, and the results of the inhibition zones with minimum inhibitory concentrations were reported as compared to reference drugs. All the designed compounds showed significant potent antimicrobial activities, among of them, four potent compounds 4b, 4c, 13e, and 13i showed promising MIC from 0.007 to 3.9 µg/mL. In addition, antiproliferative analysis against three target cell lines was examined for the novel compounds. Compounds 4a, 4b, 4c, and 7c possessed significant antiproliferative activity against three cell lines with an IC50 of 0.3 to 2 µg/mL. Apoptotic analysis was performed for the most potent compounds via caspase enzyme activity assays as a potential mechanism for their antiproliferative effects. Finally, the computational 2D QSAR and docking simulations were accomplished for structure-activity relationship analyses.

  13. EBI-907, a novel BRAF(V600E) inhibitor, has potent oral anti-tumor activity and a broad kinase selectivity profile.

    Science.gov (United States)

    Zhang, Jiayin; Lu, Biao; Liu, Dong; Shen, Ru; Yan, Yinfa; Yang, Liuqing; Zhang, Minsheng; Zhang, Lei; Cao, Guoqing; Cao, Hu; Fu, Beibei; Gong, Aishen; Sun, Qiming; Wan, Hong; Zhang, Lianshan; Tao, Weikang; Cao, Jingsong

    2016-01-01

    The oncogenic mutation of BRAF(V600E) has been found in approximately 8% of all human cancers, including more than 60% of melanoma and 10% of colorectal cancers. The clinical proof of concept in treating BRAF(V600E)-driving melanoma patients with the BRAF inhibitors has been well established. We have sought to identify and develop novel BRAF(V600E) inhibitors with more favorable profiles. Our chemistry effort has led to the discovery of EBI-907 as a novel BRAF(V600E) inhibitor with potent anti-tumor activity in vitro and in vivo. In a LanthaScreen BRAF(V600E) kinase assay, EBI-907 showed an IC50 of 4.8 nM, which is >10 -fold more potent than Vemurafenib (IC50 = 58.5 nM). In addition, EBI-907 showed a broader kinase selectivity profile, with potent activity against a number of important oncogenic kinases including FGFR1-3, RET, c-Kit, and PDGFRb. Concomitant with such properties, EBI-907 exhibits potent and selective cytotoxicity against a broader range of BRAF(V600E)-dependent cell lines including certain colorectal cancer cell lines with innate resistance to Vemurafenib. In BRAF(V600E)-dependent human Colo-205 and A375 tumor xenograft mouse models, EBI-907 caused a marked tumor regression in a dose-dependent manner, with superior efficacy to Vemurafenib. Our results also showed that combination with EGFR or MEK inhibitor enhanced the potency of EBI-907 in cell lines with innate or acquired resistance to BRAF inhibition alone. Our findings present EBI-907 as a potent and promising BRAF inhibitor, which might be useful in broader indications.

  14. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    Science.gov (United States)

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days.

  15. Pharmacological profile of AW-814141, a novel, potent, selective and orally active inhibitor of p38 MAP kinase

    DEFF Research Database (Denmark)

    Chopra, Puneet; Kulkarni, Onkar; Gupta, Shashank

    2010-01-01

    -inflammatory activity of a p38 MAPK inhibitor, AW-814141. AW-814141 inhibited enzymatic activity of recombinant p38-alpha and beta isoforms with IC(50) value of 100nM and 158nM, respectively. AW-814141 also inhibited the release of tumor necrosis factor (TNF)-alpha by lipopolysaccharide (LPS) treated human peripheral...... blood mononuclear cells with an IC(50) value of 212nM and demonstrated selectivity against a panel of few kinases. Oral administration of AW-814141 (10mpk) in LPS-injected mice resulted in a significant reduction in TNF-alpha production in the circulation. In a carrageenan-induced rat paw edema model...

  16. Stanniocalcin-1 Potently Inhibits the Proteolytic Activity of the Metalloproteinase Pregnancy-associated Plasma Protein-A

    DEFF Research Database (Denmark)

    Kløverpris, Søren; Mikkelsen, Jakob Hauge; Pedersen, Josefine Hvidkjær

    2015-01-01

    regulation in these species. Several physiological functions of STC1 have been reported, although many molecular details are still lacking. We here demonstrate that STC1 is an inhibitor of the metzincin metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A), which modulates insulin-like growth...... that the homologous STC2 inhibits PAPP-A proteolytic activity, and that this depends on the formation of a covalent complex between the inhibitor and the proteinase, mediated by Cys-120 of STC2. We find that STC1 is unable to bind covalently to PAPP-A, in agreement with the absence of a corresponding cysteine residue....... It rather binds to PAPP-A with high affinity (KD = 75 pm). We further demonstrate that both STC1 and STC2 show inhibitory activity toward PAPP-A2, but not selected serine proteinases and metalloproteinases. We therefore conclude that the STCs are proteinase inhibitors, probably restricted in specificity...

  17. Discovery of novel histidine-derived lipo-amino acids: applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability.

    Science.gov (United States)

    Ahn, Mija; Murugan, Ravichandran N; Jacob, Binu; Hyun, Jae-Kyung; Cheong, Chaejoon; Hwang, Eunha; Park, Hyo-Nam; Seo, Ji-Hyung; Srinivasrao, G; Lee, Kyung S; Shin, Song Yub; Bang, Jeong Kyu

    2013-10-01

    Here we report for the first time the synthesis of Histidine (His) derived lipo-amino acids having pendant lipid tails at N(τ)- and N(π)-positions on imidazole group of His and applied it into synthesis of lipo-peptides. The attachment of His-derived lipo-amino acid into the very short inactive cationic peptides endows potent antimicrobial activity against Gram-positive and Gram-negative bacteria without hemolytic activity. Furthermore, our designed His-derived lipo-peptidomimetics (HDLPs) consisting of two or three residues displayed strong anti-MRSA activity and protease stability as well as retained potent antimicrobial activity under high salt concentration. Our results demonstrate that the novel lipo-amino acid is highly flexible to synthesize and carry out the extensive structure-activity relationship (SAR) on lipo-antimicrobial peptidomimetics and represents a unique amenable platform for modifying parameters important for antimicrobial activity. Through this study, we proved that the discovery of His-derived lipo-amino acid and the corresponding HDLPs are an excellent candidate as a lead compound for the development of novel antimicrobial agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Activation of antigen-exposed iMC-DCs at the "right place" and "right time" promotes potent anti-tumor immunity.

    Science.gov (United States)

    Spencer, David M

    2012-05-01

    To better control the "licensing" of pro-Th1 dendritic cells (DCs), Spencer and colleagues have developed a synthetic ligand-inducible chimeric receptor, iMyD88/CD40 (iMC), incorporating synergistic Toll-like receptor (TLR) and costimulatory signaling elements, permitting DC regulation in vivo within the context of an immunological synapse. This novel technology results in potent anti-cancer activity.

  19. Teotihuacanin, a Diterpene with an Unusual Spiro-10/6 System from Salvia amarissima with Potent Modulatory Activity of Multidrug Resistance in Cancer Cells.

    Science.gov (United States)

    Bautista, Elihú; Fragoso-Serrano, Mabel; Toscano, Rubén A; García-Peña, María del Rosario; Ortega, Alfredo

    2015-07-01

    Teotihuacanin (1), an unusual rearranged clerodane diterpene with a new carbon skeleton containing a spiro-10/6 bicyclic system, was isolated from the leaves and flowers of Salvia amarissima. Its structure was determined through spectroscopic analyses. Its absolute configuration was established by single-crystal X-ray diffraction. Compound 1 showed potent modulatory activity of multidrug resistance in vinblastine-resistant MCF-7 cancer cell line (reversal fold, RFMCF-7/Vin+ > 10703) at 25 μg/mL.

  20. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    Science.gov (United States)

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-01

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production.

  1. Catechins and Procyanidins of Ginkgo biloba Show Potent Activities towards the Inhibition of β-Amyloid Peptide Aggregation and Destabilization of Preformed Fibrils

    Directory of Open Access Journals (Sweden)

    Haiyan Xie

    2014-04-01

    Full Text Available Catechins and procyanidins, together with flavonoid glycosides and terpene trilactones, are three important categories of components in the standard extract of Ginkgo biloba leaves (EGb761. In this research, catechins and proanthocyanidins were found to exist in both the extract of Ginkgo leaves and Ginkgo products. By comparing with reference compounds, six of them were identified as (+-catechin, (−-epicatechin, (−-gallocatechin, (−-epigallocatechin and procyanidins B1 and B3. The activities of these polyphenols in the inhibition of Aβ42 aggregation and the destabilization of preformed fibrils were evaluated using biochemical assays, which showed that all six of the polyphenols, as well as a fraction of the extract of Ginkgo biloba leaves (EGb containing catechins and procyanidins, exerted potent inhibitory activities towards Aβ42 aggregation and could also destabilize the performed fibrils. Catechins and procyanidins can therefore be regarded as the potent active constituents of EGb761 in terms of their inhibition of Aβ42 aggregation and destabilization of the fibrils. Although quantitative mass spectroscopic analysis revealed that the catechins and procyanidins are only present in low concentrations in EGb761, these components should be studied in greater detail because of their potent inhibitory effects towards Aβ42 aggregation and their ability to destabilize preformed fibrils, especially during the quality control of Ginkgo leaves and the manufacture of Ginkgo products.

  2. Catechins and procyanidins of Ginkgo biloba show potent activities towards the inhibition of β-amyloid peptide aggregation and destabilization of preformed fibrils.

    Science.gov (United States)

    Xie, Haiyan; Wang, Jing-Rong; Yau, Lee-Fong; Liu, Yong; Liu, Liang; Han, Quan-Bin; Zhao, Zhongzhen; Jiang, Zhi-Hong

    2014-04-22

    Catechins and procyanidins, together with flavonoid glycosides and terpene trilactones, are three important categories of components in the standard extract of Ginkgo biloba leaves (EGb761). In this research, catechins and proanthocyanidins were found to exist in both the extract of Ginkgo leaves and Ginkgo products. By comparing with reference compounds, six of them were identified as (+)-catechin, (-)-epicatechin, (-)-gallocatechin, (-)-epigallocatechin and procyanidins B1 and B3. The activities of these polyphenols in the inhibition of Aβ42 aggregation and the destabilization of preformed fibrils were evaluated using biochemical assays, which showed that all six of the polyphenols, as well as a fraction of the extract of Ginkgo biloba leaves (EGb) containing catechins and procyanidins, exerted potent inhibitory activities towards Aβ42 aggregation and could also destabilize the performed fibrils. Catechins and procyanidins can therefore be regarded as the potent active constituents of EGb761 in terms of their inhibition of Aβ42 aggregation and destabilization of the fibrils. Although quantitative mass spectroscopic analysis revealed that the catechins and procyanidins are only present in low concentrations in EGb761, these components should be studied in greater detail because of their potent inhibitory effects towards Aβ42 aggregation and their ability to destabilize preformed fibrils, especially during the quality control of Ginkgo leaves and the manufacture of Ginkgo products.

  3. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Kim, Young-Il; Furuzono, Tomoya [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Ohue, Ryuji [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Nomura, Wataru [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Sugawara, Tatsuya [Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Yu, Rina [Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Kitamura, Nahoko [Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  4. Pazopanib, a novel multi-kinase inhibitor, shows potent antitumor activity in colon cancer through PUMA-mediated apoptosis.

    Science.gov (United States)

    Zhang, Lingling; Wang, Huanan; Li, Wei; Zhong, Juchang; Yu, Rongcheng; Huang, Xinfeng; Wang, Honghui; Tan, Zhikai; Wang, Jiangang; Zhang, Yingjie

    2017-01-10

    Colon cancer is still the third most common cancer which has a high mortality but low five-year survival rate. Novel tyrosine kinase inhibitors (TKI) such as pazopanib become effective antineoplastic agents that show promising clinical activity in a variety of carcinoma, including colon cancer. However, the precise underlying mechanism against tumor is unclear. Here, we demonstrated that pazopanib promoted colon cancer cell apoptosis through inducing PUMA expression. Pazopanib induced p53-independent PUMA activation by inhibiting PI3K/Akt signaling pathway, thereby activating Foxo3a, which subsequently bound to the promoter of PUMA to activate its transcription. After induction, PUMA activated Bax and triggered the intrinsic mitochondrial apoptosis pathway. Furthermore, administration of pazopanib highly suppressed tumor growth in a xenograft model. PUMA deletion in cells and tumors led to resistance of pazopanib, indicating PUMA-mediated pro-apoptotic and anti-tumor effects in vitro and in vivo. Combing pazopanib with some conventional or novel drugs, produced heightened and synergistic antitumor effects that were associated with potentiated PUMA induction via different pathways. Taken together, these results establish a critical role of PUMA in mediating the anticancer effects of pazopanib in colon cancer cells and provide the rationale for clinical evaluation.

  5. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria.

    Science.gov (United States)

    Pallister, Kyler B; Mason, Sara; Nygaard, Tyler K; Liu, Bin; Griffith, Shannon; Jones, Jennifer; Linderman, Susanne; Hughes, Melissa; Erickson, David; Voyich, Jovanka M; Davis, Mary F; Wilson, Eric

    2015-01-01

    In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis.

  6. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria.

    Directory of Open Access Journals (Sweden)

    Kyler B Pallister

    Full Text Available In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis.

  7. GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade.

    Science.gov (United States)

    Gargett, Tessa; Yu, Wenbo; Dotti, Gianpietro; Yvon, Eric S; Christo, Susan N; Hayball, John D; Lewis, Ian D; Brenner, Malcolm K; Brown, Michael P

    2016-06-01

    Chimeric antigen receptor (CAR) T cells have shown great promise in the treatment of hematologic malignancies but more variable results in the treatment of solid tumors and the persistence and expansion of CAR T cells within patients has been identified as a key correlate of antitumor efficacy. Lack of immunological "space", functional exhaustion, and deletion have all been proposed as mechanisms that hamper CAR T-cell persistence. Here we describe the events following activation of third-generation CAR T cells specific for GD2. CAR T cells had highly potent immediate effector functions without evidence of functional exhaustion in vitro, although reduced cytokine production reversible by PD-1 blockade was observed after longer-term culture. Significant activation-induced cell death (AICD) of CAR T cells was observed after repeated antigen stimulation, and PD-1 blockade enhanced both CAR T-cell survival and promoted killing of PD-L1(+) tumor cell lines. Finally, we assessed CAR T-cell persistence in patients enrolled in the CARPETS phase 1 clinical trial of GD2-specific CAR T cells in the treatment of metastatic melanoma. Together, these data suggest that deletion also occurs in vivo and that PD-1-targeted combination therapy approaches may be useful to augment CAR T-cell efficacy and persistence in patients.

  8. 7-methylguanosine diphosphate (m(7)GDP) is not hydrolyzed but strongly bound by decapping scavenger (DcpS) enzymes and potently inhibits their activity.

    Science.gov (United States)

    Wypijewska, Anna; Bojarska, Elzbieta; Lukaszewicz, Maciej; Stepinski, Janusz; Jemielity, Jacek; Davis, Richard E; Darzynkiewicz, Edward

    2012-10-09

    Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' → 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' → 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.

  9. Synthesis and anticonvulsant activity of some potent 5,6-bis aryl 1,2,4-triazines

    Institute of Scientific and Technical Information of China (English)

    MALLIKARJUNA B.P.; SURESH KUMAR G.V.; SASTRY B.S.; NAGARAJ; MANOHARA K.P.

    2007-01-01

    In the present research, a series of 5,6-bis aryl 1,2,4-triazines 5a~5f were synthesized by condensation of various benzils 4a~4f with aminoguanidine bicarbonate and were screened in vivo, for their anticonvulsant and neurotoxicity studies.Compounds 5a, 5b and 5d were found to be potent molecules of this series, when compared with the reference drugs phenytoin sodium, diazepam and lamotrigine. The structures of these compounds were established by IR, 1H NMR, 13C NMR and mass spectroscopic data.

  10. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells.

    Science.gov (United States)

    Wang, Can; Jiang, Jian-Dong; Wu, Wei; Kong, Wei-Jia

    2016-01-01

    The mangiferin-berberine (MB) salt was synthesized by ionic bonding of mangiferin (M) and berberine (B) at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα)/acetyl-CoA carboxylase (ACC) protein levels and carnitine palmitoyltransferase (CPT) 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC) was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172)/p-ACC (Ser79) levels and CPT1 activity and suppressed oleic acid- (OA-) induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future.

  11. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Can Wang

    2016-01-01

    Full Text Available The mangiferin-berberine (MB salt was synthesized by ionic bonding of mangiferin (M and berberine (B at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα/acetyl-CoA carboxylase (ACC protein levels and carnitine palmitoyltransferase (CPT 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172/p-ACC (Ser79 levels and CPT1 activity and suppressed oleic acid- (OA- induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future.

  12. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; Park, Si-Bum; Kishino, Shigenobu; Ogawa, Jun; Kawada, Teruo

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Identifying New Drug Targets for Potent Phospholipase D Inhibitors: Combining Sequence Alignment, Molecular Docking, and Enzyme Activity/Binding Assays.

    Science.gov (United States)

    Djakpa, Helene; Kulkarni, Aditya; Barrows-Murphy, Scheneque; Miller, Greg; Zhou, Weihong; Cho, Hyejin; Török, Béla; Stieglitz, Kimberly

    2016-05-01

    Phospholipase D enzymes cleave phospholipid substrates generating choline and phosphatidic acid. Phospholipase D from Streptomyces chromofuscus is a non-HKD (histidine, lysine, and aspartic acid) phospholipase D as the enzyme is more similar to members of the diverse family of metallo-phosphodiesterase/phosphatase enzymes than phospholipase D enzymes with active site HKD repeats. A highly efficient library of phospholipase D inhibitors based on 1,3-disubstituted-4-amino-pyrazolopyrimidine core structure was utilized to evaluate the inhibition of purified S. chromofuscus phospholipase D. The molecules exhibited inhibition of phospholipase D activity (IC50 ) in the nanomolar range with monomeric substrate diC4 PC and micromolar range with phospholipid micelles and vesicles. Binding studies with vesicle substrate and phospholipase D strongly indicate that these inhibitors directly block enzyme vesicle binding. Following these compelling results as a starting point, sequence searches and alignments with S. chromofuscus phospholipase D have identified potential new drug targets. Using AutoDock, inhibitors were docked into the enzymes selected from sequence searches and alignments (when 3D co-ordinates were available) and results analyzed to develop next-generation inhibitors for new targets. In vitro enzyme activity assays with several human phosphatases demonstrated that the predictive protocol was accurate. The strategy of combining sequence comparison, docking, and high-throughput screening assays has helped to identify new drug targets and provided some insight into how to make potential inhibitors more specific to desired targets.

  14. The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1.

    OpenAIRE

    May, W A; Lessnick, S L; Braun, B S; Klemsz, M; Lewis, B. C.; Lunsford, L B; Hromas, R; Denny, C T

    1993-01-01

    EWS/FLI-1 is a chimeric protein formed by a tumor-specific 11;22 translocation found in both Ewing's sarcoma and primitive neuroectodermal tumor of childhood. EWS/FLI-1 has been shown to be a potent transforming gene, suggesting that it plays an important role in the genesis of these human tumors. We now demonstrate that EWS/FLI-1 has the characteristics of an aberrant transcription factor. Subcellular fractionation experiments localized the EWS/FLI-1 protein to the nucleus of primitive neuro...

  15. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity.

    Science.gov (United States)

    Yilmazer-Musa, Meltem; Griffith, Anneke M; Michels, Alexander J; Schneider, Erik; Frei, Balz

    2012-09-12

    This study evaluated the inhibitory effects of plant-based extracts (grape seed, green tea, and white tea) and their constituent flavan-3-ol monomers (catechins) on α-amylase and α-glucosidase activity, two key glucosidases required for starch digestion in humans. To evaluate the relative potency of extracts and catechins, their concentrations required for 50 and 90% inhibition of enzyme activity were determined and compared to the widely used pharmacological glucosidase inhibitor, acarbose. Maximum enzyme inhibition was used to assess relative inhibitory efficacy. Results showed that grape seed extract strongly inhibited both α-amylase and α-glucosidase activity, with equal and much higher potency, respectively, than acarbose. Whereas tea extracts and catechin 3-gallates were less effective inhibitors of α-amylase, they were potent inhibitors of α-glucosidase. Nongallated catechins were ineffective. The data show that plant extracts containing catechin 3-gallates, in particular epigallocatechin gallate, are potent inhibitors of α-glucosidase activity and suggest that procyanidins in grape seed extract strongly inhibit α-amylase activity.

  16. Potent PPARα activator derived from tomato juice, 13-oxo-9,11-octadecadienoic acid, decreases plasma and hepatic triglyceride in obese diabetic mice.

    Directory of Open Access Journals (Sweden)

    Young-il Kim

    Full Text Available Dyslipidemia is a major risk factor for development of several obesity-related diseases. The peroxisome proliferator-activated receptor α (PPARα is a ligand-activated transcription factor that regulates energy metabolism. Previously, we reported that 9-oxo-10,12-octadecadienoic acid (9-oxo-ODA is presented in fresh tomato fruits and acts as a PPARα agonist. In addition to 9-oxo-ODA, we developed that 13-oxo-9,11-octadecadienoic acid (13-oxo-ODA, which is an isomer of 9-oxo-ODA, is present only in tomato juice. In this study, we explored the possibility that 13-oxo-ODA acts as a PPARα agonist in vitro and whether its effect ameliorates dyslipidemia and hepatic steatosis in vivo. In vitro luciferase assay experiments revealed that 13-oxo-ODA significantly induced PPARα activation; moreover, the luciferase activity of 13-oxo-ODA was stronger than that of 9-oxo-ODA and conjugated linoleic acid (CLA, which is a precursor of 13-oxo-ODA and is well-known as a potent PPARα activator. In addition to in vitro experiment, treatment with 13-oxo-ODA decreased the levels of plasma and hepatic triglycerides in obese KK-Ay mice fed a high-fat diet. In conclusion, our findings indicate that 13-oxo-ODA act as a potent PPARα agonist, suggesting a possibility to improve obesity-induced dyslipidemia and hepatic steatosis.

  17. Activity of quinfamide against natural infections of Entamoeba criceti in hamsters: a new potent agent for intestinal amoebiasis.

    Science.gov (United States)

    Slighter, R G; Yarinsky, A; Drobeck, H P; Bailey, D M

    1980-08-01

    A novel tetrahydroquinolinyl ester, quinfamide, administered orally in multiple doses for 3 days had an ED50 of 0.25 mg/kg/day (total dose 0.75 mg/kg) for eradicating Entamoeba criceti in hamsters in several tests. It was significantly more active by direct comparison than 3 commercially available amoebicides and at least as active as 2 other esters of the parent compound, 1-(dichloroacety)-1,2,3,4-tetrahydro-6-quinolinol. After administration of a single dose, ED50 calculations for quinfamide averaged 0.9 mg/kg. Quinfamide was considerably more active than the other tetrahydroquinolinols, diloxanide furoate and teclozan, and it was approximately 1.5 times more active than etofamide; a statistical significance between the latter 2 drugs could be demonstrated in one of 4 tests. Administered prophylactically, quinfamide was shown to protect hamsters from re-infection with E. criceti. It also inhibited propagation of E. histolytica in vitro at a concentration of 20 microgram/ml. No adverse effects were noted in rodents after a single dose as high as 10 g/kg. Daily administration to monkeys of doses up to 500 mg/kg for as long as 37 days produced no pharmacological aberrations during or after medication; haematological studies and urine analyses were normal and no gross or microscopical tissue changes attributable to quinfamide were observed. No toxicity was revealed following acute (2 g/kg) and chronic (500 mg/kg/day x 31 days) administration of the drug to dogs and rats, respectively.

  18. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, Christina;

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN...... had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between...

  19. Lambda Interferon (IFN-gamma), a Type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, C.;

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN...... had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between...

  20. Structure-activity relationship study of pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives for potent anti-HIV agents.

    Science.gov (United States)

    Mizuhara, Tsukasa; Oishi, Shinya; Ohno, Hiroaki; Shimura, Kazuya; Matsuoka, Masao; Fujii, Nobutaka

    2012-11-01

    3,4-Dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine (PD 404182) is an antiretroviral agent with submicromolar inhibitory activity against human immunodeficiency virus-1 (HIV-1) and HIV-2 infection. In the current study, the structure-activity relationships of accessory groups at the 3- and 9-positions of pyrimido[1,2-c][1,3]benzothiazin-6-imine were investigated for the development of more potent anti-HIV agents. Several different derivatives containing a 9-aryl group were designed and synthesized using Suzuki-Miyaura cross-coupling and Ullmann coupling reactions. Modification of the m-methoxyphenyl or benzo[d][1,3]dioxol-5-yl group resulted in improved anti-HIV activity. In addition, the 2,4-diazaspiro[5.5]undec-2-ene-fused benzo[e][1,3]thiazine derivatives were designed and tested for their anti-HIV activities. The most potent 9-(benzo[d][1,3]dioxol-5-yl) derivative was two-threefold more effective against several strains of HIV-1 and HIV-2 than the parent compound, PD 404182. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies.

    Science.gov (United States)

    Sato, Hiroyuki; Macchiarulo, Antonio; Thomas, Charles; Gioiello, Antimo; Une, Mizuho; Hofmann, Alan F; Saladin, Régis; Schoonjans, Kristina; Pellicciari, Roberto; Auwerx, Johan

    2008-03-27

    TGR5, a metabotropic receptor that is G-protein-coupled to the induction of adenylate cyclase, has been recognized as the molecular link connecting bile acids to the control of energy and glucose homeostasis. With the aim of disclosing novel selective modulators of this receptor and at the same time clarifying the molecular basis of TGR5 activation, we report herein the biological screening of a collection of natural occurring bile acids, bile acid derivatives, and some steroid hormones, which has resulted in the discovery of new potent and selective TGR5 ligands. Biological results of the tested collection of compounds were used to extend the structure-activity relationships of TGR5 agonists and to develop a binary classification model of TGR5 activity. This model in particular could unveil some hidden properties shared by the molecular shape of bile acids and steroid hormones that are relevant to TGR5 activation and may hence be used to address the design of novel selective and potent TGR5 agonists.

  2. Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment.

    Science.gov (United States)

    Bolomsky, Arnold; Schlangen, Karin; Schreiner, Wolfgang; Zojer, Niklas; Ludwig, Heinz

    2016-03-02

    The polycomb complex protein BMI-1 (BMI-1) is a putative oncogene reported to be overexpressed in multiple myeloma (MM). Silencing of BMI-1 was shown to impair the growth and survival of MM cells. However, therapeutic agents specifically targeting BMI-1 were not available so far. Here, we investigated PTC-209, a novel small molecule inhibitor of BMI-1, for its activity in MM. BMI-1 expression was analysed in human MM cell lines and primary MM cells by using publically available gene expression profiling (GEP) data. The anti-MM activity of PTC-209 was investigated by viability testing, cell cycle analysis, annexin V and 7-AAD staining, quantification of cleaved poly(ADP-ribose) polymerase (PARP), JC-1 as well as colony formation assays. Deregulation of central myeloma growth and survival genes was studied by quantitative PCR and flow cytometry, respectively. In addition, the impact of PTC-209 on in vitro osteoclast, osteoblast and tube formation was analysed. We confirmed overexpression of BMI-1 in MM patients by using publically available GEP datasets. Of note, BMI-1 expression was further increased at relapse which translated into significantly shorter overall survival in relapsed/refractory patients treated with bortezomib or dexamethasone. Treatment with PTC-209 significantly decreased viable cell numbers in human MM cell lines, induced a G1 cell cycle arrest, promoted apoptosis and demonstrated synergistic activity with pomalidomide and carfilzomib. The anti-MM activity of PTC-209 was accompanied by a significant decrease of cyclin D1 (CCND1) and v-myc avian myelocytomatosis viral oncogene homolog (MYC) expression as well as upregulation of cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN1B). We also observed upregulation of NOXA (up to 3.6 ± 1.2-fold induction, P = 0.009) and subsequent downregulation of myeloid cell leukemia 1 (MCL-1) protein levels, which likely mediates the apoptotic effects of PTC-209

  3. The Pharmacology of TUG-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism

    DEFF Research Database (Denmark)

    Hudson, Brian D; Shimpukade, Bharat; Mackenzie, Amanda E;

    2013-01-01

    TUG-891 [3-(4-((4-fluoro-4'-methyl-[1,1'-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein-coupled receptor 120, or GPR120). Herein, we have used TUG-891 to furthe...

  4. The Potent Cdc7-Dbf4 (DDK) Kinase Inhibitor XL413 Has Limited Activity in Many Cancer Cell Lines and Discovery of Potential New DDK Inhibitor Scaffolds

    OpenAIRE

    Nanda Kumar Sasi; Kanchan Tiwari; Fen-Fen Soon; Dorine Bonte; Tong Wang; Karsten Melcher; H. Eric Xu; Michael Weinreich

    2014-01-01

    Cdc7-Dbf4 kinase or DDK (Dbf4-dependent kinase) is required to initiate DNA replication by phosphorylating and activating the replicative Mcm2-7 DNA helicase. DDK is overexpressed in many tumor cells and is an emerging chemotherapeutic target since DDK inhibition causes apoptosis of diverse cancer cell types but not of normal cells. PHA-767491 and XL413 are among a number of potent DDK inhibitors with low nanomolar IC50 values against the purified kinase. Although XL413 is highly selective fo...

  5. The latex sap of the 'Old World Plant' Lagenaria siceraria with potent lectin activity mitigates neoplastic malignancy targeting neovasculature and cell death.

    Science.gov (United States)

    Vigneshwaran, V; Thirusangu, Prabhu; Madhusudana, S; Krishna, V; Pramod, Siddanakoppalu N; Prabhakar, B T

    2016-10-01

    Lifestyle and dietary modifications have contributed much to somatic genetic alteration which has concomitantly led to increase in malignant diseases. Henceforth, plant based and dietary interventions to mitigate and impede oncogenic transformation are in great demand. We investigated the latex sap (LSL) of the dietary Lagenaria siceraria vegetable, the first domesticated plant species with the potent lectin activity for its functional role against the tumor progression and its mechanism. LSL has markedly stimulated proliferation of lymphocytes and displayed strong cytotoxic activity against cancer both in-vitro and in-vivo. The tumor regression was paralleled with drastic reduction in tumoral neovasculature as evidenced from angiogenic parameters and abrogated related gene expressions. LSL has also triggered apoptotic signaling cascade in cancer cells through activation of caspase-3 mediated activation of endonuclease and inducing apoptotic cellular events. Collectively our study provides tangible evidences that latex sap from L. siceraria with immunopotentiating ability significantly regresses the tumor progression by targeting angiogenesis and inducing cell death.

  6. Difluoro-dioxolo-benzoimidazol-benzamides as potent inhibitors of CK1δ and ε with nanomolar inhibitory activity on cancer cell proliferation.

    Science.gov (United States)

    Richter, Julia; Bischof, Joachim; Zaja, Mirko; Kohlhof, Hella; Othersen, Olaf; Vitt, Daniel; Alscher, Vanessa; Pospiech, Irmgard; García-Reyes, Balbina; Berg, Sebastian; Leban, Johann; Knippschild, Uwe

    2014-10-09

    Deregulation of CK1 (casein kinase 1) activity can be involved in the development of several pathological disorders and diseases such as cancer. Therefore, research interest in identifying potent CK1-specific inhibitors is still increasing. A previously published potent and selective benzimidazole-derived CK1δ/ε-specific inhibitor compound with significant effects on several tumor cell lines was further modified to difluoro-dioxolo-benzoimidazole derivatives displaying remarkable inhibitory effects and increased intracellular availability. In the present study, we identified two heterocyclic molecules as new CK1-specific inhibitor compounds with favorable physicochemical properties and notable selectivity in a kinome-wide screen. Being compared to other CK1 isoforms, these compounds exhibited advanced isoform selectivity toward CK1δ. Moreover, newly designed compounds showed increased growth inhibitory activity in a panel of different tumor cell lines as determined by analyses of cell viability and cell cycle distribution. In summary, presented lead optimization resulted in new highly selective CK1δ-specific small molecule inhibitors with increased biological activity.

  7. An EGF receptor targeting Ranpirnase-diabody fusion protein mediates potent antitumour activity in vitro and in vivo.

    Science.gov (United States)

    Kiesgen, Stefan; Arndt, Michaela A E; Körber, Christoph; Arnold, Ulrich; Weber, Tobias; Halama, Niels; Keller, Armin; Bötticher, Benedikt; Schlegelmilch, Anne; Liebers, Nora; Cremer, Martin; Herold-Mende, Christel; Dyckhoff, Gerhard; Federspil, Philippe A; Jensen, Alexandra D; Jäger, Dirk; Kontermann, Roland E; Mier, Walter; Krauss, Jürgen

    2015-02-01

    Cytotoxic ribonucleases such as the leopard frog derivative Ranpirnase (Onconase(®)) have emerged as a valuable new class of cancer therapeutics. Clinical trials employing single agent Ranpirnase in cancer patients have demonstrated significant clinical activity and surprisingly low immunogenicity. However, dose-limiting toxicity due to unspecific uptake of the RNase into non-cancerous cells is reached at relatively low concentrations of > 1 mg/m(2). We have in the present study generated a dimeric anti-EGFR Ranpirnase-diabody fusion protein capable to deliver two Ranpirnase moieties per molecule to EGFR-positive tumour cells. We show that this compound mediated far superior efficacy for killing EGFR-positive tumour cells than a monomeric counterpart. Most importantly, cell killing was restricted to EGFR-positive target cells and no dose-limiting toxicity of Ranpirnase-diabody was observed in mice. These data indicate that by targeted delivery of Ranpirnase non-selective toxicity can be abolished and suggests Ranpirnase-diabody as a promising new drug for therapeutic interventions in EGFR-positive cancers.

  8. Isopentenyl pyrophosphate activated CD56+ γδ T lymphocytes display potent anti-tumor activity towards human squamous cell carcinoma

    Science.gov (United States)

    Alexander, Alan A.Z.; Maniar, Amudhan; Cummings, Jean-Saville; Hebbeler, Andrew M.; Schulze, Dan H.; Gastman, Brian R.; Pauza, C. David; Strome, Scott E.; Chapoval, Andrei I.

    2008-01-01

    Purpose The expression of CD56, a natural killer (NK) cell-associated molecule, on αβ T lymphocytes correlates with their increased anti-tumor effector function. CD56 is also expressed on a subset of γδ T cells. However, anti-tumor effector functions of CD56+ γδ T cells are poorly characterized. Experimental design To investigate the potential effector role of CD56+ γδ T cells in tumor killing, we employed isopentenyl pyrophosphate (IPP) and IL-2 expanded γδ T cells from PBMC of healthy donors. Results Thirty to 70% of IPP+IL-2 expanded γδ T cells express CD56 on their surface. Interestingly, while both CD56+ and CD56− γδ T cells express comparable levels of receptors involved in the regulation of γδ T cell cytotoxicity (e.g. NKG2D and CD94) only CD56+ γδ T lymphocytes are capable of killing squamous cell carcinoma (SCC) and other solid tumor cell lines. This effect is likely mediated by the enhanced release of cytolytic granules, since CD56+ γδ T lymphocytes expressed higher levels of CD107a compared to CD56− controls, following exposure to tumor cell lines. Lysis of tumor cell lines is blocked by concanomycin A and a combination of anti-γδTCR + anti-NKG2D mAb, suggesting that the lytic activity of CD56+ γδ T cells involves the perforin-granzyme pathway and is mainly γδTCR/NKGD2 dependent. Importantly, CD56 expressing γδ T lymphocytes are resistant to Fas ligand and chemically induced apoptosis. Conclusions Our data indicate that CD56+ γδ T cells are potent anti-tumor effectors capable of killing SCC and may play an important therapeutic role in patients with head and neck cancer and other malignancies. PMID:18594005

  9. In Vitro Activities of ER-119884 and E5700, Two Potent Squalene Synthase Inhibitors, against Leishmania amazonensis: Antiproliferative, Biochemical, and Ultrastructural Effects▿

    Science.gov (United States)

    Fernandes Rodrigues, Juliany Cola; Concepcion, Juan Luis; Rodrigues, Carlos; Caldera, Aura; Urbina, Julio A.; de Souza, Wanderley

    2008-01-01

    ER-119884 and E5700, novel arylquinuclidine derivatives developed as cholesterol-lowering agents, were potent in vitro growth inhibitors of both proliferative stages of Leishmania amazonensis, the main causative agent of cutaneous leishmaniasis in South America, with the 50% inhibitory concentrations (IC50s) being in the low-nanomolar to subnanomolar range. The compounds were very potent noncompetitive inhibitors of native L. amazonensis squalene synthase (SQS), with inhibition constants also being in the nanomolar to subnanomolar range. Growth inhibition was strictly associated with the depletion of the parasite's main endogenous sterols and the concomitant accumulation of exogenous cholesterol. Using electron microscopy, we identified the intracellular structures affected by the compounds. A large number of lipid inclusions displaying different shapes and electron densities were observed after treatment with both SQS inhibitors, and these inclusions were associated with an intense disorganization of the membrane that surrounds the cell body and flagellum, as well as the endoplasmic reticulum and the Golgi complex. Cells treated with ER-119884 but not those treated with E5700 had an altered cytoskeleton organization due to an abnormal distribution of tubulin, and many were arrested at cytokinesis. A prominent contractile vacuole and a phenotype typical of programmed cell death were frequently found in drug-treated cells. The selectivity of the drugs was demonstrated with the JC-1 mitochondrial fluorescent label and by trypan blue exclusion tests with macrophages, which showed that the IC50s against the host cells were 4 to 5 orders of magnitude greater that those against the intracellular parasites. Taken together, our results show that ER-119884 and E5700 are unusually potent and selective inhibitors of the growth of Leishmania amazonensis, probably because of their inhibitory effects on de novo sterol biosynthesis at the level of SQS, but some of our

  10. Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment

    Directory of Open Access Journals (Sweden)

    Arnold Bolomsky

    2016-03-01

    Full Text Available Abstract Background The polycomb complex protein BMI-1 (BMI-1 is a putative oncogene reported to be overexpressed in multiple myeloma (MM. Silencing of BMI-1 was shown to impair the growth and survival of MM cells. However, therapeutic agents specifically targeting BMI-1 were not available so far. Here, we investigated PTC-209, a novel small molecule inhibitor of BMI-1, for its activity in MM. Methods BMI-1 expression was analysed in human MM cell lines and primary MM cells by using publically available gene expression profiling (GEP data. The anti-MM activity of PTC-209 was investigated by viability testing, cell cycle analysis, annexin V and 7-AAD staining, quantification of cleaved poly(ADP-ribose polymerase (PARP, JC-1 as well as colony formation assays. Deregulation of central myeloma growth and survival genes was studied by quantitative PCR and flow cytometry, respectively. In addition, the impact of PTC-209 on in vitro osteoclast, osteoblast and tube formation was analysed. Results We confirmed overexpression of BMI-1 in MM patients by using publically available GEP datasets. Of note, BMI-1 expression was further increased at relapse which translated into significantly shorter overall survival in relapsed/refractory patients treated with bortezomib or dexamethasone. Treatment with PTC-209 significantly decreased viable cell numbers in human MM cell lines, induced a G1 cell cycle arrest, promoted apoptosis and demonstrated synergistic activity with pomalidomide and carfilzomib. The anti-MM activity of PTC-209 was accompanied by a significant decrease of cyclin D1 (CCND1 and v-myc avian myelocytomatosis viral oncogene homolog (MYC expression as well as upregulation of cyclin-dependent kinase inhibitor 1A (CDKN1A and cyclin-dependent kinase inhibitor 1B (CDKN1B. We also observed upregulation of NOXA (up to 3.6 ± 1.2-fold induction, P = 0.009 and subsequent downregulation of myeloid cell leukemia 1 (MCL-1 protein levels, which likely

  11. Teaching with Movement: Using the Health Privilege Activity to Physically Demonstrate Disparities in Society

    Science.gov (United States)

    Irby-Shasanmi, Amy; Oberlin, Kathleen C.; Saunders, Tiffani N.

    2012-01-01

    This article describes and evaluates an activity designed to demonstrate how biological factors (e.g., genetics), individual-level behaviors (e.g., smoking), and social factors (e.g., socioeconomic status) shape health status and access to health care. Active learning techniques were utilized to introduce the sociological imagination as it…

  12. Jatrophane diterpenes as modulators of multidrug resistance. Advances of structure-activity relationships and discovery of the potent lead pepluanin A.

    Science.gov (United States)

    Corea, Gabriella; Fattorusso, Ernesto; Lanzotti, Virginia; Motti, Riccardo; Simon, Pierre-Noël; Dumontet, Charles; Di Pietro, Attilio

    2004-02-12

    From the whole plant of Euphorbia peplus L., five new diterpenes based on a jatrophane skeleton (pepluanins A-E, 1-5) were isolated, together with two known analogues (6 and 7), which served to divulge in detail the structure-activity relationships within this class of P-glycoprotein inhibitors. The results revealed the importance of substitutions on the medium-sized ring (carbons 8, 9, 14, and 15). In particular, the activity is collapsed by the presence of a free hydroxyl at C-8, while it increases with a carbonyl at C-14, an acetoxyl at C-9, and a free hydroxyl at C-15. The most potent compound of the series, pepluanin A, showed a very high activity for a jatrophane diterpene, outperforming cyclosporin A by a factor of at least 2 in the inhibition of Pgp-mediated daunomycin transport.

  13. Evaluation of In Vitro Antimalarial Activity of Different Extracts of Artemisia aucheri Boiss. and A. armeniaca Lam. and Fractions of the Most Potent Extracts

    Directory of Open Access Journals (Sweden)

    Mahdi Mojarrab

    2014-01-01

    Full Text Available Ten extracts with different polarity from two Iranian Artemisia species, A. armeniaca Lam. and A. aucheri Boiss, were screened for their antimalarial properties by in vitro  β-hematin formation assay. Dichloromethane (DCM extracts of both plants showed significant antimalarial activities with IC50 values of 1.36 ± 0.01 and 1.83 ± 0.03 mg/mL and IC90 values of 2.12 ± 0.04 and 2.62 ± 0.09 mg/mL for A. armeniaca and A. aucheri, respectively. Bioactivity-guided fractionation of DCM extracts of both plants by vacuum liquid chromatography (VLC over silica gel with solvent mixtures of increasing polarities afforded seven fractions. Two fractions from DCM extract of A. armeniaca and four fractions from DCM extract of A. aucheri showed potent antimalarial activity with reducing IC50 and IC90 values compared to extracts. The most potent fraction belonged to DCM extract of A. armeniaca with IC50 and IC90 values of 0.47 ± 0.006 and 0.71 ± 0.006 mg/mL, respectively.

  14. An Optically Pure Apogossypolone Derivative As Potent Pan-active Inhibitor of Anti-apoptotic Bcl-2 Family Proteins

    Directory of Open Access Journals (Sweden)

    Jun eWei

    2011-09-01

    Full Text Available Our focus in the past several years has been on the identification of novel and effective pan-Bcl-2 antagonists. We have recently reported a series of Apogossypolone (ApoG2 derivatives, resulting in the chiral compound (+/- BI97D6. We report here the synthesis and evaluation on its optically pure (- and (+ atropisomers. Compound (- BI97D6 potently inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2, Mcl-1 and Bfl-1 with IC50 values of 76 ± 5, 31 ± 2, 25 ± 8 and 122 ± 28 nM, respectively. In a cellular assay, compound (- BI97D6 effectively inhibits cell growth in the PC-3 human prostate cancer and H23 human lung cancer cell lines with EC50 values of 0.22 ± 0.08 and 0.14 ± 0.02 µM, respectively. Similarly, compound (- BI97D6 effectively induces apoptosis in the BP3 human lymphoma cell line in a dose-dependent manner. The compound also shows little cytotoxicity against bax-/-/bak-/- cells, suggesting that it kills cancers cells predominantly via a Bcl-2 pathway. Moreover, compound (- BI97D6 displays in vivo efficacy in both a Bcl-2 transgenic mouse model and in a prostate cancer xenograft model in mice. Therefore, compound (- BI97D6 represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.

  15. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus

    Directory of Open Access Journals (Sweden)

    Shuang Zhao

    2014-01-01

    Full Text Available A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid diammonium salt (ABTS as the substrate. The laccase displayed, at pH 2.0 and 37°C, Km values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1 reverse transcriptase (RT with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein.

  16. Anxiolytic and antidepressant-like activities of the novel and potent non-imidazole histamine H₃ receptor antagonist ST-1283.

    Science.gov (United States)

    Bahi, Amine; Schwed, Johannes Stephan; Walter, Miriam; Stark, Holger; Sadek, Bassem

    2014-01-01

    Previous studies have suggested a potential link between histamine H₃ receptors (H₃R) signaling and anxiolytic-like and antidepressant-like effects. The aim of this study was to investigate the acute effects of ST-1283, a novel H₃R antagonist, on anxiety-related and depression-related behaviors in comparison with those of diazepam and fluoxetine. The effects of ST-1283 were evaluated using the elevated plus maze test, open field test, marbles burying test, tail suspension test, novelty suppressed feeding test, and forced swim test in male C57BL/6 mice. The results showed that, like diazepam, ST-1283 (7.5 mg/kg) significantly modified all the parameters observed in the elevated plus maze test. In addition, ST-1283 significantly increased the amount of time spent in the center of the arena without altering general motor activity in the open field test. In the same vein, ST-1283 reduced the number of buried marbles as well as time spent digging in the marbles burying test. The tail suspension test and forced swim test showed that ST-1283 was able to reduce immobility time, like the recognized antidepressant drug fluoxetine. In the novelty suppressed feeding test, treatment with ST-1283 decreased latency to feed with no effect on food intake in the home cage. Importantly, pretreatment with the H₃R agonist R-α-methylhistamine abrogated the anxiolytic and antidepressant effects of ST-1283. Taken together, the present series of studies demonstrates the novel effects of this newly synthesized H₃R antagonist in a number of preclinical models of psychiatric disorders and highlights the histaminergic system as a potential therapeutic target for the treatment of anxiety-related and depression-related disorders.

  17. CGP 53437, an orally bioavailable inhibitor of human immunodeficiency virus type 1 protease with potent antiviral activity.

    Science.gov (United States)

    Alteri, E; Bold, G; Cozens, R; Faessler, A; Klimkait, T; Lang, M; Lazdins, J; Poncioni, B; Roesel, J L; Schneider, P

    1993-10-01

    CGP 53437 is a peptidomimetic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease containing a hydroxyethylene isostere. The compound inhibited recombinant HIV-1 protease with a Ki of 0.2 nM. The inhibition constant versus human cathepsin D and human cathepsin E was 4 nM. Human pepsin and gastricsin were inhibited with Kis of 8 and 500 nM, respectively, and human renin was inhibited with a Ki of 190 microM. The replication of HIV-1/LAV, HIV-1/Z-84, and HIV-1/pLAI was inhibited with a 90% effective dose of 0.1 microM in acutely infected MT-2 cells. The 50% cytotoxic dose was 100 microM. Similar antiviral activity was observed when the compound was added up to 10 h after infection. At the effective concentration, processing of Gag precursor protein p55 was greatly reduced, confirming an action on the late stage of the virus life cycle, as expected. The efficacy of the inhibitor was also demonstrated by using primary human peripheral blood lymphocytes infected with the HIV-1/LAV strain, low-passage clinical isolates obtained from HIV-1-seropositive individuals (including a zidovudine-resistant strain), and HIV-2/ROD. In these cells, CGP 53437 delayed the onset of HIV replication in a dose-dependent fashion (substantial effects with concentrations of > or = 0.1 microM) as long as the inhibitor was maintained in the culture. CGP 53437 was orally bioavailable in mice. Concentrations in plasma 10-fold in excess of the in vitro antiviral 90% effective dose could be sustained for several hours after oral application of 120 mg/kg. Therefore, CGP 53437 has the potential to be a therapeutically useful anti-HIV agent for the treatment of AIDS.

  18. Rational Design of Benzylidenehydrazinyl-Substituted Thiazole Derivatives as Potent Inhibitors of Human Dihydroorotate Dehydrogenase with in Vivo Anti-arthritic Activity

    Science.gov (United States)

    Li, Shiliang; Luan, Guoqin; Ren, Xiaoli; Song, Wenlin; Xu, Liuxin; Xu, Minghao; Zhu, Junsheng; Dong, Dong; Diao, Yanyan; Liu, Xiaofeng; Zhu, Lili; Wang, Rui; Zhao, Zhenjiang; Xu, Yufang; Li, Honglin

    2015-01-01

    Human dihydroorotate dehydrogenase (hDHODH) is an attractive therapeutic target for the treatment of rheumatoid arthritis, transplant rejection and other autoimmune diseases. Based on the X-ray structure of hDHODH in complex with lead compound 7, a series of benzylidenehydrazinyl-substituted thiazole derivatives as potent inhibitors of hDHODH were designed and synthesized, of which 19 and 30 were the most potent with IC50 values in the double-digit nanomolar range. Moreover, compound 19 displayed significant anti-arthritic effects and favorable pharmacokinetic profiles in vivo. Further X-ray structure and SAR analyses revealed that the potencies of the designed inhibitors were partly attributable to additional water-mediated hydrogen bond networks formed by an unexpected buried water between hDHODH and the 2-(2-methylenehydrazinyl)thiazole scaffold. This work not only elucidates promising scaffolds targeting hDHODH for the treatment of rheumatoid arthritis, but also demonstrates that the water-mediated hydrogen bond interaction is an important factor in molecular design and optimization. PMID:26443076

  19. A Short Peptide That Mimics the Binding Domain of TGF-β1 Presents Potent Anti-Inflammatory Activity.

    Directory of Open Access Journals (Sweden)

    Emília R Vaz

    Full Text Available The transforming growth factor beta 1 (TGF-β1 is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-β1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-β-targeted pathways, the inducible regulatory T cells (iTreg to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD technology that could mimic TGF-β1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-β1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-α and IL-10 cytokines. The synthetic pm26TGF-β1 peptide tested in PBMC significantly down-modulated TNF-α and up-regulated IL-10 responses, leading to regulatory T cells (Treg phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils' chemoattraction.

  20. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain

    Science.gov (United States)

    Chan, Mun Chiang; Atasoylu, Onur; Hodson, Emma; Tumber, Anthony; Leung, Ivanhoe K. H.; Chowdhury, Rasheduzzaman; Gómez-Pérez, Verónica; Demetriades, Marina; Rydzik, Anna M.; Holt-Martyn, James; Tian, Ya-Min; Bishop, Tammie; Claridge, Timothy D. W.; Kawamura, Akane; Pugh, Christopher W.; Ratcliffe, Peter J.; Schofield, Christopher J.

    2015-01-01

    As part of the cellular adaptation to limiting oxygen availability in animals, the expression of a large set of genes is activated by the upregulation of the hypoxia-inducible transcription factors (HIFs). Therapeutic activation of the natural human hypoxic response can be achieved by the inhibition of the hypoxia sensors for the HIF system, i.e. the HIF prolyl-hydroxylases (PHDs). Here, we report studies on tricyclic triazole-containing compounds as potent and selective PHD inhibitors which compete with the 2-oxoglutarate co-substrate. One compound (IOX4) induces HIFα in cells and in wildtype mice with marked induction in the brain tissue, revealing that it is useful for studies aimed at validating the upregulation of HIF for treatment of cerebral diseases including stroke. PMID:26147748

  1. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain.

    Directory of Open Access Journals (Sweden)

    Mun Chiang Chan

    Full Text Available As part of the cellular adaptation to limiting oxygen availability in animals, the expression of a large set of genes is activated by the upregulation of the hypoxia-inducible transcription factors (HIFs. Therapeutic activation of the natural human hypoxic response can be achieved by the inhibition of the hypoxia sensors for the HIF system, i.e. the HIF prolyl-hydroxylases (PHDs. Here, we report studies on tricyclic triazole-containing compounds as potent and selective PHD inhibitors which compete with the 2-oxoglutarate co-substrate. One compound (IOX4 induces HIFα in cells and in wildtype mice with marked induction in the brain tissue, revealing that it is useful for studies aimed at validating the upregulation of HIF for treatment of cerebral diseases including stroke.

  2. Potent immunosuppressive principles, dimeric sesquiterpene thioalkaloids, isolated from nupharis rhizoma, the rhizoma of Nuphar pumilum (nymphaeaceae): structure-requirement of nuphar-alkaloid for immunosuppressive activity.

    Science.gov (United States)

    Yamahara, J; Shimoda, H; Matsuda, H; Yoshikawa, M

    1996-09-01

    Potent immunosuppressants, the dimeric sesquiterpene thioalkaloids, 6-hydroxythiobinupharidine (2), 6,6'-dihydroxythiobinupharidine (3), 6-hydroxythionuphlutine B (5) and 6'-hydroxythionuphlutine B (6), were isolated from a natural medicine, Nupharis Rhizoma, the rhizoma of Nuphar pumilum (TIMM.) DC., through bioassay-guided separation together with five quinolizidine alkaloids (8, 9, 10, 11, 12). Dimeric sesquiterpene thioalkaloids (2, 3, 5, 6) were found to significantly inhibit anti-sheep erythrocyte plaque forming cell formation in mice spleen cells at 10(-6) M concentration. At this concentration, 2, 5 and 6 were found to exhibit no cytotoxicity to mice spleen cells, and 3 also showed only a little cytotoxicity. In addition, the inhibitory activity of several Nuphar alkaloids, dimeric sesquiterpene thioalkaloids (1, 4, 7, 8), and monomeric sesquiterpene alkaloids (9, 10, 11, 12) on anti-sheep erythrocyte plaque forming cell formation was examined and some structural requirement of Nuphar alkaloid for immunosuppressive activity was determined.

  3. Anti-AIDS agents 87. New bio-isosteric dicamphanoyl-dihydropyranochromone (DCP) and dicamphanoyl-khellactone (DCK) analogues with potent anti-HIV activity.

    Science.gov (United States)

    Liu, Hong-Shan; Xu, Shi-Qing; Cheng, Ming; Chen, Ying; Xia, Peng; Qian, Keduo; Xia, Yi; Yang, Zheng-Yu; Chen, Chin-Ho; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2011-10-01

    Six 3'R,4'R-di-O-(S)-camphanoyl-2',2'-dimethyldihydropyrano[2,3-f]chromone (DCP) and two 3'R,4'R-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK) derivatives were designed, synthesized, and evaluated for inhibition of HIV-1(NL4-3) replication in TZM-bl cells. 2-Ethyl-2'-monomethyl-1'-oxa- and -1'-thia-DCP (5a, 6a), as well as 2-ethyl-1'-thia-DCP (7a) exhibited potent anti-HIV activity with EC(50) values of 30, 38 and 54 nM and therapeutic indexes of 152.6, 48.0 and 100.0, respectively, which were better than or comparable to those of the lead compound 2-ethyl-DCP in the same assay. 4-Methyl-1'-thia-DCK (8a) also showed significant inhibitory activity with an EC(50) of 128 nM and TI of 237.9.

  4. SKLB-163, a new benzothiazole-2-thiol derivative, exhibits potent anticancer activity by affecting RhoGDI/JNK-1 signaling pathway.

    Science.gov (United States)

    Peng, X; Xie, G; Wang, Z; Lin, H; Zhou, T; Xiang, P; Jiang, Y; Yang, S; Wei, Y; Yu, L; Zhao, Y

    2014-03-27

    Small-molecule inhibitors are an attractive therapeutic approach for most types of human cancers. SKLB-163, a novel benzothiazole-2-thiol derivative, was developed via computer-aided drug design and de novo synthesis. MTT assay showed it had potent anti-proliferative activity on various human cancer cells. Treatment of cancer cells with SKLB-163 induced obvious apoptosis and inhibited proliferation in vitro. SKLB-163 administered p.o. showed a marked antitumor activity in vivo. Proteomic techniques were employed to identify possible drug target proteins. The data showed molecular mechanism of action might be involved in downregulation of RhoGDI, which finally contributed to increased apoptosis and inhibited proliferation. These findings provided the potential value of SKLB-163 as a novel candidate antitumor drug.

  5. Authentic Active Learning Activities Demonstrating the Use of Serial Dilutions and Plate Counts

    Directory of Open Access Journals (Sweden)

    Jordon K. March

    2011-09-01

    Full Text Available Serial dilution and plate counting is often taught in courses for both microbiology and allied health students. Lecture examples and examination questions addressing how the method is used can sometimes be contrived: artificial data sets may have little or no meaning other than to have students perform a calculation. Here we provide a set of activities employing data sets acquired from the primary literature. Our objective was to have the students think critically about a real scenario in which serial dilution and plate count was used. Each activity requires students to read a paragraph describing the study, predict the results, perform the appropriate calculations, and then evaluate the results in light of their predictions. To test the efficacy of these activities, a pretest quiz was given to approximately 100 students in an allied health/general microbiology course. After a lecture on how microbes are enumerated, students were given a different quiz. The class was then divided randomly into groups of three or four students and assigned one of the activities. A postactivity quiz was also administered. Approximately two weeks later, a serial dilution/plate count question was used on an examination and served as a final posttest. Standardized learning gains were calculated for the quiz administered after each learning activity. Even though learning gains were significantly higher after the lecture, there was also a significant improvement between the lecture and the activity. Using an exercise based on an authentic set of data significantly improved student learning gains, and is a useful practice for teaching microbiology.

  6. RemoveDebris – Mission Analysis for a Low Cost Active Debris Removal Demonstration in 2016

    OpenAIRE

    Joffre, E; Forshaw, J.; Secretin, T; Reynaud, S.; Salmon, T; Aurelien, P; Aglietti, G.

    2015-01-01

    Contracted by the European Commission in the frame of the EU’s Seventh Framework Programme for Research (FP7), a wide European consortium has been working since 2013 towards the design of a low cost in-orbit demonstration called RemoveDEBRIS. With a targeted launch date in the second quarter of 2016, the RemoveDEBRIS mission aims at demonstrating key Active Debris Removal (ADR) technologies, including capture means (net and harpoon firing on a distant target), relative navigation techniques (...

  7. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes.

    Science.gov (United States)

    Kaloriti, Despoina; Jacobsen, Mette; Yin, Zhikang; Patterson, Miranda; Tillmann, Anna; Smith, Deborah A; Cook, Emily; You, Tao; Grimm, Melissa J; Bohovych, Iryna; Grebogi, Celso; Segal, Brahm H; Gow, Neil A R; Haynes, Ken; Quinn, Janet; Brown, Alistair J P

    2014-07-15

    Immune cells exploit reactive oxygen species (ROS) and cationic fluxes to kill microbial pathogens, such as the fungus Candida albicans. Yet, C. albicans is resistant to these stresses in vitro. Therefore, what accounts for the potent antifungal activity of neutrophils? We show that simultaneous exposure to oxidative and cationic stresses is much more potent than the individual stresses themselves and that this combinatorial stress kills C. albicans synergistically in vitro. We also show that the high fungicidal activity of human neutrophils is dependent on the combinatorial effects of the oxidative burst and cationic fluxes, as their pharmacological attenuation with apocynin or glibenclamide reduced phagocytic potency to a similar extent. The mechanistic basis for the extreme potency of combinatorial cationic plus oxidative stress--a phenomenon we term stress pathway interference--lies with the inhibition of hydrogen peroxide detoxification by the cations. In C. albicans this causes the intracellular accumulation of ROS, the inhibition of Cap1 (a transcriptional activator that normally drives the transcriptional response to oxidative stress), and altered readouts of the stress-activated protein kinase Hog1. This leads to a loss of oxidative and cationic stress transcriptional outputs, a precipitous collapse in stress adaptation, and cell death. This stress pathway interference can be suppressed by ectopic catalase (Cat1) expression, which inhibits the intracellular accumulation of ROS and the synergistic killing of C. albicans cells by combinatorial cationic plus oxidative stress. Stress pathway interference represents a powerful fungicidal mechanism employed by the host that suggests novel approaches to potentiate antifungal therapy. Importance: The immune system combats infection via phagocytic cells that recognize and kill pathogenic microbes. Human neutrophils combat Candida infections by killing this fungus with a potent mix of chemicals that includes

  8. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models.

    Science.gov (United States)

    Zhao, Genshi; Li, Wei-Ying; Chen, Daohong; Henry, James R; Li, Hong-Yu; Chen, Zhaogen; Zia-Ebrahimi, Mohammad; Bloem, Laura; Zhai, Yan; Huss, Karen; Peng, Sheng-Bin; McCann, Denis J

    2011-11-01

    The fibroblast growth factor receptors (FGFR) are tyrosine kinases that are present in many types of endothelial and tumor cells and play an important role in tumor cell growth, survival, and migration as well as in maintaining tumor angiogenesis. Overexpression of FGFRs or aberrant regulation of their activities has been implicated in many forms of human malignancies. Therefore, targeting FGFRs represents an attractive strategy for development of cancer treatment options by simultaneously inhibiting tumor cell growth, survival, and migration as well as tumor angiogenesis. Here, we describe a potent, selective, small-molecule FGFR inhibitor, (R)-(E)-2-(4-(2-(5-(1-(3,5-Dichloropyridin-4-yl)ethoxy)-1H-indazol-3yl)vinyl)-1H-pyrazol-1-yl)ethanol, designated as LY2874455. This molecule is active against all 4 FGFRs, with a similar potency in biochemical assays. It exhibits a potent activity against FGF/FGFR-mediated signaling in several cancer cell lines and shows an excellent broad spectrum of antitumor activity in several tumor xenograft models representing the major FGF/FGFR relevant tumor histologies including lung, gastric, and bladder cancers and multiple myeloma, and with a well-defined pharmacokinetic/pharmacodynamic relationship. LY2874455 also exhibits a 6- to 9-fold in vitro and in vivo selectivity on inhibition of FGF- over VEGF-mediated target signaling in mice. Furthermore, LY2874455 did not show VEGF receptor 2-mediated toxicities such as hypertension at efficacious doses. Currently, this molecule is being evaluated for its potential use in the clinic.

  9. Eupafolin and Ethyl Acetate Fraction of Kalanchoe gracilis Stem Extract Show Potent Antiviral Activities against Enterovirus 71 and Coxsackievirus A16

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wang

    2013-01-01

    Full Text Available Enterovirus 71 (EV71 and coxsackievirus A16 (CoxA16 are main pathogens of hand-foot-and-mouth disease, occasionally causing aseptic meningitis and encephalitis in tropical and subtropical regions. Kalanchoe gracilis, Da-Huan-Hun, is a Chinese folk medicine for treating pain and inflammation, exhibiting antioxidant and anti-inflammatory activities. Our prior report (2012 cited K. gracilis leaf extract as moderately active against EV71 and CoxA16. This study further rates antienteroviral potential of K. gracilis stem (KGS extract to identify potent antiviral fractions and components. The extract moderately inhibits viral cytopathicity and virus yield, as well as in vitro replication of EV71 (IC50 = 75.18 μg/mL and CoxA16 (IC50 = 81.41 μg/mL. Ethyl acetate (EA fraction of KGS extract showed greater antiviral activity than that of n-butanol or aqueous fraction: IC50 values of 4.21 μg/mL against EV71 and 9.08 μg/mL against CoxA16. HPLC analysis, UV-Vis absorption spectroscopy, and plaque reduction assay indicate that eupafolin is a vital component of EA fraction showing potent activity against EV71 (IC50 = 1.39 μM and CoxA16 (IC50 = 5.24 μM. Eupafolin specifically lessened virus-induced upregulation of IL-6 and RANTES by inhibiting virus-induced ERK1/2, AP-1, and STAT3 signals. Anti-enteroviral potency of KGS EA fraction and eupafolin shows the clinical potential against EV71 and CoxA16 infection.

  10. Effects of 14-methoxymetopon, a potent opioid agonist, on the responses to the tail electric stimulation test and plus-maze activity in male rats: neuroendocrine correlates.

    Science.gov (United States)

    Urigüen, Leyre; Fernández, Beatriz; Romero, Eva Maria; De Pedro, Nuria; Delgado, Maria Jesús; Guaza, Carmen; Schmidhammer, Helmut; Viveros, Maria Paz

    2002-03-15

    We have studied the effects of 14-methoxymetopon (HS 198), a potent opioid agonist, on the responses to the tail electric stimulation test and plus-maze activity of adult male rats. The prototype mu agonist morphine was used as the drug of reference. Besides we addressed the effects of HS 198 on the serum corticosterone levels and on serotonergic systems of discrete brain regions. Both drugs were administered subcutaneously. Morphine (5 mg/kg) and HS 198 (30 microg/kg) induced a similar effect on the nociceptive test, with both drugs significantly increasing the threshold for the vocalization afterdischarge, which is related to the emotional component of pain. In the plus-maze, morphine (5 mg/kg) and HS 198 (20 and 30 microg/kg) induced similar increases in the percentages of entries and time in the open arms, two parameters related to the anxiety state of the animals. The results indicate that HS 198 is far more potent than morphine in reducing the emotive/affective component of pain and in inducing an anxiolytic effect. HS 198 (30 microg/kg) also induced parallel increases in the serum corticosterone levels and the hypothalamic serotonin content. A possible correlation between the anxiolytic action of the drug and its effect on the hypothalamic serotonergic system is suggested.

  11. Potent natural soluble epoxide hydrolase inhibitors from Pentadiplandra brazzeana baillon: synthesis, quantification, and measurement of biological activities in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Seiya Kitamura

    Full Text Available We describe here three urea-based soluble epoxide hydrolase (sEH inhibitors from the root of the plant Pentadiplandra brazzeana. The concentration of these ureas in the root was quantified by LC-MS/MS, showing that 1, 3-bis (4-methoxybenzyl urea (MMU is the most abundant (42.3 μg/g dry root weight. All of the ureas were chemically synthesized, and their inhibitory activity toward recombinant human and recombinant rat sEH was measured. The most potent compound, MMU, showed an IC50 of 92 nM via fluorescent assay and a Ki of 54 nM via radioactivity-based assay on human sEH. MMU effectively reduced inflammatory pain in a rat nociceptive pain assay. These compounds are among the most potent sEH inhibitors derived from natural sources. Moreover, inhibition of sEH by these compounds may mechanistically explain some of the therapeutic effects of P. brazzeana.

  12. New tricks for an old natural product: discovery of highly potent evodiamine derivatives as novel antitumor agents by systemic structure-activity relationship analysis and biological evaluations.

    Science.gov (United States)

    Dong, Guoqiang; Wang, Shengzheng; Miao, Zhenyuan; Yao, Jianzhong; Zhang, Yongqiang; Guo, Zizhao; Zhang, Wannian; Sheng, Chunquan

    2012-09-13

    Evodiamine is a quinazolinocarboline alkaloid isolated from the fruits of traditional Chinese herb Evodiae fructus . Previously, we identified N13-substituted evodiamine derivatives as potent topoisomerase I inhibitors by structure-based virtual screening and lead optimization. Herein, a library of novel evodiamine derivatives bearing various substitutions or modified scaffold were synthesized. Among them, a number of evodiamine derivatives showed substantial increase of the antitumor activity, with GI(50) values lower than 3 nM. Moreover, these highly potent compounds can effectively induce the apoptosis of A549 cells. Interestingly, further computational target prediction calculations in combination with biological assays confirmed that the evodiamine derivatives acted by dual inhibition of topoisomerases I and II. Moreover, several hydroxyl derivatives, such as 10-hydroxyl evodiamine (10j) and 3-amino-10-hydroxyl evodiamine (18g), also showed good in vivo antitumor efficacy and low toxicity at the dose of 1 mg/kg or 2 mg/kg. They represent promising candidates for the development of novel antitumor agents.

  13. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  14. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates.

    Science.gov (United States)

    Chin, V K; Foong, K J; Maha, A; Rusliza, B; Norhafizah, M; Ng, K P; Chong, P P

    2013-12-01

    This study was aimed at determining the phospholipase and haemolysin activity of Candida isolates in Malaysia. A total of 37 Candida clinical isolates representing seven species, Candida albicans (12), Candida tropicalis (8), Candida glabrata (4), Candida parapsilosis (1), Candida krusei (4), Candida orthopsilosis (1) and Candida rugosa (7) were tested. In vitro phospholipase activity was determined by using egg yolk plate assay whereas in vitro haemolysin activity was tested by using blood plate assay on sheep blood Sabouraud's dextrose agar (SDA) enriched with glucose. Phospholipase activity was detected in 75% (9 out of 12) of the C. albicans isolates. Among the 25 non- C. albicans Candida isolates, phospholipase activity was detected in only 24% of these isolates. The phospholipase activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.002). Haemolysin activity was detected in 100% of the C. albicans, C. tropicalis, C. glabrata, C. krusei, C. parapsilosis, and C. orthopsilosis isolates while 75% of the C. krusei isolates and 12.3% of the C. rugosa isolates showed haemolysin activity. The haemolytic activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.0001).The findings in this study indicate that C. albicans isolates in Malaysia may possess greater virulence potential than the non-albicans species.

  15. Demonstration of active vibration control on a stirling-cycle cryocooler testbed

    Science.gov (United States)

    Johnson, Bruce G.; Flynn, Frederick J.; Gaffney, Monique S.; Johnson, Dean L.; Ross, Ronald G., Jr.

    1992-01-01

    SatCon Technology Corporation has demonstrated excellent vibration reduction performance using active control on the JPL Stirling-cycle cryocooler testbed. The authors address the use of classical narrowband feedback control to meet the cryocooler vibration specifications using one cryocooler in a self-cancellation configuration. Similar vibration reduction performance was obtained using a cryocooler back-to-back configuration by actively controlling a reaction mass actuator that was used to mimic the second cooler.

  16. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease

    OpenAIRE

    Ibrahim M. Salman; Divya Sarma Kandukuri; Joanne Lesley Harrison; Cara Margaret Hildreth; Jacqueline Kathleen Phillips

    2015-01-01

    Chronic kidney disease (CKD) is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK) rat, and assessed responses to chemoreflex activation and acute stress. Male...

  17. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, aphanizomenon flos-aquae and Chlorella pyrenoidosa.

    Science.gov (United States)

    Pugh, N; Ross, S A; ElSohly, H N; ElSohly, M A; Pasco, D S

    2001-11-01

    This research describes the identification of three new high molecular weight polysaccharide preparations isolated from food-grade microalgae that are potent activators of human monocytes/macrophages: "Immulina" from Spirulina platensis, "Immunon" from Aphanizomenon flos-aquae, and "Immurella" from Chlorella pyrenoidosa. These polysaccharides are structurally complex and have estimated molecular weights above ten million daltons. All three polysaccharides are highly water soluble and comprise between 0.5 % and 2.0 % of microalgal dry weight. Immunostimulatory activity was measured using a transcription factor-based bioassay for nuclear factor kappa B (NF-kappa B) activation in THP-1 human monocytes/macrophages. Using this system the EC(50) values for these microalgal polysaccharides are between 20 and 110 ng/ml (about 10pM). THP-1 activation was confirmed by measuring immune cytokine mRNA induction using reverse transcriptase-polymerase chain reaction (RT-PCR). Each polysaccharide substantially increased mRNA levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). These polysaccharides are between one hundred and one thousand times more active for in vitro monocyte activation than polysaccharide preparations that are currently used clinically for cancer immunotherapy.

  18. An Anesthetic Drug Demonstration and an Introductory Antioxidant Activity Experiment with "Eugene, the Sleepy Fish"

    Science.gov (United States)

    Barcena, Homar; Chen, Peishan

    2016-01-01

    Students are introduced to spectrophotometry in comparing the antioxidant activity of pure eugenol and oil of cloves from a commercial source using a modified ferric reducing antioxidant power (FRAP) assay. The extraction of the essential oil from dried cloves is demonstrated to facilitate discussions on green chemistry. The anesthetic properties…

  19. A Classroom Activity to Demonstrate Self-Other Agreement in Personality Judgments

    Science.gov (United States)

    Kaplan, Seth A.; Stachowski, Alicia A.; Bradley-Geist, Jill C.

    2012-01-01

    This article describes a classroom activity to demonstrate (dis)agreement in personality judgments, using an exercise derived from Watson's research on the accuracy of rating strangers' personalities. On the first day of class, undergraduate students in psychology courses rated their own personality and the personality of a classmate, using items…

  20. Essential oil of Artemisia vestita exhibits potent in vitro and in vivo antibacterial activity: Investigation of the effect of oil on biofilm formation, leakage of potassium ions and survival curve measurement.

    Science.gov (United States)

    Yang, Chang; Hu, Dong-Hui; Feng, Yan

    2015-10-01

    The aim of the present study was to investigate the chemical composition of the essential oil of Artemisia vestita and to determine the antibacterial activity of the essential oil and its two major components, grandisol and 1,8‑cineole, against certain respiratory infection‑causing bacterial strains, in vitro and in vivo. The chemical composition of the essential oil was analyzed using gas chromatography‑mass spectrometry. A micro‑well dilution method was used to determine the minimum inhibition concentration (MIC) values of the essential oil and its major constituents. A model of Streptococcus pyogenes infection in mice was used to determine its in vivo activities. Lung and blood samples were obtained to assess bacterial cell counts. Toxicity evaluation of the essential oil and its components was completed by performing biochemical analysis of the serum, particularly monitoring aspartate transaminase, alanine transaminase, urea and creatinine. The essential oil exhibited potent antibacterial activity, whereas the two major constituents were less potent. The essential oil exhibited MIC values between 20 and 80 µg/ml, while the values of the two constituents were between 130 and 200 µg/ml. Scanning electron microscopy results demonstrated that the essential oil inhibited biofilm formation and altered its architecture. Survival curves indicated that the essential oil led to a reduction in the viability of different bacteria. The essential oil also induced significant leakage of potassium ions from S. pyogenes. The essential oil (100 µg/mouse) and grandisol (135 µg/mouse) significantly reduced the number of viable bacterial cells in the lungs (Pessential oil or grandisol 135 µg/mouse once or twice each day for 9 days did not produce any toxic effects in the mice. In conclusion, the in vitro and in vivo results suggested that the essential oil of A. vestita and one of its major constituents, grandisol, can significantly inhibit the growth of different

  1. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.

    Science.gov (United States)

    Dorr, Patrick; Westby, Mike; Dobbs, Susan; Griffin, Paul; Irvine, Becky; Macartney, Malcolm; Mori, Julie; Rickett, Graham; Smith-Burchnell, Caroline; Napier, Carolyn; Webster, Rob; Armour, Duncan; Price, David; Stammen, Blanda; Wood, Anthony; Perros, Manos

    2005-11-01

    Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 microM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS.

  2. CHF6001 I: a novel highly potent and selective phosphodiesterase 4 inhibitor with robust anti-inflammatory activity and suitable for topical pulmonary administration.

    Science.gov (United States)

    Moretto, Nadia; Caruso, Paola; Bosco, Raffaella; Marchini, Gessica; Pastore, Fiorella; Armani, Elisabetta; Amari, Gabriele; Rizzi, Andrea; Ghidini, Eleonora; De Fanti, Renato; Capaldi, Carmelida; Carzaniga, Laura; Hirsch, Emilio; Buccellati, Carola; Sala, Angelo; Carnini, Chiara; Patacchini, Riccardo; Delcanale, Maurizio; Civelli, Maurizio; Villetti, Gino; Facchinetti, Fabrizio

    2015-03-01

    This study examined the pharmacologic characterization of CHF6001 [(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyloxy)ethyl)pyridine 1-oxide], a novel phosphodiesterase (PDE)4 inhibitor designed for treating pulmonary inflammatory diseases via inhaled administration. CHF6001 was 7- and 923-fold more potent than roflumilast and cilomilast, respectively, in inhibiting PDE4 enzymatic activity (IC50 = 0.026 ± 0.006 nM). CHF6001 inhibited PDE4 isoforms A-D with equal potency, showed an elevated ratio of high-affinity rolipram binding site versus low-affinity rolipram binding site (i.e., >40) and displayed >20,000-fold selectivity versus PDE4 compared with a panel of PDEs. CHF6001 effectively inhibited (subnanomolar IC50 values) the release of tumor necrosis factor-α from human peripheral blood mononuclear cells, human acute monocytic leukemia cell line macrophages (THP-1), and rodent macrophages (RAW264.7 and NR8383). Moreover, CHF6001 potently inhibited the activation of oxidative burst in neutrophils and eosinophils, neutrophil chemotaxis, and the release of interferon-γ from CD4(+) T cells. In all these functional assays, CHF6001 was more potent than previously described PDE4 inhibitors, including roflumilast, UK-500,001 [2-(3,4-difluorophenoxy)-5-fluoro-N-((1S,4S)-4-(2-hydroxy-5-methylbenzamido)cyclohexyl)nicotinamide], and cilomilast, and it was comparable to GSK256066 [6-((3-(dimethylcarbamoyl)phenyl)sulfonyl)-4-((3-methoxyphenyl)amino)-8-methylquinoline-3-carboxamide]. When administered intratracheally to rats as a micronized dry powder, CHF6001 inhibited liposaccharide-induced pulmonary neutrophilia (ED50 = 0.205 μmol/kg) and leukocyte infiltration (ED50 = 0.188 μmol/kg) with an efficacy comparable to a high dose of budesonide (1 μmol/kg i.p.). In sum, CHF6001 has the potential to be an effective topical treatment of conditions associated with pulmonary inflammation, including

  3. Design and synthesis of a vialinin A analog with a potent inhibitory activity of TNF-α production and its transformation into a couple of bioprobes.

    Science.gov (United States)

    Ye, Yue Qi; Onose, Jun-ichi; Abe, Naoki; Koshino, Hiroyuki; Takahashi, Shunya

    2012-04-01

    Vialinin A (1) is an extremely potent inhibitor against tumor necrosis factor (TNF)-α production in rat basophilic leukemia (RBL-2H3) cells. This Letter describes the design and synthesis of its advanced analog, 5',6'-dimethyl-1,1':4'1″-terphenyl-2',3',4,4″-tetraol (2) with a comparable inhibitory activity (IC(50)=0.02 nM) to that of 1. The synthesis involved double Suzuki-Miyaura coupling as a key step, and required only five steps from commercially available 3,4-dimethylphenol. For identification of the target molecule, fluorescent and biotinylated derivatives of 2 were prepared through a 'click' coupling process.

  4. Synthesis and structure-activity relationships of N-aryl-piperidine derivatives as potent (partial) agonists for human histamine H3 receptor.

    Science.gov (United States)

    Ishikawa, Makoto; Furuuchi, Takeshi; Yamauchi, Miki; Yokoyama, Fumikazu; Kakui, Nobukazu; Sato, Yasuo

    2010-07-15

    4-((1H-imidazol-4-yl)methyl)-1-aryl-piperazine and piperidine derivatives were designed and synthesized as candidate human histamine type 3 agonists. The piperazine derivatives were found to have low (or no) affinity for human histamine H3 receptor, whereas the piperidine derivatives showed moderate to high affinity, and their agonistic activity was greatly influenced by substituents on the aromatic ring. Among the piperidine-containing compounds, 17d and 17h were potent human histamine H3 receptor agonists with high selectivity over the closely related human H4 receptor. Our results indicate that appropriate conformational restriction, that is, by the piperidine spacer moiety, favors specific binding to the human histamine H3 receptor.

  5. Optimized S-trityl-L-cysteine-based inhibitors of kinesin spindle protein with potent in vivo antitumor activity in lung cancer xenograft models.

    Science.gov (United States)

    Good, James A D; Wang, Fang; Rath, Oliver; Kaan, Hung Yi Kristal; Talapatra, Sandeep K; Podgórski, Dawid; MacKay, Simon P; Kozielski, Frank

    2013-03-14

    The mitotic kinesin Eg5 is critical for the assembly of the mitotic spindle and is a promising chemotherapy target. Previously, we identified S-trityl-L-cysteine as a selective inhibitor of Eg5 and developed triphenylbutanamine analogues with improved potency, favorable drug-like properties, but moderate in vivo activity. We report here their further optimization to produce extremely potent inhibitors of Eg5 (K(i)(app) liabilities with CYP-metabolizing enzymes and hERG compared with ispinesib and SB-743921, which is important given the likely application of Eg5 inhibitors in combination therapies. We present the case for this preclinical series to be investigated in single and combination chemotherapies, especially targeting hematological malignancies.

  6. Structural optimization of diphenylpyrimidine derivatives (DPPYs) as potent Bruton's tyrosine kinase (BTK) inhibitors with improved activity toward B leukemia cell lines.

    Science.gov (United States)

    Zhao, Dan; Huang, Shanshan; Qu, Menghua; Wang, Changyuan; Liu, Zhihao; Li, Zhen; Peng, Jinyong; Liu, Kexin; Li, Yanxia; Ma, Xiaodong; Shu, Xiaohong

    2017-01-27

    A new series of diphenylpyrimidine derivatives (DPPYs) bearing various aniline side chains at the C-2 position of pyrimidine core were synthesized as potent BTK inhibitors. Most of these inhibitors displayed improved activity against B leukemia cell lines compared with lead compound spebrutinib. Subsequent studies showed that the peculiar inhibitor 7j, with IC50 values of 10.5 μM against Ramos cells and 19.1 μM against Raji cells, also displayed slightly higher inhibitory ability than the novel agent ibrutinib. Moreover, compound 7j is not sensitive to normal cells PBMC, indicating low cell cytotoxicity. In addition, flow cytometry analysis indicated that 7j significantly induced the apoptosis of Ramos cells, and arrested the cell cycle at the G0/G1 phase. These explorations provided new clues to discover pyrimidine scaffold as more effective BTK inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Design, synthesis and nootropic activity of new analogues of sunifiram and sapunifiram, two potent cognition-enhancers.

    Science.gov (United States)

    Martini, Elisabetta; Salvicchi, Alberto; Ghelardini, Carla; Manetti, Dina; Dei, Silvia; Guandalini, Luca; Martelli, Cecilia; Melchiorre, Michele; Cellai, Cristina; Scapecchi, Serena; Teodori, Elisabetta; Romanelli, Maria Novella

    2009-11-01

    A series of amides and sulfonamides, structurally related to DM235 (sunifiram) and MN19 (sapunifiram), derived by ring expansion or contraction, or by inversion of the exocyclic amide function, have been synthesized and tested for cognition-enhancing activity in the mouse passive-avoidance test. Some of the compounds display good antiamnesic and procognitive activity, with higher potency than piracetam, and with a potency similar to the parent compounds.

  8. CARMIL is a potent capping protein antagonist: identification of a conserved CARMIL domain that inhibits the activity of capping protein and uncaps capped actin filaments.

    Science.gov (United States)

    Uruno, Takehito; Remmert, Kirsten; Hammer, John A

    2006-04-14

    Acanthamoeba CARMIL was previously shown to co-purify with capping protein (CP) and to bind pure CP. Here we show that this interaction inhibits the barbed end-capping activity of CP. Even more strikingly, this interaction drives the uncapping of actin filaments previously capped with CP. These activities are CP-specific; CARMIL does not inhibit the capping activities of either gelsolin or CapG and does not uncap gelsolin-capped filaments. Although full-length (FL) CARMIL (residues 1-1121) possesses both anti-CP activities, C-terminal fragments like glutathione S-transferase (GST)-P (940-1121) that contain the CARMIL CP binding site are at least 10 times more active. We localized the full activities of GST-P to its C-terminal 51 residues (1071-1121). This sequence contains a stretch of 25 residues that is highly conserved in CARMIL proteins from protozoa, flies, worms, and vertebrates (CARMIL Homology domain 3; CAH3). Point mutations showed that the majority of the most highly conserved residues within CAH3 are critical for the anti-CP activity of GST-AP (862-1121). Finally, we found that GST-AP binds CP approximately 20-fold more tightly than does FL-CARMIL. This observation together with the elevated activities of C-terminal fragments relative to FL-CARMIL suggests that FL-CARMIL might exist primarily in an autoinhibited state. Consistent with this idea, proteolytic cleavage of FL-CARMIL with thrombin generated an approximately 14-kDa C-terminal fragment that expresses full anti-CP activities. We propose that, after some type of physiological activation event, FL-CARMIL could function in vivo as a potent CP antagonist. Given the pivotal role that CP plays in determining the global actin phenotype of cells, our results suggest that CARMIL may play an important role in the physiological regulation of actin assembly.

  9. Structure-Activity Relationships of 3,3′-Phenylmethylene-bis-4-hydroxycoumarins: Selective and Potent Inhibitors of Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Kanokporn Petnapapun

    2013-01-01

    Full Text Available Dicoumarols and coumarin derivatives have shown a variety of pharmaceutical activities and have been found to be potent inhibitor for the NAD(PH-dependent flavoproteins. In this report, dicoumarol and its derivatives containing the substituted benzene ring at the methylenebis position were synthesized and evaluated for their antibacterial activity against gram-positive bacteria: Staphylococcus aureus and Bacillus subtilis, and gram-negative bacteria: Escherichia coli and Klebsiella sp. The results showed that the synthesized dicoumarols affect cell growth but are selective against gram-positive over gram-negative bacterial cells. However, for most derivatives, the substitution of steric bulky benzene group on the methylenebis position appears to decrease in the efficacy of antibacterial effect. This finding is roughly described by the predicted poorer docked structure of the derivatives to a homology model of S. aureus flavoprotein. 3D-QSAR study highlighted structural features around the substituted benzene ring of dicoumarols as the antibacterial activity. CoMFA and CoMSIA contour maps support the idea that steric repulsion at the para position could diminish the antibacterial activity. The results of this study provide a better understanding of the molecular basis for the antibacterial activity of dicoumarols.

  10. A fibrinolytic protease AfeE from Streptomyces sp. CC5, with potent thrombolytic activity in a mouse model.

    Science.gov (United States)

    Sun, Zhibin; Liu, Pingping; Cheng, Guangyan; Zhang, Biying; Dong, Weiliang; Su, Xingli; Huang, Yan; Cui, Zhongli; Kong, Yi

    2016-04-01

    Fibrinolytic proteases have potential applications in cardiovascular disease therapy. A novel fibrinolytic protease, AfeE, with strong thrombolytic activity was purified from Streptomyces sp. CC5. AfeE displayed maximum activity at 40°C in the pH range of 7.0-12.0. It was strongly inhibited by serine protease inhibitor phenylmethanesulfonylfluoride, soybean trypsin inhibitor, tosyl-l-lysine chloromethyl ketone and tosyl-l-phenylalanine chloromethyl ketone. The activity of the enzyme was partially inhibited by Cu(2+), Co(2+) and Zn(2+). AfeE exhibited higher substrate specificity for fibrin than fibrinogen, which has rarely been reported in fibrinolytic enzymes. AfeE also showed high thrombolytic activity in a carrageenan-induced mouse tail thrombosis model. AfeE prolonged prothrombin time, activated partial thromboplastin time, and thrombin time in rat blood. A bleeding time assay revealed that AfeE did not prolong bleeding time in mice at a dose of 1mg/kg. No acute cytotoxicity was observed for AfeE at 320μg/well in human umbilical vein endothelial cells. The afeE gene was cloned from the genome of Streptomyces sp. CC5. Full-length AFE-CC5E contained 434 amino acids and was processed into a mature form consisting 284 amino acids by posttranslational modification, as revealed by high-resolution mass spectrometry analysis. These results indicate that AfeE is a prospective candidate for antithrombotic drug development.

  11. Pharmacological characterization of EN-9, a novel chimeric peptide of endomorphin-2 and neuropeptide FF that produces potent antinociceptive activity and limited tolerance.

    Science.gov (United States)

    Wang, Zi-Long; Li, Ning; Wang, Pei; Tang, Hong-Hai; Han, Zheng-Lan; Song, Jing-Jing; Li, Xu-Hui; Yu, Hong-Ping; Zhang, Ting; Zhang, Run; Xu, Biao; Zhang, Meng-Na; Fang, Quan; Wang, Rui

    2016-09-01

    Mounting evidences indicate the functional interactions between neuropeptide FF (NPFF) and opioids, including the endogenous opioids. In the present work, EN-9, a chimeric peptide containing the functional domains of the endogenous opioid endomorphin-2 (EM-2) and NPFF, was synthesized and pharmacologically characterized. In vitro cAMP assay demonstrated that EN-9 was a multifunctional agonist of κ-opioid, NPFF1 and NPFF2 receptors. In the mouse tail-flick test, intracerebroventricularly (i.c.v.) administration of EN-9 produced significant antinociception with an ED50 value of 13.44 nmol, which lasted longer than that of EM-2. In addition, EN-9 induced potent antinociception after both intravenous (i.v.) and subcutaneous (s.c.) injection. Furthermore, the experiments using the antagonists of opioid and NPFF receptors indicated that the central antinociception of EN-9 was mainly mediated by κ-opioid receptor, independently on NPFF receptors. Notably, the central antinociception of EN-9 was not reduced over a period of 6 days repeated i.c.v. injection. Repeated i.c.v. administration of EN-9 with the NPFF1 and NPFF2 receptors antagonist RF9 resulted in a progressive loss of analgesic potency, consistent with the development of tolerance. Moreover, central administration of EN-9 induced the place conditioning aversion only at a high dose of 60 nmol, but not at low doses. At supraspinal level, only high dose of EN-9 (60 nmol, i.c.v.) inhibited gastrointestinal transit via NPFF receptors. Similarly, systemic administration of EN-9 also inhibited gastrointestinal transit at high doses (10 and 30 mg/kg, i.v.). Taken together, the multifunctional agonist of κ-opioid and NPFF receptors EN-9 produced a potent, non-tolerance forming antinociception with limited side effects.

  12. Grape seed extract regulates androgen receptor-mediated transcription in prostate cancer cells through potent anti-histone acetyltransferase activity.

    Science.gov (United States)

    Park, Si Yong; Lee, Yoo-Hyun; Choi, Kyung-Chul; Seong, Ah-Reum; Choi, Hyo-Kyoung; Lee, Ok-Hee; Hwang, Han-Joon; Yoon, Ho-Geun

    2011-01-01

    Histone acetylation, which is regulated by histone acetyltransferases (HATs) and deacetylases, is an epigenetic mechanism that influences eukaryotic transcription. Significant changes in histone acetylation are associated with cancer; therefore, manipulating the acetylation status of key gene targets is likely crucial for effective cancer therapy. Grape seed extract (GSE) has a known protective effect against prostate cancer. Here, we showed that GSE significantly inhibited HAT activity by 30-80% in vitro (P cancer cells by measuring luciferase activity using a pGL3-PSA construct bearing the AR element in the human prostate cancer cell line LNCaP (P cancer cell growth, and implicate GSE as a novel candidate for therapeutic activity against prostate cancer.

  13. Palladium(II) complexes as biologically potent metallo-drugs: Synthesis, spectral characterization, DNA interaction studies and antibacterial activity

    Science.gov (United States)

    Prasad, Kollur Shiva; Kumar, Linganna Shiva; Chandan, Shivamallu; Naveen Kumar, R. M.; Revanasiddappa, Hosakere D.

    2013-04-01

    Four novel mononuclear Pd(II) complexes have been synthesized with the biologically active Schiff base ligands (L1-L4) derived from 3-amino-2-methyl-4(3H)-quinazolinone. The structure of the complexes has been proposed by elemental analysis, molar conductance, IR, 1H NMR, mass, UV-Vis spectrometric and thermal studies. The investigation of interaction of the complexes with calf thymus DNA (CT-DNA) has been performed with absorption and fluorescence spectroscopic studies. The nuclease activity was done using pUC19 supercoiled DNA by gel-electrophoresis. All the ligands and their Pd(II) complexes have also been screened for their antibacterial activity by discolor diffusion technique.

  14. Extensive screening for herbal extracts with potent antioxidant properties.

    Science.gov (United States)

    Niwano, Yoshimi; Saito, Keita; Yoshizaki, Fumihiko; Kohno, Masahiro; Ozawa, Toshihiko

    2011-01-01

    This paper summarizes our research for herbal extracts with potent antioxidant activity obtained from a large scale screening based on superoxide radical (O(2) (•-)) scavenging activity followed by characterization of antioxidant properties. Firstly, scavenging activity against O(2) (•-) was extensively screened from ethanol extracts of approximately 1000 kinds of herbs by applying an electron spin resonance (ESR)-spin trapping method, and we chose four edible herbal extracts with prominently potent ability to scavenge O(2) (•-). They are the extracts from Punica granatum (Peel), Syzygium aromaticum (Bud), Mangifera indica (Kernel), and Phyllanthus emblica (Fruit). These extracts were further examined to determine if they also scavenge hydroxyl radical ((•)OH), by applying the ESR spin-trapping method, and if they have heat resistance as a desirable characteristic feature. Experiments with the Fenton reaction and photolysis of H(2)O(2) induced by UV irradiation demonstrated that all four extracts have potent ability to directly scavenge (•)OH. Furthermore, the scavenging activities against O(2) (•-) and (•)OH of the extracts of P. granatum (peel), M. indica (kernel) and P. emblica (fruit) proved to be heat-resistant.The results of the review might give useful information when choosing a potent antioxidant as a foodstuff. For instance, the four herbal extracts chosen from extensive screening possess desirable antioxidant properties. In particular, the extracts of the aforementioned three herbs are expected to be suitable for food processing in which thermal devices are used, because of their heat resistance.

  15. Synthesis and Enantiomeric Separation of a Novel Spiroketal Derivative: A Potent Human Telomerase Inhibitor with High in Vitro Anticancer Activity

    NARCIS (Netherlands)

    Fuggetta, Maria Pia; De Mico, Antonella; Cottarelli, Andrea; Morelli, Franco; Zonfrillo, Manuela; Ulgheri, Fausta; Peluso, Paola; Mannu, Alberto; Deligia, Francesco; Marchetti, Mauro; Roviello, Giovanni; Reyes Romero, Atilio; Dömling, Alexander; Spanu, Pietro

    2016-01-01

    The synthesis, the enantiomeric separation, and the characterization of new simple spiroketal derivatives have been performed. The synthesized compounds have shown a very high anticancer activity. Cell proliferation assay showed that they induce a remarkable inhibition of cell proliferation in all

  16. Activation of non-sensitizing or low-sensitizing fragrance substances into potent sensitizers - prehaptens and prohaptens

    DEFF Research Database (Denmark)

    Karlberg, Ann-Therese; Börje, Anna; Duus Johansen, Jeanne;

    2013-01-01

    the risk of sensitization. In the present review a series of fragrance substances with well documented abiotic and/or biotic activation are given as indicative and illustrative examples of the general problem. Commonly used fragrance substances, also found in essential oils, autoxidize on contact with air...

  17. The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine.

    Science.gov (United States)

    Possemiers, Sam; Bolca, Selin; Grootaert, Charlotte; Heyerick, Arne; Decroos, Karel; Dhooge, Willem; De Keukeleire, Denis; Rabot, Sylvie; Verstraete, Willy; Van de Wiele, Tom

    2006-07-01

    Hops, an essential beer ingredient, are a source of prenylflavonoids, including 8-prenylnaringenin (8-PN), one of the most potent phytoestrogens. Because 8-PN concentrations in beers are generally low, its health effects after moderate beer consumption were considered negligible. However, human intestinal microbiota may activate up to 4 mg/L isoxanthohumol (IX) in beer into 8-PN. Depending on interindividual differences in the intestinal transformation potential, this conversion could easily increase the 8-PN exposure 10-fold upon beer consumption. Here, we present a further investigation of the process both in vitro and in vivo. In vitro experiments with the dynamic SHIME model showed that hop prenylflavonoids pass unaltered through the stomach and small intestine and that activation of IX into 8-PN (up to 80% conversion) occurs only in the distal colon. In vitro incubations of 51 fecal samples from female volunteers with IX enabled us to separate the fecal microbiota into high (8 of 51), moderate (11 of 51) and slow (32 of 51) 8-PN producers, clearly illustrating an interindividual variability. Three women, selected from the respective groups, received a daily dose of 5.59 mg IX for 4 d. Intestinal IX activation and urinary 8-PN excretion were correlated (R(2) = 0.6417, P < 0.01). These data show that intestinal conversion of IX upon moderate beer consumption can lead to 8-PN exposure values that might fall within the range of human biological activity.

  18. Development of highly potent phosphodiesterase 4 inhibitors with anti-neuroinflammation potential: Design, synthesis, and structure-activity relationship study of catecholamides bearing aromatic rings.

    Science.gov (United States)

    Zhou, Zhong-Zhen; Ge, Bing-Chen; Zhong, Qiu-Ping; Huang, Chang; Cheng, Yu-Fang; Yang, Xue-Mei; Wang, Hai-Tao; Xu, Jiang-Ping

    2016-11-29

    In this study, catecholamides (7a-l) bearing different aromatic rings (such as pyridine-2-yl, pyridine-3-yl, phenyl, and 2-chlorophenyl groups) were synthesized as potent phosphodiesterase (PDE) 4 inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4A4, PDE4B1, PDE4C1, and PDE4D7 enzymes, and other PDE family members. Eight of the synthesized compounds were identified as having submicromolar IC50 values in the mid-to low-nanomolar range. Careful analysis on the structure-activity relationship of compounds 7a-l revealed that the replacement of the 4-methoxy group with the difluoromethoxy group improved inhibitory activities. More interesting, 4-difluoromethoxybenzamides 7i and 7j exhibited preference for PDE4 with higher selectivities of about 3333 and 1111-fold over other PDEs, respectively. In addition, compound 7j with wonderful PDE4D7 inhibitory activities inhibited LPS-induced TNF-α production in microglia.

  19. Exceptionally Potent Anti-Tumor Bystander Activity of an scFv:sTRAIL Fusion Protein with Specificity for EGP2 Toward Target Antigen-Negative Tumor Cells

    Directory of Open Access Journals (Sweden)

    Edwin Bremer

    2004-09-01

    Full Text Available Previously, we reported on the target cell-restricted fratricide apoptotic activity of scFvC54:sTRAIL, a fusion protein comprising human-soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL genetically linked to the antibody fragment scFvC54 specific for the cell surface target antigen EGP2. In the present study, we report that the selective binding of scFvC54:sTRAIL to EGP2-positive target cells conveys an exceptionally potent pro-apoptotic effect toward neighboring tumor cells that are devoid of EGP2 expression (bystander cells. The anti-tumor bystander activity of scFvC54:sTRAIL was detectable at target-tobystander cell ratios as low as 1:100. Treatment in the presence of EGP2-blocking or TRAIL-neutralizing antibody strongly inhibited apoptosis in both target and bystander tumor cells. In the absence of target cells, bystander cell apoptosis induction was abrogated. The bystander apoptosis activity of scFvC54:sTRAIL did not require internalization, enzymatic conversion, diffusion, or communication (gap junctional intracellular communication between target and bystander cells. Furthermore, scFvC54:sTRAIL showed no detectable signs of innocent bystander activity toward freshly isolated blood cells. Further development of this new principle is warranted for approaches where cancer cells can escape from antibody-based therapy due to partial loss of target antigen expression.

  20. Anti cancer activity on Graviola, an exciting medicinal plant extract vs various cancer cell lines and a detailed computational study on its potent anti-cancerous leads.

    Science.gov (United States)

    Paul, Jeno; Gnanam, R; Jayadeepa, R M; Arul, L

    2013-01-01

    Nature is the world's best chemist: Many naturally occurring compounds have very complicated structures that present great challenges to chemists wishing to determine their structures or replicate them. The plant derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. Their high ligand binding affinity to the target introduce the prospect of their use in chemo preventive applications; in addition they are freely available natural compounds that can be safely used to prevent various ailments. Plants became the basis of traditional medicine system throughout the world for thousands of years and continue to provide mankind with new remedies. Here, we present a research study on a medicinal plant, Graviola, a native of North America but rarely grown in India. It has a wide potent anticancerous agents coined as Acetogenins which play a key role towards many varieties of cancer, Acetogenins are potent inhibitors of NADH oxidase of the plasma membranes of cancer cells. Potent leads were taken for the study through literature survey, major types of cancer targets were identified, the natureceuticals and the cancer protein were subjected to docking analysis, further with the help of the dock score and other descriptor properties top ranked molecules were collected, commercial drug was also selected and identified as a Test compound for the study. Later, the phytochemicals were subjected to toxicity analysis. Those screened compounds were then considered for active site analysis and to find the best binding site for the study. R Programming library was used to find the best leads. Phytochemicals such as Anonaine, Friedelin, Isolaureline, Annonamine, Anomurine, Kaempferol, Asimilobine, Quercetin, Xylopine were clustered and the highly clustered compounds such as Annonamine , Kaempferol termed to be a potential lead for the study. Further study on experimental analysis may prove the potentiality of these compounds. In the

  1. Influence of ring size on the cognition-enhancing activity of DM235 and MN19, two potent nootropic drugs.

    Science.gov (United States)

    Guandalini, L; Martini, E; Di Cesare Mannelli, L; Dei, S; Manetti, D; Scapecchi, S; Teodori, E; Ghelardini, C; Romanelli, M N

    2012-03-01

    A series of analogs of DM235 and MN19, characterized by rings with different size, have been prepared and evaluated for their nootropic activity in the mouse passive-avoidance test. It was found that the optimal ring size for the analogs of DM235, showing endocyclic both amidic groups, is 6 or 7 atoms. For the compounds structurally related to MN19, carrying an exocyclic amide group, the piperidine ring is the moiety which gives the most interesting compounds.

  2. A lectin with highly potent inhibitory activity toward breast cancer cells from edible tubers of Dioscorea opposita cv. nagaimo.

    Directory of Open Access Journals (Sweden)

    Yau Sang Chan

    Full Text Available A 70-kDa galactose-specific lectin was purified from the tubers of Dioscorea opposita cv. nagaimo. The purification involved three chromatographic steps: anion exchange chromatography on a Q-Sepharose column, FPLC-anion exchange chromatography on a Mono Q column, and FPLC-gel filtration on a Superdex 75 column. The purified nagaimo lectin presented as a single 35-kDa band in reducing SDS-PAGE while it exhibited a 70-kDa single band in non-reducing SDS-PAGE suggesting its dimeric nature. Nagaimo lectin displayed moderate thermostability, retaining full hemagglutinating activity after heating up to 62°C for 30 minutes. It also manifested stability over a wide pH range from pH 2 to 13. Nagaimo lectin was a galactose-specific lectin, as evidenced by binding with galactose and galactose-containing sugars such as lactose and raffinose. The minimum concentration of galactose, lactose and raffinose required to exert an inhibitory effect on hemagglutinating activity of nagaimo lectin was 20 mM, 5 mM and 40 mM, respectively. Nagaimo lectin inhibited the growth of some cancer cell lines including breast cancer MCF7 cells, hepatoma HepG2 cells and nasopharyngeal carcinoma CNE2 cells, with IC(50 values of 3.71 µM, 7.12 µM and 19.79 µM, respectively, after 24 hour treatment with nagaimo lectin. The induction of phosphatidylserine externalization and mitochondrial depolarization indicated that nagaimo lectin evoked apoptosis in MCF7 cells. However, the anti-proliferative activity of nagaimo lectin was not blocked by application of galactose, signifying that the activity was not related to the carbohydrate binding specificity of the lectin.

  3. In vitro and in vivo metabolism and inhibitory activities of vasicine, a potent acetylcholinesterase and butyrylcholinesterase inhibitor.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Vasicine (VAS, a potential natural cholinesterase inhibitor, exhibited promising anticholinesterase activity in preclinical models and has been in development for treatment of Alzheimer's disease. This study systematically investigated the in vitro and in vivo metabolism of VAS in rat using ultra performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry. A total of 72 metabolites were found based on a detailed analysis of their 1H- NMR and 13C NMR data. Six key metabolites were isolated from rat urine and elucidated as vasicinone, vasicinol, vasicinolone, 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, 9-oxo-1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, and 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-β-D-glucuronide. The metabolic pathway of VAS in vivo and in vitro mainly involved monohydroxylation, dihydroxylation, trihydroxylation, oxidation, desaturation, sulfation, and glucuronidation. The main metabolic soft spots in the chemical structure of VAS were the 3-hydroxyl group and the C-9 site. All 72 metabolites were found in the urine sample, and 15, 25, 45, 18, and 11 metabolites were identified from rat feces, plasma, bile, rat liver microsomes, and rat primary hepatocyte incubations, respectively. Results indicated that renal clearance was the major excretion pathway of VAS. The acetylcholinesterase (AChE and butyrylcholinesterase (BChE inhibitory activities of VAS and its main metabolites were also evaluated. The results indicated that although most metabolites maintained potential inhibitory activity against AChE and BChE, but weaker than that of VAS. VAS undergoes metabolic inactivation process in vivo in respect to cholinesterase inhibitory activity.

  4. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver.

    Directory of Open Access Journals (Sweden)

    Juandy Jo

    2014-06-01

    Full Text Available The ability of innate immune cells to sense and respond to impending danger varies by anatomical location. The liver is considered tolerogenic but is still capable of mounting a successful immune response to clear various infections. To understand whether hepatic immune cells tune their response to different infectious challenges, we probed mononuclear cells purified from human healthy and diseased livers with distinct pathogen-associated molecules. We discovered that only the TLR8 agonist ssRNA40 selectively activated liver-resident innate immune cells to produce substantial quantities of IFN-γ. We identified CD161(Bright mucosal-associated invariant T (MAIT and CD56(Bright NK cells as the responding liver-resident innate immune cells. Their activation was not directly induced by the TLR8 agonist but was dependent on IL-12 and IL-18 production by ssRNA40-activated intrahepatic monocytes. Importantly, the ssRNA40-induced cytokine-dependent activation of MAIT cells mirrored responses induced by bacteria, i.e., generating a selective production of high levels of IFN-γ, without the concomitant production of TNF-α or IL-17A. The intrahepatic IFN-γ production could be detected not only in healthy livers, but also in HBV- or HCV-infected livers. In conclusion, the human liver harbors a network of immune cells able to modulate their immunological responses to different pathogen-associated molecules. Their ability to generate a strong production of IFN-γ upon stimulation with TLR8 agonist opens new therapeutic opportunities for the treatment of diverse liver pathologies.

  5. Stat3 inhibitor Stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Yunbao Pan

    Full Text Available Nasopharyngeal carcinoma (NPC is an Epstein-Barr virus-associated malignancy most common in East Asia, Africa and Alaska. Radiotherapy and cisplatin-based chemotherapy are the main treatment options. Unfortunately, disease response to concurrent chemoradiotherapy varies among patients with NPC, and many cases are resistant to cisplatin and radiotherapy. Signal transducer and activator of transcription 3 (Stat3 has been implicated in the development and progression of various solid tumors. In this study, we assessed the activation and expression of Stat3 in NPC cells. We found that Stat3 was activated and could be blocked by the small molecule inhibitor Stattic. The inhibition of Stat3 in NPC cells by Stattic decreased the expression of cyclin D1 in a dose- and time-dependent manner. Thus, Stattic was used to target Stat3 in NPC cell lines. We found that Stattic could inhibit cell viability and proliferation in NPC cells and significantly induced apoptosis. Additionally, Stat3 transfection attenuated, whereas Stat3 knockdown enhanced, the effects of Stattic upon cell viability inhibition and apoptosis induction. Furthermore, Stattic sensitized NPC cells to cisplatin and ionizing radiation (IR by preventing cell proliferation and inducing apoptosis. Taken together, Stattic inhibit Stat3 and display antitumor effect in NPC, and enhanced chemosensitivity and radiosensitivity in NPC. Therefore, our findings provide the base for more rational approaches to treat NPC in the clinic.

  6. Stat3 inhibitor Stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma.

    Science.gov (United States)

    Pan, Yunbao; Zhou, Fuling; Zhang, Ronghua; Claret, Francois X

    2013-01-01

    Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus-associated malignancy most common in East Asia, Africa and Alaska. Radiotherapy and cisplatin-based chemotherapy are the main treatment options. Unfortunately, disease response to concurrent chemoradiotherapy varies among patients with NPC, and many cases are resistant to cisplatin and radiotherapy. Signal transducer and activator of transcription 3 (Stat3) has been implicated in the development and progression of various solid tumors. In this study, we assessed the activation and expression of Stat3 in NPC cells. We found that Stat3 was activated and could be blocked by the small molecule inhibitor Stattic. The inhibition of Stat3 in NPC cells by Stattic decreased the expression of cyclin D1 in a dose- and time-dependent manner. Thus, Stattic was used to target Stat3 in NPC cell lines. We found that Stattic could inhibit cell viability and proliferation in NPC cells and significantly induced apoptosis. Additionally, Stat3 transfection attenuated, whereas Stat3 knockdown enhanced, the effects of Stattic upon cell viability inhibition and apoptosis induction. Furthermore, Stattic sensitized NPC cells to cisplatin and ionizing radiation (IR) by preventing cell proliferation and inducing apoptosis. Taken together, Stattic inhibit Stat3 and display antitumor effect in NPC, and enhanced chemosensitivity and radiosensitivity in NPC. Therefore, our findings provide the base for more rational approaches to treat NPC in the clinic.

  7. In Vitro and in Vivo Demonstration of Photodynamic Activity and Cytoplasm Imaging through TPE Nanoparticles.

    Science.gov (United States)

    Jayaram, Dhanya T; Ramos-Romero, Sara; Shankar, Balaraman H; Garrido, Cristina; Rubio, Nuria; Sanchez-Cid, Lourdes; Gómez, Salvador Borros; Blanco, Jeronimo; Ramaiah, Danaboyina

    2016-01-15

    We synthesized novel tetraphenylethene (TPE) conjugates, which undergo unique self-assembly to form spherical nanoparticles that exhibited aggregation induced emission (AIE) in the near-infrared region. These nanoparticles showed significant singlet oxygen generation efficiency, negligible dark toxicity, rapid cellular uptake, efficient localization in cytoplasm, and high in vitro photocytotoxicity as well as in vivo photodynamic activity against a human prostate tumor animal model. This study demonstrates, for the first time, the power of the self-assembled AIE active tetraphenylethene conjugates in aqueous media as a nanoplatform for future therapeutic applications.

  8. Comparative metagenomics demonstrating different degradative capacity of activated biomass treating hydrocarbon contaminated wastewater.

    Science.gov (United States)

    Yadav, Trilok Chandra; Pal, Rajesh Ramavadh; Shastri, Sunita; Jadeja, Niti B; Kapley, Atya

    2015-01-01

    This study demonstrates the diverse degradative capacity of activated biomass, when exposed to different levels of total dissolved solids (TDS) using a comparative metagenomics approach. The biomass was collected at two time points to examine seasonal variations. Four metagenomes were sequenced on Illumina Miseq platform and analysed using MG-RAST. STAMP tool was used to analyse statistically significant differences amongst different attributes of metagenomes. Metabolic pathways related to degradation of aromatics via the central and peripheral pathways were found to be dominant in low TDS metagenome, while pathways corresponding to central carbohydrate metabolism, nitrogen, organic acids were predominant in high TDS sample. Seasonal variation was seen to affect catabolic gene abundance as well as diversity of the microbial community. Degradation of model compounds using activated sludge demonstrated efficient utilisation of single aromatic ring compounds in both samples but cyclic compounds were not efficiently utilised by biomass exposed to high TDS.

  9. Expression of feline recombinant interferon-gamma in baculovirus and demonstration of biological activity.

    Science.gov (United States)

    Argyle, D J; Harris, M; Lawrence, C; McBride, K; Barron, R; McGillivray, C; Onions, D E

    1998-07-08

    We have previously reported the cloning of the coding sequence for feline-specific interferon-gamma. Here, we describe the expression of this sequence in a baculovirus system and demonstrate the biological activity of the recombinant protein. The coding sequence for feline interferon was directionally cloned into the baculovirus transfer vector pAcCL29-1. Transfer vector and linearized wild-type AcMNPV (BacPAK6) were used to co-transfect Sf9 cells by calcium phosphate coprecipitation. Subsequently, wild-type and recombinant viruses were separated by plaque assay. Recombinant plaques were expanded and a master stock of virus is produced. Production of biologically active interferon-gamma from infected Sf9 cells was demonstrated using a standard cytopathic effect reduction assay, utilising vesicular stomatitis virus (VSV), and an MHC class II induction assay.

  10. Demonstration of Motor Imagery- and Phantom-Movement Related Neuronal Activity in Human Thalamus

    OpenAIRE

    Anderson, William S.; Weiss, Nirit; Lawson, Herman Christopher; Ohara, Shinji; Rowland, Lance; Lenz, Frederick A.

    2011-01-01

    Functional imaging studies demonstrate that motor imagery activates multiple structures in the human forebrain. We now show that phantom movements in an amputee and imagined movements in intact subjects elicit responses from neurons in several human thalamic nuclei. These include the somatic sensory nucleus receiving input from the periphery (ventral caudal – Vc), and the motor nuclei receiving input from the cerebellum (ventral intermediate -Vim) and the basal ganglia (ventral oral posterior...

  11. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Directory of Open Access Journals (Sweden)

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  12. M. tuberculosis induces potent activation of IDO-1, but this is not essential for the immunological control of infection.

    Directory of Open Access Journals (Sweden)

    Antje Blumenthal

    Full Text Available Indoleamine 2,3-dioxygenesae-1 (IDO-1 catalyses the initial, rate-limiting step in tryptophan metabolism, thereby regulating tryptophan availability and the formation of downstream metabolites, including picolinic and quinolinic acid. We found that Mycobacterium tuberculosis infection induced marked upregulation of IDO-1 expression in both human and murine macrophages in vitro and in the lungs of mice following aerosol challenge with M. tuberculosis. The absence of IDO-1 in dendritic cells enhanced the activation of mycobacteria-specific T cells in vitro. Interestingly, IDO-1-deficiency during M. tuberculosis infection in mice was not associated with altered mycobacteria-specific T cell responses in vivo. The bacterial burden of infected organs, pulmonary inflammatory responses, and survival were also comparable in M. tuberculosis-infected IDO-1 deficient and wild type animals. Tryptophan is metabolised into either picolinic acid or quinolinic acid, but only picolinic acid inhibited the growth of M. tuberculosis in vitro. By contrast macrophages infected with pathogenic mycobacteria, produced quinolinic, rather than picolinic acid, which did not reduce M. tuberculosis growth in vitro. Therefore, although M. tuberculosis induces robust expression of IDO-1 and activation of tryptophan metabolism, IDO-1-deficiency fails to impact on the immune control and the outcome of the infection in the mouse model of tuberculosis.

  13. Anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts - identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds.

    Science.gov (United States)

    Gunawardena, Dhanushka; Karunaweera, Niloo; Lee, Samiuela; van Der Kooy, Frank; Harman, David G; Raju, Ritesh; Bennett, Louise; Gyengesi, Erika; Sucher, Nikolaus J; Münch, Gerald

    2015-03-01

    Chronic inflammation is a contributing factor in many age-related diseases. In a previous study, we have shown that Sri Lankan cinnamon (C. zeylanicum) was one of the most potent anti-inflammatory foods out of 115 foods tested. However, knowledge about the exact nature of the anti-inflammatory compounds and their distribution in the two major cinnamon species used for human consumption is limited. The aim of this investigation was to determine the anti-inflammatory activity of C. zeylanicum and C. cassia and elucidate their main phytochemical compounds. When extracts were tested in LPS and IFN-γ activated RAW 264.7 macrophages, most of the anti-inflammatory activity, measured by down-regulation of nitric oxide and TNF-α production, was observed in the organic extracts. The most abundant compounds in these extracts were E-cinnamaldehyde and o-methoxycinnamaldehyde. The highest concentration of E-cinnamaldehyde was found in the DCM extract of C. zeylanicum or C. cassia (31 and 34 mg g(-1) of cinnamon, respectively). When these and other constituents were tested for their anti-inflammatory activity in RAW 264.7 and J774A.1 macrophages, the most potent compounds were E-cinnamaldehyde and o-methoxycinnamaldehyde, which exhibited IC₅₀ values for NO with RAW 264.7 cells of 55 ± 9 μM (7.3 ± 1.2 μg mL(-1)) and 35 ± 9 μM (5.7 ± 1.5 μg mL(-1)), respectively; and IC₅₀ values for TNF-α of 63 ± 9 μM (8.3 ± 1.2 μg mL(-1)) and 78 ± 16 μM (12.6 ± 2.6 μg mL(-1)), respectively. If therapeutic concentrations can be achieved in target tissues, cinnamon and its components may be useful in the treatment of age-related inflammatory conditions.

  14. Improved total synthesis and biological evaluation of potent apratoxin S4 based anticancer agents with differential stability and further enhanced activity.

    Science.gov (United States)

    Chen, Qi-Yin; Liu, Yanxia; Cai, Weijing; Luesch, Hendrik

    2014-04-10

    Apratoxins are cytotoxic natural products originally isolated from marine cyanobacteria that act by preventing cotranslational translocation early in the secretory pathway to downregulate receptor levels and inhibit growth factor secretion, leading to potent antiproliferative activity. Through rational design and total synthesis of an apratoxin A/E hybrid, apratoxin S4 (1a), we have previously improved the antitumor activity and tolerability in vivo. Compound 1a and newly designed analogues apratoxins S7-S9 (1b-d), with various degrees of methylation at C34 (1b,c) or epimeric configuration at C30 (1d), were efficiently synthesized utilizing improved procedures. Optimizations have been applied to the synthesis of key intermediate aldehyde 7 and further include the application of Leighton's silanes and modifications of Kelly's methods to induce thiazoline ring formation in other crucial steps of the apratoxin synthesis. Apratoxin S9 (1d) exhibited increased activity with subnanomolar potency. Apratoxin S8 (1c) lacks the propensity to be deactivated by dehydration and showed efficacy in a human HCT116 xenograft mouse model.

  15. Molecular-targeted antitumor agents: the Saururus cernuus dineolignans manassantin B and 4-O-demethylmanassantin B are potent inhibitors of hypoxia-activated HIF-1.

    Science.gov (United States)

    Hodges, Tyler W; Hossain, Chowdhury Faiz; Kim, Yong-Pil; Zhou, Yu-Dong; Nagle, Dale G

    2004-05-01

    The transcription factor hypoxia-inducible factor-1 (HIF-1) is a key regulator of tumor cell adaptation and survival under hypoxic conditions. Selective HIF-1 inhibitors represent an important new class of potential molecular-targeted antitumor therapeutic agents. Extracts of plants and marine organisms were evaluated using a T47D human breast tumor cell-based reporter assay for HIF-1 inhibitors. Bioassay-guided fractionation of the lipid extract of Saururus cernuus resulted in the isolation of manassantin B (1) and a new compound, 4-O-demethylmanassantin B (2). The structure of 2 was determined spectroscopically. The absolute configurations of manassantin-type dineolignans have not been previously reported. Therefore, the absolute configurations of the chiral centers in each side chain were deduced from spectroscopic analysis of the Mosher MTPA ester derivatives of 1. Both 1 and 2 are among the most potent small molecule HIF-1 inhibitors discovered, to date, with IC(50) values of 3 and 30 nM, respectively. Compounds 1 and 2 selectively inhibited hypoxia-activated HIF-1 in contrast to iron chelator-activated HIF-1. Compounds 1 and 2 also inhibited hypoxic induction of the angiogenic factor VEGF. Further study revealed that 1 selectively blocked the induction of HIF-1alpha protein, the oxygen regulated HIF-1 subunit that determines HIF-1 activity.

  16. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes.

    Science.gov (United States)

    Matthews, D A; Dragovich, P S; Webber, S E; Fuhrman, S A; Patick, A K; Zalman, L S; Hendrickson, T F; Love, R A; Prins, T J; Marakovits, J T; Zhou, R; Tikhe, J; Ford, C E; Meador, J W; Ferre, R A; Brown, E L; Binford, S L; Brothers, M A; DeLisle, D M; Worland, S T

    1999-09-28

    Human rhinoviruses, the most important etiologic agents of the common cold, are messenger-active single-stranded monocistronic RNA viruses that have evolved a highly complex cascade of proteolytic processing events to control viral gene expression and replication. Most maturation cleavages within the precursor polyprotein are mediated by rhinovirus 3C protease (or its immediate precursor, 3CD), a cysteine protease with a trypsin-like polypeptide fold. High-resolution crystal structures of the enzyme from three viral serotypes have been used for the design and elaboration of 3C protease inhibitors representing different structural and chemical classes. Inhibitors having alpha,beta-unsaturated carbonyl groups combined with peptidyl-binding elements specific for 3C protease undergo a Michael reaction mediated by nucleophilic addition of the enzyme's catalytic Cys-147, resulting in covalent-bond formation and irreversible inactivation of the viral protease. Direct inhibition of 3C proteolytic activity in virally infected cells treated with these compounds can be inferred from dose-dependent accumulations of viral precursor polyproteins as determined by SDS/PAGE analysis of radiolabeled proteins. Cocrystal-structure-assisted optimization of 3C-protease-directed Michael acceptors has yielded molecules having extremely rapid in vitro inactivation of the viral protease, potent antiviral activity against multiple rhinovirus serotypes and low cellular toxicity. Recently, one compound in this series, AG7088, has entered clinical trials.

  17. Active vibration control testing of the SPICES program: final demonstration article

    Science.gov (United States)

    Dunne, James P.; Jacobs, Jack H.

    1996-05-01

    The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) Program is a partnership program sponsored by the Advanced Research Projects Agency. The mission of the program is to develop cost effective material processing and synthesis technologies to enable new products employing active vibration suppression and control devices to be brought to market. The two year program came to fruition in 1995 through the fabrication of the final smart components and testing of an active plate combined with two trapezoidal rails, forming an active mount. Testing of the SPICES combined active mount took place at McDonnell Douglas facilities in St. Louis, MO, in October-December 1995. Approximately 15 dB reduction in overall response of a motor mounted on the active structure was achieved. Further details and results of the SPICES combined active mount demonstration testing are outlined. Results of numerous damping and control strategies that were developed and employed in the testing are presented, as well as aspects of the design and fabrication of the SPICES active mount components.

  18. The potent and selective α4β2*/α6*-nicotinic acetylcholine receptor partial agonist 2-[5-[5-((S)Azetidin-2-ylmethoxy)-3-pyridinyl]-3-isoxazolyl]ethanol demonstrates antidepressive-like behavior in animal models and a favorable ADME-tox profile.

    Science.gov (United States)

    Yu, Li-Fang; Brek Eaton, J; Zhang, Han-Kun; Sabath, Emily; Hanania, Taleen; Li, Guan-Nan; van Breemen, Richard B; Whiteaker, Paul; Liu, Qiang; Wu, Jie; Chang, Yong-Chang; Lukas, Ronald J; Brunner, Dani; Kozikowski, Alan P

    2014-04-01

    Preclinical and clinical studies demonstrated that the inhibition of cholinergic supersensitivity through nicotinic antagonists and partial agonists can be used successfully to treat depressed patients, especially those who are poor responders to selective serotonin reuptake inhibitors (SSRIs). In our effort to develop novel antidepressant drugs, LF-3-88 was identified as a potent nicotinic acetylcholine receptor (nAChR) partial agonist with subnanomolar to nanomolar affinities for β2-containing nAChRs (α2β2, α3β2, α4β2, and α4β2*) and superior selectivity away from α3β4 - (K i > 10(4) nmol/L) and α7-nAChRs (K i > 10(4) nmol/L) as well as 51 other central nervous system (CNS)-related neurotransmitter receptors and transporters. Functional activities at different nAChR subtypes were characterized utilizing (86)Rb(+) ion efflux assays, two-electrode voltage-clamp (TEVC) recording in oocytes, and whole-cell current recording measurements. In mouse models, administration of LF-3-88 resulted in antidepressive-like behavioral signatures 15 min post injection in the SmartCube® test (5 and 10 mg/kg, i.p.; about 45-min session), decreased immobility in the forced swim test (1-3 mg/kg, i.p.; 1-10 mg/kg, p.o.; 30 min pretreatment, 6-min trial), and decreased latency to approach food in the novelty-suppressed feeding test after 29 days chronic administration once daily (5 mg/kg but not 10 mg/kg, p.o.; 15-min trial). In addition, LF-3-88 exhibited a favorable profile in pharmacokinetic/ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) assays. This compound was also shown to cause no mortality in wild-type Balb/CJ mice when tested at 300 mg/kg. These results further support the potential of potent and selective nicotinic partial agonists for use in the treatment of depression.

  19. Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors.

    Directory of Open Access Journals (Sweden)

    Katharina Rüben

    Full Text Available DYRK1A is a pleiotropic protein kinase with diverse functions in cellular regulation, including cell cycle control, neuronal differentiation, and synaptic transmission. Enhanced activity and overexpression of DYRK1A have been linked to altered brain development and function in Down syndrome and neurodegenerative diseases such as Alzheimer's disease. The β-carboline alkaloid harmine is a high affinity inhibitor of DYRK1A but suffers from the drawback of inhibiting monoamine oxidase A (MAO-A with even higher potency. Here we characterized a series of novel harmine analogs with minimal or absent MAO-A inhibitory activity. We identified several inhibitors with submicromolar potencies for DYRK1A and selectivity for DYRK1A and DYRK1B over the related kinases DYRK2 and HIPK2. An optimized inhibitor, AnnH75, inhibited CLK1, CLK4, and haspin/GSG2 as the only off-targets in a panel of 300 protein kinases. In cellular assays, AnnH75 dose-dependently reduced the phosphorylation of three known DYRK1A substrates (SF3B1, SEPT4, and tau without negative effects on cell viability. AnnH75 inhibited the cotranslational tyrosine autophosphorylation of DYRK1A and threonine phosphorylation of an exogenous substrate protein with similar potency. In conclusion, we have characterized an optimized β-carboline inhibitor as a highly selective chemical probe that complies with desirable properties of drug-like molecules and is suitable to interrogate the function of DYRK1A in biological studies.

  20. The Isothiocyanate Isolated from Moringa oleifera Shows Potent Anti-Inflammatory Activity in the Treatment of Murine Subacute Parkinson's Disease.

    Science.gov (United States)

    Giacoppo, Sabrina; Rajan, Thangavelu Soundara; De Nicola, Gina Rosalinda; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2017-02-01

    The present study was aimed at estimating a possible neuroprotective effect of glucomoringin (GMG) [4-(α-L-rhamnopyranosyloxy)benzyl glucosinolate] bioactivated with the enzyme myrosinase to form the corresponding isothiocyanate [4-(α-L-rhamnopyranosyloxy)benzyl C; moringin] in the treatment or prevention of Parkinson's disease (PD). In this study, the beneficial effects of moringin were compared with those of pure GMG, not enzymatically activated, in an in vivo experimental mouse model of subacute PD. Subacute PD was induced in C57BL/6 mice by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice were pretreated daily for 1 week with moringin (10 mg/kg +5 μL myrosinase/mouse) and with GMG (10 mg/kg). Behavioral evaluations were also performed to assess motor deficits and bradykinesia in MPTP mice. Besides, assuming that pretreatment with moringin could modulate the triggering of inflammatory cascade with a correlated response, we tested its in vitro anti-inflammatory activity by using a model of RAW 264.7 macrophages stimulated with lipopolysaccharide. Achieved results in vivo showed a higher efficacy of moringin compared with GMG not only to modulate the inflammatory pathway but also oxidative stress and apoptotic pathways. In addition, the greater effectiveness of moringin in countering mainly the inflammatory pathway has been corroborated by the results obtained in vitro. The relevance and innovation of the present study lie in the possible use of a safe formulation of a bioactive compound, resulting from exogenous myrosinase hydrolysis of the natural phytochemical GMG, which can be used in clinical practice as a useful drug for the treatment or prevention of PD.

  1. The potent Cdc7-Dbf4 (DDK) kinase inhibitor XL413 has limited activity in many cancer cell lines and discovery of potential new DDK inhibitor scaffolds.

    Science.gov (United States)

    Sasi, Nanda Kumar; Tiwari, Kanchan; Soon, Fen-Fen; Bonte, Dorine; Wang, Tong; Melcher, Karsten; Xu, H Eric; Weinreich, Michael

    2014-01-01

    Cdc7-Dbf4 kinase or DDK (Dbf4-dependent kinase) is required to initiate DNA replication by phosphorylating and activating the replicative Mcm2-7 DNA helicase. DDK is overexpressed in many tumor cells and is an emerging chemotherapeutic target since DDK inhibition causes apoptosis of diverse cancer cell types but not of normal cells. PHA-767491 and XL413 are among a number of potent DDK inhibitors with low nanomolar IC50 values against the purified kinase. Although XL413 is highly selective for DDK, its activity has not been extensively characterized on cell lines. We measured anti-proliferative and apoptotic effects of XL413 on a panel of tumor cell lines compared to PHA-767491, whose activity is well characterized. Both compounds were effective biochemical DDK inhibitors but surprisingly, their activities in cell lines were highly divergent. Unlike PHA-767491, XL413 had significant anti-proliferative activity against only one of the ten cell lines tested. Since XL413 did not effectively inhibit DDK in multiple cell lines, this compound likely has limited bioavailability. To identify potential leads for additional DDK inhibitors, we also tested the cross-reactivity of ∼400 known kinase inhibitors against DDK using a DDK thermal stability shift assay (TSA). We identified 11 compounds that significantly stabilized DDK. Several inhibited DDK with comparable potency to PHA-767491, including Chk1 and PKR kinase inhibitors, but had divergent chemical scaffolds from known DDK inhibitors. Taken together, these data show that several well-known kinase inhibitors cross-react with DDK and also highlight the opportunity to design additional specific, biologically active DDK inhibitors for use as chemotherapeutic agents.

  2. Plasma levels of soluble CD27: a simple marker to monitor immune activation during potent antiretroviral therapy in HIV-1-infected subjects

    Science.gov (United States)

    DE MILITO, A; ALEMAN, S; MARENZI, R; SÖNNERBORG, A; FUCHS, D; ZAZZI, M; CHIODI, F

    2002-01-01

    Plasma levels of soluble CD27 (sCD27) are elevated in diseases characterized by T cell activation and are used as a marker of immune activation. We assessed the usefulness of determining plasma sCD27 as a marker for monitoring immune activation in HIV-1-infected patients treated with highly active antiretroviral therapy (HAART). A first cross-sectional examination of 68 HIV-1-infected and 18 normal subjects showed high levels of sCD27 in HIV-1 infection; plasma sCD27 was correlated to HIV-1 viraemia and inversely correlated to CD4+ T cell count. Twenty-six HIV-1-infected patients undergoing HAART were studied at baseline and after 6, 12, 18 and 24 months of therapy. Seven additional patients under HAART were analysed at baseline, during and after interruption of therapy. In the total population, HAART induced a significant and progressive reduction, but not a normalization, of plasma levels of sCD27 after 24 months. A full normalization of plasma sCD27 was observed in the virological responders (undetectable HIV-1 RNA at months 18 and 24) and also in patients with moderate immunodeficiency at baseline (CD4+ T cell count >200 cells/mm3). Changes in plasma neopterin paralleled the changes in sCD27 but only baseline sCD27 levels were predictive of a greater increase in CD4+ T cell count during the follow-up. Discontinuation of therapy resulted in a rapid increase of sCD27 plasma levels associated with viraemia rebound and drop in CD4+ T cell count. Our findings suggest that plasma sCD27 may represent an alternative and simple marker to monitor immune activation during potent antiretroviral therapy. HIV-1-induced immune activation can be normalized by HAART in successfully treated patients where the disease is not advanced. PMID:11966765

  3. The potent Cdc7-Dbf4 (DDK kinase inhibitor XL413 has limited activity in many cancer cell lines and discovery of potential new DDK inhibitor scaffolds.

    Directory of Open Access Journals (Sweden)

    Nanda Kumar Sasi

    Full Text Available Cdc7-Dbf4 kinase or DDK (Dbf4-dependent kinase is required to initiate DNA replication by phosphorylating and activating the replicative Mcm2-7 DNA helicase. DDK is overexpressed in many tumor cells and is an emerging chemotherapeutic target since DDK inhibition causes apoptosis of diverse cancer cell types but not of normal cells. PHA-767491 and XL413 are among a number of potent DDK inhibitors with low nanomolar IC50 values against the purified kinase. Although XL413 is highly selective for DDK, its activity has not been extensively characterized on cell lines. We measured anti-proliferative and apoptotic effects of XL413 on a panel of tumor cell lines compared to PHA-767491, whose activity is well characterized. Both compounds were effective biochemical DDK inhibitors but surprisingly, their activities in cell lines were highly divergent. Unlike PHA-767491, XL413 had significant anti-proliferative activity against only one of the ten cell lines tested. Since XL413 did not effectively inhibit DDK in multiple cell lines, this compound likely has limited bioavailability. To identify potential leads for additional DDK inhibitors, we also tested the cross-reactivity of ∼400 known kinase inhibitors against DDK using a DDK thermal stability shift assay (TSA. We identified 11 compounds that significantly stabilized DDK. Several inhibited DDK with comparable potency to PHA-767491, including Chk1 and PKR kinase inhibitors, but had divergent chemical scaffolds from known DDK inhibitors. Taken together, these data show that several well-known kinase inhibitors cross-react with DDK and also highlight the opportunity to design additional specific, biologically active DDK inhibitors for use as chemotherapeutic agents.

  4. Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: searching for more potent microbicides

    Science.gov (United States)

    Vacas-Córdoba, Enrique; Galán, Marta; de la Mata, Francisco J; Gómez, Rafael; Pion, Marjorie; Muñoz-Fernández, M Ángeles

    2014-01-01

    Self-administered topical microbicides or oral preexposure prophylaxis could be very helpful tools for all risk groups to decrease the human immunodeficiency virus (HIV)-1 infection rates. Up until now, antiretrovirals (ARVs) have been the most advanced microbicide candidates. Nevertheless, the majority of clinical trials has failed in HIV-1 patients. Nanotechnology offers suitable approaches to develop novel antiviral agents. Thereby, new nanosystems, such as carbosilane dendrimers, have been shown to be safe and effective compounds against HIV with great potential as topical microbicides. In addition, because most of the attempts to develop effective topical microbicides were unsuccessful, combinatorial strategies could be a valid approach when designing new microbicides. We evaluated various combinations of anionic carbosilane dendrimers with sulfated (G3-S16) and naphthyl sulfonated (G2-NF16) ended groups with different ARVs against HIV-1 infection. The G3-S16 and G2-NF16 dendrimers showed a synergistic or additive activity profile with zidovudine, efavirenz, and tenofovir in the majority of the combinations tested against the X4 and R5 tropic HIV-1 in cell lines, as well as in human primary cells. Therefore, the combination of ARVs and polyanionic carbosilane dendrimers enhances the antiviral potency of the individual compounds, and our findings support further clinical research on combinational approaches as potential microbicides to block the sexual transmission of HIV-1. PMID:25114528

  5. r84, a novel therapeutic antibody against mouse and human VEGF with potent anti-tumor activity and limited toxicity induction.

    Directory of Open Access Journals (Sweden)

    Laura A Sullivan

    Full Text Available Vascular endothelial growth factor (VEGF is critical for physiological and pathological angiogenesis. Within the tumor microenvironment, VEGF functions as an endothelial cell survival factor, permeability factor, mitogen, and chemotactic agent. The majority of these functions are mediated by VEGF-induced activation of VEGF receptor 2 (VEGFR2, a high affinity receptor tyrosine kinase expressed by endothelial cells and other cell types in the tumor microenvironment. VEGF can also ligate other cell surface receptors including VEGFR1 and neuropilin-1 and -2. However, the importance of VEGF-induced activation of these receptors in tumorigenesis is still unclear. We report the development and characterization of r84, a fully human monoclonal antibody that binds human and mouse VEGF and selectively blocks VEGF from interacting with VEGFR2 but does not interfere with VEGF:VEGFR1 interaction. Selective blockade of VEGF binding to VEGFR2 by r84 is shown through ELISA, receptor binding assays, receptor activation assays, and cell-based functional assays. Furthermore, we show that r84 has potent anti-tumor activity and does not alter tissue histology or blood and urine chemistry after chronic high dose therapy in mice. In addition, chronic r84 therapy does not induce elevated blood pressure levels in some models. The ability of r84 to specifically block VEGF:VEGFR2 binding provides a valuable tool for the characterization of VEGF receptor pathway activation during tumor progression and highlights the utility and safety of selective blockade of VEGF-induced VEGFR2 signaling in tumors.

  6. r84, a Novel Therapeutic Antibody against Mouse and Human VEGF with Potent Anti-Tumor Activity and Limited Toxicity Induction

    Science.gov (United States)

    Sullivan, Laura A.; Carbon, Juliet G.; Roland, Christina L.; Toombs, Jason E.; Nyquist-Andersen, Mari; Kavlie, Anita; Schlunegger, Kyle; Richardson, James A.; Brekken, Rolf A.

    2010-01-01

    Vascular endothelial growth factor (VEGF) is critical for physiological and pathological angiogenesis. Within the tumor microenvironment, VEGF functions as an endothelial cell survival factor, permeability factor, mitogen, and chemotactic agent. The majority of these functions are mediated by VEGF-induced activation of VEGF receptor 2 (VEGFR2), a high affinity receptor tyrosine kinase expressed by endothelial cells and other cell types in the tumor microenvironment. VEGF can also ligate other cell surface receptors including VEGFR1 and neuropilin-1 and -2. However, the importance of VEGF-induced activation of these receptors in tumorigenesis is still unclear. We report the development and characterization of r84, a fully human monoclonal antibody that binds human and mouse VEGF and selectively blocks VEGF from interacting with VEGFR2 but does not interfere with VEGF∶VEGFR1 interaction. Selective blockade of VEGF binding to VEGFR2 by r84 is shown through ELISA, receptor binding assays, receptor activation assays, and cell-based functional assays. Furthermore, we show that r84 has potent anti-tumor activity and does not alter tissue histology or blood and urine chemistry after chronic high dose therapy in mice. In addition, chronic r84 therapy does not induce elevated blood pressure levels in some models. The ability of r84 to specifically block VEGF∶VEGFR2 binding provides a valuable tool for the characterization of VEGF receptor pathway activation during tumor progression and highlights the utility and safety of selective blockade of VEGF-induced VEGFR2 signaling in tumors. PMID:20700512

  7. CoMFA, CoMSIA, and docking studies on thiolactone-class of potent anti-malarials: identification of essential structural features modulating anti-malarial activity.

    Science.gov (United States)

    Roy, Kuldeep K; Bhunia, Shome S; Saxena, Anil K

    2011-09-01

    The integrated ligand- and structure-based drug design techniques have been applied on a homogeneous dataset of thiolactone-class of potent anti-malarials, to explore the essential structural features for the inhibition of Plasmodium falciparum. Developed CoMFA (q(2) = 0.716) and CoMSIA (q(2) = 0.632) models well explained structure-activity variation in both the training (CoMFA R(2) = 0.948 & CoMSIA R(2) = 0.849) and test set (CoMFA R(2) (pred) = 0.789 & CoMSIA R(2) (pred) = 0.733) compounds. The docking and scoring of the most active compound 10 into the active site of high-resolution (2.35 Å) structure of FabB-TLM binary complex (PDB-ID: 1FJ4) indicated that thiolactone core of this compound forms bifurcated H-bonding with two catalytic residues His298 and His333, and its saturated decyl side group is stabilized by hydrophobic interactions with the residues of a small hydrophobic groove, illustrating that the active site architecture, including two catalytic histidines and a small hydrophobic groove, is vital for protein-ligand interaction. In particular, the length and flexibility of the side group attached to the position 5 of thiolactone have been observed to play a significant role in the interaction with FabB enzyme. These results present scope for rational design of thiolactone-class of compounds that could furnish improved anti-malarial activity.

  8. Molecular recognition of CYP26A1 binding pockets and structure-activity relationship studies for design of potent and selective retinoic acid metabolism blocking agents.

    Science.gov (United States)

    Sun, Bin; Song, Shuai; Hao, Chen-Zhou; Huang, Wan-Xu; Liu, Chun-Chi; Xie, Hong-Lei; Lin, Bin; Cheng, Mao-Sheng; Zhao, Dong-Mei

    2015-03-01

    All-trans-retinoic acid (ATRA), the biologically most active metabolite of vitamin A, plays a major role in the regulation of cellular differentiation and proliferation, and it is also an important pharmacological agent particularly used in the treatment of cancer, skin, neurodegenerative and autoimmune diseases. However, ATRA is very easy to be metabolized into 4-hydroxyl-RA in vivo by CYP26A1, an inducible cytochrome P450 enzyme, eventually into more polar metabolites. Therefore, it is vital to develop specific retinoic acid metabolism blocking agents (RAMBAs) to inhibit the metabolic enzyme CYP26A1 in the treatment of relevant diseases aforementioned. In this study, CYP26A1 and its interactions with retinoic acid-competitive metabolism blocking agents were investigated by a combined ligand- and structure-based approach. First, since the crystal structure of CYP26A1 protein has not been determined, we constructed the 3D structure of CYP26A1 using homology modeling. In order to achieve a deeper insight into the mode of action of RAMBAs in the active site, the molecular superimposition model and the common feature pharmacophore model were constructed, and molecular docking was performed. The molecular superimposition model is composed of three features: the main chain groups, side chain groups, and azole groups. The common feature pharmacophore model consists of five chemical features: four hydrophobic groups and one hydrogen acceptor (HHHHA). The results of molecular docking show that the characteristic groups of RAMBAs were mapped into three different active pockets, respectively. A structure-activity relationship (SAR) was obtained by a combination of the molecular superimposition and docking results with the pharmacophore model. This study gives more insight into the interaction model inside the CYP26A1 active site and provides guidance for the design of more potent and possibly more selective RAMBAs.

  9. Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: searching for more potent microbicides

    Directory of Open Access Journals (Sweden)

    Vacas-Córdoba E

    2014-07-01

    Full Text Available Enrique Vacas-Córdoba,1–3 Marta Galán,3,4 Francisco J de la Mata,3,4 Rafael Gómez,3,4 Marjorie Pion,1–3 M Ángeles Muñoz-Fernández1–3 1Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; 2Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain; 3Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN, Madrid, Spain; 4Dendrimers for Biomedical Applications Group (BioInDen, University of Alcalá, Madrid, Spain Abstract: Self-administered topical microbicides or oral preexposure prophylaxis could be very helpful tools for all risk groups to decrease the human immunodeficiency virus (HIV-1 infection rates. Up until now, antiretrovirals (ARVs have been the most advanced microbicide candidates. Nevertheless, the majority of clinical trials has failed in HIV-1 patients. Nanotechnology offers suitable approaches to develop novel antiviral agents. Thereby, new nanosystems, such as carbosilane dendrimers, have been shown to be safe and effective compounds against HIV with great potential as topical microbicides. In addition, because most of the attempts to develop effective topical microbicides were unsuccessful, combinatorial strategies could be a valid approach when designing new microbicides. We evaluated various combinations of anionic carbosilane dendrimers with sulfated (G3-S16 and naphthyl sulfonated (G2-NF16 ended groups with different ARVs against HIV-1 infection. The G3-S16 and G2-NF16 dendrimers showed a synergistic or additive activity profile with zidovudine, efavirenz, and tenofovir in the majority of the combinations tested against the X4 and R5 tropic HIV-1 in cell lines, as well as in human primary cells. Therefore, the combination of ARVs and polyanionic carbosilane dendrimers enhances the antiviral potency of the individual compounds, and our findings support further clinical research on combinational approaches as

  10. Advanced Glycation End Products (AGE) Potently Induce Autophagy through Activation of RAF Protein Kinase and Nuclear Factor κB (NF-κB).

    Science.gov (United States)

    Verma, Neeharika; Manna, Sunil K

    2016-01-15

    Advanced glycation end products (AGE) accumulate in diabetic patients and aging people because of high amounts of three- or four-carbon sugars derived from glucose, thereby causing multiple consequences, including inflammation, apoptosis, obesity, and age-related disorders. It is important to understand the mechanism of AGE-mediated signaling leading to the activation of autophagy (self-eating) that might result in obesity. We detected AGE as one of the potent inducers of autophagy compared with doxorubicin and TNF. AGE-mediated autophagy is inhibited by suppression of PI3K and potentiated by the autophagosome maturation blocker bafilomycin. It increases autophagy in different cell types, and that correlates with the expression of its receptor, receptor for AGE. LC3B, the marker for autophagosomes, is shown to increase upon AGE stimulation. AGE-mediated autophagy is partially suppressed by inhibitor of NF-κB, PKC, or ERK alone and significantly in combination. AGE increases sterol regulatory element binding protein activity, which leads to an increase in lipogenesis. Although AGE-mediated lipogenesis is affected by autophagy inhibitors, AGE-mediated autophagy is not influenced by lipogenesis inhibitors, suggesting that the turnover of lipid droplets overcomes the autophagic clearance. For the first time, we provide data showing that AGE induces several cell signaling cascades, like NF-κB, PKC, ERK, and MAPK, that are involved in autophagy and simultaneously help with the accumulation of lipid droplets that are not cleared effectively by autophagy, therefore causing obesity.

  11. Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity.

    Science.gov (United States)

    Gozzi, Gustavo Jabor; Bouaziz, Zouhair; Winter, Evelyn; Daflon-Yunes, Nathalia; Honorat, Mylène; Guragossian, Nathalie; Marminon, Christelle; Valdameri, Glaucio; Bollacke, Andre; Guillon, Jean; Pinaud, Noël; Marchivie, Mathieu; Cadena, Silvia M; Jose, Joachim; Le Borgne, Marc; Di Pietro, Attilio

    2015-01-01

    Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N (5)-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1), whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower interaction with CK2. Quite interestingly, they strongly stimulated ABCG2 ATPase activity, in contrast to ketonic derivatives, suggesting distinct binding sites. In contrast, the p-quinonic indenoindoles were cytotoxic and poor ABCG2 inhibitors, whereas a partial inhibition recovery could be reached upon hydrophobic substitutions on D-ring, similarly to the ketonic derivatives.

  12. Anti-AIDS agents 87. New bio-isosteric dicamphanoyl-dihydropyranochromone (DCP) and dicamphanoyl-khellactone (DCK) analogues with potent anti-HIV activity

    Science.gov (United States)

    Liu, Hongshan; Xu, Shiqing; Cheng, Ming; Chen, Ying; Xia, Peng; Qian, Keduo; Xia, Yi; Yang, Zheng-Yu; Chen, Chin-Ho; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung

    2011-01-01

    Six 3′R,4′R-di-O-(S)-camphanoyl-2′,2′-dimethyldihydropyrano[2,3-f]chromone (DCP) and two 3′R,4′R-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK) derivatives were designed, synthesized, and evaluated for inhibition of HIV-1NL4-3 replication in TZM-bl cells. 2-Ethyl-2′-monomethyl-1′-oxa- and -1′-thia-DCP (5a, 6a), as well as 2-ethyl-1′-thia-DCP (7a) exhibited potent anti-HIV activity with EC50 values of 30, 38 and 54 nM and therapeutic indexes of 152.6, 48.0 and 100.0, respectively, which were better than or comparable to those of the lead compound 2-ethyl-DCP in the same assay. 4-Methyl-1′-thia-DCK (8a) also showed significant inhibitory activity with an EC50 of 128 nM and TI of 237.9. PMID:21871800

  13. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2.

    Science.gov (United States)

    Bretscher, Peter; Egger, Julian; Shamshiev, Abdijapar; Trötzmüller, Martin; Köfeler, Harald; Carreira, Erick M; Kopf, Manfred; Freigang, Stefan

    2015-05-01

    Exposure of biological membranes to reactive oxygen species creates a complex mixture of distinct oxidized phospholipid (OxPL) species, which contribute to the development of chronic inflammatory diseases and metabolic disorders. While the ability of OxPL to modulate biological processes is increasingly recognized, the nature of the biologically active OxPL species and the molecular mechanisms underlying their signaling remain largely unknown. We have employed a combination of mass spectrometry, synthetic chemistry, and immunobiology approaches to characterize the OxPL generated from the abundant phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and investigated their bioactivities and signaling pathways in vitro and in vivo. Our study defines epoxycyclopentenones as potent anti-inflammatory lipid mediators that mimic the signaling of endogenous, pro-resolving prostanoids by activating the transcription factor nuclear factor E2-related factor 2 (Nrf2). Using a library of OxPL variants, we identified a synthetic OxPL derivative, which alleviated endotoxin-induced lung injury and inhibited development of pro-inflammatory T helper (Th) 1 cells. These findings provide a molecular basis for the negative regulation of inflammation by lipid peroxidation products and propose a novel class of highly bioactive compounds for the treatment of inflammatory diseases.

  14. Potent Antifungal Activity of Pure Compounds from Traditional Chinese Medicine Extracts against Six Oral Candida Species and the Synergy with Fluconazole against Azole-Resistant Candida albicans

    Directory of Open Access Journals (Sweden)

    Zhimin Yan

    2012-01-01

    Full Text Available This study was designed to evaluate the in vitro antifungal activities of four traditional Chinese medicine (TCM extracts. The inhibitory effects of pseudolaric acid B, gentiopicrin, rhein, and alion were assessed using standard disk diffusion and broth microdilution assays. They were tested against six oral Candida species, Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, Candida dubliniensis, and Candida guilliermondii, including clinical isolates from HIV-negative, HIV-positive, and Sjögren's syndrome patients. It was found that pseudolaric acid B had the most potent antifungal effect and showed similar antifungal activity to all six Candida spp, and to isolates from HIV-negative, HIV-positive, and Sjögren's syndrome patients. The MIC values ranged from 16 to 128 μg/mL. More interestingly, a synergistic effect of pseudolaric acid B in combination with fluconazole was observed. We suggest that pseudolaric acid B might be a potential therapeutic fungicidal agent in treating oral candidiasis.

  15. Laboratory demonstration of a primary active mirror for space with the LATT: large aperture telescope technology

    Science.gov (United States)

    Briguglio, Runa; Biasi, Roberto; Gallieni, Daniele; Vettore, Christian; d'Amato, Francesco; Xompero, Marco; Arcidiacono, Carmelo; Lisi, Franco; Riccardi, Armando; Patauner, Christian; Lazzarini, Paolo; Tintori, Matteo; Duò, Fabrizio; Pucci, Mauro; Zuccaro Marchi, Alessandro; Maresi, Luca

    2016-07-01

    The LATT project is an ESA contract under TRP programme to demonstrate the scalability of the technology from ground-based adaptive mirrors to space active primary mirrors. A prototype spherical mirror based on a 40 cm diameter 1 mm thin glass shell with 19 contactless, voice-coil actuators and co-located position sensors have been manufactured and integrated into a final unit with an areal density lower than 20 kg/m2. Laboratory tests demonstrated the controllability with very low power budget and the survival of the fragile glass shell exposed to launch accelerations, thanks to an electrostatic locking mechanism; such achievements pushes the technology readiness level toward 5. With this prototype, the LATT project explored the feasibility of using an active and lightweight primary for space telescopes. The concept is attractive for large segmented telescopes, with surface active control to shape and co-phase them once in flight. In this paper we will describe the findings of the technological advances and the results of the environmental and optical tests.

  16. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions.

    Science.gov (United States)

    Seneviratne, Ayesh K; Bell, Gillian I; Sherman, Stephen E; Cooper, Tyler T; Putman, David M; Hess, David A

    2016-04-01

    Human umbilical cord blood (UCB) hematopoietic progenitor cells (HPC) purified for high aldehyde dehydrogenase activity (ALDH(hi) ) stimulate islet regeneration after transplantation into mice with streptozotocin-induced β cell deletion. However, ALDH(hi) cells represent a rare progenitor subset and widespread use of UCB ALDH(hi) cells to stimulate islet regeneration will require progenitor cell expansion without loss of islet regenerative functions. Here we demonstrate that prospectively purified UCB ALDH(hi) cells expand efficiently under serum-free, xeno-free conditions with minimal growth factor supplementation. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, kinetic analyses over 9 days revealed the frequency of ALDH(hi) cells diminished as culture time progressed such that total ALDH(hi) cell number was maximal (increased 3-fold) at day 6. Subsequently, day 6 expanded cells (bulk cells) were sorted after culture to reselect differentiated progeny with low ALDH-activity (ALDH(lo) subset) from less differentiated progeny with high ALDH-activity (ALDH(hi) subset). The ALDH(hi) subset retained primitive cell surface marker coexpression (32.0% ± 7.0% CD34(+) /CD38(-) cells, 37.0% ± 6.9% CD34(+) /CD133(+) cells), and demonstrated increased hematopoietic colony forming cell function compared with the ALDH(lo) subset. Notably, bulk cells or ALDH(lo) cells did not possess the functional capacity to lower hyperglycemia after transplantation into streptozotocin-treated NOD/SCID mice. However, transplantation of the repurified ALDH(hi) subset significantly reduced hyperglycemia, improved glucose tolerance, and increased islet-associated cell proliferation and capillary formation. Thus, expansion and delivery of reselected UCB cells that retain high ALDH-activity after short-term culture represents an improved strategy for the development of cellular therapies to enhance islet regeneration in situ.

  17. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  18. RemoveDEBRIS: An in-orbit active debris removal demonstration mission

    Science.gov (United States)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Navarathinam, Nimal; Kadhem, Haval; Salmon, Thierry; Pisseloup, Aurélien; Joffre, Eric; Chabot, Thomas; Retat, Ingo; Axthelm, Robert; Barraclough, Simon; Ratcliffe, Andrew; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2016-10-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated. Most of the objects launched into space are still orbiting the Earth and today these objects represent a threat as the presence of space debris incurs risk of collision and damage to operational satellites. A credible solution has emerged over the recent years: actively removing debris objects by capturing them and disposing of them. This paper provides an update to the mission baseline and concept of operations of the EC FP7 RemoveDEBRIS mission drawing on the expertise of some of Europe's most prominent space institutions in order to demonstrate key active debris remove (ADR) technologies in a low-cost ambitious manner. The mission will consist of a microsatellite platform (chaser) that ejects 2 CubeSats (targets). These targets will assist with a range of strategically important ADR technology demonstrations including net capture, harpoon capture and vision-based navigation using a standard camera and LiDAR. The chaser will also host a drag sail for orbital lifetime reduction. The mission baseline has been revised to take into account feedback from international and national space policy providers in terms of risk and compliance and a suitable launch option is selected. A launch in 2017 is targeted. The RemoveDEBRIS mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  19. Demonstration of a 4-Sensor Folded Sangac Sensor Array with Active Phase Biasing Scheme

    Institute of Scientific and Technical Information of China (English)

    Zhang-Qi Song; Ming-Ye Yang; Xue-Liang Zhang; Yong-Ming Hu

    2008-01-01

    A 4-sensor folded Sagnae sensor array with an active phase biasing scheme is presented. The overlapping of the signal and noise pulse is avoided through a time division multiplexing scheme and the noise pulses is eliminated almost completely. The scheme can address 16 sensors when the repeat frequency of input pulse is at 68.3 kHz. The alternative phase bias technique is demonstrated, which can provide sensors with stable phase bias. The future benefit of this technique is that the 1/f noise in the circuit can be suppressed.

  20. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci.

    Science.gov (United States)

    Sandiford, Stephanie; Upton, Mathew

    2012-03-01

    We describe the discovery, purification, characterization, and expression of an antimicrobial peptide, epidermicin NI01, which is an unmodified bacteriocin produced by Staphylococcus epidermidis strain 224. It is a highly cationic, hydrophobic, plasmid-encoded peptide that exhibits potent antimicrobial activity toward a wide range of pathogenic Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), enterococci, and biofilm-forming S. epidermidis strains. Purification of the peptide was achieved using a combination of hydrophobic interaction, cation exchange, and high-performance liquid chromatography (HPLC). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis yielded a molecular mass of 6,074 Da, and partial sequence data of the peptide were elucidated using a combination of tandem mass spectrometry (MS/MS) and de novo sequencing. The draft genome sequence of the producing strain was obtained using 454 pyrosequencing technology, thus enabling the identification of the structural gene using the de novo peptide sequence data previously obtained. Epidermicin NI01 contains 51 residues with four tryptophan and nine lysine residues, and the sequence showed approximately 50% identity to peptides lacticin Z, lacticin Q, and aureocin A53, all of which belong to a new family of unmodified type II-like bacteriocins. The peptide is active in the nanomolar range against S. epidermidis, MRSA isolates, and vancomycin-resistant enterococci. Other unique features displayed by epidermicin include a high degree of protease stability and the ability to retain antimicrobial activity over a pH range of 2 to 10, and exposure to the peptide does not result in development of resistance in susceptible isolates. In this study we also show the structural gene alone can be cloned into Escherichia coli strain BL21(DE3), and expression yields active peptide.

  1. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease.

    Science.gov (United States)

    Salman, Ibrahim M; Sarma Kandukuri, Divya; Harrison, Joanne L; Hildreth, Cara M; Phillips, Jacqueline K

    2015-01-01

    Chronic kidney disease (CKD) is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK) rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n = 16) were instrumented for telemetric recording of RSNA and MAP. At 12-13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2) and central chemoreflex (hypercapnia: 7% CO2) activation and acute stress (open-field exposure), were measured. As indicators of renal function, urinary protein (UPro) and creatinine (UCr) levels were assessed. LPK rats had higher resting RSNA (1.2 ± 0.1 vs. 0.6 ± 0.1 μV, p dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways.

  2. The impact of initiation: Early onset marijuana smokers demonstrate altered Stroop performance and brain activation

    Directory of Open Access Journals (Sweden)

    K.A. Sagar

    2015-12-01

    Full Text Available Marijuana (MJ use is on the rise, particularly among teens and emerging adults. This poses serious public health concern, given the potential deleterious effects of MJ on the developing brain. We examined 50 chronic MJ smokers divided into early onset (regular MJ use prior to age 16; n = 24 and late onset (age 16 or later; n = 26, and 34 healthy control participants (HCs. All completed a modified Stroop Color Word Test during fMRI. Results demonstrated that MJ smokers exhibited significantly poorer performance on the Interference subtest of the Stroop, as well as altered patterns of activation in the cingulate cortex relative to HCs. Further, early onset MJ smokers exhibited significantly poorer performance relative to both HCs and late onset smokers. Additionally, earlier age of MJ onset as well as increased frequency and magnitude (grams/week of MJ use were predictive of poorer Stroop performance. fMRI results revealed that while late onset smokers demonstrated a more similar pattern of activation to the control group, a different pattern was evident in the early onset group. These findings underscore the importance of assessing age of onset and patterns of MJ use and support the need for widespread education and intervention efforts among youth.

  3. Design, Synthesis and Antitumor Activity of Novel link-bridge and B-Ring Modified Combretastatin A-4 (CA-4) Analogues as Potent Antitubulin Agents

    Science.gov (United States)

    Duan, Yong-Tao; Man, Ruo-Jun; Tang, Dan-Jie; Yao, Yong-Fang; Tao, Xiang-Xiang; Yu, Chen; Liang, Xin-Yi; Makawana, Jigar A.; Zou, Mei-Juan; Wang, Zhong-Chang; Zhu, Hai-Liang

    2016-01-01

    A series of 12 novel acylhydrazone, chalcone and amide–bridged analogues of combretastatin A-4 were designed and synthesized toward tubulin. All these compounds were determined by elemental analysis, 1H NMR, and MS. Among them, compound 7 with acylhydrazone-bridge, bearing a benzyl at the indole-N position, was identified as a potent antiproliferative agent against a panel of cancer cell lines with IC50 values ranging from 0.08 to 35.6 μM. In contrast, its cytotoxic effects on three normal human cells were minimal. Cellular studies have revealed that the induction of apoptosis by compound 7 was associated with a collapse of mitochondrial membrane potential, accumulation of reactive oxygen species, alterations in the expression of some cell cycle-related proteins (Cyclin B1, Cdc25c, Cdc2, P21) and some apoptosis-related proteins (Bax, PARP, Bcl-2, Caspase3). The docking mode showed the binding posture of CA-4 and compound 7 are similar in the colchicine-binding pocket of tubulin, as confirmed by colchicine-tubulin competitive binding assay, tubulin polymerization inhibitory activity, extracellular protein expression determination assay and confocal immunofluorescence microscopy. In vivo study, compound 7 effectively inhibited A549 xenograft tumor growth without causing significant loss of body weight suggesting that compound 7 is a promising new antimitotic agent with clinical potential. PMID:27138035

  4. Enabling virtual screening of potent and safer antimicrobial agents against noma: mtk-QSBER model for simultaneous prediction of antibacterial activities and ADMET properties.

    Science.gov (United States)

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2015-01-01

    Neglected diseases are infections that thrive mainly among underdeveloped countries, particularly those belonging to regions found in Asia, Africa, and America. One of the most complex diseases is noma, a dangerous health condition characterized by a polymicrobial and opportunistic nature. The search for potent and safer antibacterial agents against this disease is therefore a goal of particular interest. Chemoinformatics can be used to rationalize the discovery of drug candidates, diminishing time and financial resources. However, in the case of noma, there is no in silico model available for its use in the discovery of efficacious antibacterial agents. This work is devoted to report the first mtk-QSBER model, which integrates dissimilar kinds of chemical and biological data. The model was generated with the aim of simultaneously predicting activity against bacteria present in noma, and ADMET (absorption, distribution, metabolism, elimination, toxicity) parameters. The mtk-QSBER model was constructed by employing a large and heterogeneous dataset of chemicals and displayed accuracies higher than 90% in both training and prediction sets. We confirmed the practical applicability of the model by predicting multiple profiles of the investigational antibacterial drug delafloxacin, and the predictions converged with the experimental reports. To date, this is the first model focused on the virtual search for desirable anti-noma agents.

  5. Optimization and structure-activity relationships of a series of potent inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as novel antimicrobial agents.

    Science.gov (United States)

    Kumar, Nag S; Amandoron, Emily A; Cherkasov, Artem; Finlay, B Brett; Gong, Huansheng; Jackson, Linda; Kaur, Sukhbir; Lian, Tian; Moreau, Anne; Labrière, Christophe; Reiner, Neil E; See, Raymond H; Strynadka, Natalie C; Thorson, Lisa; Wong, Edwin W Y; Worrall, Liam; Zoraghi, Roya; Young, Robert N

    2012-12-15

    A novel series of hydrazones were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK has been identified as one of the most highly connected 'hub proteins' in MRSA. PK has been shown to be critical for bacterial survival which makes it a potential target for development of novel antibiotics and the high degree of connectivity implies it should be very sensitive to mutations and thus less able to develop resistance. PK is not unique to bacteria and thus a critical requirement for such a PK inhibitor would be that it does not inhibit the homologous human enzyme(s) at therapeutic concentrations. Several MRSA PK inhibitors (including 8d) were identified using in silico screening combined with enzyme assays and were found to be selective for bacterial enzyme compared to four human PK isoforms (M1, M2, R and L). However these lead compounds did not show significant inhibitory activity for MRSA growth presumably due to poor bacterial cell penetration. Structure-activity relationship (SAR) studies were carried out on 8d and led us to discover more potent compounds with enzyme inhibiting activities in the low nanomolar range and some were found to effectively inhibit bacteria growth in culture with minimum inhibitory concentrations (MIC) as low as 1 μg/mL. These inhibitors bind in two elongated flat clefts found at the minor interfaces in the homo-tetrameric enzyme complex and the observed SAR is in keeping with the size and electronic constraints of these binding sites. Access to the corresponding sites in the human enzyme is blocked.

  6. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Ibrahim M Salman

    2015-08-01

    Full Text Available Chronic kidney disease (CKD is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n=16 were instrumented for telemetric recording of RSNA and MAP. At 12–13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2 and central chemoreflex (hypercapnia: 7% CO2 activation and acute stress (open-field exposure, were measured. As indicators of renal function, urinary protein (UPro and creatinine (Ucr levels were assessed. LPK rats had higher resting RSNA (1.2±0.1 vs. 0.6±0.1 µV, p<0.05 and MAP (151±8 vs. 97±2 mmHg, p<0.05 compared to Lewis. MAP was negatively correlated with Ucr (r=-0.80, p=0.002 and positively correlated with RSNA (r=0.66, p=0.014, with multiple linear regression modeling indicating the strongest correlation was with Ucr. RSNA and MAP responses to activation of the central chemoreflex and open-field stress were reduced in the LPK relative to the Lewis (all p<0.05. This is the first description of dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways.

  7. Quinine dimers are potent inhibitors of the Plasmodium falciparum chloroquine resistance transporter and are active against quinoline-resistant P. falciparum.

    Science.gov (United States)

    Hrycyna, Christine A; Summers, Robert L; Lehane, Adele M; Pires, Marcos M; Namanja, Hilda; Bohn, Kelsey; Kuriakose, Jerrin; Ferdig, Michael; Henrich, Philipp P; Fidock, David A; Kirk, Kiaran; Chmielewski, Jean; Martin, Rowena E

    2014-03-21

    Chloroquine (CQ) resistance in the human malaria parasite Plasmodium falciparum is primarily conferred by mutations in the "chloroquine resistance transporter" (PfCRT). The resistance-conferring form of PfCRT (PfCRT(CQR)) mediates CQ resistance by effluxing the drug from the parasite's digestive vacuole, the acidic compartment in which CQ exerts its antiplasmodial effect. PfCRT(CQR) can also decrease the parasite's susceptibility to other quinoline drugs, including the current antimalarials quinine and amodiaquine. Here we describe interactions between PfCRT(CQR) and a series of dimeric quinine molecules using a Xenopus laevis oocyte system for the heterologous expression of PfCRT and using an assay that detects the drug-associated efflux of H(+) ions from the digestive vacuole in parasites that harbor different forms of PfCRT. The antiplasmodial activities of dimers 1 and 6 were also examined in vitro (against drug-sensitive and drug-resistant strains of P. falciparum) and in vivo (against drug-sensitive P. berghei). Our data reveal that the quinine dimers are the most potent inhibitors of PfCRT(CQR) reported to date. Furthermore, the lead compounds (1 and 6) were not effluxed by PfCRT(CQR) from the digestive vacuole but instead accumulated to very high levels within this organelle. Both 1 and 6 exhibited in vitro antiplasmodial activities that were inversely correlated with CQ. Moreover, the additional parasiticidal effect exerted by 1 and 6 in the drug-resistant parasites was attributable, at least in part, to their ability to inhibit PfCRT(CQR). This highlights the potential for devising new antimalarial therapies that exploit inherent weaknesses in a key resistance mechanism of P. falciparum.

  8. Single-domain antibody-based and linker-free bispecific antibodies targeting FcγRIII induce potent antitumor activity without recruiting regulatory T cells.

    Science.gov (United States)

    Rozan, Caroline; Cornillon, Amélie; Pétiard, Corinne; Chartier, Martine; Behar, Ghislaine; Boix, Charlotte; Kerfelec, Brigitte; Robert, Bruno; Pèlegrin, André; Chames, Patrick; Teillaud, Jean-Luc; Baty, Daniel

    2013-08-01

    Antibody-dependent cell-mediated cytotoxicity, one of the most prominent modes of action of antitumor antibodies, suffers from important limitations due to the need for optimal interactions with Fcγ receptors. In this work, we report the design of a new bispecific antibody format, compact and linker-free, based on the use of llama single-domain antibodies that are capable of circumventing most of these limitations. This bispecific antibody format was created by fusing single-domain antibodies directed against the carcinoembryonic antigen and the activating FcγRIIIa receptor to human Cκ and CH1 immunoglobulin G1 domains, acting as a natural dimerization motif. In vitro and in vivo characterization of these Fab-like bispecific molecules revealed favorable features for further development as a therapeutic molecule. They are easy to produce in Escherichia coli, very stable, and elicit potent lysis of tumor cells by human natural killer cells at picomolar concentrations. Unlike conventional antibodies, they do not engage inhibitory FcγRIIb receptor, do not compete with serum immunoglobulins G for receptor binding, and their cytotoxic activity is independent of Fc glycosylation and FcγRIIIa polymorphism. As opposed to anti-CD3 bispecific antitumor antibodies, they do not engage regulatory T cells as these latter cells do not express FcγRIII. Studies in nonobese diabetic/severe combined immunodeficient gamma mice xenografted with carcinoembryonic antigen-positive tumor cells showed that Fab-like bispecific molecules in the presence of human peripheral blood mononuclear cells significantly slow down tumor growth. This new compact, linker-free bispecific antibody format offers a promising approach for optimizing antibody-based therapies.

  9. Structure-Activity Studies of N-Butyl-1-deoxynojirimycin (NB-DNJ) Analogs: Discovery of Potent and Selective Aminocyclopentitol Inhibitors of GBA1 and GBA2.

    Science.gov (United States)

    Georg, Gunda Ingrid; Gu, Xingxiang; Gupta, Vijayalaxmi; Yang, Yan; Zhu, Jinyi; Carlson, Erick; Kingsley, Carolyn; Tash, Joseph; Schonbrunn, Ernst; Hawkinson, Jon

    2017-10-03

    Analogs of N-butyl-1-deoxynojirimycin (NB-DNJ) were prepared and assayed for inhibition of ceramide-specific glucosyltransferase (CGT), non-lysosomal -glucosidase 2 (GBA2) and the lysosomal -glucosidase 1 (GBA1). Compounds 6a-6f that carry sterically demanding nitrogen substituents, and compound 14, devoid of the C3 and C5 hydroxyl groups present in DNJ/NB-DGJ (N-butyl-deoxygalactojirimycin showed no inhibitory activity for CGT or GBA2. Inversion of stereochemistry at C4 of N-(n-butyl)- and N-(n-nonyl)-DGJ (compounds 25) also led to a loss of activity in these assays. The aminocyclopentitols N-(n-butyl)- (36a), N-(n-nonyl)-4-amino-5-(hydroxymethyl)cyclopentane- (36b), and N-(1-(pentyloxy)methyl)adamantan-1-yl)-1,2,3-triol (36f), were selective inhibitors of GBA1 and GBA2 that did not inhibit CGT (>1mM) with the exception of 36f, which inhibited CGT with an IC50 of 1 mM. The N-butyl analog 36a was 1000-fold selective for inhibiting GBA1 over GBA2 (Ki values of 32 nM and 3.3 μM for GBA1 and GBA2, respectively). The N-nonyl analog 36b displayed a Ki of N-(1-(pentyloxy)methyl)adamantan-1-yl) derivative 36f had Ki values of ~16 nM and 14 nM for GBA1 and GBA2, respectively. The related N-bis-substituted aminocyclopentitols were significantly less potent inhibitors than their mono-substituted analogs. The aminocyclopentitol scaffold should hold promise for further inhibitor development. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Crystallographic analysis of human hemoglobin elucidates the structural basis of the potent and dual antisickling activity of pyridyl derivatives of vanillin

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmalik, Osheiza [The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); Ghatge, Mohini S.; Musayev, Faik N.; Parikh, Apurvasena [Virginia Commonwealth University, Richmond, VA 23298 (United States); Chen, Qiukan; Yang, Jisheng [The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); Nnamani, Ijeoma [Duke University Medical Center, Durham, NC 27710 (United States); Danso-Danquah, Richmond [Virginia Commonwealth University, Richmond, VA 23298 (United States); Eseonu, Dorothy N. [Virginia Union University, Richmond, VA 23220 (United States); Asakura, Toshio [Duke University Medical Center, Durham, NC 27710 (United States); Abraham, Donald J.; Venitz, Jurgen; Safo, Martin K., E-mail: msafo@vcu.edu [Virginia Commonwealth University, Richmond, VA 23298 (United States); The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States)

    2011-11-01

    Pyridyl derivatives of vanillin increase the fraction of the more soluble oxygenated sickle hemoglobin and/or directly increase the solubility of deoxygenated sickle hemoglobin. Crystallographic analysis reveals the structural basis of the potent and dual antisickling activity of these derivatives. Vanillin has previously been studied clinically as an antisickling agent to treat sickle-cell disease. In vitro investigations with pyridyl derivatives of vanillin, including INN-312 and INN-298, showed as much as a 90-fold increase in antisickling activity compared with vanillin. The compounds preferentially bind to and modify sickle hemoglobin (Hb S) to increase the affinity of Hb for oxygen. INN-312 also led to a considerable increase in the solubility of deoxygenated Hb S under completely deoxygenated conditions. Crystallographic studies of normal human Hb with INN-312 and INN-298 showed that the compounds form Schiff-base adducts with the N-terminus of the α-subunits to constrain the liganded (or relaxed-state) Hb conformation relative to the unliganded (or tense-state) Hb conformation. Interestingly, while INN-298 binds and directs its meta-positioned pyridine-methoxy moiety (relative to the aldehyde moiety) further down the central water cavity of the protein, that of INN-312, which is ortho to the aldehyde, extends towards the surface of the protein. These studies suggest that these compounds may act to prevent sickling of SS cells by increasing the fraction of the soluble high-affinity Hb S and/or by stereospecific inhibition of deoxygenated Hb S polymerization.

  11. A chitosan based, laser activated thin film surgical adhesive, 'SurgiLux': preparation and demonstration.

    Science.gov (United States)

    Foster, L John R; Karsten, Elizabeth

    2012-10-23

    Sutures are a 4,000 year old technology that remain the 'gold-standard' for wound closure by virtue of their repair strength (~100 KPa). However, sutures can act as a nidus for infection and in many procedures are unable to effect wound repair or interfere with functional tissue regeneration.(1) Surgical glues and adhesives, such as those based on fibrin and cyanoacrylates, have been developed as alternatives to sutures for the repair of such wounds. However, current commercial adhesives also have significant disadvantages, ranging from viral and prion transfer and a lack of repair strength as with the fibrin glues, to tissue toxicity and a lack of biocompatibility for the cyanoacrylate based adhesives. Furthermore, currently available surgical adhesives tend to be gel-based and can have extended curing times which limit their application.(2) Similarly, the use of UV lasers to facilitate cross-linking mechanisms in protein-based or albumin 'solders' can lead to DNA damage while laser tissue welding (LTW) predisposes thermal damage to tissues.(3) Despite their disadvantages, adhesives and LTW have captured approximately 30% of the wound closure market reported to be in excess of US $5 billion per annum, a significant testament to the need for sutureless technology.(4) In the pursuit of sutureless technology we have utilized chitosan as a biomaterial for the development of a flexible, thin film, laser-activated surgical adhesive termed 'SurgiLux'. This novel bioadhesive uses a unique combination of biomaterials and photonics that are FDA approved and successfully used in a variety of biomedical applications and products. SurgiLux overcomes all the disadvantages associated with sutures and current surgical adhesives (see Table 1). In this presentation we report the relatively simple protocol for the fabrication of SurgiLux and demonstrate its laser activation and tissue weld strength. SurgiLux films adhere to collagenous tissue without chemical modification such as

  12. An investigation of the influence of reconceptualization of demonstrative experimental activities of optics in high school

    Directory of Open Access Journals (Sweden)

    Jair Lúcio Prados Ribeiro

    2013-08-01

    Full Text Available In this work, we analyze the influence that the use of demonstrative experiments can bring to the learning of optics. It is assumed that the development of experimental activities, when reconceptualized according to Hodson proposal, tends to contribute to the generation of cognitive conflicts when compared to traditional didactic experience. Justifications are given for an analysis of changes under a Piagetian bias, reconciled with Hodson proposal. The methodology used to structure the topics presentations was quasi-experimental, contrasting an experimental group with a control group. The measuring of the effectiveness of the suggested working method was made from a quantitative analysis, which identified some of the topics discussed had better results in learning, being more tied to the experiments carried out.

  13. Synthesis, Characterization, and In Vitro and In Vivo Evaluations of 4-(N-Docosahexaenoyl 2′, 2′-Difluorodeoxycytidine with Potent and Broad-Spectrum Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Youssef W. Naguib

    2016-01-01

    Full Text Available In this study, a new compound, 4-(N-docosahexaenoyl 2′, 2′-difluorodeoxycytidine (DHA-dFdC, was synthesized and characterized. Its antitumor activity was evaluated in cell culture and in mouse models of pancreatic cancer. DHA-dFdC is a poorly soluble, pale yellow waxy solid, with a molecular mass of 573.3 Da and a melting point of about 96°C. The activation energy for the degradation of DHA-dFdC in an aqueous Tween 80–based solution is 12.86 kcal/mol, whereas its stability is significantly higher in the presence of vitamin E. NCI-60 DTP Human Tumor Cell Line Screening revealed that DHA-dFdC has potent and broad-spectrum antitumor activity, especially in leukemia, renal, and central nervous system cancer cell lines. In human and murine pancreatic cancer cell lines, the IC50 value of DHA-dFdC was up to 105-fold lower than that of dFdC. The elimination of DHA-dFdC in mouse plasma appeared to follow a biexponential model, with a terminal phase t1/2 of about 58 minutes. DHA-dFdC significantly extended the survival of genetically engineered mice that spontaneously develop pancreatic ductal adenocarcinoma. In nude mice with subcutaneously implanted human Panc-1 pancreatic tumors, the antitumor activity of DHA-dFdC was significantly stronger than the molar equivalent of dFdC alone, DHA alone, or the physical mixture of them (1:1, molar ratio. DHA-dFdC also significantly inhibited the growth of Panc-1 tumors orthotopically implanted in the pancreas of nude mice, whereas the molar equivalent dose of dFdC alone did not show any significant activity. DHA-dFdC is a promising compound for the potential treatment of cancers in organs such as the pancreas.

  14. Rectification of SEMG as a tool to demonstrate synchronous motor unit activity during vibration.

    Science.gov (United States)

    Sebik, Oguz; Karacan, Ilhan; Cidem, Muharrem; Türker, Kemal S

    2013-04-01

    The use of surface electromyography (SEMG) in vibration studies is problematic since motion artifacts occupy the same frequency band with the SEMG signal containing information on synchronous motor unit activity. We hypothesize that using a harsher, 80-500 Hz band-pass filter and using rectification can help eliminate motion artifacts and provide a way to observe synchronous motor unit activity that is phase locked to vibration using SEMG recordings only. Multi Motor Unit (MMU) action potentials using intramuscular electrodes along with SEMG were recorded from the gastrocnemius medialis (GM) of six healthy male volunteers. Data were collected during whole body vibration, using vibration frequencies of 30 Hz, 35 Hz, 40 Hz or 50 Hz. A computer simulation was used to investigate the efficacy of filtering under different scenarios: with or without artifacts and/or motor unit synchronization. Our findings indicate that motor unit synchronization took place during WBV as verified by MMU recordings. A harsh filtering regimen along with rectification proved successful in demonstrating motor unit synchronization in SEMG recordings. Our findings were further supported by the results from the computer simulation, which indicated that filtering and rectification was efficient in discriminating motion artifacts from motor unit synchronization. We suggest that the proposed signal processing technique may provide a new methodology to evaluate the effects of vibration treatments using only SEMG. This is a major advantage, as this non-intrusive method is able to overcome movement artifacts and also indicate the synchronization of underlying motor units.

  15. Long terminal repeat sequences from virulent and attenuated equine infectious anemia virus demonstrate distinct promoter activities.

    Science.gov (United States)

    Zhou, Tao; Yuan, Xiu-Fang; Hou, Shao-Hua; Tu, Ya-Bin; Peng, Jin-Mei; Wen, Jian-Xin; Qiu, Hua-Ji; Wu, Dong-Lai; Chen, Huan-Chun; Wang, Xiao-Jun; Tong, Guang-Zhi

    2007-09-01

    In the early 1970s, the Chinese Equine Infectious Anemia Virus (EIAV) vaccine, EIAV(DLA), was developed through successive passages of a wild-type virulent virus (EIAV(L)) in donkeys in vivo and then in donkey macrophages in vitro. EIAV attenuation and cell tropism adaptation are associated with changes in both envelope and long terminal repeat (LTR). However, specific LTR changes during Chinese EIAV attenuation have not been demonstrated. In this study, we compared LTR sequences from both virulent and attenuated EIAV strains and documented the diversities of LTR sequence from in vivo and in vitro infections. We found that EIAV LTRs of virulent strains were homologous, while EIAV vaccine have variable LTRs. Interestingly, experimental inoculation of EIAV(DLA) into a horse resulted in a restriction of the LTR variation. Furthermore, LTRs from EIAV(DLA) showed higher Tat transactivated activity than LTRs from virulent strains. By using chimeric clones of wild-type LTR and vaccine LTR, the main difference of activity was mapped to the changes of R region, rather than U3 region.

  16. β-Microseminoprotein endows post coital seminal plasma with potent candidacidal activity by a calcium- and pH-dependent mechanism

    DEFF Research Database (Denmark)

    Edström Hägerwall, Anneli; Rydengård, Victoria; Fernlund, Per

    2012-01-01

    -microseminoprotein was mapped to a fragment of the C-terminal domain with no structural similarity to other known proteins. A homologous fragment from porcine β-microseminoprotein demonstrated calcium-dependent fungicidal activity in a CFU assay, suggesting this may be a common feature for members of the β...

  17. Zinc-induced modulation of SRSF6 activity alters Bim splicing to promote generation of the most potent apoptotic isoform BimS.

    Science.gov (United States)

    Hara, Hirokazu; Takeda, Tatsuya; Yamamoto, Nozomi; Furuya, Keisuke; Hirose, Kazuya; Kamiya, Tetsuro; Adachi, Tetsuo

    2013-07-01

    Bim is a member of the pro-apoptotic BH3-only Bcl-2 family of proteins. Bim gene undergoes alternative splicing to produce three predominant splicing variants (BimEL, BimL and BimS). The smallest variant BimS is the most potent inducer of apoptosis. Zinc (Zn(2+)) has been reported to stimulate apoptosis in various cell types. In this study, we examined whether Zn(2+) affects the expression of Bim in human neuroblastoma SH-SY5Y cells. Zn(2+) triggered alterations in Bim splicing and induced preferential generation of BimS, but not BimEL and BimL, in a dose- and time-dependent manner. Other metals (cadmium, cobalt and copper) and stresses (oxidative, endoplasmic reticulum and genotoxic stresses) had little or no effect on the expression of BimS. To address the mechanism of Zn(2+)-induced preferential generation of BimS, which lacks exon 4, we developed a Bim mini-gene construct. Deletion analysis using the Bim mini-gene revealed that predicted binding sites of the SR protein SRSF6, also known as SRp55, are located in the intronic region adjacent to exon 4. We also found that mutations in the predicted SRSF6-binding sites abolished generation of BimS mRNA from the mutated Bim mini-gene. In addition, a UV cross-linking assay followed by Western blotting showed that SRSF6 directly bound to the predicted binding site and Zn(2+) suppressed this binding. Moreover, Zn(2+) stimulated SRSF6 hyper-phosphorylation. TG003, a cdc2-like kinase inhibitor, partially prevented Zn(2+)-induced generation of BimS and SRSF6 hyper-phosphorylation. Taken together, our findings suggest that Zn(2+) inhibits the activity of SRSF6 and promotes elimination of exon 4, leading to preferential generation of BimS.

  18. Design, synthesis, quantum chemical studies and biological activity evaluation of pyrazole-benzimidazole derivatives as potent Aurora A/B kinase inhibitors.

    Science.gov (United States)

    Zheng, Youguang; Zheng, Ming; Ling, Xin; Liu, Yi; Xue, Yunsheng; An, Lin; Gu, Ning; Ji, Min; Jin, Min

    2013-06-15

    Novel pyrazole-benzimidazole derivatives have been designed and synthesized. The entire target compounds were determined against cancer cell lines U937, K562, A549, LoVo and HT29 and were screened for Aurora A/B kinase inhibitory activity in vitro. The compounds 7a, 7b, 7i, 7k and 7l demonstrated significant cancer cell lines and Aurora A/B kinase inhibitory activities. Molecular modeling studies suggested the derivatives have bound in the active site of Aurora A kinase through the formation of four hydrogen bonds. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity. The cellular activity of 7k was also tested by immunofluorescence.

  19. Structure-activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 2: Role of the alditol side chain stereochemistry.

    Science.gov (United States)

    Tsutsui, Nozomi; Tanabe, Genzoh; Gotoh, Genki; Morita, Nao; Nomura, Naohisa; Kita, Ayako; Sugiura, Reiko; Muraoka, Osamu

    2014-02-01

    Five alditol analogs 1b-1f of a novel glycolipid acremomannolipin A (1a), the potential Ca(2+) signal modulator isolated from Acremonium strictum, were synthesized by employing a stereoselective β-mannosylation of appropriately protected mannose with five hexitols with different stereochemistry, and their potential on modulating Ca(2+) signaling were evaluated. All these analogs were more potent compared to the original compound 1a, and proved that mannitol stereochemistry of 1a was not critical for the potent calcium signal modulating.

  20. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  1. Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme

    Directory of Open Access Journals (Sweden)

    Eugene Demchuk

    2012-03-01

    Full Text Available Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR, and structure-activity relationship (SAR models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2–3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D 13C-NMR and 1D 15N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors

  2. Modeling chemical interaction profiles: II. Molecular docking, spectral data-activity relationship, and structure-activity relationship models for potent and weak inhibitors of cytochrome P450 CYP3A4 isozyme.

    Science.gov (United States)

    Tie, Yunfeng; McPhail, Brooks; Hong, Huixiao; Pearce, Bruce A; Schnackenberg, Laura K; Ge, Weigong; Buzatu, Dan A; Wilkes, Jon G; Fuscoe, James C; Tong, Weida; Fowler, Bruce A; Beger, Richard D; Demchuk, Eugene

    2012-03-15

    Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP) enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR), and structure-activity relationship (SAR) models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2-3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D ¹³C-NMR and 1D ¹⁵N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors and 88 weak

  3. Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2: the synthesis and biological activities of RPR127963 an orally bioavailable inhibitor.

    Science.gov (United States)

    He, Wei; Myers, Michael R; Hanney, Barbara; Spada, Alfred P; Bilder, Glenda; Galzcinski, Helen; Amin, Dilip; Needle, Saul; Page, Ken; Jayyosi, Zaid; Perrone, Mark H

    2003-09-15

    RPR127963 demonstrates an excellent pharmacokinetic profile in several species and was found to be efficacious in the prevention of restenosis in a Yucatan mini-pig model upon oral administration of 1-5 mg/kg. The in vitro selectivity profile and SAR of the highly optimized PDGF-R tyrosine kinase inhibitor are highlighted.

  4. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  5. In Vitro and In Vivo Activities of Novel 2-(Thiazol-2-ylthio)-1β-Methylcarbapenems with Potent Activities against Multiresistant Gram-Positive Bacteria

    OpenAIRE

    2003-01-01

    SM-197436, SM-232721, and SM-232724 are new 1β-methylcarbapenems with a unique 4-substituted thiazol-2-ylthio moiety at the C-2 side chain. In agar dilution susceptibility testing these novel carbapenems were active against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE) with a MIC90 of ≤4 μg/ml. Furthermore, SM-232724 showed strong bactericidal activity against MRSA, in contrast to linezolid, which was bacteriostatic up to four times the MIC. SM-23272...

  6. In vitro and in vivo activities of novel 2-(thiazol-2-ylthio)-1beta-methylcarbapenems with potent activities against multiresistant gram-positive bacteria.

    Science.gov (United States)

    Ueda, Yutaka; Sunagawa, Makoto

    2003-08-01

    SM-197436, SM-232721, and SM-232724 are new 1beta-methylcarbapenems with a unique 4-substituted thiazol-2-ylthio moiety at the C-2 side chain. In agar dilution susceptibility testing these novel carbapenems were active against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE) with a MIC(90) of Enterococcus faecium, and the MIC(90) s for ampicillin-resistant E. faecium ranged between 8 and 16 micro g/ml, which were slightly higher than the value for linezolid. However, time-kill assays revealed the superior bactericidal activity of SM-232724 compared to those of quinupristin-dalfopristin and linezolid against an E. faecium strain with a 4-log reduction in CFU at four times the MIC after 24 h of exposure to antibiotics. In addition, SM-232724 significantly reduced the numbers of bacteria in a murine abscess model with the E. faecium strain: its efficacy was superior to that of linezolid, although the MICs (2 micro g/ml) of these two agents are the same. Among gram-negative bacteria, these three carbapenems were highly active against Haemophilus influenzae (including ampicillin-resistant strains), Moraxella catarrhalis, and Bacteroides fragilis, and showed antibacterial activity equivalent to that of imipenem for Escherichia coli, Klebsiella pneumoniae, and Proteus spp. Thus, these new carbapenems are promising candidates for agents to treat nosocomial bacterial infections by gram-positive and gram-negative bacteria, especially multiresistant gram-positive cocci, including MRSA and vancomycin-resistant enterococci.

  7. Deactivation of the inferior colliculus by cooling demonstrates intercollicular modulation of neuronal activity

    Directory of Open Access Journals (Sweden)

    Llwyd David Orton

    2012-12-01

    Full Text Available The auditory pathways coursing through the brainstem are organised bilaterally in mirror image about the midline and at several levels the two sides are interconnected. One of the most prominent points of interconnection is the commissure of the inferior colliculus (CoIC. Anatomical studies have revealed that these fibres make reciprocal connections which follow the tonotopic organisation of the inferior colliculus (IC, and that the commissure contains both excitatory and, albeit fewer, inhibitory fibres. The role of these connections in sound processing is largely unknown. Here we describe a method to address this question in the anaesthetised guinea pig. We used a cryoloop placed on one IC to produce reversible deactivation while recording electrophysiological responses to sounds in both ICs. We recorded single units, multi-unit clusters and local field potentials (LFPs before, during and after cooling. The degree and spread of cooling was measured with a thermocouple placed in the IC and other auditory structures. Cooling sufficient to eliminate firing was restricted to the IC contacted by the cryoloop. The temperature of other auditory brainstem structures, including the contralateral IC and the cochlea were minimally affected. Cooling below 20 °C reduced or eliminated the firing of action potentials in frequency laminae at depths corresponding to characteristic frequencies up to ~8 kHz. Modulation of neural activity also occurred in the un-cooled IC with changes in single unit firing and LFPs. Components of LFPs signalling lemniscal afferent input to the IC showed little change in amplitude or latency with cooling, whereas the later components, which likely reflect inter- and intra-collicular processing, showed marked changes in form and amplitude. We conclude that the cryoloop is an effective method of selectively deactivating one IC in guinea pig, and demonstrate that auditory processing in the IC is strongly influenced by the other.

  8. A Single-Domain Llama Antibody Potently Inhibits the Enzymatic Activity of Botulinum Neurotoxin by Binding to the Non-Catalytic [alpha]-Exosite Binding Region

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jianbo; Thompson, Aaron A.; Fan, Yongfeng; Lou, Jianlong; Conrad, Fraser; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Stevens, Raymond C.; Marks, James D. (UIUC); (Scripps); (UCSF)

    2010-08-13

    Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K{sub d}) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K{sub d} for BoNT/A Lc of 1.47 x 10{sup -10} M and an IC{sub 50} (50% inhibitory concentration) of 4.7 x 10{sup -10} M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 {angstrom} resolution. The structure reveals that the Aa1 VHH binds in the {alpha}-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc {alpha}-exosite as a target for inhibitor development.

  9. Plasiatine, an Unprecedented Indole-Phenylpropanoid Hybrid from Plantago asiatica as a Potent Activator of the Nonreceptor Protein Tyrosine Phosphatase Shp2

    Science.gov (United States)

    Gao, Zhong-Hua; Shi, Yi-Ming; Qiang, Zhe; Wang, Xia; Shang, Shan-Zhai; Yang, Yan; Du, Bao-Wen; Peng, Hui-Pan; Ji, Xu; Li, Honglin; Wang, Fei; Xiao, Wei-Lie

    2016-04-01

    Plasiatine (1), isolated from the seeds of Plantago asiatica, is an unprecedented indole analogue linked to a phenylpropanoid moiety via a carbon bond that builds up a novel heteromeric construction with a C19N2 scaffold. Its structure was determined by spectroscopic data and computational evidence. Notably, experimental assay demonstrated that 1 significantly enhanced the activity of the nonreceptor protein tyrosine phosphatase Shp2 in vitro in a concentration-dependent manner with an EC50 value of 0.97 μM, and activated phosphorylation of ERK, a known target of Shp2. Moreover, plasiatine (1) promoted hepatocellular HepG2 cells migration. Molecular docking suggested that plasiatine (1) binds to the catalytic cleft of Shp2. These results identified plasiatine (1) as the first small molecule Shp2 activator, and it warrants further investigation as a novel pharmaceutical tool to study the function of Shp2 in tumorigenesis.

  10. Inducible activation of MyD88 and CD40 in CAR T-cells results in controllable and potent antitumor activity in preclinical solid tumor models.

    Science.gov (United States)

    Mata, Melinda; Gerken, Claudia; Nguyen, Phuong; Krenciute, Giedre; Spencer, David M; Gottschalk, Stephen

    2017-08-11

    Adoptive immunotherapy with T-cells expressing chimeric antigen receptors (CARs) has had limited success for solid tumors in early phase clinical studies. We reasoned that introducing into CAR T-cells an inducible co-stimulatory (iCO) molecule consisting of a chemical inducer of dimerization (CID)-binding domain and the MyD88 and CD40 signaling domains would improve and control CAR T-cell activation. In the presence of CID, T-cells expressing HER2-CARζ and a MyD88/CD40-based iCO molecule (HER2ζ.iCO T-cells) had superior T-cell proliferation, cytokine production, and ability to sequentially kill targets in vitro relative to HER2ζ.iCO T-cells without CID and T-cells expressing HER2-CAR.CD28ζ. HER2ζ.iCO T-cells with CID also significantly improved survival in vivo in two xenograft models. Repeat injections of CID were able to further increase the antitumor activity of HER2ζ.iCO T-cells in vivo. Thus, expressing MyD88/CD40-based iCO molecules in CAR T-cells has the potential to improve the efficacy of CAR T-cell therapy approaches for solid tumors. Copyright ©2017, American Association for Cancer Research.

  11. In Situ Sediment Treatment Using Activated Carbon: A Demonstrated Sediment Cleanup Technology

    Science.gov (United States)

    Patmont, Clayton R; Ghosh, Upal; LaRosa, Paul; Menzie, Charles A; Luthy, Richard G; Greenberg, Marc S; Cornelissen, Gerard; Eek, Espen; Collins, John; Hull, John; Hjartland, Tore; Glaza, Edward; Bleiler, John; Quadrini, James

    2015-01-01

    This paper reviews general approaches for applying activated carbon (AC) amendments as an in situ sediment treatment remedy. In situ sediment treatment involves targeted placement of amendments using installation options that fall into two general approaches: 1) directly applying a thin layer of amendments (which potentially incorporates weighting or binding materials) to surface sediment, with or without initial mixing; and 2) incorporating amendments into a premixed, blended cover material of clean sand or sediment, which is also applied to the sediment surface. Over the past decade, pilot- or full-scale field sediment treatment projects using AC—globally recognized as one of the most effective sorbents for organic contaminants—were completed or were underway at more than 25 field sites in the United States, Norway, and the Netherlands. Collectively, these field projects (along with numerous laboratory experiments) have demonstrated the efficacy of AC for in situ treatment in a range of contaminated sediment conditions. Results from experimental studies and field applications indicate that in situ sequestration and immobilization treatment of hydrophobic organic compounds using either installation approach can reduce porewater concentrations and biouptake significantly, often becoming more effective over time due to progressive mass transfer. Certain conditions, such as use in unstable sediment environments, should be taken into account to maximize AC effectiveness over long time periods. In situ treatment is generally less disruptive and less expensive than traditional sediment cleanup technologies such as dredging or isolation capping. Proper site-specific balancing of the potential benefits, risks, ecological effects, and costs of in situ treatment technologies (in this case, AC) relative to other sediment cleanup technologies is important to successful full-scale field application. Extensive experimental studies and field trials have shown that when

  12. Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated

    Science.gov (United States)

    Bhatt, Ramakrishna T.

    2001-01-01

    Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without

  13. Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites.

    Science.gov (United States)

    Siddiqui, Mahwish; Ahmad, Malik Shoaib; Wahab, Atia-Tul-; Yousuf, Sammer; Fatima, Narjis; Naveed Shaikh, Nimra; Rahman, Atta-Ur-; Choudhary, M Iqbal

    2017-01-01

    Seven metabolites were obtained from the microbial transformation of anabolic-androgenic steroid mibolerone (1) with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina. Their structures were determined as 10β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (2), 6β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (3), 6β,10β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (4), 11β,17β-dihydroxy-(20-hydroxymethyl)-7α,17α-dimethylestr-4-en-3-one (5), 1α,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (6), 1α,11β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (7), and 11β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (8), on the basis of spectroscopic studies. All metabolites, except 8, were identified as new compounds. This study indicates that C. blakesleeana, and C. echinulata are able to catalyze hydroxylation at allylic positions, while M. phaseolina can catalyze hydroxylation of CH2 and CH3 groups of substrate 1. Mibolerone (1) was found to be a moderate inhibitor of β-glucuronidase enzyme (IC50 = 42.98 ± 1.24 μM) during random biological screening, while its metabolites 2-4, and 8 were found to be inactive. Mibolerone (1) was also found to be significantly active against Leishmania major promastigotes (IC50 = 29.64 ± 0.88 μM). Its transformed products 3 (IC50 = 79.09 ± 0.06 μM), and 8 (IC50 = 70.09 ± 0.05 μM) showed a weak leishmanicidal activity, while 2 and 4 were found to be inactive. In addition, substrate 1 (IC50 = 35.7 ± 4.46 μM), and its metabolite 8 (IC50 = 34.16 ± 5.3 μM) exhibited potent cytotoxicity against HeLa cancer cell line (human cervical carcinoma). Metabolite 2 (IC50 = 46.5 ± 5.4 μM) also showed a significant cytotoxicity, while 3 (IC50 = 107.8 ± 4.0 μM) and 4 (IC50 = 152.5 ± 2.15 μM) showed weak cytotoxicity against HeLa cancer cell line. Compound 1 (IC50 = 46.3 ± 11.7 μM), and its transformed products 2 (IC50 = 43.3 ± 7.7 μM), 3 (IC50 = 65.6 ± 2.5 μM), and 4 (IC50 = 89.4 ± 2.7

  14. 20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells

    Science.gov (United States)

    Kim, Tae-Kang; Janjetovic, Zorica; Tuckey, Robert C.; Bieniek, Radoslaw; Yue, Junming; Li, Wei; Chen, Jianjun; Nguyen, Minh N.; Tang, Edith K. Y.; Miller, Duane; Chen, Tai C.; Holick, Michael

    2011-01-01

    20-hydroxyvitamin D2 [20(OH)D2] inhibits DNA synthesis in epidermal keratinocytes, melanocytes, and melanoma cells in a dose- and time-dependent manner. This inhibition is dependent on cell type, with keratinocytes and melanoma cells being more sensitive than normal melanocytes. The antiproliferative activity of 20(OH)D2 is similar to that of 1,25(OH)2D3 and of newly synthesized 1,20(OH)2D2 but significantly higher than that of 25(OH)D3. 20(OH)D2 also displays tumorostatic effects. In keratinocytes 20(OH)D2 inhibits expression of cyclins and stimulates involucrin expression. It also stimulates CYP24 expression, however, to a significantly lower degree than that by 1,25(OH)2D3 or 25(OH)D3. 20(OH)D2 is a poor substrate for CYP27B1 with overall catalytic efficiency being 24- and 41-fold lower than for 25(OH)D3 with the mouse and human enzymes, respectively. No conversion of 20(OH)D2 to 1,20(OH)2D2 was detected in intact HaCaT keratinocytes. 20(OH)D2 also demonstrates anti-leukemic activity but with lower potency than 1,25(OH)2D3. The phenotypic effects of 20(OH)D2 are mediated through interaction with the vitamin D receptor (VDR) as documented by attenuation of cell proliferation after silencing of VDR, by enhancement of the inhibitory effect through stable overexpression of VDR and by the demonstration that 20(OH)D2 induces time-dependent translocation of VDR from the cytoplasm to the nucleus at a comparable rate to that for 1,25(OH)2D3. In vivo tests show that while 1,25(OH)2D3 at doses as low as 0.8 μg/kg induces calcium deposits in the kidney and heart, 20(OH)D2 is devoid of such activity even at doses as high as 4 μg/kg. Silencing of CY27B1 in human keratinocytes showed that 20(OH)D2 does not require its transformation to 1,20(OH)2D2 for its biological activity. Thus 20(OH)D2 shows cell-type dependent antiproliferative and prodifferentiation activities through activation of VDR, while having no detectable toxic calcemic activity, and is a poor substrate for CYP

  15. An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps

    Science.gov (United States)

    Jennings, Laura D.; Keller, Steven W.

    2005-01-01

    An interactive classroom activity that includes two-step reaction of unwrapping and eating chocolate candies is described which brings not only the reaction intermediate, but also the reactants and products into macroscopic view. The qualitative activation barriers of both steps can be adjusted independently.

  16. Demonstration of bacteriocin activity in bovine and bison strains of Pasteurella multocida. [UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chengappa, M.M.; Carter, G.R.

    1977-08-01

    Of 33 strains of Pasteurella multocida examined, 14 showed bacteriocin activity and 17 were susceptible to bacteriocin. The activity was increased by about twofold if the cultures were induced with ultraviolet radiation; however, no increase in bacteriocin activity was observed if the potential producer strains were induced with mitomycin C. The bacteriocin activity of potential producer strains was increased if CaCl/sub 2/ was incorporated in the medium. The patterns of bacteriocin susceptibility indicate that these substances may ultimately contribute to a typing scheme for the species. An extra-chromosomal genetic element was not detected when a potential producer strain was not detected when a potential producer strain was tested by the dye-buoyant density gradient method. This fact suggests that the genetic material responsible for bacteriocin activity in P multocida is located on the host chromosome proper.

  17. Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates.

    Science.gov (United States)

    Forbes, Louisa V; Sjögren, Tove; Auchère, Françoise; Jenkins, David W; Thong, Bob; Laughton, David; Hemsley, Paul; Pairaudeau, Garry; Turner, Rufus; Eriksson, Håkan; Unitt, John F; Kettle, Anthony J

    2013-12-20

    The neutrophil enzyme myeloperoxidase (MPO) promotes oxidative stress in numerous inflammatory pathologies by producing hypohalous acids. Its inadvertent activity is a prime target for pharmacological control. Previously, salicylhydroxamic acid was reported to be a weak reversible inhibitor of MPO. We aimed to identify related hydroxamates that are good inhibitors of the enzyme. We report on three hydroxamates as the first potent reversible inhibitors of MPO. The chlorination activity of purified MPO was inhibited by 50% by a 5 nm concentration of a trifluoromethyl-substituted aromatic hydroxamate, HX1. The hydroxamates were specific for MPO in neutrophils and more potent toward MPO compared with a broad range of redox enzymes and alternative targets. Surface plasmon resonance measurements showed that the strength of binding of hydroxamates to MPO correlated with the degree of enzyme inhibition. The crystal structure of MPO-HX1 revealed that the inhibitor was bound within the active site cavity above the heme and blocked the substrate channel. HX1 was a mixed-type inhibitor of the halogenation activity of MPO with respect to both hydrogen peroxide and halide. Spectral analyses demonstrated that hydroxamates can act variably as substrates for MPO and convert the enzyme to a nitrosyl ferrous intermediate. This property was unrelated to their ability to inhibit MPO. We propose that aromatic hydroxamates bind tightly to the active site of MPO and prevent it from producing hypohalous acids. This mode of reversible inhibition has potential for blocking the activity of MPO and limiting oxidative stress during inflammation.

  18. Demonstration of alternative and classical complement pathway activity in colostrum from buffalo (Bubalus bubalis).

    Science.gov (United States)

    Matheswaran, K; Dhinakar Raj, G; Nachimuthu, K

    2003-09-01

    Buffalo colostrum caused lysis of unsensitized red blood cells (RBC) from sheep, goats, rabbits and chickens. RBC from cattle and buffalo were resistant to lysis. That lysis was due to the presence of natural antibodies to these RBC was ruled out since there was no reduction in haemolytic titres even after adsorption with the respective RBC. The addition of EGTA to the diluent had no effect on the haemolytic activity. These findings indicate the presence of alternative complement pathway (ACP) activity in buffalo colostrum. The haemolytic activity of buffalo complement for unsensitized rabbit RBC was reduced to very low levels by heating at 50 degrees C for 45 min. Treatment with zymosan also inhibited the haemolytic activity, while inulin had no effect. The maximum activity of ACP occurred in the presence of 4 mmol/L Mg(2+) in the diluent. The range of ACP activities in colostrum from buffaloes varied from 4.06 to 8.48 CH50 units/ml. Using a standard system for titrating the classical complement pathway and rabbit red blood cells sensitized with goat haemolysin, the range of complement activity in buffalo colostrum was 4.81-6.77 CH50/ml.

  19. Demonstrations of LSS active vibration control technology on representative ground-based testbeds

    Science.gov (United States)

    Hyland, David C.; Phillips, Douglas J.; Collins, Emmanuel G., Jr.

    1991-01-01

    This paper describes two experiments which successfully demonstrate control of flexible structures. The first experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center, while the second experiment was conducted using the Multi-Hex Prototype structure. The paper concludes with some remarks on the lessons learned from conducting these experiments.

  20. Strategies for preventing occupational exposure to potent compounds.

    Science.gov (United States)

    Calhoun, Dean M; Coler, Angela B; Nieusma, Joe L

    2011-02-01

    Occupational exposure to active pharmaceutical ingredients in a manufacturing or laboratory environmental can cause unintended health effects in workers handling these compounds. Occupational health professionals in the pharmaceutical industry have responded to this hazard recognition by employing strategies for the risk evaluation and management of potent APIs, otherwise known by the term 'potent compounds'. The purpose of this paper is to provide an overview of the necessary strategy components for preventing occupational exposure to potent compounds.

  1. Studies on the oxidizing system in Holt's medium for histochemical demonstration of esterase activity

    DEFF Research Database (Denmark)

    Kirkeby, S; Blecher, S R

    1978-01-01

    cells contain an esterase activity which is not inhibited by conventional SH blocking agents, nor by high concentrations of FFC. From these results it appears that the mode of action of FFC in Holt's medium is as follows. At low concentrations FFC appears to act primarily as a catalytic agent......Esterase activity in guinea-pig thyroid and mouse epididymis epithelial cells has been studied using 5-bromoindoxyl acetate as substrate. The pattern of esterase activity in the thyroid of the guinea-pig is constant, irrespective of whether ferri-ferrocyanide (FFC) or certain copper compounds...... are used as oxidizing agents in the incubation medium. The intensity of the coloured reaction product is increased when cobalt or manganese are added to the incubation medium. Activity is depressed by high concentrations of FFC when resent in incubation medium or preincubational buffer only. Epididymis...

  2. House dust extracts contain potent immunological adjuvants

    NARCIS (Netherlands)

    Beukelman, C.J.; Dijk, H. van; Aerts, P.C.; Rademaker, P.M.; Berrens, L.; Willers, J.M.N.

    1987-01-01

    A crude aqueous extract of house dust and two house dust subfractions were tested for adjuvant activity in a sensitivity assay performed in mice. Evidence is presented that house dust contains at least two potent immunological adjuvants. One of these, present in both subfractions, was probably endot

  3. A Potent HER3 Monoclonal Antibody That Blocks Both Ligand-Dependent and -Independent Activities: Differential Impacts of PTEN Status on Tumor Response.

    Science.gov (United States)

    Xiao, Zhan; Carrasco, Rosa A; Schifferli, Kevin; Kinneer, Krista; Tammali, Ravinder; Chen, Hong; Rothstein, Ray; Wetzel, Leslie; Yang, Chunning; Chowdhury, Partha; Tsui, Ping; Steiner, Philipp; Jallal, Bahija; Herbst, Ronald; Hollingsworth, Robert E; Tice, David A

    2016-04-01

    HER3/ERBB3 is a kinase-deficient member of the EGFR family receptor tyrosine kinases (RTK) that is broadly expressed and activated in human cancers. HER3 is a compelling cancer target due to its important role in activation of the oncogenic PI3K/AKT pathway. It has also been demonstrated to confer tumor resistance to a variety of cancer therapies, especially targeted drugs against EGFR and HER2. HER3 can be activated by its ligand (heregulin/HRG), which induces HER3 heterodimerization with EGFR, HER2, or other RTKs. Alternatively, HER3 can be activated in a ligand-independent manner through heterodimerization with HER2 in HER2-amplified cells. We developed a fully human mAb against HER3 (KTN3379) that efficiently suppressed HER3 activity in both ligand-dependent and independent settings. Correspondingly, KTN3379 inhibited tumor growth in divergent tumor models driven by either ligand-dependent or independent mechanisms in vitro and in vivo Most intriguingly, while investigating the mechanistic underpinnings of tumor response to KTN3379, we discovered an interesting dichotomy in that PTEN loss, a frequently occurring oncogenic lesion in a broad range of cancer types, substantially blunted the tumor response in HER2-amplified cancer, but not in the ligand-driven cancer. To our knowledge, this represents the first study ascertaining the impact of PTEN loss on the antitumor efficacy of a HER3 mAb. KTN3379 is currently undergoing a phase Ib clinical trial in patients with advanced solid tumors. Our current study may help us optimize patient selection schemes for KTN3379 to maximize its clinical benefits. Mol Cancer Ther; 15(4); 689-701. ©2016 AACR.

  4. Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds

    KAUST Repository

    Li, Yongxin

    2012-09-01

    A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity. © 2012 Copyright Taylor and Francis Group, LLC.

  5. The Lytic SA Phage Demonstrate Bactericidal Activity against Mastitis Causing Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Hamza Ameer

    2016-01-01

    Full Text Available Staphylococcus aureus is the major causative agent of mastitis among dairy animals as it causes intramammary gland infection. Due to antibiotic resistance and contamination of antibiotics in the milk of diseased animals; alternative therapeutic agents are required to cure mastitis. Lytic bacteriophages and their gene products can be potential therapeutic agents against bacteria as they are host specific and less harmful than antibiotics. In this study, Staphylococcus aureus were isolated from milk samples of the infected animals and identified biochemically. SA phage was isolated from sewage water showing lytic activity against Staphylococcus aureus isolates. The highest lytic activity of bacteriophages was observed at 37°C and pH 7, and the most suitable storage condition was at 4°C. SA phage efficiently reduced bacterial growth in the bacterial reduction assay. The characterization and bacterial growth reduction activity of the bacteriophages against Staphylococcus aureus signifies their underlying potential of phage therapy against mastitis.

  6. Histochemical demonstration of activity of acid phosphatase and beta-glucuronidase in bovine incisor tooth germs

    DEFF Research Database (Denmark)

    Kirkeby, S; Salling, E; Moe, D

    1983-01-01

    Activity of acid phosphatase and beta-glucuronidase was shown in bovine preodontoblasts and preameloblasts prior to the onset of secretion. In the preameloblasts the rather weak reaction consisted of small discrete granules dispersed in the cytoplasm apical, lateral, and proximal to the nucleus....... After initiation of enamel formation, a change in localization and intensity of the colored reaction product was observed in the ameloblasts. The activity appeared stronger and was restricted to a narrow zone just apical to the nucleus. It is proposed that the acid hydrolases in the tooth forming cells...... are located to the Golgi complex. The differences in activity of acid hydrolases between bone and tooth forming cells are expounded....

  7. Salvia leriifolia Benth (Lamiaceae) extract demonstrates in vitro antioxidant properties and cholinesterase inhibitory activity.

    Science.gov (United States)

    Loizzo, Monica R; Tundis, Rosa; Conforti, Filomena; Menichini, Federica; Bonesi, Marco; Nadjafi, Farsad; Frega, Natale Giuseppe; Menichini, Francesco

    2010-12-01

    The object of the present study was to investigate the in vitro antioxidant properties and cholinesterase inhibitory activity of Salvia leriifolia Benth extracts and fractions. The functional role of herbs and spices and their constituents is a hot topic in food-related plant research. Salvia species have been used since ancient times in folk medicine for cognitive brain function and have been subjected to extensive research. Thus, we hypothesize that S leriifolia, because of its functional properties, would be a good candidate to use as a nutraceutical product for improving memory in the elderly or patients affected by Alzheimer disease (ad). To test this hypothesis, we examined the cholinesterase inhibitory activity using the modified colorimetric Ellman's method against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The n-hexane exhibited the highest activity, with inhibitory concentration 50% (IC(50)) values of 0.59 and 0.21 mg/mL, for AChE and BChE, respectively. This extract was fractionated, and 9 of these fractions (A-I) were obtained and tested. Fraction G, characterized by the presence of sesquiterpenes as major components, was the most active against AChE (IC(50) = 0.05 mg/mL). Because oxidative stress is a critical event in the pathogenesis of AD, we decided to screen the antioxidant activity (AA) using 2,2-diphenyl-1-picrylhydrazyl test, β-carotene bleaching test, and bovine brain peroxidation (thiobarbituric acid) assay. The ethyl acetate extract showed the highest activity, with IC(50) values of 2 and 33 μg/mL on β-carotene bleaching test and thiobarbituric acid test, respectively. These results suggest potential health benefits of S leriifolia extracts. However, this finding requires additional investigation in vivo.

  8. The effect of science demonstrations as a community service activity on pre-service science teachers' teaching practices

    Science.gov (United States)

    Gurel, Derya Kaltakci

    2016-03-01

    In the scope of this study, pre-service science teachers (PSST) developed and carried out science demonstrations with everyday materials for elementary school students as a community service activity. 17 PSST enrolled in the community services practices course at Kocaeli University comprised the sample of the present study. Community service practices aim to develop consciousness of social responsibility and professional skills, as well as to gain awareness of social and community problems and find solutions for pre-service teachers. With this aim, each PSST developed five science demonstration activities and their brochures during a semester. At the end of the semester, a total of 85 demonstrations were carried out at public elementary schools, which are especially located in socioeconomically poor districts of Kocaeli, Turkey. In the present case study, the effect of developing and carrying out science demonstrations for elementary school students on six of the PSST' teaching practices on density and buoyancy concept was investigated. 30-minute interviews conducted with each PSST, videos recorded during their demonstration performances, brochures they prepared for their demonstration activities, and reflection papers were used as data collection tools of the study. The results showed that community service practices with science demonstrations had positive effects on PSST' science content knowledge and pedagogical content knowledge.

  9. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma.

    Science.gov (United States)

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K

    2016-01-26

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma.

  10. Of Heart & Kidneys: Hands-On Activities for Demonstrating Organ Function & Repair

    Science.gov (United States)

    Kao, Robert M.

    2014-01-01

    A major challenge in teaching organ development and disease is deconstructing a complex choreography of molecular and cellular changes over time into a linear stepwise process for students. As an entry toward learning developmental concepts, I propose two inexpensive hands-on activities to help facilitate learning of (1) how to identify defects in…

  11. Of Heart & Kidneys: Hands-On Activities for Demonstrating Organ Function & Repair

    Science.gov (United States)

    Kao, Robert M.

    2014-01-01

    A major challenge in teaching organ development and disease is deconstructing a complex choreography of molecular and cellular changes over time into a linear stepwise process for students. As an entry toward learning developmental concepts, I propose two inexpensive hands-on activities to help facilitate learning of (1) how to identify defects in…

  12. Demonstration in human plasma of a lectin activity analogous to that of bovine conglutinin

    DEFF Research Database (Denmark)

    Baatrup, G; Thiel, S; Isager, H

    1987-01-01

    Evidence of the existence in human plasma of an activity analogous to that of bovine conglutinin is presented. The human plasma component was characterized antigenically and functionally. Human plasma was shown to agglutinate complement-coated erythrocytes in the presence of Ca2+, and this conglu...

  13. An Activity To Demonstrate the Concept of Sampling Error for the Introductory Biology Classroom.

    Science.gov (United States)

    Rutledge, Michael L.

    2001-01-01

    This activity makes students a part of an investigation that determines the frequency of a particular plant variety in a simulated population. Provides an opportunity for students to observe the inherent variability of estimates, observe the relationship between sample size and sampling error, and consider aspects of research design. (Author/SAH)

  14. Studies on the oxidizing system in Holt's medium for histochemical demonstration of esterase activity

    DEFF Research Database (Denmark)

    Kirkeby, S; Blecher, S R

    1978-01-01

    are used as oxidizing agents in the incubation medium. The intensity of the coloured reaction product is increased when cobalt or manganese are added to the incubation medium. Activity is depressed by high concentrations of FFC when resent in incubation medium or preincubational buffer only. Epididymis...

  15. Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI.

    Science.gov (United States)

    Domenech, Julio; García-Martí, G; Martí-Bonmatí, L; Barrios, C; Tormos, J M; Pascual-Leone, A

    2011-07-01

    The aetiology of idiopathic scoliosis (IS) remains unknown, but there is growing support for the possibility of an underlying neurological disorder. Functional magnetic resonance imaging (fMRI) can characterize the abnormal activation of the sensorimotor brain network in movement disorders and could provide further insights into the neuropathogenesis of IS. Twenty subjects were included in the study; 10 adolescents with IS (mean age of 15.2, 8 girls and 2 boys) and 10 age-matched healthy controls. The average Cobb angle of the primary curve in the IS patients was 35° (range 27°-55°). All participants underwent a block-design fMRI experiment in a 1.5-Tesla MRI scanner to explore cortical activation following a simple motor task. Rest periods alternated with activation periods during which participants were required to open and close their hand at an internally paced rate of approximately 1 Hz. Data were analyzed with Statistical Parametric Mapping (SPM5) including age, sex and laterality as nuisance variables to minimise the presence of bias in the results. Compared to controls, IS patients showed significant increases in blood oxygenation level dependent (BOLD) activity in contralateral supplementary motor area when performing the motor task with either hand. No significant differences were observed when testing between groups in the functional activation in the primary motor cortex, premotor cortex and somatosensory cortex. Additionally, the IS group showed a greater interhemispheric asymmetry index than the control group (0.30 vs. 0.13, p motor areas during movement execution in patients with IS. These findings support the hypothesis that a sensorimotor integration disorder underlies the pathogenesis of IS.

  16. Antipollution skin protection – a new paradigm and its demonstration on two active compounds

    Directory of Open Access Journals (Sweden)

    Portugal-Cohen M

    2017-05-01

    Full Text Available Meital Portugal-Cohen,1,2 Miriam Oron,1,2 Dror Cohen,1–3 Zeevi Ma’or1,2 1AHAVA Dead Sea Laboratories, Lod, Israel; 2The Dead Sea Laboratory for Skin Biochemistry and Biotechnology, Dead Sea and Arava Science Center, Masada, Israel; 3The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel Background: Urban pollution is a major source of concern for human health and is a complex of many environmental factors. The topical exposure to pollution activates cutaneous stress.Objective: In this study, we tested the antipollution protection of two active components: Dead Sea minerals (Dead Sea mineral-rich water [DSW] and anionic polysaccharide (PolluStop® [PS].Materials and methods: Two representative pollution models were studied using reconstructed epidermis: 1 mixture of pollutants (MOP containing heavy metals and atmospheric particulate matter and 2 ozone exposure. DSW and PS were topically applied alone or in combination, and their protection against pollution was assessed by testing the levels of the inflammation markers interleukin 1α (IL-1α and prostaglandin E2 (PGE2.Results: MOP exposure induced IL-1α release, which was attenuated following pre-application with DSW and PS alone or in combination. Ozone exposure induced IL-1α and PGE2 release. Pre-application with DSW or PS alone did not inhibit IL-1α and PGE2 overproduction. Only when DSW and PS were mixed together, inhibition of these inflammatory markers was observed.Conclusion: The observations reveal the potential use of active agents in combination for a selective mode of protection from urban pollution. This is because many active materials cannot solely provide a broad protection against different types of pollutants. This strategy might be beneficial for future antipollution regimen formulated in both pharmaceutical and cosmetic products. Keywords: urban pollution, dermal exposure, inflammation, oxidation, alternative skin models, antipollution

  17. The novel recreational drug 3,4-methylenedioxypyrovalerone (MDPV) is a potent psychomotor stimulant: self-administration and locomotor activity in rats.

    Science.gov (United States)

    Aarde, S M; Huang, P K; Creehan, K M; Dickerson, T J; Taffe, M A

    2013-08-01

    Recreational use of the cathinone derivative 3,4-methylenedioxypyrovalerone (MDPV; "bath salts") has increased worldwide in past years, accompanied by accounts of health and legal problems in the popular media and efforts to criminalize possession in numerous jurisdictions. Minimal information exists on the effects of MDPV in laboratory models. This study determined the effects of MDPV, alongside those of the better studied stimulant d-methamphetamine (METH), using rodent models of intravenous self-administration (IVSA), thermoregulation and locomotor activity. Male Wistar rats were trained to self-administer MDPV or METH (0.05 mg/kg/infusion, i.v.) or were prepared with radiotelemetry implants for the assessment of body temperature and activity responses to MDPV or METH (0-5.6 mg/kg s.c.). METH and MDPV were consistently self-administered within 10 training sessions (mg/kg/h; METH Mean = 0.4 and Max = 1.15; MDPV Mean = 0.9 and Max = 5.8). Dose-substitution studies demonstrated that behavior was sensitive to dose for both drugs, but MDPV (0.01-0.50 mg/kg/inf) showed greater potency and efficacy than METH (0.1-0.25 mg/kg/inf). In addition, both MDPV and METH increased locomotor activity at lower doses (0.5-1.0 mg/kg, s.c.) and transiently decreased activity at the highest dose (5.6 mg/kg, s.c.). Body temperature increased monotonically with increasing doses of METH but MDPV had a negligible effect on temperature. Stereotypy was associated with relatively high self-administered cumulative doses of MDPV (∼1.5 mg/kg/h) as well as with non-contingent MDPV administration wherein the intensity and duration of stereotypy increased as MDPV dose increased. Thus, MDPV poses a substantial threat for compulsive use that is potentially greater than that for METH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Demonstration of intuitive thinking in conditions of competitive activity depending on athletes' psychophysiological state.

    Directory of Open Access Journals (Sweden)

    Korobeynikov G.V.

    2012-07-01

    Full Text Available One investigated application of intuitive thinking, depending on the physiological status of skilled fighters in their competitive activity. In research members of the team of Ukraine in Greco-Roman wrestling participated. 29 effective throws were analysed reverse a capture from position orchestra. One analyzed the effectiveness of intuitive thinking in athletes of different weight categories and the distribution coefficients of correlation of psychophysiological functions of athletes directly in competition during championships of Ukraine, World and Europe. One found that expression of intuitive thinking is associated with weight category of skilled fighters. It is shown that the effectiveness of intuitive thinking in terms of competitive activity is related to physiological state, and, above all qualified wrestlers' neurodynamic functions.

  19. New Conjugates of Quinoxaline as Potent Antitubercular and Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Ramalingam Peraman

    2016-01-01

    Full Text Available Considering quinoxaline as a privileged structure for the design of potent intercalating agents, some new sugar conjugates of quinoxaline were synthesized and characterized by IR, 1HNMR, 13C NMR, and mass spectral data. In vitro testing for antitubercular and antimicrobial activities was performed against Mycobacterium tuberculosis H37Rv and some pathogenic bacteria. Results revealed that conjugate containing ribose moiety demonstrated the most promising activity against Mycobacteria and bacteria with minimum inhibitory concentrations (MIC of 0.65 and 2.07 μM, respectively. Other conjugates from xylose, glucose, and mannose were moderately active whilst disaccharides conjugates were found to be less active. In silico docking analysis of prototype compound revealed that ATP site of DNA gyrase B subunit could be a possible site for inhibitory action of these synthesized compounds.

  20. New Conjugates of Quinoxaline as Potent Antitubercular and Antibacterial Agents.

    Science.gov (United States)

    Peraman, Ramalingam; Kuppusamy, Rajendran; Killi, Sunil Kumar; Reddy, Y Padmanabha

    2016-01-01

    Considering quinoxaline as a privileged structure for the design of potent intercalating agents, some new sugar conjugates of quinoxaline were synthesized and characterized by IR, (1)HNMR, (13)C NMR, and mass spectral data. In vitro testing for antitubercular and antimicrobial activities was performed against Mycobacterium tuberculosis H 37 Rv and some pathogenic bacteria. Results revealed that conjugate containing ribose moiety demonstrated the most promising activity against Mycobacteria and bacteria with minimum inhibitory concentrations (MIC) of 0.65 and 2.07 μM, respectively. Other conjugates from xylose, glucose, and mannose were moderately active whilst disaccharides conjugates were found to be less active. In silico docking analysis of prototype compound revealed that ATP site of DNA gyrase B subunit could be a possible site for inhibitory action of these synthesized compounds.

  1. Cold pressor test demonstrates residual sympathetic cardiovascular activation in familial dysautonomia.

    Science.gov (United States)

    Hilz, M J; Axelrod, F B; Braeske, K; Stemper, B

    2002-04-15

    In familial dysautonomia (FD), i.e. Riley-Day-syndrome, sympathetic cardiovascular function, as well as afferent temperature and pain mediating neurons, are significantly reduced. Thus, it was questioned if cold pressor test (CPT), which normally enhances sympathetic outflow and induces peripheral vasoconstriction by the activation of thermo- and nociceptive system activation, could be used to assess sympathetic function in FD. To evaluate whether CPT can be used to assess sympathetic activation in FD, we performed CPT in 15 FD patients and 18 controls. After a 35-min resting period, participants immersed their right hand and arm up to the elbow into 0-1 degrees C cold water while we monitored heart rate (HR), respiration, beat-to-beat radial artery blood pressure (BP), and laser Doppler skin blood flow (SBF) at the right index finger pulp. From these measurements, heart rate variability parameters were calculated: root mean square of successive differences (RMSSD), coefficient of variation (CV), low and high frequency (LF, HF) power spectra of the electrocardiogram (ECG). All participants perceived cold stimulation and indicated discomfort. In controls, SBF decreased and HR and BP increased rapidly upon CPT. After 60 s, SBF indicated secondary vasodilatation in six controls, BP rise attenuated and HR returned to baseline in all controls. In the patients, SBF remained unchanged, HR and BP increased significantly, but after 50-60 s of CPT and changes were lower than in controls (p<0.05). RMSSD and CV decreased and LF increased significantly only in the controls. We conclude that CPT activates sympathetic HR and BP modulation despite impaired pain and temperature perception in FD patients. BP increase in the presence of almost unchanged SBF might be due to HR increase and to nociceptive arousal and emotionally induced catecholamine release as seen in emotional crises of FD patients. CPT assesses sympathetic cardiovascular responses independently from baroreflex

  2. Toxoplasma gondii: demonstration of intrinsic peroxidase activity during lacto-peroxidase mediated radioiodination of tachyzoites

    Energy Technology Data Exchange (ETDEWEB)

    Gallois, Y.; Tricaud, A.; Foussard, F.; Hodbert, J.; Girault, A.; Mauras, G.; Dubremetz, J.F.

    1986-01-01

    Tachyzoites of Toxoplasma gondii have been radioiodinated under various conditions with or without lactoperoxidase, with glucose oxidase being used to generate hydrogen peroxide. Erythrocytes were iodinated simultaneously as a control. In our conditions, tachyzoites were more intensely labelled in the absence of lactoperoxidase. This result can be explained by the existence of an intrinsic peroxidase activity which interfere with the exogenously added enzyme during surface radioiodination.

  3. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Grant A Howe

    Full Text Available Blockade of epidermal growth factor receptor (EGFR activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC. As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs, there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975 were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271 both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be

  4. Innovative Adaptive Control Method Demonstrated for Active Suppression of Instabilities in Engine Combustors

    Science.gov (United States)

    Kopasakis, George

    2005-01-01

    This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.

  5. Active vibration-based SHM system: demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2016-01-01

    with the system and a 3.5 month monitoring campaign was conducted while the turbine was operating normally. During the campaign, a defect – a trailing edge opening – was artificially introduced into the blade and its size was gradually increased from the original 15 cm to 45 cm. Using an unsupervised learning......This study presents a system that is able to detect defects like cracks, leading/trailing edge opening or delamination of at least 15 cm size, remotely, without stopping the wind turbine. The system is vibration-based: mechanical energy is artificially introduced by means of an electromechanical......-to-noise ratio. At the same time, the corresponding wavelength is short enough to deliver required damage detection resolution and long enough to be able to propagate the entire blade length. The paper demonstrates the system on a 225 kW Vesta s V27 wind turbine. One blade of the wind turbine was equipped...

  6. Cover Your Cough! A Short and Simple Activity to Demonstrate the Antimicrobial Effect of Desiccation

    Directory of Open Access Journals (Sweden)

    Jennifer Cook Easterwood

    2013-08-01

    Full Text Available Many undergraduate microbiology laboratory manuals include exercises demonstrating the antimicrobial effects of physical agents, such as UV light and heat, and chemical agents, such as disinfectants and antibiotics (3, 4. There is, however, a lack of exercises examining the effects of desiccation on bacterial growth and survival. This particular form of antimicrobial control is especially relevant today with an increased emphasis on coughing and sneezing into one’s sleeve or a tissue, where microbes will not contaminate hands and will eventually desiccate and die (2. Desiccation can have bacteriostatic or bactericidal effects depending on the species, the material on which the organism has desiccated, and the length of time. The absence of water can damage many cellular components, including enzymes, nucleic acids, and cell membranes (1. However, many prokaryotes have some degree of resistance to desiccation, with Escherichia coli surviving around 24 hours and Bacillus species surviving upwards of 300 years, though these numbers can vary due to a number of confounding factors (5. Some of these factors include the method by which desiccation occurred, whether desiccation occurred in a natural or laboratory situation, and the species itself (5. To address the effects of desiccation on bacterial growth and survival, a short, simple exercise was developed. By inoculating various materials with bacterial cultures and allowing them to air-dry for 24 hours, students can visualize the effects of desiccation by analyzing the growth, or lack thereof, when organisms are transferred to nutrient agar plates. This exercise has been used in a health professions microbiology course as well as a microbiology course for biology and biochemistry majors. It is short enough to be conducted during a standard lecture period or during a longer laboratory period in conjunction with other experiments demonstrating the effectiveness of physical agents on microbial

  7. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species.

    Science.gov (United States)

    Blázquez, Blas; Fresco-Taboada, Alba; Iglesias-Bexiga, Manuel; Menéndez, Margarita; García, Pedro

    2016-01-01

    The emergence and spread of antibiotic-resistant bacteria is pushing the need of alternative treatments. In this context, phage therapy is already a reality to successfully fight certain multiresistant bacteria. Among different phage gene products, murein hydrolases responsible of phage progeny liberation (also called lysins or endolysins) are weapons that target specific peptidoglycan bonds, leading to lysis and death of susceptible bacteria when added from the outside. In the pneumococcal system, all but one phage murein hydrolases reported to date share a choline-binding domain that recognizes cell walls containing choline residues in the (lipo)teichoic acids. Some purified pneumococcal or phage murein hydrolases, as well as several chimeric proteins combining natural catalytic and cell wall-binding domains (CBDs) have been used as effective antimicrobials. In this work we have constructed a novel chimeric N-acetylmuramoyl-L-alanine amidase (PL3) by fusing the catalytic domain of the Pal amidase (a phage-coded endolysin) to the CBD of the LytA amidase, the major pneumococcal autolysin. The physicochemical properties of PL3 and the bacteriolytic effect against several pneumococci (including 48 multiresistant representative strain) and related species, like Streptococcus pseudopneumoniae, Streptococcus mitis, and Streptococcus oralis, have been studied. Results have shown that low doses of PL3, in the range of 0.5-5 μg/ml, are enough to practically sterilize all choline-containing strains tested. Moreover, a single 20-μg dose of PL3 fully protected zebrafish embryos from infection by S. pneumoniae D39 strain. Importantly, PL3 keeps 95% enzymatic activity after 4 weeks at 37°C and can be lyophilized without losing activity, demonstrating a remarkable robustness. Such stability, together with a prominent efficacy against a narrow spectrum of human pathogens, confers to PL3 the characteristic to be an effective therapeutic. In addition, our results demonstrate

  8. Irciniastatin A induces potent and sustained activation of extracellular signal-regulated kinase and thereby promotes ectodomain shedding of tumor necrosis factor receptor 1 in human lung carcinoma A549 cells.

    Science.gov (United States)

    Quach, Hue Tu; Hirano, Seiya; Fukuhara, Sayuri; Watanabe, Tsubasa; Kanoh, Naoki; Iwabuchi, Yoshiharu; Usui, Takeo; Kataoka, Takao

    2015-01-01

    Irciniastatin A is a pederin-type marine product that potently inhibits translation. We have recently shown that irciniastatin A induces ectodomain shedding of tumor necrosis factor (TNF) receptor 1 with slower kinetics than other translation inhibitors. In human lung carcinoma A549 cells, irciniastatin A induced a marked and sustained activation of extracellular signal-regulated kinase (ERK) and induced little activation of p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK). Moreover, the TNF receptor 1 shedding induced by irciniastatin A was blocked by the MAP kinase/ERK kinase inhibitor U0126, but not by the p38 MAP kinase inhibitor SB203580 or the JNK inhibitor SP600125. Thus unlike other translation inhibitors that trigger ribotoxic stress response, our results show that irciniastatin A is a unique translation inhibitor that induces a potent and sustained activation of the ERK pathway, and thereby promotes the ectodomain shedding of TNF receptor 1 in A549 cells.

  9. Anti-AIDS agents 79. Design, synthesis, molecular modeling and structure-activity relationships of novel dicamphanoyl-2′,2′-dimethyldihydropyranochromone (DCP) analogs as potent anti-HIV agents

    Science.gov (United States)

    Zhou, Ting; Shi, Qian; Chen, Chin-Ho; Zhu, Hao; Huang, Li; Ho, Phong; Lee, Kuo-Hsiung

    2010-01-01

    In a continued study, 23 3′R,4′R-di-O-(−)-camphanoyl-2′,2′-dimethyldihydropyrano[2,3-f]chromone (DCP) derivatives (5–27) were synthesized, and screened for anti-HIV activity against both a non-drug-resistant NL4-3 strain and multiple reverse transcriptase (RT) inhibitor-resistant (RTMDR-1) strain, using 2-EDCP (4) and 2-MDCP (35) as controls. New DCP analogs 5, 9, 14, and 22 exhibited potent anti-HIV activity against HIVNL4-3 with EC50 and therapeutic index (TI) values ranging from 0.036 μM to 0.14 μM and from 110 to 420, respectively. Compounds 5 and 9 also exhibited good activity against RTMDR-1 (EC50 0.049 and 0.054 μM; TI 310 and 200, respectively), and were two-fold more potent than the leads 4 and 35 (EC50 0.11 and 0.19 μM; TI 60 and 58, respectively). Evaluation of water solubility showed that 5 and 22 were 5–10 times more water soluble than 4. Quantitative structure-activity relationship (QSAR) modeling results were first performed on this compound type, and the models should aid in design of future anti-HIV DCP analogs and potential clinical drug candidates. PMID:20728367

  10. Anti-AIDS agents 79. Design, synthesis, molecular modeling and structure-activity relationships of novel dicamphanoyl-2',2'-dimethyldihydropyranochromone (DCP) analogs as potent anti-HIV agents.

    Science.gov (United States)

    Zhou, Ting; Shi, Qian; Chen, Chin-Ho; Zhu, Hao; Huang, Li; Ho, Phong; Lee, Kuo-Hsiung

    2010-09-15

    In a continued study, 23 3'R,4'R-di-O-(-)-camphanoyl-2',2'-dimethyldihydropyrano[2,3-f]chromone (DCP) derivatives (5-27) were synthesized, and screened for anti-HIV activity against both a non-drug-resistant NL4-3 strain and multiple reverse transcriptase (RT) inhibitor-resistant (RTMDR-1) strain, using 2-EDCP (4) and 2-MDCP (35) as controls. New DCP analogs 5, 9, 14, and 22 exhibited potent anti-HIV activity against HIVNL4-3 with EC50 and therapeutic index (TI) values ranging from 0.036 microM to 0.14 microM and from 110 to 420, respectively. Compounds 5 and 9 also exhibited good activity against RTMDR-1 (EC50 0.049 and 0.054 microM; TI 310 and 200, respectively), and were twofold more potent than the leads 4 and 35 (EC50 0.11 and 0.19 microM; TI 60 and 58, respectively). Evaluation of water solubility showed that 5 and 22 were 5-10 times more water soluble than 4. Quantitative structure-activity relationship (QSAR) modeling results were first performed on this compound type, and the models should aid in design of future anti-HIV DCP analogs and potential clinical drug candidates.

  11. Design and synthesis of new potent anticancer benzothiazole amides and ureas featuring pyridylamide moiety and possessing dual B-Raf(V600E) and C-Raf kinase inhibitory activities.

    Science.gov (United States)

    El-Damasy, Ashraf Kareem; Lee, Ju-Hyeon; Seo, Seon Hee; Cho, Nam-Chul; Pae, Ae Nim; Keum, Gyochang

    2016-06-10

    A new series of benzothiazole amide and urea derivatives tethered with the privileged pyridylamide moiety by ether linkage at the 6-position of benzothiazole (22 final compounds) has been designed and synthesized as potent anticancer sorafenib analogs. A selected group of twelve derivatives was appraised for its antiproliferative activity over a panel of 60 human cancer cell lines at a single dose concentration of 10 μM at National Cancer Institute (NCI, USA). Compounds 4b, 5a, 5b and 5d exhibited promising growth inhibitions and thus were further tested in advanced 5-dose testing assay to determine their GI50 values. The cellular based assay results revealed that 3,5-bis-trifluoromethylphenyl (5b) urea member is the best derivative with superior potency and efficacy compared to sorafenib as well as notable extended spectrum activity covering 57 human cancer cell lines. Kinase screening of compound 5b showed its kinase inhibitory effect against both B-Raf(V600E) and C-Raf. Moreover, the most potent derivatives in cells were investigated for their RAF inhibitory activities, and the results were rationalized with the molecular docking study. Profiling of CYP450 and hERG channel inhibitory effects for the active compounds revealed their low possibilities to exhibit undesirable drug-drug interactions and cardiac side effects.

  12. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, Nicolas; Duval, Stephanie; Guilloteau, Denis; Chalon, Sylvie [Inserm, U930, Tours (France); Universite Francois Rabelais, Tours (France); CHRU de Tours, Tours (France); Katsifis, Andrew; Mattner, Filomena [Australian Nuclear Science and Technology Organisation, Radiopharmaceuticals Research Institute, Sydney (Australia); Garreau, Lucette; Vergote, Jackie; Bodard, Sylvie [Inserm, U930, Tours (France); Universite Francois Rabelais, Tours (France)

    2008-12-15

    The translocator protein (TSPO; 18 kDa), the new name of the peripheral-type benzodiazepine receptor, is localised in mitochondria of glial cells and expressed in very low concentrations in normal brain. Their expression rises after microglial activation following brain injury. Accordingly, TSPO are potential targets to evaluate neuroinflammatory changes in a variety of CNS disorders. To date, only a few effective tools are available to explore TSPO by SPECT. We characterised here 6-chloro-2-(4'iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide or CLINDE in a rat model with different stages of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intrastriatal injection of different amounts of quinolinic acid (75, 150 or 300 nmol). Six days later, two groups of rats (n = 5-6/group) were i.v. injected with [{sup 125}I]-CLINDE (0.4 MBq); one group being pre-injected with PK11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography, in vitro autoradiography ([{sup 3}H]-PK11195) and immunohistochemical studies (OX-42) were performed on brain sections. In the control group, [{sup 125}I]-CLINDE binding was significantly higher (p < 0.001) in lesioned than that in intact side. This binding disappeared in rats pre-treated with PK11195 (p<0.001), showing specific binding of CLINDE to TSPO. Ex vivo and in vitro autoradiographic studies and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated microglia. Regression analysis yielded a positive relation between the ligand binding and the degree of neuroinflammation. These results demonstrate that CLINDE is suitable for TSPO in vivo SPECT imaging to explore their involvement in neurodegenerative disorders associated with microglial activation. (orig.)

  13. Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1α activation: a novel aspect of angiogenesis in atherosclerosis.

    Science.gov (United States)

    Hutter, Randolph; Speidl, Walter S; Valdiviezo, Carolina; Sauter, Bernhard; Corti, Roberto; Fuster, Valentin; Badimon, Juan J

    2013-08-01

    Neovascularization has been linked to the progression and vulnerability of atherosclerotic lesions. Angiogenesis is increased in lipid-rich plaque. Hypoxia-inducible factor alpha (HIF-1α) is a key transcriptional regulator responding to hypoxia and activating genes, which promote angiogenesis, among them vascular endothelial growth factor (VEGF). Oxidized low-density lipoprotein (oxLDL) is generated in lipid-rich plaque by oxidative stress. It triggers an inflammatory response and was traditionally thought to inhibit endothelial cells. New data, however, suggest that oxLDL can activate HIF-1α in monocytes in a hypoxia-independent fashion. We hypothesized that HIF-1α activation in monocyte-macrophages could transmit proangiogenic effects of oxLDL linking hyperlipidemia, inflammation, and angiogenesis in atherosclerosis. First, we examined the effect of oxLDL on HIF-1α and VEGF expression in monocyte-macrophages and on their proangiogenic effect on endothelial cells in vitro in a monocyte-macrophage/endothelial co-culture model. OxLDL strongly induced HIF-1α and VEGF in monocyte-macrophages and significantly increased tube formation in co-cultured endothelial cells. HIF-1α inhibition reversed this effect. Second, we demonstrated a direct proangiogenic effect of oxLDL in an in vivo angiogenesis assay. Again, HIF-1α inhibition abrogated the proangiogenic effect of oxLDL. Third, in a rabbit atherosclerosis model, we studied the effect of dietary lipid lowering on arterial HIF-1α and VEGF expression. The administration of low-lipid diet significantly reduced the expression of both HIF-1α and VEGF, resulting in decreased plaque neovascularization. Our data point to oxLDL as a proangiogenic agent linking hyperlipidemia, inflammation, and angiogenesis in atherosclerosis. This effect is dependent on macrophages and, at least in part, on the induction of the HIF-1α pathway.

  14. First demonstration that brain CYP2D-mediated opiate metabolic activation alters analgesia in vivo

    Science.gov (United States)

    Zhou, Kaidi; Khokhar, Jibran Y.; Zhao, Bin; Tyndale, Rachel F.

    2013-01-01

    The response to centrally-acting drugs is highly variable between individuals and does not always correlate with plasma drug levels. Drug-metabolizing CYP enzymes in the brain may contribute to this variability by affecting local drug and metabolite concentrations. CYP2D metabolizes codeine to the active morphine metabolite. We investigate the effect of inhibiting brain, and not liver, CYP2D activity on codeine-induced analgesia. Rats received intracerebroventricular injections of CYP2D inhibitors (20 μg propranolol or 40 μg propafenone) or vehicle controls. Compared to vehicle-pretreated rats, inhibitor-pretreated rats had: a) lower analgesia in the tail-flick test (p0.6 and p>0.7, respectively), tested at 30 min after 30 mg/kg subcutaneous codeine, and c) lower morphine formation from codeine ex vivo by brain membranes (p0.9). Analgesia trended toward a correlation with brain morphine concentrations (p=0.07) and correlated with brain morphine to codeine ratios (p0.8) or plasma morphine to codeine ratios (p>0.8). Our findings suggest that brain CYP2D affects brain morphine levels after peripheral codeine administration, and may thereby alter codeine's therapeutic efficacy, side-effect profile and abuse liability. Brain CYPs are highly variable due to genetics, environmental factors and age, and may therefore contribute to interindividual variation in the response to centrally-acting drugs. PMID:23623752

  15. Antiproliferative activity of Eremanthus crotonoides extracts and centratherin demonstrated in brain tumor cell lines

    Directory of Open Access Journals (Sweden)

    Jonathas F. R. Lobo

    2012-12-01

    Full Text Available The genus Eremanthus is recognized by the predominance of sesquiterpene lactones from the furanoheliangolide type, a class of substances extensively tested against cancer cell lines. Thus, the species E. crotonoides (DC. Sch. Bip., Asteraceae, obtained on "restinga" vegetation was evaluated against U251 and U87-MG glioma cell lines using the MTT colorimetric assay. Dichloromethane fraction was cytotoxic to both glioblastoma multiforme cell lines. We then conducted UPLC-PDA-ESI-MS/MS analysis of the dichloromethane fraction, which allowed the identification of the sesquiterpene lactones centratherin and goyazensolide. The isolation of centratherin was performed using chromatographic techniques and the identification of this substance was confirmed according to NMR data. Cytotoxic activity of centratherin alone was also evaluated against both U251 and U87-MG cells, which showed IC50 values comparable with those obtained for the commercial anticancer drug doxorubicin. All the tested samples showed cytotoxic activity against glioblastoma multiforme cells which suggests that E. crotonoides extracts may be important sources of antiproliferative substances and that the centratherin may serve as prototype for developing new antiglioblastoma drugs.

  16. UV and Visible Light Activated TiO2 Photocatalysis of 6-Hydroxymethyluracil, a Model Compound for the Potent Cyanotoxin Cylindrospermopsin

    OpenAIRE

    Zhao, Cen; Pelaez, Miquel; Dionysiou, Dionysios; Pillai, Suresh; Byrne, John; O'Shea, Kevin

    2013-01-01

    TiO2 photocatalyses of 6-hydroxymethyl uracil (6-HOMU) a model compound for the potent cyanotoxin, cylindrospermopsin (CYN), were carried out employing visible and UV irradiation using different non-metal doped TiO2 materials, nitrogen and fluorine-TiO2 (NF-TiO2), phosphorus and fluorine-TiO2 (PF-TiO2) and sulfur-TiO2 (S-TiO2). The model compound was readily degraded under UV TiO2 photocatalysis with pseudo-first-order rate constants (k) of 2.1, 1.0, and 0.44 h−1 for NF-TiO2, PF-TiO2 and S-Ti...

  17. Rational Drug Design Leading to the Identification of a Potent 5-HT(2C) Agonist Lacking 5-HT(2B) Activity.

    Science.gov (United States)

    Chen, Gang; Cho, Sung Jin; Huang, Xi-Ping; Jensen, Niels H; Svennebring, Andreas; Sassano, Maria F; Roth, Bryan L; Kozikowski, Alan P

    2011-12-08

    The 5-HT(2C) receptor is an attractive drug target in the quest for new therapeutics to treat a variety of human disorders. We have previously undertaken a structural optimization campaign that has led to some potent and moderately selective 5-HT(2C) receptor agonists. After expanding our structure-function library, we were able to combine our datasets so as to allow the design of compounds of improved selectivity and potency. We disclose herein the structural optimization of our previously reported 5-HT(2B)/5-HT(2C) agonists, which has led to the identification of a highly selective 5-HT(2C) agonist, (+)-trans-[2-(2-cyclopropylmethoxyphenyl)cyclopropyl]methylamine hydrochloride, with an EC(50) of 55 nM and no detectable agonism at the 5-HT(2B) receptor.

  18. Transcriptome sequencing demonstrates that human papillomavirus is not active in cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Arron, Sarah T; Ruby, J Graham; Dybbro, Eric; Ganem, Don; Derisi, Joseph L

    2011-08-01

    β-Human papillomavirus (β-HPV) DNA is present in some cutaneous squamous cell carcinomas (cuSCCs), but no mechanism of carcinogenesis has been determined. We used ultra-high-throughput sequencing of the cancer transcriptome to assess whether papillomavirus transcripts are present in these cancers. In all, 67 cuSCC samples were assayed for β-HPV DNA by PCR, and viral loads were measured with type-specific quantitative PCR. A total of 31 SCCs were selected for whole transcriptome sequencing. Transcriptome libraries were prepared in parallel from the HPV18-positive HeLa cervical cancer cell line and HPV16-positive primary cervical and periungual SCCs. Of the tumors, 30% (20/67) were positive for β-HPV DNA, but there was no difference in β-HPV viral load between tumor and normal tissue (P=0.310). Immunosuppression and age were significantly associated with higher viral load (P=0.016 for immunosuppression; P=0.0004 for age). Transcriptome sequencing failed to identify papillomavirus expression in any of the skin tumors. In contrast, HPV16 and HPV18 mRNA transcripts were readily identified in primary cervical and periungual cancers and HeLa cells. These data demonstrate that papillomavirus mRNA expression is not a factor in the maintenance of cuSCCs.

  19. Using Wavelet Entropy to Demonstrate how Mindfulness Practice Increases Coordination between Irregular Cerebral and Cardiac Activities.

    Science.gov (United States)

    Sik, Hin Hung; Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Leung, Hang Kin; Hung, Yeung Sam

    2017-05-10

    In both the East and West, traditional teachings say that the mind and heart are somehow closely correlated, especially during spiritual practice. One difficulty in proving this objectively is that the natures of brain and heart activities are quite different. In this paper, we propose a methodology that uses wavelet entropy to measure the chaotic levels of both electroencephalogram (EEG) and electrocardiogram (ECG) data and show how this may be used to explore the potential coordination between the mind and heart under different experimental conditions. Furthermore, Statistical Parametric Mapping (SPM) was used to identify the brain regions in which the EEG wavelet entropy was the most affected by the experimental conditions. As an illustration, the EEG and ECG were recorded under two different conditions (normal rest and mindful breathing) at the beginning of an 8-week standard Mindfulness-based Stress Reduction (MBSR) training course (pretest) and after the course (posttest). Using the proposed method, the results consistently showed that the wavelet entropy of the brain EEG decreased during the MBSR mindful breathing state as compared to that during the closed-eye resting state. Similarly, a lower wavelet entropy of heartrate was found during MBSR mindful breathing. However, no difference in wavelet entropy during MBSR mindful breathing was found between the pretest and posttest. No correlation was observed between the entropy of brain waves and the entropy of heartrate during normal rest in all participants, whereas a significant correlation was observed during MBSR mindful breathing. Additionally, the most well-correlated brain regions were located in the central areas of the brain. This study provides a methodology for the establishment of evidence that mindfulness practice (i.e., mindful breathing) may increase the coordination between mind and heart activities.

  20. Direct evidence of swimming demonstrates active dispersal in the sea turtle "lost years".

    Science.gov (United States)

    Putman, Nathan F; Mansfield, Katherine L

    2015-05-04

    Although oceanic dispersal in larval and juvenile marine animals is widely studied, the relative contributions of swimming behavior and ocean currents to movements and distribution are poorly understood [1-4]. The sea turtle "lost years" [5] (often referred to as the surface-pelagic [6] or oceanic [7] stage) are a classic example. Upon hatching, young turtles migrate offshore and are rarely observed until they return to coastal waters as larger juveniles [5]. Sightings of small turtles downcurrent of nesting beaches and in association with drifting organisms (e.g., Sargassum algae) led to this stage being described as a "passive migration" during which turtles' movements are dictated by ocean currents [5-10]. However, laboratory and modeling studies suggest that dispersal trajectories might also be shaped by oriented swimming [11-15]. Here, we use an experimental approach designed to directly test the passive-migration hypothesis by deploying pairs of surface drifters alongside small green (Chelonia mydas) and Kemp's ridley (Lepidochelys kempii) wild-caught turtles, tracking their movements via satellite telemetry. We conclusively demonstrate that these turtles do not behave as passive drifters. In nearly all cases, drifter trajectories were uncharacteristic of turtle trajectories. Species-specific and location-dependent oriented swimming behavior, inferred by subtracting track velocity from modeled ocean velocity, contributed substantially to individual movement and distribution. These findings highlight the importance of in situ observations for depicting the dispersal of weakly swimming animals. Such observations, paired with information on the mechanisms of orientation, will likely allow for more accurate predictions of the ecological and evolutionary processes shaped by animal movement.

  1. Active Hydrophilic Components of the Medicinal Herb Salvia miltiorrhiza (Danshen Potently Inhibit Organic Anion Transporters 1 (Slc22a6 and 3 (Slc22a8

    Directory of Open Access Journals (Sweden)

    Li Wang

    2012-01-01

    Full Text Available Many active components of herbal products are small organic anions, and organic anion transporters were previously demonstrated to be a potential site of drug-drug interactions. In this study, we assessed the inhibitory effects of six hydrophilic components of the herbal medicine Danshen, lithospermic acid, protocatechuic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B, and tanshinol, on the function of the murine organic anion transporters, mOat1 and mOat3. All of Danshen components significantly inhibited mOat1- and mOat3-mediated substrate uptake (<0.001 with lithospermic acid (LSA, protocatechuic acid, rosmarinic acid (RMA, and salvianolic acid A (SAA producing virtually complete inhibition under test conditions. Kinetic analysis demonstrated that LSA, RMA, and SAA were competitive inhibitors. As such, values were estimated as 14.9±4.9 μM for LSA, 5.5±2.2 μM for RMA, and 4.9±2.2 μM for SAA on mOat1-mediated transport, and as 31.1±7.0 μM for LSA, 4.3±0.2 μM for RMA, and 21.3±7.7 μM for SAA on mOat3-mediated transport. These data suggest that herb-drug interactions may occur in vivo on the human orthologs of these transporters in situations of polypharmacy involving Danshen and clinical therapeutics known to be organic anion transporter substrates.

  2. Method of demonstrating calcium in human foot by neutron activation of (. cap alpha. , N)-sources

    Energy Technology Data Exchange (ETDEWEB)

    Zaychik, V.E.; Kondrashov, A.E.; Morukov, B.V.

    Bone demineralization during long-term exposure to weightlessness and hypokinesia is presently a universally recognized fact. A method is described which employs neutron activation analysis for a direct quantitative in vivo assay of calcium in the human foot. When the foot is exposed to neutrons, the stable nuclide Ca/sup 46/ is converted into the radionuclide Ca/sup 49/. The gamma radiation emitted by Ca/sup 49/ is then measured spectrometrically. A special device, developed for the delivery of neutrons to the foot, consists of a stainless steel tank filled with water, surrounded on the side by lithium-containing screens. A cassette with neutron sources is at the bottom of the tank and can be delivered to the desired position in channel-driver carriers. A special footrest provides support during irradiation. The spectrometry unit, consisting of 4 scintillation counters, also is equipped with a specially designed footrest. The maximum relative error of a single measurement did not exceed 4.82%. The mean equivalent dose in the foot was about 1 rem, a dose low enough to permit examinations three times a year, if necessary.

  3. Standardization of the potentizing machine and quantification of impact of potentization

    Directory of Open Access Journals (Sweden)

    Rajesh Shah

    2016-01-01

    Since ten strokes are given, torque applied at every potency is calculated as 40.43. Conclusion: Necessity for the documentation of force parameters used in the process of potentization has been identified, and a tool is developed to demonstrate it.

  4. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    Science.gov (United States)

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  5. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    Science.gov (United States)

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  6. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms.

    Science.gov (United States)

    Ong, Teik Hwa; Chitra, Ebenezer; Ramamurthy, Srinivasan; Siddalingam, Rajinikanth Paruvathanahalli; Yuen, Kah Hay; Ambu, Stephen Periathamby; Davamani, Fabian

    2017-01-01

    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.

  7. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms

    Science.gov (United States)

    Ong, Teik Hwa; Chitra, Ebenezer; Ramamurthy, Srinivasan; Siddalingam, Rajinikanth Paruvathanahalli; Yuen, Kah Hay; Ambu, Stephen Periathamby

    2017-01-01

    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections. PMID:28362873

  8. NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity.

    Science.gov (United States)

    Es-Safi, Nour-Eddine; Guyot, Sylvain; Ducrot, Paul-Henri

    2006-09-20

    The structure of a polymeric proanthocyanidin fraction isolated from pear juice was characterized by NMR, ESI/MS, and MALDI-TOF/MS analyses, and its antioxidant activity was investigated using the DPPH free radical scavenging method. The results obtained from 13C NMR analysis showed the predominance of signals representative of procyanidins. Typical signals in the chemical shift region between 70 and 90 ppm demonstrated the exclusive presence of epicatechin units. The results obtained through negative ESI/MS analysis showed singly and doubly charged ions corresponding to the molecular mass of procyanidins with a degree of polymerization up to 22. The spectra obtained through MALDI-TOF/MS analysis revealed the presence of two series of tannin oligomers. Supporting the observations from NMR spectroscopy, the first series consists of well-resolved tannin identified as procyanidin polymers units with chain lengths of up to 25. A second series of monogalloyl flavan-3-ols polymers with polymerization degree up to 25 were also detected. This is the first mass spectrometric evidence confirming the existence of galloylated procyanidin oligomers in pear fruits. Within each of these oligomers, various signals exist suggesting the presence of several oligomeric tannins. The antioxidant properties of the polymeric fraction were investigated through reduction of the DPPH free radical, and the results obtained showed that the polymeric fraction exhibited a higher antioxidant power compared to those of (+)-catechin and B3 procyanidin dimer.

  9. Irbesartan, an FDA approved drug for hypertension and diabetic nephropathy, is a potent inhibitor for hepatitis B virus entry by disturbing Na(+)-dependent taurocholate cotransporting polypeptide activity.

    Science.gov (United States)

    Wang, Xue-jun; Hu, Wei; Zhang, Ting-yu; Mao, Ying-ying; Liu, Nan-nan; Wang, Sheng-qi

    2015-08-01

    The liver-specific Na(+)-dependent taurocholate cotransporting polypeptide (NTCP) was recently identified as an entry receptor for hepatitis B virus (HBV) hepatotropic infection. In this study, an NTCP-overexpressing HepG2 cell line named HepG2.N9 susceptible to HBV infection was established using transcription activator-like effector nucleases (TALEN) technology. Using this cell line, irbesartan, the new NTCP-interfering molecule reported recently, was demonstrated here to effectively inhibit HBV infection with an IC50 of 3.3μM for hepatitis B e antigen (HBeAg) expression and exhibited no obvious cytotoxicity up to 1000μM. Irbesartan suppressed HBV uptake weakly but inhibited HBV covalently closed circular DNA (cccDNA) formation efficiently at physiological temperature. These results suggested that irbesartan targeted HBV infection at a post-uptake prior to cccDNA formation step such as the cell membrane fusion. Based on these findings, irbesartan, an FDA approved drug for hypertension and diabetic nephropathy, could be a potential candidate for treatment of HBV infection although further in vivo experiments are required.

  10. Microbiological analysis of common preservatives used in food items and demonstration of their in vitro anti-bacterial activity

    Directory of Open Access Journals (Sweden)

    Tohora Sultana

    2014-12-01

    Full Text Available Objective: To quantify the microorganisms contaminating the common preservatives used in food as well as to detect their in vitro anti-bacterial traits. Methods: A total of 9 preservatives were subjected to conventional cultural and biochemical methods for microbial enumeration. Anti-bacterial activities were demonstrated through the agar well diffusion method. Results: All samples were found to be contaminated with bacteria up to 105 CFU/g and with the fungal flora within a range of 1 01-1 02 CFU/g. Escherichia coli, Pseudomonas spp. and Staphylococcus spp. were demonstrated in most of the samples. Sodium sulfite and citric acid possessed the strongest anti-bacterial trait against all of the test bacteria. Acetic acid exhibited activity against 6 out of 8 test bacteria while vinegar exhibited the activity against 4 bacteria. Activity of salt was demonstrated only against Listeria spp. and Bacillus spp., while activity of sugar and honey was found only against Escherichia coli and Klebsiella spp., respectively. Conclusions: According to the current investigation, sodium sulfite and citric acid samples were found to be satisfactory preservatives both in terms of microbiological criteria and their antibacterial traits.

  11. Evaluation of C.L.I.N.D.E. as potent peripheral-type benzodiazepine receptor tracer in a rat model of micro-glial activation

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, N.; Guilloteau, D.; Chalon, S. [Institut National de la Sante et de la Recherche Medicale (INSERM), U619, 37 - Tours (France); Universite Francois Rabelais de Tours, 37 (France); Katsifis, A.; Mattner, F. [ANSTO, Sydney (Australia)

    2008-02-15

    The peripheral-type benzodiazepine receptors (P.B.R.) are localized in mitochondria of glial cells and are very low expressed in normal brain. Their expression rises after micro-glial activation consecutive to brain injury. Accordingly, P.B.R. are potential targets to evaluate neuro inflammatory changes in a variety of C.N.S. disorders. To date no effective tool is available to explore P.B.R. by SPECT. We characterized here 6-chloro-2-(4 iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine- 3-acetamide, C.L.I.N.D.E., in a rat model of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intra striatal injection of different amounts of quinolinic acid (Q.A.: 75, 150 or 300 nmol). One week later, 2 groups of rats (n = 5-6/group) were i.v. injected with [{sup 125}I]-C.L.I.N.D.E. (0.4 MBq), one group being pre-injected with P.K.11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography and immunohistochemical studies using O.X.-42 were performed on brain sections In the control group, [{sup 125}I]-C.L.I.N.D.E. binding was significantly higher ( p < 0.001) in lesioned than that in intact side (striatum: 0.552 {+-} 0.109 vs. 0.123 {+-} 0.012% I.D./g tissue; cortex: 0.385 {+-} 0.126 vs. 0.131 {+-} 0.007% with 300 nmol Q.A.). This binding disappeared in rats pretreated with P.K.11195 ( p < 0.001), showing specific binding of C.L.I.N.D.E. to P.B.R.. Ex vivo autoradiography and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated micro-glia. Regression analysis yielded a significant correlation ( p < 0.001) between the ligand binding and the dose of Q.A.. These results demonstrate that C.L.I.N.D.E. is suitable for P.B.R. in vivo SPECT imaging to explore their involvement in neuro degenerative disorders associated with micro-glial activation. (authors)

  12. Drug Discovery against Psoriasis: Identification of a New Potent FMS-like Tyrosine Kinase 3 (FLT3) Inhibitor, 1-(4-((1H-Pyrazolo[3,4-d]pyrimidin-4-yl)oxy)-3-fluorophenyl)-3-(5-(tert-butyl)isoxazol-3-yl)urea, That Showed Potent Activity in a Psoriatic Animal Model.

    Science.gov (United States)

    Li, Guo-Bo; Ma, Shuang; Yang, Ling-Ling; Ji, Sen; Fang, Zhen; Zhang, Guo; Wang, Li-Jiao; Zhong, Jie-Min; Xiong, Yu; Wang, Jiang-Hong; Huang, Shen-Zhen; Li, Lin-Li; Xiang, Rong; Niu, Dawen; Chen, Ying-Chun; Yang, Sheng-Yong

    2016-09-22

    Psoriasis is a chronic T-cell-mediated autoimmune disease, and FMS-like tyrosine kinase 3 (FLT3) has been considered as a potential molecular target for the treatment of psoriasis. In this investigation, structural optimization was performed on a lead compound, 1-(4-(1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)phenyl)-3-(4-chloro-3-(trifluoromethyl)phenyl)urea (1), which showed a moderate inhibitory activity againt FLT3. A series of pyrazolo[3,4-d]pyrimidine derivatives were synthesized, and structure-activity relationship analysis led to the discovery of a number of potent FLT3 inhibitors. One of the most active compounds, 1-(4-(1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-3-fluorophenyl)-3-(5-tert-butylisoxazol-3-yl)urea (18b), was then chosen for in-depth antipsoriasis studies because this compound displayed the highest potency in a preliminary antipsoriasis test. Compound 18b exhibited significant antipsoriatic effects in the K14-VEGF transgenic mouse model of psoriasis, and no recurrence was found 15 days later after the last administration. Detailed mechanisms of action of compound 18b were also investigated. Collectively, compound 18b could be a potential drug candidate for psoriasis treatment.

  13. Synthesis, chiral high performance liquid chromatographic resolution and enantiospecific activity of a potent new geranylgeranyl transferase inhibitor, 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid.

    Science.gov (United States)

    McKenna, Charles E; Kashemirov, Boris A; Błazewska, Katarzyna M; Mallard-Favier, Isabelle; Stewart, Charlotte A; Rojas, Javier; Lundy, Mark W; Ebetino, Frank H; Baron, Rudi A; Dunford, James E; Kirsten, Marie L; Seabra, Miguel C; Bala, Joy L; Marma, Mong S; Rogers, Michael J; Coxon, Fraser P

    2010-05-13

    3-(3-Pyridyl)-2-hydroxy-2-phosphonopropanoic acid (3-PEHPC, 1) is a phosphonocarboxylate (PC) analogue of 2-(3-pyridyl)-1-hydroxyethylidenebis(phosphonic acid) (risedronic acid, 2), an osteoporosis drug that decreases bone resorption by inhibiting farnesyl pyrophosphate synthase (FPPS) in osteoclasts, preventing protein prenylation. 1 has lower bone affinity than 2 and weakly inhibits Rab geranylgeranyl transferase (RGGT), selectively preventing prenylation of Rab GTPases. We report here the synthesis and biological studies of 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid (3-IPEHPC, 3), the PC analogue of minodronic acid 4. Like 1, 3 selectively inhibited Rab11 vs. Rap 1A prenylation in J774 cells, and decreased cell viability, but was 33-60x more active in these assays. After resolving 3 by chiral HPLC (>98% ee), we found that (+)-3-E1 was much more potent than (-)-3-E2 in an isolated RGGT inhibition assay, approximately 17x more potent (LED 3 microM) than (-)-3-E2 in inhibiting Rab prenylation in J774 cells and >26x more active in the cell viability assay. The enantiomers of 1 exhibited a 4-fold or smaller potency difference in the RGGT and prenylation inhibition assays.

  14. Effect of U-995, a potent shark cartilage-derived angiogenesis inhibitor, on anti-angiogenesis and anti-tumor activities.

    Science.gov (United States)

    Sheu, J R; Fu, C C; Tsai, M L; Chung, W J

    1998-01-01

    A potent angiogenesis inhibitor, U-995, has been purified from the cartilage of the blue shark (Prionace glauca). U-995 is composed of two single peptides with molecular mass of 10 and 14 kDa, respectively. U-995 was designed to study human umbilical vein endothelial cell (HUVEC) migration and proliferation in vitro and angiogenesis induced by TNF alpha in chicken chorioallantoic membrane (CAM). Furthermore, we determined the ability of U-995 to inhibiting tumor cell growth and metastasis. U-995 (15 and 30 micrograms/ml) markedly inhibited HUVEC migration and, at 15-50 micrograms/ml produced a dose-dependent decline in [3H]-thymidine incorporation. 30 and 50 micrograms/ml of U-995, when added to TNF alpha-induced angiogenesis caused discontinuous and disrupted blood vessels. Moreover, U-995 (30 micrograms/ml) markedly prevented collagenase-induced collagenolysis. In addition, when 200 micrograms U-995 was injected i.p. into mice it suppressed sarcoma-180 cell growth and B16-F10 mouse melanoma cell metastasis in vivo. These results suggest that the anti-angiogenic effects of U-995 may be be due to interference with the proliferation and migration of HUVECs as well as inhibition of collagenolysis, thereby leading to inhibition of both angiogenesis and tumor cell growth.

  15. A dodecylamine derivative of cyanocobalamin potently inhibits the activities of cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase of Caenorhabditis elegans.

    Science.gov (United States)

    Bito, Tomohiro; Yabuta, Yukinori; Ichiyanagi, Tsuyoshi; Kawano, Tsuyoshi; Watanabe, Fumio

    2014-01-01

    In this study, we showed that cyanocobalamin dodecylamine, a ribose 5'-carbamate derivative of cyanocobalamin, was absorbed and accumulated to significant levels by Caenorhabditis elegans and was not further metabolized. The levels of methylmalonic acid and homocysteine, which serve as indicators of cobalamin deficiency, were significantly increased in C. elegans treated with the dodecylamine derivative, indicating severe cobalamin deficiency. Kinetic studies show that the affinity of the cyanocobalamin dodecylamine derivative was greater for two cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase, compared with their respective coenzymes, suggesting that the dodecylamine derivative inactivated these enzymes. The dodecylamine derivative did not affect the levels of mRNAs encoding these enzymes or those of other proteins involved in intercellular cobalamin metabolism, including methylmalonyl-CoA mutase (mmcm-1), methylmalonic acidemia cobalamin A complementation group (mmaa-1), methylmalonic aciduria cblC type (cblc-1), and methionine synthase reductase (mtrr-1). In contrast, the level of the mRNAs encoding cob(I)alamin adenosyltransferase (mmab-1) was increased significantly and identical to that of cobalamin-deficient C. elegans. These results indicate that the cyanocobalamin-dodecylamine derivative acts as a potent inhibitor of cobalamin-dependent enzymes and induces severe cobalamin deficiency in C. elegans.

  16. Design and synthesis of sulfonamide-substituted diphenylpyrimidines (SFA-DPPYs) as potent Bruton's tyrosine kinase (BTK) inhibitors with improved activity toward B-cell lymphoblastic leukemia.

    Science.gov (United States)

    Liu, He; Qu, Menghua; Xu, Lina; Han, Xu; Wang, Changyuan; Shu, Xiaohong; Yao, Jihong; Liu, Kexin; Peng, Jinyong; Li, Yanxia; Ma, Xiaodong

    2017-07-28

    A new series of diphenylpyrimidine derivatives (SFA-DPPYs) were synthesized by introducing a functional sulfonamide into the C-2 aniline moiety of pyrimidine template, and then were biologically evaluated as potent Bruton's tyrosine kinase (BTK) inhibitors. Among these molecules, inhibitors 10c, 10i, 10j and 10k displayed high potency against the BTK enzyme, with IC50 values of 1.18 nM, 0.92 nM, 0.42 nM and 1.05 nM, respectively. In particular, compound 10c could remarkably inhibit the proliferation of the B lymphoma cell lines at concentrations of 6.49 μM (Ramos cells) and 13.2 μM (Raji cells), and was stronger than the novel agent spebrutinib. In addition, the inhibitory potency toward the normal PBMC cells showed that inhibitor 10c possesses low cell cytotoxicity. All these explorations indicated that molecule 10c could serve as a valuable inhibitor for B-cell lymphoblastic leukemia treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. A dodecylamine derivative of cyanocobalamin potently inhibits the activities of cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Tomohiro Bito

    2014-01-01

    Full Text Available In this study, we showed that cyanocobalamin dodecylamine, a ribose 5′-carbamate derivative of cyanocobalamin, was absorbed and accumulated to significant levels by Caenorhabditis elegans and was not further metabolized. The levels of methylmalonic acid and homocysteine, which serve as indicators of cobalamin deficiency, were significantly increased in C. elegans treated with the dodecylamine derivative, indicating severe cobalamin deficiency. Kinetic studies show that the affinity of the cyanocobalamin dodecylamine derivative was greater for two cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase, compared with their respective coenzymes, suggesting that the dodecylamine derivative inactivated these enzymes. The dodecylamine derivative did not affect the levels of mRNAs encoding these enzymes or those of other proteins involved in intercellular cobalamin metabolism, including methylmalonyl-CoA mutase (mmcm-1, methylmalonic acidemia cobalamin A complementation group (mmaa-1, methylmalonic aciduria cblC type (cblc-1, and methionine synthase reductase (mtrr-1. In contrast, the level of the mRNAs encoding cob(Ialamin adenosyltransferase (mmab-1 was increased significantly and identical to that of cobalamin-deficient C. elegans. These results indicate that the cyanocobalamin-dodecylamine derivative acts as a potent inhibitor of cobalamin-dependent enzymes and induces severe cobalamin deficiency in C. elegans.

  18. A trifunctional dextran-based nanovaccine targets and activates murine dendritic cells, and induces potent cellular and humoral immune responses in vivo.

    Directory of Open Access Journals (Sweden)

    Limei Shen

    Full Text Available Dendritic cells (DCs constitute an attractive target for specific delivery of nanovaccines for immunotherapeutic applications. Here we tested nano-sized dextran (DEX particles to serve as a DC-addressing nanocarrier platform. Non-functionalized DEX particles had no immunomodulatory effect on bone marrow (BM-derived murine DCs in vitro. However, when adsorbed with ovalbumine (OVA, DEX particles were efficiently engulfed by BM-DCs in a mannose receptor-dependent manner. A DEX-based nanovaccine containing OVA and lipopolysaccharide (LPS as a DC stimulus induced strong OVA peptide-specific CD4(+ and CD8(+ T cell proliferation both in vitro and upon systemic application in mice, as well as a robust OVA-specific humoral immune response (IgG1>IgG2a in vivo. Accordingly, this nanovaccine also raised both a more pronounced delayed-type hypersensitivity response and a stronger induction of cytotoxic CD8(+ T cells than obtained upon administration of OVA and LPS in soluble form. Therefore, DEX-based nanoparticles constitute a potent, versatile and easy to prepare nanovaccine platform for immunotherapeutic approaches.

  19. Discovery of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives as potent anticancer and antimicrobial agents and screening of anti-diabetic activity: synthesis and in vitro biological evaluation. Part 1.

    Science.gov (United States)

    Bozorov, Khurshed; Ma, Hai-Rong; Zhao, Jiang-Yu; Zhao, Hai-Qing; Chen, Hua; Bobakulov, Khayrulla; Xin, Xue-Lei; Elmuradov, Burkhon; Shakhidoyatov, Khusnutdin; Aisa, Haji A

    2014-09-12

    Series of diethyl 2,5-diaminothiophene-3,4-dicarboxylate (DDTD) derivatives: azomethines of DDTD (2a-l) have been synthesized and screened for their anticancer, antimicrobial and anti-diabetic activities. The novel synthesized compounds were characterized by (1)H, (13)C NMR, MS and FT-IR analyses. All compounds were evaluated for their antiproliferative activity against three types of cancer cell line such as T47D and MCF-7 (human breast cancer), Hela (human cervical cancer) and Ishikawa (human endometrial cancer) lines. The results showed that most compounds exhibited significant antiproliferative activity against breast cancer cells. The majority of azomethines DDTD influenced strongly against breast cancer cells T47D and MCF-7, among them compounds 2b (2.3 μM), 2c (12.1 μM), 2e (13.2 μM), 2i (14.9 μM), 2j (16.0 μM), 2k (7.1 μM), 2l (8.6 μM) manifest potent anticancer activity against cancer cell T47D than Doxorubicin (DOX, 15.5 μM). Compound 2j has shown potent activity on all three types of cancer cells concurrently and IC50 values were considerably low in comparison with positive control DOX. In addition, all compounds were tested for antimicrobial activity against Staphylococcus aureus ATCC 6538 (Gram positive bacteria), Escherichia coli ATCC 11229 (Gram negative bacteria) and Candida albicans ATCC 10231 (Fungi) strains and 2j which contains in the ring nitrofurfural fragment, showed the highest effect on the three species of microbial pathogens simultaneously. Some compounds induced enzymatic inhibition in a concentration-dependent manner on PTP-1B inhibitor.

  20. Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    George Sakoulas

    Full Text Available BACKGROUND: We evaluated the in vitro activity of a merochlorin A, a novel compound with a unique carbon skeleton, against a spectrum of clinically relevant bacterial pathogens and against previously characterized clinical and laboratory Staphylococcus aureus isolates with resistance to numerous antibiotics. METHODS: Merochlorin A was isolated and purified from a marine-derived actinomycete strain CNH189. Susceptibility testing for merochlorin A was performed against previously characterized human pathogens using broth microdilution and agar dilution methods. Cytotoxicity was assayed in tissue culture assays at 24 and 72 hours against human HeLa and mouse sarcoma L929 cell lines. RESULTS: The structure of as new antibiotic, merochlorin A, was assigned by comprehensive spectroscopic analysis. Merochlorin A demonstrated in vitro activity against Gram-positive bacteria, including Clostridium dificile, but not against Gram negative bacteria. In S. aureus, susceptibility was not affected by ribosomal mutations conferring linezolid resistance, mutations in dlt or mprF conferring resistance to daptomycin, accessory gene regulator knockout mutations, or the development of the vancomycin-intermediate resistant phenotype. Merochlorin A demonstrated rapid bactericidal activity against MRSA. Activity was lost in the presence of 20% serum. CONCLUSIONS: The unique meroterpenoid, merochlorin A demonstrated excellent in vitro activity against S. aureus and C. dificile and did not show cross-resistance to contemporary antibiotics against Gram positive organisms. The activity was, however, markedly reduced in 20% human serum. Future directions for this compound may include evaluation for topical use, coating biomedical devices, or the pursuit of chemically modified derivatives of this compound that retain activity in the presence of serum.

  1. Anxiolytic and antidepressant-like activities of the novel and potent non-imidazole histamine H3 receptor antagonist ST-1283

    Science.gov (United States)

    Bahi, Amine; Schwed, Johannes Stephan; Walter, Miriam; Stark, Holger; Sadek, Bassem

    2014-01-01

    Previous studies have suggested a potential link between histamine H3 receptors (H3R) signaling and anxiolytic-like and antidepressant-like effects. The aim of this study was to investigate the acute effects of ST-1283, a novel H3R antagonist, on anxiety-related and depression-related behaviors in comparison with those of diazepam and fluoxetine. The effects of ST-1283 were evaluated using the elevated plus maze test, open field test, marbles burying test, tail suspension test, novelty suppressed feeding test, and forced swim test in male C57BL/6 mice. The results showed that, like diazepam, ST-1283 (7.5 mg/kg) significantly modified all the parameters observed in the elevated plus maze test. In addition, ST-1283 significantly increased the amount of time spent in the center of the arena without altering general motor activity in the open field test. In the same vein, ST-1283 reduced the number of buried marbles as well as time spent digging in the marbles burying test. The tail suspension test and forced swim test showed that ST-1283 was able to reduce immobility time, like the recognized antidepressant drug fluoxetine. In the novelty suppressed feeding test, treatment with ST-1283 decreased latency to feed with no effect on food intake in the home cage. Importantly, pretreatment with the H3R agonist R-α-methylhistamine abrogated the anxiolytic and antidepressant effects of ST-1283. Taken together, the present series of studies demonstrates the novel effects of this newly synthesized H3R antagonist in a number of preclinical models of psychiatric disorders and highlights the histaminergic system as a potential therapeutic target for the treatment of anxiety-related and depression-related disorders. PMID:24920886

  2. Ampicillin in Combination with Ceftaroline, Cefepime, or Ceftriaxone Demonstrates Equivalent Activities in a High-Inoculum Enterococcus faecalis Infection Model.

    Science.gov (United States)

    Luther, Megan K; Rice, Louis B; LaPlante, Kerry L

    2016-05-01

    Ampicillin-ceftriaxone combination therapy has become a predominant treatment for serious Enterococcus faecalis infections, such as endocarditis. Unfortunately, ceftriaxone use is associated with future vancomycin-resistant enterococcus colonization. We evaluated E. faecalis in an in vitro pharmacodynamic model against simulated human concentration-time profiles of ampicillin plus ceftaroline, cefepime, ceftriaxone, or gentamicin. Ampicillin-cefepime and ampicillin-ceftaroline demonstrated activities similar to those of ampicillin-ceftriaxone against E. faecalis.

  3. Methods for demonstration of enzyme activity in muscle fibres at the muscle/bone interface in demineralized tissue

    DEFF Research Database (Denmark)

    Kirkeby, S; Vilmann, H

    1981-01-01

    A method for demonstration of activity for ATPase and various oxidative enzymes (succinic dehydrogenase, alpha-glycerophosphate dehydrogenase, and lactic dehydrogenase) in muscle/bone sections of fixed and demineralized tissue has been developed. It was found that it is possible to preserve...... with the aid of a mapping of presence of phosphomonoesterases on bone surfaces, the method may be used to study possible biochemical interactions between bone and muscle tissue at the muscle/bone interface....

  4. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines.

    Science.gov (United States)

    Cankara Pirol, Şeyma; Çalışkan, Burcu; Durmaz, Irem; Atalay, Rengül; Banoglu, Erden

    2014-11-24

    We synthesized a series of novel amide derivatives of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3-carboxylic acid and assessed their antiproliferative activities against three human cancer cell lines (Huh7, human liver; MCF7, breast and HCT116, colon carcinoma cell lines) with the sulforhodamine B assay. Compound 4j with 2-chloro-4-pyridinyl group in the amide part exhibited promising cytotoxic activity against all cell lines with IC50 values of 1.6 μM, 3.3 μM and 1.1 μM for Huh7, MCF7 and HCT116 cells, respectively, and produced dramatic cell cycle arrest at SubG1/G1 phase as an indicator of apoptotic cell death induction. On the basis of their high potency in cellular environment, these straightforward pyrazole-3-carboxamide derivatives may possess potential in the design of more potent compounds for intervention with cancer cell proliferation.

  5. Anxiolytic and antidepressant-like activities of the novel and potent non-imidazole histamine H3 receptor antagonist ST-1283

    Directory of Open Access Journals (Sweden)

    Bahi A

    2014-05-01

    Full Text Available Amine Bahi,1,* Johannes Stephan Schwed,2,3 Miriam Walter,2 Holger Stark,3 Bassem Sadek,4,* 1Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 2Institut für Pharmazeutische Chemie, Biozentrum, Johann Wolfgang Goethe University, Frankfurt, 3Heinrich Heine University Duesseldorf, Institut fuer Pharmazeutische and Medizinische Chemie, Düsseldorf, Germany; 4Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates *These authors contributed equally to this work Abstract: Previous studies have suggested a potential link between histamine H3 receptors (H3R signaling and anxiolytic-like and antidepressant-like effects. The aim of this study was to investigate the acute effects of ST-1283, a novel H3R antagonist, on anxiety-related and depression-related behaviors in comparison with those of diazepam and fluoxetine. The effects of ST-1283 were evaluated using the elevated plus maze test, open field test, marbles burying test, tail suspension test, novelty suppressed feeding test, and forced swim test in male C57BL/6 mice. The results showed that, like diazepam, ST-1283 (7.5 mg/kg significantly modified all the parameters observed in the elevated plus maze test. In addition, ST-1283 significantly increased the amount of time spent in the center of the arena without altering general motor activity in the open field test. In the same vein, ST-1283 reduced the number of buried marbles as well as time spent digging in the marbles burying test. The tail suspension test and forced swim test showed that ST-1283 was able to reduce immobility time, like the recognized antidepressant drug fluoxetine. In the novelty suppressed feeding test, treatment with ST-1283 decreased latency to feed with no effect on food intake in the home cage. Importantly, pretreatment with the H3R agonist R

  6. Cocaethylene is more potent than cocaine in mediating lethality.

    Science.gov (United States)

    Hearn, W L; Rose, S; Wagner, J; Ciarleglio, A; Mash, D C

    1991-06-01

    Cocaethylene is a pharmacologically active cocaine metabolite that is formed in the presence of ethanol by the activity of liver enzymes. The pharmacology of cocaethylene has not been extensively investigated and its acute toxicity is unknown. The acute toxicity of cocaethylene was compared to cocaine in Swiss-Webster mice. The LD50 of cocaethylene was 60.7 mg/kg and 63.8 mg/kg in female and male mice, respectively. In comparison, the LD50 of cocaine was 93.0 mg/kg in both female and male mice. These studies demonstrate that the cocaine-alcohol metabolite, cocathylene, is more potent in mediating lethality than the parent drug.

  7. Targeting Two Coagulation Cascade Proteases with a Bivalent Aptamer Yields a Potent and Antidote-Controllable Anticoagulant.

    Science.gov (United States)

    Soule, Erin E; Bompiani, Kristin M; Woodruff, Rebecca S; Sullenger, Bruce A

    2016-02-01

    Potent and rapid-onset anticoagulation is required for several clinical settings, including cardiopulmonary bypass surgery. In addition, because anticoagulation is associated with increased bleeding following surgery, the ability to rapidly reverse such robust anticoagulation is also important. Previously, we observed that no single aptamer was as potent as heparin for anticoagulating blood. However, we discovered that combinations of two aptamers were as potent as heparin. Herein, we sought to combine two individual anticoagulant aptamers into a single bivalent RNA molecule in an effort to generate a single molecule that retained the potent anticoagulant activity of the combination of individual aptamers. We created four bivalent aptamers that can inhibit Factor X/Xa and prothrombin/thrombin and anticoagulate plasma, as well as the combination of individual aptamers. Detailed characterization of the shortest bivalent aptamer indicates that each aptamer retains full binding and functional activity when presented in the bivalent context. Finally, reversal of this bivalent aptamer with a single antidote was explored, and anticoagulant activity could be rapidly turned off in a dose-dependent manner. These studies demonstrate that bivalent anticoagulant aptamers represent a novel and potent approach to actively and reversibly control coagulation.

  8. Mono- and di-halogenated histamine, histidine and carnosine derivatives are potent carbonic anhydrase I, II, VII, XII and XIV activators.

    Science.gov (United States)

    Saada, Mohamed-Chiheb; Vullo, Daniela; Montero, Jean-Louis; Scozzafava, Andrea; Supuran, Claudiu T; Winum, Jean-Yves

    2014-09-01

    Mono- and di-halogenated histamines, l-histidine methyl ester derivatives and carnosine derivatives incorporating chlorine, bromine and iodine were prepared and investigated as activators of five carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic hCA I, II and VII, and the transmembrane hCA XII and XIV. All of them were activated in a diverse manner by the investigated compounds, with a distinct activation profile.

  9. Design, synthesis, and structure-activity relationships of novel benzothiazole derivatives bearing the ortho-hydroxy N-carbamoylhydrazone moiety as potent antitumor agents.

    Science.gov (United States)

    Ma, Junjie; Chen, Dong; Lu, Kuan; Wang, Lihui; Han, Xiaoqi; Zhao, Yanfang; Gong, Ping

    2014-10-30

    A series of novel benzothiazole derivatives bearing the ortho-hydroxy N-carbamoylhydrazone moiety were designed and synthesized and their cytotoxic activities against five cancer cell lines (NCI-H226, SK-N-SH, HT29, MKN45, and MDA-MB-231) were screened in vitro. Most of them sho