WorldWideScience

Sample records for demonstrated high accuracy

  1. Demonstrating High-Accuracy Orbital Access Using Open-Source Tools

    Science.gov (United States)

    Gilbertson, Christian; Welch, Bryan

    2017-01-01

    Orbit propagation is fundamental to almost every space-based analysis. Currently, many system analysts use commercial software to predict the future positions of orbiting satellites. This is one of many capabilities that can replicated, with great accuracy, without using expensive, proprietary software. NASAs SCaN (Space Communication and Navigation) Center for Engineering, Networks, Integration, and Communications (SCENIC) project plans to provide its analysis capabilities using a combination of internal and open-source software, allowing for a much greater measure of customization and flexibility, while reducing recurring software license costs. MATLAB and the open-source Orbit Determination Toolbox created by Goddard Space Flight Center (GSFC) were utilized to develop tools with the capability to propagate orbits, perform line-of-sight (LOS) availability analyses, and visualize the results. The developed programs are modular and can be applied for mission planning and viability analysis in a variety of Solar System applications. The tools can perform 2 and N-body orbit propagation, find inter-satellite and satellite to ground station LOS access (accounting for intermediate oblate spheroid body blocking, geometric restrictions of the antenna field-of-view (FOV), and relativistic corrections), and create animations of planetary movement, satellite orbits, and LOS accesses. The code is the basis for SCENICs broad analysis capabilities including dynamic link analysis, dilution-of-precision navigation analysis, and orbital availability calculations.

  2. Continuous assessment of land mapping accuracy at High Resolution from global networks of atmospheric and field observatories -concept and demonstration

    Science.gov (United States)

    Sicard, Pierre; Martin-lauzer, François-regis

    2017-04-01

    In the context of global climate change and adjustment/resilience policies' design and implementation, there is a need not only i. for environmental monitoring, e.g. through a range of Earth Observations (EO) land "products" but ii. for a precise assessment of uncertainties of the aforesaid information that feed environmental decision-making (to be introduced in the EO metadata) and also iii. for a perfect handing of the thresholds which help translate "environment tolerance limits" to match detected EO changes through ecosystem modelling. Uncertainties' insight means precision and accuracy's knowledge and subsequent ability of setting thresholds for change detection systems. Traditionally, the validation of satellite-derived products has taken the form of intensive field campaigns to sanction the introduction of data processors in Payload Data Ground Segments chains. It is marred by logistical challenges and cost issues, reason why it is complemented by specific surveys at ground-based monitoring sites which can provide near-continuous observations at a high temporal resolution (e.g. RadCalNet). Unfortunately, most of the ground-level monitoring sites, in the number of 100th or 1000th, which are part of wider observation networks (e.g. FLUXNET, NEON, IMAGINES) mainly monitor the state of the atmosphere and the radiation exchange at the surface, which are different to the products derived from EO data. In addition they are "point-based" compared to the EO cover to be obtained from Sentinel-2 or Sentinel-3. Yet, data from these networks, processed by spatial extrapolation models, are well-suited to the bottom-up approach and relevant to the validation of vegetation parameters' consistency (e.g. leaf area index, fraction of absorbed photosynthetically active radiation). Consistency means minimal errors on spatial and temporal gradients of EO products. Test of the procedure for land-cover products' consistency assessment with field measurements delivered by worldwide

  3. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  4. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  5. High accuracy FIONA-AFM hybrid imaging

    International Nuclear Information System (INIS)

    Fronczek, D.N.; Quammen, C.; Wang, H.; Kisker, C.; Superfine, R.; Taylor, R.; Erie, D.A.; Tessmer, I.

    2011-01-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8 nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10 nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes. -- Research highlights: → Integration of fluorescent signals in AFM topography with high (<10 nm) accuracy. → Investigation of limitations and quantitative analysis of fluorescence-AFM image registration using quantum dots. → Fluorescence center tracking and display as localization probability distributions in AFM topography (FIONA-AFM). → Application of FIONA-AFM to a biological sample containing damaged DNA and the DNA repair proteins UvrA and UvrB conjugated to quantum dots.

  6. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...

  7. High accuracy wavelength calibration for a scanning visible spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Scotti, Filippo; Bell, Ronald E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2010-10-15

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies {<=}0.2 A. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of {approx}0.25 A has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision ({approx}0.005 A) is possible, allowing absolute velocity measurements within {approx}0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  8. High accuracy satellite drag model (HASDM)

    Science.gov (United States)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  9. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  10. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  11. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, Eric M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  12. Electron ray tracing with high accuracy

    International Nuclear Information System (INIS)

    Saito, K.; Okubo, T.; Takamoto, K.; Uno, Y.; Kondo, M.

    1986-01-01

    An electron ray tracing program is developed to investigate the overall geometrical and chromatic aberrations in electron optical systems. The program also computes aberrations due to manufacturing errors in lenses and deflectors. Computation accuracy is improved by (1) calculating electrostatic and magnetic scalar potentials using the finite element method with third-order isoparametric elements, and (2) solving the modified ray equation which the aberrations satisfy. Computation accuracy of 4 nm is achieved for calculating optical properties of the system with an electrostatic lens

  13. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed. copyright 1997 American Institute of Physics

  14. Read-only high accuracy volume holographic optical correlator

    Science.gov (United States)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  15. High accuracy in silico sulfotransferase models.

    Science.gov (United States)

    Cook, Ian; Wang, Ting; Falany, Charles N; Leyh, Thomas S

    2013-11-29

    Predicting enzymatic behavior in silico is an integral part of our efforts to understand biology. Hundreds of millions of compounds lie in targeted in silico libraries waiting for their metabolic potential to be discovered. In silico "enzymes" capable of accurately determining whether compounds can inhibit or react is often the missing piece in this endeavor. This problem has now been solved for the cytosolic sulfotransferases (SULTs). SULTs regulate the bioactivities of thousands of compounds--endogenous metabolites, drugs and other xenobiotics--by transferring the sulfuryl moiety (SO3) from 3'-phosphoadenosine 5'-phosphosulfate to the hydroxyls and primary amines of these acceptors. SULT1A1 and 2A1 catalyze the majority of sulfation that occurs during human Phase II metabolism. Here, recent insights into the structure and dynamics of SULT binding and reactivity are incorporated into in silico models of 1A1 and 2A1 that are used to identify substrates and inhibitors in a structurally diverse set of 1,455 high value compounds: the FDA-approved small molecule drugs. The SULT1A1 models predict 76 substrates. Of these, 53 were known substrates. Of the remaining 23, 21 were tested, and all were sulfated. The SULT2A1 models predict 22 substrates, 14 of which are known substrates. Of the remaining 8, 4 were tested, and all are substrates. The models proved to be 100% accurate in identifying substrates and made no false predictions at Kd thresholds of 100 μM. In total, 23 "new" drug substrates were identified, and new linkages to drug inhibitors are predicted. It now appears to be possible to accurately predict Phase II sulfonation in silico.

  16. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  17. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  18. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

    Science.gov (United States)

    Edgar, Robert C

    2004-01-01

    We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

  19. High-accuracy user identification using EEG biometrics.

    Science.gov (United States)

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  20. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity

    Directory of Open Access Journals (Sweden)

    Elisa Passini

    2017-09-01

    (fast/late Na+ and Ca2+ currents exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.

  1. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity.

    Science.gov (United States)

    Passini, Elisa; Britton, Oliver J; Lu, Hua Rong; Rohrbacher, Jutta; Hermans, An N; Gallacher, David J; Greig, Robert J H; Bueno-Orovio, Alfonso; Rodriguez, Blanca

    2017-01-01

    (fast/late Na + and Ca 2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca 2+ -transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.

  2. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  3. High-accuracy measurements of the normal specular reflectance

    International Nuclear Information System (INIS)

    Voarino, Philippe; Piombini, Herve; Sabary, Frederic; Marteau, Daniel; Dubard, Jimmy; Hameury, Jacques; Filtz, Jean Remy

    2008-01-01

    The French Laser Megajoule (LMJ) is designed and constructed by the French Commissariata l'Energie Atomique (CEA). Its amplifying section needs highly reflective multilayer mirrors for the flash lamps. To monitor and improve the coating process, the reflectors have to be characterized to high accuracy. The described spectrophotometer is designed to measure normal specular reflectance with high repeatability by using a small spot size of 100 μm. Results are compared with ellipsometric measurements. The instrument can also perform spatial characterization to detect coating nonuniformity

  4. Why is a high accuracy needed in dosimetry

    International Nuclear Information System (INIS)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of γ and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control

  5. Achieving High Accuracy in Calculations of NMR Parameters

    DEFF Research Database (Denmark)

    Faber, Rasmus

    quantum chemical methods have been developed, the calculation of NMR parameters with quantitative accuracy is far from trivial. In this thesis I address some of the issues that makes accurate calculation of NMR parameters so challenging, with the main focus on SSCCs. High accuracy quantum chemical......, but no programs were available to perform such calculations. As part of this thesis the CFOUR program has therefore been extended to allow the calculation of SSCCs using the CC3 method. CC3 calculations of SSCCs have then been performed for several molecules, including some difficult cases. These results show...... vibrations must be included. The calculation of vibrational corrections to NMR parameters has been reviewed as part of this thesis. A study of the basis set convergence of vibrational corrections to nuclear shielding constants has also been performed. The basis set error in vibrational correction...

  6. A high accuracy land use/cover retrieval system

    Directory of Open Access Journals (Sweden)

    Alaa Hefnawy

    2012-03-01

    Full Text Available The effects of spatial resolution on the accuracy of mapping land use/cover types have received increasing attention as a large number of multi-scale earth observation data become available. Although many methods of semi automated image classification of remotely sensed data have been established for improving the accuracy of land use/cover classification during the past 40 years, most of them were employed in single-resolution image classification, which led to unsatisfactory results. In this paper, we propose a multi-resolution fast adaptive content-based retrieval system of satellite images. Through our proposed system, we apply a Super Resolution technique for the Landsat-TM images to have a high resolution dataset. The human–computer interactive system is based on modified radial basis function for retrieval of satellite database images. We apply the backpropagation supervised artificial neural network classifier for both the multi and single resolution datasets. The results show significant improved land use/cover classification accuracy for the multi-resolution approach compared with those from single-resolution approach.

  7. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  8. High Accuracy Piezoelectric Kinemometer; Cinemometro piezoelectrico de alta exactitud (VUAE)

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Martinez, F. J.; Frutos, J. de; Pastor, C.; Vazquez Rodriguez, M.

    2012-07-01

    We have developed a portable computerized and low consumption, our system is called High Accuracy Piezoelectric Kinemometer measurement, herein VUAE. By the high accuracy obtained by VUAE it make able to use the VUAE to obtain references measurements of system for measuring Speeds in Vehicles. Therefore VUAE could be used how reference equipment to estimate the error of installed kinemometers. The VUAE was created with n (n=2) pairs of ultrasonic transmitter-receiver, herein E-Rult. The transmitters used in the n couples E-Rult generate n ultrasonic barriers and receivers receive the echoes when the vehicle crosses the barriers. Digital processing of the echoes signals let us to obtain acceptable signals. Later, by mean of cross correlation technics is possible make a highly exact estimation of speed of the vehicle. The log of the moments of interception and the distance between each of the n ultrasounds allows for a highly exact estimation of speed of the vehicle. VUAE speed measurements were compared to a speed reference system based on piezoelectric cables. (Author) 11 refs.

  9. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  10. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    2012-01-01

    -speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...

  11. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Steven E.

    2013-11-11

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

  12. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    International Nuclear Information System (INIS)

    Kelly, Steven E.

    2013-01-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol

  13. Synchrotron accelerator technology for proton beam therapy with high accuracy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo

    2009-01-01

    Proton beam therapy was applied at the beginning to head and neck cancers, but it is now extended to prostate, lung and liver cancers. Thus the need for a pencil beam scanning method is increasing. With this method radiation dose concentration property of the proton beam will be further intensified. Hitachi group has supplied a pencil beam scanning therapy system as the first one for M. D. Anderson Hospital in United States, and it has been operational since May 2008. Hitachi group has been developing proton therapy system to correspond high-accuracy proton therapy to concentrate the dose in the diseased part which is located with various depths, and which sometimes has complicated shape. The author described here on the synchrotron accelerator technology that is an important element for constituting the proton therapy system. (K.Y.)

  14. High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data

    Science.gov (United States)

    Morelli, Eugene A.

    1997-01-01

    Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.

  15. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  16. High accuracy magnetic field mapping of the LEP spectrometer magnet

    CERN Document Server

    Roncarolo, F

    2000-01-01

    The Large Electron Positron accelerator (LEP) is a storage ring which has been operated since 1989 at the European Laboratory for Particle Physics (CERN), located in the Geneva area. It is intended to experimentally verify the Standard Model theory and in particular to detect with high accuracy the mass of the electro-weak force bosons. Electrons and positrons are accelerated inside the LEP ring in opposite directions and forced to collide at four locations, once they reach an energy high enough for the experimental purposes. During head-to-head collisions the leptons loose all their energy and a huge amount of energy is concentrated in a small region. In this condition the energy is quickly converted in other particles which tend to go away from the interaction point. The higher the energy of the leptons before the collisions, the higher the mass of the particles that can escape. At LEP four large experimental detectors are accommodated. All detectors are multi purpose detectors covering a solid angle of alm...

  17. Accuracy assessment of high-rate GPS measurements for seismology

    Science.gov (United States)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  18. Accuracy assessment of cadastral maps using high resolution aerial photos

    Directory of Open Access Journals (Sweden)

    Alwan Imzahim

    2018-01-01

    Full Text Available A cadastral map is a map that shows the boundaries and ownership of land parcels. Some cadastral maps show additional details, such as survey district names, unique identifying numbers for parcels, certificate of title numbers, positions of existing structures, section or lot numbers and their respective areas, adjoining and adjacent street names, selected boundary dimensions and references to prior maps. In Iraq / Baghdad Governorate, the main problem is that the cadastral maps are georeferenced to a local geodetic datum known as Clark 1880 while the widely used reference system for navigation purpose (GPS and GNSS and uses Word Geodetic System 1984 (WGS84 as a base reference datum. The objective of this paper is to produce a cadastral map with scale 1:500 (metric scale by using aerial photographs 2009 with high ground spatial resolution 10 cm reference WGS84 system. The accuracy assessment for the cadastral maps updating approach to urban large scale cadastral maps (1:500-1:1000 was ± 0.115 meters; which complies with the American Social for Photogrammetry and Remote Sensing Standards (ASPRS.

  19. Determination of UAV position using high accuracy navigation platform

    Directory of Open Access Journals (Sweden)

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  20. Modified sine bar device measures small angles with high accuracy

    Science.gov (United States)

    Thekaekara, M.

    1968-01-01

    Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.

  1. Hardware demonstration of high-speed networks for satellite applications.

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  2. Demonstration of deterministic and high fidelity squeezing of quantum information

    DEFF Research Database (Denmark)

    Yoshikawa, J-I.; Hayashi, T-; Akiyama, T.

    2007-01-01

    , and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum...... computer....

  3. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques.

    Science.gov (United States)

    Hampp, Emily L; Chughtai, Morad; Scholl, Laura Y; Sodhi, Nipun; Bhowmik-Stoker, Manoshi; Jacofsky, David J; Mont, Michael A

    2018-05-01

    This study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements ( p  ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements ( p  ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  5. Diagnostic accuracy of high-definition CT coronary angiography in high-risk patients

    International Nuclear Information System (INIS)

    Iyengar, S.S.; Morgan-Hughes, G.; Ukoumunne, O.; Clayton, B.; Davies, E.J.; Nikolaou, V.; Hyde, C.J.; Shore, A.C.; Roobottom, C.A.

    2016-01-01

    Aim: To assess the diagnostic accuracy of computed tomography coronary angiography (CTCA) using a combination of high-definition CT (HD-CTCA) and high level of reader experience, with invasive coronary angiography (ICA) as the reference standard, in high-risk patients for the investigation of coronary artery disease (CAD). Materials and methods: Three hundred high-risk patients underwent HD-CTCA and ICA. Independent experts evaluated the images for the presence of significant CAD, defined primarily as the presence of moderate (≥50%) stenosis and secondarily as the presence of severe (≥70%) stenosis in at least one coronary segment, in a blinded fashion. HD-CTCA was compared to ICA as the reference standard. Results: No patients were excluded. Two hundred and six patients (69%) had moderate and 178 (59%) had severe stenosis in at least one vessel at ICA. The sensitivity, specificity, positive predictive value, and negative predictive value were 97.1%, 97.9%, 99% and 93.9% for moderate stenosis, and 98.9%, 93.4%, 95.7% and 98.3%, for severe stenosis, on a per-patient basis. Conclusion: The combination of HD-CTCA and experienced readers applied to a high-risk population, results in high diagnostic accuracy comparable to ICA. Modern generation CT systems in experienced hands might be considered for an expanded role. - Highlights: • Diagnostic accuracy of High-Definition CT Angiography (HD-CTCA) has been assessed. • Invasive Coronary angiography (ICA) is the reference standard. • Diagnostic accuracy of HD-CTCA is comparable to ICA. • Diagnostic accuracy is not affected by coronary calcium or stents. • HD-CTCA provides a non-invasive alternative in high-risk patients.

  6. The demonstration of the auditory ossicles by high resolution CT

    International Nuclear Information System (INIS)

    Lloyd, G.A.S.; Boulay, G.H. du; Phelps, P.D.; Pullicino, P.

    1979-01-01

    The high resolution CT scanning system introduced by EMI in 1978 has added a new dimension to computerised tomography in otology. The apparatus used for this study was an EMI CT 5005 body scanner adapted for head and neck scanning and incorporating a high resolution facility. The latter has proved most advantageous in areas of relatively high differential absorption, so that its application to the demonstration of abnormalities in the petrous temporal bone, and in particular middle ear disease, has been very rewarding. Traumatic ossicular disruptions may now be demonstrated and the high contrast of CT often shows them better than conventional hypocycloidal tomography. The stapes is also better visualised and congenital abnormalities of its superstructure have been recorded. These studies have been achieved with a very acceptable level of radiation to the eye, lens and cornea and the technique is clearly a rival to conventional pluridirectional tomography in the assessment of the petrous temporal bone. With further design improvements high resolution CT could completely replace existing techniques. (orig.) [de

  7. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  8. High Accuracy Nonlinear Control and Estimation for Machine Tool Systems

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios

    Component mass production has been the backbone of industry since the second industrial revolution, and machine tools are producing parts of widely varying size and design complexity. The ever-increasing level of automation in modern manufacturing processes necessitates the use of more...... sophisticated machine tool systems that are adaptable to different workspace conditions, while at the same time being able to maintain very narrow workpiece tolerances. The main topic of this thesis is to suggest control methods that can maintain required manufacturing tolerances, despite moderate wear and tear....... The purpose is to ensure that full accuracy is maintained between service intervals and to advice when overhaul is needed. The thesis argues that quality of manufactured components is directly related to the positioning accuracy of the machine tool axes, and it shows which low level control architectures...

  9. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li Zan; Braun Torsten; Dimitrova Desislava

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper we are particularly interested in GPS based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Ou...

  10. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li, Zan; Braun, Torsten; Dimitrova, Desislava Cvetanova

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. O...

  11. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  12. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  13. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    Science.gov (United States)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  14. Innovative Fiber-Optic Gyroscopes (FOGs) for High Accuracy Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future science and exploratory missions will require much lighter, smaller, and longer life rate sensors that can provide high accuracy navigational...

  15. High Accuracy Positioning using Jet Thrusters for Quadcopter

    Directory of Open Access Journals (Sweden)

    Pi ChenHuan

    2018-01-01

    Full Text Available A quadcopter is equipped with four additional jet thrusters on its horizontal plane and vertical to each other in order to improve the maneuverability and positioning accuracy of quadcopter. A dynamic model of the quadcopter with jet thrusters is derived and two controllers are implemented in simulation, one is a dual loop state feedback controller for pose control and another is an auxiliary jet thruster controller for accurate positioning. Step response simulations showed that the jet thruster can control the quadcopter with less overshoot compared to the conventional one. Over 10s loiter simulation with disturbance, the quadcopter with jet thruster decrease 85% of RMS error of horizontal disturbance compared to a conventional quadcopter with only a dual loop state feedback controller. The jet thruster controller shows the possibility for further accurate in the field of quadcopter positioning.

  16. High-accuracy contouring using projection moiré

    Science.gov (United States)

    Sciammarella, Cesar A.; Lamberti, Luciano; Sciammarella, Federico M.

    2005-09-01

    Shadow and projection moiré are the oldest forms of moiré to be used in actual technical applications. In spite of this fact and the extensive number of papers that have been published on this topic, the use of shadow moiré as an accurate tool that can compete with alternative devices poses very many problems that go to the very essence of the mathematical models used to obtain contour information from fringe pattern data. In this paper some recent developments on the projection moiré method are presented. Comparisons between the results obtained with the projection method and the results obtained by mechanical devices that operate with contact probes are presented. These results show that the use of projection moiré makes it possible to achieve the same accuracy that current mechanical touch probe devices can provide.

  17. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  18. R and D toward highly repetitive laser fusion demonstration

    International Nuclear Information System (INIS)

    Satoh, Nakahiro; Matsukado, Koji; Watari, Takeshi; Sekine, Takashi; Takeuchi, Yasuki; Kawashima, Toshiyuki

    2017-01-01

    Hamamatsu Photonics conducts research on a unique continuous neutron generation method by integrating and utilizing elemental technologies such as laser, target, and measurement for laser nuclear fusion research. In addition, in collaboration with the Graduate School for the Creation of New Photonics Industries, Toyota Motor Corporation, and others, it is conducting research on laser fusion. As a high power laser of element technology, it constructed an ultrahigh intensity laser system by combining glass slab laser KURE-I and ultrahigh intensity femtosecond laser MATSU-I equipped with titanium sapphire transmitter, and achieved a peak output of 20 TW, It plans to further increase this to 100 TW. As other element technologies, it is also considering nuclear fusion fuel - target technology and light - high energy particle measurement technology. Regarding the demonstration of continuous generation of laser fusion neutrons, it performed 100 times of continuous laser beam irradiation at 1 Hz, and actually measured the number of neutrons generated. It measured 4.5x10 4 pieces of neutrons on average (maximum 10 5 ) with a frequency of 98%. Since 100% of neutron generation should occur in principle, in the future it will be necessary to enhancing laser collecting intensity and to improve solid particle number density in order to put this process into practical use as a neutron source. (A.O.)

  19. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  20. Compact, High Accuracy CO2 Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  1. Compact, High Accuracy CO2 Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  2. A high accuracy algorithm of displacement measurement for a micro-positioning stage

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2017-05-01

    Full Text Available A high accuracy displacement measurement algorithm for a two degrees of freedom compliant precision micro-positioning stage is proposed based on the computer micro-vision technique. The algorithm consists of an integer-pixel and a subpixel matching procedure. Series of simulations are conducted to verify the proposed method. The results show that the proposed algorithm possesses the advantages of high precision and stability, the resolution can attain to 0.01 pixel theoretically. In addition, the consuming time is reduced about 6.7 times compared with the classical normalized cross correlation algorithm. To validate the practical performance of the proposed algorithm, a laser interferometer measurement system (LIMS is built up. The experimental results demonstrate that the algorithm has better adaptability than that of the LIMS.

  3. High-accuracy Subdaily ERPs from the IGS

    Science.gov (United States)

    Ray, J. R.; Griffiths, J.

    2012-04-01

    Since November 2000 the International GNSS Service (IGS) has published Ultra-rapid (IGU) products for near real-time (RT) and true real-time applications. They include satellite orbits and clocks, as well as Earth rotation parameters (ERPs) for a sliding 48-hr period. The first day of each update is based on the most recent GPS and GLONASS observational data from the IGS hourly tracking network. At the time of release, these observed products have an initial latency of 3 hr. The second day of each update consists of predictions. So the predictions between about 3 and 9 hr into the second half are relevant for true RT uses. Originally updated twice daily, the IGU products since April 2004 have been issued every 6 hr, at 3, 9, 15, and 21 UTC. Up to seven Analysis Centers (ACs) contribute to the IGU combinations. Two sets of ERPs are published with each IGU update, observed values at the middle epoch of the first half and predicted values at the middle epoch of the second half. The latency of the near RT ERPs is 15 hr while the predicted ERPs, based on projections of each AC's most recent determinations, are issued 9 hr ahead of their reference epoch. While IGU ERPs are issued every 6 hr, each set represents an integrated estimate over the surrounding 24 hr. So successive values are temporally correlated with about 75% of the data being common; this fact should be taken into account in user assimilations. To evaluate the accuracy of these near RT and predicted ERPs, they have been compared to the IGS Final ERPs, available about 11 to 17 d after data collection. The IGU products improved dramatically in the earlier years but since about 2008.0 the performance has been stable and excellent. During the last three years, RMS differences for the observed IGU ERPs have been about 0.036 mas and 0.0101 ms for each polar motion component and LOD respectively. (The internal precision of the reference IGS ERPs over the same period is about 0.016 mas for polar motion and 0

  4. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior

  5. Innovative Fiber-Optic Gyroscopes (FOGs) for High Accuracy Space Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to develop a compact, highly innovative Inertial Reference/Measurement Unit (IRU/IMU) that pushes the state-of-the-art in high accuracy performance...

  6. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis.

    Science.gov (United States)

    Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien

    2018-01-01

    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.

  7. A High-Throughput, High-Accuracy System-Level Simulation Framework for System on Chips

    Directory of Open Access Journals (Sweden)

    Guanyi Sun

    2011-01-01

    Full Text Available Today's System-on-Chips (SoCs design is extremely challenging because it involves complicated design tradeoffs and heterogeneous design expertise. To explore the large solution space, system architects have to rely on system-level simulators to identify an optimized SoC architecture. In this paper, we propose a system-level simulation framework, System Performance Simulation Implementation Mechanism, or SPSIM. Based on SystemC TLM2.0, the framework consists of an executable SoC model, a simulation tool chain, and a modeling methodology. Compared with the large body of existing research in this area, this work is aimed at delivering a high simulation throughput and, at the same time, guaranteeing a high accuracy on real industrial applications. Integrating the leading TLM techniques, our simulator can attain a simulation speed that is not slower than that of the hardware execution by a factor of 35 on a set of real-world applications. SPSIM incorporates effective timing models, which can achieve a high accuracy after hardware-based calibration. Experimental results on a set of mobile applications proved that the difference between the simulated and measured results of timing performance is within 10%, which in the past can only be attained by cycle-accurate models.

  8. Impact of a highly detailed emission inventory on modeling accuracy

    Science.gov (United States)

    Taghavi, M.; Cautenet, S.; Arteta, J.

    2005-03-01

    During Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions (ESCOMPTE) campaign (June 10 to July 14, 2001), two pollution events observed during an intensive measurement period (IOP2a and IOP2b) have been simulated. The comprehensive Regional Atmospheric Modeling Systems (RAMS) model, version 4.3, coupled online with a chemical module including 29 species is used to follow the chemistry of a polluted zone over Southern France. This online method takes advantage of a parallel code and use of the powerful computer SGI 3800. Runs are performed with two emission inventories: the Emission Pre Inventory (EPI) and the Main Emission Inventory (MEI). The latter is more recent and has a high resolution. The redistribution of simulated chemical species (ozone and nitrogen oxides) is compared with aircraft and surface station measurements for both runs at regional scale. We show that the MEI inventory is more efficient than the EPI in retrieving the redistribution of chemical species in space (three-dimensional) and time. In surface stations, MEI is superior especially for primary species, like nitrogen oxides. The ozone pollution peaks obtained from an inventory, such as EPI, have a large uncertainty. To understand the realistic geographical distribution of pollutants and to obtain a good order of magnitude in ozone concentration (in space and time), a high-resolution inventory like MEI is necessary. Coupling RAMS-Chemistry with MEI provides a very efficient tool able to simulate pollution plumes even in a region with complex circulations, such as the ESCOMPTE zone.

  9. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  10. Switched-capacitor techniques for high-accuracy filter and ADC design

    NARCIS (Netherlands)

    Quinn, P.J.; Roermund, van A.H.M.

    2007-01-01

    Switched capacitor (SC) techniques are well proven to be excellent candidates for implementing critical analogue functions with high accuracy, surpassing other analogue techniques when embedded in mixed-signal CMOS VLSI. Conventional SC circuits are primarily limited in accuracy by a) capacitor

  11. High accuracy laboratory spectroscopy to support active greenhouse gas sensing

    Science.gov (United States)

    Long, D. A.; Bielska, K.; Cygan, A.; Havey, D. K.; Okumura, M.; Miller, C. E.; Lisak, D.; Hodges, J. T.

    2011-12-01

    Recent carbon dioxide (CO2) remote sensing missions have set precision targets as demanding as 0.25% (1 ppm) in order to elucidate carbon sources and sinks [1]. These ambitious measurement targets will require the most precise body of spectroscopic reference data ever assembled. Active sensing missions will be especially susceptible to subtle line shape effects as the narrow bandwidth of these measurements will greatly limit the number of spectral transitions which are employed in retrievals. In order to assist these remote sensing missions we have employed frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) [2], a high-resolution, ultrasensitive laboratory technique, to measure precise line shape parameters for transitions of O2, CO2, and other atmospherically-relevant species within the near-infrared. These measurements have led to new HITRAN-style line lists for both 16O2 [3] and rare isotopologue [4] transitions in the A-band. In addition, we have performed detailed line shape studies of CO2 transitions near 1.6 μm under a variety of broadening conditions [5]. We will address recent measurements in these bands as well as highlight recent instrumental improvements to the FS-CRDS spectrometer. These improvements include the use of the Pound-Drever-Hall locking scheme, a high bandwidth servo which enables measurements to be made at rates greater than 10 kHz [6]. In addition, an optical frequency comb will be utilized as a frequency reference, which should allow for transition frequencies to be measured with uncertainties below 10 kHz (3×10-7 cm-1). [1] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, et al., J. Geophys. Res.-Atmos. 112, D10314 (2007). [2] J. T. Hodges, H. P. Layer, W. W. Miller, G. E. Scace, Rev. Sci. Instrum. 75, 849-863 (2004). [3] D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, et al., J. Quant. Spectrosc. Radiat. Transfer 111, 2021-2036 (2010). [4] D. A. Long, D. K. Havey, S. S. Yu, M. Okumura, et al., J. Quant. Spectrosc

  12. The accuracy of QCD perturbation theory at high energies

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  13. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    Science.gov (United States)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  14. Accuracy Assessment for the Three-Dimensional Coordinates by High-Speed Videogrammetric Measurement

    Directory of Open Access Journals (Sweden)

    Xianglei Liu

    2018-01-01

    Full Text Available High-speed CMOS camera is a new kind of transducer to make the videogrammetric measurement for monitoring the displacement of high-speed shaking table structure. The purpose of this paper is to validate the three-dimensional coordinate accuracy of the shaking table structure acquired from the presented high-speed videogrammetric measuring system. In the paper, all of the key intermediate links are discussed, including the high-speed CMOS videogrammetric measurement system, the layout of the control network, the elliptical target detection, and the accuracy validation of final 3D spatial results. Through the accuracy analysis, the submillimeter accuracy can be made for the final the three-dimensional spatial coordinates which certify that the proposed high-speed videogrammetric technique is a better alternative technique which can replace the traditional transducer technique for monitoring the dynamic response for the shaking table structure.

  15. Enhancing the Accuracy of Advanced High Temperature Mechanical Testing through Thermography

    Directory of Open Access Journals (Sweden)

    Jonathan Jones

    2018-03-01

    Full Text Available This paper describes the advantages and enhanced accuracy thermography provides to high temperature mechanical testing. This technique is not only used to monitor, but also to control test specimen temperatures where the infra-red technique enables accurate non-invasive control of rapid thermal cycling for non-metallic materials. Isothermal and dynamic waveforms are employed over a 200–800 °C temperature range to pre-oxidised and coated specimens to assess the capability of the technique. This application shows thermography to be accurate to within ±2 °C of thermocouples, a standardised measurement technique. This work demonstrates the superior visibility of test temperatures previously unobtainable by conventional thermocouples or even more modern pyrometers that thermography can deliver. As a result, the speed and accuracy of thermal profiling, thermal gradient measurements and cold/hot spot identification using the technique has increased significantly to the point where temperature can now be controlled by averaging over a specified area. The increased visibility of specimen temperatures has revealed additional unknown effects such as thermocouple shadowing, preferential crack tip heating within an induction coil, and, fundamental response time of individual measurement techniques which are investigated further.

  16. High-accuracy determination for optical indicatrix rotation in ferroelectric DTGS

    OpenAIRE

    O.S.Kushnir; O.A.Bevz; O.G.Vlokh

    2000-01-01

    Optical indicatrix rotation in deuterated ferroelectric triglycine sulphate is studied with the high-accuracy null-polarimetric technique. The behaviour of the effect in ferroelectric phase is referred to quadratic spontaneous electrooptics.

  17. Optical Verification Laboratory Demonstration System for High Security Identification Cards

    Science.gov (United States)

    Javidi, Bahram

    1997-01-01

    Document fraud including unauthorized duplication of identification cards and credit cards is a serious problem facing the government, banks, businesses, and consumers. In addition, counterfeit products such as computer chips, and compact discs, are arriving on our shores in great numbers. With the rapid advances in computers, CCD technology, image processing hardware and software, printers, scanners, and copiers, it is becoming increasingly easy to reproduce pictures, logos, symbols, paper currency, or patterns. These problems have stimulated an interest in research, development and publications in security technology. Some ID cards, credit cards and passports currently use holograms as a security measure to thwart copying. The holograms are inspected by the human eye. In theory, the hologram cannot be reproduced by an unauthorized person using commercially-available optical components; in practice, however, technology has advanced to the point where the holographic image can be acquired from a credit card-photographed or captured with by a CCD camera-and a new hologram synthesized using commercially-available optical components or hologram-producing equipment. Therefore, a pattern that can be read by a conventional light source and a CCD camera can be reproduced. An optical security and anti-copying device that provides significant security improvements over existing security technology was demonstrated. The system can be applied for security verification of credit cards, passports, and other IDs so that they cannot easily be reproduced. We have used a new scheme of complex phase/amplitude patterns that cannot be seen and cannot be copied by an intensity-sensitive detector such as a CCD camera. A random phase mask is bonded to a primary identification pattern which could also be phase encoded. The pattern could be a fingerprint, a picture of a face, or a signature. The proposed optical processing device is designed to identify both the random phase mask and the

  18. Quantified safety objectives in high technology: Meaning and demonstration

    International Nuclear Information System (INIS)

    Vinck, W.F.; Gilby, E.; Chicken, J.

    1986-01-01

    An overview and trends-analysis is given of the types of quantified criteria and objectives which are presently applied or envisaged and discussed in Europe in the nuclear application, more specifically Nuclear Power Plants (NPPs), and in non-nuclear applications, more specifically in the chemical and petrochemical process industry. Some comparative deductions are made. Attention is paid to the similarities or discrepancies between such criteria and objectives and to problems associated with the demonstration that they are implemented. The role of cost-effectiveness of Risk deduction is briefly discussed and mention made of a search made into combining the technical, economic and socio-political factors playing a role in Risk acceptance

  19. An emergency management demonstrator using the high level architecture

    International Nuclear Information System (INIS)

    Williams, R.J.

    1996-12-01

    This paper addresses the issues of simulation interoperability within the emergency management training context. A prototype implementation in Java of a subset of the High Level Architecture (HLA) is described. The use of Web Browsers to provide graphical user interfaces to HLA is also investigated. (au)

  20. Prototype high voltage bushing: Configuration to its operational demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Sejal, E-mail: sshah@iter-india.org [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Sharma, D. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Parmar, D.; Tyagi, H.; Joshi, K.; Shishangiya, H.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2016-12-15

    High Voltage Bushing (HVB) is the key component of Diagnostic Neutral Beam (DNB) system of ITER as it provides access to high voltage electrical, hydraulic, gas and diagnostic feedlines to the beam source with isolation from grounded vessel. HVB also provides primary vacuum confinement for the DNB system. Being Safety Important Class (SIC) component of ITER, it involves several configurational, technological and operational challenges. To ensure its operational performance & reliability, particularly electrostatic behavior, half scale down Prototype High Voltage Bushing (PHVB) is designed considering same design criteria of DNB HVB. Design optimization has been carried out followed by finite element (FE) analysis to obtain DNB HVB equivalent electric stress on different parts of PHVB, taking into account all design, manufacturing & space constraints. PHVB was tested up to 60 kV without breakdown, which validates its design for the envisaged operation of 50 kV DC. This paper presents the design of PHVB, FEA validation, manufacturing constraints, experimental layout with interfacing auxiliary systems and operational results related to functional performance.

  1. Innovative High-Accuracy Lidar Bathymetric Technique for the Frequent Measurement of River Systems

    Science.gov (United States)

    Gisler, A.; Crowley, G.; Thayer, J. P.; Thompson, G. S.; Barton-Grimley, R. A.

    2015-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for understanding how rivers evolve over many timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  2. Innovative Technique for High-Accuracy Remote Monitoring of Surface Water

    Science.gov (United States)

    Gisler, A.; Barton-Grimley, R. A.; Thayer, J. P.; Crowley, G.

    2016-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems and agricultural waterways. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for monitoring water resources on fast timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  3. Demonstration test for transporting vitrified high-level radioactive wastes

    International Nuclear Information System (INIS)

    Ito, C.; Kato, Y.; Kato, O.

    1993-01-01

    The purpose of this study was to demonstrate the integrity of the cask against a 0.3-m free-drop test and to confirm the drop-test analytical method. 1. Test cask; The cask used in the drop test is characterized structurally as follows. (1) The Cask body is covered with a neutron absorber covered with a thin steel plate. Fins are attached between the cask body and thin steel plate. (2) The impact energy was absorbed mainly by the inelastic deformation of the neutron absorber and thin steel plate. 2. Test methods; Electric heaters were put into the package to reproduce the real cask conditions. Strains and accelerations due to the drop were measured at the drop by the strain gauges and accelerometers attached on the cask. 3. Analysis; We use the DYNA-3D and NIKE-2D codes to analyze the drop test. A half symmetrical model was applied to overall analysis to calculate the strains and accelerations at the cask body. The maximum acceleration value obtained by the overall analysis and basket model were used to statistically calculate the strains at the basket. 4. Results; The cask integrity was comfirmed through the strains and the results of He leak test. (author)

  4. High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2

    Science.gov (United States)

    Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.

    2016-01-01

    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.

  5. Design and Performance Evaluation of Real-time Endovascular Interventional Surgical Robotic System with High Accuracy.

    Science.gov (United States)

    Wang, Kundong; Chen, Bing; Lu, Qingsheng; Li, Hongbing; Liu, Manhua; Shen, Yu; Xu, Zhuoyan

    2018-05-15

    Endovascular interventional surgery (EIS) is performed under a high radiation environment at the sacrifice of surgeons' health. This paper introduces a novel endovascular interventional surgical robot that aims to reduce radiation to surgeons and physical stress imposed by lead aprons during fluoroscopic X-ray guided catheter intervention. The unique mechanical structure allowed the surgeon to manipulate the axial and radial motion of the catheter and guide wire. Four catheter manipulators (to manipulate the catheter and guide wire), and a control console which consists of four joysticks, several buttons and two twist switches (to control the catheter manipulators) were presented. The entire robotic system was established on a master-slave control structure through CAN (Controller Area Network) bus communication, meanwhile, the slave side of this robotic system showed highly accurate control over velocity and displacement with PID controlling method. The robotic system was tested and passed in vitro and animal experiments. Through functionality evaluation, the manipulators were able to complete interventional surgical motion both independently and cooperatively. The robotic surgery was performed successfully in an adult female pig and demonstrated the feasibility of superior mesenteric and common iliac artery stent implantation. The entire robotic system met the clinical requirements of EIS. The results show that the system has the ability to imitate the movements of surgeons and to accomplish the axial and radial motions with consistency and high-accuracy. Copyright © 2018 John Wiley & Sons, Ltd.

  6. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Vivian, E-mail: v.tong13@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Jiang, Jun [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britton, T. Ben [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    High resolution, cross-correlation-based, electron backscatter diffraction (EBSD) measures the variation of elastic strains and lattice rotations from a reference state. Regions near grain boundaries are often of interest but overlap of patterns from the two grains could reduce accuracy of the cross-correlation analysis. To explore this concern, patterns from the interior of two grains have been mixed to simulate the interaction volume crossing a grain boundary so that the effect on the accuracy of the cross correlation results can be tested. It was found that the accuracy of HR-EBSD strain measurements performed in a FEG-SEM on zirconium remains good until the incident beam is less than 18 nm from a grain boundary. A simulated microstructure was used to measure how often pattern overlap occurs at any given EBSD step size, and a simple relation was found linking the probability of overlap with step size. - Highlights: • Pattern overlap occurs at grain boundaries and reduces HR-EBSD accuracy. • A test is devised to measure the accuracy of HR-EBSD in the presence of overlap. • High pass filters can sometimes, but not generally, improve HR-EBSD measurements. • Accuracy of HR-EBSD remains high until the reference pattern intensity is <72%. • 9% of points near a grain boundary will have significant error for 200nm step size in Zircaloy-4.

  7. Bioindicator demonstrates high persistence of sulfentrazone in dry soil

    Directory of Open Access Journals (Sweden)

    Renato Coradello Lourenço

    2015-09-01

    Full Text Available In sugarcane crop areas, the application of preemergence herbicides with long residual effect in the soil has been frequently necessary. The herbicide persistence in the soil must be high especially because of applications during the dry season of the year, after sugarcane harvest. This study aimed at estimating the sulfentrazone persistence and dissipation in dry soil using bioindicator. Five experiments were carried out, divided into two phases. In the first phase, three dose-response curves were adjusted to select the best bioindicator to be adopted in the second phase. Niger was adopted due to its lower sensibility to sulfentrazone. In the second phase, a new dose-response curve was carried out, with six doses of sulfentrazone, in order to standardize the bioindicator sensibility to sulfentrazone. At the end, another experiment with six periods of sulfentrazone persistence in dry clay soil was developed. Persistence periods were: 182, 154, 125, 98 and 30 days. The bioindicator was seeded at the application day in treated plots and control. In this experiment, the sulfentrazone dose applied was 800 g ha-1. Niger was considered a good species to estimate the sulfentrazone persistence in dry soil. The sulfentrazone phytotoxic activity was identified up to 182 days after application, and its average dissipation rate was 2.15 g ha-1 day-1, with half-life higher than 182 days.

  8. High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control.

    Science.gov (United States)

    Tauscher, Sebastian; Fuchs, Alexander; Baier, Fabian; Kahrs, Lüder A; Ortmaier, Tobias

    2017-10-01

    Assistance of robotic systems in the operating room promises higher accuracy and, hence, demanding surgical interventions become realisable (e.g. the direct cochlear access). Additionally, an intuitive user interface is crucial for the use of robots in surgery. Torque sensors in the joints can be employed for intuitive interaction concepts. Regarding the accuracy, they lead to a lower structural stiffness and, thus, to an additional error source. The aim of this contribution is to examine, if an accuracy needed for demanding interventions can be achieved by such a system or not. Feasible accuracy results of the robot-assisted process depend on each work-flow step. This work focuses on the determination of the tool coordinate frame. A method for drill axis definition is implemented and analysed. Furthermore, a concept of admittance feed control is developed. This allows the user to control feeding along the planned path by applying a force to the robots structure. The accuracy is researched by drilling experiments with a PMMA phantom and artificial bone blocks. The described drill axis estimation process results in a high angular repeatability ([Formula: see text]). In the first set of drilling results, an accuracy of [Formula: see text] at entrance and [Formula: see text] at target point excluding imaging was achieved. With admittance feed control an accuracy of [Formula: see text] at target point was realised. In a third set twelve holes were drilled in artificial temporal bone phantoms including imaging. In this set-up an error of [Formula: see text] and [Formula: see text] was achieved. The results of conducted experiments show that accuracy requirements for demanding procedures such as the direct cochlear access can be fulfilled with compliant systems. Furthermore, it was shown that with the presented admittance feed control an accuracy of less then [Formula: see text] is achievable.

  9. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    Science.gov (United States)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  10. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  11. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    Science.gov (United States)

    Zhai, Chengxing; Shao, Michael; Saini, Navtej; Sandhu, Jagmit; Werne, Thomas; Choi, Philip; Ely, Todd A.; Jacobs, Chirstopher S.; Lazio, Joseph; Martin-Mur, Tomas J.; Owen, William M.; Preston, Robert; Turyshev, Slava; Michell, Adam; Nazli, Kutay; Cui, Isaac; Monchama, Rachel

    2018-01-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package that is part of the baseline payload for the planned Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  12. A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation

    Directory of Open Access Journals (Sweden)

    Jinsong Hu

    2013-01-01

    Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.

  13. Accuracy of hiatal hernia detection with esophageal high-resolution manometry

    NARCIS (Netherlands)

    Weijenborg, P. W.; van Hoeij, F. B.; Smout, A. J. P. M.; Bredenoord, A. J.

    2015-01-01

    The diagnosis of a sliding hiatal hernia is classically made with endoscopy or barium esophagogram. Spatial separation of the lower esophageal sphincter (LES) and diaphragm, the hallmark of hiatal hernia, can also be observed on high-resolution manometry (HRM), but the diagnostic accuracy of this

  14. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Gnad, Florian; de Godoy, Lyris M F; Cox, Jürgen

    2009-01-01

    Protein phosphorylation is a fundamental regulatory mechanism that affects many cell signaling processes. Using high-accuracy MS and stable isotope labeling in cell culture-labeling, we provide a global view of the Saccharomyces cerevisiae phosphoproteome, containing 3620 phosphorylation sites ma...

  15. High accuracy positioning using carrier-phases with the opensource GPSTK software

    OpenAIRE

    Salazar Hernández, Dagoberto José; Hernández Pajares, Manuel; Juan Zornoza, José Miguel; Sanz Subirana, Jaume

    2008-01-01

    The objective of this work is to show how using a proper GNSS data management strategy, combined with the flexibility provided by the open source "GPS Toolkit" (GPSTk), it is possible to easily develop both simple code-based processing strategies as well as basic high accuracy carrier-phase positioning techniques like Precise Point Positioning (PPP

  16. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ...

  17. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  18. Technics study on high accuracy crush dressing and sharpening of diamond grinding wheel

    Science.gov (United States)

    Jia, Yunhai; Lu, Xuejun; Li, Jiangang; Zhu, Lixin; Song, Yingjie

    2011-05-01

    Mechanical grinding of artificial diamond grinding wheel was traditional wheel dressing process. The rotate speed and infeed depth of tool wheel were main technics parameters. The suitable technics parameters of metals-bonded diamond grinding wheel and resin-bonded diamond grinding wheel high accuracy crush dressing were obtained by a mount of experiment in super-hard material wheel dressing grind machine and by analysis of grinding force. In the same time, the effect of machine sharpening and sprinkle granule sharpening was contrasted. These analyses and lots of experiments had extent instruction significance to artificial diamond grinding wheel accuracy crush dressing.

  19. High accuracy interface characterization of three phase material systems in three dimensions

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Hansen, Karin Vels; Larsen, Rasmus

    2010-01-01

    Quantification of interface properties such as two phase boundary area and triple phase boundary length is important in the characterization ofmanymaterial microstructures, in particular for solid oxide fuel cell electrodes. Three-dimensional images of these microstructures can be obtained...... by tomography schemes such as focused ion beam serial sectioning or micro-computed tomography. We present a high accuracy method of calculating two phase surface areas and triple phase length of triple phase systems from subvoxel accuracy segmentations of constituent phases. The method performs a three phase...... polygonization of the interface boundaries which results in a non-manifold mesh of connected faces. We show how the triple phase boundaries can be extracted as connected curve loops without branches. The accuracy of the method is analyzed by calculations on geometrical primitives...

  20. Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation

    Science.gov (United States)

    Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter

    1996-01-01

    The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.

  1. Review of The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing

    International Nuclear Information System (INIS)

    Bailey, David

    2005-01-01

    In the January 2002 edition of SIAM News, Nick Trefethen announced the '$100, 100-Digit Challenge'. In this note he presented ten easy-to-state but hard-to-solve problems of numerical analysis, and challenged readers to find each answer to ten-digit accuracy. Trefethen closed with the enticing comment: 'Hint: They're hard. If anyone gets 50 digits in total, I will be impressed.' This challenge obviously struck a chord in hundreds of numerical mathematicians worldwide, as 94 teams from 25 nations later submitted entries. Many of these submissions exceeded the target of 50 correct digits; in fact, 20 teams achieved a perfect score of 100 correct digits. Trefethen had offered $100 for the best submission. Given the overwhelming response, a generous donor (William Browning, founder of Applied Mathematics, Inc.) provided additional funds to provide a $100 award to each of the 20 winning teams. Soon after the results were out, four participants, each from a winning team, got together and agreed to write a book about the problems and their solutions. The team is truly international: Bornemann is from Germany, Laurie is from South Africa, Wagon is from the USA, and Waldvogel is from Switzerland. This book provides some mathematical background for each problem, and then shows in detail how each of them can be solved. In fact, multiple solution techniques are mentioned in each case. The book describes how to extend these solutions to much larger problems and much higher numeric precision (hundreds or thousands of digit accuracy). The authors also show how to compute error bounds for the results, so that one can say with confidence that one's results are accurate to the level stated. Numerous numerical software tools are demonstrated in the process, including the commercial products Mathematica, Maple and Matlab. Computer programs that perform many of the algorithms mentioned in the book are provided, both in an appendix to the book and on a website. In the process, the

  2. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  3. High accuracy digital aging monitor based on PLL-VCO circuit

    International Nuclear Information System (INIS)

    Zhang Yuejun; Jiang Zhidi; Wang Pengjun; Zhang Xuelong

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm 2 . After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%. (semiconductor integrated circuits)

  4. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  5. A proposal for limited criminal liability in high-accuracy endoscopic sinus surgery.

    Science.gov (United States)

    Voultsos, P; Casini, M; Ricci, G; Tambone, V; Midolo, E; Spagnolo, A G

    2017-02-01

    The aim of the present study is to propose legal reform limiting surgeons' criminal liability in high-accuracy and high-risk surgery such as endoscopic sinus surgery (ESS). The study includes a review of the medical literature, focusing on identifying and examining reasons why ESS carries a very high risk of serious complications related to inaccurate surgical manoeuvers and reviewing British and Italian legal theory and case-law on medical negligence, especially with regard to Italian Law 189/2012 (so called "Balduzzi" Law). It was found that serious complications due to inaccurate surgical manoeuvers may occur in ESS regardless of the skill, experience and prudence/diligence of the surgeon. Subjectivity should be essential to medical negligence, especially regarding high-accuracy surgery. Italian Law 189/2012 represents a good basis for the limitation of criminal liability resulting from inaccurate manoeuvres in high-accuracy surgery such as ESS. It is concluded that ESS surgeons should be relieved of criminal liability in cases of simple/ordinary negligence where guidelines have been observed. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  6. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach.

    Directory of Open Access Journals (Sweden)

    Andre F Marquand

    Full Text Available Progressive supranuclear palsy (PSP, multiple system atrophy (MSA and idiopathic Parkinson's disease (IPD can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs. An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i a subcortical motor network; (ii each of its component regions and (iii the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process.

  7. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  8. STTR Phase I: Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hallstrom, Jason; Ni, Zheng Richard

    2018-05-15

    This STTR Phase I project assessed the feasibility of a new CO2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO2 concentrations, as well as the electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States a

  9. Gene masking - a technique to improve accuracy for cancer classification with high dimensionality in microarray data.

    Science.gov (United States)

    Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok

    2016-12-05

    High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.

  10. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  11. A New Approach to High-accuracy Road Orthophoto Mapping Based on Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Ming Yang

    2011-12-01

    Full Text Available Existing orthophoto map based on satellite photography and aerial photography is not precise enough for road marking. This paper proposes a new approach to high-accuracy orthophoto mapping. The approach uses inverse perspective transformation to process the image information and generates the orthophoto fragment. The offline interpolation algorithm is used to process the location information. It processes the dead reckoning and the EKF location information, and uses the result to transform the fragments to the global coordinate system. At last it uses wavelet transform to divides the image to two frequency bands and uses weighted median algorithm to deal with them separately. The result of experiment shows that the map produced with this method has high accuracy.

  12. High-accuracy 3-D modeling of cultural heritage: the digitizing of Donatello's "Maddalena".

    Science.gov (United States)

    Guidi, Gabriele; Beraldin, J Angelo; Atzeni, Carlo

    2004-03-01

    Three-dimensional digital modeling of Heritage works of art through optical scanners, has been demonstrated in recent years with results of exceptional interest. However, the routine application of three-dimensional (3-D) modeling to Heritage conservation still requires the systematic investigation of a number of technical problems. In this paper, the acquisition process of the 3-D digital model of the Maddalena by Donatello, a wooden statue representing one of the major masterpieces of the Italian Renaissance which was swept away by the Florence flood of 1966 and successively restored, is described. The paper reports all the steps of the acquisition procedure, from the project planning to the solution of the various problems due to range camera calibration and to material non optically cooperative. Since the scientific focus is centered on the 3-D model overall dimensional accuracy, a methodology for its quality control is described. Such control has demonstrated how, in some situations, the ICP-based alignment can lead to incorrect results. To circumvent this difficulty we propose an alignment technique based on the fusion of ICP with close-range digital photogrammetry and a non-invasive procedure in order to generate a final accurate model. In the end detailed results are presented, demonstrating the improvement of the final model, and how the proposed sensor fusion ensure a pre-specified level of accuracy.

  13. High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller

    Science.gov (United States)

    Li, Yaoling; Wu, Zhong

    2018-03-01

    The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.

  14. Identification and delineation of areas flood hazard using high accuracy of DEM data

    Science.gov (United States)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  15. Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

    Science.gov (United States)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-03-01

    Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

  16. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  17. Optical system error analysis and calibration method of high-accuracy star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng

    2013-04-08

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  18. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter.

    Science.gov (United States)

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-10-12

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  19. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    Directory of Open Access Journals (Sweden)

    Peilu Liu

    2017-10-01

    Full Text Available In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA. In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  20. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  1. Fission product model for BWR analysis with improved accuracy in high burnup

    International Nuclear Information System (INIS)

    Ikehara, Tadashi; Yamamoto, Munenari; Ando, Yoshihira

    1998-01-01

    A new fission product (FP) chain model has been studied to be used in a BWR lattice calculation. In attempting to establish the model, two requirements, i.e. the accuracy in predicting burnup reactivity and the easiness in practical application, are simultaneously considered. The resultant FP model consists of 81 explicit FP nuclides and two lumped pseudo nuclides having the absorption cross sections independent of burnup history and fuel composition. For the verification, extensive numerical tests covering over a wide range of operational conditions and fuel compositions have been carried out. The results indicate that the estimated errors in burnup reactivity are within 0.1%Δk for exposures up to 100GWd/t. It is concluded that the present model can offer a high degree of accuracy for FP representation in BWR lattice calculation. (author)

  2. High-accuracy numerical integration of charged particle motion – with application to ponderomotive force

    International Nuclear Information System (INIS)

    Furukawa, Masaru; Ohkawa, Yushiro; Matsuyama, Akinobu

    2016-01-01

    A high-accuracy numerical integration algorithm for a charged particle motion is developed. The algorithm is based on the Hamiltonian mechanics and the operator decomposition. The algorithm is made to be time-reversal symmetric, and its order of accuracy can be increased to any order by using a recurrence formula. One of the advantages is that it is an explicit method. An effective way to decompose the time evolution operator is examined; the Poisson tensor is decomposed and non-canonical variables are adopted. The algorithm is extended to a time dependent fields' case by introducing the extended phase space. Numerical tests showing the performance of the algorithm are presented. One is the pure cyclotron motion for a long time period, and the other is a charged particle motion in a rapidly oscillating field. (author)

  3. High-accuracy defect sizing for CRDM penetration adapters using the ultrasonic TOFD technique

    International Nuclear Information System (INIS)

    Atkinson, I.

    1995-01-01

    Ultrasonic time-of-flight diffraction (TOFD) is the preferred technique for critical sizing of throughwall orientated defects in a wide range of components, primarily because it is intrinsically more accurate than amplitude-based techniques. For the same reason, TOFD is the preferred technique for sizing the cracks in control rod drive mechanism (CRDM) penetration adapters, which have been the subject of much recent attention. Once the considerable problem of restricted access for the UT probes has been overcome, this inspection lends itself to very high accuracy defect sizing using TOFD. In qualification trials under industrial conditions, depth sizing to an accuracy of ≤ 0.5 mm has been routinely achieved throughout the full wall thickness (16 mm) of the penetration adapters, using only a single probe pair and without recourse to signal processing. (author)

  4. High accuracy of family history of melanoma in Danish melanoma cases

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Drzewiecki, Krzysztof T; Gerdes, Anne-Marie

    2015-01-01

    The incidence of melanoma in Denmark has immensely increased over the last 10 years making Denmark a high risk country for melanoma. In the last two decades multiple public campaigns have sought to increase the awareness of melanoma. Family history of melanoma is a known major risk factor...... but previous studies have shown that self-reported family history of melanoma is highly inaccurate. These studies are 15 years old and we wanted to examine if a higher awareness of melanoma has increased the accuracy of self-reported family history of melanoma. We examined the family history of 181 melanoma...

  5. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    Science.gov (United States)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  6. Japanese HTTR program for demonstration of high temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    Nishihara, T.; Hada, K.; Shiozawa, S.

    1997-01-01

    Construction works of the HTTR started in March 1991 in order to establish and upgrade the HTGR technology basis, to carry out innovative basic researches on high temperature engineering and to demonstrate high temperature heat utilization and application of nuclear heat. This report describes the demonstration program of high temperature heat utilization and application. (author). 2 refs, 4 figs, 3 tabs

  7. Accuracy of cell calculation methods used for analysis of high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Jeong, Chang-Joon; Okumura, Keisuke; Ishiguro, Yukio; Tanaka, Ken-ichi

    1990-01-01

    Validation tests were made for the accuracy of cell calculation methods used in analyses of tight lattices of a mixed-oxide (MOX) fuel core in a high conversion light water reactor (HCLWR). A series of cell calculations was carried out for the lattices referred from an international HCLWR benchmark comparison, with emphasis placed on the resonance calculation methods; the NR, IR approximations, the collision probability method with ultra-fine energy group. Verification was also performed for the geometrical modelling; a hexagonal/cylindrical cell, and the boundary condition; mirror/white reflection. In the calculations, important reactor physics parameters, such as the neutron multiplication factor, the conversion ratio and the void coefficient, were evaluated using the above methods for various HCLWR lattices with different moderator to fuel volume ratios, fuel materials and fissile plutonium enrichments. The calculated results were compared with each other, and the accuracy and applicability of each method were clarified by comparison with continuous energy Monte Carlo calculations. It was verified that the accuracy of the IR approximation became worse when the neutron spectrum became harder. It was also concluded that the cylindrical cell model with the white boundary condition was not so suitable for MOX fuelled lattices, as for UO 2 fuelled lattices. (author)

  8. Accuracy of High-Resolution Ultrasonography in the Detection of Extensor Tendon Lacerations.

    Science.gov (United States)

    Dezfuli, Bobby; Taljanovic, Mihra S; Melville, David M; Krupinski, Elizabeth A; Sheppard, Joseph E

    2016-02-01

    Lacerations to the extensor mechanism are usually diagnosed clinically. Ultrasound (US) has been a growing diagnostic tool for tendon injuries since the 1990s. To date, there has been no publication establishing the accuracy and reliability of US in the evaluation of extensor mechanism lacerations in the hand. The purpose of this study is to determine the accuracy of US to detect extensor tendon injuries in the hand. Sixteen fingers and 4 thumbs in 4 fresh-frozen and thawed cadaveric hands were used. Sixty-eight 0.5-cm transverse skin lacerations were created. Twenty-seven extensor tendons were sharply transected. The remaining skin lacerations were used as sham dissection controls. One US technologist and one fellowship-trained musculoskeletal radiologist performed real-time dynamic US studies in and out of water bath. A second fellowship trained musculoskeletal radiologist subsequently reviewed the static US images. Dynamic and static US interpretation accuracy was assessed using dissection as "truth." All 27 extensor tendon lacerations and controls were identified correctly with dynamic imaging as either injury models that had a transected extensor tendon or sham controls with intact extensor tendons (sensitivity = 100%, specificity = 100%, positive predictive value = 1.0; all significantly greater than chance). Static imaging had a sensitivity of 85%, specificity of 89%, and accuracy of 88% (all significantly greater than chance). The results of the dynamic real time versus static US imaging were clearly different but did not reach statistical significance. Diagnostic US is a very accurate noninvasive study that can identify extensor mechanism injuries. Clinically suspected cases of acute extensor tendon injury scanned by high-frequency US can aid and/or confirm the diagnosis, with dynamic imaging providing added value compared to static. Ultrasonography, to aid in the diagnosis of extensor mechanism lacerations, can be successfully used in a reliable and

  9. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  10. Technical accuracy of a neuronavigation system measured with a high-precision mechanical micromanipulator.

    Science.gov (United States)

    Kaus, M; Steinmeier, R; Sporer, T; Ganslandt, O; Fahlbusch, R

    1997-12-01

    This study was designed to determine and evaluate the different system-inherent sources of erroneous target localization of a light-emitting diode (LED)-based neuronavigation system (StealthStation, Stealth Technologies, Boulder, CO). The localization accuracy was estimated by applying a high-precision mechanical micromanipulator to move and exactly locate (+/- 0.1 micron) the pointer at multiple positions in the physical three-dimensional space. The localization error was evaluated by calculating the spatial distance between the (known) LED positions and the LED coordinates measured by the neuronavigator. The results are based on a study of approximately 280,000 independent coordinate measurements. The maximum localization error detected was 0.55 +/- 0.29 mm, with the z direction (distance to the camera array) being the most erroneous coordinate. Minimum localization error was found at a distance of 1400 mm from the central camera (optimal measurement position). Additional error due to 1) mechanical vibrations of the camera tripod (+/- 0.15 mm) and the reference frame (+/- 0.08 mm) and 2) extrapolation of the pointer tip position from the LED coordinates of at least +/- 0.12 mm were detected, leading to a total technical error of 0.55 +/- 0.64 mm. Based on this technical accuracy analysis, a set of handling recommendations is proposed, leading to an improved localization accuracy. The localization error could be reduced by 0.3 +/- 0.15 mm by correct camera positioning (1400 mm distance) plus 0.15 mm by vibration-eliminating fixation of the camera. Correct handling of the probe during the operation may improve the accuracy by up to 0.1 mm.

  11. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2013-01-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  12. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  13. An angle encoder for super-high resolution and super-high accuracy using SelfA

    International Nuclear Information System (INIS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-01-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 2 21 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science and Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 2 33 , that is, corresponding to a 0.0015″ signal period

  14. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  15. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  16. The use of high accuracy NAA for the certification of NIST botanical standard reference materials

    International Nuclear Information System (INIS)

    Becker, D.A.; Greenberg, R.R.; Stone, S.F.

    1992-01-01

    Neutron activation analysis is one of many analytical techniques used at the National Institute of Standards and Technology (NIST) for the certification of NIST Standard Reference Materials (SRMs). NAA competes favorably with all other techniques because of it's unique capabilities for high accuracy even at very low concentrations for many elements. In this paper, instrumental and radiochemical NAA results are described for 25 elements in two new NIST SRMs, SRM 1515 (Apple Leaves) and SRM 1547 (Peach Leaves), and are compared to the certified values for 19 elements in these two new botanical reference materials. (author) 7 refs.; 4 tabs

  17. High-accuracy critical exponents for O(N) hierarchical 3D sigma models

    International Nuclear Information System (INIS)

    Godina, J. J.; Li, L.; Meurice, Y.; Oktay, M. B.

    2006-01-01

    The critical exponent γ and its subleading exponent Δ in the 3D O(N) Dyson's hierarchical model for N up to 20 are calculated with high accuracy. We calculate the critical temperatures for the measure δ(φ-vector.φ-vector-1). We extract the first coefficients of the 1/N expansion from our numerical data. We show that the leading and subleading exponents agree with Polchinski equation and the equivalent Litim equation, in the local potential approximation, with at least 4 significant digits

  18. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  19. A variational nodal diffusion method of high accuracy; Varijaciona nodalna difuziona metoda visoke tachnosti

    Energy Technology Data Exchange (ETDEWEB)

    Tomasevic, Dj; Altiparmarkov, D [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    A variational nodal diffusion method with accurate treatment of transverse leakage shape is developed and presented in this paper. Using Legendre expansion in transverse coordinates higher order quasi-one-dimensional nodal equations are formulated. Numerical solution has been carried out using analytical solutions in alternating directions assuming Legendre expansion of the RHS term. The method has been tested against 2D and 3D IAEA benchmark problem, as well as 2D CANDU benchmark problem. The results are highly accurate. The first order approximation yields to the same order of accuracy as the standard nodal methods with quadratic leakage approximation, while the second order reaches reference solution. (author)

  20. A new ultra-high-accuracy angle generator: current status and future direction

    Science.gov (United States)

    Guertin, Christian F.; Geckeler, Ralf D.

    2017-09-01

    Lack of an extreme high-accuracy angular positioning device available in the United States has left a gap in industrial and scientific efforts conducted there, requiring certain user groups to undertake time-consuming work with overseas laboratories. Specifically, in x-ray mirror metrology the global research community is advancing the state-of-the-art to unprecedented levels. We aim to fill this U.S. gap by developing a versatile high-accuracy angle generator as a part of the national metrology tool set for x-ray mirror metrology and other important industries. Using an established calibration technique to measure the errors of the encoder scale graduations for full-rotation rotary encoders, we implemented an optimized arrangement of sensors positioned to minimize propagation of calibration errors. Our initial feasibility research shows that upon scaling to a full prototype and including additional calibration techniques we can expect to achieve uncertainties at the level of 0.01 arcsec (50 nrad) or better and offer the immense advantage of a highly automatable and customizable product to the commercial market.

  1. Demonstration of a high speed hybrid electrical and optical sensing system for next generation launcher applications

    Science.gov (United States)

    Ibrahim, Selwan K.; O'Dowd, John A.; Honniball, Arthur; Bessler, Vivian; Farnan, Martin; O'Connor, Peter; Melicher, Milos; Gleeson, Danny

    2017-09-01

    The Future Launchers Preparatory Programme (FLPP) supported by the European Space Agency (ESA) has a goal of developing various launch vehicle system concepts and identifying the technologies required for the design of Europe's Next-Generation Launcher (NGL) while maintaining competitiveness on the commercial market. Avionics fiber optic sensing technology was investigated as part of the FLPP programme. Here we demonstrate and evaluate a high speed hybrid electrical/optical data acquisition system based on commercial off the shelf (COTS) technology capable of acquiring data from traditional electrical sensors and optical Fibre Bragg Grating (FBG) sensors. The proposed system consists of the KAM-500 data acquisition system developed by Curtis-Wright and the I4 tunable laser based fiber optic sensor interrogator developed by FAZ Technology. The key objective was to demonstrate the capability of the hybrid system to acquire data from traditional electrical sensors used in launcher applications e.g. strain, temperature and pressure in combination with optical FBG sensors, as well as data delivery to spacecraft avionics systems. The KAM-500 was configured as the main acquisition unit (MAU) and provided a 1 kHz sampling clock to the I4 interrogator that was configured as the secondary acquisition unit (SAU) to synchronize the data acquisition sample rate between both systems. The SAU acquired data from an array of optical FBG sensors, while the MAU data acquisition system acquired data from the electrical sensors. Data acquired from the optical sensors was processed by the FAZ I4 interrogation system and then encapsulated into UDP/IP packets and transferred to the KAM-500. The KAM-500 encapsulated the optical sensor data together with the data acquired from electrical sensors and transmitted the data over MIL-STD-1553 and Ethernet data interface. The temperature measurements resulted in the optical and electrical sensors performing on a par with each other, with all

  2. High Accuracy, Miniature Pressure Sensor for Very High Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  3. Hyperbolic Method for Dispersive PDEs: Same High-Order of Accuracy for Solution, Gradient, and Hessian

    Science.gov (United States)

    Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.

  4. High-accuracy measurement and compensation of grating line-density error in a tiled-grating compressor

    Science.gov (United States)

    Zhao, Dan; Wang, Xiao; Mu, Jie; Li, Zhilin; Zuo, Yanlei; Zhou, Song; Zhou, Kainan; Zeng, Xiaoming; Su, Jingqin; Zhu, Qihua

    2017-02-01

    The grating tiling technology is one of the most effective means to increase the aperture of the gratings. The line-density error (LDE) between sub-gratings will degrade the performance of the tiling gratings, high accuracy measurement and compensation of the LDE are of significance to improve the output pulses characteristics of the tiled-grating compressor. In this paper, the influence of LDE on the output pulses of the tiled-grating compressor is quantitatively analyzed by means of numerical simulation, the output beams drift and output pulses broadening resulting from the LDE are presented. Based on the numerical results we propose a compensation method to reduce the degradations of the tiled grating compressor by applying angular tilt error and longitudinal piston error at the same time. Moreover, a monitoring system is setup to measure the LDE between sub-gratings accurately and the dispersion variation due to the LDE is also demonstrated based on spatial-spectral interference. In this way, we can realize high-accuracy measurement and compensation of the LDE, and this would provide an efficient way to guide the adjustment of the tiling gratings.

  5. A generalized polynomial chaos based ensemble Kalman filter with high accuracy

    International Nuclear Information System (INIS)

    Li Jia; Xiu Dongbin

    2009-01-01

    As one of the most adopted sequential data assimilation methods in many areas, especially those involving complex nonlinear dynamics, the ensemble Kalman filter (EnKF) has been under extensive investigation regarding its properties and efficiency. Compared to other variants of the Kalman filter (KF), EnKF is straightforward to implement, as it employs random ensembles to represent solution states. This, however, introduces sampling errors that affect the accuracy of EnKF in a negative manner. Though sampling errors can be easily reduced by using a large number of samples, in practice this is undesirable as each ensemble member is a solution of the system of state equations and can be time consuming to compute for large-scale problems. In this paper we present an efficient EnKF implementation via generalized polynomial chaos (gPC) expansion. The key ingredients of the proposed approach involve (1) solving the system of stochastic state equations via the gPC methodology to gain efficiency; and (2) sampling the gPC approximation of the stochastic solution with an arbitrarily large number of samples, at virtually no additional computational cost, to drastically reduce the sampling errors. The resulting algorithm thus achieves a high accuracy at reduced computational cost, compared to the classical implementations of EnKF. Numerical examples are provided to verify the convergence property and accuracy improvement of the new algorithm. We also prove that for linear systems with Gaussian noise, the first-order gPC Kalman filter method is equivalent to the exact Kalman filter.

  6. Prediction of novel pre-microRNAs with high accuracy through boosting and SVM.

    Science.gov (United States)

    Zhang, Yuanwei; Yang, Yifan; Zhang, Huan; Jiang, Xiaohua; Xu, Bo; Xue, Yu; Cao, Yunxia; Zhai, Qian; Zhai, Yong; Xu, Mingqing; Cooke, Howard J; Shi, Qinghua

    2011-05-15

    High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques. Therefore, here, we describe a new method, miRD, which is constructed using two feature selection strategies based on support vector machines (SVMs) and boosting method. It is a high-efficiency tool for novel pre-microRNA prediction with accuracy up to 94.0% among different species. miRD is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/rpg/mird/mird.php.

  7. High Accuracy mass Measurement of the very Short-Lived Halo Nuclide $^{11}$Li

    CERN Multimedia

    Le scornet, G

    2002-01-01

    The archetypal halo nuclide $^{11}$Li has now attracted a wealth of experimental and theoretical attention. The most outstanding property of this nuclide, its extended radius that makes it as big as $^{48}$Ca, is highly dependent on the binding energy of the two neutrons forming the halo. New generation experiments using radioactive beams with elastic proton scattering, knock-out and transfer reactions, together with $\\textit{ab initio}$ calculations require the tightening of the constraint on the binding energy. Good metrology also requires confirmation of the sole existing precision result to guard against a possible systematic deviation (or mistake). We propose a high accuracy mass determintation of $^{11}$Li, a particularly challenging task due to its very short half-life of 8.6 ms, but one perfectly suiting the MISTRAL spectrometer, now commissioned at ISOLDE. We request 15 shifts of beam time.

  8. Computer modeling of oil spill trajectories with a high accuracy method

    International Nuclear Information System (INIS)

    Garcia-Martinez, Reinaldo; Flores-Tovar, Henry

    1999-01-01

    This paper proposes a high accuracy numerical method to model oil spill trajectories using a particle-tracking algorithm. The Euler method, used to calculate oil trajectories, can give adequate solutions in most open ocean applications. However, this method may not predict accurate particle trajectories in certain highly non-uniform velocity fields near coastal zones or in river problems. Simple numerical experiments show that the Euler method may also introduce artificial numerical dispersion that could lead to overestimation of spill areas. This article proposes a fourth-order Runge-Kutta method with fourth-order velocity interpolation to calculate oil trajectories that minimise these problems. The algorithm is implemented in the OilTrack model to predict oil trajectories following the 'Nissos Amorgos' oil spill accident that occurred in the Gulf of Venezuela in 1997. Despite lack of adequate field information, model results compare well with observations in the impacted area. (Author)

  9. Treatment accuracy of hypofractionated spine and other highly conformal IMRT treatments

    International Nuclear Information System (INIS)

    Sutherland, B.; Hanlon, P.; Charles, P.

    2011-01-01

    Full text: Spinal cord metastases pose difficult challenges for radiation treatment due to tight dose constraints and a concave PTY. This project aimed to thoroughly test the treatment accuracy of the Eclipse Treatment Planning System (TPS) for highly modulated IMRT treatments, in particular of the thoracic spine, using an Elekta Synergy Linear Accelerator. The increased understanding obtained through different quality assurance techniques allowed recommendations to be made for treatment site commissioning with improved accuracy at the Princess Alexandra Hospital (PAH). Three thoracic spine IMRT plans at the PAH were used for data collection. Complex phantom models were built using CT data, and fields simulated using Monte Carlo modelling. The simulated dose distributions were compared with the TPS using gamma analysis and DYH comparison. High resolution QA was done for all fields using the MatriXX ion chamber array, MapCHECK2 diode array shifted, and the EPlD to determine a procedure for commissioning new treatment sites. Basic spine simulations found the TPS overestimated absorbed dose to bone, however within spinal cord there was good agreement. High resolution QA found the average gamma pass rate of the fields to be 99.1 % for MatriXX, 96.5% for MapCHECK2 shifted and 97.7% for EPlD. Preliminary results indicate agreement between the TPS and delivered dose distributions higher than previously believed for the investigated IMRT plans. The poor resolution of the MatriXX, and normalisation issues with MapCHECK2 leads to probable recommendation of EPlD for future IMRT commissioning due to the high resolution and minimal setup required.

  10. The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast

    Science.gov (United States)

    Li, Yongkai; Yi, Ming; Zou, Xiufen

    2014-01-01

    To gain insights into the mechanisms of cell fate decision in a noisy environment, the effects of intrinsic and extrinsic noises on cell fate are explored at the single cell level. Specifically, we theoretically define the impulse of Cln1/2 as an indication of cell fates. The strong dependence between the impulse of Cln1/2 and cell fates is exhibited. Based on the simulation results, we illustrate that increasing intrinsic fluctuations causes the parallel shift of the separation ratio of Whi5P but that increasing extrinsic fluctuations leads to the mixture of different cell fates. Our quantitative study also suggests that the strengths of intrinsic and extrinsic noises around an approximate linear model can ensure a high accuracy of cell fate selection. Furthermore, this study demonstrates that the selection of cell fates is an entropy-decreasing process. In addition, we reveal that cell fates are significantly correlated with the range of entropy decreases. PMID:25042292

  11. High Accuracy, High Energy He-Erd Analysis of H,C, and T

    International Nuclear Information System (INIS)

    Browning, James F.; Langley, Robert A.; Doyle, Barney L.; Banks, James C.; Wampler, William R.

    1999-01-01

    A new analysis technique using high-energy helium ions for the simultaneous elastic recoil detection of all three hydrogen isotopes in metal hydride systems extending to depths of several microm's is presented. Analysis shows that it is possible to separate each hydrogen isotope in a heavy matrix such as erbium to depths of 5 microm using incident 11.48MeV 4 He 2 ions with a detection system composed of a range foil and ΔE-E telescope detector. Newly measured cross sections for the elastic recoil scattering of 4 He 2 ions from protons and deuterons are presented in the energy range 10 to 11.75 MeV for the laboratory recoil angle of 30degree

  12. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  13. High Accuracy Mass Measurement of the Dripline Nuclides $^{12,14}$Be

    CERN Multimedia

    2002-01-01

    State-of-the art, three-body nuclear models that describe halo nuclides require the binding energy of the halo neutron(s) as a critical input parameter. In the case of $^{14}$Be, the uncertainty of this quantity is currently far too large (130 keV), inhibiting efforts at detailed theoretical description. A high accuracy, direct mass deterlnination of $^{14}$Be (as well as $^{12}$Be to obtain the two-neutron separation energy) is therefore required. The measurement can be performed with the MISTRAL spectrometer, which is presently the only possible solution due to required accuracy (10 keV) and short half-life (4.5 ms). Having achieved a 5 keV uncertainty for the mass of $^{11}$Li (8.6 ms), MISTRAL has proved the feasibility of such measurements. Since the current ISOLDE production rate of $^{14}$Be is only about 10/s, the installation of a beam cooler is underway in order to improve MISTRAL transmission. The projected improvement of an order of magnitude (in each transverse direction) will make this measureme...

  14. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Science.gov (United States)

    Moorhead, Jerry; Gowda, Prasanna H.; Hobbins, Michael; Senay, Gabriel; Paul, George; Marek, Thomas; Porter, Dana

    2015-01-01

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETrefmaps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.

  15. High Accuracy Beam Current Monitor System for CEBAF'S Experimental Hall A

    International Nuclear Information System (INIS)

    J. Denard; A. Saha; G. Lavessiere

    2001-01-01

    CEBAF accelerator delivers continuous wave (CW) electron beams to three experimental Halls. In Hall A, all experiments require continuous, non-invasive current measurements and a few experiments require an absolute accuracy of 0.2 % in the current range from 1 to 180 (micro)A. A Parametric Current Transformer (PCT), manufactured by Bergoz, has an accurate and stable sensitivity of 4 (micro)A/V but its offset drifts at the muA level over time preclude its direct use for continuous measurements. Two cavity monitors are calibrated against the PCT with at least 50 (micro)A of beam current. The calibration procedure suppresses the error due to PCT's offset drifts by turning the beam on and off, which is invasive to the experiment. One of the goals of the system is to minimize the calibration time without compromising the measurement's accuracy. The linearity of the cavity monitors is a critical parameter for transferring the accurate calibration done at high currents over the whole dynamic range. The method for measuring accurately the linearity is described

  16. Medication adherence assessment: high accuracy of the new Ingestible Sensor System in kidney transplants.

    Science.gov (United States)

    Eisenberger, Ute; Wüthrich, Rudolf P; Bock, Andreas; Ambühl, Patrice; Steiger, Jürg; Intondi, Allison; Kuranoff, Susan; Maier, Thomas; Green, Damian; DiCarlo, Lorenzo; Feutren, Gilles; De Geest, Sabina

    2013-08-15

    This open-label single-arm exploratory study evaluated the accuracy of the Ingestible Sensor System (ISS), a novel technology for directly assessing the ingestion of oral medications and treatment adherence. ISS consists of an ingestible event marker (IEM), a microsensor that becomes activated in gastric fluid, and an adhesive personal monitor (APM) that detects IEM activation. In this study, the IEM was combined to enteric-coated mycophenolate sodium (ECMPS). Twenty stable adult kidney transplants received IEM-ECMPS for a mean of 9.2 weeks totaling 1227 cumulative days. Eight patients prematurely discontinued treatment due to ECMPS gastrointestinal symptoms (n=2), skin intolerance to APM (n=2), and insufficient system usability (n=4). Rash or erythema due to APM was reported in 7 (37%) patients, all during the first month of use. No serious or severe adverse events and no rejection episode were reported. IEM detection accuracy was 100% over 34 directly observed ingestions; Taking Adherence was 99.4% over a total of 2824 prescribed IEM-ECMPS ingestions. ISS could detect accurately the ingestion of two IEM-ECMPS capsules taken at the same time (detection rate of 99.3%, n=2376). ISS is a promising new technology that provides highly reliable measurements of intake and timing of intake of drugs that are combined with the IEM.

  17. Combined Scintigraphy and Tumor Marker Analysis Predicts Unfavorable Histopathology of Neuroblastic Tumors with High Accuracy.

    Directory of Open Access Journals (Sweden)

    Wolfgang Peter Fendler

    Full Text Available Our aim was to improve the prediction of unfavorable histopathology (UH in neuroblastic tumors through combined imaging and biochemical parameters.123I-MIBG SPECT and MRI was performed before surgical resection or biopsy in 47 consecutive pediatric patients with neuroblastic tumor. Semi-quantitative tumor-to-liver count-rate ratio (TLCRR, MRI tumor size and margins, urine catecholamine and NSE blood levels of neuron specific enolase (NSE were recorded. Accuracy of single and combined variables for prediction of UH was tested by ROC analysis with Bonferroni correction.34 of 47 patients had UH based on the International Neuroblastoma Pathology Classification (INPC. TLCRR and serum NSE both predicted UH with moderate accuracy. Optimal cut-off for TLCRR was 2.0, resulting in 68% sensitivity and 100% specificity (AUC-ROC 0.86, p < 0.001. Optimal cut-off for NSE was 25.8 ng/ml, resulting in 74% sensitivity and 85% specificity (AUC-ROC 0.81, p = 0.001. Combination of TLCRR/NSE criteria reduced false negative findings from 11/9 to only five, with improved sensitivity and specificity of 85% (AUC-ROC 0.85, p < 0.001.Strong 123I-MIBG uptake and high serum level of NSE were each predictive of UH. Combined analysis of both parameters improved the prediction of UH in patients with neuroblastic tumor. MRI parameters and urine catecholamine levels did not predict UH.

  18. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    International Nuclear Information System (INIS)

    He Xiaofeng; Ye Tianchun; Mo Taishan; Ma Chengyan

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented. The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs. And what's more, the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy. A zero, which is composed by the source feedback resistance and the source capacity, is introduced to compensate for the pole. The AGC is fabricated in a 0.18 μm CMOS process. The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB. The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA, and the die area is 800 × 300 μm 2 . (semiconductor integrated circuits)

  19. High accuracy of family history of melanoma in Danish melanoma cases.

    Science.gov (United States)

    Wadt, Karin A W; Drzewiecki, Krzysztof T; Gerdes, Anne-Marie

    2015-12-01

    The incidence of melanoma in Denmark has immensely increased over the last 10 years making Denmark a high risk country for melanoma. In the last two decades multiple public campaigns have sought to increase the awareness of melanoma. Family history of melanoma is a known major risk factor but previous studies have shown that self-reported family history of melanoma is highly inaccurate. These studies are 15 years old and we wanted to examine if a higher awareness of melanoma has increased the accuracy of self-reported family history of melanoma. We examined the family history of 181 melanoma probands who reported 199 cases of melanoma in relatives, of which 135 cases where in first degree relatives. We confirmed the diagnosis of melanoma in 77% of all relatives, and in 83% of first degree relatives. In 181 probands we validated the negative family history of melanoma in 748 first degree relatives and found only 1 case of melanoma which was not reported in a 3 case melanoma family. Melanoma patients in Denmark report family history of melanoma in first and second degree relatives with a high level of accuracy with a true positive predictive value between 77 and 87%. In 99% of probands reporting a negative family history of melanoma in first degree relatives this information is correct. In clinical practice we recommend that melanoma diagnosis in relatives should be verified if possible, but even unverified reported melanoma cases in relatives should be included in the indication of genetic testing and assessment of melanoma risk in the family.

  20. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  1. Accuracy optimization of high-speed AFM measurements using Design of Experiments

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, F.; Hansen, Hans Nørgaard

    2010-01-01

    Atomic Force Microscopy (AFM) is being increasingly employed in industrial micro/nano manufacturing applications and integrated into production lines. In order to achieve reliable process and product control at high measuring speed, instrument optimization is needed. Quantitative AFM measurement...... results are influenced by a number of scan settings parameters, defining topography sampling and measurement time: resolution (number of profiles and points per profile), scan range and direction, scanning force and speed. Such parameters are influencing lateral and vertical accuracy and, eventually......, the estimated dimensions of measured features. The definition of scan settings is based on a comprehensive optimization that targets maximization of information from collected data and minimization of measurement uncertainty and scan time. The Design of Experiments (DOE) technique is proposed and applied...

  2. Recent high-accuracy measurements of the 1S0 neutron-neutron scattering length

    International Nuclear Information System (INIS)

    Howell, C.R.; Chen, Q.; Gonzalez Trotter, D.E.; Salinas, F.; Crowell, A.S.; Roper, C.D.; Tornow, W.; Walter, R.L.; Carman, T.S.; Hussein, A.; Gibbs, W.R.; Gibson, B.F.; Morris, C.; Obst, A.; Sterbenz, S.; Whitton, M.; Mertens, G.; Moore, C.F.; Whiteley, C.R.; Pasyuk, E.; Slaus, I.; Tang, H.; Zhou, Z.; Gloeckle, W.; Witala, H.

    2000-01-01

    This paper reports two recent high-accuracy determinations of the 1 S 0 neutron-neutron scattering length, a nn . One was done at the Los Alamos National Laboratory using the π - d capture reaction to produce two neutrons with low relative momentum. The neutron-deuteron (nd) breakup reaction was used in other measurement, which was conducted at the Triangle Universities Nuclear Laboratory. The results from the two determinations were consistent with each other and with previous values obtained using the π - d capture reaction. The value obtained from the nd breakup measurements is a nn = -18.7 ± 0.1 (statistical) ± 0.6 (systematic) fm, and the value from the π - d capture experiment is a nn = -18.50 ± 0.05 ± 0.53 fm. The recommended value is a nn = -18.5 ± 0.3 fm. (author)

  3. High accuracy amplitude and phase measurements based on a double heterodyne architecture

    International Nuclear Information System (INIS)

    Zhao Danyang; Wang Guangwei; Pan Weimin

    2015-01-01

    In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determines the processing required, and differs in various LLRF systems. It is generally desirable to design a universally compatible architecture for different IFs with no change to the sampling frequency and algorithm. A new RF detection method based on a double heterodyne architecture for wide IF range has been developed, which achieves the high accuracy requirement of modern LLRF. In this paper, the relation of IF and phase error is systematically analyzed for the first time and verified by experiments. The effects of temperature drift for 16 h IF detection are inhibited by the amplitude and phase calibrations. (authors)

  4. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    Science.gov (United States)

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  5. Accuracy and high-speed technique for autoprocessing of Young's fringes

    Science.gov (United States)

    Chen, Wenyi; Tan, Yushan

    1991-12-01

    In this paper, an accurate and high-speed method for auto-processing of Young's fringes is proposed. A group of 1-D sampled intensity values along three or more different directions are taken from Young's fringes, and the fringe spacings of each direction are obtained by 1-D FFT respectively. Two directions that have smaller fringe spacing are selected from all directions. The accurate fringe spacings along these two directions are obtained by using orthogonal coherent phase detection technique (OCPD). The actual spacing and angle of Young's fringes, therefore, can be calculated. In this paper, the principle of OCPD is introduced in detail. The accuracy of the method is evaluated theoretically and experimentally.

  6. DEVELOPMENT OF COMPLEXITY, ACCURACY, AND FLUENCY IN HIGH SCHOOL STUDENTS’ WRITTEN FOREIGN LANGUAGE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bouchaib Benzehaf

    2016-11-01

    Full Text Available The present study aims to longitudinally depict the dynamic and interactive development of Complexity, Accuracy, and Fluency (CAF in multilingual learners’ L2 and L3 writing. The data sources include free writing tasks written in L2 French and L3 English by 45 high school participants over a period of four semesters. CAF dimensions are measured using a variation of Hunt’s T-units (1964. Analysis of the quantitative data obtained suggests that CAF measures develop differently for learners’ L2 French and L3 English. They increase more persistently in L3 English, and they display the characteristics of a dynamic, non-linear system characterized by ups and downs particularly in L2 French. In light of the results, we suggest more and denser longitudinal data to explore the nature of interactions between these dimensions in foreign language development, particularly at the individual level.

  7. Accuracy of thick-walled hollows during piercing on three-high mill

    International Nuclear Information System (INIS)

    Potapov, I.N.; Romantsev, B.A.; Shamanaev, V.I.; Popov, V.A.; Kharitonov, E.A.

    1975-01-01

    The results of investigations are presented concerning the accuracy of geometrical dimensions of thick-walled sleeves produced by piercing on a 100-ton trio screw rolling mill MISiS with three schemes of fixing and centering the rod. The use of a spherical thrust journal for the rod and of a long centering bushing makes it possible to diminish the non-uniformity of the wall thickness of the sleeves by 30-50%. It is established that thick-walled sleeves with accurate geometrical dimensions (nonuniformity of the wall thickness being less than 10%) can be produced if the system sleeve - mandrel - rod is highly rigid and the rod has a two- or three-fold stability margin over the length equal to that of the sleeve being pierced. The process of piercing is expedient to be carried out with increased angles of feed (14-16 deg). Blanks have been made from steel 12Kh1MF

  8. Integral equation models for image restoration: high accuracy methods and fast algorithms

    International Nuclear Information System (INIS)

    Lu, Yao; Shen, Lixin; Xu, Yuesheng

    2010-01-01

    Discrete models are consistently used as practical models for image restoration. They are piecewise constant approximations of true physical (continuous) models, and hence, inevitably impose bottleneck model errors. We propose to work directly with continuous models for image restoration aiming at suppressing the model errors caused by the discrete models. A systematic study is conducted in this paper for the continuous out-of-focus image models which can be formulated as an integral equation of the first kind. The resulting integral equation is regularized by the Lavrentiev method and the Tikhonov method. We develop fast multiscale algorithms having high accuracy to solve the regularized integral equations of the second kind. Numerical experiments show that the methods based on the continuous model perform much better than those based on discrete models, in terms of PSNR values and visual quality of the reconstructed images

  9. Thermo-energetic design of machine tools a systemic approach to solve the conflict between power efficiency, accuracy and productivity demonstrated at the example of machining production

    CERN Document Server

    2015-01-01

    The approach to the solution within the CRC/TR 96 financed by the German Research Foundation DFG aims at measures that will allow manufacturing accuracy to be maintained under thermally unstable conditions with increased productivity, without an additional demand for energy for tempering. The challenge of research in the CRC/TR 96 derives from the attempt to satisfy the conflicting goals of reducing energy consumption and increasing accuracy and productivity in machining. In the current research performed in 19 subprojects within the scope of the CRC/TR 96, correction and compensation solutions that influence the thermo-elastic machine tool behaviour efficiently and are oriented along the thermo-elastic functional chain are explored and implemented. As part of this general objective, the following issues must be researched and engineered in an interdisciplinary setting and brought together into useful overall solutions:   1.  Providing the modelling fundamentals to calculate the heat fluxes and the resulti...

  10. Meditation experience predicts introspective accuracy.

    Directory of Open Access Journals (Sweden)

    Kieran C R Fox

    Full Text Available The accuracy of subjective reports, especially those involving introspection of one's own internal processes, remains unclear, and research has demonstrated large individual differences in introspective accuracy. It has been hypothesized that introspective accuracy may be heightened in persons who engage in meditation practices, due to the highly introspective nature of such practices. We undertook a preliminary exploration of this hypothesis, examining introspective accuracy in a cross-section of meditation practitioners (1-15,000 hrs experience. Introspective accuracy was assessed by comparing subjective reports of tactile sensitivity for each of 20 body regions during a 'body-scanning' meditation with averaged, objective measures of tactile sensitivity (mean size of body representation area in primary somatosensory cortex; two-point discrimination threshold as reported in prior research. Expert meditators showed significantly better introspective accuracy than novices; overall meditation experience also significantly predicted individual introspective accuracy. These results suggest that long-term meditators provide more accurate introspective reports than novices.

  11. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    Science.gov (United States)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2009-12-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  12. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects.

    Science.gov (United States)

    Zeng, Zhaoli; Qu, Xueming; Tan, Yidong; Tan, Runtao; Zhang, Shulian

    2015-06-29

    A simple and high-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects is presented. The single high-order feedback effect is realized when dual-frequency laser reflects numerous times in a Fabry-Perot cavity and then goes back to the laser resonator along the same route. In this case, two orthogonally polarized feedback fringes with nanoscale resolution are obtained. This self-mixing interferometer has the advantages of higher sensitivity to weak signal than that of conventional interferometer. In addition, two orthogonally polarized fringes are useful for discriminating the moving direction of measured object. The experiment of measuring 2.5nm step is conducted, which shows a great potential in nanometrology.

  13. Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method

    Science.gov (United States)

    Brovelli, Maria Antonia; Crespi, Mattia; Fratarcangeli, Francesca; Giannone, Francesca; Realini, Eugenio

    Interest in high-resolution satellite imagery (HRSI) is spreading in several application fields, at both scientific and commercial levels. Fundamental and critical goals for the geometric use of this kind of imagery are their orientation and orthorectification, processes able to georeference the imagery and correct the geometric deformations they undergo during acquisition. In order to exploit the actual potentialities of orthorectified imagery in Geomatics applications, the definition of a methodology to assess the spatial accuracy achievable from oriented imagery is a crucial topic. In this paper we want to propose a new method for accuracy assessment based on the Leave-One-Out Cross-Validation (LOOCV), a model validation method already applied in different fields such as machine learning, bioinformatics and generally in any other field requiring an evaluation of the performance of a learning algorithm (e.g. in geostatistics), but never applied to HRSI orientation accuracy assessment. The proposed method exhibits interesting features which are able to overcome the most remarkable drawbacks involved by the commonly used method (Hold-Out Validation — HOV), based on the partitioning of the known ground points in two sets: the first is used in the orientation-orthorectification model (GCPs — Ground Control Points) and the second is used to validate the model itself (CPs — Check Points). In fact the HOV is generally not reliable and it is not applicable when a low number of ground points is available. To test the proposed method we implemented a new routine that performs the LOOCV in the software SISAR, developed by the Geodesy and Geomatics Team at the Sapienza University of Rome to perform the rigorous orientation of HRSI; this routine was tested on some EROS-A and QuickBird images. Moreover, these images were also oriented using the world recognized commercial software OrthoEngine v. 10 (included in the Geomatica suite by PCI), manually performing the LOOCV

  14. A new device for liver cancer biomarker detection with high accuracy

    Directory of Open Access Journals (Sweden)

    Shuaipeng Wang

    2015-06-01

    Full Text Available A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus adsorption of the cancer biomarker is localized in the micro-cavity, and the adsorption-induced k variation can be dramatically reduced with comparison to that caused by adsorption of the whole lever. The cantilever is pizeoelectrically driven into vibration which is pizeoresistively sensed by Wheatstone bridge. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and small volume. In addition, an analytical model has been established to eliminate the effect of adsorption-induced lever stiffness change and has been applied to precise mass detection of cancer biomarker AFP, the detected AFP antigen mass (7.6 pg/ml is quite close to the calculated one (5.5 pg/ml, two orders of magnitude better than the value by the fully antibody-immobilized cantilever sensor. These approaches will promote real application of the cantilever sensors in early diagnosis of cancer.

  15. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network.

    Science.gov (United States)

    Qi, Jun; Liu, Guo-Ping

    2017-11-06

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μ s. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal.

  16. High-accuracy optical extensometer based on coordinate transform in two-dimensional digital image correlation

    Science.gov (United States)

    Lv, Zeqian; Xu, Xiaohai; Yan, Tianhao; Cai, Yulong; Su, Yong; Zhang, Qingchuan

    2018-01-01

    In the measurement of plate specimens, traditional two-dimensional (2D) digital image correlation (DIC) is challenged by two aspects: (1) the slant optical axis (misalignment of the optical camera axis and the object surface) and (2) out-of-plane motions (including translations and rotations) of the specimens. There are measurement errors in the results measured by 2D DIC, especially when the out-of-plane motions are big enough. To solve this problem, a novel compensation method has been proposed to correct the unsatisfactory results. The proposed compensation method consists of three main parts: 1) a pre-calibration step is used to determine the intrinsic parameters and lens distortions; 2) a compensation panel (a rigid panel with several markers located at known positions) is mounted to the specimen to track the specimen's motion so that the relative coordinate transformation between the compensation panel and the 2D DIC setup can be calculated using the coordinate transform algorithm; 3) three-dimensional world coordinates of measuring points on the specimen can be reconstructed via the coordinate transform algorithm and used to calculate deformations. Simulations have been carried out to validate the proposed compensation method. Results come out that when the extensometer length is 400 pixels, the strain accuracy reaches 10 με no matter out-of-plane translations (less than 1/200 of the object distance) nor out-of-plane rotations (rotation angle less than 5°) occur. The proposed compensation method leads to good results even when the out-of-plane translation reaches several percents of the object distance or the out-of-plane rotation angle reaches tens of degrees. The proposed compensation method has been applied in tensile experiments to obtain high-accuracy results as well.

  17. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jun Qi

    2017-11-01

    Full Text Available This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS. The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF module, which is only used for time synchronization between different nodes, with accuracy up to 1 μs. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM. The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS signal.

  18. High accuracy electromagnetic field solvers for cylindrical waveguides and axisymmetric structures using the finite element method

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1993-12-01

    Some two-dimensional finite element electromagnetic field solvers are described and tested. For TE and TM modes in homogeneous cylindrical waveguides and monopole modes in homogeneous axisymmetric structures, the solvers find approximate solutions to a weak formulation of the wave equation. Second-order isoparametric lagrangian triangular elements represent the field. For multipole modes in axisymmetric structures, the solver finds approximate solutions to a weak form of the curl-curl formulation of Maxwell's equations. Second-order triangular edge elements represent the radial (ρ) and axial (z) components of the field, while a second-order lagrangian basis represents the azimuthal (φ) component of the field weighted by the radius ρ. A reduced set of basis functions is employed for elements touching the axis. With this basis the spurious modes of the curl-curl formulation have zero frequency, so spurious modes are easily distinguished from non-static physical modes. Tests on an annular ring, a pillbox and a sphere indicate the solutions converge rapidly as the mesh is refined. Computed eigenvalues with relative errors of less than a few parts per million are obtained. Boundary conditions for symmetric, periodic and symmetric-periodic structures are discussed and included in the field solver. Boundary conditions for structures with inversion symmetry are also discussed. Special corner elements are described and employed to improve the accuracy of cylindrical waveguide and monopole modes with singular fields at sharp corners. The field solver is applied to three problems: (1) cross-field amplifier slow-wave circuits, (2) a detuned disk-loaded waveguide linear accelerator structure and (3) a 90 degrees overmoded waveguide bend. The detuned accelerator structure is a critical application of this high accuracy field solver. To maintain low long-range wakefields, tight design and manufacturing tolerances are required

  19. Model Accuracy Comparison for High Resolution Insar Coherence Statistics Over Urban Areas

    Science.gov (United States)

    Zhang, Yue; Fu, Kun; Sun, Xian; Xu, Guangluan; Wang, Hongqi

    2016-06-01

    The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR) images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR) coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  20. MODEL ACCURACY COMPARISON FOR HIGH RESOLUTION INSAR COHERENCE STATISTICS OVER URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-06-01

    Full Text Available The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  1. Demonstration of Caustic-Side Solvent Extraction with Savannah River Site High Level Waste

    International Nuclear Information System (INIS)

    Walker, D.D.

    2001-01-01

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet for the decontamination of high level waste using a 33-stage, 2-cm centrifugal contactor apparatus at the Savannah River Technology Center. This represents the first CSSX process demonstration using Savannah River Site (SRS) high level waste. Three tests lasting 6, 12, and 48 hours processed simulated average SRS waste, simulated Tank 37H/44F composite waste, and Tank 37H/44F high level waste, respectively

  2. Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Leja, Joel; Johnson, Benjamin D.; Conroy, Charlie [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dokkum, Pieter G. van [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Byler, Nell [Department of Astronomy, University of Washington, Seattle, WA 98185 (United States)

    2017-03-10

    Broadband photometry of galaxies measures an unresolved mix of complex stellar populations, gas, and dust. Interpreting these data is a challenge for models: many studies have shown that properties derived from modeling galaxy photometry are uncertain by a factor of two or more, and yet answering key questions in the field now requires higher accuracy than this. Here, we present a new model framework specifically designed for these complexities. Our model, Prospector- α , includes dust attenuation and re-radiation, a flexible attenuation curve, nebular emission, stellar metallicity, and a six-component nonparametric star formation history. The flexibility and range of the parameter space, coupled with Monte Carlo Markov chain sampling within the Prospector inference framework, is designed to provide unbiased parameters and realistic error bars. We assess the accuracy of the model with aperture-matched optical spectroscopy, which was excluded from the fits. We compare spectral features predicted solely from fits to the broadband photometry to the observed spectral features. Our model predicts H α luminosities with a scatter of ∼0.18 dex and an offset of ∼0.1 dex across a wide range of morphological types and stellar masses. This agreement is remarkable, as the H α luminosity is dependent on accurate star formation rates, dust attenuation, and stellar metallicities. The model also accurately predicts dust-sensitive Balmer decrements, spectroscopic stellar metallicities, polycyclic aromatic hydrocarbon mass fractions, and the age- and metallicity-sensitive features D{sub n}4000 and H δ . Although the model passes all these tests, we caution that we have not yet assessed its performance at higher redshift or the accuracy of recovered stellar masses.

  3. What leadership behaviors were demonstrated by the principal in a high poverty, high achieving elementary school?

    Directory of Open Access Journals (Sweden)

    E. Hayet J. Woods

    2016-12-01

    Full Text Available Examined through the lens of leadership, were the behaviors of a principal as perceived by stakeholders. The following themes emerged: (1 Educating the Whole Child, with the subthemes: (a providing basic needs; (b academic interventions based on achievement data; (c an emphasis on reading; (d extended academic time; and (e relationships; and (2 Synergy of Expectations, with the subthemes: (a consistent student expectations; (b increased staff accountability; and (c community involvement. The researchers found that the principal by demonstrating behaviors as a change agent, a creator of vision, and a provider of necessary support and strategies, rather than adopting numerous programs, the school personnel were able to increase and sustain academic achievement of the students of poverty as well as their peers. Implications for principal practices, along with leadership preparatory programs are significant.

  4. DEMONSTRATION BULLETIN: HIGH VOLTAGE ELECTRON BEAM TECHNOLOGY - HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.

    Science.gov (United States)

    The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...

  5. The One to Multiple Automatic High Accuracy Registration of Terrestrial LIDAR and Optical Images

    Science.gov (United States)

    Wang, Y.; Hu, C.; Xia, G.; Xue, H.

    2018-04-01

    The registration of ground laser point cloud and close-range image is the key content of high-precision 3D reconstruction of cultural relic object. In view of the requirement of high texture resolution in the field of cultural relic at present, The registration of point cloud and image data in object reconstruction will result in the problem of point cloud to multiple images. In the current commercial software, the two pairs of registration of the two kinds of data are realized by manually dividing point cloud data, manual matching point cloud and image data, manually selecting a two - dimensional point of the same name of the image and the point cloud, and the process not only greatly reduces the working efficiency, but also affects the precision of the registration of the two, and causes the problem of the color point cloud texture joint. In order to solve the above problems, this paper takes the whole object image as the intermediate data, and uses the matching technology to realize the automatic one-to-one correspondence between the point cloud and multiple images. The matching of point cloud center projection reflection intensity image and optical image is applied to realize the automatic matching of the same name feature points, and the Rodrigo matrix spatial similarity transformation model and weight selection iteration are used to realize the automatic registration of the two kinds of data with high accuracy. This method is expected to serve for the high precision and high efficiency automatic 3D reconstruction of cultural relic objects, which has certain scientific research value and practical significance.

  6. Analogue demonstration of a high temperature superconducting sigma-delta modulator with 27 GHz sampling

    Energy Technology Data Exchange (ETDEWEB)

    Forrester, M.G.; Hunt, B.D.; Miller, D.L.; Talvacchio, J.; Young, R.M. [Northrop Grumman Science and Technology Center, Pittsburgh, PA 15235-5098 (United States)

    1999-11-01

    We have successfully fabricated and tested a high temperature superconducting (HTS) sigma-delta modulator for analogue-to-digital conversion. This is the first demonstration of a GHz sampling A-to-D in HTS. The 15-junction single-flux-quantum (SFQ) circuit, fabricated using an epitaxial multilayer HTS process with YBCO/Co-YBCO/YBCO edge junctions, was internally clocked at 27 GHz and used to convert a 5.01 MHz signal. The modulator demonstrated a spur-free dynamic range of more than 75 dB. Two-tone measurements with 5.01 MHz and 5.51 MHz signals demonstrated third-order intermodulation products to be lower than -59 dBc. Demonstration of a functional HTS modulator represents a significant milestone in the development of high dynamic range ADCs suitable for such applications as surveillance radar. (author)

  7. High-resolution CT of nontuberculous mycobacterium infection in adult CF patients: diagnostic accuracy

    International Nuclear Information System (INIS)

    McEvoy, Sinead; Lavelle, Lisa; Kilcoyne, Aoife; McCarthy, Colin; Dodd, Jonathan D.; DeJong, Pim A.; Loeve, Martine; Tiddens, Harm A.W.M.; McKone, Edward; Gallagher, Charles G.

    2012-01-01

    To determine the diagnostic accuracy of high-resolution computed tomography (HRCT) for the detection of nontuberculous mycobacterium infection (NTM) in adult cystic fibrosis (CF) patients. Twenty-seven CF patients with sputum-culture-proven NTM (NTM+) underwent HRCT. An age, gender and spirometrically matched group of 27 CF patients without NTM (NTM-) was included as controls. Images were randomly and blindly analysed by two readers in consensus and scored using a modified Bhalla scoring system. Significant differences were seen between NTM (+) and NTM (-) patients in the severity of the bronchiectasis subscore [45 % (1.8/4) vs. 35 % (1.4/4), P = 0.029], collapse/consolidation subscore [33 % (1.3/3) vs. 15 % (0.6/3)], tree-in-bud/centrilobular nodules subscore [43 % (1.7/3) vs. 25 % (1.0/3), P = 0.002] and the total CT score [56 % (18.4/33) vs. 46 % (15.2/33), P = 0.002]. Binary logistic regression revealed BMI, peribronchial thickening, collapse/consolidation and tree-in-bud/centrilobular nodules to be predictors of NTM status (R 2 = 0.43). Receiver-operator curve analysis of the regression model showed an area under the curve of 0.89, P < 0.0001. In adults with CF, seven or more bronchopulmonary segments showing tree-in-bud/centrilobular nodules on HRCT is highly suggestive of NTM colonisation. (orig.)

  8. High-resolution CT of nontuberculous mycobacterium infection in adult CF patients: diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, Sinead; Lavelle, Lisa; Kilcoyne, Aoife; McCarthy, Colin; Dodd, Jonathan D. [St. Vincent' s University Hospital, Department of Radiology, Dublin (Ireland); DeJong, Pim A. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Loeve, Martine; Tiddens, Harm A.W.M. [Erasmus MC-Sophia Children' s Hospital, Department of Radiology, Department of Pediatric Pulmonology and Allergology, Rotterdam (Netherlands); McKone, Edward; Gallagher, Charles G. [St. Vincent' s University Hospital, Department of Respiratory Medicine and National Referral Centre for Adult Cystic Fibrosis, Dublin (Ireland)

    2012-12-15

    To determine the diagnostic accuracy of high-resolution computed tomography (HRCT) for the detection of nontuberculous mycobacterium infection (NTM) in adult cystic fibrosis (CF) patients. Twenty-seven CF patients with sputum-culture-proven NTM (NTM+) underwent HRCT. An age, gender and spirometrically matched group of 27 CF patients without NTM (NTM-) was included as controls. Images were randomly and blindly analysed by two readers in consensus and scored using a modified Bhalla scoring system. Significant differences were seen between NTM (+) and NTM (-) patients in the severity of the bronchiectasis subscore [45 % (1.8/4) vs. 35 % (1.4/4), P = 0.029], collapse/consolidation subscore [33 % (1.3/3) vs. 15 % (0.6/3)], tree-in-bud/centrilobular nodules subscore [43 % (1.7/3) vs. 25 % (1.0/3), P = 0.002] and the total CT score [56 % (18.4/33) vs. 46 % (15.2/33), P = 0.002]. Binary logistic regression revealed BMI, peribronchial thickening, collapse/consolidation and tree-in-bud/centrilobular nodules to be predictors of NTM status (R{sup 2} = 0.43). Receiver-operator curve analysis of the regression model showed an area under the curve of 0.89, P < 0.0001. In adults with CF, seven or more bronchopulmonary segments showing tree-in-bud/centrilobular nodules on HRCT is highly suggestive of NTM colonisation. (orig.)

  9. Rigorous Training of Dogs Leads to High Accuracy in Human Scent Matching-To-Sample Performance.

    Directory of Open Access Journals (Sweden)

    Sophie Marchal

    Full Text Available Human scent identification is based on a matching-to-sample task in which trained dogs are required to compare a scent sample collected from an object found at a crime scene to that of a suspect. Based on dogs' greater olfactory ability to detect and process odours, this method has been used in forensic investigations to identify the odour of a suspect at a crime scene. The excellent reliability and reproducibility of the method largely depend on rigor in dog training. The present study describes the various steps of training that lead to high sensitivity scores, with dogs matching samples with 90% efficiency when the complexity of the scents presented during the task in the sample is similar to that presented in the in lineups, and specificity reaching a ceiling, with no false alarms in human scent matching-to-sample tasks. This high level of accuracy ensures reliable results in judicial human scent identification tests. Also, our data should convince law enforcement authorities to use these results as official forensic evidence when dogs are trained appropriately.

  10. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE

  11. High-accuracy vibration sensor based on a Fabry-Perot interferometer with active phase-tracking technology.

    Science.gov (United States)

    Xia, Wei; Li, Chuncheng; Hao, Hui; Wang, Yiping; Ni, Xiaoqi; Guo, Dongmei; Wang, Ming

    2018-02-01

    A novel position-sensitive Fabry-Perot interferometer was constructed with direct phase modulation by a built-in electro-optic modulator. Pure sinusoidal phase modulation of the light was produced, and the first harmonic of the interference signal was extracted to dynamically maintain the interferometer phase to the most sensitive point of the interferogram. Therefore, the minute vibration of the object was coded on the variation of the interference signal and could be directly retrieved by the output voltage of a photodetector. The operating principle and the signal processing method for active feedback control of the interference phase have been demonstrated in detail. The developed vibration sensor was calibrated through a high-precision piezo-electric transducer and tested by a nano-positioning stage under a vibration magnitude of 60 nm and a frequency of 300 Hz. The active phase-tracking method of the system provides high immunity against environmental disturbances. Experimental results show that the proposed interferometer can effectively reconstruct tiny vibration waveforms with subnanometer resolution, paving the way for high-accuracy vibration sensing, especially for micro-electro-mechanical systems/nano-electro-mechanical systems and ultrasonic devices.

  12. Design and simulation of high accuracy power supplies for injector synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1991-01-01

    The ring magnet of the injector synchrotron consists of 68 dipole magnets. These magnets are connected in series and are energized from two feed points 180 degrees apart by two identical 12-phase power supplies. The current in the magnet will be raised linearly at about 1 kA level, and after a small transition period (1 ms to 10 ms typical) the current will be reduced to below the injection level of 60 A. The repetition time for the current waveform is 500 ms. A relatively fast voltage loop along with a high gain current loop are utilized to control the current in the magnet with the required accuracy. Only one regulator circuit is used to control the firing pulses of the two sets of identical 12-phase power supplies. Pspice software was used to design and simulate the power supply performance under ramping and investigate the effect of current changes on the utility voltage and input power factor. A current ripple of ±2x10 -4 and tracking error of ±5x10 -4 was needed. 3 refs., 5 figs

  13. High accuracy line positions of the ν 1 fundamental band of 14 N 2 16 O

    KAUST Repository

    Alsaif, Bidoor

    2018-03-08

    The ν1 fundamental band of N2O is examined by a novel spectrometer that relies on the frequency locking of an external-cavity quantum cascade laser around 7.8 μm to a near-infrared Tm:based frequency comb at 1.9 μm. Due to the large tunability, nearly 70 lines in the 1240 – 1310 cm−1 range of the ν1 band of N2O, from P(40) to R(31), are for the first time measured with an absolute frequency calibration and an uncertainty from 62 to 180 kHz, depending on the line. Accurate values of the spectroscopic constants of the upper state are derived from a fit of the line centers (rms ≈ 4.8 × 10−6 cm−1 or 144 kHz). The ν1 transitions presently measured in a Doppler regime validate high accuracy predictions based on sub-Doppler measurements of the ν3 and ν3-ν1 transitions.

  14. Coronary CT angiography using prospective ECG triggering. High diagnostic accuracy with low radiation dose

    International Nuclear Information System (INIS)

    Arnoldi, E.; Ramos-Duran, L.; Abro, J.A.; Costello, P.; Zwerner, P.L.; Schoepf, U.J.; Nikolaou, K.; Reiser, M.F.

    2010-01-01

    The purpose of this study was to evaluate the diagnostic performance of coronary CT angiography (coronary CTA) using prospective ECG triggering (PT) for the detection of significant coronary artery stenosis compared to invasive coronary angiography (ICA). A total of 20 patients underwent coronary CTA with PT using a 128-slice CT scanner (Definition trademark AS+, Siemens) and ICA. All coronary CTA studies were evaluated for significant coronary artery stenoses (≥50% luminal narrowing) by 2 observers in consensus using the AHA-15-segment model. Findings in CTA were compared to those in ICA. Coronary CTA using PT had 88% sensitivity in comparison to 100% with ICA, 95% to 88% specificity, 80% to 92% positive predictive value and 97% to 100% negative predictive value for diagnosing significant coronary artery stenosis on per segment per patient analysis, respectively. Mean effective radiation dose-equivalent of CTA was 2.6±1 mSv. Coronary CTA using PT enables non-invasive diagnosis of significant coronary artery stenosis with high diagnostic accuracy in comparison to ICA and is associated with comparably low radiation exposure. (orig.) [de

  15. High accuracy line positions of the ν1 fundamental band of 14N216O

    Science.gov (United States)

    AlSaif, Bidoor; Lamperti, Marco; Gatti, Davide; Laporta, Paolo; Fermann, Martin; Farooq, Aamir; Lyulin, Oleg; Campargue, Alain; Marangoni, Marco

    2018-05-01

    The ν1 fundamental band of N2O is examined by a novel spectrometer that relies on the frequency locking of an external-cavity quantum cascade laser around 7.8 μm to a near-infrared Tm:based frequency comb at 1.9 μm. Due to the large tunability, nearly 70 lines in the 1240-1310 cm-1 range of the ν1 band of N2O, from P(40) to R(31), are for the first time measured with an absolute frequency calibration and an uncertainty from 62 to 180 kHz, depending on the line. Accurate values of the spectroscopic constants of the upper state are derived from a fit of the line centers (rms ≈ 4.8 × 10-6 cm-1 or 144 kHz). The ν1 transitions presently measured in a Doppler regime validate high accuracy predictions based on sub-Doppler measurements of the ν3 and ν3-ν1 transitions.

  16. On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy.

    Science.gov (United States)

    Peppa, Vasiliki; Pappas, Eleftherios; Major, Tibor; Takácsi-Nagy, Zoltán; Pantelis, Evaggelos; Papagiannis, Panagiotis

    2016-07-01

    To study the effect of finite patient dimensions and tissue heterogeneities in head and neck high dose rate brachytherapy. The current practice of TG-43 dosimetry was compared to patient specific dosimetry obtained using Monte Carlo simulation for a sample of 22 patient plans. The dose distributions were compared in terms of percentage dose differences as well as differences in dose volume histogram and radiobiological indices for the target and organs at risk (mandible, parotids, skin, and spinal cord). Noticeable percentage differences exist between TG-43 and patient specific dosimetry, mainly at low dose points. Expressed as fractions of the planning aim dose, percentage differences are within 2% with a general TG-43 overestimation except for the spine. These differences are consistent resulting in statistically significant differences of dose volume histogram and radiobiology indices. Absolute differences of these indices are however small to warrant clinical importance in terms of tumor control or complication probabilities. The introduction of dosimetry methods characterized by improved accuracy is a valuable advancement. It does not appear however to influence dose prescription or call for amendment of clinical recommendations for the mobile tongue, base of tongue, and floor of mouth patient cohort of this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Design and simulation of high accuracy power supplies for injector synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1991-01-01

    The ring magnet of the injector synchrotron consists of 68 dipole magnets. These magnets are connected in series and are energized from two feed points 180 degree apart by two identical 12-phase power supplies. The current in the magnet will be raised linearly to about 1 kA level, and after a small transition period (1 ms to 10 ms typical) the current will be reduced to below the injection level of 60 A. The repetition time for the current waveform is 500 ms. A relatively fast voltage loop along with a high gain current loop are utilized to control the current in the magnet with the required accuracy. Only one regulator circuit is used to control the firing pulses of the two sets of identical 12-phase power supplies. Pspice software was used to design and simulate the power supply performance under ramping and investigate the effect of current changes on the utility voltage and input power factor. A current ripple of ± 2 x 10 -4 and tracking error of ± 5 x 10 -4 was needed

  18. Quantitative accuracy of serotonergic neurotransmission imaging with high-resolution 123I SPECT

    International Nuclear Information System (INIS)

    Kuikka, J.T.

    2004-01-01

    Aim: Serotonin transporter (SERT) imaging can be used to study the role of regional abnormalities of neurotransmitter release in various mental disorders and to study the mechanism of action of therapeutic drugs or drugs' abuse. We examine the quantitative accuracy and reproducibility that can be achieved with high-resolution SPECT of serotonergic neurotransmission. Method: Binding potential (BP) of 123 I labeled tracer specific for midbrain SERT was assessed in 20 healthy persons. The effects of scatter, attenuation, partial volume, misregistration and statistical noise were estimated using phantom and human studies. Results: Without any correction, BP was underestimated by 73%. The partial volume error was the major component in this underestimation whereas the most critical error for the reproducibility was misplacement of region of interest (ROI). Conclusion: The proper ROI registration, the use of the multiple head gamma camera with transmission based scatter correction introduce more relevant results. However, due to the small dimensions of the midbrain SERT structures and poor spatial resolution of SPECT, the improvement without the partial volume correction is not great enough to restore the estimate of BP to that of the true one. (orig.) [de

  19. Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector

    Science.gov (United States)

    Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha

    2018-02-01

    A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.

  20. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  1. A perspective on demonstrating compliance with standards for disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Smith, E.D.; O'Kelley, G.D.; Sjoreen, A.L.

    1985-01-01

    A perspective which the authors have developed on the problem of demonstrating that geologic repositories for the disposal of high-level radioactive wastes will comply with system performance standards is discussed. Their viewpoint arises from a concern that the U.S. Environmental Protection Agency's proposed environmental standard for high-level waste disposal appears to require demonstrations of compliance which are incompatible with scientific knowledge; i.e., the standard does not take into account the likely importance of unquantifiable and unresolvable uncertainty in repository performance-assessment models. A general approach to demonstrations of compliance is proposed which is thought to be compatible with the kinds of technical information that will be available for judging long-term repository performance. The authors' approach emphasizes the importance of investigating alternative conceptual models and lines of reasoning in evaluating repository performance and the importance of subjective scientific judgment in the decision-making process. (Auth.)

  2. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    Science.gov (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  3. Perspective on demonstrations of compliance for high-level waste disposal

    International Nuclear Information System (INIS)

    Kocher, D.C.; Smith, E.D.; O'Kelly, G.D.; Sjoreen, A.L.

    1984-01-01

    This paper discusses a perspective which we have developed on the problem of demonstrating compliance of high-level waste repositories with system performance standards. Our viewpoint arises from two primary concerns - first, that the US Environmental Protection Agency's proposed environmental standard for high-level waste disposal appears to require demonstrations of compliance which are incompatible with scientific knowledge, and, second, that the federal agencies involved in the licensing process may not appreciate fully the extent of unquantifiable and uresolvable uncertainty in repository performance-assessment models. We propose a general approach to demonstrations of compliance which we feel is compatible with the kinds of technical information that will be available for judging repository performance. Our approach emphasizes the importance of investigation alternative conceptual models and lines of reasoning in evaluating repository performance and the importance of subjective scientific judgment in the desision-making process. 24 references, 1 figure

  4. A Simple Demonstration of the High-Temperature Electrical Conductivity of Glass

    Science.gov (United States)

    Chiaverina, Chris

    2014-01-01

    We usually think of glass as a good electrical insulator; this, however, is not always the case. There are several ways to show that glass becomes conducting at high temperatures, but the following approach, devised by Brown University demonstration manager Gerald Zani, may be one of the simplest to perform.

  5. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented

  6. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack

    2013-09-18

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  7. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    Science.gov (United States)

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  8. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack; Faverge, Mathieu; Ltaief, Hatem; Luszczek, Piotr R.

    2013-01-01

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  9. Factors Determining the Inter-observer Variability and Diagnostic Accuracy of High-resolution Manometry for Esophageal Motility Disorders.

    Science.gov (United States)

    Kim, Ji Hyun; Kim, Sung Eun; Cho, Yu Kyung; Lim, Chul-Hyun; Park, Moo In; Hwang, Jin Won; Jang, Jae-Sik; Oh, Minkyung

    2018-01-30

    Although high-resolution manometry (HRM) has the advantage of visual intuitiveness, its diagnostic validity remains under debate. The aim of this study was to evaluate the diagnostic accuracy of HRM for esophageal motility disorders. Six staff members and 8 trainees were recruited for the study. In total, 40 patients enrolled in manometry studies at 3 institutes were selected. Captured images of 10 representative swallows and a single swallow in analyzing mode in both high-resolution pressure topography (HRPT) and conventional line tracing formats were provided with calculated metrics. Assessments of esophageal motility disorders showed fair agreement for HRPT and moderate agreement for conventional line tracing (κ = 0.40 and 0.58, respectively). With the HRPT format, the k value was higher in category A (esophagogastric junction [EGJ] relaxation abnormality) than in categories B (major body peristalsis abnormalities with intact EGJ relaxation) and C (minor body peristalsis abnormalities or normal body peristalsis with intact EGJ relaxation). The overall exact diagnostic accuracy for the HRPT format was 58.8% and rater's position was an independent factor for exact diagnostic accuracy. The diagnostic accuracy for major disorders was 63.4% with the HRPT format. The frequency of major discrepancies was higher for category B disorders than for category A disorders (38.4% vs 15.4%; P < 0.001). The interpreter's experience significantly affected the exact diagnostic accuracy of HRM for esophageal motility disorders. The diagnostic accuracy for major disorders was higher for achalasia than distal esophageal spasm and jackhammer esophagus.

  10. DIRECT GEOREFERENCING : A NEW STANDARD IN PHOTOGRAMMETRY FOR HIGH ACCURACY MAPPING

    Directory of Open Access Journals (Sweden)

    A. Rizaldy

    2012-07-01

    Full Text Available Direct georeferencing is a new method in photogrammetry, especially in the digital camera era. Theoretically, this method does not require ground control points (GCP and the Aerial Triangulation (AT, to process aerial photography into ground coordinates. Compared with the old method, this method has three main advantages: faster data processing, simple workflow and less expensive project, at the same accuracy. Direct georeferencing using two devices, GPS and IMU. GPS recording the camera coordinates (X, Y, Z, and IMU recording the camera orientation (omega, phi, kappa. Both parameters merged into Exterior Orientation (EO parameter. This parameters required for next steps in the photogrammetric projects, such as stereocompilation, DSM generation, orthorectification and mosaic. Accuracy of this method was tested on topographic map project in Medan, Indonesia. Large-format digital camera Ultracam X from Vexcel is used, while the GPS / IMU is IGI AeroControl. 19 Independent Check Point (ICP were used to determine the accuracy. Horizontal accuracy is 0.356 meters and vertical accuracy is 0.483 meters. Data with this accuracy can be used for 1:2.500 map scale project.

  11. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    Middle East's growing interest in renewable energy has led to increased activity in solar technology development with the recent commissioning of several utility-scale solar power projects and many other commercial installations across the Arabian Peninsula. The region, lying in a virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2, is also one of the most promising candidates for solar energy deployment. However, it is not the availability of resource, but its characterization and reasonably accurate assessment that determines the application potential. Solar irradiance, magnitude and variability inclusive, is the key input in assessing the economic feasibility of a solar system. The accuracy of such data is of critical importance for realistic on-site performance estimates. This contribution aims to identify the key stages in developing a robust solar database for desert climate by focusing on the challenges that an arid environment presents to parameterization of solar irradiance attenuating factors. Adjustments are proposed based on the currently available resource assessment tools to produce high quality data for assessing bankability. Establishing and maintaining ground solar irradiance measurements is an expensive affair and fairly limited in time (recently operational) and space (fewer sites) in the Gulf region. Developers within solar technology industry, therefore, rely on solar radiation models and satellite-derived data for prompt resource assessment needs. It is imperative that such estimation tools are as accurate as possible. While purely empirical models have been widely researched and validated in the Arabian Peninsula's solar modeling history, they are known to be intrinsically site-specific. A primal step to modeling is an in-depth understanding of the region's climate, identifying the key players attenuating radiation and their appropriate characterization to determine solar irradiance. Physical approach

  12. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations.

    Science.gov (United States)

    Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L

    1997-04-01

    This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.

  13. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  14. In-depth, high-accuracy proteomics of sea urchin tooth organic matrix

    Directory of Open Access Journals (Sweden)

    Mann Matthias

    2008-12-01

    Full Text Available Abstract Background The organic matrix contained in biominerals plays an important role in regulating mineralization and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin tooth, which is an important model for developmental biology and biomineralization, only few matrix components have been identified. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of genes potentially coding for matrix proteins, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy proteomic analysis. Results We identified 138 proteins in the matrix of tooth powder. Only 56 of these proteins were previously identified in the matrices of test (shell and spine. Among the novel components was an interesting group of five proteins containing alanine- and proline-rich neutral or basic motifs separated by acidic glycine-rich motifs. In addition, four of the five proteins contained either one or two predicted Kazal protease inhibitor domains. The major components of tooth matrix were however largely identical to the set of spicule matrix proteins and MSP130-related proteins identified in test (shell and spine matrix. Comparison of the matrices of crushed teeth to intact teeth revealed a marked dilution of known intracrystalline matrix proteins and a concomitant increase in some intracellular proteins. Conclusion This report presents the most comprehensive list of sea urchin tooth matrix proteins available at present. The complex mixture of proteins identified may reflect many different aspects of the mineralization process. A comparison between intact tooth matrix, presumably containing odontoblast remnants, and crushed tooth matrix served to differentiate between matrix components and possible contributions of cellular remnants. Because LC-MS/MS-based methods directly

  15. High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, S.A.; Assadsangabi, R.; Hajmomenian, M.; Vossough, A. [Perelman School of Medicine of the University of Pennsylvania, Department of Radiology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Santi, M. [Perelman School of Medicine of the University of Pennsylvania, Department of Pathology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Pilomyxoid astrocytoma (PMA) is a relatively new tumor entity which has been added to the 2007 WHO Classification of tumors of the central nervous system. The goal of this study is to utilize arterial spin labeling (ASL) perfusion imaging to differentiate PMA from pilocytic astrocytoma (PA). Pulsed ASL and conventional MRI sequences of patients with PMA and PA in the past 5 years were retrospectively evaluated. Patients with history of radiation or treatment with anti-angiogenic drugs were excluded. A total of 24 patients (9 PMA, 15 PA) were included. There were statistically significant differences between PMA and PA in mean tumor/gray matter (GM) cerebral blood flow (CBF) ratios (1.3 vs 0.4, p < 0.001) and maximum tumor/GM CBF ratio (2.3 vs 1, p < 0.001). Area under the receiver operating characteristic (ROC) curves for differentiation of PMA from PA was 0.91 using mean tumor CBF, 0.95 using mean tumor/GM CBF ratios, and 0.89 using maximum tumor/GM CBF. Using a threshold value of 0.91, the mean tumor/GM CBF ratio was able to diagnose PMA with 77 % sensitivity, 100 % specificity, and a threshold value of 0.7, provided 88 % sensitivity and 86 % specificity. There was no statistically significant difference between the two tumors in enhancement pattern (p = 0.33), internal architecture (p = 0.15), or apparent diffusion coefficient (ADC) values (p = 0.07). ASL imaging has high accuracy in differentiating PMA from PA. The result of this study may have important applications in prognostication and treatment planning especially in patients with less accessible tumors such as hypothalamic-chiasmatic gliomas. (orig.)

  16. Neutrino mass from cosmology: impact of high-accuracy measurement of the Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, Toyokazu [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Ichikawa, Kazuhide [Department of Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan); Takahashi, Tomo [Department of Physics, Saga University, Saga 840-8502 (Japan); Greenhill, Lincoln, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: kazuhide@me.kyoto-u.ac.jp, E-mail: tomot@cc.saga-u.ac.jp, E-mail: greenhill@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2010-03-01

    Non-zero neutrino mass would affect the evolution of the Universe in observable ways, and a strong constraint on the mass can be achieved using combinations of cosmological data sets. We focus on the power spectrum of cosmic microwave background (CMB) anisotropies, the Hubble constant H{sub 0}, and the length scale for baryon acoustic oscillations (BAO) to investigate the constraint on the neutrino mass, m{sub ν}. We analyze data from multiple existing CMB studies (WMAP5, ACBAR, CBI, BOOMERANG, and QUAD), recent measurement of H{sub 0} (SHOES), with about two times lower uncertainty (5 %) than previous estimates, and recent treatments of BAO from the Sloan Digital Sky Survey (SDSS). We obtained an upper limit of m{sub ν} < 0.2eV (95 % C.L.), for a flat ΛCDM model. This is a 40 % reduction in the limit derived from previous H{sub 0} estimates and one-third lower than can be achieved with extant CMB and BAO data. We also analyze the impact of smaller uncertainty on measurements of H{sub 0} as may be anticipated in the near term, in combination with CMB data from the Planck mission, and BAO data from the SDSS/BOSS program. We demonstrate the possibility of a 5σ detection for a fiducial neutrino mass of 0.1 eV or a 95 % upper limit of 0.04 eV for a fiducial of m{sub ν} = 0 eV. These constraints are about 50 % better than those achieved without external constraint. We further investigate the impact on modeling where the dark-energy equation of state is constant but not necessarily -1, or where a non-flat universe is allowed. In these cases, the next-generation accuracies of Planck, BOSS, and 1 % measurement of H{sub 0} would all be required to obtain the limit m{sub ν} < 0.05−0.06 eV (95 % C.L.) for the fiducial of m{sub ν} = 0 eV. The independence of systematics argues for pursuit of both BAO and H{sub 0} measurements.

  17. Cost-effective improvements of a rotating platform by integration of a high-accuracy inclinometer and encoders for attitude evaluation

    International Nuclear Information System (INIS)

    Wen, Chenyang; He, Shengyang; Hu, Peida; Bu, Changgen

    2017-01-01

    Attitude heading reference systems (AHRSs) based on micro-electromechanical system (MEMS) inertial sensors are widely used because of their low cost, light weight, and low power. However, low-cost AHRSs suffer from large inertial sensor errors. Therefore, experimental performance evaluation of MEMS-based AHRSs after system implementation is necessary. High-accuracy turntables can be used to verify the performance of MEMS-based AHRSs indoors, but they are expensive and unsuitable for outdoor tests. This study developed a low-cost two-axis rotating platform for indoor and outdoor attitude determination. A high-accuracy inclinometer and encoders were integrated into the platform to improve the achievable attitude test accuracy. An attitude error compensation method was proposed to calibrate the initial attitude errors caused by the movements and misalignment angles of the platform. The proposed attitude error determination method was examined through rotating experiments, which showed that the standard deviations of the pitch and roll errors were 0.050° and 0.090°, respectively. The pitch and roll errors both decreased to 0.024° when the proposed attitude error determination method was used. This decrease validates the effectiveness of the compensation method. Experimental results demonstrated that the integration of the inclinometer and encoders improved the performance of the low-cost, two-axis, rotating platform in terms of attitude accuracy. (paper)

  18. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    International Nuclear Information System (INIS)

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-01-01

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  19. Transformation Model with Constraints for High-Accuracy of 2D-3D Building Registration in Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Guoqing Zhou

    2016-06-01

    Full Text Available This paper proposes a novel rigorous transformation model for 2D-3D registration to address the difficult problem of obtaining a sufficient number of well-distributed ground control points (GCPs in urban areas with tall buildings. The proposed model applies two types of geometric constraints, co-planarity and perpendicularity, to the conventional photogrammetric collinearity model. Both types of geometric information are directly obtained from geometric building structures, with which the geometric constraints are automatically created and combined into the conventional transformation model. A test field located in downtown Denver, Colorado, is used to evaluate the accuracy and reliability of the proposed method. The comparison analysis of the accuracy achieved by the proposed method and the conventional method is conducted. Experimental results demonstrated that: (1 the theoretical accuracy of the solved registration parameters can reach 0.47 pixels, whereas the other methods reach only 1.23 and 1.09 pixels; (2 the RMS values of 2D-3D registration achieved by the proposed model are only two pixels along the x and y directions, much smaller than the RMS values of the conventional model, which are approximately 10 pixels along the x and y directions. These results demonstrate that the proposed method is able to significantly improve the accuracy of 2D-3D registration with much fewer GCPs in urban areas with tall buildings.

  20. Long-term management of high-level radioactive waste. The meaning of a demonstration

    International Nuclear Information System (INIS)

    1983-01-01

    The ''demonstration'' of the safe management of high level radioactive waste is a prerequisite for the further development of nuclear energy. It is therefore essential to be clear about both the meaning of the term ''demonstration'' and the practical means to satisfy this request. In the complex sequence of operations necessary to the safe management of high level waste, short term activities can be directly demonstrated. For longer term activities, such as the long term isolation of radioactive waste in deep undergroung structures, demonstration must be indirect. The ''demonstration'' of deep underground disposal for high level radioactive waste involves two steps: one direct, to prove that the system could be built, operated and closed safely and at acceptable costs, and one indirect, to make a convincing evaluation of the system's performance and long term safety on the basis of predictive analyses confirmed by a body of varied technical and scienfic data, much of it deriving from experimental work. The assessment of the evidence collected from current operations, existing experience in related fields and specific research and development activities, calls for specialized scientific expertise. Uncertainties in far future situations and probabilistic events can be taken into account in a scientific assessment. Competent national authorithies will have to satisfy themselves that the proposed waste management solutions can meet long term safety objectives. An element of judgement will always be needed in determining the acceptability of a waste disposal concept. However, the level of confidence in our ability to predict the performance of waste management systems will increase as supporting evidence is collected from current research and development activities and as our predictive techniques improve

  1. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Science.gov (United States)

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. High-accuracy dosimetry study for intensity-modulated radiation therapy(IMRT) commissioning

    International Nuclear Information System (INIS)

    Jeong, Hae Sun

    2010-02-01

    Intensity-modulated radiation therapy (IMRT), an advanced modality of high-precision radiotherapy, allows for an increase in dose to the tumor volume without increasing the dose to nearby critical organs. In order to successfully achieve the treatment, intensive dosimetry with accurate dose verification is necessary. A dosimetry for IMRT, however, is a challenging task due to dosimetric ally unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, non-uniformity between the detector and the phantom materials, and distortion of scanner-read doses. In the present study, therefore, the LEGO-type multi-purpose dosimetry phantom was developed and used for the studies on dose measurements and correction. Phantom materials for muscle, fat, bone, and lung tissue were selected after considering mass density, atomic composition, effective atomic number, and photon interaction coefficients. The phantom also includes dosimeter holders for several different types of detectors including films, which accommodates a construction of different designs of phantoms as necessary. In order to evaluate its performance, the developed phantom was tested by measuring the point dose and the percent depth dose (PDD) for small size fields under several heterogeneous conditions. However, the measurements with the two types of dosimeter did not agree well for the field sizes less than 1 x 1 cm 2 in muscle and bone, and less than 3 x 3 cm 2 in air cavity. Thus, it was recognized that several studies on small fields dosimetry and correction methods for the calculation with a PMCEPT code are needed. The under-estimated values from the ion chamber were corrected with a convolution method employed to eliminate the volume effect of the chamber. As a result, the discrepancies between the EBT film and the ion chamber measurements were significantly decreased, from 14% to 1% (1 x 1 cm 2 ), 10% to 1% (0.7 x 0.7 cm 2 ), and 42% to 7% (0.5 x 0

  3. High-accuracy dosimetry study for intensity-modulated radiation therapy(IMRT) commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun

    2010-02-15

    Intensity-modulated radiation therapy (IMRT), an advanced modality of high-precision radiotherapy, allows for an increase in dose to the tumor volume without increasing the dose to nearby critical organs. In order to successfully achieve the treatment, intensive dosimetry with accurate dose verification is necessary. A dosimetry for IMRT, however, is a challenging task due to dosimetric ally unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, non-uniformity between the detector and the phantom materials, and distortion of scanner-read doses. In the present study, therefore, the LEGO-type multi-purpose dosimetry phantom was developed and used for the studies on dose measurements and correction. Phantom materials for muscle, fat, bone, and lung tissue were selected after considering mass density, atomic composition, effective atomic number, and photon interaction coefficients. The phantom also includes dosimeter holders for several different types of detectors including films, which accommodates a construction of different designs of phantoms as necessary. In order to evaluate its performance, the developed phantom was tested by measuring the point dose and the percent depth dose (PDD) for small size fields under several heterogeneous conditions. However, the measurements with the two types of dosimeter did not agree well for the field sizes less than 1 x 1 cm{sup 2} in muscle and bone, and less than 3 x 3 cm{sup 2} in air cavity. Thus, it was recognized that several studies on small fields dosimetry and correction methods for the calculation with a PMCEPT code are needed. The under-estimated values from the ion chamber were corrected with a convolution method employed to eliminate the volume effect of the chamber. As a result, the discrepancies between the EBT film and the ion chamber measurements were significantly decreased, from 14% to 1% (1 x 1 cm{sup 2}), 10% to 1% (0.7 x 0.7 cm{sup 2}), and 42

  4. Experimental demonstration of high resolution three-dimensional x-ray holography

    International Nuclear Information System (INIS)

    McNulty, I.; Trebes, J.E.; Brase, J.M.; Yorkey, T.J.; Levesque, R.; Szoke, H.; Anderson, E.H.; Jacobsen, C.

    1992-01-01

    Tomographic x-ray holography may make possible the imaging of biological objects at high resolution in three dimensions. We performed a demonstration experiment with soft x-rays to explore the feasibility of this technique. Coherent 3.2-nm undulator radiation was used to record Fourier transform holograms of a microfabricated test object from various illumination angles. The holograms were numerically reconstructed according to the principles of diffraction tomography, yielding images of the object that are well resolved in three dimensions

  5. High-Rate Field Demonstration of Large-Alphabet Quantum Key Distribution

    Science.gov (United States)

    2016-10-12

    count rate of Bob’s detectors. In this detector-limited regime , it is advantageous to increase M to encode as much information as possible in each...High- rate field demonstration of large-alphabet quantum key distribution Catherine Lee,1, 2 Darius Bunandar,1 Zheshen Zhang,1 Gregory R. Steinbrecher...October 12, 2016) 2 Quantum key distribution (QKD) enables secure symmetric key exchange for information-theoretically secure com- munication via one-time

  6. A demonstration experiment of steam-driven, high-pressure melt ejection

    International Nuclear Information System (INIS)

    Allen, M.D.; Pitch, M.; Nichols, R.T.

    1990-08-01

    A steam blowdown test was performed at the Surtsey Direct Heating Test Facility to test the steam supply system and burst diaphragm arrangement that will be used in subsequent Surtsey Direct Containment Heating (DCH) experiments. Following successful completion of the steam blowdown test, the HIPS-10S (High-Pressure Melt Streaming) experiment was conducted to demonstrate that the technology to perform steam-driven, high-pressure melt ejection (HPME) experiments has been successfully developed. In addition, the HIPS-10S experiment was used to assess techniques and instrumentation design to create the proper timing of events in HPME experiments. This document discusses the results of this test

  7. Post Irradiation Examination Plan for High-Burnup Demonstration Project Sister Rods

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This test plan describes the experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) to characterize high burnup (HBU) spent nuclear fuel (SNF) in conjunction with the High Burnup Dry Storage Cask Research and Development Project and serves to coordinate and integrate the multi-year experimental program to collect and develop data regarding the continued storage and eventual transport of HBU (i.e., >45 GWd/MTU) SNF. The work scope involves the development, performance, technical integration, and oversight of measurements and collection of relevant data, guided by analyses and demonstration of need.

  8. High-accuracy single-pass InSAR DEM for large-scale flood hazard applications

    Science.gov (United States)

    Schumann, G.; Faherty, D.; Moller, D.

    2017-12-01

    In this study, we used a unique opportunity of the GLISTIN-A (NASA airborne mission designed to characterizing the cryosphere) track to Greenland to acquire a high-resolution InSAR DEM of a large area in the Red River of the North Basin (north of Grand Forks, ND, USA), which is a very flood-vulnerable valley, particularly in spring time due to increased soil moisture content near state of saturation and/or, typical for this region, snowmelt. Having an InSAR DEM that meets flood inundation modeling and mapping requirements comparable to LiDAR, would demonstrate great application potential of new radar technology for national agencies with an operational flood forecasting mandate and also local state governments active in flood event prediction, disaster response and mitigation. Specifically, we derived a bare-earth DEM in SAR geometry by first removing the inherent far range bias related to airborne operation, which at the more typical large-scale DEM resolution of 30 m has a sensor accuracy of plus or minus 2.5 cm. Subsequently, an intelligent classifier based on informed relationships between InSAR height, intensity and correlation was used to distinguish between bare-earth, roads or embankments, buildings and tall vegetation in order to facilitate the creation of a bare-earth DEM that would meet the requirements for accurate floodplain inundation mapping. Using state-of-the-art LiDAR terrain data, we demonstrate that capability by achieving a root mean squared error of approximately 25 cm and further illustrating its applicability to flood modeling.

  9. Analysis of the plasmodium falciparum proteome by high-accuracy mass spectrometry

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Ishihama, Yasushi; Andersen, Jens S

    2002-01-01

    -accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last...

  10. High-accuracy interferometric measurements of flatness and parallelism of a step gauge

    CSIR Research Space (South Africa)

    Kruger, OA

    2001-01-01

    Full Text Available The most commonly used method in the calibration of step gauges is the coordinate measuring machine (CMM), equipped with a laser interferometer for the highest accuracy. This paper describes a modification to a length-bar measuring machine...

  11. [Accuracy of placenta accreta prenatal diagnosis by ultrasound and MRI in a high-risk population].

    Science.gov (United States)

    Daney de Marcillac, F; Molière, S; Pinton, A; Weingertner, A-S; Fritz, G; Viville, B; Roedlich, M-N; Gaudineau, A; Sananes, N; Favre, R; Nisand, I; Langer, B

    2016-02-01

    Main objective was to compare accuracy of ultrasonography and MRI for antenatal diagnosis of placenta accreta. Secondary objectives were to specify the most common sonographic and RMI signs associated with diagnosis of placenta accreta. This retrospective study used data collected from all potential cases of placenta accreta (patients with an anterior placenta praevia with history of scarred uterus) admitted from 01/2010 to 12/2014 in a level III maternity unit in Strasbourg, France. High-risk patients beneficiated antenatally from ultrasonography and MRI. Sonographic signs registered were: abnormal placental lacunae, increased vascularity on color Doppler, absence of the retroplacental clear space, interrupted bladder line. MRI signs registered were: abnormal uterine bulging, intraplacental bands of low signal intensity on T2-weighted images, increased vascularity, heterogeneous signal of the placenta on T2-weighed, interrupted bladder line, protrusion of the placenta into the cervix. Diagnosis of placenta accreta was confirmed histologically after hysterectomy or clinically in case of successful conservative treatment. Twenty-two potential cases of placenta accreta were referred to our center and underwent both ultrasonography and MRI. All cases of placenta accreta had a placenta praevia associated with history of scarred uterus. Sensibility and specificity for ultrasonography were, respectively, 0.92 and 0.67, for MRI 0.84 and 0.78 without significant difference (p>0.05). The most relevant signs associated with diagnosis of placenta accreta in ultrasonography were increased vascularity on color Doppler (sensibility 0.85/specificity 0.78), abnormal placental lacunae (sensibility 0.92/specificity 0.55) and loss of retroplacental clear space (sensibility 0.76/specificity 1.0). The most relevant signs in MRI were: abnormal uterine bulging (sensitivity 0.92/specificity 0.89), dark intraplacental bands on T2-weighted images (sensitivity 0.83/specificity 0.80) or

  12. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    International Nuclear Information System (INIS)

    Iannicelli, Elsa; Di Renzo, Sara; Ferri, Mario; Pilozzi, Emanuela; Di Girolamo, Marco; Sapori, Alessandra; Ziparo, Vincenzo; David, Vincenzo

    2014-01-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting

  13. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Iannicelli, Elsa; Di Renzo, Sara [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ferri, Mario [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Pilozzi, Emanuela [Department of Clinical and Molecular Sciences, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Di Girolamo, Marco; Sapori, Alessandra [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ziparo, Vincenzo [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); David, Vincenzo [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy)

    2014-07-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting.

  14. Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery

    International Nuclear Information System (INIS)

    Cheng Zai-Jun; San Hai-Sheng; Chen Xu-Yuan; Liu Bo; Feng Zhi-Hong

    2011-01-01

    A high open-circuit voltage betavoltaic microbattery based on a GaN p-i-n diode is demonstrated. Under the irradiation of a 4×4 mm 2 planar solid 63 Ni source with an activity of 2 mCi, the open-circuit voltage V oc of the fabricated single 2×2mm 2 cell reaches as high as 1.62 V, the short-circuit current density J sc is measured to be 16nA/cm 2 . The microbattery has a fill factor of 55%, and the energy conversion efficiency of beta radiation into electricity reaches to 1.13%. The results suggest that GaN is a highly promising potential candidate for long-life betavoltaic microbatteries used as power supplies for microelectromechanical system devices. (cross-disciplinary physics and related areas of science and technology)

  15. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Gulliford, Colwyn, E-mail: cg248@cornell.edu; Bartnik, Adam, E-mail: acb20@cornell.edu; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca [CLASSE, Cornell University, 161 Synchrotron Drive Ithaca, New York 14853-8001 (United States)

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  16. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.

    Science.gov (United States)

    Kraemer, D; Chen, G

    2014-02-01

    Accurate measurements of thermal conductivity are of great importance for materials research and development. Steady-state methods determine thermal conductivity directly from the proportionality between heat flow and an applied temperature difference (Fourier Law). Although theoretically simple, in practice, achieving high accuracies with steady-state methods is challenging and requires rather complex experimental setups due to temperature sensor uncertainties and parasitic heat loss. We developed a simple differential steady-state method in which the sample is mounted between an electric heater and a temperature-controlled heat sink. Our method calibrates for parasitic heat losses from the electric heater during the measurement by maintaining a constant heater temperature close to the environmental temperature while varying the heat sink temperature. This enables a large signal-to-noise ratio which permits accurate measurements of samples with small thermal conductance values without an additional heater calibration measurement or sophisticated heater guards to eliminate parasitic heater losses. Additionally, the differential nature of the method largely eliminates the uncertainties of the temperature sensors, permitting measurements with small temperature differences, which is advantageous for samples with high thermal conductance values and/or with strongly temperature-dependent thermal conductivities. In order to accelerate measurements of more than one sample, the proposed method allows for measuring several samples consecutively at each temperature measurement point without adding significant error. We demonstrate the method by performing thermal conductivity measurements on commercial bulk thermoelectric Bi2Te3 samples in the temperature range of 30-150 °C with an error below 3%.

  17. Tolosa-Hunt syndrome. A CT demonstration of a high-density lesion

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Kazuhiro; Muramoto, Masato; Chiba, Yasuhiro; Yagishita, Saburo

    1987-08-01

    CT scan studies of the Tolosa-Hunt syndrome have seldom been reported; positive abnormal findings are especially rare. A 36-year-old man suffered from steady, boring pain behind the left eye for one year. On admission he complained of diplopia on the right lateral gaze and hypesthesea of the first and second divisions of the left trigeminal nerve. A CT scan demonstrated a slightly high-density lesion, which was homogeneously enhanced, in the left cavernous portion and the superior orbital fissure. Carotid angiograms demonstrated no abnormal finding, and the cavernous sinus venography revealed no filling of the left cavernous sinus. A left front-temporal craniotomy was performed for the purpose of biopsy. A histological examination revealed non-specific focal granulomatous pachymeningitis. He responded dramatically to systemic steroid therapy, and he became pain-free by the fourth post-operative day. This diagnosis of the Tolosa-Hunt syndrome was confirmed both clinically and etiologically; however, the CT scan after the treatment demonstrated no definitive change in the lesion. The CT scan is useful for the diagnosis of this syndrome. Considering the stage of the illness, it is possible that the high-resolution CT scan can demonstrate this lesion with an advanced technique. The clinical diagnosis is almost easy, and surgical exploration is not always necessary if there is a prompt remission upon systemic steroid therapy. However, this syndrome should be differentiated from the other causes by appropriate examinations. Some cases similar to ours, especially suspected tumors, need surgical exploration because these angiographic findings are not specific.

  18. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    Directory of Open Access Journals (Sweden)

    Euiho Kim

    2017-09-01

    Full Text Available In the Federal Aviation Administration’s (FAA performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  19. Automatic J–A Model Parameter Tuning Algorithm for High Accuracy Inrush Current Simulation

    Directory of Open Access Journals (Sweden)

    Xishan Wen

    2017-04-01

    Full Text Available Inrush current simulation plays an important role in many tasks of the power system, such as power transformer protection. However, the accuracy of the inrush current simulation can hardly be ensured. In this paper, a Jiles–Atherton (J–A theory based model is proposed to simulate the inrush current of power transformers. The characteristics of the inrush current curve are analyzed and results show that the entire inrush current curve can be well featured by the crest value of the first two cycles. With comprehensive consideration of both of the features of the inrush current curve and the J–A parameters, an automatic J–A parameter estimation algorithm is proposed. The proposed algorithm can obtain more reasonable J–A parameters, which improve the accuracy of simulation. Experimental results have verified the efficiency of the proposed algorithm.

  20. [Method for evaluating the positional accuracy of a six-degrees-of-freedom radiotherapy couch using high definition digital cameras].

    Science.gov (United States)

    Takemura, Akihiro; Ueda, Shinichi; Noto, Kimiya; Kurata, Yuichi; Shoji, Saori

    2011-01-01

    In this study, we proposed and evaluated a positional accuracy assessment method with two high-resolution digital cameras for add-on six-degrees-of-freedom radiotherapy (6D) couches. Two high resolution digital cameras (D5000, Nikon Co.) were used in this accuracy assessment method. These cameras were placed on two orthogonal axes of a linear accelerator (LINAC) coordinate system and focused on the isocenter of the LINAC. Pictures of a needle that was fixed on the 6D couch were taken by the cameras during couch motions of translation and rotation of each axis. The coordinates of the needle in the pictures were obtained using manual measurement, and the coordinate error of the needle was calculated. The accuracy of a HexaPOD evo (Elekta AB, Sweden) was evaluated using this method. All of the mean values of the X, Y, and Z coordinate errors in the translation tests were within ±0.1 mm. However, the standard deviation of the Z coordinate errors in the Z translation test was 0.24 mm, which is higher than the others. In the X rotation test, we found that the X coordinate of the rotational origin of the 6D couch was shifted. We proposed an accuracy assessment method for a 6D couch. The method was able to evaluate the accuracy of the motion of only the 6D couch and revealed the deviation of the origin of the couch rotation. This accuracy assessment method is effective for evaluating add-on 6D couch positioning.

  1. Thermal Stability of Magnetic Compass Sensor for High Accuracy Positioning Applications

    OpenAIRE

    Van-Tang PHAM; Dinh-Chinh NGUYEN; Quang-Huy TRAN; Duc-Trinh CHU; Duc-Tan TRAN

    2015-01-01

    Using magnetic compass sensors in angle measurements have a wide area of application such as positioning, robot, landslide, etc. However, one of the most phenomenal that affects to the accuracy of the magnetic compass sensor is the temperature. This paper presents two thermal stability schemes for improving performance of a magnetic compass sensor. The first scheme uses the feedforward structure to adjust the angle output of the compass sensor adapt to the variation of the temperature. The se...

  2. New perspectives for high accuracy SLR with second generation geodesic satellites

    Science.gov (United States)

    Lund, Glenn

    1993-01-01

    This paper reports on the accuracy limitations imposed by geodesic satellite signatures, and on the potential for achieving millimetric performances by means of alternative satellite concepts and an optimized 2-color system tradeoff. Long distance laser ranging, when performed between a ground (emitter/receiver) station and a distant geodesic satellite, is now reputed to enable short arc trajectory determinations to be achieved with an accuracy of 1 to 2 centimeters. This state-of-the-art accuracy is limited principally by the uncertainties inherent to single-color atmospheric path length correction. Motivated by the study of phenomena such as postglacial rebound, and the detailed analysis of small-scale volcanic and strain deformations, the drive towards millimetric accuracies will inevitably be felt. With the advent of short pulse (less than 50 ps) dual wavelength ranging, combined with adequate detection equipment (such as a fast-scanning streak camera or ultra-fast solid-state detectors) the atmospheric uncertainty could potentially be reduced to the level of a few millimeters, thus, exposing other less significant error contributions, of which by far the most significant will then be the morphology of the retroreflector satellites themselves. Existing geodesic satellites are simply dense spheres, several 10's of cm in diameter, encrusted with a large number (426 in the case of LAGEOS) of small cube-corner reflectors. A single incident pulse, thus, results in a significant number of randomly phased, quasi-simultaneous return pulses. These combine coherently at the receiver to produce a convolved interference waveform which cannot, on a shot to shot basis, be accurately and unambiguously correlated to the satellite center of mass. This paper proposes alternative geodesic satellite concepts, based on the use of a very small number of cube-corner retroreflectors, in which the above difficulties are eliminated while ensuring, for a given emitted pulse, the return

  3. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dijken, Bart R.J. van [University of Groningen, University Medical Center Groningen Department of Radiology, Groningen (Netherlands); Laar, Peter Jan van; Hoorn, Anouk van der [University of Groningen, University Medical Center Groningen Department of Radiology, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen (Netherlands); Holtman, Gea A. [University of Groningen, University Medical Center Groningen, Department of General Practice, Groningen (Netherlands)

    2017-10-15

    Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. (orig.)

  4. A high-accuracy optical linear algebra processor for finite element applications

    Science.gov (United States)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  5. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    Science.gov (United States)

    Zhu, Xiangbin; Qiu, Huiling

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  6. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    Directory of Open Access Journals (Sweden)

    Xiangbin Zhu

    Full Text Available Human activity recognition(HAR from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  7. THE EFFECT OF MODERATE AND HIGH-INTENSITY FATIGUE ON GROUNDSTROKE ACCURACY IN EXPERT AND NON-EXPERT TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Mark Lyons

    2013-06-01

    Full Text Available Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female and 17 non-expert (13 male, 4 female tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70% and high-intensities (90% set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test. Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on

  8. In-Space Demonstration of High Performance Green Propulsion and its Impact on Small Satellites

    OpenAIRE

    Anflo, Kjell; Crowe, Ben

    2011-01-01

    This paper summarizes the pre-launch activities and the results from the in-space demonstration of a novel propulsion system on the PRISMA main satellite, using a “Green” monopropellant. This propellant is a storable ADN-based monopropellant blend (i.e. LMP-103S). The basic mission for the High Performance Green Propulsion System (HPGP) has been successfully completed and all primary objectives of TRL 7 have been met. The HPGP technology is now flight proven and ready for implementation on fu...

  9. Demonstrating multibit magnetic memory in the Fe8 high-spin molecule by muon spin rotation

    Science.gov (United States)

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-09-01

    We develop a method to detect the quantum nature of high-spin molecules using muon spin rotation and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember six (possibly eight) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for multibit magnetic memory. Our experiment also paves the way for magnetic quantum tunneling detection in films.

  10. High accuracy prediction of beta-turns and their types using propensities and multiple alignments.

    Science.gov (United States)

    Fuchs, Patrick F J; Alix, Alain J P

    2005-06-01

    We have developed a method that predicts both the presence and the type of beta-turns, using a straightforward approach based on propensities and multiple alignments. The propensities were calculated classically, but the way to use them for prediction was completely new: starting from a tetrapeptide sequence on which one wants to evaluate the presence of a beta-turn, the propensity for a given residue is modified by taking into account all the residues present in the multiple alignment at this position. The evaluation of a score is then done by weighting these propensities by the use of Position-specific score matrices generated by PSI-BLAST. The introduction of secondary structure information predicted by PSIPRED or SSPRO2 as well as taking into account the flanking residues around the tetrapeptide improved the accuracy greatly. This latter evaluated on a database of 426 reference proteins (previously used on other studies) by a sevenfold crossvalidation gave very good results with a Matthews Correlation Coefficient (MCC) of 0.42 and an overall prediction accuracy of 74.8%; this places our method among the best ones. A jackknife test was also done, which gave results within the same range. This shows that it is possible to reach neural networks accuracy with considerably less computional cost and complexity. Furthermore, propensities remain excellent descriptors of amino acid tendencies to belong to beta-turns, which can be useful for peptide or protein engineering and design. For beta-turn type prediction, we reached the best accuracy ever published in terms of MCC (except for the irregular type IV) in the range of 0.25-0.30 for types I, II, and I' and 0.13-0.15 for types VIII, II', and IV. To our knowledge, our method is the only one available on the Web that predicts types I' and II'. The accuracy evaluated on two larger databases of 547 and 823 proteins was not improved significantly. All of this was implemented into a Web server called COUDES (French acronym

  11. Is it possible to demonstrate compliance with the regulations for high-level-waste repositories?

    International Nuclear Information System (INIS)

    Bingham, F.W.

    1992-01-01

    The regulations that currently govern repositories for spent fuel and high-level waste require demonstrations that are sometimes described as impossible to make. To make them will require an understanding of the current and the future phenomena at repository sites; it will also require credible estimates of the probabilities that the phenomena will occur in the distant future. Experts in many fields emdash earth sciences, statistics, numerical modeling, and the law emdash have questioned whether any amount of data collection can allow modelers to meet these requirements with enough confidence to satisfy the regulators. In recent years some performance assessments have begun to shed light on this question because they use results of actual site investigations. Although these studies do not settle the question definitively, a review of a recent total-system assessment suggests that compliance may be possible to demonstrate. The review also suggests, however, that the demonstration can be only at the ''reasonable'' levels of assurance mentioned, but not defined, in the regulations

  12. Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations

    International Nuclear Information System (INIS)

    Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

    1991-01-01

    The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy's Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product

  13. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1991-01-01

    This report is the so-called Synthesis report 1985-1989 of the international HAW project performed in the 800 m level of the ASSE salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt-deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radioactivos S.A (ENRESA) and the Netherlands Energy Research Foundation (ECN). During the years 1985 to 1989 the underground test field was excavated and after some delays in the licensing procedure, the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 32 refs; 76 figs., 11 tabs

  14. Experimental demonstration of producing high resolution zone plates by spatial-frequency multiplication

    International Nuclear Information System (INIS)

    Yun, W.B.; Howells, M.R.

    1987-01-01

    In an earlier publication, the possibility of producing high resolution zone plates for x-ray applications by spatial-frequency multiplication was analyzed theoretically. The theory predicted that for a daughter zone plate generated from the interference of mth and nth diffraction orders of a parent zone plate, its primary focal spot size and focal length are one (m + n)th of their counterparts of the parent zone plate, respectively. It was also shown that a zone plate with the outermost zone width of as small as 13.8 nm might be produced by this technique. In this paper, we report an experiment which we carried out with laser light (λ = 4166A) for demonstrating this technique. In addition, an outlook for producing high resolution zone plates for x-ray application is briefly discussed

  15. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1991-01-01

    This publication is the interim report 1988-89 of the international HAW project performed in the 800 m level of the Asse salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radiactivos S.A. (ENRESA) and the Netherlands Energy Research Foundation (ECN). After some delays in the licensing procedure the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 20 refs.; 92 figs.; 14 tabs

  16. Demonstration of a transient high gain nickel-like xenon ion x-ray laser

    International Nuclear Information System (INIS)

    Lu, Peixiang; Kawachi, Tetsuya; Kishimoto, Maki

    2003-01-01

    We demonstrate a high gain nickel-like xenon ion x-ray laser using a picosecond-laser-irradiated gas puff target. The elongated x-ray laser plasma column was produced by irradiating the gas puff target with line-focused double picosecond laser pulses with a total energy of 18 J in a travelling-wave excitation scheme. Strong lasing at 9.98 nm was observed, and a high gain coefficient of 17.4 cm -1 was measured on the transient collisionally excited 4d-4p, J=0-1 transition for nickel-like xenon ion with target lengths up to 0.45 cm. A weak nickel-like lasing line at a shorter wavelength of 9.64 nm was also observed with a gain coefficient of 5.9 cm -1 . (author)

  17. High-accuracy and high-sensitivity spectroscopic measurement of dinitrogen pentoxide (N2O5) in an atmospheric simulation chamber using a quantum cascade laser.

    Science.gov (United States)

    Yi, Hongming; Wu, Tao; Lauraguais, Amélie; Semenov, Vladimir; Coeur, Cecile; Cassez, Andy; Fertein, Eric; Gao, Xiaoming; Chen, Weidong

    2017-12-04

    A spectroscopic instrument based on a mid-infrared external cavity quantum cascade laser (EC-QCL) was developed for high-accuracy measurements of dinitrogen pentoxide (N 2 O 5 ) at the ppbv-level. A specific concentration retrieval algorithm was developed to remove, from the broadband absorption spectrum of N 2 O 5 , both etalon fringes resulting from the EC-QCL intrinsic structure and spectral interference lines of H 2 O vapour absorption, which led to a significant improvement in measurement accuracy and detection sensitivity (by a factor of 10), compared to using a traditional algorithm for gas concentration retrieval. The developed EC-QCL-based N 2 O 5 sensing platform was evaluated by real-time tracking N 2 O 5 concentration in its most important nocturnal tropospheric chemical reaction of NO 3 + NO 2 ↔ N 2 O 5 in an atmospheric simulation chamber. Based on an optical absorption path-length of L eff = 70 m, a minimum detection limit of 15 ppbv was achieved with a 25 s integration time and it was down to 3 ppbv in 400 s. The equilibrium rate constant K eq involved in the above chemical reaction was determined with direct concentration measurements using the developed EC-QCL sensing platform, which was in good agreement with the theoretical value deduced from a referenced empirical formula under well controlled experimental conditions. The present work demonstrates the potential and the unique advantage of the use of a modern external cavity quantum cascade laser for applications in direct quantitative measurement of broadband absorption of key molecular species involved in chemical kinetic and climate-change related tropospheric chemistry.

  18. Curved sensors for compact high-resolution wide-field designs: prototype demonstration and optical characterization

    Science.gov (United States)

    Chambion, Bertrand; Gaschet, Christophe; Behaghel, Thibault; Vandeneynde, Aurélie; Caplet, Stéphane; Gétin, Stéphane; Henry, David; Hugot, Emmanuel; Jahn, Wilfried; Lombardo, Simona; Ferrari, Marc

    2018-02-01

    Over the recent years, a huge interest has grown for curved electronics, particularly for opto-electronics systems. Curved sensors help the correction of off-axis aberrations, such as Petzval Field Curvature, astigmatism, and bring significant optical and size benefits for imaging systems. In this paper, we first describe advantages of curved sensor and associated packaging process applied on a 1/1.8'' format 1.3Mpx global shutter CMOS sensor (Teledyne EV76C560) into its standard ceramic package with a spherical radius of curvature Rc=65mm and 55mm. The mechanical limits of the die are discussed (Finite Element Modelling and experimental), and electro-optical performances are investigated. Then, based on the monocentric optical architecture, we proposed a new design, compact and with a high resolution, developed specifically for a curved image sensor including optical optimization, tolerances, assembly and optical tests. Finally, a functional prototype is presented through a benchmark approach and compared to an existing standard optical system with same performances and a x2.5 reduction of length. The finality of this work was a functional prototype demonstration on the CEA-LETI during Photonics West 2018 conference. All these experiments and optical results demonstrate the feasibility and high performances of systems with curved sensors.

  19. Accuracy of applicator tip reconstruction in MRI-guided interstitial 192Ir-high-dose-rate brachytherapy of liver tumors

    International Nuclear Information System (INIS)

    Wybranski, Christian; Eberhardt, Benjamin; Fischbach, Katharina; Fischbach, Frank; Walke, Mathias; Hass, Peter; Röhl, Friedrich-Wilhelm; Kosiek, Ortrud; Kaiser, Mandy; Pech, Maciej; Lüdemann, Lutz; Ricke, Jens

    2015-01-01

    Background and purpose: To evaluate the reconstruction accuracy of brachytherapy (BT) applicators tips in vitro and in vivo in MRI-guided 192 Ir-high-dose-rate (HDR)-BT of inoperable liver tumors. Materials and methods: Reconstruction accuracy of plastic BT applicators, visualized by nitinol inserts, was assessed in MRI phantom measurements and in MRI 192 Ir-HDR-BT treatment planning datasets of 45 patients employing CT co-registration and vector decomposition. Conspicuity, short-term dislocation, and reconstruction errors were assessed in the clinical data. The clinical effect of applicator reconstruction accuracy was determined in follow-up MRI data. Results: Applicator reconstruction accuracy was 1.6 ± 0.5 mm in the phantom measurements. In the clinical MRI datasets applicator conspicuity was rated good/optimal in ⩾72% of cases. 16/129 applicators showed not time dependent deviation in between MRI/CT acquisition (p > 0.1). Reconstruction accuracy was 5.5 ± 2.8 mm, and the average image co-registration error was 3.1 ± 0.9 mm. Vector decomposition revealed no preferred direction of reconstruction errors. In the follow-up data deviation of planned dose distribution and irradiation effect was 6.9 ± 3.3 mm matching the mean co-registration error (6.5 ± 2.5 mm; p > 0.1). Conclusion: Applicator reconstruction accuracy in vitro conforms to AAPM TG 56 standard. Nitinol-inserts are feasible for applicator visualization and yield good conspicuity in MRI treatment planning data. No preferred direction of reconstruction errors were found in vivo

  20. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive

    Directory of Open Access Journals (Sweden)

    David Potere

    2008-12-01

    Full Text Available Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth’s landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE. Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters. The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value < 0.01. The accuracy of control points in more-developed countries is 24.1 meters RMSE, which is significantly more accurate than the control points in developing countries (44.4 meters RMSE; t-test p-value < 0.01. These findings indicate that Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world’s peri-urban areas.

  1. High accuracy mapping with cartographic assessment for a fixed-wing remotely piloted aircraft system

    Science.gov (United States)

    Alves Júnior, Leomar Rufino; Ferreira, Manuel Eduardo; Côrtes, João Batista Ramos; de Castro Jorge, Lúcio André

    2018-01-01

    The lack of updated maps on large scale representations has encouraged the use of remotely piloted aircraft systems (RPAS) to generate maps for a wide range of professionals. However, some questions arise: do the orthomosaics generated by these systems have the cartographic precision required to use them? Which problems can be identified in stitching orthophotos to generate orthomosaics? To answer these questions, an aerophotogrammetric survey was conducted in an environmental conservation unit in the city of Goiânia. The flight plan was set up using the E-motion software, provided by Sensefly-a Swiss manufacturer of the RPAS Swinglet CAM used in this work. The camera installed in the RPAS was the Canon IXUS 220 HS, with the number of pixels in the sensor array of 12.1 megapixel, complementary metal oxide semiconductor 1 ∶ 2.3 ? (4000 × 3000 pixel), horizontal and vertical pixel sizes of 1.54 μm. Using the orthophotos, four orthomosaics were generated in the Pix4D mapper software. The first orthomosaic was generated without using the control points. The other three mosaics were generated using 4, 8, and 16 premarked ground control points. To check the precision and accuracy of the orthomosaics, 46 premarked targets were uniformly distributed in the block. The three-dimensional (3-D) coordinates of the premarked targets were read on the orthomosaic and compared with the coordinates obtained by the geodetic survey real-time kinematic positioning method using the global navigation satellite system receiver signals. The cartographic accuracy standard was evaluated by discrepancies between these coordinates. The bias was analyzed by the Student's t test and the accuracy by the chi-square probability considering the orthomosaic on a scale of 1 ∶ 250, in which 90% of the points tested must have a planimetric error of control points the scale was 10-fold smaller (1 ∶ 3000).

  2. KLEIN: Coulomb functions for real lambda and positive energy to high accuracy

    International Nuclear Information System (INIS)

    Barnett, A.R.

    1981-01-01

    KLEIN computes relativistic Schroedinger (Klein-Gordon) equation solutions, i.e. Coulomb functions for real lambda > - 1, Fsub(lambda)(eta,x), Gsub(lambda)(eta,x), F'sub(lambda)(eta,x) and G'sub(lambda)(eta,x) for real kappa > 0 and real eta, - 10 4 4 . Hence it is also suitable for Bessel and spherical Bessel functions. Accuracies are in the range 10 -14 -10 -16 in oscillating region, and approx. equal to 10 -30 on an extended precision compiler. The program is suitable for generating Klein-Gordon wavefunctions for matching in pion and kaon physics. (orig.)

  3. Depth extraction method with high accuracy in integral imaging based on moving array lenslet technique

    Science.gov (United States)

    Wang, Yao-yao; Zhang, Juan; Zhao, Xue-wei; Song, Li-pei; Zhang, Bo; Zhao, Xing

    2018-03-01

    In order to improve depth extraction accuracy, a method using moving array lenslet technique (MALT) in pickup stage is proposed, which can decrease the depth interval caused by pixelation. In this method, the lenslet array is moved along the horizontal and vertical directions simultaneously for N times in a pitch to get N sets of elemental images. Computational integral imaging reconstruction method for MALT is taken to obtain the slice images of the 3D scene, and the sum modulus (SMD) blur metric is taken on these slice images to achieve the depth information of the 3D scene. Simulation and optical experiments are carried out to verify the feasibility of this method.

  4. A New Image Processing Procedure Integrating PCI-RPC and ArcGIS-Spline Tools to Improve the Orthorectification Accuracy of High-Resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Hongying Zhang

    2016-10-01

    Full Text Available Given the low accuracy of the traditional remote sensing image processing software when orthorectifying satellite images that cover mountainous areas, and in order to make a full use of mutually compatible and complementary characteristics of the remote sensing image processing software PCI-RPC (Rational Polynomial Coefficients and ArcGIS-Spline, this study puts forward a new operational and effective image processing procedure to improve the accuracy of image orthorectification. The new procedure first processes raw image data into an orthorectified image using PCI with RPC model (PCI-RPC, and then the orthorectified image is further processed using ArcGIS with the Spline tool (ArcGIS-Spline. We used the high-resolution CBERS-02C satellite images (HR1 and HR2 scenes with a pixel size of 2 m acquired from Yangyuan County in Hebei Province of China to test the procedure. In this study, when separately using PCI-RPC and ArcGIS-Spline tools directly to process the HR1/HR2 raw images, the orthorectification accuracies (root mean square errors, RMSEs for HR1/HR2 images were 2.94 m/2.81 m and 4.65 m/4.41 m, respectively. However, when using our newly proposed procedure, the corresponding RMSEs could be reduced to 1.10 m/1.07 m. The experimental results demonstrated that the new image processing procedure which integrates PCI-RPC and ArcGIS-Spline tools could significantly improve image orthorectification accuracy. Therefore, in terms of practice, the new procedure has the potential to use existing software products to easily improve image orthorectification accuracy.

  5. Cause and Cure - Deterioration in Accuracy of CFD Simulations With Use of High-Aspect-Ratio Triangular Tetrahedral Grids

    Science.gov (United States)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the

  6. Affine-Invariant Geometric Constraints-Based High Accuracy Simultaneous Localization and Mapping

    Directory of Open Access Journals (Sweden)

    Gangchen Hua

    2017-01-01

    Full Text Available In this study we describe a new appearance-based loop-closure detection method for online incremental simultaneous localization and mapping (SLAM using affine-invariant-based geometric constraints. Unlike other pure bag-of-words-based approaches, our proposed method uses geometric constraints as a supplement to improve accuracy. By establishing an affine-invariant hypothesis, the proposed method excludes incorrect visual words and calculates the dispersion of correctly matched visual words to improve the accuracy of the likelihood calculation. In addition, camera’s intrinsic parameters and distortion coefficients are adequate for this method. 3D measuring is not necessary. We use the mechanism of Long-Term Memory and Working Memory (WM to manage the memory. Only a limited size of the WM is used for loop-closure detection; therefore the proposed method is suitable for large-scale real-time SLAM. We tested our method using the CityCenter and Lip6Indoor datasets. Our proposed method results can effectively correct the typical false-positive localization of previous methods, thus gaining better recall ratios and better precision.

  7. The use of high accuracy NAA for the certification of NIST Standard Reference Materials

    International Nuclear Information System (INIS)

    Becker, D.A.; Greenberg, R.R.; Stone, S.

    1991-01-01

    Neutron activation analysis (NAA) is only one of many analytical techniques used at the National Institute of Standards and Technology (NIST) for the certification of NIST Standard Reference Materials (SRMs). We compete daily against all of the other available analytical techniques in terms of accuracy, precision, and the cost required to obtain that requisite accuracy and precision. Over the years, the authors have found that NAA can and does compete favorably with these other techniques because of its' unique capabilities for redundancy and quality assurance. Good examples are the two new NIST leaf SRMs, Apple Leaves (SRM 1515) and Peach Leaves (SRM 1547). INAA was used to measure the homogeneity of 12 elements in 15 samples of each material at the 100 mg sample size. In addition, instrumental and radiochemical NAA combined for 27 elemental determinations, out of a total of 54 elemental determinations made on each material with all NIST techniques combined. This paper describes the NIST NAA procedures used in these analyses, the quality assurance techniques employed, and the analytical results for the 24 elements determined by NAA in these new botanical SRMs. The NAA results are also compared to the final certified values for these SRMs

  8. Vision-based algorithms for high-accuracy measurements in an industrial bakery

    Science.gov (United States)

    Heleno, Paulo; Davies, Roger; Correia, Bento A. B.; Dinis, Joao

    2002-02-01

    This paper describes the machine vision algorithms developed for VIP3D, a measuring system used in an industrial bakery to monitor the dimensions and weight of loaves of bread (baguettes). The length and perimeter of more than 70 different varieties of baguette are measured with 1-mm accuracy, quickly, reliably and automatically. VIP3D uses a laser triangulation technique to measure the perimeter. The shape of the loaves is approximately cylindrical and the perimeter is defined as the convex hull of a cross-section perpendicular to the baguette axis at mid-length. A camera, mounted obliquely to the measuring plane, captures an image of a laser line projected onto the upper surface of the baguette. Three cameras are used to measure the baguette length, a solution adopted in order to minimize perspective-induced measurement errors. The paper describes in detail the machine vision algorithms developed to perform segmentation of the laser line and subsequent calculation of the perimeter of the baguette. The algorithms used to segment and measure the position of the ends of the baguette, to sub-pixel accuracy, are also described, as are the algorithms used to calibrate the measuring system and compensate for camera-induced image distortion.

  9. Analysis of high accuracy, quantitative proteomics data in the MaxQB database.

    Science.gov (United States)

    Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias

    2012-03-01

    MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database

  10. Mildronate (Meldonium) in professional sports - monitoring doping control urine samples using hydrophilic interaction liquid chromatography - high resolution/high accuracy mass spectrometry.

    Science.gov (United States)

    Görgens, Christian; Guddat, Sven; Dib, Josef; Geyer, Hans; Schänzer, Wilhelm; Thevis, Mario

    2015-01-01

    To date, substances such as Mildronate (Meldonium) are not on the radar of anti-doping laboratories as the compound is not explicitly classified as prohibited. However, the anti-ischemic drug Mildronate demonstrates an increase in endurance performance of athletes, improved rehabilitation after exercise, protection against stress, and enhanced activations of central nervous system (CNS) functions. In the present study, the existing evidence of Mildronate's usage in sport, which is arguably not (exclusively) based on medicinal reasons, is corroborated by unequivocal analytical data allowing the estimation of the prevalence and extent of misuse in professional sports. Such data are vital to support decision-making processes, particularly regarding the ban on drugs in sport. Due to the growing body of evidence (black market products and athlete statements) concerning its misuse in sport, adequate test methods for the reliable identification of Mildronate are required, especially since the substance has been added to the 2015 World Anti-Doping Agency (WADA) monitoring program. In the present study, two approaches were established using an in-house synthesized labelled internal standard (Mildronate-D3 ). One aimed at the implementation of the analyte into routine doping control screening methods to enable its monitoring at the lowest possible additional workload for the laboratory, and another that is appropriate for the peculiar specifics of the analyte, allowing the unequivocal confirmation of findings using hydrophilic interaction liquid chromatography-high resolution/high accuracy mass spectrometry (HILIC-HRMS). Here, according to applicable regulations in sports drug testing, a full qualitative validation was conducted. The assay demonstrated good specificity, robustness (rRT=0.3%), precision (intra-day: 7.0-8.4%; inter-day: 9.9-12.9%), excellent linearity (R>0.99) and an adequate lower limit of detection (<10 ng/mL). Copyright © 2015 John Wiley & Sons, Ltd.

  11. Mildronate (Meldonium) in professional sports – monitoring doping control urine samples using hydrophilic interaction liquid chromatography – high resolution/high accuracy mass spectrometry

    Science.gov (United States)

    Görgens, Christian; Dib, Josef; Geyer, Hans; Schänzer, Wilhelm; Thevis, Mario

    2015-01-01

    To date, substances such as Mildronate (Meldonium) are not on the radar of anti‐doping laboratories as the compound is not explicitly classified as prohibited. However, the anti‐ischemic drug Mildronate demonstrates an increase in endurance performance of athletes, improved rehabilitation after exercise, protection against stress, and enhanced activations of central nervous system (CNS) functions. In the present study, the existing evidence of Mildronate's usage in sport, which is arguably not (exclusively) based on medicinal reasons, is corroborated by unequivocal analytical data allowing the estimation of the prevalence and extent of misuse in professional sports. Such data are vital to support decision‐making processes, particularly regarding the ban on drugs in sport. Due to the growing body of evidence (black market products and athlete statements) concerning its misuse in sport, adequate test methods for the reliable identification of Mildronate are required, especially since the substance has been added to the 2015 World Anti‐Doping Agency (WADA) monitoring program. In the present study, two approaches were established using an in‐house synthesized labelled internal standard (Mildronate‐D3). One aimed at the implementation of the analyte into routine doping control screening methods to enable its monitoring at the lowest possible additional workload for the laboratory, and another that is appropriate for the peculiar specifics of the analyte, allowing the unequivocal confirmation of findings using hydrophilic interaction liquid chromatography‐high resolution/high accuracy mass spectrometry (HILIC‐HRMS). Here, according to applicable regulations in sports drug testing, a full qualitative validation was conducted. The assay demonstrated good specificity, robustness (rRT=0.3%), precision (intra‐day: 7.0–8.4%; inter‐day: 9.9–12.9%), excellent linearity (R>0.99) and an adequate lower limit of detection (<10 ng/mL). © 2015 The Authors

  12. Interobserver Variability and Accuracy of High-Definition Endoscopic Diagnosis for Gastric Intestinal Metaplasia among Experienced and Inexperienced Endoscopists

    Science.gov (United States)

    Hyun, Yil Sik; Bae, Joong Ho; Park, Hye Sun; Eun, Chang Soo

    2013-01-01

    Accurate diagnosis of gastric intestinal metaplasia is important; however, conventional endoscopy is known to be an unreliable modality for diagnosing gastric intestinal metaplasia (IM). The aims of the study were to evaluate the interobserver variation in diagnosing IM by high-definition (HD) endoscopy and the diagnostic accuracy of this modality for IM among experienced and inexperienced endoscopists. Selected 50 cases, taken with HD endoscopy, were sent for a diagnostic inquiry of gastric IM through visual inspection to five experienced and five inexperienced endoscopists. The interobserver agreement between endoscopists was evaluated to verify the diagnostic reliability of HD endoscopy in diagnosing IM, and the diagnostic accuracy, sensitivity, and specificity were evaluated for validity of HD endoscopy in diagnosing IM. Interobserver agreement among the experienced endoscopists was "poor" (κ = 0.38) and it was also "poor" (κ = 0.33) among the inexperienced endoscopists. The diagnostic accuracy of the experienced endoscopists was superior to that of the inexperienced endoscopists (P = 0.003). Since diagnosis through visual inspection is unreliable in the diagnosis of IM, all suspicious areas for gastric IM should be considered to be biopsied. Furthermore, endoscopic experience and education are needed to raise the diagnostic accuracy of gastric IM. PMID:23678267

  13. Interobserver variability and accuracy of high-definition endoscopic diagnosis for gastric intestinal metaplasia among experienced and inexperienced endoscopists.

    Science.gov (United States)

    Hyun, Yil Sik; Han, Dong Soo; Bae, Joong Ho; Park, Hye Sun; Eun, Chang Soo

    2013-05-01

    Accurate diagnosis of gastric intestinal metaplasia is important; however, conventional endoscopy is known to be an unreliable modality for diagnosing gastric intestinal metaplasia (IM). The aims of the study were to evaluate the interobserver variation in diagnosing IM by high-definition (HD) endoscopy and the diagnostic accuracy of this modality for IM among experienced and inexperienced endoscopists. Selected 50 cases, taken with HD endoscopy, were sent for a diagnostic inquiry of gastric IM through visual inspection to five experienced and five inexperienced endoscopists. The interobserver agreement between endoscopists was evaluated to verify the diagnostic reliability of HD endoscopy in diagnosing IM, and the diagnostic accuracy, sensitivity, and specificity were evaluated for validity of HD endoscopy in diagnosing IM. Interobserver agreement among the experienced endoscopists was "poor" (κ = 0.38) and it was also "poor" (κ = 0.33) among the inexperienced endoscopists. The diagnostic accuracy of the experienced endoscopists was superior to that of the inexperienced endoscopists (P = 0.003). Since diagnosis through visual inspection is unreliable in the diagnosis of IM, all suspicious areas for gastric IM should be considered to be biopsied. Furthermore, endoscopic experience and education are needed to raise the diagnostic accuracy of gastric IM.

  14. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.A.

    1990-04-01

    The HAW-project plants the testwise emplacement of 30 vitrified highly radioactive canisters containing Cs-137 and Sr-90 at the 800 m level of the Asse salt mine for a testing period of approximately five years. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste (HAW) in geological salt formations. During the years 1985 to 1989 the underground test field was excavated, the measuring equipment installed, and two preceedings inactive electrical tests taken into operation. Furthermore, the components of a system for transportation and emplacement of highly radioactive canisters was fabricated, installed, and preliminarily tested. After some delays in the licensing procedure the emplacement of the 30 radioactive canisters is now envisaged for early 1991. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed and will be tested. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  15. A High-Resolution Terrestrial Modeling System (TMS): A Demonstration in China

    Science.gov (United States)

    Duan, Q.; Dai, Y.; Zheng, X.; Ye, A.; Ji, D.; Chen, Z.

    2013-12-01

    This presentation describes a terrestrial modeling system (TMS) developed at Beijing Normal University. The TMS is designed to be driven by multi-sensor meteorological and land surface observations, including those from satellites and land based observing stations. The purposes of the TMS are (1) to provide a land surface parameterization scheme fully capable of being coupled with the Earth system models; (2) to provide a standalone platform for retrospective historical simulation and for forecasting of future land surface processes at different space and time scales; and (3) to provide a platform for studying human-Earth system interactions and for understanding climate change impacts. This system is built on capabilities among several groups at BNU, including the Common Land Model (CoLM) system, high-resolution atmospheric forcing data sets, high resolution land surface characteristics data sets, data assimilation and uncertainty analysis platforms, ensemble prediction platform, and high-performance computing facilities. This presentation intends to describe the system design and demonstrate the capabilities of TMS with results from a China-wide application.

  16. The innovation of cryo-SEM freeze-fracturing methodology demonstrated on high pressure frozen biofilm.

    Science.gov (United States)

    Hrubanova, Kamila; Nebesarova, Jana; Ruzicka, Filip; Krzyzanek, Vladislav

    2018-04-22

    In this study we present an innovative method for the preparation of fully hydrated samples of microbial biofilms of cultures Staphylococcus epidermidis, Candida parapsilosis and Candida albicans. Cryo-scanning electron microscopy (cryo-SEM) and high-pressure freezing (HPF) rank among cutting edge techniques in the electron microscopy of hydrated samples such as biofilms. However, the combination of these techniques is not always easily applicable. Therefore, we present a method of combining high-pressure freezing using EM PACT2 (Leica Microsystems), which fixes hydrated samples on small sapphire discs, with a high resolution SEM equipped with the widely used cryo-preparation system ALTO 2500 (Gatan). Using a holder developed in house, a freeze-fracturing technique was applied to image and investigate microbial cultures cultivated on the sapphire discs. In our experiments, we focused on the ultrastructure of the extracellular matrix produced during cultivation and the relationships among microbial cells in the biofilm. The main goal of our investigations was the detailed visualization of areas of the biofilm where the microbial cells adhere to the substrate/surface. We show the feasibility of this technique, which is clearly demonstrated in experiments with various freeze-etching times. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  18. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    International Nuclear Information System (INIS)

    Qualls, A. L.; Betzler, Benjamin R.; Brown, Nicholas R.; Carbajo, Juan; Greenwood, Michael Scott; Hale, Richard Edward; Harrison, Thomas J.; Powers, Jeffrey J.; Robb, Kevin R.; Terrell, Jerry W.

    2015-01-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  19. Delusions of expertise: the high standard of proof needed to demonstrate skills at horserace handicapping.

    Science.gov (United States)

    Browne, Matthew; Rockloff, Matthew J; Blaszcynski, Alex; Allcock, Clive; Windross, Allen

    2015-03-01

    Gamblers who participate in skill-oriented games (such as poker and sports-betting) are motivated to win over the long-term, and some monitor their betting outcomes to evaluate their performance and proficiency. In this study of Australian off-track horserace betting, we investigated which levels of sustained returns would be required to establish evidence of skill/expertise. We modelled a random strategy to simulate 'naïve' play, in which equal bets were placed on randomly selected horses using a representative sample of 211 weekend races. Results from a Monte Carlo simulation yielded a distribution of return-on-investments for varying number of bets (N), showing surprising volatility, even after a large number of repeated bets. After adjusting for the house advantage, a gambler would have to place over 10,000 bets in individual races with net returns exceeding 9 % to be reasonably considered an expert punter (α = .05). Moreover, a record of fewer bets would require even greater returns for demonstrating expertise. As such, validated expertise is likely to be rare among race bettors. We argue that the counter-intuitively high threshold for demonstrating expertise by tracking historical performance is likely to exacerbate known cognitive biases in self-evaluation of expertise.

  20. International Interlaboratory Digital PCR Study Demonstrating High Reproducibility for the Measurement of a Rare Sequence Variant.

    Science.gov (United States)

    Whale, Alexandra S; Devonshire, Alison S; Karlin-Neumann, George; Regan, Jack; Javier, Leanne; Cowen, Simon; Fernandez-Gonzalez, Ana; Jones, Gerwyn M; Redshaw, Nicholas; Beck, Julia; Berger, Andreas W; Combaret, Valérie; Dahl Kjersgaard, Nina; Davis, Lisa; Fina, Frederic; Forshew, Tim; Fredslund Andersen, Rikke; Galbiati, Silvia; González Hernández, Álvaro; Haynes, Charles A; Janku, Filip; Lacave, Roger; Lee, Justin; Mistry, Vilas; Pender, Alexandra; Pradines, Anne; Proudhon, Charlotte; Saal, Lao H; Stieglitz, Elliot; Ulrich, Bryan; Foy, Carole A; Parkes, Helen; Tzonev, Svilen; Huggett, Jim F

    2017-02-07

    This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.

  1. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  2. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes

  3. Thermal Stability of Magnetic Compass Sensor for High Accuracy Positioning Applications

    Directory of Open Access Journals (Sweden)

    Van-Tang PHAM

    2015-12-01

    Full Text Available Using magnetic compass sensors in angle measurements have a wide area of application such as positioning, robot, landslide, etc. However, one of the most phenomenal that affects to the accuracy of the magnetic compass sensor is the temperature. This paper presents two thermal stability schemes for improving performance of a magnetic compass sensor. The first scheme uses the feedforward structure to adjust the angle output of the compass sensor adapt to the variation of the temperature. The second scheme increases both the temperature working range and steady error performance of the sensor. In this scheme, we try to keep the temperature of the sensor is stable at the certain value (e.g. 25 oC by using a PID (proportional-integral-derivative controller and a heating/cooling generator. Many experiment scenarios have implemented to confirm the effectivity of these solutions.

  4. High-accuracy energy formulas for the attractive two-site Bose-Hubbard model

    Science.gov (United States)

    Ermakov, Igor; Byrnes, Tim; Bogoliubov, Nikolay

    2018-02-01

    The attractive two-site Bose-Hubbard model is studied within the framework of the analytical solution obtained by the application of the quantum inverse scattering method. The structure of the ground and excited states is analyzed in terms of solutions of Bethe equations, and an approximate solution for the Bethe roots is given. This yields approximate formulas for the ground-state energy and for the first excited-state energy. The obtained formulas work with remarkable precision for a wide range of parameters of the model, and are confirmed numerically. An expansion of the Bethe state vectors into a Fock space is also provided for evaluation of expectation values, although this does not have accuracy similar to that of the energies.

  5. Accuracy and repeatability positioning of high-performancel athe for non-circular turning

    Directory of Open Access Journals (Sweden)

    Majda Paweł

    2017-11-01

    Full Text Available This paper presents research on the accuracy and repeatability of CNC axis positioning in an innovative lathe with an additional Xs axis. This axis is used to perform movements synchronized with the angular position of the main drive, i.e. the spindle, and with the axial feed along the Z axis. This enables the one-pass turning of non-circular surfaces, rope and trapezoidal threads, as well as the surfaces of rotary tools such as a gear cutting hob, etc. The paper presents and discusses the interpretation of results and the calibration effects of positioning errors in the lathe’s numerical control system. Finally, it shows the geometric characteristics of the rope thread turned at various spindle speeds, including before and after-correction of the positioning error of the Xs axis.

  6. Accuracy and repeatability positioning of high-performancel athe for non-circular turning

    Science.gov (United States)

    Majda, Paweł; Powałka, Bartosz

    2017-11-01

    This paper presents research on the accuracy and repeatability of CNC axis positioning in an innovative lathe with an additional Xs axis. This axis is used to perform movements synchronized with the angular position of the main drive, i.e. the spindle, and with the axial feed along the Z axis. This enables the one-pass turning of non-circular surfaces, rope and trapezoidal threads, as well as the surfaces of rotary tools such as a gear cutting hob, etc. The paper presents and discusses the interpretation of results and the calibration effects of positioning errors in the lathe's numerical control system. Finally, it shows the geometric characteristics of the rope thread turned at various spindle speeds, including before and after-correction of the positioning error of the Xs axis.

  7. A method of high accuracy clock synchronization by frequency following with VCXO

    International Nuclear Information System (INIS)

    Ma Yichao; Wu Jie; Zhang Jie; Song Hongzhi; Kong Yang

    2011-01-01

    In this paper, the principle of the synchronous protocol of the IEEE1588 is analyzed, and the factors that affect the accuracy of synchronization is summarized. Through the hardware timer in a microcontroller, we give the exactly the time when a package is sent or received. So synchronization of the distributed clocks can reach 1 μs in this way. Another method to improve precision of the synchronization is to replace the traditional fixed frequency crystal of the slave device, which needs to follow up the master clock, by an adjustable VCXO. So it is possible to fine tune the frequency of the distributed clocks, and reduce the drift of clock, which shows great benefit for the clock synchronization. A test measurement shows the synchronization of distribute clocks can be better than 10 ns using this method, which is more accurate than the method realized by software. (authors)

  8. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    lifetime and the potential for an all transparent display. And because carbon nanotubes (CNTs) and organics are used, CN-VFET and CN-VOLET devices are compatible with flexible displays. This dissertation describes the first ever demonstration of CN-VFETs and CN-VOLETs and relates their performance to the specific properties of the CNTs and the new device architecture. In the work that followed, the CN-VFET was systematically optimized overcoming the problems revealed in the demonstration devices. The large undesired hysteresis was decreased by 96%, the on/off ratio was improved three orders of magnitude and the operating voltages were reduced to state of the art values. Additionally, the current output per device area of the CN-VFET was demonstrated to be greater than any other low resolution patterned organic transistor by a factor of 3.9. Moreover, it was demonstrated that the CNTs induce a reorientation of the high mobility plane in small molecule organics like pentacene to coincide with the vertical direction, giving additional explanation for the large currents observed in the CN-VFET. The ability to drive high currents and potentially inexpensive fabrication may provide the solution for the AMOLED backplane problem.

  9. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  10. Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand

    Science.gov (United States)

    Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett

    2016-06-01

    The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.

  11. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  12. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  13. High-Lift Propeller Noise Prediction for a Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Nark, Douglas M.; Buning, Pieter G.; Jones, William T.; Derlaga, Joseph M.

    2017-01-01

    Over the past several years, the use of electric propulsion technologies within aircraft design has received increased attention. The characteristics of electric propulsion systems open up new areas of the aircraft design space, such as the use of distributed electric propulsion (DEP). In this approach, electric motors are placed in many different locations to achieve increased efficiency through integration of the propulsion system with the airframe. Under a project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR), NASA is designing a flight demonstrator aircraft that employs many "high-lift propellers" distributed upstream of the wing leading edge and two cruise propellers (one at each wingtip). As the high-lift propellers are operational at low flight speeds (take-off/approach flight conditions), the impact of the DEP configuration on the aircraft noise signature is also an important design consideration. This paper describes efforts toward the development of a mulit-fidelity aerodynamic and acoustic methodology for DEP high-lift propeller aeroacoustic modeling. Specifically, the PAS, OVERFLOW 2, and FUN3D codes are used to predict the aerodynamic performance of a baseline high-lift propeller blade set. Blade surface pressure results from the aerodynamic predictions are then used with PSU-WOPWOP and the F1A module of the NASA second generation Aircraft NOise Prediction Program to predict the isolated high-lift propeller noise source. Comparisons of predictions indicate that general trends related to angle of attack effects at the blade passage frequency are captured well with the various codes. Results for higher harmonics of the blade passage frequency appear consistent for the CFD based methods. Conversely, evidence of the need for a study of the effects of increased azimuthal grid resolution on the PAS based results is indicated and will be pursued in future work. Overall, the results indicate that the computational

  14. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR

  15. Demonstration-Scale High-Cell-Density Fermentation of Pichia pastoris.

    Science.gov (United States)

    Liu, Wan-Cang; Zhu, Ping

    2018-01-01

    Pichia pastoris has been one of the most successful heterologous overexpression systems in generating proteins for large-scale production through high-cell-density fermentation. However, optimizing conditions of the large-scale high-cell-density fermentation for biochemistry and industrialization is usually a laborious and time-consuming process. Furthermore, it is often difficult to produce authentic proteins in large quantities, which is a major obstacle for functional and structural features analysis and industrial application. For these reasons, we have developed a protocol for efficient demonstration-scale high-cell-density fermentation of P. pastoris, which employs a new methanol-feeding strategy-biomass-stat strategy and a strategy of increased air pressure instead of pure oxygen supplement. The protocol included three typical stages of glycerol batch fermentation (initial culture phase), glycerol fed-batch fermentation (biomass accumulation phase), and methanol fed-batch fermentation (induction phase), which allows direct online-monitoring of fermentation conditions, including broth pH, temperature, DO, anti-foam generation, and feeding of glycerol and methanol. Using this protocol, production of the recombinant β-xylosidase of Lentinula edodes origin in 1000-L scale fermentation can be up to ~900 mg/L or 9.4 mg/g cells (dry cell weight, intracellular expression), with the specific production rate and average specific production of 0.1 mg/g/h and 0.081 mg/g/h, respectively. The methodology described in this protocol can be easily transferred to other systems, and eligible to scale up for a large number of proteins used in either the scientific studies or commercial purposes.

  16. Experimental and analytical study for demonstration program on shielding of casks for high-level wastes

    International Nuclear Information System (INIS)

    Ueki, K.; Nakazawa, M.; Hattorl, S.; Ozaki, S.; Tamaki, H.; Kadotani, H.; Ishizuka, T.; Ishikawa, S.

    1993-01-01

    The following remarks were obtained from the experiment and the DOT 3.5 and the MCNP analyses on the gamma ray and the neutron dose equivalent rates in the cask of interest. 1. The cask has thinner neutron shielding parts around the trunnions. Significant neutrons streaming around the trunnion parts was observed which was also cleared by the MCNP analysis for the 252 Cf source experiment. Accordingly, detailed neutron streaming calculations are required to evaluate the dose levels around the trunnions when loading the vitrified high-level wastes. 2. The room-scattered obstructive neutrons, mainly originating from the neutrons penetrating around the trunnions, at the top and the bottom of the cask are reduced significantly by preparing the water tank at the top and the water layer at the bottom. Therefore, a more accurate experiment is to be carried out in the future shielding experiment especially for neutrons. However, because the water tank and the layer do not exist in the actual high-level wastes transport cask, the experiment without the water tank and layer are not dispensable to demonstrate the transport conditions of the actual cask, too. 3. The gamma-ray and the neutron dose equivalent rate distributions obtained from the DOT 3.5 and the MCNP calculations, respectively, agreed closely with the measured values in the cask areas of interest. Accordingly, the DOT 3.5 code and the MCNP code with the NESX estimator can be employed not only for the shielding analysis of the future experiments, but also for making a safety analysis report of high-level wastes transport casks. (J.P.N.)

  17. Radiometric inter-sensor cross-calibration uncertainty using a traceable high accuracy reference hyperspectral imager

    Science.gov (United States)

    Gorroño, Javier; Banks, Andrew C.; Fox, Nigel P.; Underwood, Craig

    2017-08-01

    Optical earth observation (EO) satellite sensors generally suffer from drifts and biases relative to their pre-launch calibration, caused by launch and/or time in the space environment. This places a severe limitation on the fundamental reliability and accuracy that can be assigned to satellite derived information, and is particularly critical for long time base studies for climate change and enabling interoperability and Analysis Ready Data. The proposed TRUTHS (Traceable Radiometry Underpinning Terrestrial and Helio-Studies) mission is explicitly designed to address this issue through re-calibrating itself directly to a primary standard of the international system of units (SI) in-orbit and then through the extension of this SI-traceability to other sensors through in-flight cross-calibration using a selection of Committee on Earth Observation Satellites (CEOS) recommended test sites. Where the characteristics of the sensor under test allows, this will result in a significant improvement in accuracy. This paper describes a set of tools, algorithms and methodologies that have been developed and used in order to estimate the radiometric uncertainty achievable for an indicative target sensor through in-flight cross-calibration using a well-calibrated hyperspectral SI-traceable reference sensor with observational characteristics such as TRUTHS. In this study, Multi-Spectral Imager (MSI) of Sentinel-2 and Landsat-8 Operational Land Imager (OLI) is evaluated as an example, however the analysis is readily translatable to larger-footprint sensors such as Sentinel-3 Ocean and Land Colour Instrument (OLCI) and Visible Infrared Imaging Radiometer Suite (VIIRS). This study considers the criticality of the instrumental and observational characteristics on pixel level reflectance factors, within a defined spatial region of interest (ROI) within the target site. It quantifies the main uncertainty contributors in the spectral, spatial, and temporal domains. The resultant tool

  18. Demonstration of a performance assessment methodology for high-level radioactive waste disposal in basalt formations

    International Nuclear Information System (INIS)

    Bonano, E.J.; Davis, P.A.; Shipers, L.R.; Brinster, K.F.; Beyler, W.E.; Updegraff, C.D.; Shepherd, E.R.; Tilton, L.M.; Wahi, K.K.

    1989-06-01

    This document describes a performance assessment methodology developed for a high-level radioactive waste repository mined in deep basalt formations. This methodology is an extension of an earlier one applicable to bedded salt. The differences between the two methodologies arise primarily in the modeling of round-water flow and radionuclide transport. Bedded salt was assumed to be a porous medium, whereas basalt formations contain fractured zones. Therefore, mathematical models and associated computer codes were developed to simulate the aforementioned phenomena in fractured media. The use of the methodology is demonstrated at a hypothetical basalt site by analyzing seven scenarios: (1) thermohydrological effects caused by heat released from the repository, (2) mechanohydrological effects caused by an advancing and receding glacier, (3) normal ground-water flow, (4) pumping of ground water from a confined aquifer, (5) rerouting of a river near the repository, (6) drilling of a borehole through the repository, and (7) formation of a new fault intersecting the repository. The normal ground-water flow was considered the base-case scenario. This scenario was used to perform uncertainty and sensitivity analyses and to demonstrate the existing capabilities for assessing compliance with the ground-water travel time criterion and the containment requirements. Most of the other scenarios were considered perturbations of the base case, and a few were studied in terms of changes with respect to initial conditions. The potential impact of these scenarios on the long-term performance of the disposal system was ascertained through comparison with the base-case scenario or the undisturbed initial conditions. 66 refs., 106 figs., 27 tabs

  19. The high accuracy data processing system of laser interferometry signals based on MSP430

    Science.gov (United States)

    Qi, Yong-yue; Lin, Yu-chi; Zhao, Mei-rong

    2009-07-01

    Generally speaking there are two orthogonal signals used in single-frequency laser interferometer for differentiating direction and electronic subdivision. However there usually exist three errors with the interferential signals: zero offsets error, unequal amplitude error and quadrature phase shift error. These three errors have a serious impact on subdivision precision. Based on Heydemann error compensation algorithm, it is proposed to achieve compensation of the three errors. Due to complicated operation of the Heydemann mode, a improved arithmetic is advanced to decrease the calculating time effectively in accordance with the special characteristic that only one item of data will be changed in each fitting algorithm operation. Then a real-time and dynamic compensatory circuit is designed. Taking microchip MSP430 as the core of hardware system, two input signals with the three errors are turned into digital quantity by the AD7862. After data processing in line with improved arithmetic, two ideal signals without errors are output by the AD7225. At the same time two original signals are turned into relevant square wave and imported to the differentiating direction circuit. The impulse exported from the distinguishing direction circuit is counted by the timer of the microchip. According to the number of the pulse and the soft subdivision the final result is showed by LED. The arithmetic and the circuit are adopted to test the capability of a laser interferometer with 8 times optical path difference and the measuring accuracy of 12-14nm is achieved.

  20. A new phase-shift microscope designed for high accuracy stitching interferometry

    International Nuclear Information System (INIS)

    Thomasset, Muriel; Idir, Mourad; Polack, François; Bray, Michael; Servant, Jean-Jacques

    2013-01-01

    Characterizing nanofocusing X-ray mirrors for the soon coming nano-imaging beamlines of synchrotron light sources motivates the development of new instruments with improved performances. The sensitivity and accuracy goal is now fixed well under the nm level and, at the same time, the spatial frequency range of the measurement should be pushed toward 50 mm −1 . SOLEIL synchrotron facility has therefore undertaken to equip with an interferential microscope suitable for stitching interferometry at this performance level. In order to keep control on the whole metrology chain it was decided to build a custom instrument in partnership with two small optics companies EOTECH and MBO. The new instrument is a Michelson micro-interferometer equipped with a custom-designed telecentric objective. It achieves the large depth of focus suitable for performing reliable calibrations and measurements. The concept has been validated with a predevelopment set-up, delivered in July 2010, which showed a static repeatability below 1 nm PV despite a non-thermally stabilized environment. The final instrument was delivered early this year and was installed inside SOLEIL's controlled environment facility, where thorough characterization tests are under way. Latest test results and first stitching measurements are presented

  1. Experimental study of very low permeability rocks using a high accuracy permeameter

    International Nuclear Information System (INIS)

    Larive, Elodie

    2002-01-01

    The measurement of fluid flow through 'tight' rocks is important to provide a better understanding of physical processes involved in several industrial and natural problems. These include deep nuclear waste repositories, management of aquifers, gas, petroleum or geothermal reservoirs, or earthquakes prevention. The major part of this work consisted of the design, construction and use of an elaborate experimental apparatus allowing laboratory permeability measurements (fluid flow) of very low permeability rocks, on samples at a centimetric scale, to constrain their hydraulic behaviour at realistic in-situ conditions. The accuracy permeameter allows the use of several measurement methods, the steady-state flow method, the transient pulse method, and the sinusoidal pore pressure oscillation method. Measurements were made with the pore pressure oscillation method, using different waveform periods, at several pore and confining pressure conditions, on different materials. The permeability of one natural standard, Westerly granite, and an artificial one, a micro-porous cement, were measured, and results obtained agreed with previous measurements made on these materials showing the reliability of the permeameter. A study of a Yorkshire sandstone shows a relationship between rock microstructure, permeability anisotropy and thermal cracking. Microstructure, porosity and permeability concepts, and laboratory permeability measurements specifications are presented, the permeameter is described, and then permeability results obtained on the investigated materials are reported [fr

  2. A study for high accuracy measurement of residual stress by deep hole drilling technique

    Science.gov (United States)

    Kitano, Houichi; Okano, Shigetaka; Mochizuki, Masahito

    2012-08-01

    The deep hole drilling technique (DHD) received much attention in recent years as a method for measuring through-thickness residual stresses. However, some accuracy problems occur when residual stress evaluation is performed by the DHD technique. One of the reasons is that the traditional DHD evaluation formula applies to the plane stress condition. The second is that the effects of the plastic deformation produced in the drilling process and the deformation produced in the trepanning process are ignored. In this study, a modified evaluation formula, which is applied to the plane strain condition, is proposed. In addition, a new procedure is proposed which can consider the effects of the deformation produced in the DHD process by investigating the effects in detail by finite element (FE) analysis. Then, the evaluation results obtained by the new procedure are compared with that obtained by traditional DHD procedure by FE analysis. As a result, the new procedure evaluates the residual stress fields better than the traditional DHD procedure when the measuring object is thick enough that the stress condition can be assumed as the plane strain condition as in the model used in this study.

  3. On a novel low cost high accuracy experimental setup for tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Discetti, Stefano; Ianiro, Andrea; Astarita, Tommaso; Cardone, Gennaro

    2013-01-01

    This work deals with the critical aspects related to cost reduction of a Tomo PIV setup and to the bias errors introduced in the velocity measurements by the coherent motion of the ghost particles. The proposed solution consists of using two independent imaging systems composed of three (or more) low speed single frame cameras, which can be up to ten times cheaper than double shutter cameras with the same image quality. Each imaging system is used to reconstruct a particle distribution in the same measurement region, relative to the first and the second exposure, respectively. The reconstructed volumes are then interrogated by cross-correlation in order to obtain the measured velocity field, as in the standard tomographic PIV implementation. Moreover, differently from tomographic PIV, the ghost particle distributions of the two exposures are uncorrelated, since their spatial distribution is camera orientation dependent. For this reason, the proposed solution promises more accurate results, without the bias effect of the coherent ghost particles motion. Guidelines for the implementation and the application of the present method are proposed. The performances are assessed with a parametric study on synthetic experiments. The proposed low cost system produces a much lower modulation with respect to an equivalent three-camera system. Furthermore, the potential accuracy improvement using the Motion Tracking Enhanced MART (Novara et al 2010 Meas. Sci. Technol. 21 035401) is much higher than in the case of the standard implementation of tomographic PIV. (paper)

  4. Demonstration of a Fiber Optic Regression Probe in a High-Temperature Flow

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt

    2011-01-01

    empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media to demonstrate the capabilities in a number of regressing environments. In the present work, sensors were installed in the eroding/regressing throat region of a converging-diverging flow, with the working gas heated to high temperatures by means of a high-pressure arc discharge at steady-state discharge power levels up to 500 kW. The amount of regression observed in each material sample was quantified using a later profilometer, which was compared to the in-situ erosion measurements to demonstrate the efficacy of the measurement technique in very harsh, high-temperature environments.

  5. ISPA - a high accuracy X-ray and gamma camera Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    ISPA offers ... Ten times better resolution than Anger cameras High efficiency single gamma counting Noise reduction by sensitivity to gamma energy ...for Single Photon Emission Computed Tomography (SPECT)

  6. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  7. A demonstration test of 4-group partitioning process with real high-level liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Yamaguchi, I.; Fujiwara, T.; Koizumi, H.; Tachimori, S. [Japan Atomic Energy Research Institute, Tokai-Mura, Ibaraki-Ken (Japan)

    2000-07-01

    The demonstration test of 4-Group Partitioning Process with concentrated real high-level liquid waste (HLLW) was carried out in the Partitioning Test Facility installed in a hot cell. More than 99.998% of Am and Cm were extracted from the HLLW with the organic solvent containing 0.5 M DIDPA - 0.1 M TBP, and more than 99.98% of Am and Cm were back-extracted with 4 M nitric acid. Np and Pu were extracted simultaneously, and more than 99.93% of Np and more than 99.98% of Pu were back-extracted with oxalic acid. In the denitration step for the separation of Tc and platinum group metals, more than 90% of Rh and more than 97% of Pd were precipitated. About half of Ru were remained in the de-nitrated solution, but the remaining Ru were quantitatively precipitated by neutralization of the de-nitrated solution to pH 6.7. In the adsorption step, both Sr and Cs were separated effectively. Decontamination factors for Cs and Sr were more than 10{sup 6} and 10{sup 4} respectively in all effluent samples. (authors)

  8. Gated viewing and high-accuracy three-dimensional laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    , a high PRF of 32 kHz, and a high-speed camera with gate times down to 200 ps and delay steps down to 100 ps. The electronics and the software also allow for gated viewing with automatic gain control versus range, whereby foreground backscatter can be suppressed. We describe our technique for the rapid...

  9. Analysis of Canis mitochondrial DNA demonstrates high concordance between the control region and ATPase genes

    Directory of Open Access Journals (Sweden)

    White Bradley N

    2010-07-01

    Full Text Available Abstract Background Phylogenetic studies of wild Canis species have relied heavily on the mitochondrial DNA control region (mtDNA CR to infer species relationships and evolutionary lineages. Previous analyses of the CR provided evidence for a North American evolved eastern wolf (C. lycaon, that is more closely related to red wolves (C. rufus and coyotes (C. latrans than grey wolves (C. lupus. Eastern wolf origins, however, continue to be questioned. Therefore, we analyzed mtDNA from 89 wolves and coyotes across North America and Eurasia at 347 base pairs (bp of the CR and 1067 bp that included the ATPase6 and ATPase8 genes. Phylogenies and divergence estimates were used to clarify the evolutionary history of eastern wolves, and regional comparisons of nonsynonomous to synonomous substitutions (dN/dS at the ATPase6 and ATPase8 genes were used to elucidate the potential role of selection in shaping mtDNA geographic distribution. Results We found high concordance across analyses between the mtDNA regions studied. Both had a high percentage of variable sites (CR = 14.6%; ATP = 9.7% and both phylogenies clustered eastern wolf haplotypes monophyletically within a North American evolved lineage apart from coyotes. Divergence estimates suggest the putative red wolf sequence is more closely related to coyotes (DxyCR = 0.01982 ± 0.00494 SD; DxyATP = 0.00332 ± 0.00097 SD than the eastern wolf sequences (DxyCR = 0.03047 ± 0.00664 SD; DxyATP = 0.00931 ± 0.00205 SD. Neutrality tests on both genes were indicative of the population expansion of coyotes across eastern North America, and dN/dS ratios suggest a possible role for purifying selection in the evolution of North American lineages. dN/dS ratios were higher in European evolved lineages from northern climates compared to North American evolved lineages from temperate regions, but these differences were not statistically significant. Conclusions These results demonstrate high concordance between coding

  10. DEMONSTRATION AND EVALUATION OF POTENTIAL HIGH LEVEL WASTE MELTER DECONTAMINATION TECHNOLOGIES FOR SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Weger, Hans; Kodanda, Raja Tilek Meruva; Mazumdar, Anindra; Srivastava, Rajiv Ph.D.; Ebadian, M.A. Ph.D.

    2003-01-01

    Four hand-held tools were tested for failed high-level waste melter decontamination and decommissioning (D and D). The forces felt by the tools during operation were measured using a tri-axial accelerometer since they will be operated by a remote manipulator. The efficiency of the tools was also recorded. Melter D and D consists of three parts: (1) glass fracturing: removing from the furnace the melted glass that can not be poured out through normal means, (2) glass cleaning: removing the thin layer of glass that has formed over the surface of the refractory material, and (3) K-3 refractory breakup: removing the K-3 refractory material. Surrogate glass, from a formula provided by the Savannah River Site, was melted in a furnace and poured into steel containers. K-3 refractory material, the same material used in the Defense Waste Processing Facility, was utilized for the demonstrations. Four K-3 blocks were heated at 1150 C for two weeks with a glass layer on top to simulate the hardened glass layer on the refractory surface in the melter. Tools chosen for the demonstrations were commonly used D and D tools, which have not been tested specifically for the different aspects of melter D and D. A jackhammer and a needle gun were tested for glass fracturing; a needle gun and a rotary grinder with a diamond face wheel (diamond grinder) were tested for glass cleaning; and a jackhammer, diamond grinder, and a circular saw with a diamond blade were tested for refractory breakup. The needle gun was not capable of removing or fracturing the surrogate glass. The diamond grinder only had a removal rate of 3.0 x 10-4 kg/s for K-3 refractory breakup and needed to be held firmly against the material. However, the diamond grinder was effective for glass cleaning, with a removal rate of 3.9 cm2/s. The jackhammer was successful in fracturing glass and breaking up the K-3 refractory block. The jackhammer had a glass-fracturing rate of 0.40 kg/s. The jackhammer split the K-3 refractory

  11. High-accuracy measurement of ship velocities by DGPS; DGPS ni yoru sensoku keisoku no koseidoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S; Koterayama, W [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-10

    The differential global positioning system (DGPS) can eliminate most of errors in ship velocity measurement by GPS positioning alone. Through two rounds of marine observations by towing an observation robot in summer 1995, the authors attempted high-accuracy measurement of ship velocities by DGPS, and also carried out both positioning by GPS alone and measurement using the bottom track of ADCP (acoustic Doppler current profiler). In this paper, the results obtained by these measurement methods were examined through comparison among them, and the accuracy of the measured ship velocities was considered. In DGPS measurement, both translocation method and interference positioning method were used. ADCP mounted on the observation robot allowed measurement of the velocity of current meter itself by its bottom track in shallow sea areas less than 350m. As the result of these marine observations, it was confirmed that the accuracy equivalent to that of direct measurement by bottom track is possible to be obtained by DGPS. 3 refs., 5 figs., 1 tab.

  12. High construal level can help negotiators to reach integrative agreements: The role of information exchange and judgement accuracy.

    Science.gov (United States)

    Wening, Stefanie; Keith, Nina; Abele, Andrea E

    2016-06-01

    In negotiations, a focus on interests (why negotiators want something) is key to integrative agreements. Yet, many negotiators spontaneously focus on positions (what they want), with suboptimal outcomes. Our research applies construal-level theory to negotiations and proposes that a high construal level instigates a focus on interests during negotiations which, in turn, positively affects outcomes. In particular, we tested the notion that the effect of construal level on outcomes was mediated by information exchange and judgement accuracy. Finally, we expected the mere mode of presentation of task material to affect construal levels and manipulated construal levels using concrete versus abstract negotiation tasks. In two experiments, participants negotiated in dyads in either a high- or low-construal-level condition. In Study 1, high-construal-level dyads outperformed dyads in the low-construal-level condition; this main effect was mediated by information exchange. Study 2 replicated both the main and mediation effects using judgement accuracy as mediator and additionally yielded a positive effect of a high construal level on a second, more complex negotiation task. These results not only provide empirical evidence for the theoretically proposed link between construal levels and negotiation outcomes but also shed light on the processes underlying this effect. © 2015 The British Psychological Society.

  13. Challenges in high accuracy surface replication for micro optics and micro fluidics manufacture

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Calaon, Matteo

    2014-01-01

    Patterning the surface of polymer components with microstructured geometries is employed in optical and microfluidic applications. Mass fabrication of polymer micro structured products is enabled by replication technologies such as injection moulding. Micro structured tools are also produced...... by replication technologies such as nickel electroplating. All replication steps are enabled by a high precision master and high reproduction fidelity to ensure that the functionalities associated with the design are transferred to the final component. Engineered surface micro structures can be either...

  14. Social Power Increases Interoceptive Accuracy

    Directory of Open Access Journals (Sweden)

    Mehrad Moeini-Jazani

    2017-08-01

    Full Text Available Building on recent psychological research showing that power increases self-focused attention, we propose that having power increases accuracy in perception of bodily signals, a phenomenon known as interoceptive accuracy. Consistent with our proposition, participants in a high-power experimental condition outperformed those in the control and low-power conditions in the Schandry heartbeat-detection task. We demonstrate that the effect of power on interoceptive accuracy is not explained by participants’ physiological arousal, affective state, or general intention for accuracy. Rather, consistent with our reasoning that experiencing power shifts attentional resources inward, we show that the effect of power on interoceptive accuracy is dependent on individuals’ chronic tendency to focus on their internal sensations. Moreover, we demonstrate that individuals’ chronic sense of power also predicts interoceptive accuracy similar to, and independent of, how their situationally induced feeling of power does. We therefore provide further support on the relation between power and enhanced perception of bodily signals. Our findings offer a novel perspective–a psychophysiological account–on how power might affect judgments and behavior. We highlight and discuss some of these intriguing possibilities for future research.

  15. A content analysis of the quantity and accuracy of dietary supplement information found in magazines with high adolescent readership.

    Science.gov (United States)

    Shaw, Patricia; Zhang, Vivien; Metallinos-Katsaras, Elizabeth

    2009-02-01

    The objective of this study was to examine the quantity and accuracy of dietary supplement (DS) information through magazines with high adolescent readership. Eight (8) magazines (3 teen and 5 adult with high teen readership) were selected. A content analysis for DS was conducted on advertisements and editorials (i.e., articles, advice columns, and bulletins). Noted claims/cautions regarding DS were evaluated for accuracy using Medlineplus.gov and Naturaldatabase.com. Claims for dietary supplements with three or more types of ingredients and those in advertisements were not evaluated. Advertisements were evaluated with respect to size, referenced research, testimonials, and Dietary Supplement Health and Education Act of 1994 (DSHEA) warning visibility. Eighty-eight (88) issues from eight magazines yielded 238 DS references. Fifty (50) issues from five magazines contained no DS reference. Among teen magazines, seven DS references were found: five in the editorials and two in advertisements. In adult magazines, 231 DS references were found: 139 in editorials and 92 in advertisements. Of the 88 claims evaluated, 15% were accurate, 23% were inconclusive, 3% were inaccurate, 5% were partially accurate, and 55% were unsubstantiated (i.e., not listed in reference databases). Of the 94 DS evaluated in advertisements, 43% were full page or more, 79% did not have a DSHEA warning visible, 46% referred to research, and 32% used testimonials. Teen magazines contain few references to DS, none accurate. Adult magazines that have a high teen readership contain a substantial amount of DS information with questionable accuracy, raising concerns that this information may increase the chances of inappropriate DS use by adolescents, thereby increasing the potential for unexpected effects or possible harm.

  16. Interethnic differences in the accuracy of anthropometric indicators of obesity in screening for high risk of coronary heart disease

    Science.gov (United States)

    Herrera, VM; Casas, JP; Miranda, JJ; Perel, P; Pichardo, R; González, A; Sanchez, JR; Ferreccio, C; Aguilera, X; Silva, E; Oróstegui, M; Gómez, LF; Chirinos, JA; Medina-Lezama, J; Pérez, CM; Suárez, E; Ortiz, AP; Rosero, L; Schapochnik, N; Ortiz, Z; Ferrante, D; Diaz, M; Bautista, LE

    2009-01-01

    Background Cut points for defining obesity have been derived from mortality data among Whites from Europe and the United States and their accuracy to screen for high risk of coronary heart disease (CHD) in other ethnic groups has been questioned. Objective To compare the accuracy and to define ethnic and gender-specific optimal cut points for body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) when they are used in screening for high risk of CHD in the Latin-American and the US populations. Methods We estimated the accuracy and optimal cut points for BMI, WC and WHR to screen for CHD risk in Latin Americans (n=18 976), non-Hispanic Whites (Whites; n=8956), non-Hispanic Blacks (Blacks; n=5205) and Hispanics (n=5803). High risk of CHD was defined as a 10-year risk ≥20% (Framingham equation). The area under the receiver operator characteristic curve (AUC) and the misclassification-cost term were used to assess accuracy and to identify optimal cut points. Results WHR had the highest AUC in all ethnic groups (from 0.75 to 0.82) and BMI had the lowest (from 0.50 to 0.59). Optimal cut point for BMI was similar across ethnic/gender groups (27 kg/m2). In women, cut points for WC (94 cm) and WHR (0.91) were consistent by ethnicity. In men, cut points for WC and WHR varied significantly with ethnicity: from 91 cm in Latin Americans to 102 cm in Whites, and from 0.94 in Latin Americans to 0.99 in Hispanics, respectively. Conclusion WHR is the most accurate anthropometric indicator to screen for high risk of CHD, whereas BMI is almost uninformative. The same BMI cut point should be used in all men and women. Unique cut points for WC and WHR should be used in all women, but ethnic-specific cut points seem warranted among men. PMID:19238159

  17. High accuracy and precision micro injection moulding of thermoplastic elastomers micro ring production

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Elsborg, René

    2016-01-01

    The mass-replication nature of the process calls for fast monitoring of process parameters and product geometrical characteristics. In this direction, the present study addresses the possibility to develop a micro manufacturing platform for micro assembly injection moulding with real-time process....../product monitoring and metrology. The study represent a new concept yet to be developed with great potential for high precision mass-manufacturing of highly functional 3D multi-material (i.e. including metal/soft polymer) micro components. The activities related to HINMICO project objectives proves the importance...

  18. High Accuracy Three-dimensional Simulation of Micro Injection Moulded Parts

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F. S.; Hansen, Hans Nørgaard

    2011-01-01

    Micro injection moulding (μIM) is the key replication technology for high precision manufacturing of polymer micro products. Data analysis and simulations on micro-moulding experiments have been conducted during the present validation study. Detailed information about the μIM process was gathered...

  19. Combining Diffusion Tensor Metrics and DSC Perfusion Imaging: Can It Improve the Diagnostic Accuracy in Differentiating Tumefactive Demyelination from High-Grade Glioma?

    Science.gov (United States)

    Hiremath, S B; Muraleedharan, A; Kumar, S; Nagesh, C; Kesavadas, C; Abraham, M; Kapilamoorthy, T R; Thomas, B

    2017-04-01

    Tumefactive demyelinating lesions with atypical features can mimic high-grade gliomas on conventional imaging sequences. The aim of this study was to assess the role of conventional imaging, DTI metrics ( p:q tensor decomposition), and DSC perfusion in differentiating tumefactive demyelinating lesions and high-grade gliomas. Fourteen patients with tumefactive demyelinating lesions and 21 patients with high-grade gliomas underwent brain MR imaging with conventional, DTI, and DSC perfusion imaging. Imaging sequences were assessed for differentiation of the lesions. DTI metrics in the enhancing areas and perilesional hyperintensity were obtained by ROI analysis, and the relative CBV values in enhancing areas were calculated on DSC perfusion imaging. Conventional imaging sequences had a sensitivity of 80.9% and specificity of 57.1% in differentiating high-grade gliomas ( P = .049) from tumefactive demyelinating lesions. DTI metrics ( p : q tensor decomposition) and DSC perfusion demonstrated a statistically significant difference in the mean values of ADC, the isotropic component of the diffusion tensor, the anisotropic component of the diffusion tensor, the total magnitude of the diffusion tensor, and rCBV among enhancing portions in tumefactive demyelinating lesions and high-grade gliomas ( P ≤ .02), with the highest specificity for ADC, the anisotropic component of the diffusion tensor, and relative CBV (92.9%). Mean fractional anisotropy values showed no significant statistical difference between tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI and DSC parameters improved the diagnostic accuracy (area under the curve = 0.901). Addition of a heterogeneous enhancement pattern to DTI and DSC parameters improved it further (area under the curve = 0.966). The sensitivity increased from 71.4% to 85.7% after the addition of the enhancement pattern. DTI and DSC perfusion add profoundly to conventional imaging in differentiating tumefactive

  20. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  1. The management of high-level radioactive waste. A survey of demonstration activities

    International Nuclear Information System (INIS)

    1985-04-01

    The following aspects can be only indirectly demonstrated since they involve long periods of time. They have reached the degree of demonstration described below. Prediction of the physical stability of mined cavities at ambient temperatures is well understood from mining experience in salt and hard rocks such as granite. For soft rocks, the stability will depend upon the characteristics of the backfill and structural materials which can be included in predictive models. Normal and abnormal mechanisms for migration of radionuclides from repositories have been generally identified. Which of these mechanisms are relevant for the future evolution of a repository system depends on the repository site. Techniques for closure and sealing of repositories have been demonstrated, but validation of their long-term performance is lacking. The ability to construct mathematical models that predict repository and environmental behaviour over long periods of the future is now conceptually demonstrated. Some of these models are very sophisticated, but confidence is growing in their predictions. The reliability of results has been demonstrated, in some cases, by intercomparison of different modelling techniques; however, in many instances the models need validation. Generic data in support of models may, in many respects, be adequate. More data, and therefore R and D efforts concentrating on specific sites, are required to assist in the validation of some aspects of model predictions against the real world. This is an aspect of demonstration that continues to be necessary and is being pursued

  2. Museum genomics: low-cost and high-accuracy genetic data from historical specimens.

    Science.gov (United States)

    Rowe, Kevin C; Singhal, Sonal; Macmanes, Matthew D; Ayroles, Julien F; Morelli, Toni Lyn; Rubidge, Emily M; Bi, Ke; Moritz, Craig C

    2011-11-01

    Natural history collections are unparalleled repositories of geographical and temporal variation in faunal conditions. Molecular studies offer an opportunity to uncover much of this variation; however, genetic studies of historical museum specimens typically rely on extracting highly degraded and chemically modified DNA samples from skins, skulls or other dried samples. Despite this limitation, obtaining short fragments of DNA sequences using traditional PCR amplification of DNA has been the primary method for genetic study of historical specimens. Few laboratories have succeeded in obtaining genome-scale sequences from historical specimens and then only with considerable effort and cost. Here, we describe a low-cost approach using high-throughput next-generation sequencing to obtain reliable genome-scale sequence data from a traditionally preserved mammal skin and skull using a simple extraction protocol. We show that single-nucleotide polymorphisms (SNPs) from the genome sequences obtained independently from the skin and from the skull are highly repeatable compared to a reference genome. © 2011 Blackwell Publishing Ltd.

  3. Algorithm of dynamic regulation of a system of duct, for a high accuracy climatic system

    Science.gov (United States)

    Arbatskiy, A. A.; Afonina, G. N.; Glazov, V. S.

    2017-11-01

    Currently, major part of climatic system, are stationary in projected mode only. At the same time, many modern industrial sites, require constant or periodical changes in technological process. That is 80% of the time, the industrial site is not require ventilation system in projected mode and high precision of climatic parameters must maintain. While that not constantly is in use for climatic systems, which use in parallel for different rooms, we will be have a problem for balance of duct system. For this problem, was created the algorithm for quantity regulation, with minimal changes. Dynamic duct system: Developed of parallel control system of air balance, with high precision of climatic parameters. The Algorithm provide a permanent pressure in main duct, in different a flow of air. Therefore, the ending devises air flow have only one parameter for regulation - flaps open area. Precision of regulation increase and the climatic system provide high precision for temperature and humidity (0,5C for temperature, 5% for relative humidity). Result: The research has been made in CFD-system - PHOENICS. Results for velocity of air in duct, for pressure of air in duct for different operation mode, has been obtained. Equation for air valves positions, with different parameters for climate in room’s, has been obtained. Energy saving potential for dynamic duct system, for different types of a rooms, has been calculated.

  4. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    International Nuclear Information System (INIS)

    Burkhard, Boeckem

    1999-01-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle Δβ, is to first approximation proportional to the refraction angle: β IR ν(β blue - β IR ) = ν Δβ, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of the in [1] proposed conception of the dual

  5. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Directory of Open Access Journals (Sweden)

    C. W. Rella

    2013-03-01

    Full Text Available Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point inter-laboratory compatibility goals (WMO, 2011a without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to a water vapour concentration of at least 1%. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.

  6. A novel deep learning-based approach to high accuracy breast density estimation in digital mammography

    Science.gov (United States)

    Ahn, Chul Kyun; Heo, Changyong; Jin, Heongmin; Kim, Jong Hyo

    2017-03-01

    Mammographic breast density is a well-established marker for breast cancer risk. However, accurate measurement of dense tissue is a difficult task due to faint contrast and significant variations in background fatty tissue. This study presents a novel method for automated mammographic density estimation based on Convolutional Neural Network (CNN). A total of 397 full-field digital mammograms were selected from Seoul National University Hospital. Among them, 297 mammograms were randomly selected as a training set and the rest 100 mammograms were used for a test set. We designed a CNN architecture suitable to learn the imaging characteristic from a multitudes of sub-images and classify them into dense and fatty tissues. To train the CNN, not only local statistics but also global statistics extracted from an image set were used. The image set was composed of original mammogram and eigen-image which was able to capture the X-ray characteristics in despite of the fact that CNN is well known to effectively extract features on original image. The 100 test images which was not used in training the CNN was used to validate the performance. The correlation coefficient between the breast estimates by the CNN and those by the expert's manual measurement was 0.96. Our study demonstrated the feasibility of incorporating the deep learning technology into radiology practice, especially for breast density estimation. The proposed method has a potential to be used as an automated and quantitative assessment tool for mammographic breast density in routine practice.

  7. Performance enhancement of low-cost, high-accuracy, state estimation for vehicle collision prevention system using ANFIS

    Science.gov (United States)

    Saadeddin, Kamal; Abdel-Hafez, Mamoun F.; Jaradat, Mohammad A.; Jarrah, Mohammad Amin

    2013-12-01

    In this paper, a low-cost navigation system that fuses the measurements of the inertial navigation system (INS) and the global positioning system (GPS) receiver is developed. First, the system's dynamics are obtained based on a vehicle's kinematic model. Second, the INS and GPS measurements are fused using an extended Kalman filter (EKF) approach. Subsequently, an artificial intelligence based approach for the fusion of INS/GPS measurements is developed based on an Input-Delayed Adaptive Neuro-Fuzzy Inference System (IDANFIS). Experimental tests are conducted to demonstrate the performance of the two sensor fusion approaches. It is found that the use of the proposed IDANFIS approach achieves a reduction in the integration development time and an improvement in the estimation accuracy of the vehicle's position and velocity compared to the EKF based approach.

  8. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Science.gov (United States)

    Rella, C. W.; Chen, H.; Andrews, A. E.; Filges, A.; Gerbig, C.; Hatakka, J.; Karion, A.; Miles, N. L.; Richardson, S. J.; Steinbacher, M.; Sweeney, C.; Wastine, B.; Zellweger, C.

    2013-03-01

    Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point < -25 °C) to achieve the inter-laboratory compatibility goals set forth by the Global Atmosphere Watch programme of the World Meteorological Organisation (WMO/GAW) for carbon dioxide (±0.1 ppm in the Northern Hemisphere and ±0.05 ppm in the Southern Hemisphere) and methane (±2 ppb). Drying the sample gas to low levels of water vapour can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular cavity ring down spectroscopy, have led to the development of greenhouse gas analysers capable of simultaneous measurements of carbon dioxide, methane and water vapour. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapour, these instruments permit accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals (WMO, 2011a) without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to a water vapour concentration of at least 1%. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.

  9. Modelling and Control of Stepper Motors for High Accuracy Positioning Systems Used in Radioactive Environments

    CERN Document Server

    Picatoste Ruilope, Ricardo; Masi, Alessandro

    Hybrid Stepper Motors are widely used in open-loop position applications. They are the choice of actuation for the collimators in the Large Hadron Collider, the largest particle accelerator at CERN. In this case the positioning requirements and the highly radioactive operating environment are unique. The latter forces both the use of long cables to connect the motors to the drives which act as transmission lines and also prevents the use of standard position sensors. However, reliable and precise operation of the collimators is critical for the machine, requiring the prevention of step loss in the motors and maintenance to be foreseen in case of mechanical degradation. In order to make the above possible, an approach is proposed for the application of an Extended Kalman Filter to a sensorless stepper motor drive, when the motor is separated from its drive by long cables. When the long cables and high frequency pulse width modulated control voltage signals are used together, the electrical signals difer greatl...

  10. The study of optimization on process parameters of high-accuracy computerized numerical control polishing

    Science.gov (United States)

    Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu

    2017-09-01

    Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.

  11. High accuracy injection circuit for the calibration of a large pixel sensor matrix

    International Nuclear Information System (INIS)

    Quartieri, E.; Comotti, D.; Manghisoni, M.

    2013-01-01

    Semiconductor pixel detectors, for particle tracking and vertexing in high energy physics experiments as well as for X-ray imaging, in particular for synchrotron light sources and XFELs, require a large area sensor matrix. This work will discuss the design and the characterization of a high-linearity, low dispersion injection circuit to be used for pixel-level calibration of detector readout electronics in a large pixel sensor matrix. The circuit provides a useful tool for the characterization of the readout electronics of the pixel cell unit for both monolithic active pixel sensors and hybrid pixel detectors. In the latter case, the circuit allows for precise analogue test of the readout channel already at the chip level, when no sensor is connected. Moreover, it provides a simple means for calibration of readout electronics once the detector has been connected to the chip. Two injection techniques can be provided by the circuit: one for a charge sensitive amplification and the other for a transresistance readout channel. The aim of the paper is to describe the architecture and the design guidelines of the calibration circuit, which has been implemented in a 130 nm CMOS technology. Moreover, experimental results of the proposed injection circuit will be presented in terms of linearity and dispersion

  12. Accuracy of an automated system for tuberculosis detection on chest radiographs in high-risk screening.

    Science.gov (United States)

    Melendez, J; Hogeweg, L; Sánchez, C I; Philipsen, R H H M; Aldridge, R W; Hayward, A C; Abubakar, I; van Ginneken, B; Story, A

    2018-05-01

    Tuberculosis (TB) screening programmes can be optimised by reducing the number of chest radiographs (CXRs) requiring interpretation by human experts. To evaluate the performance of computerised detection software in triaging CXRs in a high-throughput digital mobile TB screening programme. A retrospective evaluation of the software was performed on a database of 38 961 postero-anterior CXRs from unique individuals seen between 2005 and 2010, 87 of whom were diagnosed with TB. The software generated a TB likelihood score for each CXR. This score was compared with a reference standard for notified active pulmonary TB using receiver operating characteristic (ROC) curve and localisation ROC (LROC) curve analyses. On ROC curve analysis, software specificity was 55.71% (95%CI 55.21-56.20) and negative predictive value was 99.98% (95%CI 99.95-99.99), at a sensitivity of 95%. The area under the ROC curve was 0.90 (95%CI 0.86-0.93). Results of the LROC curve analysis were similar. The software could identify more than half of the normal images in a TB screening setting while maintaining high sensitivity, and may therefore be used for triage.

  13. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    Science.gov (United States)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  14. High accuracy velocity control method for the french moving-coil watt balance

    International Nuclear Information System (INIS)

    Topcu, Suat; Chassagne, Luc; Haddad, Darine; Alayli, Yasser; Juncar, Patrick

    2004-01-01

    We describe a novel method of velocity control dedicated to the French moving-coil watt balance. In this project, a coil has to move in a magnetic field at a velocity of 2 mm s -1 with a relative uncertainty of 10 -9 over 60 mm. Our method is based on the use of both a heterodyne Michelson's interferometer, a two-level translation stage, and a homemade high frequency phase-shifting electronic circuit. To quantify the stability of the velocity, the output of the interferometer is sent into a frequency counter and the Doppler frequency shift is recorded. The Allan standard deviation has been used to calculate the stability and a σ y (τ) of about 2.2x10 -9 over 400 s has been obtained

  15. Real-time and high accuracy frequency measurements for intermediate frequency narrowband signals

    Science.gov (United States)

    Tian, Jing; Meng, Xiaofeng; Nie, Jing; Lin, Liwei

    2018-01-01

    Real-time and accurate measurements of intermediate frequency signals based on microprocessors are difficult due to the computational complexity and limited time constraints. In this paper, a fast and precise methodology based on the sigma-delta modulator is designed and implemented by first generating the twiddle factors using the designed recursive scheme. This scheme requires zero times of multiplications and only half amounts of addition operations by using the discrete Fourier transform (DFT) and the combination of the Rife algorithm and Fourier coefficient interpolation as compared with conventional methods such as DFT and Fast Fourier Transform. Experimentally, when the sampling frequency is 10 MHz, the real-time frequency measurements with intermediate frequency and narrowband signals have a measurement mean squared error of ±2.4 Hz. Furthermore, a single measurement of the whole system only requires approximately 0.3 s to achieve fast iteration, high precision, and less calculation time.

  16. A high-accuracy image registration algorithm using phase-only correlation for dental radiographs

    International Nuclear Information System (INIS)

    Ito, Koichi; Nikaido, Akira; Aoki, Takafumi; Kosuge, Eiko; Kawamata, Ryota; Kashima, Isamu

    2008-01-01

    Dental radiographs have been used for the accurate assessment and treatment of dental diseases. The nonlinear deformation between two dental radiographs may be observed, even if they are taken from the same oral regions of the subject. For an accurate diagnosis, the complete geometric registration between radiographs is required. This paper presents an efficient dental radiograph registration algorithm using Phase-Only Correlation (POC) function. The use of phase components in 2D (two-dimensional) discrete Fourier transforms of dental radiograph images makes possible to achieve highly robust image registration and recognition. Experimental evaluation using a dental radiograph database indicates that the proposed algorithm exhibits efficient recognition performance even for distorted radiographs. (author)

  17. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  18. Accuracy of W' Recovery Kinetics in High Performance Cyclists - Modelling Intermittent Work Capacity.

    Science.gov (United States)

    Bartram, Jason C; Thewlis, Dominic; Martin, David T; Norton, Kevin I

    2017-10-16

    With knowledge of an individual's critical power (CP) and W' the SKIBA 2 model provides a framework with which to track W' balance during intermittent high intensity work bouts. There are fears the time constant controlling the recovery rate of W' (τ W' ) may require refinement to enable effective use in an elite population. Four elite endurance cyclists completed an array of intermittent exercise protocols to volitional exhaustion. Each protocol lasted approximately 3.5-6 minutes and featured a range of recovery intensities, set in relation to athlete's CPs (DCP). Using the framework of the SKIBA 2 model, the τ W ' values were modified for each protocol to achieve an accurate W' at volitional exhaustion. Modified τ W ' values were compared to equivalent SKIBA 2 τ W ' values to assess the difference in recovery rates for this population. Plotting modified τ W ' values against DCP showed the adjusted relationship between work-rate and recovery-rate. Comparing modified τ W' values against the SKIBA 2 τ W' values showed a negative bias of 112±46s (mean±95%CL), suggesting athlete's recovered W' faster than predicted by SKIBA 2 (p=0.0001). The modified τ W' to DCP relationship was best described by a power function: τ W' =2287.2∗D CP -0.688 (R 2 = 0.433). The current SKIBA 2 model is not appropriate for use in elite cyclists as it under predicts the recovery rate of W'. The modified τ W' equation presented will require validation, but appears more appropriate for high performance athletes. Individual τ W' relationships may be necessary in order to maximise the model's validity.

  19. Accuracy of Administrative Codes for Distinguishing Positive Pressure Ventilation from High-Flow Nasal Cannula.

    Science.gov (United States)

    Good, Ryan J; Leroue, Matthew K; Czaja, Angela S

    2018-06-07

    Noninvasive positive pressure ventilation (NIPPV) is increasingly used in critically ill pediatric patients, despite limited data on safety and efficacy. Administrative data may be a good resource for observational studies. Therefore, we sought to assess the performance of the International Classification of Diseases, Ninth Revision procedure code for NIPPV. Patients admitted to the PICU requiring NIPPV or heated high-flow nasal cannula (HHFNC) over the 11-month study period were identified from the Virtual PICU System database. The gold standard was manual review of the electronic health record to verify the use of NIPPV or HHFNC among the cohort. The presence or absence of a NIPPV procedure code was determined by using administrative data. Test characteristics with 95% confidence intervals (CIs) were generated, comparing administrative data with the gold standard. Among the cohort ( n = 562), the majority were younger than 5 years, and the most common primary diagnosis was bronchiolitis. Most (82%) required NIPPV, whereas 18% required only HHFNC. The NIPPV code had a sensitivity of 91.1% (95% CI: 88.2%-93.6%) and a specificity of 57.6% (95% CI: 47.2%-67.5%), with a positive likelihood ratio of 2.15 (95% CI: 1.70-2.71) and negative likelihood ratio of 0.15 (95% CI: 0.11-0.22). Among our critically ill pediatric cohort, NIPPV procedure codes had high sensitivity but only moderate specificity. On the basis of our study results, there is a risk of misclassification, specifically failure to identify children who require NIPPV, when using administrative data to study the use of NIPPV in this population. Copyright © 2018 by the American Academy of Pediatrics.

  20. Automatic camera to laser calibration for high accuracy mobile mapping systems using INS

    Science.gov (United States)

    Goeman, Werner; Douterloigne, Koen; Gautama, Sidharta

    2013-09-01

    A mobile mapping system (MMS) is a mobile multi-sensor platform developed by the geoinformation community to support the acquisition of huge amounts of geodata in the form of georeferenced high resolution images and dense laser clouds. Since data fusion and data integration techniques are increasingly able to combine the complementary strengths of different sensor types, the external calibration of a camera to a laser scanner is a common pre-requisite on today's mobile platforms. The methods of calibration, nevertheless, are often relatively poorly documented, are almost always time-consuming, demand expert knowledge and often require a carefully constructed calibration environment. A new methodology is studied and explored to provide a high quality external calibration for a pinhole camera to a laser scanner which is automatic, easy to perform, robust and foolproof. The method presented here, uses a portable, standard ranging pole which needs to be positioned on a known ground control point. For calibration, a well studied absolute orientation problem needs to be solved. In many cases, the camera and laser sensor are calibrated in relation to the INS system. Therefore, the transformation from camera to laser contains the cumulated error of each sensor in relation to the INS. Here, the calibration of the camera is performed in relation to the laser frame using the time synchronization between the sensors for data association. In this study, the use of the inertial relative movement will be explored to collect more useful calibration data. This results in a better intersensor calibration allowing better coloring of the clouds and a more accurate depth mask for images, especially on the edges of objects in the scene.

  1. Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies

    International Nuclear Information System (INIS)

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer; Humboldt-Universitaet, Berlin

    2016-04-01

    We discuss the determination of the strong coupling α_M_S(m_Z) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α_s(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α_s=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α_s∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  2. Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Fritzsch, Patrick [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Ramos, Alberto [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration

    2016-04-15

    We discuss the determination of the strong coupling α{sub MS}(m{sub Z}) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α{sub s}(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α{sub s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α{sub s}∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  3. High-accuracy X-ray detector calibration based on cryogenic radiometry

    Science.gov (United States)

    Krumrey, M.; Cibik, L.; Müller, P.

    2010-06-01

    Cryogenic electrical substitution radiometers (ESRs) are absolute thermal detectors, based on the equivalence of electrical power and radiant power. Their core piece is a cavity absorber, which is typically made of copper to achieve a short response time. At higher photon energies, the use of copper prevents the operation of ESRs due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II. The Monte Carlo simulation code Geant4 was applied to optimize its absorptance for photon energies of up to 60 keV. The measurement of the radiant power of monochromatized synchrotron radiation was achieved with relative standard uncertainties of less than 0.2 %, covering the entire photon energy range of three beamlines from 50 eV to 60 keV. Monochromatized synchrotron radiation of high spectral purity is used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative standard uncertainties below 0.3 %. For some silicon photodiodes, the photocurrent is not linear with the incident radiant power.

  4. High-accuracy X-ray detector calibration based on cryogenic radiometry

    International Nuclear Information System (INIS)

    Krumrey, M.; Cibik, L.; Mueller, P.

    2010-01-01

    Cryogenic electrical substitution radiometers (ESRs) are absolute thermal detectors, based on the equivalence of electrical power and radiant power. Their core piece is a cavity absorber, which is typically made of copper to achieve a short response time. At higher photon energies, the use of copper prevents the operation of ESRs due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II. The Monte Carlo simulation code Geant4 was applied to optimize its absorptance for photon energies of up to 60 keV. The measurement of the radiant power of monochromatized synchrotron radiation was achieved with relative standard uncertainties of less than 0.2 %, covering the entire photon energy range of three beamlines from 50 eV to 60 keV. Monochromatized synchrotron radiation of high spectral purity is used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative standard uncertainties below 0.3 %. For some silicon photodiodes, the photocurrent is not linear with the incident radiant power.

  5. High-accuracy local positioning network for the alignment of the Mu2e experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Hejdukova, Jana B. [Czech Technical Univ., Prague (Czech Republic)

    2017-06-01

    This Diploma thesis describes the establishment of a high-precision local positioning network and accelerator alignment for the Mu2e physics experiment. The process of establishing new network consists of few steps: design of the network, pre-analysis, installation works, measurements of the network and making adjustments. Adjustments were performed using two approaches. First is a geodetic approach of taking into account the Earth’s curvature and the metrological approach of a pure 3D Cartesian system on the other side. The comparison of those two approaches is performed and evaluated in the results and compared with expected differences. The effect of the Earth’s curvature was found to be significant for this kind of network and should not be neglected. The measurements were obtained with Absolute Tracker AT401, leveling instrument Leica DNA03 and gyrotheodolite DMT Gyromat 2000. The coordinates of the points of the reference network were determined by the Least Square Meth od and the overall view is attached as Annexes.

  6. Diagnostic accuracy for X-ray chest in interstitial lung disease as confirmed by high resolution computed tomography (HRCT) chest

    International Nuclear Information System (INIS)

    Afzal, F.; Raza, S.; Shafique, M.

    2017-01-01

    Objective: To determine the diagnostic accuracy of x-ray chest in interstitial lung disease as confirmed by high resolution computed tomography (HRCT) chest. Study Design: A cross-sectional validational study. Place and Duration of Study: Department of Diagnostic Radiology, Combined Military Hospital Rawalpindi, from Oct 2013 to Apr 2014. Material and Method: A total of 137 patients with clinical suspicion of interstitial lung disease (ILD) aged 20-50 years of both genders were included in the study. Patients with h/o previous histopathological diagnosis, already taking treatment and pregnant females were excluded. All the patients had chest x-ray and then HRCT. The x-ray and HRCT findings were recorded as presence or absence of the ILD. Results: Mean age was 40.21 ± 4.29 years. Out of 137 patients, 79 (57.66 percent) were males and 58 (42.34 percent) were females with male to female ratio of 1.36:1. Chest x-ray detected ILD in 80 (58.39 percent) patients, out of which, 72 (true positive) had ILD and 8 (false positive) had no ILD on HRCT. Overall sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of chest x-ray in diagnosing ILD was 80.0 percent, 82.98 percent, 90.0 percent, 68.42 percent and 81.02 percent respectively. Conclusion: This study concluded that chest x-ray is simple, non-invasive, economical and readily available alternative to HRCT with an acceptable diagnostic accuracy of 81 percent in the diagnosis of ILD. (author)

  7. Social power and recognition of emotional prosody: High power is associated with lower recognition accuracy than low power.

    Science.gov (United States)

    Uskul, Ayse K; Paulmann, Silke; Weick, Mario

    2016-02-01

    Listeners have to pay close attention to a speaker's tone of voice (prosody) during daily conversations. This is particularly important when trying to infer the emotional state of the speaker. Although a growing body of research has explored how emotions are processed from speech in general, little is known about how psychosocial factors such as social power can shape the perception of vocal emotional attributes. Thus, the present studies explored how social power affects emotional prosody recognition. In a correlational study (Study 1) and an experimental study (Study 2), we show that high power is associated with lower accuracy in emotional prosody recognition than low power. These results, for the first time, suggest that individuals experiencing high or low power perceive emotional tone of voice differently. (c) 2016 APA, all rights reserved).

  8. High-accuracy detection of early Parkinson's Disease using multiple characteristics of finger movement while typing.

    Directory of Open Access Journals (Sweden)

    Warwick R Adams

    Full Text Available Parkinson's Disease (PD is a progressive neurodegenerative movement disease affecting over 6 million people worldwide. Loss of dopamine-producing neurons results in a range of both motor and non-motor symptoms, however there is currently no definitive test for PD by non-specialist clinicians, especially in the early disease stages where the symptoms may be subtle and poorly characterised. This results in a high misdiagnosis rate (up to 25% by non-specialists and people can have the disease for many years before diagnosis. There is a need for a more accurate, objective means of early detection, ideally one which can be used by individuals in their home setting. In this investigation, keystroke timing information from 103 subjects (comprising 32 with mild PD severity and the remainder non-PD controls was captured as they typed on a computer keyboard over an extended period and showed that PD affects various characteristics of hand and finger movement and that these can be detected. A novel methodology was used to classify the subjects' disease status, by utilising a combination of many keystroke features which were analysed by an ensemble of machine learning classification models. When applied to two separate participant groups, this approach was able to successfully discriminate between early-PD subjects and controls with 96% sensitivity, 97% specificity and an AUC of 0.98. The technique does not require any specialised equipment or medical supervision, and does not rely on the experience and skill of the practitioner. Regarding more general application, it currently does not incorporate a second cardinal disease symptom, so may not differentiate PD from similar movement-related disorders.

  9. Demonstration of the frequency modulation of optical signals with a high frequency deviation parameter

    International Nuclear Information System (INIS)

    Shamray, A V; Kozlov, A S; Il'ichev, I V; Petrov, M P

    2008-01-01

    A new type of an integrated optical modulator for the frequency coding of optical signals is developed and fabricated. The modulator operation is based on the original technology of the electric control of a Bragg grating. The frequency modulation of an optical signal with the frequency deviation of 25 GHz is demonstrated experimentally. The modular was used to transfer the ASCII code through an optical fibre. (optical communication)

  10. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F.; Villette, B. [CEA, DAM, DIF, F-91297 Arpajon (France); Michel, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Giraldez, E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; and others

    2014-07-15

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  11. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Science.gov (United States)

    Philippe, F.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Villette, B.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; Michel, P.; Frenje, J.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Sorce, C.; Stoeckl, C.; Nikroo, A.; Giraldez, E.

    2014-07-01

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  12. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    International Nuclear Information System (INIS)

    Philippe, F.; Villette, B.; Michel, P.; Petrasso, R.; Stoeckl, C.; Giraldez, E.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.

    2014-01-01

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results

  13. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Tassin, V. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Depierreux, S. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Gauthier, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Masson-Laborde, P. E. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Monteil, M. C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Seytor, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Villette, B. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Lasinski, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ross, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Amendt, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doeppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wallace, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Michel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu-Johnson, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Glebov, V. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Sorce, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Stoeckl, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Nikroo, A. [General Atomics, San Diego, CA (United States); Giraldez, E. [General Atomics, San Diego, CA (United States)

    2014-07-25

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  14. A diabetes dashboard and physician efficiency and accuracy in accessing data needed for high-quality diabetes care.

    Science.gov (United States)

    Koopman, Richelle J; Kochendorfer, Karl M; Moore, Joi L; Mehr, David R; Wakefield, Douglas S; Yadamsuren, Borchuluun; Coberly, Jared S; Kruse, Robin L; Wakefield, Bonnie J; Belden, Jeffery L

    2011-01-01

    We compared use of a new diabetes dashboard screen with use of a conventional approach of viewing multiple electronic health record (EHR) screens to find data needed for ambulatory diabetes care. We performed a usability study, including a quantitative time study and qualitative analysis of information-seeking behaviors. While being recorded with Morae Recorder software and "think-aloud" interview methods, 10 primary care physicians first searched their EHR for 10 diabetes data elements using a conventional approach for a simulated patient, and then using a new diabetes dashboard for another. We measured time, number of mouse clicks, and accuracy. Two coders analyzed think-aloud and interview data using grounded theory methodology. The mean time needed to find all data elements was 5.5 minutes using the conventional approach vs 1.3 minutes using the diabetes dashboard (P dashboard (P dashboard (P dashboard improves both the efficiency and accuracy of acquiring data needed for high-quality diabetes care. Usability analysis tools can provide important insights into the value of optimizing physician use of health information technologies.

  15. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  16. Four High-Visibility Enforcement Demonstration Waves in Connecticut and New York Reduce Hand-Held Phone Use

    Science.gov (United States)

    2011-07-01

    The National Highway Traffic : Safety Administration initiated : distracted driving demonstration : programs in two communities : to test whether a high-visibility : enforcement (HVE) model could : reduce two specific instances : of distracted drivin...

  17. Location accuracy evaluation of lightning location systems using natural lightning flashes recorded by a network of high-speed cameras

    Science.gov (United States)

    Alves, J.; Saraiva, A. C. V.; Campos, L. Z. D. S.; Pinto, O., Jr.; Antunes, L.

    2014-12-01

    This work presents a method for the evaluation of location accuracy of all Lightning Location System (LLS) in operation in southeastern Brazil, using natural cloud-to-ground (CG) lightning flashes. This can be done through a multiple high-speed cameras network (RAMMER network) installed in the Paraiba Valley region - SP - Brazil. The RAMMER network (Automated Multi-camera Network for Monitoring and Study of Lightning) is composed by four high-speed cameras operating at 2,500 frames per second. Three stationary black-and-white (B&W) cameras were situated in the cities of São José dos Campos and Caçapava. A fourth color camera was mobile (installed in a car), but operated in a fixed location during the observation period, within the city of São José dos Campos. The average distance among cameras was 13 kilometers. Each RAMMER sensor position was determined so that the network can observe the same lightning flash from different angles and all recorded videos were GPS (Global Position System) time stamped, allowing comparisons of events between cameras and the LLS. The RAMMER sensor is basically composed by a computer, a Phantom high-speed camera version 9.1 and a GPS unit. The lightning cases analyzed in the present work were observed by at least two cameras, their position was visually triangulated and the results compared with BrasilDAT network, during the summer seasons of 2011/2012 and 2012/2013. The visual triangulation method is presented in details. The calibration procedure showed an accuracy of 9 meters between the accurate GPS position of the object triangulated and the result from the visual triangulation method. Lightning return stroke positions, estimated with the visual triangulation method, were compared with LLS locations. Differences between solutions were not greater than 1.8 km.

  18. Assessment of high precision, high accuracy Inductively Coupled Plasma-Optical Emission Spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations

    International Nuclear Information System (INIS)

    Rabb, Savelas A.; Olesik, John W.

    2008-01-01

    The ability to obtain high precision, high accuracy measurements in samples with complex matrices using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy (HP-ICP-OES) was investigated. The Common Analyte Internal Standard (CAIS) procedure was incorporated into the High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method to correct for matrix-induced changes in emission intensity ratios. Matrix matching and standard addition approaches to minimize matrix-induced errors when using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy were also assessed. The High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method was tested with synthetic solutions in a variety of matrices, alloy standard reference materials and geological reference materials

  19. Simplifying and expanding analytical capabilities for various classes of doping agents by means of direct urine injection high performance liquid chromatography high resolution/high accuracy mass spectrometry.

    Science.gov (United States)

    Görgens, Christian; Guddat, Sven; Thomas, Andreas; Wachsmuth, Philipp; Orlovius, Anne-Katrin; Sigmund, Gerd; Thevis, Mario; Schänzer, Wilhelm

    2016-11-30

    So far, in sports drug testing compounds of different classes are processed and measured using different screening procedures. The constantly increasing number of samples in doping analysis, as well as the large number of substances with doping related, pharmacological effects require the development of even more powerful assays than those already employed in sports drug testing, indispensably with reduced sample preparation procedures. The analysis of native urine samples after direct injection provides a promising analytical approach, which thereby possesses a broad applicability to many different compounds and their metabolites, without a time-consuming sample preparation. In this study, a novel multi-target approach based on liquid chromatography and high resolution/high accuracy mass spectrometry is presented to screen for more than 200 analytes of various classes of doping agents far below the required detection limits in sports drug testing. Here, classic groups of drugs as diuretics, stimulants, β 2 -agonists, narcotics and anabolic androgenic steroids as well as various newer target compounds like hypoxia-inducible factor (HIF) stabilizers, selective androgen receptor modulators (SARMs), selective estrogen receptor modulators (SERMs), plasma volume expanders and other doping related compounds, listed in the 2016 WADA prohibited list were implemented. As a main achievement, growth hormone releasing peptides could be implemented, which chemically belong to the group of small peptides (0.99), limit of detection (0.1-25ng/mL; 3'OH-stanozolol glucuronide: 50pg/mL; dextran/HES: 10μg/mL) and matrix effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A direct indication of plasma potential diagnostic with fast time response and high accuracy based on a differential emissive probe

    International Nuclear Information System (INIS)

    Yao, W.E.; Hershkowitz; Intrator, T.

    1985-01-01

    The floating potential of the emissive probe has been used to directly measure the plasma potential. The authors have recently presented another method for directly indicating the plasma potential with a differential emissive probe. In this paper they describe the effects of probe size, plasma density and plasma potential fluctuation on plasma potential measurements and give methods for reducing errors. A control system with fast time response (α 20 μs) and high accuracy (the order of the probe temperature T/sub w//e) for maintaining a differential emissive probe at plasma potential has been developed. It can be operated in pulsed discharge plasma to measure plasma potential dynamic characteristics. A solid state optical coupler is employed to improve circuit performance. This system was tested experimentally by measuring the plasma potential in an argon plasma device an on the Phaedrus tandem mirror

  1. A high-accuracy extraction of the isoscalar πN scattering length from pionic deuterium data

    International Nuclear Information System (INIS)

    Phillips, Daniel R.; Baru, Vadim; Hanhart, Christoph; Nogga, Andreas; Hoferichter, Martin; Kubis, Bastian

    2010-01-01

    We present a high-accuracy calculation of the π(bar sign)d scattering length using chiral perturbation theory up to order (M π /m p ) 7/2 . For the first time isospin-violating corrections are included consistently. The resulting value of a π -bar d has a theoretical uncertainty of a few percent. We use it, together with data on pionic deuterium and pionic hydrogen atoms, to extract the isoscalar and isovector pion-nucleon scattering lengths from a combined analysis, and obtain a + (7.9±3.2)·10 -3 M π -1 and a-bar (86.3±1.0)·10 -3 M π -1 .

  2. A direct indication of plasma potential diagnostic with fast time response and high accuracy based on a differential emissive probe

    International Nuclear Information System (INIS)

    Yao, W.E.; Hershkowitz, N.; Intrator, T.

    1985-01-01

    The floating potential of the emissive probe has been used to directly measure the plasma potential. The authors have recently presented another method for directly indicating the plasma potential with a differential emissive probe. In this paper they describe the effects of probe size, plasma density and plasma potential fluctuation on plasma potential measurements and give methods for reducing errors. A control system with fast time response (≅ 20 μs) and high accuracy (the order of the probe temperature T/sub w//e) for maintaining a differential emissive probe at plasma potential has been developed. It can be operated in pulsed discharge plasma to measure plasma potential dynamic characteristics. A solid state optical coupler is employed to improve circuit performance. This system was tested experimentally by measuring the plasma potential in an argon plasma device and on the Phaedrus tandem mirror

  3. High accuracy determination of trace elements in NIST standard reference materials by isotope dilution ICP-MS

    International Nuclear Information System (INIS)

    Paulsen, P.J.; Beary, E.S.

    1996-01-01

    At NIST (National Institute of Standards and Technology), ICP-MS ID (inductively coupled mass spectrometry isotope dilution) has been used to certify a wide range of elements in a variety of materials with high accuracy. Both the chemical preparation and instrumental procedures are simpler than with other ID mass spectrometric techniques. The ICP-MS has picogram/ml detection limits for most elements using fixed operating parameters. Chemical separations are required only to remove an interference (from molecular ions as well as isobaric atoms), or to pre-concentrate the analyte. For example, chemical separations were required for the analysis of SRM 2711, Montana II Soil, but not for boron in peach leaves, SRM 1547.(3 refs., 3 tabs., 2 figs

  4. A proposed high-power UV industrial demonstration laser at CEBAF

    International Nuclear Information System (INIS)

    Benson, S.V.; Bisognano, J.J.; Bohn, C.L.

    1996-01-01

    The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported

  5. A proposed high-power UV industrial demonstration laser at CEBAF

    International Nuclear Information System (INIS)

    Benson, S.V.; Bisognano, J.J.; Bohn, C.L.

    1996-01-01

    The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors will describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They will also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported

  6. An investigation of the influence of reconceptualization of demonstrative experimental activities of optics in high school

    Directory of Open Access Journals (Sweden)

    Jair Lúcio Prados Ribeiro

    2013-08-01

    Full Text Available In this work, we analyze the influence that the use of demonstrative experiments can bring to the learning of optics. It is assumed that the development of experimental activities, when reconceptualized according to Hodson proposal, tends to contribute to the generation of cognitive conflicts when compared to traditional didactic experience. Justifications are given for an analysis of changes under a Piagetian bias, reconciled with Hodson proposal. The methodology used to structure the topics presentations was quasi-experimental, contrasting an experimental group with a control group. The measuring of the effectiveness of the suggested working method was made from a quantitative analysis, which identified some of the topics discussed had better results in learning, being more tied to the experiments carried out.

  7. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  8. A Useful Demonstration of Calculus in a Physics High School Laboratory

    Science.gov (United States)

    Alvarez, Gustavo; Schulte, Jurgen; Stockton, Geoffrey; Wheeler, David

    2018-01-01

    The real power of calculus is revealed when it is applied to actual physical problems. In this paper, we present a calculus inspired physics experiment suitable for high school and undergraduate programs. A model for the theory of the terminal velocity of a falling body subject to a resistive force is developed and its validity tested in an…

  9. The SOURCE Demonstration Project: Helping Disadvantaged High School Students Enroll in College

    Science.gov (United States)

    Bos, Johannes; Berman, Jacqueline

    2009-01-01

    The primary research question for this project was whether a streamlined, relatively inexpensive, counseling-based program that assists low-income high school students with the college and financial application processes can significantly increase college enrollment rates. The intervention was designed to test the hypothesis that lack of…

  10. Preconceptual design study for solidifying high-level waste: West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hill, O.F.

    1981-04-01

    This report presents a preconceptual design study for processing radioactive high-level liquid waste presently stored in underground tanks at Western New York Nuclear Service Center (WNYNSC) near West Valley, New York, and for incorporating the radionculides in that waste into a solid. The high-level liquid waste accumulated from the operation of a chemical reprocessing plant by the Nuclear Fuel Services, Inc. from 1966 to 1972. The high-level liquid waste consists of approximately 560,000 gallons of alkaline waste from Purex process operations and 12,000 gallons of acidic (nitric acid) waste from one campaign of processing thoria fuels by a modified Thorex process (during this campaign thorium was left in the waste). The alkaline waste contains approximately 30 million curies and the acidic waste contains approximately 2.5 million curies. The reference process described in this report is concerned only with chemically processing the high-level liquid waste to remove radionuclides from the alkaline supernate and converting the radionuclide-containing nonsalt components in the waste into a borosilicate glass

  11. Demonstration Of 3D Effects With High Gain And Efficiency In A UV FEL Oscillator

    International Nuclear Information System (INIS)

    Benson, Stephen; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Douglas, David; Ellingsworth, Forrest; Evtushenko, Pavel; Hernandez-Garcia, Carlos; Gould, Christopher; Gubeli, Joseph; Hardy, David; Jordan, Kevin; Klopf, John; Kortze, James; Legg, Robert; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle; Tennant, Christopher; Walker, Richard; Watson, Anne; Williams, Gwyn; Wilson, Frederick; Zhang, Shukui

    2011-01-01

    We report on the performance of a high gain UV FEL oscillator operating on an energy recovery linac at Jefferson Lab. The high brightness of the electron beam leads to both gain and efficiency that cannot be reconciled with a one-dimensional model. Three-dimensional simulations do predict the performance with reasonable precision. Gain in excess of 100% per pass and an efficiency close to 1/2NW, where NW is the number of wiggler periods, is seen. The laser mirror tuning curves currently permit operation in the wavelength range of 438 to 362 nm. Another mirror set allows operation at longer wavelengths in the red with even higher gain and efficiency.

  12. Demonstration of high performance negative central magnetic shear discharges on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Rice, B.W.; Burrell, K.H.; Lao, L.L.

    1996-01-01

    Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total non- inductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [f φ ∼ 30-60 kHz] and ion temperature [T i (0) ∼ 15-22 keV] profiles are observed. In high power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H ≡ τ E /τ ITER-89P ∼ 2.5 with an L-mode edge, and H ∼ 3.3 in an Edge Localized Mode (ELM)-free H-mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in L- mode leads to high disruptivity with Β N ≡ Β T /(I/aB) ≤ 2.3, while broader pressure profiles in H- mode gives low disruptivity with Β N ≤ 4.2

  13. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Inagaki, Toru; Nishiwaki, Futoshi; Kanou, Jirou; Yamasaki, Satoru; Hosoi, Kei; Miyazawa, Takashi; Yamada, Masaharu; Komada, Norikazu

    2006-01-01

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 o C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O 3-δ , Ni-(CeO 2 ) 1-x (SmO 1.5 ) x cermet anode, and Sm(Sr)CoO 3-δ cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 o C was obtained using high temperature off-gas from SOFC

  14. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan)]. E-mail: inagaki@rdd.kepco.co.jp; Nishiwaki, Futoshi [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Kanou, Jirou [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Yamasaki, Satoru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Hosoi, Kei [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Miyazawa, Takashi [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Yamada, Masaharu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Komada, Norikazu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan)

    2006-02-09

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 {sup o}C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O{sub 3-{delta}}, Ni-(CeO{sub 2}){sub 1-x}(SmO{sub 1.5}) {sub x} cermet anode, and Sm(Sr)CoO{sub 3-{delta}} cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 {sup o}C was obtained using high temperature off-gas from SOFC.

  15. Performance demonstration of a high-power space-reactor heat-pipe design

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Martinez, E.H.; Keddy, E.S.; Runyan, J.; Kemme, J.E.

    1983-01-01

    Performance of a 15.9-mm diam, 2-m long, artery heat pipe has been demonstrated at power levels to 22.6 kW and temperatures to 1500 0 K. The heat pipe employed lithium as a working fluid with distribution wicks and arteries fabricated from 400 mesh Mo-41 wt % Re screen. Molybdenum alloy (TZM) was used for the container. Peak axial power density attained in the testing was 19 kW/cm 2 at 1465 0 K. The corresponding radial flux density in the evaporator region of the heat pipe was 150 W/cm 2 . The extrapolated limit for the heat pipe at its 1500 0 K design point is 30 kW, corresponding to an axial flux density of 25 kW/cm 2 . Sonic and capillary limits for the design were investigated in the 1100 to 1500 0 K temperature range. Excellent agreement of measured and predicted temperature and power levels was observed

  16. Snow cover volumes dynamic monitoring during melting season using high topographic accuracy approach for a Lebanese high plateau witness sinkhole

    Science.gov (United States)

    Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent

    2017-04-01

    Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low

  17. High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data

    Science.gov (United States)

    Lee, Seung-Kuk; Ryu, Joo-Hyung

    2017-01-01

    This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.

  18. High-accuracy phase-field models for brittle fracture based on a new family of degradation functions

    Science.gov (United States)

    Sargado, Juan Michael; Keilegavlen, Eirik; Berre, Inga; Nordbotten, Jan Martin

    2018-02-01

    Phase-field approaches to fracture based on energy minimization principles have been rapidly gaining popularity in recent years, and are particularly well-suited for simulating crack initiation and growth in complex fracture networks. In the phase-field framework, the surface energy associated with crack formation is calculated by evaluating a functional defined in terms of a scalar order parameter and its gradients. These in turn describe the fractures in a diffuse sense following a prescribed regularization length scale. Imposing stationarity of the total energy leads to a coupled system of partial differential equations that enforce stress equilibrium and govern phase-field evolution. These equations are coupled through an energy degradation function that models the loss of stiffness in the bulk material as it undergoes damage. In the present work, we introduce a new parametric family of degradation functions aimed at increasing the accuracy of phase-field models in predicting critical loads associated with crack nucleation as well as the propagation of existing fractures. An additional goal is the preservation of linear elastic response in the bulk material prior to fracture. Through the analysis of several numerical examples, we demonstrate the superiority of the proposed family of functions to the classical quadratic degradation function that is used most often in the literature.

  19. Demonstration of Millimeter Wave 5G Setup Employing High-Gain Vivaldi Array

    Directory of Open Access Journals (Sweden)

    Waleed Tariq Sethi

    2018-01-01

    Full Text Available We present a 4 × 4 slot-coupled Vivaldi antenna (SCVA array unit cell, which offers wide bandwidth and high gain (~23 dBi at the millimeter wave (mmW frequencies of 28 GHz and 38 GHz. A single SCVA element is first presented, which has a bandwidth of 25–40 GHz with an average gain of ~13 dBi at the frequencies of interest. This antenna element is then used to design a 1 × 4 linear SCVA array matched to a 50 Ω impedance via a modified Wilkinson power divider (WPD. Next, the 1 × 4 linear array is used to construct a 4 × 4 antenna array unit cell. The proposed 4 × 4 antenna array unit cell is fabricated, and the characteristics of its elements (i.e., the single SCVA, 1 × 4 linear array, and WPD are thoroughly investigated. Further, the 4 × 4 array is tested for signal reception of various digital modulation formats at lab environment using high-speed digital signal oscilloscope. In particular, a 2.5 Gbps data rate is successfully transmitted achieving receiver sensitivity of −50 dBm at 2 × 10−3 bit error rate (BER for 32 quadrature amplitude modulation (QAM with a system baud rate of 500 MHz. The wide bandwidth and high gain along with the excellent performance of the proposed 4 × 4 antenna array unit cell makes it an excellent candidate for future 5G wireless communication applications.

  20. Product Stewardship in Uranium: A Way for the Industry to Demonstrate its High Performance

    International Nuclear Information System (INIS)

    Harris, Frank

    2014-01-01

    Conclusions: • Product stewardship is an means for communicating the high performance on health, safety and environment of the nuclear fuel cycle including uranium mining. • It has been effective with other products and is appropriate for uranium. • Can be a vehicle for addressing public concerns across the industry. • Due to uranium’s unique characteristics it has the potential to be a best practice example of product stewardship. • Work is underway in the international arena to progress uranium product stewardship and it represent a unique opportunity to provide whole of industry benefits

  1. A useful demonstration of calculus in a physics high school laboratory

    Science.gov (United States)

    Alvarez, Gustavo; Schulte, Jurgen; Stockton, Geoffrey; Wheeler, David

    2018-01-01

    The real power of calculus is revealed when it is applied to actual physical problems. In this paper, we present a calculus inspired physics experiment suitable for high school and undergraduate programs. A model for the theory of the terminal velocity of a falling body subject to a resistive force is developed and its validity tested in an experiment of a falling magnet in a column of self-induced eddy currents. The presented method combines multiple physics concepts such as 1D kinematics, classical mechanics, electromagnetism and non-trivial mathematics. It offers the opportunity for lateral as well as project-based learning.

  2. Demonstration of high temperature thermoelectric waste heat recovery from exhaust gases of a combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Trottmann, Matthias; Weidenkaff, Anke; Populoh, Sascha; Brunko, Oliver; Veziridis, Angelika; Bach, Christian; Cabalzar, Urs [Empa, Duebendorf (Switzerland)

    2011-07-01

    The energy efficiency of passenger cars becomes increasingly important due to a growing awareness in terms of climate change and shortages of resources associated with rising fuel prices. In addition to the efforts towards the optimization of the engine's internal efficiency, waste heat recovery is the main objective. In this respect, thermoelectric (TE) devices seem to be suited as heat recuperation systems. Thermoelectric generators allow for direct transformation of thermal into electrical energy. In order to thoroughly investigate this type of recovery system a TE demonstrator was mounted on the muffler of a VW Touran and tested. The waste heat of the exhaust gas was converted into electricity with a conversion rate of {proportional_to}. 3.5%. The limiting factor was the low thermal stability of the commercial modules used in this pre-study to elaborate reference values. Thermoelectric modules based on sustainable and temperature-stable materials are being developed to improve the measured values. A thermoelectric test generator with perovskite-type oxide modules was constructed confirm the function and stability at elevated temperatures. Despite all the advantages of this material class, the TE performance is still to be improved. A quantitative measure of a material's TE performance is the temperature-independent Figure of Merit ZT. ZT increases with decreasing thermal and increasing electrical conductivity. An approach to thermal conductivity reduction is nanostructuring of the material. The Ultrasonic Spray Combustion (USC) technique allows to produce powders with a grain size on the nanoscale and was tested in this study. (orig.)

  3. HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.; Stippler, R.

    1988-01-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in an one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. The project is funded by the BMFT and the CEC and carrier out in close co-operation with the Netherlands Energy Research Foundation (ECN)

  4. The HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.

    1988-04-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in a one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  5. First demonstration report on the high temperature materials data Bank of JRC

    International Nuclear Information System (INIS)

    1983-01-01

    The High Temperature Materials Programme of the Joint Research Centre has among its activities a project which has the objective to develop a computerised data bank containing mechanical property data of alloys for high temperature applications. The pilot phase of this project during the multiannual programme 1980-1983 is restricted to a few alloys and properties. The present scope comprises tensile, creep and fatigue test results with emphasis on 600-1000 0 C test temperature and C-O-H environments for alloys covered by the specifications of the ''Alloy 800'' group. The data bank is now operational. This report is the first presentation of the data bank characteristics, contents and some output illustrations. It contains a descriptive part on the system and its structure and on the characteristics and quantity of the present data, and an illustrative part showing examples of data bank processed output. The selected print-outs are generated by interactive on-line searches and subsequent numerical or graphical processing in the data bank facilities at Petten and Ispra which are linked by EURONET

  6. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.A.; Mueller-Lyda, I.

    1990-04-01

    To satisfy the test objectives thirty highly radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./DG)

  7. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  8. THE IMPACT OF MODERATE AND HIGH INTENSITY TOTAL BODY FATIGUE ON PASSING ACCURACY IN EXPERT AND NOVICE BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Mark Lyons

    2006-06-01

    Full Text Available Despite the acknowledged importance of fatigue on performance in sport, ecologically sound studies investigating fatigue and its effects on sport-specific skills are surprisingly rare. The aim of this study was to investigate the effect of moderate and high intensity total body fatigue on passing accuracy in expert and novice basketball players. Ten novice basketball players (age: 23.30 ± 1.05 yrs and ten expert basketball players (age: 22.50 ± 0.41 yrs volunteered to participate in the study. Both groups performed the modified AAHPERD Basketball Passing Test under three different testing conditions: rest, moderate intensity and high intensity total body fatigue. Fatigue intensity was established using a percentage of the maximal number of squat thrusts performed by the participant in one minute. ANOVA with repeated measures revealed a significant (F 2,36 = 5.252, p = 0.01 level of fatigue by level of skill interaction. On examination of the mean scores it is clear that following high intensity total body fatigue there is a significant detriment in the passing performance of both novice and expert basketball players when compared to their resting scores. Fundamentally however, the detrimental impact of fatigue on passing performance is not as steep in the expert players compared to the novice players. The results suggest that expert or skilled players are better able to cope with both moderate and high intensity fatigue conditions and maintain a higher level of performance when compared to novice players. The findings of this research therefore, suggest the need for trainers and conditioning coaches in basketball to include moderate, but particularly high intensity exercise into their skills sessions. This specific training may enable players at all levels of the game to better cope with the demands of the game on court and maintain a higher standard of play

  9. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  10. Demonstration of innovative partitioning processes for minor actinide recycling from high active waste solutions

    International Nuclear Information System (INIS)

    Modolo, G.; Wilden, A.; Geist, A.; Malmbeck, R.; Taylor, R.

    2014-01-01

    The recycling of the minor actinides (MA) using the Partitioning and Transmutation strategy (P and T) could contribute significantly to reducing the volume of high level waste in a geological repository and to decreasing the waste's longterm hazards originating from the long half-life of the actinides. Several extraction processes have been developed worldwide for the separation and recovery of MA from highly active raffinates (HAR, e.g. the PUREX raffinate). A multi-cycle separation strategy has been developed within the framework of European collaborative projects. The multi-cycle processes, on the one hand, make use of different extractants for every single process. Within the recent FP7 European research project ACSEPT (Actinide reCycling by SEParation and Transmutation), the development of new innovative separation processes with a reduced number of cycles was envisaged. In the so-called 'innovative SANEX' concept, the trivalent actinides and lanthanides are co-extracted from the PUREX raffinate by a DIAMEX like process (e.g. TODGA). Then, the loaded solvent is subjected to several stripping steps. The first one concerns selectively stripping the actinides(III) with selective water-soluble ligands (SO3-Ph-BTB), followed by the subsequent stripping of trivalent lanthanides. A more challenging route studied also within our laboratories is the direct actinide(III) separation from a PUREX-type raffinate using a mixture of CyMe 4 BTBP and TODGA as extractants, the so-called One cycle SANEX process. A new approach, which was also studied within the ACSEPT project, is the GANEX (Grouped ActiNide EXtraction) concept addressing the simultaneous partitioning of all transuranium (TRU) elements for their homogeneous recycling in advanced generation IV reactor systems. Bulk uranium is removed in the GANEX 1st cycle, e.g. using a monoamide extractant and the GANEX 2nd cycle then separates the TRU. A solvent composed of TODGA + DMDOHEMA in kerosene has been shown to

  11. Demonstration of nuclide migration phenomena in rock on high level irradiation waste geological disposal

    International Nuclear Information System (INIS)

    Kanazawa, Yasuo; Okuyama, Yasuko; Takahashi, Manabu

    1997-01-01

    We have studied on main three theme. From study of material movement in rock-groundwater system in the area of high concentration of irradiative elements, the results proved that minerals with Fe 3+ and clay mineral were very important as mineral held nuclide, the existence of pyrite suggested uranium nuclei enrichment and the latter reduced circumstances, and nuclei movement and accumulation could be estimated from oxidation-reduction potential, kinds of dissolved ions and activity ratio. By study of evaluation of permeability in deep rock fissure system, each measurement method of transmissivity in the Transient Pulse method, the Oscillation test and the Flow Pump method was established. The effect of principle stress, confining pressure, pore water pressure and axial pressure on transmissivity could be determined in the limited level of stress. By study of nuclide migration phenomena and change of rock depend on fissure system, the relation between the degree of change and fissure system was investigated and alternation mineral was identified and it's formation conditions estimated. (S.Y.)

  12. Demonstration of high coupling efficiency to Al capsule in rugby hohlraum on NIF

    Science.gov (United States)

    Ping, Y.; Smalyuk, V.; Amendt, P.; Bennett, D.; Chen, H.; Dewald, E.; Goyon, C.; Graziani, F.; Johnson, S.; Khan, S.; Landen, O.; Nikroo, A.; Pino, J.; Ralph, J.; Seugling, R.; Strozzi, D.; Tipton, R.; Tommasini, R.; Wang, M.; Loomis, E.; Merritt, E.; Montgomery, D.

    2017-10-01

    A new design of the double-shell approach predicts a high coupling efficiency from the hohlraum to the capsule, with 700 kJ in the capsule instead of 200kJ in the conventional low-Z single-shell scheme, improving prospects of double-shell performance. A recent experiment on NIF has evaluated a first step toward this goal of energy coupling using 0.7x subscale Al capsule, Au rugby hohlraum and 1MJ drive. A shell velocity of 150 μm/ns was measured, DANTE peak temperature of 255 eV was measured, and shell kinetic energy of 36 kJ was inferred using a rocket model, all close to predictions and consistent with 330kJ of total energy coupled to the capsule. Data analysis and more results from subsequent experiments will be presented. In the next step, an additional 2x increase of total coupled energy up to 700 kJ is projected for full-scale 2-MJ drive in U Rugby hohlraum. This work was performed under DOE contract DE-AC52-07NA27344.

  13. Improved method to demonstrate the structural integrity of high density fuel storage racks

    International Nuclear Information System (INIS)

    Hinderks, M.; Ungoreit, H.; Kremer, G.

    2001-01-01

    Reracking of existing fuel pools to the maximum extent is desirable from an economical point of view. This goal can be achieved by minimizing the gaps between the spent fuel storage racks. Since the rack design is aimed at enabling consolidated fuel rod storage, additional requirements arise with respect to the design and the structural analysis. The loads resulting from seismic events are decisive for the structural analysis and require a specially detailed and in-depth analysis for high seismic loads. The verification of structural integrity and functionality is performed in two phases. In the first phase the motional behavior of single racks, rows of racks and, where required, of all racks in the pool is simulated by excitation with displacement time histories under consideration of the fluid-structure interaction (FSI). The displacements from these simulations are evaluated, while the loads are utilized as input data for the structural analysis of the racks and the pool floor. The structural analyses for the racks comprise substantially stress analyses for base material and welds as well as stability analyses for the support channels and the rack outside walls. The analyses are performed in accordance with the specified codes and standards

  14. High-accuracy determination of the neutron flux in the new experimental area nTOF-EAR2 at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Sabate-Gilarte, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Universidad de Sevilla, Departamento de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain); Barbagallo, M.; Colonna, N.; Damone, L.; Belloni, F.; Mastromarco, M.; Tagliente, G.; Variale, V. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Gunsing, F.; Berthoumieux, E.; Diakaki, M.; Papaevangelou, T.; Dupont, E. [Universite Paris-Saclay, CEA Irfu, Gif-sur-Yvette (France); Zugec, P.; Bosnar, D. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Vlachoudis, V.; Aberle, O.; Brugger, M.; Calviani, M.; Cardella, R.; Cerutti, F.; Chiaveri, E.; Ferrari, A.; Kadi, Y.; Losito, R.; Macina, D.; Montesano, S.; Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Chen, Y.H.; Audouin, L.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Stamatopoulos, A.; Kokkoris, M.; Tsinganis, A.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Lerendegui-Marco, J.; Cortes-Giraldo, M.A.; Guerrero, C.; Quesada, J.M. [Universidad de Sevilla, Departamento de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain); Villacorta, A. [University of Salamanca, Salamanca (Spain); Cosentino, L.; Finocchiaro, P.; Piscopo, M. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Musumarra, A. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Universita di Catania, Dipartimento di Fisica, Catania (Italy); Andrzejewski, J.; Gawlik, A.; Marganiec, J.; Perkowski, J. [University of Lodz, Lodz (Poland); Becares, V.; Balibrea, J.; Cano-Ott, D.; Garcia, A.R.; Gonzalez, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Bacak, M.; Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Technische Universitaet Wien, Wien (Austria); Baccomi, R.; Milazzo, P.M. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Barros, S.; Ferreira, P.; Goncalves, I.F.; Vaz, P. [Instituto Superior Tecnico, Lisbon (Portugal); Becvar, F.; Krticka, M.; Valenta, S. [Charles University, Prague (Czech Republic); Beinrucker, C.; Goebel, K.; Heftrich, T.; Reifarth, R.; Schmidt, S.; Weigand, M.; Wolf, C. [Goethe University Frankfurt, Frankfurt (Germany); Billowes, J.; Frost, R.J.W.; Ryan, J.A.; Smith, A.G.; Warren, S.; Wright, T. [University of Manchester, Manchester (United Kingdom); Caamano, M.; Deo, K.; Duran, I.; Fernandez-Dominguez, B.; Leal-Cidoncha, E.; Paradela, C.; Robles, M.S. [University of Santiago de Compostela, Santiago de Compostela (Spain); Calvino, F.; Casanovas, A.; Riego-Perez, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Castelluccio, D.M.; Lo Meo, S. [Agenzia Nazionale per le Nuove Tecnologie (ENEA), Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna (Italy); Cortes, G.; Mengoni, A. [Agenzia Nazionale per le Nuove Tecnologie (ENEA), Bologna (Italy); Domingo-Pardo, C.; Tain, J.L. [Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Heinitz, S.; Kivel, N.; Maugeri, E.A.; Schumann, D. [Paul Scherrer Institut (PSI), Villingen (Switzerland); Furman, V.; Sedyshev, P. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Gheorghe, I.; Glodariu, T.; Mirea, M.; Oprea, A. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele (Romania); Goverdovski, A.; Ketlerov, V.; Khryachkov, V. [Institute of Physics and Power Engineering (IPPE), Obninsk (Russian Federation); Griesmayer, E.; Jericha, E.; Kavrigin, P.; Leeb, H. [Technische Universitaet Wien, Wien (Austria); Harada, H.; Kimura, A. [Japan Atomic Energy Agency (JAEA), Tokai-mura (Japan); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Heyse, J.; Schillebeeckx, P. [European Commission, Joint Research Centre, Geel (BE); Jenkins, D.G. [University of York, York (GB); Kaeppeler, F. [Karlsruhe Institute of Technology, Karlsruhe (DE); Katabuchi, T. [Tokyo Institute of Technology, Tokyo (JP); Lederer, C.; Lonsdale, S.J.; Woods, P.J. [University of Edinburgh, School of Physics and Astronomy, Edinburgh (GB); Licata, M.; Massimi, C.; Vannini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna (IT); Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (IT); Mastinu, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Legnaro, Legnaro (IT); Matteucci, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (IT); Universita di Trieste, Dipartimento di Astronomia, Trieste (IT); Mingrone, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna (IT); Nolte, R. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (DE); Palomo-Pinto, F.R. [Universidad de Sevilla, Dept. Ingenieria Electronica, Escuela Tecnica Superior de Ingenieros, Sevilla (ES); Patronis, N. [University of Ioannina, Ioannina (GR); Pavlik, A. [University of Vienna, Faculty of Physics, Vienna (AT); Porras, J.I. [University of Granada, Granada (ES); Praena, J. [Universidad de Sevilla, Departamento de Fisica Atomica, Molecular y Nuclear, Sevilla (ES); University of Granada, Granada (ES); Rajeev, K.; Rout, P.C.; Saxena, A.; Suryanarayana, S.V. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Rauscher, T. [University of Hertfordshire, Centre for Astrophysics Research, Hatfield (GB); University of Basel, Department of Physics, Basel (CH); Tarifeno-Saldivia, A. [Universitat Politecnica de Catalunya, Barcelona (ES); Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (ES); Ventura, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna (IT); Wallner, A. [Australian National University, Canberra (AU)

    2017-10-15

    A new high flux experimental area has recently become operational at the nTOF facility at CERN. This new measuring station, nTOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20 m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2 meV to 100 MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the nTOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with {sup 197}Au foils in the beam. (orig.)

  15. Hematoxylin and eosin stain shows a high sensitivity but sub-optimal specificity in demonstrating iron pigment in liver biopsies.

    Science.gov (United States)

    Alwahaibi, Nasar Yousuf; Alkhatri, Azza Sarhan; Kumar, Johanes Selva

    2015-01-01

    Perls' stain is routinely used to demonstrate iron in liver biopsies. We tested the hypothesis that it may be unnecessary in cases, where no iron or another similar pigment was seen on the routine hematoxylin and eosin (H and E) stained section. The aim of this study was to evaluate the efficiency of H and E stain in demonstrating iron in liver biopsies as well as to determine the possibility of replacing Perls' stain with H and E stain. Two hundred pairs of slides of liver biopsies were taken from the archival files of the Department of Pathology from 2006 to 2011. Perls' and H and E slides were independently reviewed for the presence of iron. Hundred and one cases showed the presence of iron using H and E stain. 84 of 86 cases showed positive iron using both Perls' and H and E stains. Seventeen cases were positive using H and E stain but negative with Perls'. Only two cases did not show the presence of iron using H and E stain. Ninety-seven cases were negative using both Perls' and H and E stains. H and E stain showed a sensitivity, specificity, accuracy, positive predictive valve, and negative predictive value of 97.67%, 85.08%, 90.5%, 83.16%, and 97.98%, respectively. We demonstrate that the H and E stain is a sensitive method to detect iron pigment in liver biopsies, particularly when present in large quantities. A negative H and E stain might obviate the need for extra Perls' staining, thus saving costs and shortening report turn-around times.

  16. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB)

    Science.gov (United States)

    Flamm, Jeffrey D.; James, Kevin D.; Bonet, John T.

    2016-01-01

    The NASA Environmentally Responsible Aircraft Project (ERA) was a ve year project broken into two phases. In phase II, high N+2 Technical Readiness Level demonstrations were grouped into Integrated Technology Demonstrations (ITD). This paper describes the work done on ITD-51A: the Vehicle Systems Integration, Engine Airframe Integration Demonstration. Refinement of a Hybrid Wing Body (HWB) aircraft from the possible candidates developed in ERA Phase I was continued. Scaled powered, and unpowered wind- tunnel testing, with and without acoustics, in the NASA LARC 14- by 22-foot Subsonic Tunnel, the NASA ARC Unitary Plan Wind Tunnel, and the 40- by 80-foot test section of the National Full-Scale Aerodynamics Complex (NFAC) in conjunction with very closely coupled Computational Fluid Dynamics was used to demonstrate the fuel burn and acoustic milestone targets of the ERA Project.

  17. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Marzullo, Paolo [CNR, Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Bottai, Matteo [University of South Carolina, Division of Biostatistics, Columbia, SC (United States); Karolinska Institutet, Division of Biostatistics, Stockholm (Sweden); Di Martino, Fabio [AOUP, UO Fisica Sanitaria, Pisa (Italy)

    2012-01-15

    Appropriate use of SPECT imaging is regulated by evidence-based guidelines and appropriateness criteria in an effort to limit the burden of radiation administered to patients. We aimed at establishing whether the use of a low dose for stress-rest single-day nuclear myocardial perfusion imaging on an ultrafast (UF) cardiac gamma camera using cadmium-zinc-telluride solid-state detectors could be used routinely with the same accuracy obtained with standard doses and conventional cameras. To this purpose, 137 consecutive patients (mean age 61 {+-} 8 years) with known or suspected coronary artery disease (CAD) were enrolled. They underwent single-day low-dose stress-rest myocardial perfusion imaging using UF SPECT and invasive coronary angiography. Patients underwent the first scan with a 7-min acquisition time 10 min after the end of the stress protocol (dose range 185 to 222 MBq of {sup 99m}Tc-tetrofosmin). The rest scan (dose range 370 to 444 MBq of {sup 99m}Tc-tetrofosmin) was acquired with a 6-min acquisition time. The mean summed stress scores (SSS) and mean summed rest scores (SRS) were obtained semiquantitatively. Coronary angiograms showed significant epicardial CAD in 83% of patients. Mean SSS and SRS were 10 {+-} 5 and 3 {+-} 3, respectively. Overall the area under the ROC curve for the SSS values was 0.904, while the areas under the ROC curves for each vascular territory were 0.982 for the left anterior descending artery, 0.931 for the left circumflex artery and 0.889 for the right coronary artery. This pilot study demonstrated the feasibility of a low-dose single-day stress-rest fasting protocol performed using UF SPECT, with good sensitivity and specificity in detecting CAD at low patient exposure, opening new perspectives in the use of myocardial perfusion in ischaemic patients. (orig.)

  18. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results

    International Nuclear Information System (INIS)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Marzullo, Paolo; Bottai, Matteo; Di Martino, Fabio

    2012-01-01

    Appropriate use of SPECT imaging is regulated by evidence-based guidelines and appropriateness criteria in an effort to limit the burden of radiation administered to patients. We aimed at establishing whether the use of a low dose for stress-rest single-day nuclear myocardial perfusion imaging on an ultrafast (UF) cardiac gamma camera using cadmium-zinc-telluride solid-state detectors could be used routinely with the same accuracy obtained with standard doses and conventional cameras. To this purpose, 137 consecutive patients (mean age 61 ± 8 years) with known or suspected coronary artery disease (CAD) were enrolled. They underwent single-day low-dose stress-rest myocardial perfusion imaging using UF SPECT and invasive coronary angiography. Patients underwent the first scan with a 7-min acquisition time 10 min after the end of the stress protocol (dose range 185 to 222 MBq of 99m Tc-tetrofosmin). The rest scan (dose range 370 to 444 MBq of 99m Tc-tetrofosmin) was acquired with a 6-min acquisition time. The mean summed stress scores (SSS) and mean summed rest scores (SRS) were obtained semiquantitatively. Coronary angiograms showed significant epicardial CAD in 83% of patients. Mean SSS and SRS were 10 ± 5 and 3 ± 3, respectively. Overall the area under the ROC curve for the SSS values was 0.904, while the areas under the ROC curves for each vascular territory were 0.982 for the left anterior descending artery, 0.931 for the left circumflex artery and 0.889 for the right coronary artery. This pilot study demonstrated the feasibility of a low-dose single-day stress-rest fasting protocol performed using UF SPECT, with good sensitivity and specificity in detecting CAD at low patient exposure, opening new perspectives in the use of myocardial perfusion in ischaemic patients. (orig.)

  19. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Science.gov (United States)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  20. High-accuracy measurements of snow Bidirectional Reflectance Distribution Function at visible and NIR wavelengths – comparison with modelling results

    Directory of Open Access Journals (Sweden)

    M. Dumont

    2010-03-01

    Full Text Available High-accuracy measurements of snow Bidirectional Reflectance Distribution Function (BRDF were performed for four natural snow samples with a spectrogonio-radiometer in the 500–2600 nm wavelength range. These measurements are one of the first sets of direct snow BRDF values over a wide range of lighting and viewing geometry. They were compared to BRDF calculated with two optical models. Variations of the snow anisotropy factor with lighting geometry, wavelength and snow physical properties were investigated. Results show that at wavelengths with small penetration depth, scattering mainly occurs in the very top layers and the anisotropy factor is controlled by the phase function. In this condition, forward scattering peak or double scattering peak is observed. In contrast at shorter wavelengths, the penetration of the radiation is much deeper and the number of scattering events increases. The anisotropy factor is thus nearly constant and decreases at grazing observation angles. The whole dataset is available on demand from the corresponding author.

  1. A Systematic Review and Meta-analysis of the Diagnostic Accuracy of Prostate Health Index and 4-Kallikrein Panel Score in Predicting Overall and High-grade Prostate Cancer.

    Science.gov (United States)

    Russo, Giorgio Ivan; Regis, Federica; Castelli, Tommaso; Favilla, Vincenzo; Privitera, Salvatore; Giardina, Raimondo; Cimino, Sebastiano; Morgia, Giuseppe

    2017-08-01

    Markers for prostate cancer (PCa) have progressed over recent years. In particular, the prostate health index (PHI) and the 4-kallikrein (4K) panel have been demonstrated to improve the diagnosis of PCa. We aimed to review the diagnostic accuracy of PHI and the 4K panel for PCa detection. We performed a systematic literature search of PubMed, EMBASE, Cochrane, and Academic One File databases until July 2016. We included diagnostic accuracy studies that used PHI or 4K panel for the diagnosis of PCa or high-grade PCa. The methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Twenty-eight studies including 16,762 patients have been included for the analysis. The pooled data showed a sensitivity of 0.89 and 0.74 for PHI and 4K panel, respectively, for PCa detection and a pooled specificity of 0.34 and 0.60 for PHI and 4K panel, respectively. The derived area under the curve (AUC) from the hierarchical summary receiver operating characteristic (HSROC) showed an accuracy of 0.76 and 0.72 for PHI and 4K panel respectively. For high-grade PCa detection, the pooled sensitivity was 0.93 and 0.87 for PHI and 4K panel, respectively, whereas the pooled specificity was 0.34 and 0.61 for PHI and 4K panel, respectively. The derived AUC from the HSROC showed an accuracy of 0.82 and 0.81 for PHI and 4K panel, respectively. Both PHI and the 4K panel provided good diagnostic accuracy in detecting overall and high-grade PCa. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Small-scale demonstration of high-level radioactive waste processing and solidification using actual SRP waste

    International Nuclear Information System (INIS)

    Okeson, J.K.; Galloway, R.M.; Wilhite, E.L.; Woolsey, G.B.; Ferguson, R.B.

    1980-01-01

    A small-scale demonstration of the high-level radioactive waste solidification process by vitrification in borosilicate glass is being conducted using 5-6 liter batches of actual waste. Equipment performance and processing characteristics of the various unit operations in the process are reported and, where appropriate, are compared to large-scale results obtained with synthetic waste

  3. Small-scale integrated demonstration of high-level radioactive waste processing and vitrification using actual SRP waste

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Woolsey, G.B.; Galloway, R.M.; Baumgarten, P.M.; Eibling, R.E.

    1980-01-01

    Experiments have been made to demonstrate the feasibility of immobilizing SRP high-level waste in borosilicate glass. Results to date are encouraging. Equipment performance and processing characteristics for solidifying small batches of actual SRP waste have agreed well with previous experience with small- and large-scale tests synthetic waste, and with theoretical predictions

  4. Determining the Accuracy of Paleomagnetic Remanence and High-Resolution Chronostratigraphy for Sedimentary Rocks using Rock Magnetics

    Science.gov (United States)

    Kodama, K. P.

    2017-12-01

    The talk will consider two broad topics in rock magnetism and paleomagnetism: the accuracy of paleomagnetic remanence and the use of rock magnetics to measure geologic time in sedimentary sequences. The accuracy of the inclination recorded by sedimentary rocks is crucial to paleogeographic reconstructions. Laboratory compaction experiments show that inclination shallows on the order of 10˚-15˚. Corrections to the inclination can be made using the effects of compaction on the directional distribution of secular variation recorded by sediments or the anisotropy of the magnetic grains carrying the ancient remanence. A summary of all the compaction correction studies as of 2012 shows that 85% of sedimentary rocks studied have enjoyed some amount of inclination shallowing. Future work should also consider the effect of grain-scale strain on paleomagnetic remanence. High resolution chronostratigraphy can be assigned to a sedimentary sequence using rock magnetics to detect astronomically-forced climate cycles. The power of the technique is relatively quick, non-destructive measurements, the objective identification of the cycles compared to facies interpretations, and the sensitivity of rock magnetics to subtle changes in sedimentary source. An example of this technique comes from using rock magnetics to identify astronomically-forced climate cycles in three globally distributed occurrences of the Shuram carbon isotope excursion. The Shuram excursion may record the oxidation of the world ocean in the Ediacaran, just before the Cambrian explosion of metazoans. Using rock magnetic cyclostratigraphy, the excursion is shown to have the same duration (8-9 Myr) in southern California, south China and south Australia. Magnetostratigraphy of the rocks carrying the excursion in California and Australia shows a reversed to normal geomagnetic field polarity transition at the excursion's nadir, thus supporting the synchroneity of the excursion globally. Both results point to a

  5. Linear Discriminant Analysis achieves high classification accuracy for the BOLD fMRI response to naturalistic movie stimuli.

    Directory of Open Access Journals (Sweden)

    Hendrik eMandelkow

    2016-03-01

    Full Text Available Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI. However, conventional fMRI analysis based on statistical parametric mapping (SPM and the general linear model (GLM is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA, have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbour (NN, Gaussian Naïve Bayes (GNB, and (regularised Linear Discriminant Analysis (LDA in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie.Results show that LDA regularised by principal component analysis (PCA achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2s apart during a 300s movie (chance level 0.7% = 2s/300s. The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  6. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  7. Xpert MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy and clinical impact.

    Science.gov (United States)

    Sohn, Hojoon; Aero, Abebech D; Menzies, Dick; Behr, Marcel; Schwartzman, Kevin; Alvarez, Gonzalo G; Dan, Andrei; McIntosh, Fiona; Pai, Madhukar; Denkinger, Claudia M

    2014-04-01

    Xpert MTB/RIF, the first automated molecular test for tuberculosis, is transforming the diagnostic landscape in low-income countries. However, little information is available on its performance in low-incidence, high-resource countries. We evaluated the accuracy of Xpert in a university hospital tuberculosis clinic in Montreal, Canada, for the detection of pulmonary tuberculosis on induced sputum samples, using mycobacterial cultures as the reference standard. We also assessed the potential reduction in time to diagnosis and treatment initiation. We enrolled 502 consecutive patients who presented for evaluation of possible active tuberculosis (most with abnormal chest radiographs, only 18% symptomatic). Twenty-five subjects were identified to have active tuberculosis by culture. Xpert had a sensitivity of 46% (95% confidence interval [CI], 26%-67%) and specificity of 100% (95% CI, 99%-100%) for detection of Mycobacterium tuberculosis. Sensitivity was 86% (95% CI, 42%-100%) in the 7 subjects with smear-positive results, and 28% (95% CI, 10%-56%) in the remaining subjects with smear-negative, culture-positive results; in this latter group, positive Xpert results were obtained a median 12 days before culture results. Subjects with positive cultures but negative Xpert results had minimal disease: 11 of 13 had no symptoms on presentation, and mean time to positive liquid culture results was 28 days (95% CI, 25-47 days) compared with 14 days (95% CI, 8-21 days) in Xpert/culture-positive cases. Our findings suggest limited potential impact of Xpert testing in high-resource, low-incidence ambulatory settings due to lower sensitivity in the context of less extensive disease, and limited potential to expedite diagnosis beyond what is achieved with the existing, well-performing diagnostic algorithm.

  8. High resolution diffraction imaging of mercuric iodide: Demonstration of the necessity for alternate crystal processing techniques for highly purified material

    International Nuclear Information System (INIS)

    Steiner, B.; Berg, L. van den; Laor, U.

    1995-01-01

    The overall crystalline lattice uniformity in recently available, highly purified mercuric iodide single crystals has been shown to be impacted by crystal handling techniques that were previously satisfactory. High resolution diffraction imaging of the surface regularity of crystals of various levels of purity and growth orientation shows: (1) that the newer materials have a generally lower level of precipitates, (2) that the incidence of these precipitates is now closely correlated with growth direction, and (3) that the deformation resistance and resulting sensitivity to crystal handling procedures are also closely correlated with these factors in this soft material. As a result, gentler cutting and polishing procedures have been developed and are shown to be effective in preserving overall lattice regularity in the new material. The polishing required to remove residual surface scratches affect the lattice orientation of the softer, precipitate-free regions, while not affecting those regions with detectable levels of precipitates. These results correlate closely with the electrical properties of devices made from these crystals. Mercuric iodide single crystals have proved to be particularly useful for x and γ ray detectors because their room temperature operation allow for simple, efficient, and compact instrumentation

  9. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    Energy Technology Data Exchange (ETDEWEB)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wang, J.; Dekany, R.; Delorme, J.-R. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Wallace, J. K.; Vasisht, G.; Mennesson, B.; Choquet, E.; Serabyn, E., E-mail: dmawet@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  10. Immunohistochemical expression of EGFR in colorectal carcinoma correlates with high but not low level gene amplification, as demonstrated by CISH.

    Science.gov (United States)

    Hemmings, Chris; Broomfield, Amy; Bean, Elaine; Whitehead, Martin; Yip, Desmond

    2009-01-01

    To assess and compare immunohistochemical expression of epidermal growth factor receptor (EGFR) with gene amplification as demonstrated by chromogenic in situ hybridisation (CISH), in colorectal adenocarcinoma. Sections from 100 consecutive colorectal cancer resection specimens were stained for EGFR using immunohistochemistry and CISH. Immunohistochemical assessment was independently performed at two laboratories, using the same antibody and protocols. With immunohistochemistry, strong circumferential membrane staining (3+ staining) was demonstrated in only 5% of cases, and this was only focal in three of five cases. At one laboratory, weak or incomplete staining (1+ or 2+) was observed in five further cases (5%), which had been negative at the other laboratory. CISH demonstrated high level gene amplification (>10 copies/nucleus) in the same five cases which had demonstrated 3+ staining with immunohistochemistry, and in those cases where the staining was focal, the amplification was demonstrated in the same foci of the tumour. Five further cases (5%) had low level amplification (5-10 copies per nucleus); these cases did not exhibit significant positive staining with immunohistochemistry. All the cases which demonstrated gene amplification (high or low level) arose in the distal colon. There was no correlation between gene amplification status and a variety of other variables, including stage at diagnosis, mucinous differentiation, neuroendocrine differentiation, or loss of expression of mismatch repair proteins. Immunohistochemical expression of EGFR is variable between laboratories, even using standardised protocols. 3+ staining is predictive of high level gene amplification, but correlates very poorly with low level amplification, which may still be clinically significant. In some cases gene amplification was only focal, offering a potential explanation for poor response to targeted therapy in patients with EGFR positive tumours.

  11. Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks.

    Science.gov (United States)

    Ntofon, Okung-Dike; Channegowda, Mayur P; Efstathiou, Nikolaos; Rashidi Fard, Mehdi; Nejabati, Reza; Hunter, David K; Simeonidou, Dimitra

    2013-02-25

    In this paper, a novel Software-Defined Networking (SDN) architecture is proposed for high-end Ultra High Definition (UHD) media applications. UHD media applications require huge amounts of bandwidth that can only be met with high-capacity optical networks. In addition, there are requirements for control frameworks capable of delivering effective application performance with efficient network utilization. A novel SDN-based Controller that tightly integrates application-awareness with network control and management is proposed for such applications. An OpenFlow-enabled test-bed demonstrator is reported with performance evaluations of advanced online and offline media- and network-aware schedulers.

  12. Demonstration of Enhanced Radiation Drive in Hohlraums Made from a Mixture of High-Z Wall Materials

    International Nuclear Information System (INIS)

    Schein, Jochen; Jones, Ogden; Rosen, Mordecai; Dewald, Eduard; Glenzer, Siegfried; Gunther, Janelle; Hammel, Bruce; Landen, Otto; Suter, Laurence; Wallace, Russell

    2007-01-01

    We present results from experiments, numerical simulations and analytic modeling, demonstrating enhanced hohlraum performance. Care in the fabrication and handling of hohlraums with walls consisting of high-Z mixtures (cocktails) has led to our demonstration, for the first time, of a significant increase in radiation temperature compared to a pure Au hohlraum that is in agreement with predictions and is ascribable to reduced wall losses. The data suggest that a National Ignition Facility ignition hohlraum made of a U:Au:Dy cocktail should have ∼17% reduction in wall losses compared to a similar gold hohlraum

  13. Disposal demonstration of a high integrity container (HIC) containing an EPICOR-II prefilter from Three Mile Island

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Tyacke, M.J.; Schmitt, R.C.; Reno, H.W.

    1985-02-01

    A high integrity container (HIC) was developed, tested, and certified for use in disposing of unusual low-level radioactive waste from Three Mile Island Unit 2 (TMI-2). The work was coordinated by EG and G Idaho, Inc. and funded by the US Department of Energy. A disposal demonstration using an HIC containing an EPICOR-II prefilter from TMI-2 was completed at the commercial disposal facility in the State of Washington. A Certification of Compliance was issued by the Department of Social and Health Services of the State of Washington to use the HIC in disposing of up to 50 EPICOR-II prefilters. That Certification of Compliance was issued after rigorous review of the HIC design and test program by the State and by the US Nuclear Regulatory Commission. This report describes the processes of loading, transporting, and disposing of the demonstration HIC and briefly describes the design, testing, and approval effort leading up to the demonstration

  14. High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA.

    Science.gov (United States)

    De Barba, M; Miquel, C; Lobréaux, S; Quenette, P Y; Swenson, J E; Taberlet, P

    2017-05-01

    Microsatellite markers have played a major role in ecological, evolutionary and conservation research during the past 20 years. However, technical constrains related to the use of capillary electrophoresis and a recent technological revolution that has impacted other marker types have brought to question the continued use of microsatellites for certain applications. We present a study for improving microsatellite genotyping in ecology using high-throughput sequencing (HTS). This approach entails selection of short markers suitable for HTS, sequencing PCR-amplified microsatellites on an Illumina platform and bioinformatic treatment of the sequence data to obtain multilocus genotypes. It takes advantage of the fact that HTS gives direct access to microsatellite sequences, allowing unambiguous allele identification and enabling automation of the genotyping process through bioinformatics. In addition, the massive parallel sequencing abilities expand the information content of single experimental runs far beyond capillary electrophoresis. We illustrated the method by genotyping brown bear samples amplified with a multiplex PCR of 13 new microsatellite markers and a sex marker. HTS of microsatellites provided accurate individual identification and parentage assignment and resulted in a significant improvement of genotyping success (84%) of faecal degraded DNA and costs reduction compared to capillary electrophoresis. The HTS approach holds vast potential for improving success, accuracy, efficiency and standardization of microsatellite genotyping in ecological and conservation applications, especially those that rely on profiling of low-quantity/quality DNA and on the construction of genetic databases. We discuss and give perspectives for the implementation of the method in the light of the challenges encountered in wildlife studies. © 2016 John Wiley & Sons Ltd.

  15. Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform.

    Science.gov (United States)

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding). Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants). Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol) that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer's, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively, we discuss how

  16. Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform.

    Directory of Open Access Journals (Sweden)

    Abhishek Mitra

    Full Text Available Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding. Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants. Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer's, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively

  17. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A. [Department of Human Oncology, University of Wisconsin-Madison, WI, 53792 (United States); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC 3002 (Australia) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Human Oncology, University of Wisconsin-Madison, WI 53792 (United States); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia) and Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Einstein Institute of Oncophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 (United States) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  18. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tomé, Wolfgang A.

    2012-01-01

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed “Super Sampling” involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  19. Suitability of second pass RO as a substitute for high quality MSF product water in Nuclear Desalination Demonstration Plant

    International Nuclear Information System (INIS)

    Murugan, V.; Venkatesh, P.; Balasubramanian, C.; Nagaraj, R.; Yadav, Manoj Kumar; Prabhakar, S.; Tewari, P.K.

    2012-01-01

    Nuclear Desalination Demonstration Plant at Kalpakkam consists of both Multi Stage Flash Distillation (MSF) and Seawater Reverse Osmosis (SWRO) process to produce desalinated water. It supplies part of highly pure water from MSF to Madras Atomic Power Station for its boiler feed requirements and remaining water is blend with SWRO product water and sent to other common facilities located inside Kalpakkam campus. A critical techno-economic analysis is carried out to find out the suitability of second pass RO to sustain the availability of highly pure water in case of MSF plant shutdown. (author)

  20. Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network

    Directory of Open Access Journals (Sweden)

    R. Sussmann

    2011-09-01

    Full Text Available We present a strategy (MIR-GBM v1.0 for the retrieval of column-averaged dry-air mole fractions of methane (XCH4 with a precision <0.3% (1-σ diurnal variation, 7-min integration and a seasonal bias <0.14% from mid-infrared ground-based solar FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC, comprising 22 FTIR stations. This makes NDACC methane data useful for satellite validation and for the inversion of regional-scale sources and sinks in addition to long-term trend analysis. Such retrievals complement the high accuracy and precision near-infrared observations of the younger Total Carbon Column Observing Network (TCCON with time series dating back 15 years or so before TCCON operations began.

    MIR-GBM v1.0 is using HITRAN 2000 (including the 2001 update release and 3 spectral micro windows (2613.70–2615.40 cm−1, 2835.50–2835.80 cm−1, 2921.00–2921.60 cm−1. A first-order Tikhonov constraint is applied to the state vector given in units of per cent of volume mixing ratio. It is tuned to achieve minimum diurnal variation without damping seasonality. Final quality selection of the retrievals uses a threshold for the goodness of fit (χ2 < 1 as well as for the ratio of root-mean-square spectral noise and information content (<0.15%. Column-averaged dry-air mole fractions are calculated using the retrieved methane profiles and four-times-daily pressure-temperature-humidity profiles from National Center for Environmental Prediction (NCEP interpolated to the time of measurement.

    MIR-GBM v1.0 is the optimum of 24 tested retrieval strategies (8 different spectral micro-window selections, 3 spectroscopic line lists: HITRAN 2000, 2004, 2008. Dominant errors of the non-optimum retrieval strategies are systematic HDO/H2O-CH4 interference errors leading to a seasonal bias up to ≈5%. Therefore interference

  1. The sensitivity and efficacy method of PIK3CA exon 9 E545A as a high diagnostic accuracy in breast cancer

    Directory of Open Access Journals (Sweden)

    Desriani

    2018-06-01

    Full Text Available The phosphatidylinositol 3-kinases (PIK3s are lipid kinases. Mutation in the exon 9 and exon 20 determined as a predictive factor in anti-HER-2 therapy. In some countries, such as Singapore, China, and Peru, PIK3CA exon 9 E545A was reported to produce the highest rate of mutation. In this research, we developed and optimized PIK3CA exon 9 E545A detection methods with intercalating dye SYBR Green I based on the Tm Shift approach by using prepared recombinant plasmid pGEMT-easy PIK3CA exon 9 and PIK3CA exon 9 E545A. Recombinant plasmid was used due to the limited number of samples. Methods: Recombinant plasmid was prepared based on manufactured procedures, and this process was then followed by Tm prediction with Poland software, Tm Shift SYBR Green I development, and its characterization (reproducibility, repeatability, sensitivity, qPCR efficiency, and qPCR amplification, respectively. Result: A method for PIK3CA E545A detection based on TM shift SYBR Green I has been successfully developed. The melting temperature for PIK3CA exon 9 was 78.1 ± 0.1 °C, while that for PIK3CA exon E545A was 80.20 °C. The Tm of mutant was the same as that predicted using Polland Software. The reproducibility of the methods was high, with the coefficient values for inter and intra assays were below 10% with a high sensitivity at 1%, while R2 0.99 and PCR efficiency was 97.75%. Conclusion: The results presented here demonstrate that the PIK3CA exon 9 E545A detection method has a good sensitivity and efficacy assay, which proves that the method has a high diagnostic accuracy in breast cancer. Keywords: SYBR Green I, PIK3CA E545A, Breast cancer, Real time PCR, Recombinant plasmid

  2. Overlay accuracy fundamentals

    Science.gov (United States)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  3. Spatial variability in sensitivity of reference crop ET to accuracy of climate data in the Texas High Plains

    Science.gov (United States)

    A detailed sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1995 to 2008, fro...

  4. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    International Nuclear Information System (INIS)

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-01-01

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm 3 , which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm 3 , requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm 3 ) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm 3 and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0.05, Tukey's HSD

  5. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    NARCIS (Netherlands)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; Van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-01-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balancao Atmosferico Regional de Carbono na Amazonia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This

  6. High accuracy results for the energy levels of the molecular ions H+2, D+2 and HD+, up to J = 2

    International Nuclear Information System (INIS)

    Karr, J Ph; Hilico, L

    2006-01-01

    We present a nonrelativistic calculation of the rotation-vibration levels of the molecular ions H + 2 , D + 2 and HD + , relying on the diagonalization of the exact three-body Hamiltonian in a variational basis. The J = 2 levels are obtained with a very high accuracy of 10 -14 au (for most levels) representing an improvement by five orders of magnitude over previous calculations. The accuracy is also improved for the J = 1 levels of H + 2 and D + 2 with respect to earlier works. Moreover, we have computed the sensitivities of the energy levels with respect to the mass ratios, allowing these levels to be used for metrological purposes

  7. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    Science.gov (United States)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  8. Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion.

    Science.gov (United States)

    Cuneo, M E; Vesey, R A; Sinars, D B; Chittenden, J P; Waisman, E M; Lemke, R W; Lebedev, S V; Bliss, D E; Stygar, W A; Porter, J L; Schroen, D G; Mazarakis, M G; Chandler, G A; Mehlhorn, T A

    2005-10-28

    Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.

  9. Demonstrating Multi-bit Magnetic Memory in the Fe8 High Spin Molecule by Muon Spin Rotation

    OpenAIRE

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-01-01

    We developed a method to detect the quantum nature of high spin molecules using muon spin rotation, and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember 6 (possibly 8) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for Multi-bit Magnetic Memory. Our experiment also paves the w...

  10. CARETS: A prototype regional environmental information system. Volume 6: Cost, accuracy and consistency comparisons of land use maps made from high-altitude aircraft photography and ERTS imagery

    Science.gov (United States)

    Alexander, R. H. (Principal Investigator); Fitzpatrick, K. A.

    1975-01-01

    The author has identified the following significant results. Level 2 land use maps produced at three scales (1:24,000, 1:100,000, and 1:250,000) from high altitude photography were compared with each other and with point data obtained in the field. The same procedures were employed to determine the accuracy of the Level 1 land use maps produced at 1:250,000 from high altitude photography and color composite ERTS imagery. Accuracy of the Level 2 maps was 84.9 percent at 1:24,000, 77.4 percent at 1:100,000 and 73.0 percent at 1:250,000. Accuracy of the Level 1 1:250,000 maps was 76.5 percent for aerial photographs and 69.5 percent for ERTS imagery. The cost of Level 2 land use mapping at 1:24,000 was found to be high ($11.93 per sq km). The cost of mapping at 1:100,000 ($1.75) was about two times as expensive as mapping at 1:250,000 ($.88), and the accuracy increased by only 4.4 percent.

  11. Accurate mass measurements of very short-lived nuclei. Prerequisites for high-accuracy investigations of superallowed β-decays

    International Nuclear Information System (INIS)

    Herfurth, F.; Kellerbauer, A.; Sauvan, E.; Ames, F.; Engels, O.; Audi, G.; Lunney, D.; Beck, D.; Blaum, K.; Kluge, H.J.; Scheidenberger, C.; Sikler, G.; Weber, C.; Bollen, G.; Schwarz, S.; Moore, R.B.; Oinonen, M.

    2002-01-01

    Mass measurements of 34 Ar, 73-78 Kr, and 74,76 Rb were performed with the Penning-trap mass spectrometer ISOLTRAP. Very accurate Q EC -values are needed for the investigations of the Ft-value of 0 + → 0 + nuclear β-decays used to test the standard model predictions for weak interactions. The necessary accuracy on the Q EC -value requires the mass of mother and daughter nuclei to be measured with δm/m ≤ 3 . 10 -8 . For most of the measured nuclides presented here this has been reached. The 34 Ar mass has been measured with a relative accuracy of 1.1 .10 -8 . The Q EC -value of the 34 Ar 0 + → 0 + decay can now be determined with an uncertainty of about 0.01%. Furthermore, 74 Rb is the shortest-lived nuclide ever investigated in a Penning trap. (orig.)

  12. Accuracy of the solution of the transfer equation for a plane layer of high optical thickness with strongly anisotropic scattering

    International Nuclear Information System (INIS)

    Konovalov, N.V.

    The accuracy of the calculation of the characteristics of a radiation field in a plane layer is investigated by solving the transfer equation in dependence on the error in the specification of the scattering indicatrix. It is shown that a small error in the specification of the indicatrix can lead to a large error in the solution at large optical depths. An estimate is given for the region of optical thicknesses for which the emission field can be determined with sufficient degree of accuracy from the transfer equation with a known error in the specification of the indicatrix. For an estimation of the error involved in various numerical methods, and also for a determination of the region of their applicability, the results of calculations of problems with strongly anisotropic indicatrix are given

  13. Geometric Accuracy Investigations of SEVIRI High Resolution Visible (HRV Level 1.5 Imagery

    Directory of Open Access Journals (Sweden)

    Sultan Kocaman Aksakal

    2013-05-01

    Full Text Available GCOS (Global Climate Observing System is a long-term program for monitoring the climate, detecting the changes, and assessing their impacts. Remote sensing techniques are being increasingly used for climate-related measurements. Imagery of the SEVIRI instrument on board of the European geostationary satellites Meteosat-8 and Meteosat-9 are often used for the estimation of essential climate variables. In a joint project between the Swiss GCOS Office and ETH Zurich, geometric accuracy and temporal stability of 1-km resolution HRV channel imagery of SEVIRI have been evaluated over Switzerland. A set of tools and algorithms has been developed for the investigations. Statistical analysis and blunder detection have been integrated in the process for robust evaluation. The relative accuracy is evaluated by tracking large numbers of feature points in consecutive HRV images taken at 15-minute intervals. For the absolute accuracy evaluation, lakes in Switzerland and surroundings are used as reference. 20 lakes digitized from Landsat orthophotos are transformed into HRV images and matched via 2D translation terms at sub-pixel level. The algorithms are tested using HRV images taken on 24 days in 2008 (2 days per month. The results show that 2D shifts that are up to 8 pixels are present both in relative and absolute terms.

  14. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols.

    Science.gov (United States)

    Hayman, Matthew; Spuler, Scott

    2017-11-27

    We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.

  15. Initial demonstration of the NRC`s capability to conduct a performance assessment for a High-Level Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Codell, R.; Eisenberg, N.; Fehringer, D.; Ford, W.; Margulies, T.; McCartin, T.; Park, J.; Randall, J.

    1992-05-01

    In order to better review licensing submittals for a High-Level Waste Repository, the US Nuclear Regulatory Commission staff has expanded and improved its capability to conduct performance assessments. This report documents an initial demonstration of this capability. The demonstration made use of the limited data from Yucca Mountain, Nevada to investigate a small set of scenario classes. Models of release and transport of radionuclides from a repository via the groundwater and direct release pathways provided preliminary estimates of releases to the accessible environment for a 10,000 year simulation time. Latin hypercube sampling of input parameters was used to express results as distributions and to investigate model sensitivities. This methodology demonstration should not be interpreted as an estimate of performance of the proposed repository at Yucca Mountain, Nevada. By expanding and developing the NRC staff capability to conduct such analyses, NRC would be better able to conduct an independent technical review of the US Department of Energy (DOE) licensing submittals for a high-level waste (HLW) repository. These activities were divided initially into Phase 1 and Phase 2 activities. Additional phases may follow as part of a program of iterative performance assessment at the NRC. The NRC staff conducted Phase 1 activities primarily in CY 1989 with minimal participation from NRC contractors. The Phase 2 activities were to involve NRC contractors actively and to provide for the transfer of technology. The Phase 2 activities are scheduled to start in CY 1990, to allow Sandia National Laboratories to complete development and transfer of computer codes and the Center for Nuclear Waste Regulatory Analyses (CNWRA) to be in a position to assist in the acquisition of the codes.

  16. Inkjet metrology: high-accuracy mass measurements of microdroplets produced by a drop-on-demand dispenser.

    Science.gov (United States)

    Verkouteren, R Michael; Verkouteren, Jennifer R

    2009-10-15

    We describe gravimetric methods for measuring the mass of droplets generated by a drop-on-demand (DOD) microdispenser. Droplets are deposited, either continuously at a known frequency or as a burst of known number, into a cylinder positioned on a submicrogram balance. Mass measurements are acquired precisely by computer, and results are corrected for evaporation. Capabilities are demonstrated using isobutyl alcohol droplets. For ejection rates greater than 100 Hz, the repeatability of droplet mass measurements was 0.2%, while the combined relative standard uncertainty (u(c)) was 0.9%. When bursts of droplets were dispensed, the limit of quantitation was 72 microg (1490 droplets) with u(c) = 1.0%. Individual droplet size in a burst was evaluated by high-speed videography. Diameters were consistent from the tenth droplet onward, and the mass of an individual droplet was best estimated by the average droplet mass with a combined uncertainty of about 1%. Diameters of the first several droplets were anomalous, but their contribution was accounted for when dispensing bursts. Above the limits of quantitation, the gravimetric methods provided statistically equivalent results and permit detailed study of operational factors that influence droplet mass during dispensing, including the development of reliable microassays and standard materials using DOD technologies.

  17. Proof-of-principle demonstration of Nb3Sn superconducting radiofrequency cavities for high Q0 applications

    Science.gov (United States)

    Posen, S.; Liepe, M.; Hall, D. L.

    2015-02-01

    Many future particle accelerators require hundreds of superconducting radiofrequency (SRF) cavities operating with high duty factor. The large dynamic heat load of the cavities causes the cryogenic plant to make up a significant part of the overall cost of the facility. This contribution can be reduced by replacing standard niobium cavities with ones coated with a low-dissipation superconductor such as Nb3Sn. In this paper, we present results for single cell cavities coated with Nb3Sn at Cornell. Five coatings were carried out, showing that at 4.2 K, high Q0 out to medium fields was reproducible, resulting in an average quench field of 14 MV/m and an average 4.2 K Q0 at quench of 8 × 109. In each case, the peak surface magnetic field at quench was well above Hc1, showing that it is not a limiting field in these cavities. The coating with the best performance had a quench field of 17 MV/m, exceeding gradient requirements for state-of-the-art high duty factor SRF accelerators. It is also shown that—taking into account the thermodynamic efficiency of the cryogenic plant—the 4.2 K Q0 values obtained meet the AC power consumption requirements of state-of-the-art high duty factor accelerators, making this a proof-of-principle demonstration for Nb3Sn cavities in future applications.

  18. Accuracy in Optical Information Processing

    Science.gov (United States)

    Timucin, Dogan Aslan

    Low computational accuracy is an important obstacle for optical processors which blocks their way to becoming a practical reality and a serious challenger for classical computing paradigms. This research presents a comprehensive solution approach to the problem of accuracy enhancement in discrete analog optical information processing systems. Statistical analysis of a generic three-plane optical processor is carried out first, taking into account the effects of diffraction, interchannel crosstalk, and background radiation. Noise sources included in the analysis are photon, excitation, and emission fluctuations in the source array, transmission and polarization fluctuations in the modulator, and photoelectron, gain, dark, shot, and thermal noise in the detector array. Means and mutual coherence and probability density functions are derived for both optical and electrical output signals. Next, statistical models for a number of popular optoelectronic devices are studied. Specific devices considered here are light-emitting and laser diode sources, an ideal noiseless modulator and a Gaussian random-amplitude-transmittance modulator, p-i-n and avalanche photodiode detectors followed by electronic postprocessing, and ideal free-space geometrical -optics propagation and single-lens imaging systems. Output signal statistics are determined for various interesting device combinations by inserting these models into the general formalism. Finally, based on these special-case output statistics, results on accuracy limitations and enhancement in optical processors are presented. Here, starting with the formulation of the accuracy enhancement problem as (1) an optimal detection problem and (2) as a parameter estimation problem, the potential accuracy improvements achievable via the classical multiple-hypothesis -testing and maximum likelihood and Bayesian parameter estimation methods are demonstrated. Merits of using proper normalizing transforms which can potentially stabilize

  19. High-fidelity hybrid simulation of allergic emergencies demonstrates improved preparedness for office emergencies in pediatric allergy clinics.

    Science.gov (United States)

    Kennedy, Joshua L; Jones, Stacie M; Porter, Nicholas; White, Marjorie L; Gephardt, Grace; Hill, Travis; Cantrell, Mary; Nick, Todd G; Melguizo, Maria; Smith, Chris; Boateng, Beatrice A; Perry, Tamara T; Scurlock, Amy M; Thompson, Tonya M

    2013-01-01

    Simulation models that used high-fidelity mannequins have shown promise in medical education, particularly for cases in which the event is uncommon. Allergy physicians encounter emergencies in their offices, and these can be the source of much trepidation. To determine if case-based simulations with high-fidelity mannequins are effective in teaching and retention of emergency management team skills. Allergy clinics were invited to Arkansas Children's Hospital Pediatric Understanding and Learning through Simulation Education center for a 1-day workshop to evaluate skills concerning the management of allergic emergencies. A Clinical Emergency Preparedness Team Performance Evaluation was developed to evaluate the competence of teams in several areas: leadership and/or role clarity, closed-loop communication, team support, situational awareness, and scenario-specific skills. Four cases, which focus on common allergic emergencies, were simulated by using high-fidelity mannequins and standardized patients. Teams were evaluated by multiple reviewers by using video recording and standardized scoring. Ten to 12 months after initial training, an unannounced in situ case was performed to determine retention of the skills training. Clinics showed significant improvements for role clarity, teamwork, situational awareness, and scenario-specific skills during the 1-day workshop (all P clinics (all P ≤ .004). Clinical Emergency Preparedness Team Performance Evaluation scores demonstrated improved team management skills with simulation training in office emergencies. Significant recall of team emergency management skills was demonstrated months after the initial training. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Very high precision and accuracy analysis of triple isotopic ratios of water. A critical instrumentation comparison study.

    Science.gov (United States)

    Gkinis, Vasileios; Holme, Christian; Morris, Valerie; Thayer, Abigail Grace; Vaughn, Bruce; Kjaer, Helle Astrid; Vallelonga, Paul; Simonsen, Marius; Jensen, Camilla Marie; Svensson, Anders; Maffrezzoli, Niccolo; Vinther, Bo; Dallmayr, Remi

    2017-04-01

    We present a performance comparison study between two state of the art Cavity Ring Down Spectrometers (Picarro L2310-i, L2140-i). The comparison took place during the Continuous Flow Analysis (CFA) campaign for the measurement of the Renland ice core, over a period of three months. Instant and complete vaporisation of the ice core melt stream, as well as of in-house water reference materials is achieved by accurate control of microflows of liquid into a homemade calibration system by following simple principles of the Hagen-Poiseuille law. Both instruments share the same vaporisation unit in a configuration that minimises sample preparation discrepancies between the two analyses. We describe our SMOW-SLAP calibration and measurement protocols for such a CFA application and present quality control metrics acquired during the full period of the campaign on a daily basis. The results indicate an unprecedented performance for all 3 isotopic ratios (δ2H, δ17O, δ18O ) in terms of precision, accuracy and resolution. We also comment on the precision and accuracy of the second order excess parameters of HD16O and H217O over H218O (Dxs, Δ17O ). To our knowledge these are the first reported CFA measurements at this level of precision and accuracy for all three isotopic ratios. Differences on the performance of the two instruments are carefully assessed during the measurement and reported here. Our quality control protocols extend to the area of low water mixing ratios, a regime in which often atmospheric vapour measurements take place and Cavity Ring Down Analysers show a poorer performance due to the lower signal to noise ratios. We address such issues and propose calibration protocols from which water vapour isotopic analyses can benefit from.

  1. Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression

    Directory of Open Access Journals (Sweden)

    Lemieux Sébastien

    2006-08-01

    Full Text Available Abstract Background The identification of differentially expressed genes (DEGs from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. Results On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. Conclusion The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.

  2. Investigation and Demonstration of High Speed Full-Optical Hybrid FSO/Fiber Communication System under Light Sand Storm Condition

    KAUST Repository

    Esmail, Maged Abdullah; Ragheb, Amr; Fathallah, Habib; Alouini, Mohamed-Slim

    2016-01-01

    In contrast to traditional free space optical (FSO) systems, the new generation is aimed to be transparent to optical fiber where protocols, high signal bandwidths, and high data rates over fiber are all maintained. In this paper, we experimentally demonstrate a high speed outdoor full-optical FSO communication system over 100 m link. We first describe the design of our transmitter, which consists of a comb generator and a flexible multiformat transmitter. Our measurements are performed in arid desert area under a light dust storm. In this environment, we use a 12 subcarrier comb generator, each of which is modulated by a quadrature-amplitude modulation (QAM) signal. We achieved a 1.08 Tbps error free data rate with 3.6 b/s/Hz spectral efficiency. We place long optical fiber rolls in the transmitter side and the receiver side to mimic real FSO deployments. Furthermore, we investigated the effect of receiver misalignment in outdoor conditions and the effect of background noise. We find that full-optical FSO system is sensitive to the misalignment effect. However, the background noise has negligible effect. Finally, we find that solar heating of the transceiver causes collimator deviation, which requires using a cooling unit or auto tracking system.

  3. Investigation and Demonstration of High Speed Full-Optical Hybrid FSO/Fiber Communication System under Light Sand Storm Condition

    KAUST Repository

    Esmail, Maged Abdullah

    2016-12-19

    In contrast to traditional free space optical (FSO) systems, the new generation is aimed to be transparent to optical fiber where protocols, high signal bandwidths, and high data rates over fiber are all maintained. In this paper, we experimentally demonstrate a high speed outdoor full-optical FSO communication system over 100 m link. We first describe the design of our transmitter, which consists of a comb generator and a flexible multiformat transmitter. Our measurements are performed in arid desert area under a light dust storm. In this environment, we use a 12 subcarrier comb generator, each of which is modulated by a quadrature-amplitude modulation (QAM) signal. We achieved a 1.08 Tbps error free data rate with 3.6 b/s/Hz spectral efficiency. We place long optical fiber rolls in the transmitter side and the receiver side to mimic real FSO deployments. Furthermore, we investigated the effect of receiver misalignment in outdoor conditions and the effect of background noise. We find that full-optical FSO system is sensitive to the misalignment effect. However, the background noise has negligible effect. Finally, we find that solar heating of the transceiver causes collimator deviation, which requires using a cooling unit or auto tracking system.

  4. Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube

    Science.gov (United States)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2018-02-01

    A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.

  5. Analysis of Corrosion Residues Collected from the Aluminum Basket Rails of the High-Burnup Demonstration Cask.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    On September, 2015, an inspection was performed on the TN-32B cask that will be used for the high-burnup demonstration project. During the survey, wooden cribbing that had been placed within the cask eleven years earlier to prevent shifting of the basket during transport was removed, revealing two areas of residue on the aluminum basket rails, where they had contacted the cribbing. The residue appeared to be a corrosion product, and concerns were raised that similar attack could exist at more difficult-to-inspect locations in the canister. Accordingly, when the canister was reopened, samples of the residue were collected for analysis. This report presents the results of that assessment, which determined that the corrosion was due to the presence of the cribbing. The corrosion was associated with fungal material, and fungal activity likely contributed to an aggressive chemical environment. Once the cask has been cleaned, there will be no risk of further corrosion.

  6. Demonstration on endurance of ion exchange membrane immersed in high-concentration tritiated water under the Broader Approach Activities

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Yasunori, E-mail: iwai.yasunori@jaea.go.jp; Sato, Katsumi; Kawamura, Yoshinori; Yamanishi, Toshihiko

    2013-10-15

    Highlights: • Endurance of Nafion ion exchange membrane immersed in 1.38 × 10{sup 12} Bq/kg of highly concentrated tritiated water was demonstrated. • Degradation of Nafion backbone structure by tritium beta was similar to that by gamma rays and electron beams at an equivalent dose. • Degradation directly by radiation was dominant at room temperature compared with that by reactions with radicals produced from water radiolysis. -- Abstract: The Nafion{sup ®} ion exchange membrane is a key material for electrolysis cells of the water detritiation system. Endurance of Nafion ion exchange membrane immersed in 1.38 × 10{sup 12} Bq/kg of highly concentrated tritiated water has been demonstrated at room temperature for up to 2 years under the Broader Approach Activities. The curves of percent elongation at break vs. dose and tensile strength vs. dose for the Nafion membranes immersed in tritiated water were well consistent with those for Nafion membranes irradiated to an equivalent dose with gamma rays and electron beams. This shows that the degradation of Nafion backbone structure by tritium beta is similar to that by gamma rays and electron beams. The results of ferric Fenton test indicated that the degradation directly by radiation was dominant at room temperature compared with that by reactions with radicals produced from water radiolysis. The curve of ion exchange capacity vs. dose for the Nafion membranes immersed in tritiated water was also well consistent with that for Nafion membranes irradiated to an equivalent dose with gamma rays and electron beams. These results showed irradiation tests with gamma rays and electron beams were alternative for predicting degradation of ion exchange membrane by tritium beta.

  7. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    Science.gov (United States)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  8. The appearances of oesophageal carcinoma demonstrated on high-resolution, T2-weighted MRI, with histopathological correlation

    International Nuclear Information System (INIS)

    Riddell, A.M.; Allum, W.H.; Thompson, J.N.; Wotherspoon, A.C.; Richardson, C.; Brown, G.

    2007-01-01

    This paper describes the spectrum of imaging features of oesophageal adenocarcinoma seen using high-resolution T2-weighted (T2W) magnetic resonance imaging (MRI). Thirty-nine patients with biopsy-proven oesophageal adenocarcinoma were scanned using an external surface coil. A sagittal T2W sequence was used to localise the tumour and to plan axial images perpendicular to the tumour. Fast spin-echo (FSE) T2W axial sequence parameters were: TR/TE, 3,300-5,000 ms/120-80 ms; field of view (FOV) 225 mm, matrix 176 x 512(reconstructed) mm to 256 x 224 mm, giving an in-plane resolution of between 1.28 x 0.44 mm and 0.88 x 1.00 mm, with 3-mm slice thickness. Thirty-three patients underwent resection and the MR images were compared with the histological whole-mount sections. There were four T1, 12 T2, and 17 T3 tumours. The T2W high-resolution MRI sequences produced detailed images of the oesophageal wall and surrounding structures. Analysis of the imaging appearances for different tumour T stages enabled the development of imaging criteria for local staging of oesophageal cancer using high-resolution MRI. Our study illustrates the spectrum of appearances of oesophageal cancer on T2W high-resolution MRI, and using the criteria established in this study, demonstrates the potential of this technique as an alternative non-invasive method for local staging for oesophageal cancer. (orig.)

  9. New high accuracy super stable alternating direction implicit methods for two and three dimensional hyperbolic damped wave equations

    Directory of Open Access Journals (Sweden)

    R.K. Mohanty

    2014-01-01

    Full Text Available In this paper, we report new three level implicit super stable methods of order two in time and four in space for the solution of hyperbolic damped wave equations in one, two and three space dimensions subject to given appropriate initial and Dirichlet boundary conditions. We use uniform grid points both in time and space directions. Our methods behave like fourth order accurate, when grid size in time-direction is directly proportional to the square of grid size in space-direction. The proposed methods are super stable. The resulting system of algebraic equations is solved by the Gauss elimination method. We discuss new alternating direction implicit (ADI methods for two and three dimensional problems. Numerical results and the graphical representation of numerical solution are presented to illustrate the accuracy of the proposed methods.

  10. High diagnostic accuracy of the Sysmex XT-2000iV delta total nucleated cells on effusions for feline infectious peritonitis.

    Science.gov (United States)

    Giordano, Alessia; Stranieri, Angelica; Rossi, Gabriele; Paltrinieri, Saverio

    2015-06-01

    The ΔWBC (the ratio between DIFF and BASO counts of the Sysmex XT-2000iV), hereafter defined as ΔTNC (total nucleated cells), is high in effusions due to feline infectious peritonitis (FIP), as cells are entrapped in fibrin clots formed in the BASO reagent. Similar clots form in the Rivalta's test, a method with high diagnostic accuracy for FIP. The objective of this study was to determine the diagnostic accuracy for FIP and the optimal cutoff of ΔTNC. After a retrospective search of our database, DIFF and BASO counts, and the ΔTNC from cats with and without FIP were compared to each other. Sensitivity, specificity, and positive and negative likelihood ratios (LR+, LR-) were calculated. A ROC curve was designed to determine the cutoff for best sensitivity and specificity. Effusions from 20 FIP and 31 non-FIP cats were analyzed. The ΔTNC was higher (P  2.5 had 100% specificity. The ΔTNC has a high diagnostic accuracy for FIP-related effusions by providing an estimate of precipitable proteins, as the Rivalta's test, in addition to the cell count. As fibrin clots result in false lower BASO counts, the ΔTNC is preferable to the WBC count generated by the BASO channel alone in suspected FIP effusions. © 2015 American Society for Veterinary Clinical Pathology.

  11. Optical interconnects for in-plane high-speed signal distribution at 10 Gb/s: Analysis and demonstration

    Science.gov (United States)

    Chang, Yin-Jung

    With decreasing transistor size, increasing chip speed, and larger numbers of processors in a system, the performance of a module/system is being limited by the off-chip and off-module bandwidth-distance products. Optical links have moved from fiber-based long distance communications to the cabinet level of 1m--100m, and recently to the backplane-level (10cm--1m). Board-level inter-chip parallel optical interconnects have been demonstrated recently by researchers from Intel, IBM, Fujitsu, NTT and a few research groups in universities. However, the board-level signal/clock distribution function using optical interconnects, the lightwave circuits, the system design, a practically convenient integration scheme committed to the implementation of a system prototype have not been explored or carefully investigated. In this dissertation, the development of a board-level 1 x 4 optical-to-electrical signal distribution at 10Gb/s is presented. In contrast to other prototypes demonstrating board-level parallel optical interconnects that have been drawing much attention for the past decade, the optical link design for the high-speed signal broadcasting is even more complicated and the pitch between receivers could be varying as opposed to fixed-pitch design that has been widely-used in the parallel optical interconnects. New challenges for the board-level high-speed signal broadcasting include, but are not limited to, a new optical link design, a lightwave circuit as a distribution network, and a novel integration scheme that can be a complete radical departure from the traditional assembly method. One of the key building blocks in the lightwave circuit is the distribution network in which a 1 x 4 multimode interference (MMI) splitter is employed. MMI devices operating at high data rates are important in board-level optical interconnects and need to be characterized in the application of board-level signal broadcasting. To determine the speed limitations of MMI devices, the

  12. Demonstration of electron clearing effect by means of a clearing electrode in high-intensity positron ring

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Fukuma, H.; Wang, L.; Pivi, M.; Morishige, A.; Suzuki, Y.; Tsukamoto, M.; Tsuchiya, M.

    2009-01-01

    In the beam pipe of high-intensity positron/proton storage rings, undesired electron clouds may be first produced by photoelectrons and the ionization of residual gases; then the clouds increase by the secondary electron emission. In this study, a strip-line clearing electrode has been developed to mitigate the electron-cloud effect in high-intensity positron/proton storage rings. The electrode is composed of a thin tungsten layer with a thickness of 0.1 mm formed on a thin alumina ceramic layer with a thickness of 0.2 mm. The narrow alumina gap between the electrode and the beam pipe decreases the beam impedance and also enhances the heat transfer from the electrode to the beam pipe. A test model has been installed in the KEK B-factory (KEKB) positron ring, along with an electron monitor with a retarding grid. The electron density in a field free region decreased by one order of magnitude was observed on the application of ±500 V to the electrode at a beam current of 1.6 A with 1585 bunches. The reduction in the electron density was more drastic in a vertical magnetic field of 0.77 T, that is, the electron density decreased by several orders by applying +500 V to the electrode at the same beam current. This experiment is the first experiment demonstrating the principle of the clearing electrode that is used to mitigate the electron-cloud effect in a positron ring.

  13. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    Science.gov (United States)

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  14. Transmutation of high level nuclear waste in an accelerator driven system: towards a demonstration device of industrial interest (EUROTRANS)

    International Nuclear Information System (INIS)

    Knebel, Joachim U.; Ait Abderrahim, Hamid; Caron-Carles, Marylise

    2010-01-01

    The Integrated Project EUROTRANS (EURopean Research Programme for the TRANSmutation of High Level Nuclear Waste in an Accelerator Driven System) within the ongoing EURATOM 6th Framework Programme (FP6) is devoted to the study of transmutation of high-level waste from nuclear power plants. The work is focused on transmutation in an Accelerator Driven System (ADS). The objective of EUROTRANS is the assessment of the design and the feasibility of an industrial ADS prototype dedicated to transmutation. The necessary R and D results in the areas of accelerator components, fuel development, structural materials, thermal-hydraulics, heavy liquid metal technology and nuclear data will be made available, together with the experimental demonstration of the ADS component coupling. The outcome of this work will allow to provide a reasonably reliable assessment of technological feasibility and a cost estimate for ADS based transmutation, and to possibly decide on the detailed design of an experimental ADS and its construction in the future. EUROTRANS is integrating activities of 51 participants from 16 countries, within the industry (10 participants), the national research centres (20) and 17 universities. 16 universities are collectively represented by ENEN (European Nuclear Education Network). EUROTRANS is the continuation of the three FP5 Clusters FUETRA, BASTRA and TESTRA together with the PDS-XADS Project. It is a five-year project which started in April 2005

  15. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sorbom, B.N., E-mail: bsorbom@mit.edu; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; Goh, J.; Sung, C.; Whyte, D.G.

    2015-11-15

    Highlights: • ARC reactor designed to have 500 MW fusion power at 3.3 m major radius. • Compact, simplified design allowed by high magnetic fields and jointed magnets. • ARC has innovative plasma physics solutions such as inboardside RF launch. • High temperature superconductors allow high magnetic fields and jointed magnets. • Liquid immersion blanket and jointed magnets greatly simplify tokamak reactor design. - Abstract: The affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reducing the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a ∼200–250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q{sub p} ≈ 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ∼63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ∼23 T peak field on coil achievable with newly available REBCO superconductor technology. External current drive is provided by two innovative inboard RF launchers using 25 MW of lower hybrid and 13.6 MW of ion cyclotron fast wave power. The resulting efficient current drive provides a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing fluorine lithium beryllium (FLiBe) molten salt. The liquid blanket is low-risk technology and provides effective neutron moderation and shielding, excellent

  16. Observational demonstration of a high image rejection SIS mixer receiver using a new waveguide filter at 230 GHz

    Science.gov (United States)

    Hasegawa, Yutaka; Asayama, Shinichiro; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu

    2017-12-01

    A new sideband separation method was developed for use in millimeter-/submillimeter-band radio receivers using a novel waveguide frequency separation filter (FSF), which consists of two branch line hybrid couplers and two waveguide high-pass filters. The FSF was designed to allow the radio frequency (RF) signal to pass through to an output port when the frequency is higher than a certain value (225 GHz), and to reflect the RF signal back to another output port when the frequency is lower. The FSF is connected to two double sideband superconductor-insulator-superconductor (SIS) mixers, and an image rejection ratio (IRR) is determined by the FSF characteristics. With this new sideband separation method, we can achieve good and stable IRR without the balancing two SIS mixers such as is necessary for conventional sideband-separating SIS mixers. To demonstrate the applicability of this method, we designed and developed an FSF for simultaneous observations of the J = 2-1 rotational transition lines of three CO isotopes (12CO, 13CO, and C18O): the 12CO line is in the upper sideband and the others are in the lower sideband with an intermediate-frequency range of 4-8 GHz at the radio frequency of 220/230 GHz. This FSF was then installed in the receiver system of the 1.85 m radio telescope of Osaka Prefecture University, and was used during the 2014 observation season. The observation results indicate that the IRR of the proposed receiver is 25 dB or higher for the 12CO line, and no significant fluctuation larger than 1 dB in the IRR was observed throughout the season. These results demonstrate the practical utility of the FSF receiver for observations like extensive molecular cloud surveys in specified lines with a fixed frequency setting.

  17. Response-only method for damage detection of beam-like structures using high accuracy frequencies with auxiliary mass spatial probing

    Science.gov (United States)

    Zhong, Shuncong; Oyadiji, S. Olutunde; Ding, Kang

    2008-04-01

    This paper proposes a new approach based on auxiliary mass spatial probing using spectral centre correction method (SCCM), to provide a simple solution for damage detection by just using the response time history of beam-like structures. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in the inertia of the beam as the auxiliary mass is traversed along the beam, as well as the point-to-point variations in the flexibility of the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the fast Fourier transform (FFT) of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. SCCM is identical to the energy centrobaric correction method (ECCM) which is a practical and effective method used in rotating mechanical fault diagnosis and which resolves the shortcoming of FFT and can provide high accuracy estimate of frequency, amplitude and phase. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the finite element method (FEM). The graphical plots of the natural frequencies calculated by SCCM versus axial location of auxiliary mass are obtained. However, it is difficult to locate the crack directly from the curve of natural frequencies. A simple and fast method, the derivatives of natural frequency curve, is proposed in the paper which can provide crack information for damage detection of beam-like structures. The efficiency and practicability of the proposed method is illustrated via numerical

  18. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel.

    Science.gov (United States)

    Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit

    2017-06-01

    Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies.

  19. Characterization of ANFO explosive by high accuracy ESI(±)-FTMS with forensic identification on real samples by EASI(-)-MS.

    Science.gov (United States)

    Hernandes, Vinicius Veri; Franco, Marcos Fernado; Santos, Jandyson Machado; Melendez-Perez, Jose J; de Morais, Damila Rodrigues; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Zacca, Jorge Jardim; Logrado, Lucio Paulo Lima; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-04-01

    Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. High-accuracy diagnostic tool for electron cloud observation in the LHC based on synchronous phase measurements

    CERN Document Server

    Esteban Müller, J F; Shaposhnikova, E; Valuch, D; Mastoridis, T

    2014-01-01

    Electron cloud effects such as heat load in the cryogenic system, pressure rise and beam instabilities are among the main limitations for the LHC operation with 25 ns spaced bunches. A new observation tool was developed to monitor the e-cloud activity and has been successfully used in the LHC during Run 1 (2010-2012). The power loss of each bunch due to the e-cloud can be estimated using very precise bunch-by-bunch measurement of the synchronous phase shift. In order to achieve the required accuracy, corrections for reflection in the cables and some systematic errors need to be applied followed by a post-processing of the measurements. Results clearly show the e-cloud build-up along the bunch trains and its evolution during each LHC fill as well as from fill to fill. Measurements during the 2012 LHC scrubbing run reveal a progressive reduction in the e-cloud activity and therefore a decrease in the secondary electron yield (SEY). The total beam power loss can be computed as a sum of the contributions from all...

  1. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    International Nuclear Information System (INIS)

    Mehndiratta, Amit; Rabinov, James D.; Grasruck, Michael; Liao, Eric C.; Crandell, David; Gupta, Rajiv

    2015-01-01

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm 3 . Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  2. Systems-level computational modeling demonstrates fuel selection switching in high capacity running and low capacity running rats

    Science.gov (United States)

    Qi, Nathan R.

    2018-01-01

    High capacity and low capacity running rats, HCR and LCR respectively, have been bred to represent two extremes of running endurance and have recently demonstrated disparities in fuel usage during transient aerobic exercise. HCR rats can maintain fatty acid (FA) utilization throughout the course of transient aerobic exercise whereas LCR rats rely predominantly on glucose utilization. We hypothesized that the difference between HCR and LCR fuel utilization could be explained by a difference in mitochondrial density. To test this hypothesis and to investigate mechanisms of fuel selection, we used a constraint-based kinetic analysis of whole-body metabolism to analyze transient exercise data from these rats. Our model analysis used a thermodynamically constrained kinetic framework that accounts for glycolysis, the TCA cycle, and mitochondrial FA transport and oxidation. The model can effectively match the observed relative rates of oxidation of glucose versus FA, as a function of ATP demand. In searching for the minimal differences required to explain metabolic function in HCR versus LCR rats, it was determined that the whole-body metabolic phenotype of LCR, compared to the HCR, could be explained by a ~50% reduction in total mitochondrial activity with an additional 5-fold reduction in mitochondrial FA transport activity. Finally, we postulate that over sustained periods of exercise that LCR can partly overcome the initial deficit in FA catabolic activity by upregulating FA transport and/or oxidation processes. PMID:29474500

  3. Demonstration of Parallel Algal Processing: Production of Renewable Diesel Blendstock and a High-Value Chemical Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Knoshaug, Eric P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mohagheghi, Ali [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagle, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stickel, Jonathan J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dong, Tao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Karp, Eric M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kruger, Jacob S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brandner, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manker, Lorenz [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rorrer, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hyman, Deborah A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Earl D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pienkos, Philip T [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    Co-production of high-value chemicals such as succinic acid from algal sugars is a promising route to enabling conversion of algal lipids to a renewable diesel blendstock. Biomass from the green alga Scenedesmus acutus was acid pretreated and the resulting slurry separated into its solid and liquor components using charged polyamide induced flocculation and vacuum filtration. Over the course of a subsequent 756 hours continuous fermentation of the algal liquor with Actinobacillus succinogenes 130Z, we achieved maximum productivity, process conversion yield, and titer of 1.1 g L-1 h-1, 0.7 g g-1 total sugars, and 30.5 g L-1 respectively. Succinic acid was recovered from fermentation media with a yield of 60% at 98.4% purity while lipids were recovered from the flocculated cake at 83% yield with subsequent conversion through deoxygenation and hydroisomerization to a renewable diesel blendstock. This work is a first-of-its-kind demonstration of a novel integrated conversion process for algal biomass to produce fuel and chemical products of sufficient quality to be blend-ready feedstocks for further processing.

  4. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  5. The capability of high field MRI in demonstrating post-mortem fetal brains at different gestational age

    International Nuclear Information System (INIS)

    Zhang Zhonghe; Liu Shuwei; Lin Xiangtao; Gen Hequn; Teng Gaojun; Fang Fang; Zang Fengchao; Yu Taifei; Zhao Bin

    2009-01-01

    Objective: To study the capability of high field MRI in demonstrating the post-mortem fetal brains at different gestational age (GA). Methods: One hundred and eight post-mortem fetal brains of 14-40 weeks GA were evaluated by 3.0 T MRI. Eleven brains of 14 to 27 weeks GA with good 3.0 T MRI images were chosen and scanned by 7.0 T MRI. The developing sulci, layered structures of fetal cerebral cortex and basal nuclei were evaluated on MRI of different Tesla (3.0 T and 7.0 T) and their results analyzed. Results: On T 1 WI of 3.0 T MRI, the layered structures of fetal cerebral cortex were present at 14 weeks GA, the sulci were more accurately identified after 16 weeks GA. The basal nuclei were clearly distinguishable after 20 weeks CA, and these structures were better visualized as the GA increased. On T 2 WI of 7.0 T MRI, the sulci, layered structures of fetal cerebral cortex and basal nuclei were shown more clearly at the same GA when compared to 3.0 T, especially the sulci at the early developmental stages. Conclusions: T 1 WI of 3.0 T MRI could show the developing structures of post-mortem fetal brain well, but the T 2 WI of 7.0 T MRI were comparatively better. (authors)

  6. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Amit [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States); University of Oxford, Institute of Biomedical Engineering and Keble College, Oxford (United Kingdom); Indian Institute of Technology Delhi and All India Institute of Medical Science, Centre for Biomedical Engineering, New Delhi (India); Rabinov, James D. [Massachusetts General Hospital, Interventional Neuroradiology, Harvard Medical School, Boston, MA (United States); Grasruck, Michael [Siemens Medical Solutions, Forchheim (Germany); Liao, Eric C. [Massachusetts General Hospital, Department of Plastic and Reconstructive Surgery and Center for Regenerative Medicine, Harvard Medical School, Boston, MA (United States); Crandell, David [Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA (United States); Gupta, Rajiv [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm{sup 3}. Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  7. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  8. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    Science.gov (United States)

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging

    Science.gov (United States)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2017-03-01

    Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.

  10. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Seely, J. F., E-mail: seelyjf@gmail.com; Feldman, U. [Artep Inc., 2922 Excelsior Springs Court, Ellicott City, Maryland 21042 (United States); Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Pereira, N. [Ecopulse Inc., P. O. Box 528, Springfield, Virginia 22152 (United States); Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, Hui; Williams, G. J.; Park, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  11. Real-time continuous glucose monitoring shows high accuracy within 6 hours after sensor calibration: a prospective study.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Yue

    Full Text Available Accurate and timely glucose monitoring is essential in intensive care units. Real-time continuous glucose monitoring system (CGMS has been advocated for many years to improve glycemic management in critically ill patients. In order to determine the effect of calibration time on the accuracy of CGMS, real-time subcutaneous CGMS was used in 18 critically ill patients. CGMS sensor was calibrated with blood glucose measurements by blood gas/glucose analyzer every 12 hours. Venous blood was sampled every 2 to 4 hours, and glucose concentration was measured by standard central laboratory device (CLD and by blood gas/glucose analyzer. With CLD measurement as reference, relative absolute difference (mean±SD in CGMS and blood gas/glucose analyzer were 14.4%±12.2% and 6.5%±6.2%, respectively. The percentage of matched points in Clarke error grid zone A was 74.8% in CGMS, and 98.4% in blood gas/glucose analyzer. The relative absolute difference of CGMS obtained within 6 hours after sensor calibration (8.8%±7.2% was significantly less than that between 6 to 12 hours after calibration (20.1%±13.5%, p<0.0001. The percentage of matched points in Clarke error grid zone A was also significantly higher in data sets within 6 hours after calibration (92.4% versus 57.1%, p<0.0001. In conclusion, real-time subcutaneous CGMS is accurate in glucose monitoring in critically ill patients. CGMS sensor should be calibrated less than 6 hours, no matter what time interval recommended by manufacturer.

  12. The accuracy of {sup 68}Ga-PSMA PET/CT in primary lymph node staging in high-risk prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oebek, Can; Doganca, Tuenkut [Acibadem Taksim Hospital, Department of Urology, Istanbul (Turkey); Demirci, Emre [Sisli Etfal Training and Research Hospital, Department of Nuclear Medicine, Istanbul (Turkey); Ocak, Meltem [Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul (Turkey); Kural, Ali Riza [Acibadem University, Department of Urology, Istanbul (Turkey); Yildirim, Asif [Istanbul Medeniyet University, Department of Urology, Istanbul (Turkey); Yuecetas, Ugur [Istanbul Training and Research Hospital, Department of Urology, Istanbul (Turkey); Demirdag, Cetin [Istanbul University, Cerrahpasa School of Medicine, Department of Urology, Istanbul (Turkey); Erdogan, Sarper M. [Istanbul University, Cerrahpasa School of Medicine, Department of Public Health, Istanbul (Turkey); Kabasakal, Levent [Istanbul University, Cerrahpasa School of Medicine, Department of Nuclear Medicine, Istanbul (Turkey); Collaboration: Members of Urooncology Association, Turkey

    2017-10-15

    To assess the diagnostic accuracy of {sup 68}Ga-PSMA PET in predicting lymph node (LN) metastases in primary N staging in high-risk and very high-risk nonmetastatic prostate cancer in comparison with morphological imaging. This was a multicentre trial of the Society of Urologic Oncology in Turkey in conjunction with the Nuclear Medicine Department of Cerrahpasa School of Medicine, Istanbul University. Patients were accrued from eight centres. Patients with high-risk and very high-risk disease scheduled to undergo surgical treatment with extended LN dissection between July 2014 and October 2015 were included. Either MRI or CT was used for morphological imaging. PSMA PET/CT was performed and evaluated at a single centre. Sensitivity, specificity and accuracy were calculated for the detection of lymphatic metastases by PSMA PET/CT and morphological imaging. Kappa values were calculated to evaluate the correlation between the numbers of LN metastases detected by PSMA PET/CT and by histopathology. Data on 51 eligible patients are presented. The sensitivity, specificity and accuracy of PSMA PET in detecting LN metastases in the primary setting were 53%, 86% and 76%, and increased to 67%, 88% and 81% in the subgroup with of patients with ≥15 LN removed. Kappa values for the correlation between imaging and pathology were 0.41 for PSMA PET and 0.18 for morphological imaging. PSMA PET/CT is superior to morphological imaging for the detection of metastatic LNs in patients with primary prostate cancer. Surgical dissection remains the gold standard for precise lymphatic staging. (orig.)

  13. Evaluation of the accuracy of the CellaVision™ DM96 in a high HIV-prevalence population in South Africa

    Directory of Open Access Journals (Sweden)

    Jenifer L. Vaughan

    2016-03-01

    Objectives: This study aimed to evaluate the accuracy of the DM96 in a South African laboratory, with emphasis on its performance in samples collected from HIV-positive patients. Methods: A total of 149 samples submitted for a routine differential white cell count in 2012 and 2013 at the Chris Hani Baragwanath Academic Hospital in Johannesburg, South Africa were included, of which 79 (53.0% were collected from HIV-positive patients. Results of DM96 analysis pre- and post-classification were compared with a manual differential white cell count and the impact of HIV infection and other variables of interest were assessed. Results: Pre- and post-classification accuracies were similar to those reported in developed countries. Reclassification was required in 16% of cells, with particularly high misclassification rates for eosinophils (31.7%, blasts (33.7% and basophils (93.5%. Multivariate analysis revealed a significant relationship between the number of misclassified cells and both the white cell count (p = 0.035 and the presence of malignant cells in the blood (p = 0.049, but not with any other variables analysed, including HIV status. Conclusion: The DM96 exhibited acceptable accuracy in this South African laboratory, which was not impacted by HIV infection. However, as it does not eliminate the need for experienced morphologists, its cost may be unjustifiable in a resource-constrained setting.

  14. Accuracy of Combined Computed Tomography Colonography and Dual Energy Iiodine Map Imaging for Detecting Colorectal masses using High-pitch Dual-source CT.

    Science.gov (United States)

    Sun, Kai; Han, Ruijuan; Han, Yang; Shi, Xuesen; Hu, Jiang; Lu, Bin

    2018-02-28

    To evaluate the diagnostic accuracy of combined computed tomography colonography (CTC) and dual-energy iodine map imaging for detecting colorectal masses using high-pitch dual-source CT, compared with optical colonography (OC) and histopathologic findings. Twenty-eight consecutive patients were prospectively enrolled in this study. All patients were underwent contrast-enhanced CTC acquisition using dual-energy mode and OC and pathologic examination. The size of the space-occupied mass, the CT value after contrast enhancement, and the iodine value were measured and statistically compared. The sensitivity, specificity, accuracy rate, and positive predictive and negative predictive values of dual-energy contrast-enhanced CTC were calculated and compared between conventional CTC and dual-energy iodine images. The iodine value of stool was significantly lower than the colonic neoplasia (P dual-energy iodine maps imaging was 95.6% (95% CI = 77.9%-99.2%). The specificity of the two methods was 42.8% (95% CI = 15.4%-93.5%) and 100% (95% CI = 47.9%-100%; P = 0.02), respectively. Compared with optical colonography and histopathology, combined CTC and dual-energy iodine maps imaging can distinguish stool and colonic neoplasia, distinguish between benign and malignant tumors initially and improve the diagnostic accuracy of CTC for colorectal cancer screening.

  15. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    International Nuclear Information System (INIS)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn; Kang, Eun Young; Lee, Ki Yeol

    2015-01-01

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  16. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Kang, Eun Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Ki Yeol [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2015-06-15

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  17. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics.

    Science.gov (United States)

    Tsaturyan, Yeghishe; Barg, Andreas; Simonsen, Anders; Villanueva, Luis Guillermo; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S

    2014-03-24

    Dielectric membranes with exceptional mechanical and optical properties present one of the most promising platforms in quantum opto-mechanics. The performance of stressed silicon nitride nanomembranes as mechanical resonators notoriously depends on how their frame is clamped to the sample mount, which in practice usually necessitates delicate, and difficult-to-reproduce mounting solutions. Here, we demonstrate that a phononic bandgap shield integrated in the membrane's silicon frame eliminates this dependence, by suppressing dissipation through phonon tunneling. We dry-etch the membrane's frame so that it assumes the form of a cm-sized bridge featuring a 1-dimensional periodic pattern, whose phononic density of states is tailored to exhibit one, or several, full band gaps around the membrane's high-Q modes in the MHz-range. We quantify the effectiveness of this phononic bandgap shield by optical interferometry measuring both the suppressed transmission of vibrations, as well as the influence of frame clamping conditions on the membrane modes. We find suppressions up to 40 dB and, for three different realized phononic structures, consistently observe significant suppression of the dependence of the membrane's modes on sample clamping-if the mode's frequency lies in the bandgap. As a result, we achieve membrane mode quality factors of 5 × 10(6) with samples that are tightly bolted to the 8 K-cold finger of a cryostat. Q × f -products of 6 × 10(12) Hz at 300 K and 14 × 10(12) Hz at 8 K are observed, satisfying one of the main requirements for optical cooling of mechanical vibrations to their quantum ground-state.

  18. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    Science.gov (United States)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications

  19. Diagnostic accuracy of transabdominal high-resolution US for staging gallbladder cancer and differential diagnosis of neoplastic polyps compared with EUS.

    Science.gov (United States)

    Lee, Jeong Sub; Kim, Jung Hoon; Kim, Yong Jae; Ryu, Ji Kon; Kim, Yong-Tae; Lee, Jae Young; Han, Joon Koo

    2017-07-01

    To compare the diagnostic accuracy of transabdominal high-resolution ultrasound (HRUS) for staging gallbladder cancer and differential diagnosis of neoplastic polyps compared with endoscopic ultrasound (EUS) and pathology. Among 125 patients who underwent both HRUS and EUS, we included 29 pathologically proven cancers (T1 = 7, T2 = 19, T3 = 3) including 15 polypoid cancers and 50 surgically proven polyps (neoplastic = 30, non-neoplastic = 20). We reviewed formal reports and assessed the accuracy of HRUS and EUS for diagnosing cancer as well as the differential diagnosis of neoplastic polyps. Statistical analyses were performed using chi-square tests. The sensitivity, specificity, PPV, and NPV for gallbladder cancer were 82.7 %, 44.4 %, 82.7 %, and 44 % using HRUS and 86.2 %, 22.2 %, 78.1 %, and 33.3 % using EUS. HRUS and EUS correctly diagnosed the stage in 13 and 12 patients. The sensitivity, specificity, PPV, and NPV for neoplastic polyps were 80 %, 80 %, 86 %, and 73 % using HRUS and 73 %, 85 %, 88 %, and 69 % using EUS. Single polyps (8/20 vs. 21/30), larger (1.0 ± 0.28 cm vs. 1.9 ± 0.85 cm) polyps, and older age (52.5 ± 13.2 vs. 66.1 ± 10.3 years) were common in neoplastic polyps (p diagnostic accuracy for GB cancer compared with EUS. • HRUS and EUS showed similar diagnostic accuracy for differentiating neoplastic polyps. • Single, larger polyps and older age were common in neoplastic polyps. • HRUS is less invasive compared with EUS.

  20. In vivo assessment of catheter positioning accuracy and prolonged irradiation time on liver tolerance dose after single-fraction 192Ir high-dose-rate brachytherapy

    Directory of Open Access Journals (Sweden)

    Kropf Siegfried

    2011-09-01

    Full Text Available Abstract Background To assess brachytherapy catheter positioning accuracy and to evaluate the effects of prolonged irradiation time on the tolerance dose of normal liver parenchyma following single-fraction irradiation with 192 Ir. Materials and methods Fifty patients with 76 malignant liver tumors treated by computed tomography (CT-guided high-dose-rate brachytherapy (HDR-BT were included in the study. The prescribed radiation dose was delivered by 1 - 11 catheters with exposure times in the range of 844 - 4432 seconds. Magnetic resonance imaging (MRI datasets for assessing irradiation effects on normal liver tissue, edema, and hepatocyte dysfunction, obtained 6 and 12 weeks after HDR-BT, were merged with 3D dosimetry data. The isodose of the treatment plan covering the same volume as the irradiation effect was taken as a surrogate for the liver tissue tolerance dose. Catheter positioning accuracy was assessed by calculating the shift between the 3D center coordinates of the irradiation effect volume and the tolerance dose volume for 38 irradiation effects in 30 patients induced by catheters implanted in nearly parallel arrangement. Effects of prolonged irradiation were assessed in areas where the irradiation effect volume and tolerance dose volume did not overlap (mismatch areas by using a catheter contribution index. This index was calculated for 48 irradiation effects induced by at least two catheters in 44 patients. Results Positioning accuracy of the brachytherapy catheters was 5-6 mm. The orthogonal and axial shifts between the center coordinates of the irradiation effect volume and the tolerance dose volume in relation to the direction vector of catheter implantation were highly correlated and in first approximation identically in the T1-w and T2-w MRI sequences (p = 0.003 and p p = 0.001 and p = 0.004, respectively. There was a significant shift of the irradiation effect towards the catheter entry site compared with the planned dose

  1. Updating flood maps efficiently using existing hydraulic models, very-high-accuracy elevation data, and a geographic information system; a pilot study on the Nisqually River, Washington

    Science.gov (United States)

    Jones, Joseph L.; Haluska, Tana L.; Kresch, David L.

    2001-01-01

    A method of updating flood inundation maps at a fraction of the expense of using traditional methods was piloted in Washington State as part of the U.S. Geological Survey Urban Geologic and Hydrologic Hazards Initiative. Large savings in expense may be achieved by building upon previous Flood Insurance Studies and automating the process of flood delineation with a Geographic Information System (GIS); increases in accuracy and detail result from the use of very-high-accuracy elevation data and automated delineation; and the resulting digital data sets contain valuable ancillary information such as flood depth, as well as greatly facilitating map storage and utility. The method consists of creating stage-discharge relations from the archived output of the existing hydraulic model, using these relations to create updated flood stages for recalculated flood discharges, and using a GIS to automate the map generation process. Many of the effective flood maps were created in the late 1970?s and early 1980?s, and suffer from a number of well recognized deficiencies such as out-of-date or inaccurate estimates of discharges for selected recurrence intervals, changes in basin characteristics, and relatively low quality elevation data used for flood delineation. FEMA estimates that 45 percent of effective maps are over 10 years old (FEMA, 1997). Consequently, Congress has mandated the updating and periodic review of existing maps, which have cost the Nation almost 3 billion (1997) dollars. The need to update maps and the cost of doing so were the primary motivations for piloting a more cost-effective and efficient updating method. New technologies such as Geographic Information Systems and LIDAR (Light Detection and Ranging) elevation mapping are key to improving the efficiency of flood map updating, but they also improve the accuracy, detail, and usefulness of the resulting digital flood maps. GISs produce digital maps without manual estimation of inundated areas between

  2. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L.

    1983-01-01

    An apparatus is described in which effects of pressure, volume, and temperature changes on a gas can be observed simultaneously. Includes use of the apparatus in demonstrating Boyle's, Gay-Lussac's, and Charles' Laws, attractive forces, Dalton's Law of Partial pressures, and in illustrating measurable vapor pressures of liquids and some solids.…

  3. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations to illustrate characteristics of substances. Outlines a method to detect the changes in pH levels during the electrolysis of water. Uses water pistols, one filled with methane gas and the other filled with water, to illustrate the differences in these two substances. (TW)

  4. Cosmogenically-produced isotopes in natural and enriched high-purity germanium detectors for the MAJORANA DEMONSTRATOR

    Science.gov (United States)

    Gilliss, Thomas; MAJORANA DEMONSTRATOR Collaboration

    2017-01-01

    The MAJORANA DEMONSTRATOR advances toward measurements of the neutrinoless double-beta decay of 76Ge. Detectors employed in the DEMONSTRATOR are subject to cosmogenic spallation during production and processing, resulting in activation of certain long-lived radioisotopes. Activation of these cosmogenic isotopes is mitigated by shielded storage of detectors and through underground operation of the DEMONSTRATOR at the 4850 ft level of the Sanford Underg