WorldWideScience

Sample records for demonstrate viscoelastic material

  1. Viscoelastic behavior of rubbery materials

    CERN Document Server

    Roland, C M

    2011-01-01

    The gigantic size of polymer molecules makes them viscoelastic - their behavior changes depending on how fast and for how long the material is used. This book looks at the latest discoveries in the field from a fundamental molecular perspective, in order to guide the development of better and new applications for soft materials.

  2. Numerical solution methods for viscoelastic orthotropic materials

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  3. A Viscoelastic Constitutive Law For FRP Materials

    Science.gov (United States)

    Ascione, Luigi; Berardi, Valentino Paolo; D'Aponte, Anna

    2011-09-01

    The present study deals with the long-term behavior of fiber-reinforced polymer (FRP) materials in civil engineering. More specifically, the authors propose a mechanical model capable of predicting the viscoelastic behavior of FRP laminates in the field of linear viscoelasticity, starting from that of the matrix material and fiber. The model is closely connected with the low FRP stress levels in civil engineering applications. The model is based on a micromechanical approach which assumes that there is a perfect adhesion between the matrix and fiber. The long-term behavior of the phases is described through a four-parameter rheological law. A validation of the model has also been developed by matching the predicted behavior with an experimental one available in the literature.

  4. Viscoelastic models for explosive binder materials

    Energy Technology Data Exchange (ETDEWEB)

    Bardenhagen, S.G.; Harstad, E.N.; Maudlin, P.J.; Gray, G.T. [Los Alamos National Lab., NM (United States); Foster, J.C. Jr. [Wright Lab., Eglin AFB, FL (United States)

    1997-07-01

    An improved model of the mechanical properties of the explosive contained in conventional munitions is needed to accurately simulate performance and accident scenarios in weapons storage facilities. A specific class of explosives can he idealized as a mixture of two components: energetic crystals randomly suspended in a polymeric matrix (binder). Strength characteristics of each component material are important in the macroscopic behavior of the composite (explosive). Of interest here is the determination of an appropriate constitutive law for a polyurethane binder material. This paper is a continuation of previous work in modeling polyurethane at moderately high strain rates and for large deformations. Simulation of a large deformation (strains in excess of 100%) Taylor Anvil experiment revealed numerical difficulties which have been addressed. Additional experimental data have been obtained including improved resolution Taylor Anvil data, and stress relaxation data at various strain rates. A thorough evaluation of the candidate viscoelastic constitutive model is made and possible improvements discussed.

  5. Viscoelastic material inversion using Sierra-SD and ROL

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aquino, Wilkins [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urbina, Angel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  6. Semi-analytical computation of displacement in linear viscoelastic materials

    Science.gov (United States)

    Spinu, S.; Gradinaru, D.

    2015-11-01

    Prediction of mechanical contact performance based on elastic models is not accurate in case of viscoelastic materials; however, a closed-form description of the viscoelastic contact has yet to be found. This paper aims to advance a semi-analytical method for computation of displacement induced in viscoelastic materials by arbitrary surface tractions, as a prerequisite to a semi-analytical solution for the viscoelastic contact problem. The newly advanced model is expected to provide greater generality, allowing for arbitrary contact geometry and / or arbitrary loading history. While time-independent equations in the purely elastic model can be treated numerically by imposing a spatial discretization only, a viscoelastic constitutive law requires supplementary temporal discretization capable of simulating the memory effect specific to viscoelastic materials. By deriving new influence coefficients, computation of displacement induced in a viscoelastic material by a known but otherwise arbitrary history of surface tractions can be achieved via superposition authorized by the Boltzmann superposition theory applicable in the frame of linear viscoelasticity.

  7. MICROMECHANICS ANALYSIS ON EVOLUTION OF CRACK IN VISCOELASTIC MATERIALS

    Institute of Scientific and Technical Information of China (English)

    张双寅

    2002-01-01

    A preliminary analysis on crack evolution in viscoelastic materials was presented Based on the equivalent inclusion concept of micro mechanics theory, the explicit expressions of crack opening displacement δ and energy release rate G were derived,indicating that both δ and G are increasing with time. The equivalent modulus of the viscoelastic solid comprising cracks was evaluated. It is proved that the decrease of the modulus comes from two mechanisms: one is the viscoelasticity of the material; the other is the crack opening which is getting larger with time.

  8. Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials

    Directory of Open Access Journals (Sweden)

    Liu Lang

    2016-05-01

    Full Text Available Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.

  9. A robust algorithm for the contact of viscoelastic materials

    Science.gov (United States)

    Spinu, S.; Cerlinca, D.

    2016-08-01

    Existing solutions for the contact problem involving viscoelastic materials often require numerical differentiation and integration, as well as resolution of transcendental equations, which can raise convergence issues. The algorithm advanced in this paper can tackle the contact behaviour of the viscoelastic materials without any convergence problems, for arbitrary contact geometry, arbitrary loading programs and complex constitutive models of linear viscoelasticity. An updated algorithm for the elastic frictionless contact, coupled with a semi-analytical method for the computation of viscoelastic displacement, is employed to solve the viscoelastic contact problem at a series of small time increments. The number of equations in the linear system resulting from the geometrical condition of deformation is set by the number of cells in the contact area, which is a priori unknown. A trial-and-error approach is implemented, resulting in a series of linear systems which are solved on evolving contact areas, until static equilibrium equations and complementarity conditions are fully satisfied for every cell in the computational domain. At any iteration, cells with negative pressure are excluded from the contact area, while cells with negative gap (i.e. cells where the contacting bodies are predicted to overlap) are reincluded. The solution is found when pressure is stabilized in relation to the imposed normal load. This robust algorithm is expected to solve a large variety of contact problems involving viscoelastic materials.

  10. The effect of viscoelasticity and tabletting speed on consolidation and relaxation of a viscoelastic material

    NARCIS (Netherlands)

    Maarschalk, KV; Vromans, H; Bolhuis, GK; Lerk, CF

    This paper evalutes the applicability of Dynamic Mechanical Analysis (DMA) as a tool to explain consolidation and relaxation behaviour of a viscoelastic powder compressed at different speeds. From the DMA-data it is concluded that the material becomes more rigid and more elastic with increasing

  11. Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior

    NARCIS (Netherlands)

    Sagis, L.M.C.; Linden, van der E.

    2001-01-01

    In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly

  12. A stable numerical solution method in-plane loading of nonlinear viscoelastic laminated orthotropic materials

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1989-01-01

    In response to the tremendous growth in the development of advanced materials, such as fiber-reinforced plastic (FRP) composite materials, a new numerical method is developed to analyze and predict the time-dependent properties of these materials. Basic concepts in viscoelasticity, laminated composites, and previous viscoelastic numerical methods are presented. A stable numerical method, called the nonlinear differential equation method (NDEM), is developed to calculate the in-plane stresses and strains over any time period for a general laminate constructed from nonlinear viscoelastic orthotropic plies. The method is implemented in an in-plane stress analysis computer program, called VCAP, to demonstrate its usefulness and to verify its accuracy. A number of actual experimental test results performed on Kevlar/epoxy composite laminates are compared to predictions calculated from the numerical method.

  13. A finite deformation viscoelastic-viscoplastic constitutive model for self-healing materials

    Science.gov (United States)

    Shahsavari, H.; Naghdabadi, R.; Baghani, M.; Sohrabpour, S.

    2016-12-01

    In this paper, employing the Hencky strain, viscoelastic-viscoplastic response of self-healing materials is investigated. Considering the irreversible thermodynamics and using the effective configuration in the Continuum Damage-Healing Mechanics (CDHM), a phenomenological finite strain viscoelastic-viscoplastic constitutive model is presented. Considering finite viscoelastic and viscoplastic deformations, total deformation gradient is multiplicatively decomposed into viscoelastic and viscoplastic parts. Due to mathematical advantages and physical meaning of Hencky strain, this measure of strain is employed in the constitutive model development. In this regard, defining the damage and healing variables and employing the strain equivalence hypothesis, the strain tensor is determined in the effective configuration. Satisfying the Clausius-Duhem inequality, the evolution equations are introduced for the viscoelastic and viscoplastic strains. The damage and healing variables also evolve according to two different prescribed functions. To employ the proposed model in different loading conditions, the model is discretized in the semi-implicit form. Material parameters of the model are identified employing experimental tests on asphalt mixes available in the literature. Finally, capability of the model is demonstrated comparing the model predictions in the creep-recovery and repeated creep-recovery with the experimental results available in the literature and a good agreement between predicted and test results is revealed.

  14. Time-dependent, non-Newtonian behavior of viscoelastic materials

    Science.gov (United States)

    Jachimiak, P. D.; Song, Y. S.; Brodkey, R. S.

    1974-01-01

    A kinetic model for characterizing the shear stress or shear strain rate of thixotropic materials is developed and combined with Oldroyd's viscoelastic model (1953) modified in this paper in order to predict the first normal stress difference. In order to test the method, transient and steady state data have been obtained with a Weissenberg rheogoniometer used to measure the constant stress and constant shear rate of a solution of polymethyl methacrylate in diethylphthalate. A computer was used to facilitate data acquisition.

  15. Modelling of Rough Contact between Linear Viscoelastic Materials

    Directory of Open Access Journals (Sweden)

    Sergiu Spinu

    2017-01-01

    Full Text Available The important gradients of stress arising in rough mechanical contacts due to interaction at the asperity level are responsible for damage mechanisms like rolling contact fatigue, wear, or crack propagation. The deterministic approach to this process requires computationally effective numerical solutions, capable of handling very fine meshes that capture the particular features of the investigated contacting surface. The spatial discretization needs to be supported by temporal sampling of the simulation window when time-dependent viscoelastic constitutive laws are considered in the description of the material response. Moreover, when real surface microtopography is considered, steep slopes inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact. A computer model for the rough contact of linear viscoelastic materials, capable of handling deterministic contact geometry, complex viscoelastic models, and arbitrary loading histories, is advanced in this paper. Plasticity is considered in a simplified manner that preserves the information regarding the contact area and the pressure distribution without computing the residual strains and stresses. The model is expected to predict the contact behavior of deterministic rough surfaces as resulting from practical engineering applications, thus assisting the design of durable machine elements using elastomers or rubbers.

  16. Fitting methods for relaxation modulus of viscoelastic materials

    Institute of Scientific and Technical Information of China (English)

    DUAN Ji-an; YANG Cheng-ling; SHUAI Ci-jun

    2007-01-01

    Based on viscoelastic theory, two new computational methods of solving linear equations and minimum value of the 1-norm were put forward for transforming Kohlrausch-William-Watts (KWW) function of viscoelastic materials to the generalized Maxwell model. The computational methods for the Maxwell model fitting were achieved in MATLAB software. It is found that fitting precision of the two methods is very high. The method of solving linear equations needs more fitting points and more numbers of Maxwell units. It makes the program of finite element analysis complex. While the method of solving minimum value of 1-norm can obtain very high precision only using less fitting points. These methods can fit not only experimental curve of KWW function,but also the experimental data directly.

  17. Creep characterization of gels and nonlinear viscoelastic material model

    Science.gov (United States)

    Ishikawa, Kiyotaka; Fujikawa, Masaki; Makabe, Chobin; Tanaka, Kou

    2016-07-01

    In this paper, we examine gel creep behavior and develop a material model for useful and simple numerical simulation of this behavior. This study has three stages and aims: (1) gel creep behavior is examined; (2) the material model is determined and the material constants are identified; and (3) the versatility of the material model and the constants are evaluated. The creep behavior is found to be independent of the initial stress level in the present experiment. Thus, the viscoelastic model proposed by Simo is selected, and its material constants are identified using the results of creep tests. Moreover, from the results of numerical calculations and experiments, it is found that the chosen material model has good reproducibility, predictive performance and high versatility.

  18. LFR Demonstrator Materials Viability

    Energy Technology Data Exchange (ETDEWEB)

    Caro, M

    2006-08-02

    Interest in fast reactor development has increased with the Department of Energy's introduction of the Global Nuclear Energy Partnership (GNEP) [1]. The GNEP program plans development of a sodium cooled Advanced Burner Reactor (ABR) that can be used to reduce the amount spent LWR fuel in storage and the number of high level waste sites needed for expansion of nuclear power throughout the world over the 21st century. In addition, the program proposes to make nuclear power more available while reducing the proliferation concerns by revising policies and technology for control of weapons useable materials. This would be accomplished with establishment of new institutional arrangements based on selective siting of reprocessing, enrichment and waste disposal facilities. The program would also implement development of small reactors suitable for use in developing countries or remote regions with small power grids. Over the past several years, under the Department of Energy (DOE) NERI and GEN IV programs research has been conducted on small lead cooled reactors. The Small Secure Transportable Autonomous Reactor (SSTAR) [2] is the most recent version of this type of reactor and research is continuing on it in the GEN IV program in parallel with GNEP. SSTAR is a small (10MWe-100MWe) reactor that is fueled once for life. It complements the GNEP program very well in that it serves one of the world markets not currently addressed by large reactors and its development requirements are similar to those for the ABRs. In particular, the fuel and structural materials for these fast spectrum reactors share common thermal and neutron environments. The coolants, sodium in ABR and lead or lead-bismuth eutectic (LBE) in SSTAR, are the major developmental difference. This report discusses the status of structural materials for fast reactor core and primary system components and selected aspects of their development.

  19. Determination of the Creep Parameters of Linear Viscoelastic Materials

    Directory of Open Access Journals (Sweden)

    Alibay Iskakbayev

    2016-01-01

    Full Text Available Creep process of linear viscoelastic materials is described by the integral equation of Boltzmann-Volterra in which creep kernel is approximated by Rabotnov’s fractional exponential function. The creep equation contains four unknown parameters: α, singularity parameter; β, fading parameter; λ, rheological parameter; and ε0, conditionally instantaneous strain. Two-stage determination method of creep parameters is offered. At the first stage, taking into account weak singularity properties of Abel’s function at the initial moment of loading, parameters ε0 and α are determined. At the second stage, using already known parameters ε0 and α, parameters β and λ are determined. Analytical expressions for calculating these parameters are obtained. An accuracy evaluation of the offered method with using experimentally determined creep strains of material Nylon 6 and asphalt concrete showed its high accuracy.

  20. Numerical simulations of rough contacts between viscoelastic materials

    Science.gov (United States)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The durability of the mechanical contact is often plagued by surface-related phenomena like rolling contact fatigue, wear or crack propagation, which are linked to the important gradients of stress arising in the contacting bodies due to interaction at the asperity level. The semi-analytical computational approach adopted in this paper is based on a previously reported algorithm capable of simulating the contact between bodies with arbitrary limiting surfaces and viscoelastic behaviour, which is enhanced and adapted for the contact of real surfaces with microtopography. As steep slopes at the asperity level inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact, the viscoelastic behaviour is amended by limiting the maximum value of the pressure on the contact area to that of the material hardness, according to the Tabor equation. In this manner, plasticity is considered in a simplified manner that assures the knowledge of the contact area and of the pressure distribution without estimation of the residual state. The main advantage of this approach is the preservation of the algorithmic complexity, allowing the simulation of very fine meshes capable of capturing particular features of the investigated contacting surface. The newly advanced model is expected to predict the contact specifics of rough surfaces as resulting from various manufacturing processes, thus assisting the design of durable machine elements using elastomers or rubbers.

  1. Viscoelastic effective properties of two types of heterogeneous materials.

    Science.gov (United States)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel

    2015-04-01

    In the past, a lot of efforts have been put to describe two end cases of rock behaviors: elasticity and viscosity. In recent years, more focus has been brought on the intermediate viscoelastic cases which describe better the rheology of rocks such as shales. Shales are typically heterogeneous and the question arises as to how to derive their effective properties so that they can be approximated as homogeneous media. This question has already been dealt with at the elastic and viscous limit but still remains for some cases in between. Using MILAMIN, a fast finite element solver for large problems, we numerically investigate different approaches to derive the effective properties of several viscoelastic media. Two types of geometries are considered: layered and inclusion based media. We focus on two dimensional plane strain problems considering two phase composites deformed under pure shear. We start by investigating the case of transversely isotropic layered media made of two Maxwell materials. Using the Backus averaging method we discuss the degree of relevance of this averaging by considering some parameters as: layer periodicity, layer thickness and layer interface roughness. Other averaging methods are also discussed which provide a broader perspective on the performances of Backus averaging. In a second part we move on to inclusion based models. The advantage of these models compared to the previous one is that they provide a better approximation to real microstructures in rocks. The setup we consider in this part is the following: some viscous circular inclusions are embedded in an elastic matrix. Both the inclusions and the matrix are homogeneous but the inclusions are purely isotropic while the matrix can also be anisotropic. In order to derive the effective viscoelastic properties of the medium we use two approaches: the self-consistent averaging and the differential effective medium theory. The idea behind self-consistency is to assume that the inclusions

  2. Innovative viscoelastic material selection strategy based on dma and mini-shaker tests for spacecraft applications

    Science.gov (United States)

    Kawak, B. J.; Cabon, B. H.; Aglietti, G. S.

    2017-02-01

    With the increase of payload sensitivity (such as high precision optics for sub-metric imager), micro-vibration disturbances generated by spinning actuators, if not controlled, may affect on-board instruments and may worsen the quality of pictures taken by an Earth observation imager. For the last two decades, viscoelastic materials have been gradually used in isolators designed for space applications. Their attractiveness comes from their ability to act as a second order low pass filter to minimise micro-vibration forces. In this study, an innovative viscoelastic material pre-selection process has been developed to assess the mechanical and thermal properties of viscoelastic isolators during early design stages. In order to characterise the viscoelastic isolators, tests have been performed at viscoelastic material level (material characterisation) and at viscoelastic isolator level (isolator characterisation). A qualitative correlation has been established between the master curves (material characterisation) and the transmissibility curves (isolator characterisation) which leads to a possible prediction of expected isolation performances of a viscoelastic material during early design stages.

  3. Fatigue and residual strength of concrete and other aging viscoelastic materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1996-01-01

    The DVM-theory (Damaged Viscoelastic Material) previously developed by the author to predict lifetime of non-aging viscoelastic materials (like wood) is generalized in this paper such that aging viscoelastic materials such as concrete subjected to variable load can also be considered. Lifetime...... criterion. A simple time criterion is much better. The theory is successfully compared with methods previously presented in the field of concrete fatigue. Algorithms and design graphs are developed which can be used in fatigue design of concrete products....

  4. Parametric model-order reduction for viscoelastic finite element models: an application to material parameter identification

    OpenAIRE

    van de Walle, Axel; Rouleau, Lucie; Deckers, Elke; Desmet, Wim

    2015-01-01

    In many engineering applications, viscoelastic treatments are used to suppress vibrations of lightly damped structures. Computational methods provide powerful tools for the design and analysis of these structures. The most commonly used method to model the dynamics of complex structures is the finite element method. Its use, however, often results in very large and computationally demanding models, especially when viscoelastic material behaviour has to be taken into account. To alleviate this...

  5. Effect of the Material Parameters on Layered Viscoelastic Frictional Contact Systems

    Directory of Open Access Journals (Sweden)

    Fatin F. Mahmoud

    2010-01-01

    Full Text Available In the design process, one of the main targets is to reduce the peak values of the contact stresses. This can be attained by layering the contacting bodies by layers of different material characteristics. Viscoelastic materials are characterized by either a stress relaxation or a creep deformation; therefore, the contacting bodies can be layered with such materials to attain this target. This paper discusses effects of the material characteristics of viscoelastic layers upon the unbounded contact configuration. Three material parameters are considered: the layer/contact solids stiffness ratio, the delayed/instantaneous elasticity ratio, and the material relaxation time. The results are obtained by using a two-dimensional time-dependent nonlinear computational model, developed by the authors, capable of analyzing quasistatic viscoelastic frictional contact problems.

  6. Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid-Liquid Interface.

    Science.gov (United States)

    Churnside, Allison B; Tung, Ryan C; Killgore, Jason P

    2015-10-13

    Viscoelastic property measurements made at the solid-liquid interface are key to characterizing materials for a variety of biological and industrial applications. Further, nanostructured materials require nanoscale measurements. Here, material loss tangents (tan δ) were extracted from confounding liquid effects in nanoscale contact resonance force microscopy (CR-FM), an atomic force microscope based technique for observing mechanical properties of surfaces. Obtaining reliable CR-FM viscoelastic measurements in liquid is complicated by two effects. First, in liquid, spurious signals arise during cantilever excitation. Second, it is challenging to separate changes to cantilever behavior due to the sample from changes due to environmental damping and added mass effects. We overcame these challenges by applying photothermal cantilever excitation in multiple resonance modes and a predictive model for the hydrodynamic effects. We demonstrated quantitative, nanoscale viscoelastic CR-FM measurements of polymers at the solid-liquid interface. The technique is demonstrated on a point-by-point basis on polymer samples and while imaging in contact mode on a fixed plant cell wall. Values of tan δ for measurements made in water agreed with the values for measurements in air for some experimental conditions on polystyrene and for all examined conditions on polypropylene.

  7. Passive vibration control in rotor dynamics: Optimization of composed support using viscoelastic materials

    Science.gov (United States)

    Ribeiro, Eduardo Afonso; Pereira, Jucélio Tomás; Alberto Bavastri, Carlos

    2015-09-01

    One of the major reasons for inserting damping into bearings is that rotating machines are often requested in critical functioning conditions having sometimes to function under dynamic instability or close to critical speeds. Hydrodynamic and magnetic bearings have usually been used for this purpose, but they present limitations regarding costs and operation, rendering the use of viscoelastic supports a feasible solution for vibration control in rotating machines. Most papers in the area use simple analytic or single degree of freedom models for the rotor as well as classic mechanical models of linear viscoelasticity for the support - like Maxwell, Kelvin-Voigt, Zenner, four-element, GHM models and even frequency independent models - but they lack the accuracy of fractional models in a large range of frequency and temperature regarding the same number of coefficients. Even in those works, the need to consider the addition of degrees of freedom to the support is evident. However, so far no paper has been published focusing on a methodology to determine the optimal constructive form for any viscoelastic support in which the rotor is discretized by finite elements associated to an accurate model for characterizing the viscoelastic material. In general, the support is meant to be a simple isolation system, and the fact the stiffness matrix is complex and frequency-temperature dependent - due to its viscoelastic properties - forces the traditional methods to require an extremely long computing time, thus rendering them too time consuming in an optimization environment. The present work presents a robust methodology based mainly on generalized equivalent parameters (GEP) - for an optimal design of viscoelastic supports for rotating machinery - aiming at minimizing the unbalance frequency response of the system using a hybrid optimization technique (genetic algorithms and Nelder-Mead method). The rotor is modeled based on the finite element method using Timoshenko's thick

  8. The impact of experimental measurement errors on long-term viscoelastic predictions. [of structural materials

    Science.gov (United States)

    Tuttle, M. E.; Brinson, H. F.

    1986-01-01

    The impact of flight error in measured viscoelastic parameters on subsequent long-term viscoelastic predictions is numerically evaluated using the Schapery nonlinear viscoelastic model. Of the seven Schapery parameters, the results indicated that long-term predictions were most sensitive to errors in the power law parameter n. Although errors in the other parameters were significant as well, errors in n dominated all other factors at long times. The process of selecting an appropriate short-term test cycle so as to insure an accurate long-term prediction was considered, and a short-term test cycle was selected using material properties typical for T300/5208 graphite-epoxy at 149 C. The process of selection is described, and its individual steps are itemized.

  9. The numerical calculation of storage and loss compliance from creep data for linear viscoelastic materials

    NARCIS (Netherlands)

    Schwarzl, F.R.

    1969-01-01

    Numerical formulae are given for calculation of storage and loss compliance from the course of the creep compliance for linear viscoelastic materials. These formulae involve values of the creep compliance at times which are equally spaced on a logarithmic time scale. The ratio between succeeding

  10. Determination of the viscoelastic properties of elastomeric materials by the dynamic indentation method

    NARCIS (Netherlands)

    Vriend, Nathalie M.; Kren, Alexander P.

    2004-01-01

    In this paper the dynamic indentation test method, which is not often used, is discussed. The goal of the paper is to consider the possibility of applying a dynamic indentation test method to investigate rubber materials. The basic equations for the determination of the viscoelastic characteristics

  11. Linear orthotropic viscoelasticity model for fiber reinforced thermoplastic material based on Prony series

    Science.gov (United States)

    Endo, Vitor Takashi; de Carvalho Pereira, José Carlos

    2017-05-01

    Material properties description and understanding are essential aspects when computational solid mechanics is applied to product development. In order to promote injected fiber reinforced thermoplastic materials for structural applications, it is very relevant to develop material characterization procedures, considering mechanical properties variation in terms of fiber orientation and loading time. Therefore, a methodology considering sample manufacturing, mechanical tests and data treatment is described in this study. The mathematical representation of the material properties was solved by a linear viscoelastic constitutive model described by Prony series, which was properly adapted to orthotropic materials. Due to the large number of proposed constitutive model coefficients, a parameter identification method was employed to define mathematical functions. This procedure promoted good correlation among experimental tests, and analytical and numerical creep models. Such results encourage the use of numerical simulations for the development of structural components with the proposed linear viscoelastic orthotropic constitutive model. A case study was presented to illustrate an industrial application of proposed methodology.

  12. The advantage of linear viscoelastic material behavior in passive damper design-with application in broad-banded resonance dampers for industrial high-precision motion stages

    Science.gov (United States)

    Verbaan, Cornelis A. M.; Peters, Gerrit W. M.; Steinbuch, Maarten

    2017-01-01

    In this paper we demonstrate the advantage of applying viscoelastic materials instead of purely viscous materials as damping medium in mechanical dampers. Although the loss modulus decreases as function of frequency in case of viscoelastic behavior, which can be interpreted as a decrease of damping, the viscoelastic behavior still leads to an increased modal damping for mechanical structures. This advantage holds for inertial-mass-type dampers that are tuned for broad-banded resonance damping. It turns out that an increase of the storage modulus as function of frequency contributes to the effectiveness of mechanical dampers with respect to energy dissipation at different mechanical resonance frequencies. It is shown that this phenomenon is medium specific and is independent of the amount of damper mass.

  13. Hydrodynamic description of (visco)elastic composite materials and relative strains as a new macroscopic variable

    CERN Document Server

    Menzel, Andreas M

    2016-01-01

    One possibility to adjust material properties to a specific need is to embed units of one substance into a matrix of another substance. Even materials that are readily tunable during operation can be generated in this way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their surroundings approach the macroscopic response time, their deformation processes need to be included into a dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative translations and relative rotat...

  14. A BEM formulation applied in the mechanical material modelling of viscoelastic cracked structures

    Science.gov (United States)

    Oliveira, Hugo Luiz; Leonel, Edson Denner

    2016-12-01

    The present study aims at performing a mechanical analysis of 2D viscoelastic cracked structural materials using the Boundary Element Method (BEM). The mesh dimensionality reduction provided by the BEM and its accuracy in representing high gradient fields make this numerical method robust to solve fracture mechanics problems. Viscoelastic models address phenomena that provide changes on the mechanical material properties along time. Well-established viscoelastic models such as Maxwell, Kelvin-Voigt and Boltzmann are used in this study. The numerical viscoelastic scheme, which is based on algebraic BEM equations, utilizes the Euler method for time derivative evaluation. Therefore, the unknown variables at the structural boundary and its variations along time are determined through an ordinary linear system of equations. Moreover, time-dependent boundary conditions may be considered, which represent loading phases. The dual BEM formulation is adopted for modelling the mechanical structural behaviour of cracks bodies. Three examples are considered to illustrate the robustness of the adopted formulation. The results achieved by the BEM are in good agreement with reported data and numerical stability is observed.

  15. Engineering viscoelasticity

    CERN Document Server

    Gutierrez-Lemini, Danton

    2014-01-01

    Engineering Viscoelasticity covers all aspects of the thermo- mechanical response of viscoelastic substances that a practitioner in the field of viscoelasticity would need to design experiments, interpret test data, develop stress-strain models, perform stress analyses, design structural components, and carry out research work. The material in each chapter is developed from the elementary to the advanced, providing the background in mathematics and mechanics that are central to understanding the subject matter being presented. The book examines how viscoelastic materials respond to the application of loads, and provides practical guidelines to use them in the design of commercial, military and industrial applications. This book also: ·         Facilitates conceptual understanding by progressing in each chapter from elementary to challenging material ·         Examines in detail both differential and integral constitutive equations, devoting full chapters to each type and using both forms in ...

  16. Contact mechanics and friction for transversely isotropic viscoelastic materials

    NARCIS (Netherlands)

    Mokhtari, M.; Schipper, D.J.; Vleugels, N.; Noordermeer, J.W.M.; Yoshimoto, S.; Hashimoto, H.

    2015-01-01

    Transversely isotropic materials are an unique group of materials whose properties are the same along two of the principal axes of a Cartesian coordinate system. Various natural and artificial materials behave effectively as transversely isotropic elastic solids. Several materials can be classified

  17. Elastic, viscoelastic and viscoplastic contributions to compliance during deformation under stress in prosthodontic temporization materials.

    Science.gov (United States)

    Vaidyanathan, Tritala K; Vaidyanathan, Jayalakshmi; Arghavani, David

    2016-12-01

    Purpose: The goal of this investigation was to characterize the compliance properties in selected polymers used for temporary (provisional crown and bridge) applications. Method: Polymethyl methacrylate (PMMA)- and polyethyl methacrylate (PEMA)-based JET and TRIM II were investigated along with two bisacryl composite resins (LUXATEMP and PROTEMP 3 GARANT). Rectangular samples of the resins were subjected to creep-recovery tests in a dynamic mechanical analyzer at and near the oral temperature (27 °C, 37 °C and 47 °C). The instantaneous (elastic), and time-dependent viscoelastic, and viscoplastic compliance profiles of the materials were determined and analyzed as a function of materials and temperature. Results: Highly significant (p = 0.0001) differences among means of elastic, viscoelastic and viscoplastic compliance values were found as a function of materials. TRIM II showed an order of magnitude higher viscoplastic deformation than the other three materials (LUXATEMP, PROTEMP 3 GARANT and JET). Conclusions: The results indicate that PEMA is susceptible to significantly greater elastic, viscoelastic, and more importantly to viscoplastic compliant behavior compared with bisacryl composite and PMMA provisional crown and bridge materials. This indicates high-dimensional instability and poor stiffness and resiliency in PEMA appliances vis-à-vis those of PMMA and bisacryl composites.

  18. An Updated Analytical Structural Pounding Force Model Based on Viscoelasticity of Materials

    Directory of Open Access Journals (Sweden)

    Qichao Xue

    2016-01-01

    Full Text Available Based on the summary of existing pounding force analytical models, an updated pounding force analysis method is proposed by introducing viscoelastic constitutive model and contact mechanics method. Traditional Kelvin viscoelastic pounding force model can be expanded to 3-parameter linear viscoelastic model by separating classic pounding model parameters into geometry parameters and viscoelastic material parameters. Two existing pounding examples, the poundings of steel-to-steel and concrete-to-concrete, are recalculated by utilizing the proposed method. Afterwards, the calculation results are compared with other pounding force models. The results show certain accuracy in proposed model. The relative normalized errors of steel-to-steel and concrete-to-concrete experiments are 19.8% and 12.5%, respectively. Furthermore, a steel-to-polymer pounding example is calculated, and the application of the proposed method in vibration control analysis for pounding tuned mass damper (TMD is simulated consequently. However, due to insufficient experiment details, the proposed model can only give a rough trend for both single pounding process and vibration control process. Regardless of the cheerful prospect, the study in this paper is only the first step of pounding force calculation. It still needs a more careful assessment of the model performance, especially in the presence of inelastic response.

  19. Some basic principles in dynamic theory of viscoelastic materials with voids

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo, some basic principles in the dynamic theory of viscoelastic materials with voids can be estab- lished systematically. In this paper, an important integral relation in terms of con- volutions is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem, but also to derive systemati- cally the complementary functionals for the eight-field, six-field, four-field simpli- fied Gurtin-type variational principles and the potential energy-functional for the two-field one in the dynamic theory of viscoelastic materials with voids by the generalized Legendre transformations given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.

  20. Some basic principles in dynamic theory of viscoelastic materials with voids

    Institute of Scientific and Technical Information of China (English)

    LUO En; LI WeiHua

    2007-01-01

    According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo, some basic principles in the dynamic theory of viscoelastic materials with voids can be established systematically. In this paper, an important integral relation in terms of convolutions is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it Is possible not only to obtain the principle of virtual work and the reciprocal theorem, but also to derive systematically the complementary functionals for the eight-field, six-field, four-field simplified Gurtin-type variational principles and the potential energy-functional for the two-field one in the dynamic theory of viscoelastic materials with voids by the generalized Legendre transformations given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.

  1. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L.

    1990-01-01

    Included are three demonstrations that include the phase change of ice when under pressure, viscoelasticity and colloid systems, and flame tests for metal ions. The materials, procedures, probable results, and applications to real life situations are included. (KR)

  2. 2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material

    Science.gov (United States)

    Hassini, Lamine; Raja, Lamloumi; Lecompte-Nana, Gisèle Laure; Elcafsi, Mohamed Afif

    2017-04-01

    The aim of this work was to simulate in two dimensions the spatio-temporal evolution of the moisture content, the temperature, the solid (dry matter) concentration, the dry product total porosity, the gas porosity, and the mechanical stress within a deformable and unsaturated product during convective drying. The material under study was an elongated cellulose-clay composite sample with a square section placed in hot air flow. Currently, this innovative composite is used in the processing of boxes devoted to the preservation of heritage and precious objects against fire damage and other degradation (moisture, insects, etc.). A comprehensive and rigorous hydrothermal model had been merged with a dynamic linear viscoelasticity model based on Bishop's effective stress theory, assuming that the stress tensor is the sum of solid, liquid, and gas stresses. The material viscoelastic properties were measured by means of stress relaxation tests for different water contents. The viscoelastic behaviour was described by a generalized Maxwell model whose parameters were correlated to the water content. The equations of our model were solved by means of the 'COMSOL Multiphysics' software. The hydrothermal part of the model was validated by comparison with experimental drying curves obtained in a laboratory hot-air dryer. The simulations of the spatio-temporal distributions of mechanical stress were performed and interpreted in terms of material potential damage. The sample shape was also predicted all over the drying process.

  3. Theory of viscoelasticity an introduction

    CERN Document Server

    Christensen, R

    1982-01-01

    Theory of Viscoelasticity: An Introduction, Second Edition discusses the integral form of stress strain constitutive relations. The book presents the formulation of the boundary value problem and demonstrates the separation of variables condition.The text describes the mathematical framework to predict material behavior. It discusses the problems to which integral transform methods do not apply. Another topic of interest is the thermoviscoelastic stress analysis. The section that follows describes the heat conduction, glass transition criterion, viscoelastic Rayleigh waves, optimal str

  4. Viscoelasticity behavior for finite deformations, using a consistent hypoelastic model based on Rivlin materials

    Science.gov (United States)

    Altmeyer, Guillaume; Panicaud, Benoit; Rouhaud, Emmanuelle; Wang, Mingchuan; Roos, Arjen; Kerner, Richard

    2016-11-01

    When constructing viscoelastic models, rate-form relations appear naturally to relate strain and stress tensors. One has to ensure that these tensors and their rates are indifferent with respect to the change of observers and to the superposition with rigid body motions. Objective transports are commonly accepted to ensure this invariance. However, the large number of transport operators developed makes the choice often difficult for the user and may lead to physically inconsistent formulation of hypoelasticity. In this paper, a methodology based on the use of the Lie derivative is proposed to model consistent hypoelasticity as an equivalent incremental formulation of hyperelasticity. Both models are shown to be reversible and completely equivalent. Extension to viscoelasticity is then proposed from this consistent model by associating consistent hypoelastic models with viscous behavior. As an illustration, Mooney-Rivlin nonlinear elasticity is coupled with Newton viscosity and a Maxwell-like material is investigated. Numerical solutions are then presented to illustrate a viscoelastic material subjected to finite deformations for a large range of strain rates.

  5. Analysis of tristable energy harvesting system having fractional order viscoelastic material

    Energy Technology Data Exchange (ETDEWEB)

    Oumbé Tékam, G. T.; Woafo, P. [Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon); Kitio Kwuimy, C. A. [Center for Nonlinear Dynamics and Control, Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085 (United States)

    2015-01-15

    A particular attention is devoted to analyze the dynamics of a strongly nonlinear energy harvester having fractional order viscoelastic flexible material. The strong nonlinearity is obtained from the magnetic interaction between the end free of the flexible material and three equally spaced magnets. Periodic responses are computed using the KrylovBogoliubov averaging method, and the effects of fractional order damping on the output electric energy are analyzed. It is obtained that the harvested energy is enhanced for small order of the fractional derivative. Considering the order and strength of the fractional viscoelastic property as control parameter, the complexity of the system response is investigated through the Melnikov criteria for horseshoes chaos, which allows us to derive the mathematical expression of the boundary between intra-well motion and bifurcations appearance domain. We observe that the order and strength of the fractional viscoelastic property can be effectively used to control chaos in the system. The results are confirmed by the smooth and fractal shape of the basin of attraction as the order of derivative decreases. The bifurcation diagrams and the corresponding Lyapunov exponents are plotted to get insight into the nonlinear response of the system.

  6. An Optimum Analysis Method of Sandwich Structures Made from Elastic-viscoelastic Materials

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-bo; XIA Yu; REN Zhi-gang; LU Zhe-an; WANG Er-lei

    2004-01-01

    Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,and iterative modal strain energy method and iterative complex eigenvalue method are presented to obtain frequency and loss factor of sandwich structures.The two methods are effective and exact for the large-scale complex composite sandwich structures.Then an optimum analysis method is suggested to apply to sandwich structures.Finally,as an example,an optimum analysis of a clamped-clamped sandwich beams is conducted,theoretical closed-form solution and numerical predictions are studied comparatively,and the results agree well.

  7. VISCO-ELASTIC PROPERTIES OF SOFT RELINING MATERIALS – REVIEW

    Directory of Open Access Journals (Sweden)

    Ilian Hristov

    2017-05-01

    Full Text Available Despite the achievements of modern dentistry in fields of implantology and CAD-CAM technologies, the challenges associated with edentulous patients, treatment are still remaining. Difficulties are getting even greater, when it is a matter of highly atrophied alveolar ridges, covered with very thin mucosa, people suffering from xerostomia, exostosis, very well developed torus palatinus or tuberae maxillae. Problems of the patients with removable dentures usually are poor adhesion and stability, pain, wounds, difficult adaptation with the new dentures, etc. At this moment there are only two possibilities to help these people. The first one is the use of implants; the second one is to use soft relining materials. There are some obstacles that reduce the use of implants in all patients, because of medical, anatomical, psychological and financial concerns. While in the second option the contraindications are quite less.

  8. A numerical solution to the cattaneo-mindlin problem for viscoelastic materials

    Science.gov (United States)

    Spinu, S.; Cerlinca, D.

    2016-08-01

    The problem of the frictional mechanical contact with slip and stick, also referred to as the Cattaneo-Mindlin problem, is an important topic in engineering, with applications in the modeling of particle-flow simulations or in the study of contact between rough surfaces. In the frame of Linear Theory of Elasticity, accurate description of the slip-stick contact can only be achieved numerically, due to mutual interaction between normal and shear contact tractions. Additional difficulties arise when considering a viscoelastic constitutive law, as the mechanical response of the contacting materials depends explicitly on time. To overcome this obstacle, an existing algorithm for the purely elastic slip-stick contact is coupled with a semi-analytical method for viscoelastic displacement computation. The main advantage of this approach is that the contact model can be divided in subunits having the same structure as that of the purely elastic frictionless contact model, for which a well-established solution is readily available. In each time step, the contact solver assesses the contact area, the pressure distribution, the stick area and the shear tractions that satisfy the contact compatibility conditions and the static force equilibrium in both normal and tangential directions. A temporal discretization of the simulation windows assures that the memory effect, specific to both viscoelasticity and friction as a path-dependent processes, is properly replicated.

  9. Experimental parameter estimation method for nonlinear viscoelastic composite material models: an application on arterial tissue.

    Science.gov (United States)

    Sunbuloglu, Emin; Bozdag, Ergun; Toprak, Tuncer; Islak, Civan

    2013-01-01

    This study is aimed at setting a method of experimental parameter estimation for large-deforming nonlinear viscoelastic continuous fibre-reinforced composite material model. Specifically, arterial tissue was investigated during experimental research and parameter estimation studies, due to medical, scientific and socio-economic importance of soft tissue research. Using analytical formulations for specimens under combined inflation/extension/torsion on thick-walled cylindrical tubes, in vitro experiments were carried out with fresh sheep arterial segments, and parameter estimation procedures were carried out on experimental data. Model restrictions were pointed out using outcomes from parameter estimation. Needs for further studies that can be developed are discussed.

  10. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    Science.gov (United States)

    Hamaguchi, Fumiya; Ando, Keita

    2015-11-01

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh-Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh-Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  11. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Fumiya; Ando, Keita, E-mail: kando@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan)

    2015-11-15

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  12. Vibrations of a Simply Supported Beam with a Fractional Viscoelastic Material Model – Supports Movement Excitation

    Directory of Open Access Journals (Sweden)

    Jan Freundlich

    2013-01-01

    Full Text Available The paper presents vibration analysis of a simply supported beam with a fractional order viscoelastic material model. The Bernoulli-Euler beam model is considered. The beam is excited by the supports movement. The Riemann – Liouville fractional derivative of order 0 α ⩽ 1 is applied. In the first stage, the steady-state vibrations of the beam are analyzed and therefore the Riemann – Liouville fractional derivative with lower terminal at −∞ is assumed. This assumption simplifies solution of the fractional differential equations and enables us to directly obtain amplitude-frequency characteristics of the examined system. The characteristics are obtained for various values of fractional derivative of order α and values of the Voigt material model parameters. The studies show that the selection of appropriate damping coefficients and fractional derivative order of damping model enables us to fit more accurately dynamic characteristic of the beam in comparison with using integer order derivative damping model.

  13. An inverse method for determining the spatially resolved properties of viscoelastic-viscoplastic three-dimensional printed materials.

    Science.gov (United States)

    Chen, X; Ashcroft, I A; Wildman, R D; Tuck, C J

    2015-11-08

    A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic-viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic-viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance.

  14. Embedding viscoelastic damping materials in low-cost VARTM composite structures

    Science.gov (United States)

    Robinson, M. J.; Kosmatka, J. B.

    2005-05-01

    It has been well established that using viscoelastic damping materials in structural applications can greatly reduce the dynamic response and thus improve structural fatigue life. Previously these materials have been used to solve vibration problems in metallic structures, where the damping material is attached to the structure and then a stiff outer layer is attached to promote shear deformation in the damping material. More recently, these materials have been used successfully in expensive aerospace composite structures, where the damping material is embedded between plies of prepreg graphite/epoxy prior to being cured in a high-temperature, high-pressure autoclave. The current research involves embedding these damping layers into low-cost composite structures fabricated using the Vacuum Assisted Resin Transfer Molding (VARTM) process. The damping layers are perforated with a series of small holes to allow the resin to flow through the damping layer and completely wet-out the structure. Experimental fabrication, vibration testing, and stiffness testing investigate the effect of hole diameter versus hole spacing. Results show that the damping and stiffness can be very sensitive to perforation spacing and size. It is shown that for closely spaced perforations (95% damping area) that damping increases by only a factor of 2.2 over the undamped plate. However, for greater perforation spacing (99.7% damping area) the damping is increased by a factor of 14.3. Experimental results as well as practical design considerations for fabricating damped composite structures using the VARTM process are presented.

  15. Laser-Generated Lamb Waves Propagation in Multilayered Plates Composed of Viscoelastic Fiber-reinforced Composite Materials

    Science.gov (United States)

    Sun, Hong-xiang; Zhang, Shu-yi; Yuan, Shou-qi; Guan, Yi-jun; Ge, Yong

    2016-07-01

    The propagation characteristics of laser-generated Lamb waves in multilayered fiber-reinforced composite plates with different fiber orientations and number of layers have been investigated quantitatively. Considering the viscoelasticity of the composite materials, we have set up finite element models for simulating the laser-generated Lamb waves in two types of the multilayered composite plates. In the first type, different fiber orientations are adopted. In the second one, different number of layers are considered. The results illustrate the occurrence of attenuation and dispersion, which is induced by the viscoelasticity and multilayer structure, respectively.

  16. Study of normal and shear material properties for viscoelastic model of asphalt mixture by discrete element method

    DEFF Research Database (Denmark)

    Feng, Huan; Pettinari, Matteo; Stang, Henrik

    2015-01-01

    In this paper, the viscoelastic behavior of asphalt mixture was studied by using discrete element method. The dynamic properties of asphalt mixture were captured by implementing Burger’s contact model. Different ways of taking into account of the normal and shear material properties of asphalt mi...

  17. Topology optimization of viscoelastic rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2012-01-01

    An approach for the design of microfluidic viscoelastic rectifiers is presented based on a combination of a viscoelastic model and the method of topology optimization. This presumption free approach yields a material layout topologically different from experimentally realized rectifiers...

  18. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  19. Finite-Strain Fractional-Order Viscoelastic (FOV) Material Models and Numerical Methods for Solving Them

    Science.gov (United States)

    Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.

  20. Calculation of the shrinkage-induced residual stress in a viscoelastic dental restorative material

    Science.gov (United States)

    Grassia, Luigi; D'Amore, Alberto

    2013-02-01

    A procedure able to describe the curing process of a particulate composite material used in a dental restoration is developed in the ANSYS environment. The material under concern is a multifunctional methacrylate-based composite for dental restoration, activated by visible light. The model accounts for the dependence of the viscoelastic functions on temperature and degree of cure. Three geometries have been considered in the analysis that are representative of three different classes of dental restoration and mainly differ by the C (constrained)-factor, (i.e. the bounded to unbounded surface ratio). It was found that the temperature could give a necrosis in the vicinity of the tooth nerve and that the average stress at the interface between the composite and the tooth scales exponentially with the C-factor. The residual stress at the dental restoration interface is also compared with the uniaxial tensile strength of twelve commercially available composite materials: it clearly appears that the level of residual stress may overcome the strength of the composite, especially at high C-factors.

  1. Effect of preservation period on the viscoelastic material properties of soft tissues with implications for liver transplantation.

    Science.gov (United States)

    Ocal, Sina; Ozcan, M Umut; Basdogan, Ipek; Basdogan, Cagatay

    2010-10-01

    The liver harvested from a donor must be preserved and transported to a suitable recipient immediately for a successful liver transplantation. In this process, the preservation period is the most critical, since it is the longest and most tissue damage occurs during this period due to the reduced blood supply to the harvested liver and the change in its temperature. We investigate the effect of preservation period on the dynamic material properties of bovine liver using a viscoelastic model derived from both impact and ramp and hold experiments. First, we measure the storage and loss moduli of bovine liver as a function of excitation frequency using an impact hammer. Second, its time-dependent relaxation modulus is measured separately through ramp and hold experiments performed by a compression device. Third, a Maxwell solid model that successfully imitates the frequency- and time-dependent dynamic responses of bovine liver is developed to estimate the optimum viscoelastic material coefficients by minimizing the error between the experimental data and the corresponding values generated by the model. Finally, the variation in the viscoelastic material coefficients of bovine liver are investigated as a function of preservation period for the liver samples tested 1 h, 2 h, 4 h, 8 h, 12 h, 24 h, 36 h, and 48 h after harvesting. The results of our experiments performed with three animals show that the liver tissue becomes stiffer and more viscous as it spends more time in the preservation cycle.

  2. Damping and vibration control of unidirectional composite laminates using add-on viscoelastic materials

    Science.gov (United States)

    Sun, C. T.; Sankar, B. V.; Rao, V. S.

    1990-06-01

    This paper describes the development of an efficient finite element model for dynamic analysis of laminated beams treated by a constrained viscoelastic layer. The finite element model is designed so as to represent the viscoelastic core shear accurately. An offset-beam element which takes shear deformation into account and is specially suited for modeling such laminated beams is developed. The laminated beam and constraining layer are modeled by using the offset beam element. The viscoelastic core is modeled by using plane finite elements which are compatible with the beam elements. System damping and tip displacement are computed and compared with those measured experimentally by using the impulse-frequency response technique. Results show that dynamic response is improved by use of such damping treatments.

  3. Nonlinear dynamic analysis and state space representation of a manipulator under viscoelastic material conditions

    Directory of Open Access Journals (Sweden)

    Esfandiar, H.

    2013-05-01

    Full Text Available In this paper, based on the VoigtKelvin constitutive model, nonlinear dynamic modelling and state space representation of a viscoelastic beam acting as a flexible robotic manipulator is investigated. Complete nonlinear dynamic modelling of a viscoelastic beam without premature linearisation of dynamic equations is developed. The adopted method is capable of reproducing nonlinear dynamic effects, such as beam stiffening due to centrifugal and Coriolis forces induced by rotation of the joints. Structural damping effects on the models dynamic behaviour are also shown. A reliable model for a viscoelastic beam is subsequently presented. The governing equations of motion are derived using Hamiltons principle, and using the finite difference method, nonlinear partial differential equations are reduced to ordinary differential equations. For the purpose of flexible manipulator control, the standard form of state space equations for the viscoelastic link and the actuator is obtained. Simulation results indicate substantial improvements in dynamic behaviour, and a parameter sensitivity study is carried out to investigate the effect of structural damping on the vibration amplitude.

  4. Blunt needle revision with viscoelastic materials via the anterior chamber for early failed filtering blebs after trabeculectomy

    Directory of Open Access Journals (Sweden)

    Yamagami H

    2012-06-01

    Full Text Available Nozomi Kinoshita, Ayumi Ota, Fumihiko Toyoda, Hiroko Yamagami, Akihiro KakehashiDepartment of Ophthalmology, Saitama Medical Center, Jichi Medical University, Saitama, JapanPurpose: To report a new technique of blunt needle revision with viscoelastic materials via the anterior chamber for the treatment of early failed filtering blebs and elevated intraocular pressure after trabeculectomy, in which digital ocular massage and laser suture lysis have been ineffective.Methods: A 27-gauge blunt needle attached to a syringe containing viscoelastic material was inserted into the anterior chamber from the inferior paracentesis. The needle tip was inserted into the subscleral flap space from the filtering fistula at the anterior chamber side, and the scleral flap was lifted bluntly. The needle tip was then inserted into the subconjunctival space where the viscoelastic agent was injected and the adhesion between the sclera and conjunctiva was separated bluntly. Blunt needle revision via the anterior chamber was performed 14 times in six eyes of six patients at Saitama Medical Center, Jichi Medical University from January 2007 to May 2009. All procedures were performed within 1 month after trabeculectomy.Results: The intraocular pressure remained 21 mmHg or lower for more than 6 months in three of six eyes. Slight bleeding from the iris occurred in one of the 14 procedures, and hypotony (intraocular pressure below 5 mmHg occurred in one of the 14 procedures. No serious complications developed.Conclusion: Blunt needle revision via the anterior chamber for early failed filtering blebs is a new, simple, and safe procedure.Keywords: glaucoma, trabeculectomy, filtering bleb, needle revision, blunt needle

  5. Tunable optical lens array using viscoelastic material and acoustic radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Daisuke, E-mail: dkoyama@mail.doshisha.ac.jp; Kashihara, Yuta; Matsukawa, Mami [Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Hatanaka, Megumi [Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Nakamura, Kentaro [Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-26, Nagatsutacho, Midoriku, Yokohama 226-8503 (Japan)

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  6. The relaxation effects of the volume properties of electrically conducting viscoelastic material

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, Magdy A. [Faculty of Education, Department of Mathematics, Alexandria University, Alexandria (Egypt)]. E-mail: m_ezzat2000@Yahoo.com

    2006-06-15

    A new model of the equations of generalized thermo-viscoelasticity for an electrically conducting isotropic media permeated by a primary uniform magnetic field, taking into consideration the rheological properties of the volume, is given. The formulation is applied to both generalizations, Lord-Shulman theory and the Green-Lindsay theory, as well as to the coupled theory. The state space approach is adopted for the solution of one-dimensional problems in the absence or presence of heat sources. The Laplace-transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. Numerical results for the stress distribution are given and illustrated graphically for each problem. Comparisons are made with the results predicted by the three theories, or ignoring the viscous effects of the volume. Also, the effect of the magnetic field is studied. It is found that the consideration of these effects is to decrease the thermal stresses.

  7. On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting

    Science.gov (United States)

    Řehoř, Martin; Pr&oring; ša, Vít; T&oring; ma, Karel

    2016-10-01

    Rigorous analysis of the response of nonlinear materials to step inputs requires one to simultaneously handle the discontinuity, differentiation, and nonlinearity. This task is however beyond the reach of the standard theories such as the classical theory of distributions and presents a considerable mathematical difficulty. New advanced mathematical tools are necessary to handle the challenge. An elegant and relatively easy-to-use framework capable of accomplishing the task is provided by the Colombeau algebra, which is a generalisation of the classical theory of distributions to the nonlinear setting. We use the Colombeau algebra formalism and derive explicit formulae describing the response of incompressible Maxwell viscoelastic fluid subject to step load/deformation in the lubricated squeeze flow setting.

  8. Experimental study of the effect of viscoelastic damping materials on noise and vibration reduction within railway vehicles

    Science.gov (United States)

    Fan, Rongping; Meng, Guang; Yang, Jun; He, Caichun

    2009-01-01

    Interior noise and vibration reduction has become one important concern of railway operating environments due to the influence of increased speeds and reduced vehicle weights for energy efficiency. Three types of viscoelastic damping materials, bitumen-based damping material, water-based damping coating and butyl rubber damping material, were developed to reduce the vibration and noise within railway vehicles. Two sleeper carriages were furnished with the new materials in different patterns of constrained-layer and free-layer damping treatment. The measurements of vibration and noise were carried out in three running carriages. It is found that the reduction effect of damping treatments depends on the running speed. The unweighted root-mean-square acceleration is reduced by 0.08-0.79 and 0.06-0.49 m/s 2 for the carriage treated by bitumen-based as well as water-based damping materials and water-based damping material, respectively. The first two materials reduce vibration in a wider frequency range of 63-1000 Hz than the last. It turns out that the damping treatments of the first two reduce the interior noise level by 5-8 dBA within the carriage, and the last damping material by 1-6 dBA. However, the specific loudness analysis of noises shows that the noise components between 125 and 250 Hz are dominant for the overall loudness, although the low-frequency noise is noticeably decreased by the damping materials. The measure of loudness is shown to be more accurate to assess reduction effect of the damping material on the acoustic comfort.

  9. Identification of the viscoelastic properties of soft materials at low frequency: performance, ill-conditioning and extrapolation capabilities of fractional and exponential models.

    Science.gov (United States)

    Ciambella, J; Paolone, A; Vidoli, S

    2014-09-01

    We report about the experimental identification of viscoelastic constitutive models for frequencies ranging within 0-10Hz. Dynamic moduli data are fitted forseveral materials of interest to medical applications: liver tissue (Chatelin et al., 2011), bioadhesive gel (Andrews et al., 2005), spleen tissue (Nicolle et al., 2012) and synthetic elastomer (Osanaiye, 1996). These materials actually represent a rather wide class of soft viscoelastic materials which are usually subjected to low frequencies deformations. We also provide prescriptions for the correct extrapolation of the material behavior at higher frequencies. Indeed, while experimental tests are more easily carried out at low frequency, the identified viscoelastic models are often used outside the frequency range of the actual test. We consider two different classes of models according to their relaxation function: Debye models, whose kernel decays exponentially fast, and fractional models, including Cole-Cole, Davidson-Cole, Nutting and Havriliak-Negami, characterized by a slower decay rate of the material memory. Candidate constitutive models are hence rated according to the accurateness of the identification and to their robustness to extrapolation. It is shown that all kernels whose decay rate is too fast lead to a poor fitting and high errors when the material behavior is extrapolated to broader frequency ranges.

  10. Corneal toxicity secondary to inadvertent use of benzalkonium chloride preserved viscoelastic material in cataract surgery

    Science.gov (United States)

    Eleftheriadis, H; Cheong, M; Sandeman, S; Syam, P P; Brittain, P; Klintworth, G K; Lloyd, A; Liu, C

    2002-01-01

    Aims: To study the long term toxic effects of intraocular benzalkonium chloride (BAC). Methods: 19 patients exposed to intraocular BAC preserved viscoelastic during cataract surgery in February 1999 developed severe striate keratopathy immediately postoperatively. 16 patients, including two who underwent penetrating keratoplasty, were studied in the period April to June 2000. Ocular symptoms, visual acuity, biomicroscopy, intraocular pressure, dilated funduscopy, specular endothelial microscopy, and corneal pachymetry findings were recorded. The corneal and iris specimens of the two patients who underwent keratoplasty were studied by light, transmission, and scanning electron microscopy. Results: Six males and 10 females, aged 64–98 years, were studied 14–16 months postoperatively. All patients were symptomatic. 12 patients had best corrected visual acuity of 6/12 or better and four patients of between 6/18 and 6/60. Five patients had corneal epithelial oedema and 11 had Descemet's membrane folds. The central corneal thickness, 620 (SD 71) μm, in affected eyes was significantly higher (p<0.005, two tailed paired t test) than that of the contralateral eyes, 563 (SD 48) μm. The endothelial cell density was significantly lower (p<0.0001, two tailed paired t test) in affected eyes: 830 (SD 280) cells/mm2v 2017 (SD 446) cells/mm2. The mean average cell area was significantly higher in the BAC treated eyes: 1317 (SD 385) μm2v 521 (SD 132) μm2. There was no significant difference in the coefficient of variation of cell size between the two eyes (p=0.3, two tailed paired t test). Two corneal specimens displayed morphological features of bullous keratopathy and other non-specific abnormalities. Extracellular melanosomes were present in a portion of the iris of one case. Conclusion: BAC is toxic to the corneal endothelium when used intraocularly, leading to severe striate keratopathy. This cleared in most cases but left varying degrees of residual stromal thickening

  11. The measurement of the material parameters of viscoelastic fluids using a rotating sphere and a rheogoniometer

    NARCIS (Netherlands)

    Acharya, A.; Maaskant, P.

    1978-01-01

    In this work, measurement of the flow field around a rotating sphere has been used to obtain the material parameters of a second-order Rivlin-Ericksen fluid. Experiments were carried out with a Laser-Doppler anemometer to obtain the velocity distribution and usingGiesekus' analysis, the material par

  12. On the consistency of complex moduli for transversely-isotropic viscoelastic materials

    Science.gov (United States)

    Lesieutre, George A.

    The ability of advanced composite materials and structures to damp vibration is important in many applications. Use of the complex modulus approach to represent the dissipative properties of transversely-isotropic materials, such as unidirectional fiber-reinforced composites, requires the definition of a set of 5 (imaginary) loss moduli in addition to the 5 (real) storage moduli needed to describe the elastic behavior. In practice, designers of composite materials rarely have experimental data for all 5 loss moduli, and must assume values for the remaining moduli in their analyses. If values for these unknown loss moduli are specified arbitrarily, physically unreasonable behavior can result. This paper develops the conditions necessary for physical consistency of the complex moduli of transversely isotropic materials.

  13. Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Jensen, Jakob Søndergaard

    2014-01-01

    We present a topology optimization method for the design of periodic composites with dissipative materials for maximizing the loss/attenuation of propagating waves. The computational model is based on a finite element discretization of the periodic unit cell and a complex eigenvalue problem...

  14. DEMONSTRATION OF PACKAGING MATERIALS ALTERNATIVES TO EXPANDED POLYSTYRENE

    Science.gov (United States)

    This report represents the second demonstration of cleaner technologies to support the goals of the 33/50 Program under the EPA Cooperative Agreement No. CR-821848. The report presents assessment results of alternative packaging materials which could potentially replace expanded...

  15. IMPORTANCE OF VISCOELASTIC CHARACTERISTICS IN DETERMINING FUNCTIONALITY OF TIME-DEPENDENT MATERIALS

    Directory of Open Access Journals (Sweden)

    IGOR EMRI

    2012-01-01

    Full Text Available El propósito de este artículo es introducir al lector con las características específicas de los materiales viscoelásticos y las bases físicas del comportamiento dependiente del tiempo que se observa durante su vida útil. Se menciona que tanto la selección del material viscoelástico en combinación con las condiciones termo-mecánicas utilizadas durante el procesado pueden afectar la funcionalidad y el comportamiento de un producto a largo plazo. Ambos parámetros pueden ser considerados y analizados mediante la caracterización de las diferentes respuestas mecánicas del material bajo ciertas condiciones de carga. En relación a este punto, las funciones viscoelásticas fundamentales del material se presentan en este artículo, como las principales características para evaluar la funcionalidad y el comportamiento a largo plazo de las materiales dependientes del tiempo (viscoelásticos.

  16. Dynamic impedance of piles in visco-elastic material considering axial loads

    Institute of Scientific and Technical Information of China (English)

    JIANG Jian-guo; ZHOU Xu-hong; ZHANG Jia-sheng

    2005-01-01

    The dynamic impedance function of pile in visco-elastie material considering axial loads under lateral dynamic force was analyzed, and the beam dynamic differential equation was used to induce the dynamic impedance function. After analyzing the edge conditions, the dynamic impedance functions were deduced. Contrasted with the result that does not consider axial loads, the axial loads have obvious influence on the dynamic impedance function.And the results show that the dimensionless prarmeter of the dynamic impedance will change from 6 % to 9 % when considering axial loads, and dimensionless prarmeter of the dynamic impedance of the coupling horizontal-sway will increase by 31 %.

  17. On the potential importance of non-linear viscoelastic material modelling for numerical prediction of brain tissue response: test and application.

    Science.gov (United States)

    Brands, Dave W A; Bovendeerd, Peter H M; Wismans, Jac S H M

    2002-11-01

    In current Finite Element (FE) head models, brain tissue is commonly assumed to display linear viscoelastic material behaviour. However, brain tissue behaves like a non-linear viscoelastic solid for shear strains above 1%. The main objective of this study was to study the effect of non-linear material behaviour on the predicted brain response. We used a non-linear viscoelastic constitutive model, developed on the basis of experimental shear data presented elsewere. First we tested the numerical implementation of the constitutive model by simulating the response of a silicone gel (Sylgard 572 A&B) filled cylindrical cup, subjected to a transient rotational acceleration. The experimental results could be reproduced within 9%. Subsequently, the effect of non-linear material modelling on computed brain response was investigated in an existing three-dimensional head model subjected to an eccentric rotation. At the applied external load strains in the brain were approximately ten times larger than was expected on the basis of published data. This is probably caused by the values of the shear moduli applied in the model. These are at least a factor of ten lower than the ones used in head models in literature but comparable to material data in recent literature. Non-linear material behaviour was found to influence the levels of predicted strains (+20%) and stresses (-11%) but not their temporal and spatial distribution. The pressure response was independent of non-linear material behaviour. In fact it could be predicted by the equilibrium of momentum, and thus it is independent of the choice of the brain constitutive model.

  18. Structure-induced nonlinear viscoelasticity of non-woven fibrous matrices.

    Science.gov (United States)

    Rizvi, Mohd Suhail; Pal, Anupam; Das, Sovan Lal

    2016-12-01

    Fibrous materials are widely utilized as tissue engineering scaffolds for tissue regeneration and other bioengineering applications. The structural as well as mechanical characteristics of the fibrous matrices under static and dynamic mechanical loading conditions influence the response of the cells. In this paper, we study the mechanical response of the non-woven fibrous matrices under oscillatory loading conditions and its dependence on the structural properties of fibrous matrix. We demonstrate that under oscillatory shear and elongation, the fibrous matrices demonstrate nonlinear viscoelasticity at all strain amplitudes. This is contrary to the behavior of other soft polymeric materials for which nonlinearity in the viscoelastic response vanishes for small strains. These observations suggest that despite their prevalence, the measures of linear viscoelasticity (e.g., storage and loss moduli) are inadequate for the general description of the viscoelastic nature of the fibrous materials. It was, however, found that linear viscoelastic nature of fibrous matrices for small amplitudes is restored when a pre-stretch is applied to the fibrous matrix along with oscillatory strains. Further, we also explored the influence of the structural properties of the fibrous matrices (fiber orientation, alignment and curvature) on their viscoelastic nature.

  19. Monitoring the Changes of Material Properties at Bone-Implant Interface during the Healing Process In Vivo: A Viscoelastic Investigation

    Science.gov (United States)

    Chen, Hsiang-Ho; Lai, Wei-Yi; Chee, Tze-Jian

    2017-01-01

    The aim of this study was to monitor the changes of viscoelastic properties at bone-implant interface via resonance frequency analysis (RFA) and the Periotest device during the healing process in an experimental rabbit model. Twenty-four dental implants were inserted into the femoral condyles of rabbits. The animals were sacrificed immediately after implant installation or on day 14, 28, or 56 after surgery. Viscoelastic properties at bone-implant interface were evaluated by measuring the implant stability quotient (ISQ) using RFA and by measuring the Periotest values (PTVs) using the Periotest device. The bone/implant specimens were evaluated histopathologically and histomorphometrically to determine the degree of osseointegration (BIC%). The BIC% values at different time points were then compared with the corresponding ISQ values and PTVs. The mean ISQ value increased gradually and reached 81 ± 1.7 on day 56, whereas the mean PTV decreased over time, finally reaching −0.7 ± 0.5 on day 56. Significant correlations were found between ISQ and BIC% (r = 0.701, p < 0.001), PTV and BIC% (r = −0.637, p < 0.05), and ISQ and PTV (r = −0.68, p < 0.05). These results show that there is a positive correlation between implant stability parameters and peri-implant-bone healing, indicating that the RFA and Periotest are useful for measuring changes of viscoelastic properties at bone-implant interface and are reliable for indirectly predicting the degree of osseointegration. PMID:28373978

  20. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...

  1. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  2. DIFFERENTIAL EQUATION SIMULATION IN CALCULATION OF LATERAL AND TRANSVERSE-LONGITUDINAL BENDING OF FRAME STRUCTURES WITHOUT AND WITH DUE ACCOUNT OF VISCOELASTIC MATERIAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    V. Ovsianko

    2012-01-01

    Full Text Available The paper reveals a brand-new direction in simulation of frame and continual structures while calculating static and dynamic loads and stability.  An electronic model has been synthesized  for an investigated object and then it has been analyzed not with the help of  specialized analog computing techniques but by means of high-performance software package for electronic circuit calculation using a personal computer.The given paper contains exact algebraic equations corresponding to differential equations for lateral bending calculation of frame structures without and with due account of viscoelastic material properties in compliance with the Kelvin model.The exact algebraic equation for a beam on elastic supports (or elastic Winkler foundation has been derived for quartic differential equation.The paper presents a number of exact algebraic equations which are equivalent to differential equations for transverse-longitudinal bending calculation of frame structures without and with due account of viscoelastic material properties when lateral and longitudinal loads are applied in the form of  impulses with any periods of their duration and any interchangeability. 

  3. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  4. Visco-elastic response of thermoplastics

    OpenAIRE

    Kristensen, Vegard Berge

    2013-01-01

    In this study a recently developed visco-elastic visco-plastic material model has been evaluated with the intention of improving the simulated behaviour of polymers. In order for polymers to become a more reliable construction material the behaviour has to be rendered realistically in simulations. A set of eleven experimental tests have been conducted to establish a database for further simulations. By use of some of these experimental tests the visco-elastic visco-plastic material model has ...

  5. Multi-Material 3-D Viscoelastic Model of a Transtibial Residuum from In-vivo Indentation and MRI Data

    CERN Document Server

    Sengeh, David Moinina; Petron, Arthur; Herr, Hugh

    2016-01-01

    Although the socket is critical in a prosthetic system for a person with limb amputation, the methods of its design are largely artisanal. A roadblock for a repeatable and quantitative socket design process is the lack of predictive and patient specific biomechanical models of the residuum. This study presents the evaluation of such a model using a combined experimental-numerical approach. The model geometry and tissue boundaries are derived from MRI. The soft tissue non-linear elastic and viscoelastic mechanical behavior was evaluated using inverse finite element analysis (FEA) of in-vivo indentation experiments. A custom designed robotic in-vivo indentation system was used to provide a rich experimental data set of force versus time at 18 sites across a limb. During FEA, the tissues were represented by two layers, namely the skin-adipose layer and an underlying muscle-soft tissue complex. The non-linear elastic behavior was modeled using 2nd order Ogden hyperelastic formulations, and viscoelasticity was mod...

  6. Lubrication of soft viscoelastic solids

    CERN Document Server

    Pandey, Anupam; Venner, Kees; Snoeijer, Jacco

    2015-01-01

    Lubrication flows appear in many applications in engineering, biophysics, and in nature. Separation of surfaces and minimisation of friction and wear is achieved when the lubrication fluid builds up a lift force. In this paper we analyse soft lubricated contacts by treating the solid walls as viscoelastic: soft materials are typically not purely elastic, but dissipate energy under dynamical loading conditions. We present a method for viscoelastic lubrication and focus on three canonical examples, namely Kelvin-Voigt-, Standard Linear-, and Power Law-rheology. It is shown how the solid viscoelasticity affects the lubrication process when the timescale of loading becomes comparable to the rheological timescale. We derive asymptotic relations between lift force and sliding velocity, which give scaling laws that inherit a signature of the rheology. In all cases the lift is found to decrease with respect to purely elastic systems.

  7. A demonstration of simple airfoils: Structural design and materials choices

    Energy Technology Data Exchange (ETDEWEB)

    Bunnell, L.R. (Pacific Northwest Lab., Richland, WA (United States)); Piippo, S.W. (Richland School District, WA (United States))

    1993-01-01

    An educational unit is presented for building and evaluating simple wing structures, in order to learn about materials choice and lightweight construction. This unit is appropriate for a high school materials science class or lower-division college courses in structural engineering, materials science, or aeronautical engineering.

  8. Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound

    Science.gov (United States)

    Selzo, Mallory Renee

    Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.

  9. Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da Peng; Lei, Yong Jun; Shen, Zhi Bin [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China); Wang, Cheng Yuan [Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea Wales (United Kingdom)

    2017-01-15

    Vibration responses were investigated for a viscoelastic Single-walled carbon nanotube (visco-SWCNT) resting on a viscoelastic foundation. Based on the nonlocal Euler-Bernoulli beam model, velocity-dependent external damping and Kelvin viscoelastic foundation model, the governing equations were derived. The Transfer function method (TFM) was then used to compute the natural frequencies for general boundary conditions and foundations. In particular, the exact analytical expressions of both complex natural frequencies and critical viscoelastic parameters were obtained for the Kelvin-Voigt visco-SWCNTs with full foundations and certain boundary conditions, and several physically intuitive special cases were discussed. Substantial nonlocal effects, the influence of geometric and physical parameters of the SWCNT and the viscoelastic foundation were observed for the natural frequencies of the supported SWCNTs. The study demonstrates the efficiency and robustness of the developed model for the vibration of the visco-SWCNT-viscoelastic foundation coupling system.

  10. 3D Viscoelastic traction force microscopy.

    Science.gov (United States)

    Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M; Henann, David L; Franck, Christian

    2014-10-28

    Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels.

  11. Chemical reaction, thermal relaxation time and internal material parameter effects on MHD viscoelastic fluid with internal structure using the Cattaneo-Christov heat flux equation

    Science.gov (United States)

    Khan, Sabeel M.; Hammad, M.; Sunny, D. A.

    2017-08-01

    In this article, the influence of thermal relaxation time and chemical reaction is studied on the MHD upper-convected viscoelastic fluid with internal structure using the Cattaneo-Christov heat flux equation for the first time in the literature. The flow-governing equations are formulated and are converted into their respective ordinary differential equations (ODEs) with the application of similarity functions. The resulting system of coupled nonlinear ODEs is solved along with the prescribed conditions at boundary using a finite-difference code in MATLAB. Influence of chemical reaction, thermal relaxation time and internal material parameter on the macroscopic and micropolar velocities as well as on the temperature and concentration profiles is examined along with other physical parameters ( e.g., magnetic parameter, Eckert number, Prandtl number and fluid relaxation time). The accuracy of the obtained numerical solution is shown by comparing the physical parameters of interest with particular cases of existing results in the literature.

  12. Dynamic response of a viscoelastic Timoshenko beam

    Science.gov (United States)

    Kalyanasundaram, S.; Allen, D. H.; Schapery, R. A.

    1987-01-01

    The analysis presented in this study deals with the vibratory response of viscoelastic Timoshenko (1955) beams under the assumption of small material loss tangents. The appropriate method of analysis employed here may be applied to more complex structures. This study compares the damping ratios obtained from the Timoshenko and Euler-Bernoulli theories for a given viscoelastic material system. From this study the effect of shear deformation and rotary inertia on damping ratios can be identified.

  13. Demonstration of endogenous imipramine like material in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-02-18

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  14. Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity

    Science.gov (United States)

    Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey

    2017-01-01

    Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.

  15. A geometrically nonlinear shell element for hygrothermorheologically simple linear viscoelastic composites

    Energy Technology Data Exchange (ETDEWEB)

    HAMMERAND,DANIEL C.; KAPANIA,RAKESH K.

    2000-05-01

    A triangular flat shell element for large deformation analysis of linear viscoelastic laminated composites is presented. Hygrothermorheologically simple materials are considered for which a change in the hygrothermal environment results in a horizontal shifting of the relaxation moduli curves on a log time scale, in addition to the usual hygrothermal loads. Recurrence relations are developed and implemented for the evaluation of the viscoelastic memory loads. The nonlinear deformation process is computed using an incremental/iterative approach with the Newton-Raphson Method used to find the incremental displacements in each step. The presented numerical examples consider the large deformation and stability of linear viscoelastic structures under deformation-independent mechanical loads, deformation-dependent pressure loads, and thermal loads. Unlike elastic structures that have a single critical load value associated with a given snapping of buckling instability phenomenon, viscoelastic structures will usually exhibit a particular instability for a range of applied loads over a range of critical times. Both creep buckling and snap-through examples are presented here. In some cases, viscoelastic results are also obtained using the quasielastic method in which load-history effects are ignored, and time-varying viscoelastic properties are simply used in a series of elastic problems. The presented numerical examples demonstrate the capability and accuracy of the formulation.

  16. Transient vibration of thin viscoelastic orthotropic plates

    Institute of Scientific and Technical Information of China (English)

    J. Soukup; F. Vale(s); J. Volek; J. Sko(c)ilas

    2011-01-01

    This article deals with solutions of transient vibration of a rectangular viscoelastic orthotropic thin 2D plate for particular deformation models according to Flügge and Timoshenko-Mindlin. The linear model, a general standard viscoelastic body, of the rheologic properties of a viscoelastic material was applied. The time and coordinate curves of the basic quantities displacement, rotation, velocity, stress and deformation are compared. The results obtained by an approximate analytic method are compared with numerical results for 3D plate generated by FEM application and with experimental investigation.

  17. Progress of Research on Demonstration Fast Reactor Main Pipe Material

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The main characteristics of the sodium pipe system in demonstration fast reactor are high-temperature, thin-wall and big-caliber, which is different from the high-pressure and thick-wall of the pressurized water reactor system, and the system is long-term

  18. Modelling the viscoelasticity of ceramic tiles by finite element

    Science.gov (United States)

    Pavlovic, Ana; Fragassa, Cristiano

    2016-05-01

    This research details a numerical method aiming at investigating the viscoelastic behaviour of a specific family of ceramic material, the Grès Porcelain, during an uncommon transformation, known as pyroplasticity, which occurs when a ceramic tile bends under a combination of thermal stress and own weight. In general, the theory of viscoelasticity can be considered extremely large and precise, but its application on real cases is particularly delicate. A time-depending problem, as viscoelasticity naturally is, has to be merged with a temperature-depending situation. This paper investigates how the viscoelastic response of bending ceramic materials can be modelled by commercial Finite Elements codes.

  19. Relationship between viscoelastic properties of soft denture liners and clinical efficacy

    Directory of Open Access Journals (Sweden)

    Hiroshi Murata

    2008-10-01

    Full Text Available Soft denture liners are applied for denture wearers who cannot tolerate a hard-based denture due to a thin and non-resilient oral mucosa and/or severe alveolar resorption. This material distributes and absorbs masticatory forces by means of the cushioning effect. Clinical success of the materials depends both on their viscoelastic properties and on durability. Acrylic resins and silicones are mainly available for permanent soft liners. The acrylic permanent soft liners demonstrate viscoelastic behavior while silicone permanent soft liners demonstrate elastic behavior. The improvement in masticatory function is greater in dentures lined with the acrylic materials than in those lined with silicone products. However, the acrylic materials exhibit a more marked change in viscoelastic properties and loss of cushioning effect over time than silicones. From the standpoint of durability, the silicones are preferred. It is important to understand viscoelastic properties and durability of each soft denture liner and to select the material according to the clinical situations and purposes. The ideal permanent soft liners have a relatively high value of loss tangent and storage modulus, and high durability. Further research is necessary to develop the ideal soft denture liner.

  20. Theory of reciprocating contact for viscoelastic solids

    Science.gov (United States)

    Putignano, Carmine; Carbone, Giuseppe; Dini, Daniele

    2016-04-01

    A theory of reciprocating contacts for linear viscoelastic materials is presented. Results are discussed for the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. Depending on the size of the contact, the frequency and amplitude of the reciprocating motion, and on the relaxation time of the viscoelastic body, we establish that the contact behavior may range from the steady-state viscoelastic solution, in which traction forces always oppose the direction of the sliding rigid punch, to a more elaborate trend, which is due to the strong interaction between different regions of the path covered during the reciprocating motion. Practical implications span a number of applications, ranging from seismic engineering to biotechnology.

  1. Understanding Viscoelasticity An Introduction to Rheology

    CERN Document Server

    Phan-Thien, Nhan

    2013-01-01

    This book presents an introduction to viscoelasticity; in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity at a first year graduate level. The main aim is to provide a still compact book, sufficient at the level of first year graduate course for those who wish to understand viscoelasticity and to embark in modeling of viscoelastic multiphase fluids. To this end, a new chapter on Dissipative Particle Dynamics (DPD) was introduced which is relevant to model complex-structured fluids. All the basic ideas in DPD are reviewed,...

  2. Understanding viscoelasticity an introduction to rheology

    CERN Document Server

    Phan-Thien, Nhan

    2017-01-01

    This book presents an introduction to viscoelasticity, in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis of this book is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity. This is a compact book for a first year graduate course in viscoelasticity and modelling of viscoelastic multiphase fluids. The Dissipative Particle Dynamics (DPD) is introduced as a particle-based method, relevant in modelling of complex-structured fluids. All the basic ideas in DPD are reviewed. The third edition has been updated and expanded with new results in the meso-scale modelling, links between...

  3. Dynamic response of visco-elastic plates

    Science.gov (United States)

    Kadıoǧlu, Fethi; Tekin, Gülçin

    2016-12-01

    In this study, a comprehensive analysis about the dynamic response characteristics of visco-elastic plates is given. To construct the functional in the Laplace-Carson domain for the analysis of visco-elastic plates based on the Kirchhoff hypothesis, functional analysis method is employed. By using this new energy functional in the Laplace-Carson domain, moment values that are important for engineers can be obtained directly with excellent accuracy and element equations can be written explicitly. Three-element model is considered for modelling the visco-elastic material behavior. The solutions obtained in the Laplace-Carson domain by utilizing mixed finite element formulation are transformed to the time domain using the Durbin's inverse Laplace transform technique. The proposed mixed finite element formulation is shown to be simple to implement and gives satisfactory results for dynamic response of visco-elastic plates.

  4. Effect of temperature on the electromechanical actuation of viscoelastic dielectric elastomers

    Science.gov (United States)

    Liu, Lei; Sun, Wenjie; Sheng, Junjie; Chang, Longfei; Li, Dichen; Chen, Hualing

    2015-10-01

    The electromechanical deformation of viscoelastic dielectric elastomers (DEs) is primarily governed by three material parameters: permittivity, Young's modulus, and relaxation time. All three parameters are functions of temperature, so a complete description of the electromechanical behaviour of a DE must take thermal effects into account. In this paper, we have established a physical model for viscoelastic DEs that takes temperature effects into consideration. The actuation of a DE was measured under different temperatures to verify the model. A peak actuation stretch was obtained at around 363 K both experimentally and theoretically. Moreover, we also demonstrate the contribution of strain-stiffening induced by greater pre-stretching to the improvement of thermostability.

  5. Dynamic viscoelasticity measurement under alternative torque using electromagnetically spinning method with quadruple electromagnets

    Science.gov (United States)

    Matsuura, Yusuke; Hirano, Taichi; Sakai, Keiji

    2017-07-01

    In this study, we developed a novel type of rheological measurement system. Here, a spherical probe is driven to rotate periodically by applying torques using quadruple electromagnets in a noncontact manner. Moreover, this system is an enhancement of our electromagnetically spinning (EMS) viscometer, which is widely used for measuring rheological flow curves in various industrial fields. The quadruple EMS method provides the frequency spectrum of viscoelasticity, in addition to shear viscosity, in a steady flow by switching the operation modes of the driving torque. We show the results obtained for Newtonian fluids and viscoelastic materials and demonstrate the validity of the system.

  6. Visco-elastic effects on wave dispersion in three-phase acoustic metamaterials

    Science.gov (United States)

    Krushynska, A. O.; Kouznetsova, V. G.; Geers, M. G. D.

    2016-11-01

    This paper studies the wave attenuation performance of dissipative solid acoustic metamaterials (AMMs) with local resonators possessing subwavelength band gaps. The metamaterial is composed of dense rubber-coated inclusions of a circular shape embedded periodically in a matrix medium. Visco-elastic material losses present in a matrix and/or resonator coating are introduced by either the Kelvin-Voigt or generalized Maxwell models. Numerical solutions are obtained in the frequency domain by means of k(ω)-approach combined with the finite element method. Spatially attenuating waves are described by real frequencies ω and complex-valued wave vectors k. Complete 3D band structure diagrams including complex-valued pass bands are evaluated for the undamped linear elastic and several visco-elastic AMM cases. The changes in the band diagrams due to the visco-elasticity are discussed in detail; the comparison between the two visco-elastic models representing artificial (Kelvin-Voigt model) and experimentally characterized (generalized Maxwell model) damping is performed. The interpretation of the results is facilitated by using attenuation and transmission spectra. Two mechanisms of the energy absorption, i.e. due to the resonance of the inclusions and dissipative effects in the materials, are discussed separately. It is found that the visco-elastic damping of the matrix material decreases the attenuation performance of AMMs within band gaps; however, if the matrix material is slightly damped, it can be modeled as linear elastic without the loss of accuracy given the resonator coating is dissipative. This study also demonstrates that visco-elastic losses properly introduced in the resonator coating improve the attenuation bandwidth of AMMs although the attenuation on the resonance peaks is reduced.

  7. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading

    DEFF Research Database (Denmark)

    Wu, Zhigang; Hjort, Klas; Wicher, Grzegorz

    2008-01-01

    A high viability microfluidic cell separation technique of high throughput was demonstrated based on size difference continuous mode hydrodynamic spreading with viscoelastic tuning. Using water with fluorescent dye as sample fluid and in parallel introducing as elution a viscoelastic biocompatibl...

  8. Numerical simulations of viscoelastic flows with free surfaces

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory...

  9. Study of the interconversion between viscoelastic behaviour functions of PMMA

    Science.gov (United States)

    Fernández, P.; Rodríguez, D.; Lamela, M. J.; Fernández-Canteli, A.

    2011-05-01

    The use of polymers and polymer-based composites in mechanical, civil and electronic engineering has been growing owing to advances in the technology of materials. The different applications and working conditions of these materials require knowledge about their viscoelastic material functions: relaxation modulus, compliance, complex modulus, etc. Interconversion between these functions may be required for different reasons such as the impossibility of direct experimentation under certain excitation conditions. In this work, a DMA is used to calculate the experimental viscoelastic functions of a linear viscoelastic material (PMMA). The same functions are estimated by interconversion methods and compared with experimental ones. The results show that the interconversion functions fit properly the experimental functions.

  10. Wind turbine blade with viscoelastic damping

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Ryan A.; Mullings, Justin L.

    2017-01-10

    A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).

  11. Effect of dynamic visco-elasticity on vertical and torsional vibrations of a half-space

    Indian Academy of Sciences (India)

    Prakash Chandra Pal

    2001-08-01

    By expressing the dynamic visco-elastic characteristic of a material in terms of the complex shear modulus, the vertical vibrations of a visco-elastic half-space as well as that of a mass in visco-elastic half-space are considered here. Torsional vibrations of a visco-elastic half-space is also considered. Numerical results are derived for two cases and shown graphically.

  12. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    Science.gov (United States)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2016-11-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  13. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    Science.gov (United States)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2017-08-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  14. 粘弹体防腐材料研制及其应用%Development and application of viscoelastic anti-corrosion materials

    Institute of Scientific and Technical Information of China (English)

    袁春; 李建忠; 王颖; 连艺秀; 刘艳利; 孙晶; 黄琳

    2012-01-01

    介绍了中国石油天然气管道科学研究院自主研制的粘弹体防腐材料的生产设备、技术参数以及工艺流程,并根据GB/T 4472-84、DIN 30670-91、SY/T 0414-2007、ISO21809-2008和GB/T23257-2009相关标准,对该材料70℃阴极剥离、120 d热水浸泡、23℃剥离强度、剪切强度、绝缘电阻率、密度、冲击强度、吸水率等性能进行了跟踪测试,结果表明:各项性能指标均符合相关标准要求.该材料在西气东输二线补口、阀室、站场等已广泛应用,具有良好的防腐性能,基本确保了西气东输二线管道的安全运行.%Production equipment, technical parameters and process of viscoelastic anti-corrosion materials developed independently by the Pipeline Research Institute of CNPC are described, and a tracking test is conducted for cathode disbonding at 70 °C, 120 d hot water soaking, peel strength at 23 °C, shear strength, insulation resistivity, density, impact strength, water absorption and other properties of the material in accordance with relevant standards such as GB/T4472-84, DIN30670-91, SY/T0414-2007, ISO21809-2008 and GB/T23257-2009. The results show that all performance indexes are in line with the relevant standards. The material with good corrosion resistance has been widely used in the field coating for welded joint, valve chambers and stations in the 2nd West-to-East Gas Pipeline, which basically ensure the safe operation of the Pipeline.

  15. Viscoelastic material properties’ identification using high speed full field measurements on vibrating plates

    Directory of Open Access Journals (Sweden)

    Pierron F.

    2010-06-01

    Full Text Available The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM. The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.

  16. Estimation of piezoelastic and viscoelastic properties in laminated structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Soares, C. M. Mota; Herskovits, J.;

    2009-01-01

    An inverse method for material parameter estimation of elastic, piezoelectric and viscoelastic laminated plate structures is presented. The method uses a gradient based optimization technique in order to solve the inverse problem, through minimization of an error functional which expresses...... the difference between experimental free vibration data and corresponding numerical data produced by a finite element model. The complex modulus approach is used to model the viscoelastic material behavior, assuming hysteretic type damping. Applications that illustrate the influence of adhesive material...

  17. Viscoelastic coupling of nanoelectromechanical resonators.

    Energy Technology Data Exchange (ETDEWEB)

    Simonson, Robert Joseph; Staton, Alan W.

    2009-09-01

    This report summarizes work to date on a new collaboration between Sandia National Laboratories and the California Institute of Technology (Caltech) to utilize nanoelectromechanical resonators designed at Caltech as platforms to measure the mechanical properties of polymeric materials at length scales on the order of 10-50 nm. Caltech has succeeded in reproducibly building cantilever resonators having major dimensions on the order of 2-5 microns. These devices are fabricated in pairs, with free ends separated by reproducible gaps having dimensions on the order of 10-50 nm. By controlled placement of materials that bridge the very small gap between resonators, the mechanical devices become coupled through the test material, and the transmission of energy between the devices can be monitored. This should allow for measurements of viscoelastic properties of polymeric materials at high frequency over short distances. Our work to date has been directed toward establishing this measurement capability at Sandia.

  18. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions

    Science.gov (United States)

    2016-01-01

    Summary Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip–sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young’s modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip–sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information. PMID:27335746

  19. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions.

    Science.gov (United States)

    Solares, Santiago D

    2016-01-01

    Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information.

  20. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  1. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2016-10-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  2. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2017-02-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  3. Wave Dispersion and Attenuation in Viscoelastic Split Hopkinson Pressure Bar

    Directory of Open Access Journals (Sweden)

    Z.Q. Cheng

    1998-01-01

    Full Text Available A viscoelastic split Hopkinson pressure bar intended for testing soft materials with low acoustic impedance is studied. Using one-dimensional linear viscoelastic wave propagation theory, the basic equations have been established for the determination of the stress—strain—strain rate relationship for the tested material. A method, based on the spectral analysis of wave motion and using measured wave signals along the split Hopkinson pressure bar, is developed for the correction of the dispersion and attenuation of viscoelastic waves. Computational simulations are performed to show the feasibility of the method.

  4. 一种用于测量鱼体材料粘弹性性质的弯曲变形试验机%On a Bending Test Machine used to Measure Viscoelastic Properties of Fish Material

    Institute of Scientific and Technical Information of China (English)

    王拓道; 贾来兵; 尹协振

    2011-01-01

    研究生物材料力学性质是生物力学的重要内容之一.测量材料粘弹性性质的传统方渗是单轴拉伸松弛或蠕变实验.与传统方法不同,为了测量鱼体材料粘弹性性质,本文设计了一种用于测量鱼体材料性质的弯曲变形试验机,通过模拟鱼体摆动,可以测得鱼体材料的储能模量、耗散模量、滞后相位角等参数.通过弹性体(铜片)和粘弹性体(橡胶)材料实验验证了该试验机的可靠性,并对鱼鳍进行了实验,计算出鱼鳍的粘弹性性质的各个参数.实验结果表明,实验测试系统可靠而且简单实用.%Mechanical property investigation of biological materials is one of the important branches of biomechanics. Traditionally, the uniaxial tensile test, relaxation or creep, are often used to study the viscoelastic properties of material. However, in order to measure the viscoelastic properties of fish material, a bending test machine was designed and its application is presented in this paper. Fish swing movement can be simulated based on this machine, angular displacement curve and moment of experimental samples were measured and then the storage modulus, loss modulus and phase angle of hysteresis were obtained. Experiment of elastic (copper) and viscoelastic (rubber) specimens was carried out to verify the reliability of this testing machine. Finally, experiment of fish fin was carried out and the parameters of its viscoelastic properties was obtained. Experimental results show that this test system is reliable, simple and practical.

  5. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus......, linear-viscoelastic analysis methods are justified from the age of approximately 10 hours.The rheological properties of plain cement paste are determined. These properties are the principal material properties needed in any stress analysis of concrete. Shrinkage (autogeneous or drying) of mortar...... and concrete and associated internal stress states are examples of analysis made in this report. In this context is discussed that concrete strength is not an invariable material property. It is a property the potentials of which is highly and negatively influenced by any damage caused by stress concentrations...

  6. Estimation of particle size variations for laser speckle rheology of materials.

    Science.gov (United States)

    Hajjarian, Zeinab; Nadkarni, Seemantini K

    2015-03-01

    Laser speckle rheology (LSR) is an optical technique for assessing the viscoelastic properties of materials with several industrial, biological, and medical applications. In LSR, the viscoelastic modulus, G*(ω), of a material is quantified by analyzing the temporal fluctuations of speckle patterns. However, the size of scattering particles within the material also influences the rate of speckle fluctuations, independent of sample mechanical properties, and complicates the accurate estimation of G*(ω). Here, we demonstrate that the average particle size may be retrieved from the azimuth-angle dependence of time-averaged speckle intensities, permitting the accurate quantification of the viscoelastic moduli of materials with unknown particle size distribution using LSR.

  7. The Qualitative Analysis of Theoretic Curves Generated by Linear Viscoelasticity Constitutive Equation

    Directory of Open Access Journals (Sweden)

    A. V. Khohlov

    2016-01-01

    Full Text Available The article analyses a one-dimensional linear integral constitutive equation of viscoelasticity with an arbitrary creep compliance function in order to reveal its abilities to describe the set of basic rheological phenomena pertaining to viscoelastoplastic materials at a constant temperature. General equations and basic properties of its quasi-static theoretic curves (i.e. stress-strain curves at constant strain or stress rates, creep, creep recovery, creep curves at piecewise-constant stress and ramp relaxation curves generated by the linear constitutive equation are derived and studied analytically. Their dependences on a creep function and relaxation modulus and on the loading program parameters are examined.The qualitative properties of the theoretic curves are compared to the typical properties of viscoelastoplastic materials test curves to reveal the mechanical effects, which the linear viscoelasticity theory cannot simulate and to find out convenient experimental indicators marking the field of its applicability or non-applicability. The minimal set of general restrictions that should be imposed on a creep and relaxation functions to provide an adequate description of typical test curves of viscoelastoplastic materials is formulated. It is proved, in particular, that an adequate simulation of typical experimental creep recovery curves requires that the derivative of a creep function should not increase at any point. This restriction implies that the linear viscoelasticity theory yields theoretical creep curves with non-increasing creep rate only and it cannot simulate materials demonstrating an accelerated creep stage. It is also proved that the linear viscoelasticity cannot simulate materials with experimental stress-strain curves possessing a maximum point or concave-up segment and materials exhibiting equilibrium modulus dependence on the strain rate or negative rate sensitivity.Similar qualitative analysis seems to be an important

  8. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV).

    Science.gov (United States)

    Urban, Matthew W; Pislaru, Cristina; Nenadic, Ivan Z; Kinnick, Randall R; Greenleaf, James F

    2013-02-01

    Viscoelastic properties of the myocardium are important for normal cardiac function and may be altered by disease. Thus, quantification of these properties may aid with evaluation of the health of the heart. Lamb wave dispersion ultrasound vibrometry (LDUV) is a shear wave-based method that uses wave velocity dispersion to measure the underlying viscoelastic material properties of soft tissue with plate-like geometries. We tested this method in eight pigs in an open-chest preparation. A mechanical actuator was used to create harmonic, propagating mechanical waves in the myocardial wall. The motion was tracked using a high frame rate acquisition sequence, typically 2500 Hz. The velocities of wave propagation were measured over the 50-400 Hz frequency range in 50 Hz increments. Data were acquired over several cardiac cycles. Dispersion curves were fit with a viscoelastic, anti-symmetric Lamb wave model to obtain estimates of the shear elasticity, μ(1), and viscosity, μ(2) as defined by the Kelvin-Voigt rheological model. The sensitivity of the Lamb wave model was also studied using simulated data. We demonstrated that wave velocity measurements and Lamb wave theory allow one to estimate the variation of viscoelastic moduli of the myocardial walls in vivo throughout the course of the cardiac cycle.

  9. A nonlinear viscoelastic constitutive equation - Yield predictions in multiaxial deformations

    Science.gov (United States)

    Shay, R. M., Jr.; Caruthers, J. M.

    1987-01-01

    Yield stress predictions of a nonlinear viscoelastic constitutive equation for amorphous polymer solids have been obtained and are compared with the phenomenological von Mises yield criterion. Linear viscoelasticity theory has been extended to include finite strains and a material timescale that depends on the instantaneous temperature, volume, and pressure. Results are presented for yield and the correct temperature and strain-rate dependence in a variety of multiaxial deformations. The present nonlinear viscoelastic constitutive equation can be formulated in terms of either a Cauchy or second Piola-Kirchhoff stress tensor, and in terms of either atmospheric or hydrostatic pressure.

  10. Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics

    DEFF Research Database (Denmark)

    García-Chocano, Victor M.; Christensen, Johan; Sánchez-Dehesa, José

    2014-01-01

    This Letter reports the design, fabrication, and experimental characterization of hyperbolic materials showing negative refraction and energy funneling of airborne sound. Negative refraction is demonstrated using a stack of five holey Plexiglas plates where their thicknesses, layer separation, hole....... Our demonstrations foresee interesting developments based on both phenomena. Acoustic imaging with subwavelength resolution and spot-size converters that harvest and squeeze sound waves irradiating from many directions into a collimated beam are just two possible applications among many....

  11. Approximate and numerical analysis of nonlinear forced vibration of axially moving viscoelastic beams

    Institute of Scientific and Technical Information of China (English)

    Hu Ding; Li-Qun Chen

    2011-01-01

    Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation.It is assumed that the excitation is spatially uniform and temporally harmonic. The transverse motion of axially moving beams is governed by a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The material time derivative is used in the viscoelastic constitutive relation. The method of multiple scales is applied to the governing equations to investigate primary resonances under general boundary conditions. It is demonstrated that the mode uninvolved in the resonance has no effect on the steady-state response. Numerical examples are presented to demonstrate the effects of the boundary constraint stiffness on the amplitude and the stability of the steady-state response. The results derived for two governing equations are qualitatively the same, but quantitatively different. The differential quadrature schemes are developed to verify those results via the method of multiple scales.

  12. Seismic Analysis of a Viscoelastic Damping Isolator

    Directory of Open Access Journals (Sweden)

    Bo-Wun Huang

    2015-01-01

    Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.

  13. Modelling water hammer in viscoelastic pipelines: short brief

    Science.gov (United States)

    Urbanowicz, K.; Firkowski, M.; Zarzycki, Z.

    2016-10-01

    The model of water hammer in viscoelastic pipelines is analyzed. An appropriate mathematical model of water hammer in polymer pipelines is presented. An additional term has been added to continuity equation to describe the retarded deformation of the pipe wall. The mechanical behavior of viscoelastic material is described by generalized Kelvin-Voigt model. The comparison of numerical simulation and experimental data from well known papers is presented. Short discussion about obtained results are given.

  14. Negative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics.

    Science.gov (United States)

    García-Chocano, Victor M; Christensen, Johan; Sánchez-Dehesa, José

    2014-04-11

    This Letter reports the design, fabrication, and experimental characterization of hyperbolic materials showing negative refraction and energy funneling of airborne sound. Negative refraction is demonstrated using a stack of five holey Plexiglas plates where their thicknesses, layer separation, hole diameters, and lattice periodicity have been determined to show hyperbolic dispersion around 40 kHz. The resulting hyperbolic material shows a flat band profile in the equifrequency contour allowing the gathering of acoustic energy in a broad range of incident angles and its funneling through the material. Our demonstrations foresee interesting developments based on both phenomena. Acoustic imaging with subwavelength resolution and spot-size converters that harvest and squeeze sound waves irradiating from many directions into a collimated beam are just two possible applications among many.

  15. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

    Science.gov (United States)

    Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.

    2016-08-01

    Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

  16. Exposing the nonlinear viscoelastic behavior of asphalt-aggregate mixes

    Science.gov (United States)

    Levenberg, Eyal; Uzan, Jacob

    2012-05-01

    In this study asphalt-aggregate mixes are treated as both viscoelastic and viscoplastic. Following a damage mechanics approach, a nonlinear viscoelastic constitutive formulation is generated from a linear formulation by replacing `applied stresses' with `effective viscoelastic stresses'. A non-dimensional scalar entity called `relative viscoelastic stiffness' is introduced; it is defined as the ratio of applied to effective viscoelastic stress and encapsulates different types of nonlinearities. The paper proposes a computational scheme for exposing these nonlinearities by uncovering, through direct analysis of any test data, changes experienced by the `relative viscoelastic stiffness'. In general terms, the method is based on simultaneous application of creep and relaxation formulations while preserving the interrelationship between the corresponding time functions. The proposed scheme is demonstrated by analyzing a uniaxial tension test and a uniaxial compression test (separately). Results are presented and discussed, unveiling and contrasting the character of viscoelastic nonlinearities in both cases. A conceptual viewpoint is offered to explain the observations, illustrating the requirements from any candidate constitutive theory.

  17. Demonstrate the removal efficiency and capacity of MOF materials for krypton recovery

    Energy Technology Data Exchange (ETDEWEB)

    Thallapally, Praveen K.; Liu, Jian; Strachan, Denis M.

    2013-08-23

    Metal organic framework materials (MOFs) were developed and tested in support of the U.S. Department of Energy Office of Nuclear Energy, Fuel Cycle Technology Separations and Waste Forms Campaign. Specifically, materials are being developed for the removal of xenon (Xe) and krypton (Kr) from gaseous products of nuclear fuel reprocessing unit operations. Two metal organic framework structures were investigated in greater detail to demonstrate the removal efficiency and capacity of MOF materials for krypton recovery. Our two bed breakthrough measurements on NiDOBDC and FMOFCu indicate these materials can capture and separate parts per million levels of Xe and Kr from air. The removal efficiency and adsorption capacity for Kr on these two MOFs were further increased upon removal of Xe upfront.

  18. Analysis of viscoelasticity of POF gratings in the stress sensing

    Science.gov (United States)

    Luo, Yanhua; Wang, Xin; Yan, Binbin; Wang, Tongxin; Wu, Wenxuan; Peng, Gang-Ding; Zhang, Qijin

    2013-11-01

    The time-dependent behavior of polymer optical fiber (POF) grating under constant tensile stresses has been studied. We show that the evident time-dependence is due to the viscoelastic nature of POF grating materials that can be described with the Kelvin Model. Based on the Kelvin Model, the time-dependent relationship between the Bragg wavelength shift and stress has been analyzed in detail. The results show that the viscoelasticity has a great impact upon the stress response of POF gratings. With the increment of stress level, the visco response part increases faster than that of elastic response part. Especially, the response and recovery with and without stress can be fitted with dual exponential decay and the time constant of fast response and relaxation is ˜102 s and that of the slow is ˜103 s, which corresponds to the fast and slow movements of polymer segments, respectively. Experiments and regressions also show that the stress sensitivity is observed to be 369 pm/MPa for the immediate response and 598 pm/MPa for response balance, showing high stress sensitivity. All the spring stiffness and dashpot viscosity of Kelvin elements are larger than 1010 Pa and 1013 Pa s. The dashpot viscosity of slow Kelvin element (1014 Pa s) is around one order larger than that of fast Kelvin element (1013 Pa s) with stress. Further analysis demonstrate the response and recovery of POF gratings with and without the stress displays an evident non-linear viscoelasticity, which will bring more complexity for POF gratings in the mechanical sensing applications.

  19. Viscoelasticity imaging using ultrasound: parameters and error analysis

    OpenAIRE

    Sridhar, M; Liu, J; Insana, M F

    2007-01-01

    Techniques are being developed to image viscoelastic features of soft tissues from time-varying strain. A compress-hold-release stress stimulus commonly used in creep-recovery measurements is applied to samples to form images of elastic strain and strain retardance times. While the intended application is diagnostic breast imaging, results in gelatin hydrogels are presented to demonstrate the techniques. The spatiotemporal behaviour of gelatin is described by linear viscoelastic theory formul...

  20. QUASI-STATIC AND DYNAMICAL ANALYSIS FOR VISCOELASTIC TIMOSHENKO BEAM WITH FRACTIONAL DERIVATIVE CONSTITUTIVE RELATION

    Institute of Scientific and Technical Information of China (English)

    朱正佑; 李根国; 程昌钧

    2002-01-01

    The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained. The influence of material parameters on the deflection is investigated. The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions. And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed.

  1. Collaborative investigations of in-service irradiated material from the Japan Power Demonstration Reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, W.R.; Broadhead, B.L. [Oak Ridge National Lab., TN (United States); Suzuki, M.; Kohsaka, A. [Japan Atomic Energy Research Institute, Tokai (Japan)

    1997-02-01

    There is a need to validate the results of irradiation effects research by the examination of material taken directly from the wall of a pressure vessel that has been irradiated during normal service. Just such an evaluation is currently being conducted on material from the wall of the pressure vessel from the Japan Power Demonstration Reactor (JPDR). The research is being jointly performed at the Tokai Research Establishment of the Japan Atomic Energy Research Institute (JAERI) and by the Nuclear Regulatory Commission (NRC)-funded Heavy-Section Steel Irradiation Program at the Oak Ridge National Laboratory (ORNL).

  2. GENERALIZED VARIATIONAL PRINCIPLES OF THE VISCOELASTIC BODY WITH VOIDS AND THEIR APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    盛东发; 程昌钧; 扶名福

    2004-01-01

    From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.

  3. Effective viscoelastic behavior of particulate polymer composites at finite concentration

    Institute of Scientific and Technical Information of China (English)

    LI Dan; HU Geng-kai

    2007-01-01

    Polymeric materials usually present some viscoelastic behavior. To improve the mechanical behavior of these materials, ceramics materials are often filled into the polymeric materials in form of fiber or particle. A micromechanical model was proposed to estimate the overall viscoelastic behavior for particulate polymer composites, especially for high volume concentration of filled particles. The method is based on Laplace transform technique and an elastic model including two-particle interaction. The effective creep compliance and the stress and strainrelation at a constant loading rate are analyzed. The results show that the proposed method predicts a significant stiffer response than those based on Mori-Tanaka's method at high volume concentration of particles.

  4. Free vibration and transverse stresses of viscoelastic laminated plates

    Institute of Scientific and Technical Information of China (English)

    Ming-yong HU; An-wen WANG

    2009-01-01

    Based on Reddy's layerwise theory, the governing equations for dynamic response of viscoelastic laminated plate are derived by using the quadratic interpolation function for displacement in the direction of plate thickness. Vibration frequencies and loss factors are calculated for flee vibration of simply supported viscoelastic sandwich plate, showing good agreement with the results in the literature. Harmonious transverse stresses can be obtained. The results show that the transverse shear stresses are the main factor to the delamination of viscoelastic laminated plate in lower-frequency free vibra-tion, and the transverse normal stress is the main one in higher-frequency free vibration. Relationship between the modulus of viscoelastic materials and transverse stress is an-alyzed. Ratio between the transverse stress's maximum value and the in-plane stress's maximum-value is obtained. The results show that the proposed method, and the adopted equations and programs are reliable.

  5. VOID GROWTH AND CAVITATION IN NONLINEAR VISCOELASTIC SOLIDS

    Institute of Scientific and Technical Information of China (English)

    张赟; 黄筑平

    2003-01-01

    This paper discusses the growth of a pre-existing void in a nonlinear viscoelastic material subjected to remote hydrostatic tensions with different loading rates. The constitutive relation of this viscoelastic material is the one recently proposed by the present authors, which may be considered as a generalization of the non-Gaussian statistical theory in rubber elasticity. As the first order approximation, the above constitutive relation can be reduced to the "neo-Hookean" type viscoelastic one.Investigations of the influences of the material viscosity and the loading rate on the void growth, or on the cavitation are carried out. It is found that: (1) for generalized "inverse Langevin approximation"nonlinear viscoelastic materials, the cavitation limit does not exist, but there is a certain (remote)stress level at which the void will grow rapidly; (2) for generalized "Gaussian statistics" (neo-Hookean type) viscoelastic materials, the cavitation limit exists, and is an increasing function of the loading rate.The present discussions may be of importance in understanding the material failure process under high triaxial stress.

  6. Modeling electrically active viscoelastic membranes.

    Directory of Open Access Journals (Sweden)

    Sitikantha Roy

    Full Text Available The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.

  7. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...... it is demonstrated that surface tension plays a key role in the selection of the most unstable mode...

  8. 粘弹性材料声阻抗非局域特性的数值研究%Study of the numerical simulation of a non-local property of acoustic impedance in viscoelastic material

    Institute of Scientific and Technical Information of China (English)

    杨明绥; 王同庆; 范真真

    2011-01-01

    A model of the acoustic impedance matrix was proposed to describe the local and non-local properties of acoustic scattering. The derivation of an acoustic impedance matrix and its algebraic model were completed. On the basis of the viscoelastic finite element method a numerical calculation code was programmed. The code validation and its calculation precision were proven. Finally, an acoustic impedance matrix was computed for a viscoelastic plate backed by a rigid body, and its parameters from an algebraic model were fitted. The local and non-local properties of acoustic impedance and the variation of parameters in the model were analyzed in detail. The results of the experiment show that the non-local properties of viscoelastic material surface acoustic scattering impedance can be described, both qualitatively and quantitatively by the acoustic impedance matrix and non-local acoustic impedance algebraic model. Therefore, an effective numerical calculation method was proposed to research the non-local properties of acoustic impedance.%针对刚性背衬下的粘弹性材料层,提出了一种能够描述表面声散射的局域/非局域特性的声阻抗矩阵模型,进行了声阻抗矩阵及代数模型的推导.以粘弹性有限元为基础完成了数值计算工具的开发,并对自编代码进行了校核,表明数值工具具有较高的计算精度.计算了刚性背衬下粘弹性板的声阻抗矩阵,并拟合得到声阻抗模型参数,分析了声阻抗局域、非局域特性及代数模型中各参数的变化规律.实际计算结果表明:声阻抗矩阵和非局域声阻抗代数模型能够定性和定量描述粘弹性材料表面声散射阻抗的非局域特性,为声阻抗非局域特性的研究提供了一个有效的数值分析方法.

  9. Relationship Between Structure and Viscoelastic Properties of Geosynthetics

    Directory of Open Access Journals (Sweden)

    Loginova Irina

    2016-01-01

    Full Text Available In this work, a study on viscoelastic properties of geosynthetic materials used in civil engineering is presented. Six samples of geofabrics and geogrids with different structures including woven geotextile fabric, nonwoven geotextile fabrics, warp-knitted geogrids and extruded geogrid were investigated. The tensile properties of geosynthetics including tensile strength, strain at maximum load and tensile load at specified strain have been determined. The creep and relaxation tests were carried out. The structure type was found to significantly affect the viscoelastic properties of the geosynthetics materials. In the article some results of numerous conducted tests are presented, analyzed and may be used to preselection of geosynthetics materials.

  10. Proposal for Construction/Demonstration/Implementation of A Material Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Jim Jnatt

    2001-08-24

    Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the

  11. A THREE-DIMENSIONAL SOLUTION FOR LAMINATED ORTHOTROPIC RECTANGULAR PLATES WITH VISCOELASTIC INTERFACES

    Institute of Scientific and Technical Information of China (English)

    Yan Wei; Ying Ji; Chen Weiqiu

    2006-01-01

    When a body consists completely or even partly of viscoelastic materials, its response under static loading will be time-dependent. The adhesives used to glue together single plies in laminates usually exhibit a certain viscoelastic characteristic in a high temperature environment. In this paper, a laminated orthotropic rectangular plate with viscoelastic interfaces,described by the Kelvin-Voigt model, is considered. A power series expansion technique is adopted to approximate the time-variation of various field quantities. Results indicate that the response of the laminated plate with viscoelastic interfaces changes remarkably with time, and is much different from that of a plate with spring-like or viscous interfaces.

  12. THz Discrimination of materials: demonstration of a bioinspired apparatus based on metasurfaces selective filters

    CERN Document Server

    Carelli1, P; Torrioli, G; Castellano, M G

    2016-01-01

    We present an apparatus for terahertz fingerprint discrimination of materials designed to be fast, simple, compact and economical in order to be suitable for preliminary on-field analysis. The system working principles, bioinspired by the human vision of colors, are based on the use of microfabricated metamaterials selective filters and of a very compact optics based on metallic ellipsoidal mirrors in air. We experimentally demonstrate the operation of the apparatus in discriminating simple substances such as salt, staple foods and grease in an accurate and reproducible manner. We present the system and the obtained results and discuss issues and possible developments.

  13. Demonstration of Emitted-Neutron Computed Tomography to Quantify Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hausladen, Paul [ORNL; Blackston, Matthew A [ORNL; Newby, Jason [ORNL

    2011-09-01

    In this document, we report demonstration of emitted-neutron computed tomography using fast fission neutrons to infer the geometry of sources of special nuclear material (SNM). The imaging system employed in the demonstration is based on a newly constructed array of pixelated neutron detectors that are suitable for arrangement in a close-packed imaging array and whose active volume consists of liquid scintillator EJ-309 which allows neutron-gamma discrimination via pulse shape to enable essentially pure fast-neutron imaging. The system is capable of high quality fast-neutron imaging where tomographic reconstruction of slices through an object resolves neutron sources similar in dimension to a fuel pellet, or about 1 cm. During measurements of Pu MOX fuel rodlet arrays in soup cans at the INL ZPPR facility, the position of a partial defect of a single rodlet containing Pu replaced by one containing depleted uranium (DU) was detected.

  14. Creep test observation of viscoelastic failure of edible fats

    Energy Technology Data Exchange (ETDEWEB)

    Vithanage, C R; Grimson, M J; Wills, P R [Department of Physics, University of Auckland, Private Bag 92019 (New Zealand); Smith, B G, E-mail: cvit002@aucklanduni.ac.nz [Food Science Programmes, Department of Chemistry, University of Auckland, Private Bag 92019 (New Zealand)

    2011-03-01

    A rheological creep test was used to investigate the viscoelastic failure of five edible fats. Butter, spreadable blend and spread were selected as edible fats because they belong to three different groups according to the Codex Alimentarius. Creep curves were analysed according to the Burger model. Results were fitted to a Weibull distribution representing the strain-dependent lifetime of putative fibres in the material. The Weibull shape and scale (lifetime) parameters were estimated for each substance. A comparison of the rheometric measurements of edible fats demonstrated a clear difference between the three different groups. Taken together the results indicate that butter has a lower threshold for mechanical failure than spreadable blend and spread. The observed behaviour of edible fats can be interpreted using a model in which there are two types of bonds between fat crystals; primary bonds that are strong and break irreversibly, and secondary bonds, which are weaker but break and reform reversibly.

  15. Viscoelastic Liquid Curtain

    Science.gov (United States)

    Lebon, Luc; Limat, Laurent; Gaillard, Antoine; Beaumont, Julien; Lhuissier, Henri; Laboratoire MSC Team

    2015-11-01

    We have investigated experimentally the properties and stability of viscoelastic curtains, falling from a long thin slot and maintained laterally by two highly wetting wires. We have observed several original facts, compared to the seminal work of Brown and Taylor on Newtonian curtains: (1) The stability with respect to breaking is considerably enhanced by the use of appropriate polymers. Even strange tree-like falling filament structures can be also stabilised, though less interesting for applications. (2) Specific instabilities can be observed, when the amount of polymers is excessive, with spatial and temporal modulations of the coating thickness. (3) Even the base state is modified, and does NOT reduce at large scale to a free fall, even slightly displaced vertically from the expected profile. We present this experimental exploration and also some attempts of analytical modeling based on Rheological theories of complex fluids.

  16. Industrial Fuel Gas Demonstration Plant Program. Bid packages for materials (Deliverable No. 28)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Fixed-price supply type bid packages for materials and/or service essentially are comprised of two parts, namely: (1) a technical requisition of the material, equipment, or service to be supplied; and (2) commercial and legal requirements, normally referred to as terms and conditions. Requisitions, providing technical requirements, for all equipment items identified for the Industrial Fuel Gas Demonstration Plant may be found in the 12 volumes of the Demonstration Plant Mechanical Design. The requisitions have been included within separate sections of the design report, sorted by appropriate plant unit. Combined with any General Notes Requisition and the necessary FWEC Job Standards, these various item requisitions provide all technical information for the prospective vendor to furnish his bid. The terms and conditions (boiler plate) to be included in the bid package identify all the contractual requirements which will be imposed upon the bidder. These requirements cover the conditions he must meet to bid on the particular item as well as the clauses to be included within the eventual purchase order/subcontract. A typical package of such terms and conditions is included.

  17. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  18. 粘弹性阻尼材料动态力学性能温度谱模型%Temperature Spectrum Model of Dynamic Mechanical Properties for Viscoelastic Damping Materials

    Institute of Scientific and Technical Information of China (English)

    张针粒; 李世其; 朱文革

    2011-01-01

    粘弹性阻尼材料的动态力学性能通常以时温叠加得到的频率谱主曲线表征,而时温叠加过程需要测量多个温度下的频率谱,难以保证试验条件的一致性.为此,由时温叠加原理,提出频率谱—温度谱镜像关系的数学形式.基于频率谱五参数分数微分模型,提出粘弹性阻尼材料的动态力学性能温度谱六参数分数微分模型,简称温度谱模型.所提模型能直接利用动态机械分析的试验结果,对于损耗模量和损因子具有对称性或非对称性的情形均适用.温度谱模型的参数具有明确的物理含义,推导温度谱模型参数的初值公式,并给出参数辨识步骤.不同材料在不同测试条件下的动态机械分析试验表明,所提模型可较好地表征粘弹性阻尼材料动态力学性能随温度的变化.%The dynamic mechanical properties of viscoelastic damping materials are usually represented by the master curve (MC) in the frequency domain. In order to construct a MC, multiple frequency spectrums must be tested, in which case it's difficult to maintain the same test conditions. A mathematical form of the mirror relationship between the temperature spectrum and frequency spectrum is suggested according to the time-temperature superposition principle. Based on the five-parameter fractional derivative frequency spectrum model, a six-parameter fractional derivative temperature spectrum model of dynamic mechanical properties, temperature spectrum model for short, is established for viscoelastic damping materials. The proposed model can directly use the results of dynamic mechanical analysis (DMA), and is applicable whether the loss modulus and loss factor are symmetrical or asymmetrical. The six parameters in the model all have clear physical meanings, and some formulas are derived to obtain their initial values, which can be refined by the suggested parameter identification procedure. DMA tests using different materials under

  19. The Mini-Oscillator Model Research for Viscoelastic Material%粘弹性材料的微振子模型研究

    Institute of Scientific and Technical Information of China (English)

    石银明; 华宏星; 傅志方

    2001-01-01

    In the need of structural passive or active vibration control using viscoelasttic material,a method for determining all parameters of Mini-Oscillator model is proposed.The results are compared with those of standard model and fractional derivative model.and the method is effective and the Mini-Oscillator model could not only correctly describe stress-strain relationship of viscoelastic material,but also be combined with finite element method,which results in a linear second order system.Then it is very convenient to use the linear system theory to vibration control.%针对利用粘弹性材料进行结构主被动控制的需要,建立了一套确定微振子模型各参数的方法,并且与标准流变模型、分数导数模型以及试验结果进行比较,算例表明确定微振子模型各参数的方法有效,同时也表明微振子模型不但能准确描述粘弹性材料的本构关系,而且能与有限元方法相融合,建立二阶线性系统,能很方便地利用线性系统控制理论进行控制设计。

  20. Energia total de ruptura: um teste biomecânico para avaliação de material biológico com propriedade viscoelástica não linear Total energy of rupture: a biomechanical test to evaluate non-linear viscoelastic biological material

    Directory of Open Access Journals (Sweden)

    Feng Chung Wu

    2004-12-01

    also possible to generate descriptive and statistics reports and graphics through the data acquisition and analysis automatization and management. Conclusion: Based on physic-mechanical, computational and biomechanical concepts, the Total Energy of Rupture test provides mathematical analysis of the rat’s left colon segment behaviour during the experiments, demonstrating to be a possible method to measure the intrinsic resistance of this biological material presenting non-linear viscoelastic property.

  1. Numerical Simulation and Experimental Investigation of the Viscoelastic Heating Mechanism in Ultrasonic Plasticizing of Amorphous Polymers for Micro Injection Molding

    Directory of Open Access Journals (Sweden)

    Bingyan Jiang

    2016-05-01

    Full Text Available Ultrasonic plasticizing of polymers for micro-injection molding has been proposed and studied for its unique potential in materials and energy-saving. In our previous work, we have demonstrated the characteristics of the interfacial friction heating mechanism in ultrasonic plasticizing of polymer granulates. In this paper, the other important heating mechanism in ultrasonic plasticizing, i.e., viscoelastic heating for amorphous polymer, was studied by both theoretical modeling and experimentation. The influence mechanism of several parameters, such as the initial temperature of the polymer, the ultrasonic frequency, and the ultrasonic amplitude, was investigated. The results from both numerical simulation and experimentation indicate that the heat generation rate of viscoelastic heating can be significantly influenced by the initial temperature of polymer. The glass transition temperature was found to be a significant shifting point in viscoelastic heating. The heat generation rate is relatively low at the beginning and can have a steep increase after reaching glass transition temperature. In comparison with the ultrasonic frequency, the ultrasonic amplitude has much greater influence on the heat generation rate. In light of the quantitative difference in the viscoelastic heating rate, the limitation of the numerical simulation was discussed in the aspect of the assumptions and the applied mathematical models.

  2. Noise Reduction Evaluation of Multi-Layered Viscoelastic Infinite Cylinder under Acoustical Wave Excitation

    Directory of Open Access Journals (Sweden)

    M.R. Mofakhami

    2008-01-01

    Full Text Available In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic properties of the structure are rigorously taken into account with a power law technique that models the viscoelastic damping of the cylinder. A parametric study is also performed for the two layered infinite cylinders to obtain the effect of viscoelastic layer characteristics such as thickness, material type and frequency dependency of viscoelastic properties on the noise reduction. It is shown that using constant and frequency dependent viscoelastic material with high loss factor leads to the uniform noise reduction in the frequency domain. It is also shown that the noise reduction obtained for constant viscoelastic material property is subjected to some errors in the low frequency range with respect to those obtained for the frequency dependent viscoelastic material.

  3. Dynamical Behavior of Nonlinear Viscoelastic Timoshenko Beams with Damage on a Viscoelastic Foundation

    Institute of Scientific and Technical Information of China (English)

    盛冬发; 张燕; 程昌钧

    2004-01-01

    Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams with large deflections, the nonlinear equations governing dynamical behavior of Timoshenko beams with damage on viscoelastic foundation were firstly derived. By using the Galerkin method in spatial domain, the nonlinear integro-partial differential equations were transformed into a set of integro-ordinary differential equations. The numerical methods in nonlinear dynamical systems, such as the phase-trajectory diagram, Poincare section and bifurcation figure, were used to solve the simplified systems of equations. It could be seen that simplified dynamical systems possess the plenty of nonlinear dynamical properties. The influence of load and material parameters on the dynamic behavior of nonlinear system were investigated in detail.

  4. QUASI-STATIC ANALYSIS FOR VISCOELASTIC TIMOSHENKO BEAMS WITH DAMAGE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams, the equations governing quasi-static and dynamical behavior of Timoshenko beams with damage were first derived. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading was analyzed and the analytical solution was obtained in the Laplace transformation domain. The deflection and damage curves at different time were obtained by using the numerical inverse transform and the influences of material parameters on the quasi-static behavior of the beam were investigated in detail.

  5. Viscoelastic behavior of concrete pile

    Institute of Scientific and Technical Information of China (English)

    丁科; 唐小弟

    2008-01-01

    Based on constitutive theory of viscoelasticity,the viscoelastic behaviour of concrete pile was investigated.The influence of viscosity coefficient on the stress,displacement and velocity response was discussed.With the increase of viscosity coefficient,the amplitude of stress wave decreases,and the maximum value of the stress wave shifts to deeper position of the pile.In other words,the viscosity coefficient behaves as lag effect to stress wave.

  6. Transuranic material recovery in the Integral Fast Reactor fuel cycle demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, R.W.; Goff, K.M.

    1993-01-01

    The Integral Fast Reactor is an innovative liquid metal reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel cycle economics, environmental protection, and safeguards. The plans for demonstrating the IFR fuel cycle, including its waste processing options, by processing irradiated fuel from the Experimental Breeder Reactor-II fuel in its associated Fuel Cycle Facility have been developed for the first refining series. This series has been designed to provide the data needed for the further development of the IFR program. An important piece of the data needed is the recovery of TRU material during the reprocessing and waste operations.

  7. Transuranic material recovery in the Integral Fast Reactor fuel cycle demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, R.W.; Goff, K.M.

    1993-03-01

    The Integral Fast Reactor is an innovative liquid metal reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel cycle economics, environmental protection, and safeguards. The plans for demonstrating the IFR fuel cycle, including its waste processing options, by processing irradiated fuel from the Experimental Breeder Reactor-II fuel in its associated Fuel Cycle Facility have been developed for the first refining series. This series has been designed to provide the data needed for the further development of the IFR program. An important piece of the data needed is the recovery of TRU material during the reprocessing and waste operations.

  8. The ultratough peeling of elastic tapes from viscoelastic substrates

    Science.gov (United States)

    Afferrante, L.; Carbone, G.

    2016-11-01

    The peeling of an elastic thin tape from a flat smooth viscoelastic substrate is investigated. Based on a Green function approach and on the translational invariance, a closed form analytical solution is proposed, which takes into account the viscoelastic dissipation in the substrate material. We find that peeling is prevented from taking place, only when the external force is smaller than the one predicted by Kendall's formula for elastic tapes on rigid substrates. However, we also find that, regardless of the value of the applied force, steady state detachment may occur when the elastic tape is sufficiently stiff. In this case, the constant peeling velocity can be modulated by properly defining the geometrical parameters and the material properties of tape and viscoelastic foundation. On the other hand, for relatively high peeling angles or compliant tapes a threshold value of the peeling force is found, above which the steady-state equilibrium is no longer possible and unstable detachment occurs. The present study contributes to shed light on the behavior of pressure sensitive adhesives in contact with viscoelastic substrates like the human skin. At the same time, it can be considered a first step towards a better understanding of the effect of viscoelastic dissipation on the fracture behavior of solids.

  9. Dredged material decontamination demonstration for the port of New York/New Jersey.

    Science.gov (United States)

    Jones, K W; Feng, H; Stern, E A; Lodge, J; Clesceri, N L

    2001-07-30

    Management of contaminated dredged material is a significant challenge in the Port of New York and New Jersey as a result of more stringent regional ocean placement regulations with escalating costs for upland placement. One component of an overall management plan can be the application of a decontamination technology followed by creation of a product suitable for beneficial use. This concept is the focus of a project now being carried out by the US Environmental Protection Agency, Region 2, the US Army Corps of Engineers, New York District, the US Department of Energy, Brookhaven National Laboratory, and regional university groups that have included Rensselaer Polytechnic Institute, Rutgers University, New Jersey Institute of Technology, and Stevens Institute of Technology. The project has progressed through phased testing of commercial technologies at the bench scale (15 liters) (Marcor, Metcalf & Eddy, Gas Technology Institute, Westinghouse Science & Technology, BioGenesis, International Technology, and BioSafe) and pilot-scale (1.5-500m(3)) (BioGenesis, Gas Technology Institute, and Westinghouse Science & Technology) levels. The technologies developed by Gas Technology Institute and BioGenesis are now going forward to commercial demonstration facilities that are intended to treat from 23000 to 60000m(3) of dredged material during their first operational period in 2001-2002. Beneficial use products are soils and cement. Treatment costs for the final commercial facilities are estimated at US$ 39 per m(3). Selection of the technologies was made based on the effectiveness of the treatment process, evaluation of the possible beneficial use of the treated materials, and other factors. Major elements of the project are summarized here.

  10. Elasticity of microscale volumes of viscoelastic soft matter by cavitation rheometry.

    Science.gov (United States)

    Pavlovsky, Leonid; Ganesan, Mahesh; Younger, John G; Solomon, Michael J

    2014-09-15

    Measurement of the elastic modulus of soft, viscoelastic liquids with cavitation rheometry is demonstrated for specimens as small as 1 μl by application of elasticity theory and experiments on semi-dilute polymer solutions. Cavitation rheometry is the extraction of the elastic modulus of a material, E, by measuring the pressure necessary to create a cavity within it [J. A. Zimberlin, N. Sanabria-DeLong, G. N. Tew, and A. J. Crosby, Soft Matter 3, 763-767 (2007)]. This paper extends cavitation rheometry in three ways. First, we show that viscoelastic samples can be approximated with the neo-Hookean model provided that the time scale of the cavity formation is measured. Second, we extend the cavitation rheometry method to accommodate cases in which the sample size is no longer large relative to the cavity dimension. Finally, we implement cavitation rheometry to show that the theory accurately measures the elastic modulus of viscoelastic samples with volumes ranging from 4 ml to as low as 1 μl.

  11. Polymer engineering science and viscoelasticity an introduction

    CERN Document Server

    Brinson, Hal F

    2015-01-01

    This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter.   New to this edition:   ·         One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures ·         Brings up-to-date polymer pro...

  12. Light scanner based on a viscoelastic stretchable grating.

    Science.gov (United States)

    Simonov, A N; Akhzar-Mehr, O; Vdovin, G

    2005-05-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings with triangular and rectangular profiles have been characterized at lambda = 633 nm. It is demonstrated that the reversible elongation can exceed 20% of the initial length. For the triangular profile grating, the diffraction angle of the first order changed from 6.6 degrees to 5.4 degrees while the diffraction efficiency remained almost constant at approximately 17%. Dynamic scanning of a laser beam at frequencies of approximately 1 kHz is demonstrated by use of electromechanically driven viscoelastic gratings.

  13. Light scanner based on a viscoelastic stretchable grating

    Science.gov (United States)

    Simonov, A. N.; Akhzar-Mehr, O.; Vdovin, G.

    2005-05-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings with triangular and rectangular profiles have been characterized at lambda = 633 nm. It is demonstrated that the reversible elongation can exceed 20% of the initial length. For the triangular profile grating, the diffraction angle of the first order changed from 6.6μ to 5.4μ while the diffraction efficiency remained almost constant at ~17%. Dynamic scanning of a laser beam at frequencies of ~1 kHz is demonstrated by use of electromechanically driven viscoelastic gratings.

  14. Transient waves in finite viscoelastic rods

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, F. (Bologna Univ. (Italy). Ist. di Fisica); Nervosi, R. (Bologna Univ. (Italy))

    1980-11-29

    A method based on the Laplace transform is presented to compute wave-front expansions for transient waves in finite viscoelastic rods using the creep or the relaxation representation. The response is related to the basic solution of the semi-infinite problem, for which a series expansion is obtained by a recursive procedure. The convergence is guaranteed in any space-time domain if the material functions are entirely of exponential type. However, for numerical computation an acceleration of convergence is required and the Pade approximants turn out to be successful as shown by some examples.

  15. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  16. Micromechanics Models for Viscoelastic Plain-Weave Composite Tape Springs

    DEFF Research Database (Denmark)

    Kwok, Kawai; Pellegrino, Sergio

    2017-01-01

    The viscoelastic behavior of polymer composites decreases the deployment force and the postdeployment shape accuracy of composite deployable space structures. This paper presents a viscoelastic model for single-ply cylindrical shells (tape springs) that are deployed after being held folded...... for a given period of time. The model is derived from a representative unit cell of the composite material, based on the microstructure geometry. Key ingredients are the fiber volume density in the composite tows and the constitutive behavior of the fibers (assumed to be linear elastic and transversely...

  17. DYNAMICAL BEHAVIOR OF VISCOELASTIC CYLINDRICAL SHELLS UNDER AXIAL PRESSURES

    Institute of Scientific and Technical Information of China (English)

    程昌钧; 张能辉

    2001-01-01

    The hypotheses of the Kármán-Donnell theory of thin shells with large deflections and the Boltzmann laws for isotropic linear, viscoelastic materials, the constitutive equations of shallow shells are first derived. Then the governing equations for the deflection equations of elastic thin plates. Introducing proper assumptions, an approximate theory for viscoelastic cylindrical shells under axial pressures can be obtained. Finally, the dynamical behavior is studied in detail by using several numerical methods. Dynamical properties,such as, hyperchaos , chaos, strange attractor, limit cycle etc., are discovered.

  18. Buckling and Multiple Equilibrium States of Viscoelastic Rectangular Plates

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    On the basis of Karman's theory of thin plates with large deflection, the Boltzmann law on linear viscoelastic materials and the mathematical model of dynamic analysis on viscoelastic thin plates, a set of nonlinear integro-partial-differential equations is first presented by means of a structural function introduced in this paper. Then,by using the Galerkin technique in spatial field and a backward difference scheme in temporal field, the set of nonlinear integro-partial-differential equations reduces to a system of nonlinear algebraic equations. After solving the algebraic equations, the buckling behavior and multiple equilibrium states can be obtained.

  19. DYNAMICAL STABILITY OF VISCOELASTIC COLUMN WITH FRACTIONAL DERIVATIVE CONSTITUTIVE RELATION

    Institute of Scientific and Technical Information of China (English)

    李根国; 朱正佑; 程昌钧

    2001-01-01

    The dynamic stability of simple supported viscoelastic column, subjected to a periodic axial force, is investigated. The viscoelastic material was assumed to obey the fractional derivative constitutive relation. The governing equation of motion was derived as a weakly singular Volterra integro-partial-differential equation, and it was simplified into a weakly singular Volterra integro-ordinary-differential equation by the Galerkin method. In terms of the averaging method, the dynamical stability was analyzed. A new numerical method is proposed to avoid storing all history data. Numerical examples are presented and the numerical results agree with the analytical ones.

  20. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: cyqzhang@zju.edu.cn [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)

    2017-04-11

    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.

  1. Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kelleche, Abdelkarim, E-mail: kellecheabdelkarim@gmail.com [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Mathématiques (Algeria); Tatar, Nasser-eddine, E-mail: tatarn@Kfupm.edu.sa [King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics (Saudi Arabia)

    2017-06-15

    The paper deals with an axially moving viscoelastic structure modeled as an Euler–Bernoulli beam. The aim is to suppress the transversal displacement (transversal vibrations) that occur during the axial motion of the beam. It is assumed that the beam is moving with a constant axial speed and it is subject to a nonlinear force at the right boundary. We prove that when the axial speed of the beam is smaller than a critical value, the dissipation produced by the viscoelastic material is sufficient to suppress the transversal vibrations. It is shown that the rate of decay of the energy depends on the kernel which arise in the viscoelastic term. We consider a general kernel and notice that solutions cannot decay faster than the kernel.

  2. Oscillatory squeeze flow for the study of linear viscoelastic behavior

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    2016-01-01

    The squeezing of a sample between parallel plates has been used for many years to characterize the rheological behavior of soft, purely viscous materials, and in recent times, small-amplitude oscillatory squeezing has been proposed as a means to determine the linear viscoelastic properties of mol...

  3. Photomechanically coupled viscoelasticity of azobenzene polyimide polymer networks

    Science.gov (United States)

    Roberts, Dennice; Worden, Matt; Chowdhury, Sadiyah; Oates, William S.

    2017-07-01

    Polyimide-based azobenzene polymer networks have demonstrated superior photomechanical performance over more conventional azobenzene-doped pendent and cross-linked polyacrylate networks. These materials exhibit larger yield stress and glass transition temperatures and thus provide robustness for active control of adaptive structures directly with polarized, visible light. Whereas photochemical reactions clearly lead to deformation, as indicated by a rotation of a linear polarized light source, temperature and viscoelasticity can also influence deformation and complicate interpretation of the photostrictive and shape memory constitutive behavior. To better understand this behavior we develop a rate-dependent constitutive model and experimentally quantify the material behavior in these materials. The rate dependent deformation induced in these materials is quantified experimentally through photomechanical stress measurements and infrared camera measurements. Bayesian uncertainty analysis is used to assess the role of internal polymer network evolution and azobenzene excitation on both thermomechanical and photomechanical deformation in the presence polarized light of different orientations. A modified Arrhenius relation is proposed and validated using Bayesian statistics which provide connections between free volume, shape memory, and polarized light.

  4. Tailoring Hydrogel Viscoelasticity with Physical and Chemical Crosslinking

    Directory of Open Access Journals (Sweden)

    Michal Bartnikowski

    2015-12-01

    Full Text Available Biological tissues are viscoelastic, demonstrating a mixture of fluid and solid responses to mechanical strain. Whilst viscoelasticity is critical for native tissue function, it is rarely used as a design criterion in biomaterials science or tissue engineering. We propose that viscoelasticity may be tailored to specific levels through manipulation of the hydrogel type, or more specifically the proportion of physical and chemical crosslinks present in a construct. This theory was assessed by comparing the mechanical properties of various hydrogel blends, comprising elastic, equilibrium, storage and loss moduli, as well as the loss tangent. These properties were also assessed in human articular cartilage explants. It was found that whilst very low in elastic modulus, the physical crosslinks found in gellan gum-only provided the closest approximation of loss tangent levels found in cartilage. Blends of physical and chemical crosslinks (gelatin methacrylamide (GelMA combined with gellan gum gave highest values for elastic response. However, a greater proportion of gellan gum to GelMA than investigated may be required to achieve native cartilage viscoelasticity in this case. Human articular chondrocytes encapsulated in hydrogels remained viable over one week of culture. Overall, it was shown that viscoelasticity may be tailored similarly to other mechanical properties and may prove a new criterion to be included in the design of biomaterial structures for tissue engineering.

  5. Two-phase viscoelastic jetting

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J-D; Sakai, S.; Sethian, J.A.

    2008-12-10

    A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.

  6. Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-01-01

    This article deals with the free vibration investigation of nonlocal strain gradient-based viscoelastic functionally graded (FG) nanobeams on viscoelastic medium considering surface stress effects. Nonlocal strain gradient theory possesses a nonlocal stress field parameter and a length scale parameter for more accurate prediction of mechanical behavior of nanostructures. Surface energy effect is incorporate to the nonlocal strain gradient theory employing Gurtin-Murdoch elasticity theory. Thermo-elastic material properties of nanobeam are graded in thickness direction using power-law distribution. Hamilton's principal is utilized to obtain the governing equations of FG nanobeam embedded in viscoelastic medium. The effects of surface stress, length scale parameter, nonlocal parameter, viscoelastic medium, internal damping constant, thermal loading, power-law index and boundary conditions on vibration frequencies of viscoelastic FGM nanobeams are discussed in detail.

  7. Generalization of the ordinary state-based peridynamic model for isotropic linear viscoelasticity

    Science.gov (United States)

    Delorme, Rolland; Tabiai, Ilyass; Laberge Lebel, Louis; Lévesque, Martin

    2017-02-01

    This paper presents a generalization of the original ordinary state-based peridynamic model for isotropic linear viscoelasticity. The viscoelastic material response is represented using the thermodynamically acceptable Prony series approach. It can feature as many Prony terms as required and accounts for viscoelastic spherical and deviatoric components. The model was derived from an equivalence between peridynamic viscoelastic parameters and those appearing in classical continuum mechanics, by equating the free energy densities expressed in both frameworks. The model was simplified to a uni-dimensional expression and implemented to simulate a creep-recovery test. This implementation was finally validated by comparing peridynamic predictions to those predicted from classical continuum mechanics. An exact correspondence between peridynamics and the classical continuum approach was shown when the peridynamic horizon becomes small, meaning peridynamics tends toward classical continuum mechanics. This work provides a clear and direct means to researchers dealing with viscoelastic phenomena to tackle their problem within the peridynamic framework.

  8. DYNAMIC STABILITY OF AXIALLY MOVING VISCOELASTIC BEAMS WITH PULSATING SPEED

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-dong; CHEN Li-qun

    2005-01-01

    Parametric vibration of an axially moving, elastic, tensioned beam with pulsating speed was investigated in the vicinity of subharmonic and combination resonance. The method of averaging was used to yield a set of autonomous equations when the parametric excitation frequency is twice or the combination of the natural frequencies. Instability boundaries were presented in the plane of parametric frequency and amplitude. The analytical results were numerically verified. The effects of the viscoelastic damping, steady speed and tension on the instability boundaries were numerically demonstrated. It is found that the viscoelastic damping decreases the instability regions and the steady speed and the tension make the instability region drift along the frequency axis.

  9. GPU accelerated numerical simulations of viscoelastic phase separation model.

    Science.gov (United States)

    Yang, Keda; Su, Jiaye; Guo, Hongxia

    2012-07-05

    We introduce a complete implementation of viscoelastic model for numerical simulations of the phase separation kinetics in dynamic asymmetry systems such as polymer blends and polymer solutions on a graphics processing unit (GPU) by CUDA language and discuss algorithms and optimizations in details. From studies of a polymer solution, we show that the GPU-based implementation can predict correctly the accepted results and provide about 190 times speedup over a single central processing unit (CPU). Further accuracy analysis demonstrates that both the single and the double precision calculations on the GPU are sufficient to produce high-quality results in numerical simulations of viscoelastic model. Therefore, the GPU-based viscoelastic model is very promising for studying many phase separation processes of experimental and theoretical interests that often take place on the large length and time scales and are not easily addressed by a conventional implementation running on a single CPU.

  10. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  11. Role of viscoelasticity in mantle convection models

    Science.gov (United States)

    Patocka, Vojtech; Cadek, Ondrej; Tackley, Paul

    2015-04-01

    constitutive equations in a way more suitable for global studies, which is different from the method refered to earlier. The computational domain is expected to be composed of two parts: One in which elastic effects are important and where material does not move significantly within one elastic time step and one where elastic effects are not important, where material is allowed to move across many cells within one elastic time step. Local accumulation of stress in viscoelastic simulations is observed, suggesting elasticity could e.g. trigger plasticity in realistic cases. References Moresi L., Dufour F., Mühlhaus H.-B., 2003: A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, Journal of Computational Physics, 184 (2003), 476 - 497 Tackley P., 2008: Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Physics of the Earth and Planetary Interiors, 171 (2008), 7-18

  12. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Science.gov (United States)

    Liu, J. C.; Zhang, Y. Q.; Fan, L. F.

    2017-04-01

    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium.

  13. 49 CFR 173.467 - Tests for demonstrating the ability of Type B and fissile materials packagings to withstand...

    Science.gov (United States)

    2010-10-01

    ... Type B and fissile materials packagings to withstand accident conditions in transportation. Each Type B packaging or packaging for fissile material must meet the test requirements prescribed in 10 CFR part 71 for... 49 Transportation 2 2010-10-01 2010-10-01 false Tests for demonstrating the ability of Type B...

  14. Time-resolved photoacoustic measurement for evaluation of viscoelastic properties of biological tissues

    Science.gov (United States)

    Zhao, Yue; Chen, Conggui; Liu, Hongwei; Yang, Sihua; Xing, Da

    2016-11-01

    In this letter, we proposed a method for viscoelastic characterization of biological tissues based on time-resolved photoacoustic measurement. The theoretical and experimental study was performed on the influence of viscoelasticity effects on photoacoustic generation. Taking the time delay between the photoacoustic signal and the exciting laser, the viscoelasticity distribution of biological tissues can be mapped. To validate our method, gelatin phantoms with different densities were measured. We also applied this method in discrimination between fat and liver to confirm the usefulness of the viscoelastic evaluation. Furthermore, pilot experiments were performed on atherosclerosis artery from an apolipoprotein E-knockout mouse to show the viscoelastic characterization of atherosclerotic plaque. Our results demonstrate that this technique has the potential for visualizing the biomechanical properties and lesions of biological tissues.

  15. A multiscale model for predicting the viscoelastic properties of asphalt concrete

    Science.gov (United States)

    Garcia Cucalon, Lorena; Rahmani, Eisa; Little, Dallas N.; Allen, David H.

    2016-08-01

    It is well known that the accurate prediction of long term performance of asphalt concrete pavement requires modeling to account for viscoelasticity within the mastic. However, accounting for viscoelasticity can be costly when the material properties are measured at the scale of asphalt concrete. This is due to the fact that the material testing protocols must be performed recursively for each mixture considered for use in the final design.

  16. On the realization of the bulk modulus bounds for two-phase viscoelastic composites

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Andreassen, Erik; Jensen, Jakob Søndergaard;

    2014-01-01

    Materials with good vibration damping properties and high stiffness are of great industrial interest. In this paper the bounds for viscoelastic composites are investigated and material microstructures that realize the upper bound are obtained by topology optimization. These viscoelastic composite...... damping. In order to ensure manufacturability of such composites the connectivity of the matrix is ensured by imposing a conductivity constraint and the influence on the bounds is discussed. © 2013 Elsevier Ltd. All rights reserved....

  17. Near-field thermal radiative emission of materials demonstrating near infrared surface polariton resonance

    Science.gov (United States)

    Petersen, Spencer Justin

    Surface polariton mediated near-field radiative transfer exceeds the blackbody limit by orders of magnitude and is quasimonochromatic. Thermophotovoltaic (TPV) power generation consists of converting thermal radiation into useful electrical energy and exhibits a peak performance near the TPV cell bandgap, which is typically located within the near infrared bandwidth. Therefore, an ideal emission source for a nanoscale gap TPV device, in which the emitter and cell are separated by no more than one peak emitted wavelength, will sustain surface polariton resonance at or near the TPV cell bandgap in the near infrared. To date, few materials have been identified that satisfy this requirement. The first objective of this dissertation is to theoretically explore dielectric Mie resonance-based (DMRB) electromagnetic metamaterials for the potential to sustain near infrared surface polariton resonance. Electromagnetic metamaterials are composite media, consisting of subwavelength, repeating unit structures called "meta-atoms." The microscopic configuration of the meta-atom can be engineered, dictating the effective macroscale electromagnetic properties of the bulk metamaterial, including the surface polariton resonance wavelength. DMRB metamaterials consist of dielectric nanoparticles within a host medium and are analyzed using an effective medium theory. The local density of electromagnetic states, an indicator of possibly harvestable energy near an emitting surface, is calculated for two DMRB metamaterials: spherical nanoparticles of 1) silicon carbide, and 2) silicon embedded in a host medium. Results show that the surface polariton resonance of these metamaterials is tunable and, for the silicon metamaterial only, is found in the near infrared bandwidth, making it a viable candidate for use in a nano-TPV device. In order to demonstrate the practicality thereof, the second objective is to fabricate and characterize DMRB metamaterials. Specimens are fabricated by hand

  18. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  19. Simulation of Transient Viscoelastic Flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1993-01-01

    The Lagrangian kinematic description is used to develop a numerical method for simulation of time-dependent flow of viscoelastic fluids described by integral models. The method is shown to converge to first order in the time step and at least second order in the spatial discretization. The method...

  20. Simulation of Transient Viscoelastic Flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1993-01-01

    The Lagrangian kinematic description is used to develop a numerical method for simulation of time-dependent flow of viscoelastic fluids described by integral models. The method is shown to converge to first order in the time step and at least second order in the spatial discretization. The method...

  1. Polymeric Materials Models in the Warrior Injury Assessment Manikin (WIAMan) Anthropomorphic Test Device (ATD) Tech Demonstrator

    Science.gov (United States)

    2017-01-01

    virtual modeling tool has been developed to support the design and development of the WIAMan ATD. Material characterization is one of the critical...accelerative loading simulations using 2 different modeling platforms (LS-DYNA and Velodyne). The approaches to derive the material parameters...analytical tool to predict the response of the ATD to vertical accelerative loading. The analytical finite-element model (FEM) provided a virtual tool

  2. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  3. Droplet breakup dynamics of weakly viscoelastic fluids

    Science.gov (United States)

    Marshall, Kristin; Walker, Travis

    2016-11-01

    The addition of macromolecules to solvent, even in dilute quantities, can alter a fluid's response in an extensional flow. For low-viscosity fluids, the presence of elasticity may not be apparent when measured using a standard rotational rheometer, yet it may still alter the response of a fluid when undergoing an extensional deformation, especially at small length scales where elastic effects are enhanced. Applications such as microfluidics necessitate investigating the dynamics of fluids with elastic properties that are not pronounced at large length scales. In the present work, a microfluidic cross-slot configuration is used to study the effects of elasticity on droplet breakup. Droplet breakup and the subsequent iterated-stretching - where beads form along a filament connecting two primary droplets - were observed for a variety of material and flow conditions. We present a relationship on the modes of bead formation and how and when these modes will form based on key parameters such as the properties of the outer continuous-phase fluid. The results are vital not only for simulating the droplet breakup of weakly viscoelastic fluids but also for understanding how the droplet breakup event can be used for characterizing the extensional properties of weakly-viscoelastic fluids.

  4. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bell, Gary L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burgess, Thomas W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lessard, Timothy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ohriner, Evan Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perkins, Dale E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Varma, Venugopal Koikal [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  5. Mechatronic Materials and Systems. Design and Demonstration of High Aughtority Shape Morphing Structures

    Science.gov (United States)

    2005-09-01

    X" = 5 ’ A= 5 .1 mm neering materials. These materials include a titanium alloy (Ti- -d 6AI-4V), an aluminum alloy (Al 6061 -T6), two stainless steels...alloy ( 6061 -T6) face with a truss system made from 304 stainless steel. To achieve the target shapes, some members of the Kagome are replaced by...is representative of that for a medium strength alloy of steel, aluminium or titanium. 6.2. Post buckling and yield response The post buckling and

  6. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bell, Gary L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burgess, Thomas W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lessard, Timothy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ohriner, Evan Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perkins, Dale E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Varma, Venugopal Koikal [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  7. Viscoelastic properties of actin-coated membranes

    Science.gov (United States)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (ω=0) two-dimensional (2D) shear modulus G02D~0.5 to 5 μN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G'2D(f )~f0.85+/-0.07] and of the bending modulus (κACM(f)~f0.55+/-0.21) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  8. Viscoelastic deformation of lipid bilayer vesicles†

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L.

    2015-01-01

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic. PMID:26268612

  9. Viscoelastic deformation of lipid bilayer vesicles.

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  10. Construction and testing of simple airfoils to demonstrate structural design, materials choice, and composite concepts

    Science.gov (United States)

    Bunnell, L. Roy; Piippo, Steven W.

    1993-01-01

    The objective of this educational exercise is to have students build and evaluate simple wing structures, and in doing so, learn about materials choices and lightweight construction methods. A list of equipment and supplies and the procedure for the experiment are presented.

  11. DYNAMIC STABILITY OF A BEAM-MODEL VISCOELASTIC PIPE FOR CONVEYING PULSATIVE FLUID

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Yang; Tianzhi Yang; Jiduo Jin

    2007-01-01

    The dynamic stability in transverse vibration of a viscoelastic pipe for conveying pulsative fluid is investigated for the simply-supported case. The material property of the beammodel pipe is described by the Kelvin-type viscoelastic constitutive relation. The axial fluid speed is characterized as simple harmonic variation about a constant mean speed. The method of multiple scales is applied directly to the governing partial differential equation without discretization when the viscoelastic damping and the periodical excitation are considered small. The stability conditions are presented in the case of subharmonic and combination resonance. Numerical results show the effect of viscosity and mass ratio on instability regions.

  12. A preliminary investigation of the dynamic viscoelastic relaxation of bovine cortical bone

    Directory of Open Access Journals (Sweden)

    Loete T.J.C.

    2015-01-01

    Full Text Available A new experimental approach is proposed to characterize the dynamic viscoelastic relaxation behaviour of cortical bone. Theoretical models are presented to show that a linear viscoelastic material, when allowed to relax between two long elastic bars, will produce stress, strain and strain rate histories that contain characteristic features. Furthermore, typical experimental results are presented to show that these characteristic features are observed during split Hopkinson bar tests on bovine cortical bone using a Cone-in-Tube striker. The interpretation of this behaviour in the context of a standard linear viscoelastic model is discussed.

  13. The effects of strain amplitude and localization on viscoelastic mechanical behaviour of human abdominal fascia.

    Science.gov (United States)

    Kirilova-Doneva, Miglena; Pashkouleva, Dessislava; Kavardzhikov, Vasil

    2016-01-01

    The purpose of the paper is to examine and compare the viscoelastic mechanical properties of human transversalis and umbilical fasciae according to chosen strain levels. A sequence of relaxation tests of finite deformation ranging from 4 to 6% strain with increment 0.3% was performed at strain rate 1.26 mm/s. Initial and equilibrium stresses T0, Teq, initial modulus E and equilibrium modulus Eeq, reduction of the stress during relaxation process ΔT, as well as the ratio (1 - Eeq /E) were calculated. The range in which parameters change their values are (0.184-1.74 MPa) for initial stress, (0.098-0.95 MPa) for equilibrium stress, (43.5-4.6 MPa) for initial modulus E. For Eeq this interval is (23.75-2.45 MPa). There are no statistically significant differences between the values of these parameters according to localization. The differences in viscoelastic properties of both fasciae are demonstrated by reduction of the stress during relaxation process and ratio (1 - Eeq /E). The values of ΔT and (1 - Eeq /E) ratio for umbilical fascia are significantly greater than that of fascia transversalis. An increase of 2% in strain leads to change of the normalized relaxation ratio of fasciae between 28%-66%. There is a weak contribution of viscous elements in fascia transversalis samples during relaxation, while in umbilical fascia the contribution of viscous component increases with strain level to 0.66 at 5.3% strain. This study adds new data for the material properties of human abdominal fascia. The results demonstrate that in chosen range of strain there is an influence of localization on visco-elastic tissue properties.

  14. Preparation of Small Well Characterized Plutonium Oxide Reference Materials and Demonstration of the Usefulness of Such Materials for Nondestructive Analysis

    Energy Technology Data Exchange (ETDEWEB)

    B.A. Guillen; S.T. Hsue; J.Y Huang; P.A. Hypes; S.M. Long; C.R. Rudy; P.A. Russo; J.E. Stewart; D.J. Temer

    2003-01-01

    Calibration of neutron coincidence and multiplicity counters for passive nondestructive analysis (NDA) of plutonium requires knowledge of the detector efficiency parameters. These are most often determined empirically. Bias from multiplication and unknown impurities may be incurred even with small plutonium metal samples. Five sets of small, pure plutonium metal standards prepared with well-known geometry and very low levels of impurities now contribute to determining accurate multiplication corrections. Recent measurements of these metal standards, with small but well-defined multiplication and negligible yield of other than fission neutrons, demonstrate an improved characterization and calibration of neutron coincidence/multiplicity counters. The precise knowledge of the mass and isotopic composition of each standard also contributes significantly to verifying the accuracy of the most precise calorimetry and gamma-ray spectroscopy measurements.

  15. Viscoelastic properties of heavy oils

    Science.gov (United States)

    Rojas Luces, Maria Alejandra

    Rheological low frequency measurements were carried out to analyze the viscoelastic properties of four heavy oil samples. At room conditions, the heavy oil samples exhibit non-Newtonian or viscoelastic behavior since they have a viscous component and an elastic component. The latter becomes very important for temperatures below 30°C, and for seismic to ultrasonic frequencies. Above this temperature, the viscous component increases significantly in comparison to the elastic component, and for seismic frequencies heavy oils can be considered as Newtonian fluids. A new viscosity model based on the concept of activation energy was derived to predict viscosity in terms of frequency and temperature for temperatures below 60°C. A new frequency-temperature dispersion model was derived to address the variation of the complex shear modulus (G*) with frequency and temperature for the heavy oil samples. This model fits the data well for seismic and sonic frequencies but it overpredicts G* at ultrasonic frequencies.

  16. Viscoelastic behavior of dense microemulsions

    Science.gov (United States)

    Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.

    1990-09-01

    We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.

  17. Soft-film dynamics of SH-SAW sensors in viscous and viscoelastic fluids

    Directory of Open Access Journals (Sweden)

    A. Vikström

    2016-12-01

    Full Text Available We theoretically investigate surface acoustic waves with horizontal polarization (SH-SAWs propagating in a three-layer system consisting of an elastic substrate and two viscoelastic overlayers. For the limiting case of an acoustically thin middle layer and an infinite top layer, we derive analytical expressions for the phase velocity shift and the wave attenuation. These expressions demonstrate the importance of taking into account the viscoelastic coupling between the two overlayers. Numerical calculations using a combined Maxwell/Voigt scheme confirm our analytical results and also indicate that it is possible for viscoelasticity to cause SH-SAWs to vanish.

  18. Terrestrial bitumen analogue of orgueil organic material demonstrates high sensitivity to usual HF-HCl treatment

    Science.gov (United States)

    Korochantsev, A. V.; Nikolaeva, O. V.

    1993-01-01

    The relationship between the chemical composition and the interlayer spacing (d002) of organic materials (OM's) is known for various terrestrial OM's. We improved this general trend by correlation with corresponding trend of natural solid bitumens (asphaltite-kerite-anthraxolite) up to graphite. Using the improved trend we identified bitumen analogs of carbonaceous chondrite OM's residued after HF-HCl treatment. Our laboratory experiment revealed that these analogs and, hence, structure and chemical composition of carbonaceous chondrite OM's are very sensitive to the HF-HCl treatment. So, usual extraction of OM from carbonaceous chondrites may change significantly structural and chemical composition of extracted OM.

  19. Dynamical problem of micropolar viscoelasticity

    Indian Academy of Sciences (India)

    Rajneesh Kumar; Suman Choudhary

    2001-09-01

    The dynamic problem in micropolar viscoelastic medium has been investigated by employing eigen value approach after applying Laplace and Fourier transformations. An example of infinite space with concentrated force at the origin has been presented to illustrate the application of the approach. The integral transforms have been inverted by using a numerical technique to obtain the displacement components, force stresses, couple stress and microrotation in the physical domain. The results for these quantities are given and illustrated graphically.

  20. Modeling and experimental verification of frequency-, amplitude-, and magneto-dependent viscoelasticity of magnetorheological elastomers

    Science.gov (United States)

    Xin, Fu-Long; Bai, Xian-Xu; Qian, Li-Jun

    2016-10-01

    Magnetorheological elastomers (MREs), a smart composite, exhibit dual characteristics of both MR materials and particle reinforced composites, i.e., the viscoelasticity of MREs depends on external magnetic field as well as strain amplitude and excitation frequency. In this article, the principle of a frequency-, amplitude-, and magneto-dependent linear dynamic viscoelastic model for isotropic MREs is proposed and investigated. The viscoelasticity of MREs is divided into frequency- and amplitude-dependent mechanical viscoelasticity and frequency-, amplitude-, and magneto-dependent magnetic viscoelasticity. Based on the microstructures of ferrous particles and matrix, the relationships between mechanical shear modulus corresponding to the mechanical viscoelasticity and strain amplitude and excitation frequency are obtained. The relationships between magnetic shear modulus corresponding to the magnetic viscoelasticity with strain amplitude, excitation frequency, and further external magnetic field are derived using the magneto-elastic theory. The influence of magnetic saturation on the MR effect is also considered. The dynamic characteristics of a fabricated isotropic MRE sample under different strain amplitudes, excitation frequencies and external magnetic fields are tested. The parameters of the proposed model are identified with the experimental data and the theoretical expressions of shear storage modulus and shear loss modulus of the MRE sample are obtained. In the light of the theoretical expressions, the loss factors of the MRE sample under different loading conditions are analyzed and compared with the test results to evaluate the effectiveness of the proposed model.

  1. Viscoelasticity of brain corpus callosum in biaxial tension

    Science.gov (United States)

    Labus, Kevin M.; Puttlitz, Christian M.

    2016-11-01

    Computational models of the brain rely on accurate constitutive relationships to model the viscoelastic behavior of brain tissue. Current viscoelastic models have been derived from experiments conducted in a single direction at a time and therefore lack information on the effects of multiaxial loading. It is also unclear if the time-dependent behavior of brain tissue is dependent on either strain magnitude or the direction of loading when subjected to tensile stresses. Therefore, biaxial stress relaxation and cyclic experiments were conducted on corpus callosum tissue isolated from fresh ovine brains. Results demonstrated the relaxation behavior to be independent of strain magnitude, and a quasi-linear viscoelastic (QLV) model was able to accurately fit the experimental data. Also, an isotropic reduced relaxation tensor was sufficient to model the stress-relaxation in both the axonal and transverse directions. The QLV model was fitted to the averaged stress relaxation tests at five strain magnitudes while using the measured strain history from the experiments. The resulting model was able to accurately predict the stresses from cyclic tests at two strain magnitudes. In addition to deriving a constitutive model from the averaged experimental data, each specimen was fitted separately and the resulting distributions of the model parameters were reported and used in a probabilistic analysis to determine the probability distribution of model predictions and the sensitivity of the model to the variance of the parameters. These results can be used to improve the viscoelastic constitutive models used in computational studies of the brain.

  2. Stress memory effect in viscoelastic stagnant lid convection

    Science.gov (United States)

    Patočka, V.; Čadek, O.; Tackley, P. J.; Čížková, H.

    2017-06-01

    Present thermochemical convection models of planetary evolution often assume a purely viscous or viscoplastic rheology. Ignoring elasticity in the cold, outer boundary layer is, however, questionable since elastic effects may play an important role there and affect surface topography as well as the stress distribution within the stiff cold lithosphere. Here we present a modelling study focused on the combined effects of Maxwell viscoelastic rheology and a free surface in the stagnant lid planetary convection. We implemented viscoelastic rheology in the StagYY code using a tracer-based stress advection scheme that suppresses subgrid oscillations. We apply this code to perform thermal convection models of the cooling planetary mantles and we demonstrate that while the global characteristics of the mantle flow do not change significantly when including viscoelasticity, the stress state of the cold lithosphere may be substantially different. Transient cooling of an initially thin upper thermal boundary layer results in a complex layered stress structure due to the memory effects of viscoelastic rheology. The stress state of the lid may thus contain a record of the planetary thermal evolution.

  3. Nonrigid Registration of Monomodal MRI Using Linear Viscoelastic Model

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2014-01-01

    Full Text Available This paper describes a method for nonrigid registration of monomodal MRI based on physical laws. The proposed method assumes that the properties of image deformations are like those of viscoelastic matter, which exhibits the properties of both an elastic solid and a viscous fluid. Therefore, the deformation fields of the deformed image are constrained by both sets of properties. After global registration, the local shape variations are assumed to have the properties of the Maxwell model of linear viscoelasticity, and the deformation fields are constrained by the corresponding partial differential equations. To speed up the registration, an adaptive force is introduced according to the maximum displacement of each iteration. Both synthetic datasets and real datasets are used to evaluate the proposed method. We compare the results of the linear viscoelastic model with those of the fluid model on the basis of both the standard and adaptive forces. The results demonstrate that the adaptive force increases in both models and that the linear viscoelastic model improves the registration accuracy.

  4. Modeling of Shock Propagation and Attenuation in Viscoelastic Components

    Directory of Open Access Journals (Sweden)

    R. Rusovici

    2001-01-01

    Full Text Available Protection from the potentially damaging effects of shock loading is a common design requirement for diverse mechanical structures ranging from shock accelerometers to spacecraft. High damping viscoelastic materials are employed in the design of geometrically complex, impact-absorbent components. Since shock transients are characterized by a broad frequency spectrum, it is imperative to properly model frequency dependence of material behavior over a wide frequency range. The Anelastic Displacement Fields (ADF method is employed herein to model frequency-dependence within a time-domain finite element framework. Axisymmetric, ADF finite elements are developed and then used to model shock propagation and absorption through viscoelastic structures. The model predictions are verified against longitudinal wave propagation experimental data and theory.

  5. Thin viscoelastic disc subjected to radial non-stationary loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2010-07-01

    Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.

  6. Collective dynamics of sperm in viscoelastic fluid

    Science.gov (United States)

    Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming

    Collective dynamics in biology is an interesting subject for physicists, in part because of its close relations to emergent behaviors in condensed matter, such as phase separation and criticality. However, the emergence of order is often less drastic in systems composed of the living cells, sometimes due to the natural variability among individual organisms. Here, using bull sperm as a model system, we demonstrate that the cells migrate collectively in viscoelastic fluids, exhibiting behavior similar to ``flocking''. This collectiveness is greatly reduced in similarly viscous Newtonian fluids, suggesting that the cell-cell interaction is primarily a result of the elastic property or the memory effect of the fluids, instead of pure hydrodynamic interactions. Unlike bacterial swarming, this collectiveness does not require a change in phenotype of the cells; therefore, it is a better model system for physicists. Supported by NIH grant 1R01HD070038.

  7. High temperature range recuperator. Phase II. Prototype demonstration and material and analytical studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    A summary of the work performed to fully evaluate the commercial potential of a unique ceramic recuperator for use in recovering waste heat from high temperature furnace exhaust gases is presented. The recuperator concept being developed consists of a vertical cylindrical heat exchange column formed from modular sections. Within the column, the gasketed modules form two helical flow passages - one for high temperature exhaust gases and one for pre-heating combustion air. The column is operated in a counterflow mode, with the exhaust gas entering at the bottom and the combustion air entering at the top of the column. Activities included design and procurement of prototype recuperator modules, construction and testing of two prototype recuperator assemblies, exposure and mechanical properties testing of candidate materials, structural analysis of the modules, and assessment of the economic viability of the concept. The results of the project indicated that the proposed recuperator concept was feasible from a technical standpoint. Economic analysis based upon recuperator performance characteristics and module manufacturing costs defined during the program indicated that 3 to 10 years (depending upon pre-heat temperature) would be required to recover the capital cost of the system in combustion air preheat applications. At this stage in the development of the recuperator, many factors in the analysis had to be assumed. Significant changes in some of the assumptions could dramatically affect the economics. For example, utilizing $2.85 per mcf for the natural gas price (as opposed to $2.00 per mcf) could reduce the payback period by more than half in certain cases. In addition, future commercial application will depend upon ceramic component manufacturing technique advances and cost reduction.

  8. High temperature range recuperator. Phase II. Prototype demonstration and material and analytical studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    A summary of the work performed to fully evaluate the commercial potential of a unique ceramic recuperator for use in recovering waste heat from high temperature furnace exhaust gases is presented. The recuperator concept being developed consists of a vertical cylindrical heat exchange column formed from modular sections. Within the column, the gasketed modules form two helical flow passages - one for high temperature exhaust gases and one for pre-heating combustion air. The column is operated in a counterflow mode, with the exhaust gas entering at the bottom and the combustion air entering at the top of the column. Activities included design and procurement of prototype recuperator modules, construction and testing of two prototype recuperator assemblies, exposure and mechanical properties testing of candidate materials, structural analysis of the modules, and assessment of the economic viability of the concept. The results of the project indicated that the proposed recuperator concept was feasible from a technical standpoint. Economic analysis based upon recuperator performance characteristics and module manufacturing costs defined during the program indicated that 3 to 10 years (depending upon pre-heat temperature) would be required to recover the capital cost of the system in combustion air preheat applications. At this stage in the development of the recuperator, many factors in the analysis had to be assumed. Significant changes in some of the assumptions could dramatically affect the economics. For example, utilizing $2.85 per mcf for the natural gas price (as opposed to $2.00 per mcf) could reduce the payback period by more than half in certain cases. In addition, future commercial application will depend upon ceramic component manufacturing technique advances and cost reduction.

  9. Demonstration of Integrated Biorefinery Operations for Producing Biofuels and Chemical / Material Products

    Energy Technology Data Exchange (ETDEWEB)

    Rushton, Michael

    2011-09-01

    Lignol’s project involved the design, construction and operation of a 10% demonstration scale cellulosic ethanol biorefinery in Grand Junction Colorado in partnership with Suncor Energy. The preconstruction phase of the project was well underway when the collapse in energy prices coupled with a significant global economic downturn hit in the end 2008. Citing economic uncertainty, the project was suspended by Suncor. Lignol, with the support of the DOE continued to develop the project by considering relocating the biorefinery to sites that were more favorable in term of feedstock availability, existing infrastructure and potential partners Extended project development activities were conducted at three lead sites which offered certain key benefits to the overall biorefinery project. This work included feedstock availability studies, technical site assessment, engineering, plant design and pilot scale biorefining of feedstocks of interest. The project generated significant operational data on the bioconversion of woody feedstocks into cellulosic ethanol and lignin-based biochemicals. The project also highlighted the challenges faced by technology developers in attracting capital investment in first of kind renewable fuels solutions. The project was concluded on August 29 2011.

  10. Demonstration of passive saturable absorber by utilizing MWCNT-ABS filament as starting material

    Science.gov (United States)

    Zuikafly, S. N. F.; Ahmad, F.; Ibrahim, M. H.; Latif, A. A.; Harun, S. W.

    2017-06-01

    This work demonstrated a stable passively Q-switched laser with the employment MWCNTs dispersed in acrylonitrile butadiene styrene (ABS) resin (MWCNTs-ABS) based filament as passive saturable absorber. The simple fabrication process of the SA is further explained, started from the process of extruding the filament through a 3D printer nozzle at 210 °C to reduce the diameter from 1.75 mm to 200 μm. It is then weighed to about 25 mg and mixed with 1 ml acetone before sonicated for 5 minutes to dissolve the ABS. The resultant MWCNTs-acetone suspension is dropped on a glass slide to be characterized using Field-Emission Scanning Electron Microscope (FESEM) and Raman spectroscopy. It is also drop-casted on the end of a fiber ferrule to be integrated in the laser cavity. The proposed work revealed that the laser oscillated at about 1558 nm with threshold input pump power of 22.54 mW and maximum input pump power of 108.8 mW. The increase in pump power resulted in the increase in repetition rate where the pulse train increases from 8.96 kHz to 39.34 kHz while the pulse width decreases from 33.58 μs to 5.14 μs. The generated pulsed laser yields a maximum of 1.01 mW and 5.53 nJ of peak power and pulse energy respectively. The signal-to-noise ratio of 40 dB indicates that the generated pulse is stable.

  11. Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation

    Science.gov (United States)

    Honorio, Tulio

    2017-02-01

    Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.

  12. Dynamic viscoelastic behavior of lower extremity tendons during simulated running.

    Science.gov (United States)

    De Zee, M; Bojsen-Moller, F; Voigt, M

    2000-10-01

    The aim of this project was to see whether the tendon would show creep during long-term dynamic loading (here referred to as dynamic creep). Pig tendons were loaded by a material-testing machine with a human Achilles tendon force profile (1.37 Hz, 3% strain, 1,600 cycles), which was obtained in an earlier in vivo experiment during running. All the pig tendons showed some dynamic creep during cyclic loading (between 0.23 +/- 0.15 and 0.42 +/- 0.21%, means +/- SD). The pig tendon data were used as an input of a model to predict dynamic creep in the human Achilles tendon during running of a marathon and to evaluate whether there might consequently be an influence on group Ia afferent-mediated length and velocity feedback from muscle spindles. The predicted dynamic creep in the Achilles tendon was considered to be too small to have a significant influence on the length and velocity feedback from soleus during running. In spite of the characteristic nonlinear viscoelastic behavior of tendons, our results demonstrate that these properties have a minor effect on the ability of tendons to act as predictable, stable, and elastic force transmitters during long-term cyclic loading.

  13. Constitutive modeling of the aging viscoelastic properties of portland cement paste

    Science.gov (United States)

    Grasley, Zachary C.; Lange, David A.

    2007-12-01

    Analytical approaches for modeling aging viscoelastic behavior of concrete include the time-shift approach (analogous to time-temperature superposition), the solidification theory, and the dissolution-precipitation approach. The aging viscoelastic properties of concrete are generally attributed solely to the cement paste phase since the aggregates are typically linear elastic. In this study, the aging viscoelastic behavior of four different cement pastes has been measured and modeled according to both the time-shift approach and the solidification theory. The inability of each individual model to fully characterize the aging viscoelastic response of the materials provides insight into the mechanisms for aging of the viscoelastic properties of cement paste and concrete. A model that considers aging due to solidification in combination with inherent aging of the cement paste gel (modeled using the time-shift approach) more accurately predicted the aging viscoelastic behavior of portland cement paste than either the solidification or time-shift approaches independently. The results provide evidence that solidification and other intrinsic gel aging mechanisms are concurrently active in the aging process of cementitious materials.

  14. Demonstration test results of organic materials' volumetric reduction using bio-ethanol, thermal decomposition and burning

    Energy Technology Data Exchange (ETDEWEB)

    Tagawa, Akihiro; Watanabe, Masahisa [Japan Atomic Energy Agency (JAEA), Chiyoda-KU, Tokyo (Japan)

    2013-07-01

    To discover technologies that can be utilized for decontamination work and verify their effects, economic feasibility, safety, and other factors, the Ministry of the Environment launched the 'FY2011 Decontamination Technology Demonstrations Project' to publicly solicit decontamination technologies that would be verified in demonstration tests and adopted 22 candidates. JAEA was commissioned by the Ministry of the Environment to provide technical assistance related to these demonstrations. This paper describes the volume reduction due to bio-ethanol, thermal decomposition and burning of organic materials in this report. The purpose of this study is that to evaluate a technique that can be used as biomass energy source, while performing volume reduction of contamination organic matter generated by decontamination. An important point of volume reduction technology of contaminated organic matter, is to evaluate the mass balance in the system. Then, confirming the mass balance of radioactive material and where to stay is important. The things that are common to all technologies, are ensuring that the radioactive cesium is not released as exhaust gas, etc.. In addition, it evaluates the cost balance and energy balance in order to understand the applicability to the decontamination of volume reduction technology. The radioactive cesium remains in the carbides when organic materials are carbonized, and radioactive cesium does not transfer to bio-ethanol when organic materials are processed for bio-ethanol production. While plant operating costs are greater if radioactive materials need to be treated, if income is expected by business such as power generation, depreciation may be calculated over approximately 15 years. (authors)

  15. Aspiration of biological viscoelastic drops

    CERN Document Server

    Guevorkian, Karine; Durth, Mélanie; Dufour, Sylvie; Brochard-Wyart, Françoise

    2010-01-01

    Spherical cellular aggregates are in vitro systems to study the physical and biophysical properties of tissues. We present a novel approach to characterize the mechanical properties of cellular aggregates using micropipette aspiration technique. We observe an aspiration in two distinct regimes, a fast elastic deformation followed by a viscous flow. We develop a model based on this viscoelastic behavior to deduce the surface tension, viscosity, and elastic modulus. A major result is the increase of the surface tension with the applied force, interpreted as an effect of cellular mechanosensing.

  16. Undulatory swimming in viscoelastic fluids

    CERN Document Server

    Shen, Xiaoning

    2011-01-01

    The effects of fluid elasticity on the swimming behavior of the nematode \\emph{Caenorhabditis elegans} are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to 35% slower propulsion speed. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  17. Optimization of Bistable Viscoelastic Systems

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2014-01-01

    We consider the flow of a viscoelastic fluid in a symmetric cross geometry. For small driving pressures the flow is symmetric, but beyond a certain critical pressure the symmetric flow becomes unstable; two stable asymmetric solutions appear, and forcing of the unstable symmetric flow beyond...... find a design that significantly reduces the driving pressure required for bistability, and furthermore is in agreement with the approach followed by experimental researchers. Furthermore, by comparing the two asymmetric solutions, we succesfully apply the same approach to a problem with two fluids...

  18. Undulatory swimming in viscoelastic fluids.

    Science.gov (United States)

    Shen, X N; Arratia, P E

    2011-05-20

    The effects of fluid elasticity on the swimming behavior of the nematode Caenorhabditis elegans are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to up to 35% slower propulsion. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  19. A Comparison of Viscoelastic Properties of Three Root Canal Sealers

    Directory of Open Access Journals (Sweden)

    Malihe Pishvaei

    2013-01-01

    Full Text Available Objective: Handling of endodontic sealers is greatly dependent on their elasticity and flow ability. We compared the viscoelastic properties of three root canal sealers.Materials and Methods: AH Plus (Dentsply, De Trey, Konstanz, Germany, Endofill (Dentsply Hero, Petrópolis, Rio de Janeiro, Brazil and AH26 (Dentsply, De Trey, Konstanz, Germany were mixed according to the manufacturers' instructions. The resulted pastes were placed on the plate of a rheometer (MCR 300, Anton-Paar, Graz, Austria. The experiments were performed at 25˚C and 37˚C. Viscoelastic properties of the sealers including loss modulus (G", storage modulus (G´ and complex viscosity (η* were studied using dynamic oscillatory shear tests. The shear module versus frequency (from 0.01 to 100 S-1 curves were gained using frequency deformation sweep test. Three samples of each material were examined at each temperature. The mean of these three measurements were recorded.Results: The storage modulus of AH plus was higher than its loss modulus at two temperatures. Endofill exhibited a crossover region in which the storage modulus crosses the loss modulus in both temperatures. At 25ºC the loss modulus of AH26 was higher than the storage modulus (G">G¢. In contrast, at 37ºC G¢was greater than G² (G¢>G². Both shear modules of AH Plus and Endofill decreased as the temperature raised from 25ºC to 37ºC. On the contrary, the loss modulus and storage modulus of AH26 increased at 37ºC.Conclusion: In both test temperatures, AH Plus behaved like viscoelastic solids and Endofill exhibited a gel-like viscoelastic behavior. AH26 at 25ºC behaved like liquids, while at 37ºC it was an elastic solid-like material

  20. The visco-elastic multilayer program VEROAD

    NARCIS (Netherlands)

    Hopman, P.C.

    1996-01-01

    The mathematical principles and derivation of a linear visco-elastic multilayer computer program are described. The mathematical derivation is based on Fourier Transformation. The program is called VEROAD, which is an acronym for Visco-Elastic ROad Analysis Delft. The program allows calculation of p

  1. Shape recovery of viscoelastic beams after stowage

    DEFF Research Database (Denmark)

    Kwok, Kawai

    2015-01-01

    The deployment of viscoelastic structures that have been held stowed for a given time duration can be formulated as a viscoelastic boundary value problem in which the prescribed condition switches from constant displacement to constant traction. This paper presents closed-form expressions...

  2. Nonlinear Viscoelastic Characterization of Structural Adhesives.

    Science.gov (United States)

    1983-06-01

    neat resin properties 20. ABSTRACT (Cainlnuo OR revaWco aide II necessay amd identify br blck number) Measurements of the nonlinear viscoelastic...which is utilized. 17. Key Words and Document Analysis. l7a. Descriptors Adhesives, nonlinear viscoelasticity, FM-73 and FM-300 neat resin properties 17b

  3. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F [Basic Ultrasound Research Laboratory, Department of Physiology and Biophysics, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-04-07

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.

  4. Lamb Wave Dispersion Ultrasound Vibrometry (LDUV) Method for Quantifying Mechanical Properties of Viscoelastic Solids

    Science.gov (United States)

    Nenadic, Ivan Z.; Urban, Matthew W.; Mitchell, Scott A.; Greenleaf, James F.

    2011-01-01

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of Shearwave Dispersion Ultrasound Vibrometry (SDUV), a noninvasive ultrasound based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave Dispersion Ultrasound Vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify mechanical properties of soft tissues with a plate-like geometry. PMID:21403186

  5. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids.

    Science.gov (United States)

    Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F

    2011-04-07

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.

  6. Observation of viscoelasticity in boron nitride nanosheet aerogel.

    Science.gov (United States)

    Zeng, Xiaoliang; Ye, Lei; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-07-14

    The viscoelasticity of boron nitride nanosheet (BNNS) aerogel has been observed and investigated. It is found that the BNNS aerogel has a high damping ratio (0.2), while it exhibits lightweight and negligible temperature dependence below 180 °C. The creep behavior of the BNNS aerogel markedly demonstrates its strain dependence on stress magnitude and temperature, and can be well simulated by the classical models.

  7. Presentation on the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC): A Working Model and Progress Report

    Science.gov (United States)

    Glesener, G. B.; Vican, L.

    2015-12-01

    Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to

  8. A viscoelastic-viscoplastic model for short-fibre reinforced polymers with complex fibre orientations

    Directory of Open Access Journals (Sweden)

    Nciri M.

    2015-01-01

    Full Text Available This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced composites (SFRC with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation of composite’s macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates. Results demonstrate the efficiency of the model over a wide range of strain rates.

  9. Finite element reduction strategy for composite sandwich plates with viscoelastic layers

    Directory of Open Access Journals (Sweden)

    Adriana Amaro Diacenco

    2013-04-01

    Full Text Available Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.

  10. Finite element reduction strategy for composite sandwich plates with viscoelastic layers

    Directory of Open Access Journals (Sweden)

    Adriana Amaro Diacenco

    2012-01-01

    Full Text Available Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.

  11. Flutter suppression of plates using passive constrained viscoelastic layers

    Science.gov (United States)

    Cunha-Filho, A. G.; de Lima, A. M. G.; Donadon, M. V.; Leão, L. S.

    2016-10-01

    Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, significantly affecting the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, few works have been proposed to deal with the problem of predicting the flutter boundary of aeroviscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed.

  12. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers

    Science.gov (United States)

    Denissen, Wim; Droesbeke, Martijn; Nicolaÿ, Renaud; Leibler, Ludwik; Winne, Johan M.; Du Prez, Filip E.

    2017-03-01

    Vinylogous urethane based vitrimers are polymer networks that have the intrinsic property to undergo network rearrangements, stress relaxation and viscoelastic flow, mediated by rapid addition/elimination reactions of free chain end amines. Here we show that the covalent exchange kinetics significantly can be influenced by combination with various simple additives. As anticipated, the exchange reactions on network level can be further accelerated using either Brønsted or Lewis acid additives. Remarkably, however, a strong inhibitory effect is observed when a base is added to the polymer matrix. These effects have been mechanistically rationalized, guided by low-molecular weight kinetic model experiments. Thus, vitrimer elastomer materials can be rationally designed to display a wide range of viscoelastic properties.

  13. Viscoelastic and optical properties of four different PDMS polymers

    Science.gov (United States)

    Deguchi, Shinji; Hotta, Junya; Yokoyama, Sho; Matsui, Tsubasa S.

    2015-09-01

    Polydimethylsiloxane (PDMS) is the most commonly used silicone elastomer with a wide range of applications including microfluidics and microcontact printing. Various types of PDMS are currently available, and their bulk material properties have been extensively investigated. However, because the properties are rarely compared in a single study, it is often unclear whether the large disparity of the reported data is attributable to the difference in methodology or to their intrinsic characteristics. Here we report on viscoelastic properties and optical properties of four different PDMS polymers, i.e. Sylgard-184, CY52-276, SIM-360, and KE-1606. Our results show that all the PDMSs are highly elastic rather than viscoelastic at the standard base/curing agent ratios, and their quantified elastic modulus, refractive index, and optical cleanness are similar but distinct in magnitude.

  14. Numerical modeling of transient two-dimensional viscoelastic waves

    CERN Document Server

    Lombard, Bruno

    2010-01-01

    This paper deals with the numerical modeling of transient mechanical waves in linear viscoelastic solids. Dissipation mechanisms are described using the Zener model. No time convolutions are required thanks to the introduction of memory variables that satisfy local-in-time differential equations. By appropriately choosing the Zener parameters, it is possible to accurately describe a large range of materials, such as solids with constant quality factors. The evolution equations satisfied by the velocity, the stress, and the memory variables are written in the form of a first-order system of PDEs with a source term. This system is solved by splitting it into two parts: the propagative part is discretized explicitly, using a fourth-order ADER scheme on a Cartesian grid, and the diffusive part is then solved exactly. Jump conditions along the interfaces are discretized by applying an immersed interface method. Numerical experiments of wave propagation in viscoelastic and fluid media show the efficiency of this nu...

  15. Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Edson Cocchieri; Costa, Michelle Leali; Braga, Carlos Isidoro, E-mail: ebotelho@feg.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia; Burkhart, Thomas [Institut fuer Verbundwerkstoffe GmbH, Kaiserslautern, (Germany); Lauke, Bernd [Leibniz-Institut fuer Polymerforschung, Dresden (Germany)

    2013-11-01

    Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process. (author)

  16. Dynamics of multilayered orthotropic viscoelastic plates of Maxwell solids

    Directory of Open Access Journals (Sweden)

    P. Pal Roy

    1988-01-01

    Full Text Available This paper is concerned with a simplified dynamical analysis of orthotropic viscoelastic plates that are made up of an arbitrary number of layers each of which is a Maxwell type solid. This study includes the case where some or all the layers are themselves constituted by thinly laminated materials with couple stresses. The recurrence equations for the shear stresses are obtained for an arbitrary number of layers and then applied to plates with two or three layers. The viscoelastic damping effect is determined by the process of linearization and then illustrated by a plate composed of one, two or three layers. It is found that the damping increases with anisotropy and wave number. These results are shown by graphical representations.

  17. STRUCTURE AND DYNAMICS OF POLYMERIC MATERIALS IN NANO-SCALE

    Institute of Scientific and Technical Information of China (English)

    Toshio Nishi; So Fujinami; Dong Wang; Hao Liu; Ken Nakajima

    2011-01-01

    The nano-palpation technique, i.e., nanometer-scale elastic and viscoelastic measurements based on atomic force microscope, is introduced. It is demonstrated to be very useful in analyzing nanometer-scale materials properties for the surfaces and interfaces of various types of soft materials. It enables us to obtain not only structural information but also mechanical information about a material at the same place and at the same time.

  18. On Lamb and Rayleigh wave convergence in viscoelastic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)

    2011-10-21

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  19. On Lamb and Rayleigh Wave Convergence in Viscoelastic Tissues

    Science.gov (United States)

    Nenadic, Ivan Z.; Urban, Matthew W.; Aristizabal, Sara; Mitchell, Scott A.; Humphrey, Tye C.; Greenleaf, James F.

    2012-01-01

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using Shearwave Dispersion Ultrasound Vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave Dispersion Ultrasound Vibrometry (LDUV) to quantify mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ’s surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40–500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium. PMID:21970846

  20. On Lamb and Rayleigh wave convergence in viscoelastic tissues.

    Science.gov (United States)

    Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F

    2011-10-21

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40–500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  1. Demonstration of freedom from brittle fracture - validation of the master curve methodology for deriving material fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Norton, F. [BNFL (United Kingdom); Pisarski, H. [TWI (United Kingdom)

    2004-07-01

    ASTM A 350 LF5 steel is used in the manufacture of transport flasks. In order to satisfy regulatory requirements for demonstrating this materials' resistance to brittle fracture during flask operation, fracture mechanics data are required. The normal requirement for generating fracture toughness data is that testing must be carried out on material of equivalent thickness to the component under investigation and that the test must be carried out at the appropriate temperature and loading rate. Satisfying these requirements becomes very difficult for thick materials. In particular, routine dynamic testing of 300 mm thick steels could not be done on any known facility and would require a significant effort to develop one. The Master Curve proposed by Wallin(1) offers an alternative testing philosophy that enables the desired fracture toughness data to be generated by small scale testing. This report presents the results of a program of work to demonstrate that A350 LF5 steel is amenable to Master Curve techniques.

  2. Determinants of ovine compact bone viscoelastic properties: effects of architecture, mineralization, and remodeling.

    Science.gov (United States)

    Les, C M; Spence, C A; Vance, J L; Christopherson, G T; Patel, B; Turner, A S; Divine, G W; Fyhrie, D P

    2004-09-01

    Significant decreases in ovine compact bone viscoelastic properties (specifically, stress-rate sensitivity, and damping efficiency) are associated with three years of ovariectomy and are particularly evident at higher frequencies [Proc. Orthop. Res. Soc. 27 (2002) 89]. It is unclear what materials or architectural features of bone are responsible for either the viscoelastic properties themselves, or for the changes in those properties that were observed with estrogen depletion. In this study, we examined the relationship between these viscoelastic mechanical properties and features involving bone architecture (BV/TV), materials parameters (ash density, %mineralization), and histologic evidence of remodeling (%remodeled, cement line interface). The extent of mineralization was inversely proportional to the material's efficiency in damping stress oscillations. The damping characteristics of bone material from ovariectomized animals were significantly more sensitive to variation in mineralization than was bone from control animals. At low frequencies (6 Hz or less), increased histologic evidence of remodeling was positively correlated with increased damping efficiency. However, the dramatic decreases in stress-rate sensitivity that accompanied 3-year ovariectomy were seen throughout the bone structure and occurred even in areas with little or no secondary Haversian remodeling as well as in areas of complete remodeling. Taken together, these data suggest that, while the mineral component may modify the viscoelastic behavior of bone, the basic mechanism underlying bone viscoelastic behavior, and of the changes in that behavior with estrogen depletion, reside in a non-mineral component of the bone that can be significantly altered in the absence of secondary remodeling.

  3. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  4. Complex variable element-free Galerkin method for viscoelasticity problems

    Institute of Scientific and Technical Information of China (English)

    Cheng Yu-Min; Li Rong-Xin; Peng Miao-Juan

    2012-01-01

    Based on the complex variable moving least-square (CVMLS) approximation,the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper.The Galerkin weak form is employed to obtain the equation system,and the penalty method is used to apply the essential boundary conditions,then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method,with the same node distribution,the CVEFG method has higher precision,and to obtain the similar precision,the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.

  5. {sup 137}Cs sorption into bentonite from Cidadap-Tasikmalaya as buffer material for disposal demonstration plant facility at Serpong

    Energy Technology Data Exchange (ETDEWEB)

    Setiawan, B., E-mail: bravo@batan.go.id; Sriwahyuni, H., E-mail: bravo@batan.go.id; Ekaningrum, NE., E-mail: bravo@batan.go.id; Sumantry, T., E-mail: bravo@batan.go.id [Radwaste Technology Center-National Nuclear Energy Agency, PUSPIPTEK, Serpong-Tangerang 15310 (Indonesia)

    2014-03-24

    According to co-location principle, near surface disposal type the disposal demonstration plant facility will be build at Serpong nuclear area. The facility also for anticipation of future needs to provide national facility for the servicing of radwaste management of non-nuclear power plant activity in Serpong Nuclear Area. It is needs to study the material of buffer and backfill for the safety of demonstration plant facility. A local bentonite rock from Cidadap-Tasikmalaya was used as the buffer materials. Objective of experiment is to find out the specific data of sorption characteristic of Cidadap bentonite as buffer material in a radwaste disposal system. Experiments were performed in batch method, where bentonite samples were contacted with CsCl solution labeled with Cs-137 in 100 ml/g liquid:solid ratio. Initial Cs concentration was 10{sup −8} M and to study the effects of ionic strength and Cs concentration in solution, 0.1 and 1.0 M NaCl also CsCl concentration ranging 10{sup −8} - 10{sup −4} M were added in solution. As the indicator of Cs saturated in bentonite samples, Kd value was applied. Affected parameters in the experiment were contact time, effects of ionic strength and concentration of CsCl. Results showed that sorption of Cs by bentonite reached constantly after 16 days contacted, and Kd value was 10.600 ml/g. Effect of CsCl concentration on Kd value may decreased in increased in CsCl concentration. Effect of ionic strength increased according to increased in concentration of background and would effect to Kd value due to competition of Na ions and Cs in solution interacts with bentonite. By obtaining the bentonite character data as buffer material, the results could be used as the basis for making of design and the basic of performance assessment the near surface disposal facility in terms of isolation capacity of radwaste later.

  6. Nanomechanics and the viscoelastic behavior of carbon nanotube-reinforced polymers

    Science.gov (United States)

    Fisher, Frank Thomas

    Recent experimental results demonstrate that substantial improvements in the mechanical behavior of polymers can be attained using small amounts of carbon nanotubes as a reinforcing phase. While this suggests the potential use of carbon nanotube-reinforced polymers (NRPs) for structural applications, the development of predictive models describing NRP effective behavior will be critical in the development and ultimate employment of such materials. To date many researchers have simply studied the nanoscale behavior of NRPs using techniques developed for traditional composite materials. While such studies can be useful, this dissertation seeks to extend these traditional theories to more accurately model the nanoscale interaction of the NRP constituent phases. Motivated by micrographs showing that embedded nanotubes often exhibit significant curvature within the polymer, in the first section of this dissertation a hybrid finite element-micromechanical model is developed to incorporate nanotube waviness into micromechanical predictions of NRP effective modulus. While also suitable for other types of wavy inclusions, results from this model indicate that moderate nanotube waviness can dramatically decrease the effective modulus of these materials. The second portion of this dissertation investigates the impact of the nanotubes on the overall NRP viscoelastic behavior. Because the nanotubes are on the size scale of the individual polymer chains, nanotubes may alter the viscoelastic response of the NRP in comparison to that of the pure polymer; this behavior is distinctly different from that seen in traditional polymer matrix composites. Dynamic mechanical analysis (DMA) results for each of three modes of viscoelastic behavior (glass transition temperature, relaxation spectrum, and physical aging) are all consistent with the hypothesis of a reduced mobility, non-bulk polymer phase in the vicinity of the embedded nanotubes. These models represent initial efforts to

  7. Rotating convection in a viscoelastic magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, L.M. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: dlarozen@uta.cl [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Díaz, P. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco (Chile); Martinez-Mardones, J. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Mancini, H.L. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain)

    2014-09-01

    We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid under rotation. The viscoelastic properties are given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic boundary conditions. The effects of the rheology and of the rotation rate on the instability thresholds for a diluted magnetic suspension are emphasized. - Highlights: • Ferrofluids. • Thermal convection. • Viscoelastic model. • Realistic boundary conditions.

  8. Cake Filtration in Viscoelastic Polymer Solutions

    Science.gov (United States)

    Surý, Alexander; Machač, Ivan

    2009-07-01

    In this contribution, the filtration equations for a cake filtration in viscoelastic fluids are presented. They are based on a capillary hybrid model for the flow of a power law fluid. In order to express the elastic pressure drop excess in the flow of viscoelastic filtrate through the filter cake and filter screen, modified Deborah number correction functions are included into these equations. Their validity was examined experimentally. Filtration experiments with suspensions of hardened polystyrene particles (Krasten) in viscoelastic aqueous solutions of polyacryl amides (0.4% and 0.6%wt. Kerafloc) were carried out at a constant pressure on a cylindrical filtration unit using filter screens of different resistance.

  9. Transient waves in visco-elastic media

    CERN Document Server

    Ricker, Norman

    1977-01-01

    Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave

  10. Viscoelasticity of mixed polyacrylamide solution

    Institute of Scientific and Technical Information of China (English)

    徐丽娜

    2008-01-01

    The viscoelastic behavior of polyacrylamide solution is crucial for its application in various industries.The mixed polyacrylamide solution was prepared by mixing polyacrylamide with different relative molecular masses according to the defined mass fraction.The viscosity and elasticity of mixed polyacrylamide solution were separately tested with RS150 rheometer and capillary breakup extensional rheometer and compared with those of the single polyacrylamide solution which is directly provided by manufacturer without any mixing.The results indicate that the mixed and single polyacrylamide solutions have the same shear viscosity and intrinsic viscosity.However,some mixed polyacrylamide solutions have higher elasticity than single polyacrylamide solution.The flow resistance of mixed polyacrylamide with higher elasticity is also greater than that of single polyacrylamide solution in porous medium.This paper presents an effective method of mixing polyacrylamides with different relative molecular masses,which can enhance the elasticity of polyacrylamide solution and flowing resistance through porous medium.

  11. Viscoelastic behavior of stock indices

    Science.gov (United States)

    Gündüz, Güngör; Gündüz, Yalin

    2010-12-01

    The scattering diagram of a stock index results in a complex network structure, which can be used to analyze the viscoelastic properties of the index. The change along x- or y-direction of the diagram corresponds to purely elastic (or spring like) movement whereas the diagonal change at an angle of 45° corresponds to purely viscous (or dashpot like) movement. The viscous component pushes the price from its current value to any other value, while the elastic component acts like a restoring force. Four indices, namely, DJI, S&P-500, NASDAQ-100, and NASDAQ-composite were studied for the period of 2001-2009. NASDAQ-composite displayed very high elasticity while NASDAQ-100 displayed the highest fluidity in the time period considered. The fluidity of DJI and S&P-500 came out to be close to each other, and they are almost the same in the second half of the period.

  12. CREEP BEHAVIOR OF VISCOELASTIC FUNCTIONALLY GRADED MATERIALS AND STRUCTURES IN THERMAL ENVIRONMENT%热环境中黏弹性功能梯度材料及其结构的蠕变

    Institute of Scientific and Technical Information of China (English)

    彭凡; 顾勇军; 马庆镇

    2012-01-01

    Based on classical correspondence principle, Mori-Tanaka and other micromechanical approaches are extended to treat the case of linear viscoelasticity in the constant thermal environment. The relaxation modulus and coefficient of thermal expansion of linearly viscoelastic FGMs are given directly in Laplace phase space, and multi-dimensional viscoelastic constitutive relation coupling thermal strain is constructed through considering the weak time-dependent feature of Poisson's ratio. Following the above work, the problem of axial symmetrical bending of viscoelastic functionally graded circular cylindrical thin shells is solved. The steady temperature field is determined taking into account of the temperature dependence of thermal and mechanical parameters. The analytic solution is derived in phase space and the creep deflection is obtained by means of Laplace numerical inversion. It is shown that the thermal effect is obvious at initial creep stage, but abates with the increase of time due to the relaxation of the thermal stresses, and the constraint effect for hinged ends is more prominent than that of clamped ends on the deflection near ends when circular cylindrical thin shell is subjected to axial compression. It is expected to give the general approach to analyze the creep deformation of viscoelastic functionally graded structures with arbitrary distribution of volume content under thermal and mechanical loading by solving above problem of axial symmetrical bending.%基于经典的对应原理,将Mori-Tanaka方法等细观力学结果推广于定常温度环境下的黏弹性情形.根据泊松比与时间呈弱相关的特点,给出Laplace象空间中功能梯度材料的松弛模最和热膨胀系数,并直接建立耦合热应变的多维黏弹性本构关系.在此基础上,求解黏弹性功能梯度网柱薄壳在热环境中的轴对称弯曲蠕变变形问题.考虑材料热物参数的温度相关性,首

  13. A viscoelastic orthotropic Timoshenko beam subjected to general transverse loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2008-12-01

    Full Text Available The investigation of lateral vibrations of a simply supported thin beam is the aim of this work. The analytical solution of the problem is derived based on the approximate Timoshenko beam theory for a general continuous loading acting on the upper beam face over the whole beam width and perpendicular to the beam axis. The material of the beam studied is assumed linear orthotropic viscoelastic. The generalized standard viscoelastic solid is chosen for representing of viscoelastic beam behaviour. Final system of partial integro-differential equations is solved by the standard method of integral transforms and resulting relations describing beam deflection, slope of the beam and corresponding stress and strain components are presented. Moreover, the derivation of final functions of beam deflection and slope of the beam for a specific impulse loading is presented and analytical results are compared with results obtained using numerical simulation in 2D (FEM. This confrontation shows very good agreement between results obtained. Furthermore, it was shown that the measure of agreement depends not only on the beam geometry.

  14. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    Science.gov (United States)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  15. Effects of viscoelastic ophthalmic solutions on cell cultures

    Directory of Open Access Journals (Sweden)

    Madhavan Hajib

    1998-01-01

    Full Text Available The development of mild but significant inflammation probably attributable to viscoelastic ophthalmic solutions in cataract surgery was recently brought to the notice of the authors, and hence a study of the effects of these solutions available in India, on cell cultures was undertaken. We studied the effects of 6 viscoelastic ophthalmic solutions (2 sodium hyaluronate designated as A and B, and 4 hydroxypropylmethylcellulose designated as C, D, E and F on HeLa, Vero and BHK-21 cell lines in tissue culture microtitre plates using undiluted, 1:10 and 1:100 dilutions of the solutions, and in cover slip cultures using undiluted solutions. Phase contrast microscopic examination of the solutions was also done to determine the presence of floating particles. The products D and F produced cytotoxic changes in HeLa cell line and these products also showed the presence of floating particles under phase contrast microscopy. Other products did not have any adverse effects on the cell lines nor did they show floating particles. The viscoelastic ophthalmic pharmaceutical products designated D and F have cytotoxic effects on HeLa cell line which appears to be a useful cell line for testing these products for their toxicity. The presence of particulate materials in products D and F indicates that the methods used for purification of the solution are not effective.

  16. Stability of Couette flow past a viscoelastic solid

    Science.gov (United States)

    Hess, Andrew; Gao, Tong

    2016-11-01

    Soft materials such as polymer gels have been widely used in engineering applications such as microfluidics, micro-optics, and active surfaces. It is important to obtain fundamental understandings of the dynamics of various soft materials when interacting with fluid. Here we investigate the material behavior of a viscoelastic solid film immersed in a simple Newtonian Couette flow. An Eulerian formulation of the Zener model is used to model the solid phase with the surface tension effect. A linear stability analysis is first performed to predict the material instabilities induced by the shear flow field, and provide an analytical basis to the numerical results. The nonlinear fluid/elastic structure interactions are further explored by using the direct numerical simulations. Phase tracking is accomplished through the use of a generalized Cahn-Hilliard model for the surface tension between the gel-like material and the ambient fluid. The coupled Cahn-Hilliard/Navier-Stokes/Zener equations are then solved on a staggered grid through a finite difference method. The results are compared with previous studies for both the hyperelastic and viscoelastic materials.

  17. Fully coupled heat conduction and deformation analyses of visco-elastic solids

    KAUST Repository

    Khan, Kamran

    2012-04-21

    Visco-elastic materials are known for their capability of dissipating energy. This energy is converted into heat and thus changes the temperature of the materials. In addition to the dissipation effect, an external thermal stimulus can also alter the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling between the thermal and mechanical response that is attributed to the dissipation of energy, heat conduction, and temperature-dependent material parameters on the overall response of visco-elastic solids. The non-linearly viscoelastic constitutive model proposed by Schapery (Further development of a thermodynamic constitutive theory: stress formulation, 1969,Mech. Time-Depend. Mater. 1:209-240, 1997) is used and modified to incorporate temperature- and stress-dependent material properties. This study also formulates a non-linear energy equation along with a dissipation function based on the Gibbs potential of Schapery (Mech. Time-Depend. Mater. 1:209-240, 1997). A numerical algorithm is formulated for analyzing a fully coupled thermo-visco-elastic response and implemented it in a general finite-element (FE) code. The non-linear stress- and temperature-dependent material parameters are found to have significant effects on the coupled thermo-visco-elastic response of polymers considered in this study. In order to obtain a realistic temperature field within the polymer visco-elastic bodies undergoing a non-uniform heat generation, the role of heat conduction cannot be ignored. © Springer Science+Business Media, B. V. 2012.

  18. Dynamics and Stability of Rolling Viscoelastic Tires

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Trevor [Univ. of California, Berkeley, CA (United States)

    2013-04-30

    Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wave solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.

  19. Changes in protein solubility, fermentative capacity, viscoelasticity ...

    African Journals Online (AJOL)

    SAM

    2014-05-14

    May 14, 2014 ... solubility, fermentative capacity and viscoelasticity of frozen dough. In addition to examining ... A dynamic ... ten protein fractions of higher molecular weight and are .... An SE-HPLC system (Varian ProStar equipment, Model.

  20. STUDY ON VISCOELASTIC BEHAVIOR OF PAPER COATING

    Institute of Scientific and Technical Information of China (English)

    Heng Zhang; Kefu Chen; Rendang Yang

    2004-01-01

    The flow behavior of paper coating is critical to the coating operation. In this work, the influence of the added agents on the flow behavior and the viscoelastic behavior is investigated using rheometer in steady and dynamic oscillatory modes.

  1. Enhanced active swimming in viscoelastic fluids

    CERN Document Server

    Riley, Emily E

    2014-01-01

    Swimming microorganisms often self propel in fluids with complex rheology. While past theoretical work indicates that fluid viscoelasticity should hinder their locomotion, recent experiments on waving swimmers suggest a possible non-Newtonian enhancement of locomotion. We suggest a physical mechanism, based on fluid-structure interaction, leading to swimming in a viscoelastic fluid at a higher speed than in a Newtonian one. Using Taylor's two-dimensional swimming sheet model, we solve for the shape of an active swimmer as a balance between the external fluid stresses, the internal driving moments, and the passive elastic resistance. We show that this dynamic balance leads to a generic transition from hindered rigid swimming to enhanced flexible locomotion. The results are physically interpreted as due to a viscoelastic suction increasing the swimming amplitude in a non-Newtonian fluid and overcoming viscoelastic damping.

  2. Recent advances in elasticity, viscoelasticity and inelasticity

    CERN Document Server

    Rajagopal, KR

    1995-01-01

    This is a collection of papers dedicated to Prof T C Woo to mark his 70th birthday. The papers focus on recent advances in elasticity, viscoelasticity and inelasticity, which are related to Prof Woo's work. Prof Woo's recent work concentrates on the viscoelastic and viscoplastic response of metals and plastics when thermal effects are significant, and the papers here address open questions in these and related areas.

  3. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  4. Semigroup theory and numerical approximation for equations in linear viscoelasticity

    Science.gov (United States)

    Fabiano, R. H.; Ito, K.

    1990-01-01

    A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.

  5. Droplet impact on soft viscoelastic surfaces

    Science.gov (United States)

    Chen, Longquan; Bonaccurso, Elmar; Deng, Peigang; Zhang, Haibo

    2016-12-01

    In this work, we experimentally investigate the impact of water droplets onto soft viscoelastic surfaces with a wide range of impact velocities. Several impact phenomena, which depend on the dynamic interaction between the droplets and viscoelastic surfaces, have been identified and analyzed. At low We , complete rebound is observed when the impact velocity is between a lower and an upper threshold, beyond which droplets are deposited on the surface after impact. At intermediate We , entrapment of an air bubble inside the impinging droplets is found on soft surfaces, while a bubble entrapment on the surface is observed on rigid surfaces. At high We , partial rebound is only identified on the most rigid surface at We ≳92 . Rebounding droplets behave similarly to elastic drops rebounding on superhydrophobic surfaces and the impact process is independent of surface viscoelasticity. Further, surface viscoelasticity does not influence drop spreading after impact—as the surfaces behave like rigid surfaces—but it does affect drop recoiling. Also, the postimpact drop oscillation on soft viscoelastic surfaces is influenced by dynamic wettability of these surfaces. Comparing sessile drop oscillation with a damped harmonic oscillator allows us to conclude that surface viscoelasticity affects the damping coefficient and liquid surface tension sets the spring constant of the system.

  6. Viscoelastic flow simulations in model porous media

    Science.gov (United States)

    De, S.; Kuipers, J. A. M.; Peters, E. A. J. F.; Padding, J. T.

    2017-05-01

    We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid interfaces of the porous structure are modeled using a second-order immersed boundary method [S. De et al., J. Non-Newtonian Fluid Mech. 232, 67 (2016), 10.1016/j.jnnfm.2016.04.002]. A finitely extensible nonlinear elastic constitutive model with Peterlin closure is used to model the viscoelastic part. By means of periodic boundary conditions, we model the flow behavior for a Newtonian as well as a viscoelastic fluid through successive contractions and expansions. We observe the presence of counterrotating vortices in the dead ends of our geometry. The simulations provide detailed insight into how flow structure, viscoelastic stresses, and viscoelastic work change with increasing Deborah number De. We observe completely different flow structures and different distributions of the viscoelastic work at high De in the symmetric and asymmetric configurations, even though they have the exact same porosity. Moreover, we find that even for the symmetric contraction-expansion flow, most energy dissipation is occurring in shear-dominated regions of the flow domain, not in extensional-flow-dominated regions.

  7. THE DYNAMIC BEHAVIORS OF VISCOELASTIC PIPE CONVEYING FLUID WITH THE KELVIN MODEL

    Institute of Scientific and Technical Information of China (English)

    Wang Zhongmin; Zhao Fengqun; Feng Zhenyu; Liu Hongzhao

    2000-01-01

    Based on the differential constitutive relationship of linear viscoelastic material, a solid-liquid coupling vibration equation for viscoelastic pipe conveying fluid is derived by the D'Alembert's principle. The critical flow velocities and natural frequencies of the cantilever pipe conveying fluid with the Kelvin model ( flutter instability) are calculated with the modified finite difference method in the form of the recurrence for mula. The curves between the complex frequencies of the first, second and third mode and flow velocity of the pipe are plotted. On the basis of the numerical calculation results, the dynamic behaviors and stability of the pipe are discussed. It should be pointed out that the delay time of viscoelastic material with the Kelvin model has a remarkable effect on the dynamic characteristics and stability behaviors of the cantilevered pipe conveying fluid, which is a gyroscopic non-conservative system.

  8. Viscoelastic property tuning for reducing noise radiated by switched-reluctance machines

    Science.gov (United States)

    Millithaler, Pierre; Dupont, Jean-Baptiste; Ouisse, Morvan; Sadoulet-Reboul, Émeline; Bouhaddi, Noureddine

    2017-10-01

    Switched-reluctance motors (SRM) present major acoustic drawbacks that hinder their use for electric vehicles in spite of widely-acknowledged robustness and low manufacturing costs. Unlike other types of electric machines, a SRM stator is completely encapsulated/potted with a viscoelastic resin. By taking advantage of the high damping capacity that a viscoelastic material has in certain temperature and frequency ranges, this article proposes a tuning methodology for reducing the noise emitted by a SRM in operation. After introducing the aspects the tuning process will focus on, the article details a concrete application consisting in computing representative electromagnetic excitations and then the structural response of the stator including equivalent radiated power levels. An optimised viscoelastic material is determined, with which the peak radiated levels are reduced up to 10 dB in comparison to the initial state. This methodology is implementable for concrete industrial applications as it only relies on common commercial finite-element solvers.

  9. Dynamic homogenization of viscoelastic phononic metasolids

    Science.gov (United States)

    Pichard, Hélène; Torrent, Daniel

    2016-12-01

    The effects of dissipation in metamaterials is a sensitive issue and, although experiments show that they are more than relevant, their theoretical study and modeling has received less attention. In this work, we study the effects of viscosity on the dissipation of elastic metamaterials. It is found that these metasolids present effective constitutive parameters that are in general complex, in contrast with common elastic materials where the mass density is a real valued scalar quantity and dissipation enters only through the stiffness tensor. It is also found that, while in the low frequency limit the dissipation is higher as the viscoelastic coefficient is also higher, near a resonance of the metamaterial this condition does not hold, since the imaginary part of the constitutive parameters is higher as the viscosity is smaller. Finally, the effects of viscosity are studied on the non-local properties of the effective parameters, and it is found that this property is attenuated with dissipation although still has to be considered.

  10. Viscoelastic Models of Tidally Heated Exomoons

    CERN Document Server

    Dobos, Vera

    2015-01-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models, because it takes into account the temperature dependency of the tidal heat flux, and the melting of the inner material. With the use of this model we introduced the circumplanetary Tidal Temperate Zone (TTZ), that strongly depends on the orbital period of the moon, and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ usi...

  11. PP木纤维复合材料热粘弹性力学特性研究%Material characterization on the thermo-viscoelasticity of PP wood composites

    Institute of Scientific and Technical Information of China (English)

    刘雪; 堵同亮; 彭雄奇; 陈军

    2012-01-01

    PP wood composite specimens were tested at strain rates from 10^-4 to 10^-2 s^-1 and at temperature of 90, 130, 170℃. Their mechanical responses were shown to be sensitive both to the strain rate and temperature. Besides, it was found that raising the temperature has an equivalent effect as decreasing the strain rate. Based on maxwell model, a nonlinear thermal viscoelastic constitutive model was proposed for the PP wood Composite. Corresponding viscoelastic parameters were obtained through curve fitting with experimental results. Then the model was used to simulate thermal compression of the wood composite. The predicted theoretical results coincided quite well with experimental data.%通过对PP木纤维复合材料进行应变率为10-4~10-2s-1、温度为90、130、170℃下的单向应力条件下的力学性能试验,结果表明,PP木纤维复合材料的力学响应对温度和应变率都是敏感的,并且升高温度与降低应变率对PP木纤维复合材料的力学性能有等效的影响。利用Maxwell模型提出了该PP木纤维复合材料的一个非线性热粘弹性本构方程,拟合出了相应的粘弹性参数。利用该本构模型模拟了PP木纤维复合材料的热压缩实验,理论计算所得应力-应变曲线与实验结果吻合较好。

  12. Demonstration Project for a Multi-Material Lightweight Prototype Vehicle as Part of the Clean Energy Dialogue with Canada

    Energy Technology Data Exchange (ETDEWEB)

    Skszek, Tim [Vehma International Of America, Inc., Troy, MI (United States)

    2015-12-29

    The intent of the Multi-Material Lightweight Vehicle (“MMLV”) was to assess the feasibility of achieving a significant level of vehicle mass reduction, enabling engine downsizing resulting in a tangible fuel reduction and environmental benefit. The MMLV project included the development of two (2) lightweight vehicle designs, referred to as Mach-I and Mach-II MMLV variants, based on a 2013 Ford production C/D segment production vehicle (Fusion). Weight comparison, life cycle assessment and limited full vehicle testing are included in the project scope. The Mach-I vehicle variant was comprised of materials and processes that are commercially available or previously demonstrated. The 363 kg mass reduction associated with the Mach-I design enabled use of a one-liter, three-cylinder, gasoline turbocharged direct injection engine, maintaining the performance and utility of the baseline vehicle. The full MMLV project produced seven (7) MMLV Mach-I “concept vehicles” which were used for testing and evaluation. The full vehicle tests confirmed that MMLV Mach-I concept vehicle performed approximately equivalent to the baseline 2013 Ford Fusion vehicle thereby validating the design of the multi material lightweight vehicle design. The results of the Life Cycle Assessment, conducted by third party consultant, indicated that if the MMLV Mach-I design was built and operated in North America for 250,000 km (155,343 miles) it would produce significant environmental and fuel economy benefits including a 16% reduction in Global Warming Potential (GWP) and 16% reduction in Total Primary Energy (TPE). The LCA calculations estimated the combined fuel economy of 34 mpg (6.9 l/100 km) associated with the MMLV Mach-I Design compared to 28 mpg (8.4 l/100 km) for the 2013 Ford Fusion.

  13. Lamb's problem for a linear viscoelastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Pound, Michael J.

    1988-02-01

    Lamb's problem for an elastic medium is one of the fundamental theoretical problems in mathematical seismology. It has been essential to the understanding of the basic interaction of waves with surfaces, including the production of such surface effects as Rayleigh waves and head waves. All real materials, however, exhibit some dissipation, and the combined effect of dissipation and surface interactions has not been well understood, particularly in the case of transient phenomena. In this work, the distance generated in a semi-infinite linear viscoelastic medium due to an impulsive line load applied normally to the surface is investigated. Uniform asymptotic techniques based on the method of steepest descent are developed to construct the long-time solution for the half-space. It is found that the solution for long times consists primarily of a set of small amplitude ''precursor'' signals whose properties are determined largely by the initial elastic response of the medium, and a set of much larger amplitude smooth waves. It is these smooth waves, analogous to the viscoelastic ''main'' waves of one-dimensional studies, which occupy the bulk of the analysis, and some of these signals are found to exhibit some interesting and unexpected properties. The Archenbach-Chao solid (ACS) model was selected as the material model for this study primarily because of its desirable physical and mathematical properties, but the results are applicable, both qualitatively and quantitatively, to a broad class of viscoelastic materials that exhibit initial elasticity and have bounded creep function. 103 refs., 24 figs.

  14. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    Science.gov (United States)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from

  15. Intraluminal mapping of tissue viscoelastic properties using laser speckle rheology catheter (Conference Presentation)

    Science.gov (United States)

    Wang, Jing; Hosoda, Masaki; Tshikudi, Diane M.; Nadkarni, Seemantini K.

    2016-03-01

    A number of disease conditions including coronary atherosclerosis, peripheral artery disease and gastro-intestinal malignancies are associated with alterations in tissue mechanical properties. Laser speckle rheology (LSR) has been demonstrated to provide important information on tissue mechanical properties by analyzing the time scale of temporal speckle intensity fluctuations, which serves as an index of tissue viscoelasticity. In order to measure the mechanical properties of luminal organs in vivo, LSR must be conducted via a miniature endoscope or catheter. Here we demonstrate the capability of an omni-directional LSR catheter to quantify tissue mechanical properties over the entire luminal circumference without the need for rotational motion. Retracting the catheter using a motor-drive assembly enables the reconstruction of cylindrical maps of tissue mechanical properties. The performance of the LSR catheter is tested using a luminal phantom with mechanical moduli that vary in both circumferential and longitudinal directions. 2D cylindrical maps of phantom viscoelastic properties are reconstructed over four quadrants of the coronary circumference simultaneously during catheter pullback. The reconstructed cylindrical maps of the decorrelation time constants easily distinguish the different gel components of the phantom with different viscoelastic moduli. The average values of decorrelation times calculated for each gel component of the phantom show a strong correspondence with the viscoelastic moduli measured via standard mechanical rheometry. These results highlight the capability for cylindrical mapping of tissue viscoelastic properties using LSR in luminal organs using a miniature catheter, thus opening the opportunity for improved diagnosis of several disease conditions.

  16. Solid particle erosion and viscoelastic properties of thermoplastic polyurethanes

    Directory of Open Access Journals (Sweden)

    G. Arena

    2015-03-01

    Full Text Available The wear resistance of several thermoplastic polyurethanes (TPUs having different chemical nature and micronscale arrangement of the hard and soft segments has been investigated by means of erosion and abrasion tests. The goal was correlating the erosion performances of the materials to their macroscopic mechanical properties. Unlike conventional tests, such as hardness and tensile measurements, viscoelastic analysis proved to be a valuable tool to study the erosion resistance of TPUs. In particular, a strict correlation was found between the erosion rate and the high-frequency (~107 Hz loss modulus. The latter reflects the actual ability of TPU to dissipate the impact energy of the erodent particles.

  17. Warrior Injury Assessment Manikin (WIAMan) Lumbar Spine Model Validation: Development, Testing, and Analysis of Physical and Computational Models of the WIAMan Lumbar Spine Materials Demonstrator

    Science.gov (United States)

    2016-08-01

    6400 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Research Laboratory ATTN: RDRL-DPW...Anthropomorphic Test Device (ATD) Lumbar Spine Materials Demonstrator. A primary objective of this work was to generate experimental data for FEM validation...Lumbar Spine Materials Demonstrator 1 1.2.1 WIAMan ATD Lumbar Spine Assembly 1 1.2.2 Materials Consideration 2 1.2.3 Test Method 3 2. Preliminary

  18. Anisotropic viscoelastic models in large deformation for architectured membranes

    Science.gov (United States)

    Rebouah, Marie; Chagnon, Gregory; Heuillet, Patrick

    2016-08-01

    Due to the industrial elaboration process, membranes can have an in-plane anisotropic mechanical behaviour. In this paper, anisotropic membranes elaborated with two different materials were developed either by calendering or by inducing a force in one direction during the process. Experimental tests are developed to measure the differences of mechanical behaviour for both materials in different in-plane properties: stiffness, viscoelasticity and stress-softening. A uniaxial formulation is developed, and a homogenisation by means of a sphere unit approach is used to propose a three-dimensional formulation to represent the materials behaviour. An evolution of the mechanical parameters, depending on the direction, is imposed to reproduce the anisotropic behaviour of the materials. Comparison with experimental data highlights very promising results.

  19. Fast multipole boundary element analysis of 2D viscoelastic composites with imperfect interfaces

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A fast multipole boundary element method(FMBEM)is developed for the analysis of 2D linear viscoelastic composites with imperfect viscoelastic interfaces.The transformed fast multipole formulations are established using the time domain method. To simulate the viscoelastic behavior of imperfect interfaces that are frequently encountered in practice,the Kelvin type model is introduced.The FMBEM is further improved by incorporating naturally the interaction among inclusions as well as eliminating the phenomenon of material penetration.Since all the integrals are evaluated analytically,high accuracy and fast convergence of the numerical scheme are obtained.Several numerical examples,including planar viscoelastic composites with a single inclusion or randomly distributed multi-inclusions are presented.The numerical results are compared with the developed analytical solutions,which illustrates that the proposed FMBEM is very efficient in determining the macroscopic viscoelastic behavior of the particle-reinforced composites with the presence of imperfect interfaces.The laboratory measurements of the mixture creep compliance of asphalt concrete are also compared with the prediction by the developed model.

  20. Viscoelastic properties of healthy human artery measured in saline solution by AFM based indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Lundkvist, A.; Lilleodden, E.; Sickhaus, W.; Kinney, J.; Pruitt, L.; Balooch, M.

    1998-02-09

    Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34. 3 kPa) and viscoelastic response ({tau}sub{epsilon} {equals} 16.9 s and {tau}sub{sigma} {equals} 29.3 s) of the unstretched,intimal vessel wall have been determined using Sneddon theory and a three element model(standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described.

  1. A TIME DOMAIN METHOD FOR QUASI-STATIC ANALYSIS OF VISCOELASTIC THIN PLATES

    Institute of Scientific and Technical Information of China (English)

    张能辉; 程昌钧

    2001-01-01

    Based on the Boltzmann's superposition principles of linear viscoelastic materials for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.

  2. Spatially fractional-order viscoelasticity, non-locality and a new kind of anisotropy

    CERN Document Server

    Hanyga, Andrzej

    2011-01-01

    Spatial non-locality of space-fractional viscoelastic equations of motion is studied. Relaxation effects are accounted for by replacing second-order time derivatives by lower-order fractional derivatives and their generalizations. It is shown that space-fractional equations of motion of an order strictly less than 2 allow for a new kind anisotropy, associated with angular dependence of non-local interactions between stress and strain at different material points. Constitutive equations of such viscoelastic media are determined. Explicit fundamental solutions of the Cauchy problem are constructed for some cases isotropic and anisotropic non-locality.

  3. Evaluation of dermal segment on viscoelasticity measurement of skin by rheometer

    Science.gov (United States)

    Nemoto, Tetsuya; Isogai, Zenzo; Koide, Kazuharu; Itoh, Yasumi; Nogata, Fumio; Shimamoto, Akira; Ju, Dong-Ying; Matsuura, Hiroyuki

    2007-04-01

    The engineering of human tissue represents a major technique in clinical medicine. Material evaluation of skin is important as preventive medicine. Decubitus originates in pressure and the rub. However, shearing in the skin has exerted the influences on the sore pressures most. This paper examines one demand of crucial importance, namely the real time in vivo monitoring of the shearing characteristics skin tissue. Rheometer is a technology developed to measure viscoelasticity of solid and liquid. To measure viscoelasticity of the skin in the noninvasive with this device, we remodeled it. It is ideal for the continuous monitoring of tissues in vivo.

  4. Effect of Wood Fillers on the Viscoelastic and Thermophysical Properties of HDPE-Wood Composite

    Directory of Open Access Journals (Sweden)

    M. Tazi

    2016-01-01

    Full Text Available Wood polymer composites (WPC have well proven their applicability in several fields of the plasturgy sector, due to their aesthetics and low maintenance costs. However, for plasturgy applications, the characterization of viscoelastic behavior and thermomechanical and thermophysical properties of WPC with the temperature and wood filler contents is essential. Therefore, the processability of polymer composites made up with different percentage of wood particles needs a better understanding of materials behaviors in accordance with temperature and wood particles contents. To this end, a numerical analysis of the viscoelastic, mechanical, and thermophysical properties of composite composed of high density polyethylene (HDPE reinforced with soft wood particles is evaluated.

  5. Dynamic Stability of Viscoelastic Plates with Finite Deformation and Shear Effects

    Institute of Scientific and Technical Information of China (English)

    李晶晶; 程昌钧; 等

    2002-01-01

    Based on Reddy's theory of plates with higher-order shear deformations and the Boltzmann superposition principles,the governing equations were established for dynamic stability of viscoelastic plates with finite deformations taking account of shear effects,The Galerkin method was applied to simplify the set of equations.The numerical methods in nonlinear dynamics were used to solve the simplified system.It could e seen that there are plenty of dynamic properties for this kind of viscoelastic plates under transverse harmonic loads.The influences of the transverse shear deformations and material parameter on the dynamic behavior of nonlinear viscoelatic plates were investigated.

  6. Experimental Demonstration of the Molten Oxide Electrolysis Method for Oxygen and Iron Production from Simulated Lunar Materials

    Science.gov (United States)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT).

  7. Implementation of the Log-Conformation Formulation for Two-Dimensional Viscoelastic Flow

    CERN Document Server

    Jensen, K E; Okkels, F

    2015-01-01

    We have implemented the log-conformation method for two-dimensional viscoelastic flow in COMSOL, a commercial high-level finite element package. The code is verified for an Oldroyd-B fluid flowing past a confined cylinder. We are also able to describe the well-known bistability of the viscoelastic flow in a cross-slot geometry for a FENE-CR fluid, and we describe the changes required for performing simulations with the Phan-Thien-Tanner (PTT), Giesekus and FENE-P models. Finally, we calculate the flow of a FENE-CR fluid in a geometry with three in- and outlets. The implementation is included in the supplementary material, and we hope that it can inspire new as well as experienced researchers in the field of differential constitutive equations for viscoelastic flow.

  8. A structurally based viscoelastic model for passive myocardium in finite deformation

    Science.gov (United States)

    Shen, Jing Jin

    2016-09-01

    This paper discusses the finite-deformation viscoelastic modeling for passive myocardium tissue. The formulations established can also be applied to model other fiber-reinforced soft tissue. Based on the morphological structure of the myocardium, a specific free-energy function is constructed to reflect its orthotropicity. After deriving the stress-strain relationships in the simple shear deformation, a genetic algorithm is used to optimally estimate the material parameters of the myocardial constitutive equation. The results show that the proposed myocardial model can well fit the shear experimental data. To validate the viscoelastic model, it is used to predict the creep and the dynamic responses of a cylindrical model of the left ventricle. Upon comparing the results calculated by the proven myocardial elastic model with those by the viscoelastic model, the merits of the latter are discussed.

  9. Constitutive modeling of the viscoelastic and viscoplastic responses of metallocene catalyzed polypropylene

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Sanporean, Catalina-Gabriela

    2012-01-01

    Purpose – The purpose of this paper is to perform experimental investigation and constitutive modeling of the viscoelastic and viscoplastic behavior of metallocene catalyzed polypropylene (mPP) with application to lifetime assessment under conditions of creep rupture. Design/methodology/approach ...... in long-term creep tests. Keywords Metallocene catalyzed polypropylene, Viscoelasticity, Viscoplasticity, Creep rupture, Constitutive modeling, Elastoplastic analysis, Viscosity, Creep, Physical properties of materials Paper type Research paper....../methodology/approach – Three series of experiments are conducted where the mechanical response of mPP is analyzed in tensile tests with various strain rates, relaxation tests with various strains, and creep tests with various stresses at room temperature. A constitutive model is derived for semicrystalline polymers under......Purpose – The purpose of this paper is to perform experimental investigation and constitutive modeling of the viscoelastic and viscoplastic behavior of metallocene catalyzed polypropylene (mPP) with application to lifetime assessment under conditions of creep rupture. Design...

  10. VISCOELASTIC CONSTITUTIVE MODEL RELATED TO DEFORMATION OF INSECT WING UNDER LOADING IN FLAPPING MOTION

    Institute of Scientific and Technical Information of China (English)

    BAO Lin; HU Jin-song; YU Yong-liang; CHENG Peng; XU Bo-qing; TONG Bing-gang

    2006-01-01

    Flexible insect wings deform passively under the periodic loading during flapping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive relation of the insect wing material plays a key role on the wing deformation, but has not been clearly understood yet. A viscoelastic constitutive relation model was established based on the stress relaxation experiment of a dragonfly wing (in vitro). This model was examined by the finite clement analysis of the dynamic deformation response for a model insect wing under the action of the periodical inertial force in flapping. It is revealed that the viscoelastic constitutive relation is rational to characterize the biomaterial property of insect wings in contrast to the elastic one. The amplitude and form of the passive viscoelastic deformation of the wing is evidently dependent on the viscous parameters in the constitutive relation.

  11. Stress-based viscoelastic master curve construction of model tire tread compounds

    NARCIS (Netherlands)

    Maghami, S.; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Tolpekina, T.V.; Schultz, S.; Gögelein, C.; Wrana, C.; Asier, Alonso

    2013-01-01

    One of the important aspects in the development of new tire compounds is the correlation between the dynamic mechanical properties of the rubber, measured on laboratory scale, and the actual tire performance. In order to predict wet traction, the viscoelastic behavior of the rubber materials at high

  12. A Micro Raman Investigation of Viscoelasticity in Short Fibre Reinforced Polymer Matrix Composites

    DEFF Research Database (Denmark)

    Schjødt-Thomsen, Jan

    The purpose of the present Ph.D. project is to investigate the load transfer mechanisms between the fibre and matrix and the stress/strain fields in and around single fibres in short fibre reinforced viscoelastic polymer matrix composites subjected to various loading histories. The materials...

  13. On the prediction of stress relaxation from known creep of nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Touati, D.; Cederbaum, G. [Ben-Gurion Univ. of the Negev, Beer Sheva (Israel)

    1997-04-01

    A method to predict the nonlinear relaxation behavior from creep experiments of nonlinear viscoelastic materials is presented. It is shown that for given nonlinear creep properties, and creep compliance represented by the Prony series, the Schapery creep model can be transformed into a set of first order nonlinear equations. The solution of these equations enables the obtaining of the nonlinear stress relaxation curves. The strain-dependent constitutive equation can then be constructed for a given nonlinear viscoelastic model, as needed for engineering applications. A comparison example of the calculated stress relaxation curves, with test data for polyurethane demonstrates the very good accuracy of the proposed method.

  14. Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates

    Science.gov (United States)

    Ebrahimy, Farzad; Hosseini, S. Hamed S.

    2016-10-01

    The nonlinear electroelastic vibration behavior of viscoelastic nanoplates is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the vibration analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small-scale effects, van der Waals interaction, Winkler and Pasternak elastic coefficients, the viscidity and aspect ratio of the nanoplate on its nonlinear vibrational characteristics. It is explicitly shown that the electroelastic vibration behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates which are fundamental elements in nanoelectromechanical systems.

  15. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds

    Science.gov (United States)

    Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J.; Jain, Rakesh K.; Nadkarni, Seemantini K.

    2016-01-01

    Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g2(t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p  0.08) over a large range (47 Pa – 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales. PMID:27905494

  16. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds

    Science.gov (United States)

    Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J.; Jain, Rakesh K.; Nadkarni, Seemantini K.

    2016-12-01

    Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g2(t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p  0.08) over a large range (47 Pa – 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p hydrogel viscoelastic properties at multiple frequencies and small length-scales.

  17. Random Response of Linear Viscoelastic Systems under Random Excitation

    Institute of Scientific and Technical Information of China (English)

    张天舒; 方同

    2001-01-01

    A method of analyzing random response of linear viscoelastic systems under random excitation has been presented. The covariance matrices of random responses of a single-degree-freedom linear viscoelastic system subjected to stationary white noise and filtered white noise excitations have been obtained in closed form. For illustration, a numerical example has been included. It is observed that viscoelasticity has damping effect on the mean square random responses of the system, the higher is viscoelastic behavior, the higher the damping effect.

  18. Aftershock production rate of driven viscoelastic interfaces.

    Science.gov (United States)

    Jagla, E A

    2014-10-01

    We study analytically and by numerical simulations the statistics of the aftershocks generated after large avalanches in models of interface depinning that include viscoelastic relaxation effects. We find in all the analyzed cases that the decay law of aftershocks with time can be understood by considering the typical roughness of the interface and its evolution due to relaxation. In models where there is a single viscoelastic relaxation time there is an exponential decay of the number of aftershocks with time. In models in which viscoelastic relaxation is wave-vector dependent we typically find a power-law dependence of the decay rate that is compatible with the Omori law. The factors that determine the value of the decay exponent are analyzed.

  19. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    K A Suresh

    2003-08-01

    Viscoelastic properties of liquid crystals are very important for applications like display technology. However, there are not many direct techniques to study them. In this review, we describe our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic modes corresponding to the C director fluctuations in the chiral smectic C phase and the behaviour of the Goldstone-mode near the chiral smectic C–smectic A phase transition. In cholesteric liquid crystals, we consider the director fluctuations in a wavevector range comparable to the inverse pitch of the cholesteric. Here, the study of the scattered light in the vicinity of the Bragg reflection using a novel geometry will be presented.

  20. Conformal higher-order viscoelastic fluid mechanics

    CERN Document Server

    Fukuma, Masafumi

    2012-01-01

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  1. Conformal higher-order viscoelastic fluid mechanics

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2012-06-01

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  2. Viscoelastic properties of cellular polypropylene ferroelectrets

    Science.gov (United States)

    Gaal, Mate; Bovtun, Viktor; Stark, Wolfgang; Erhard, Anton; Yakymenko, Yuriy; Kreutzbruck, Marc

    2016-03-01

    Viscoelastic properties of cellular polypropylene ferroelectrets (PP FEs) were studied at low frequencies (0.3-33 Hz) by dynamic mechanical analysis and at high frequencies (250 kHz) by laser Doppler vibrometry. Relaxation behavior of the in-plane Young's modulus ( Y11 ' ˜ 1500 MPa at room temperature) was observed and attributed to the viscoelastic response of polypropylene matrix. The out-of-plane Young's modulus is very small ( Y33 ' ≈ 0.1 MPa) at low frequencies, frequency- and stress-dependent, evidencing nonlinear viscoelastic response of PP FEs. The high-frequency mechanical response of PP FEs is shown to be linear viscoelastic with Y33 ' ≈ 0.8 MPa. It is described by thickness vibration mode and modeled as a damped harmonic oscillator with one degree of freedom. Frequency dependence of Y33 * in the large dynamic strain regime is described by the broad Cole-Cole relaxation with a mean frequency in kHz range attributed to the dynamics of the air flow between partially closed air-filled voids in PP FEs. Switching-off the relaxation contribution causes dynamic crossover from the nonlinear viscoelastic regime at low frequencies to the linear viscoelastic regime at high frequencies. In the small strain regime, contribution of the air flow seems to be insignificant and the power-law response, attributed to the mechanics of polypropylene cell walls and closed air voids, dominates in a broad frequency range. Mechanical relaxation caused by the air flow mechanism takes place in the sound and ultrasound frequency range (10 Hz-1 MHz) and, therefore, should be taken into account in ultrasonic applications of the PP FEs deal with strong exciting or receiving signals.

  3. Neuro-adaptive control in beating heart surgery based on the viscoelastic tissue model

    Directory of Open Access Journals (Sweden)

    Setareh Rezakhani

    2014-04-01

    Full Text Available In this paper, the problem of 3D heart motion in beating heart surgery is resolved by proposing a parallel force-motion controller. Motion controller is designed based on neuro-adaptive approach to compensate 3D heart motion and deal with uncertainity in dynamic parameters, while an implicit force control is implemented by considering a viscoelastic tissue model. Stability analysis is proved through Lypanov’s stability theory and Barballet’s lemma. Simulation results, for D2M2 robot, which is done in nominal case and viscoelastic parameter mismatches demonstrate the robust performance of the controller.

  4. Atomistic Mechanisms for Viscoelastic Damping in Inorganic Solids

    Science.gov (United States)

    Ranganathan, Raghavan

    Viscoelasticity, a ubiquitous material property, can be tuned to engineer a wide range of fascinating applications such as mechanical dampers, artificial tissues, functional foams and optoelectronics, among others. Traditionally, soft matter such as polymers and polymer composites have been used extensively for viscoelastic damping applications, owing to the inherent viscous nature of interactions between polymer chains. Although this leads to good damping characteristics, the stiffness in these materials is low, which in turn leads to limitations. In this context, hard inorganic materials and composites are promising candidates for enhanced damping, owing to their large stiffness and, in some cases large loss modulus. Viscoelasticity in these materials has been relatively unexplored and atomistic mechanisms responsible for damping are not apparent. Therefore, the overarching goal of this work is to understand mechanisms for viscoelastic damping in various classes of inorganic composites and alloys at an atomistic level from molecular dynamics simulations. We show that oscillatory shear deformation serves as a powerful probe to explain mechanisms for exceptional damping in hitherto unexplored systems. The first class of inorganic materials consists of crystalline phases of a stiff inclusion in a soft matrix. The two crystals within the composite, namely the soft and a stiff phase, individually show a highly elastic behavior and a very small loss modulus. On the other hand, a composite with the two phases is seen to exhibit damping that is about 20 times larger than predicted theoretical bounds. The primary reason for the damping is due to large anharmonicity in phonon-phonon coupling, resulting from the composite microstructure. A concomitant effect is the distribution of shear strain, which is observed to be highly inhomogeneous and mostly concentrated in the soft phase. Interestingly, the shear frequency at which the damping is greatest is observed to scale with

  5. The viscoelastic flow behavior of pitches

    Science.gov (United States)

    Fleurot, Olivier

    1998-11-01

    For the first time, a commercial impregnating coal-tar pitch was air-blown (or heat-treated) for various periods of time to produce series of treated pitches. Each pitch was chemically and rheologically characterized. During air-blowing, the formation of large, aromatic, cross- linked molecules increased the elasticity of the pitch and prevented mesophase formation. During heat-treatment, large, planar, aromatic molecules formed and aggregated in mesophase spheres. These two-phase materials exhibited yield stress behavior. Also, their elasticity was similar to that of air-blown pitches. The flow/microstructure relationship in mesophase pitches was investigated. It was found that the steady and transient shear behaviors of mesophase pitches were qualitatively similar to that of LCPs. Also, the size of the structure decreased with increasing shear rate. Upon cessation of flow, the structure slowly coarsened. New techniques were proposed to estimate (1) relaxation time for structure recovery, and (2) the average elastic constant of mesophase pitches. Using Marrucci's model (originally designed for LCPs) it was possible for the first time to predict mesophase pitches' structure shrinkage during pure shear. Finally, the flow-induced structural development that occurs during extrusion of mesophase pitch through capillaries was observed and accurately predicted by coupling computational fluid dynamics (CFD) to Marrucci's model. Using a viscoelastic stress tensor to characterize the pitch flow behavior, the model was able to accurately predict the magnitude of the vortex experimentally observed at the spinnerette capillary counterbore as well as the extend of die swell at the exit of the capillary.

  6. Hamiltonian and Lagrangian theory of viscoelasticity

    Science.gov (United States)

    Hanyga, A.; Seredyńska, M.

    2008-03-01

    The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.

  7. Molecular and structural analysis of viscoelastic properties

    Science.gov (United States)

    Yapp, Rebecca D.; Kalyanam, Sureshkumar; Insana, Michael F.

    2007-03-01

    Elasticity imaging is emerging as an important tool for breast cancer detection and monitoring of treatment. Viscoelastic image contrast in breast lesions is generated by disease specific processes that modify the molecular structure of connective tissues. We showed previously that gelatin hydrogels exhibit mechanical behavior similar to native collagen found in breast tissue and therefore are suitable as phantoms for elasticity imaging. This paper summarizes our study of the viscoelastic properties of hydrogels designed to discover molecular-scale sources of elasticity image contrast.

  8. Thermo-Mechanical Compatibility of Viscoelastic Mortars for Stone Repair

    Directory of Open Access Journals (Sweden)

    Thibault Demoulin

    2016-01-01

    Full Text Available The magnitude of the thermal stresses that originate in an acrylic-based repair material used for the reprofiling of natural sandstone is analyzed. This kind of artificial stone was developed in the late 1970s for its peculiar property of reversibility in an organic solvent. However, it displays a high thermal expansion coefficient, which can be a matter of concern for the durability either of the repair or of the underlying original stone. To evaluate this risk we propose an analytical solution that considers the viscoelasticity of the repair layer. The temperature profile used in the numerical evaluation has been measured in a church where artificial stone has been used in a recent restoration campaign. The viscoelasticity of the artificial stone has been characterized by stress relaxation experiments. The numerical analysis shows that the relaxation time of the repair mortar, originating from a low T g , allows relief of most of the thermal stresses. It explains the good durability of this particular repair material, as observed by the practitioners, and provides a solid scientific basis for considering that the problem of thermal expansion mismatch is not an issue for this type of stone under any possible conditions of natural exposure.

  9. Viscosity bound violation in holographic solids and the viscoelastic response

    CERN Document Server

    Alberte, Lasma; Pujolas, Oriol

    2016-01-01

    We argue that the Kovtun--Son--Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a non-zero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.

  10. Viscosity bound violation in holographic solids and the viscoelastic response

    Science.gov (United States)

    Alberte, Lasma; Baggioli, Matteo; Pujolàs, Oriol

    2016-07-01

    We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a nonzero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.

  11. Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms

    Science.gov (United States)

    Yu, Yue; Perdikaris, Paris; Karniadakis, George Em

    2016-10-01

    We develop efficient numerical methods for fractional order PDEs, and employ them to investigate viscoelastic constitutive laws for arterial wall mechanics. Recent simulations using one-dimensional models [1] have indicated that fractional order models may offer a more powerful alternative for modeling the arterial wall response, exhibiting reduced sensitivity to parametric uncertainties compared with the integer-calculus-based models. Here, we study three-dimensional (3D) fractional PDEs that naturally model the continuous relaxation properties of soft tissue, and for the first time employ them to simulate flow structure interactions for patient-specific brain aneurysms. To deal with the high memory requirements and in order to accelerate the numerical evaluation of hereditary integrals, we employ a fast convolution method [2] that reduces the memory cost to O (log ⁡ (N)) and the computational complexity to O (Nlog ⁡ (N)). Furthermore, we combine the fast convolution with high-order backward differentiation to achieve third-order time integration accuracy. We confirm that in 3D viscoelastic simulations, the integer order models strongly depends on the relaxation parameters, while the fractional order models are less sensitive. As an application to long-time simulations in complex geometries, we also apply the method to modeling fluid-structure interaction of a 3D patient-specific compliant cerebral artery with an aneurysm. Taken together, our findings demonstrate that fractional calculus can be employed effectively in modeling complex behavior of materials in realistic 3D time-dependent problems if properly designed efficient algorithms are employed to overcome the extra memory requirements and computational complexity associated with the non-local character of fractional derivatives.

  12. Viscoelastic characterization of thin-film polymers exposed to low Earth orbit

    Science.gov (United States)

    Letton, Alan; Farrow, Allan; Strganac, Thomas

    1993-01-01

    The materials made available through the Long Duration Exposure Facility (LDEF) satellite provide a set of specimens that can be well characterized and have a known exposure history with reference to atomic oxygen and ultraviolet radiation exposure. Mechanical characteristics measured from control samples and exposed samples provide a data base for predicting the behavior of polymers in low earth orbit. Samples of 1.0 mil thick low density polyethylene were exposed to the low earth orbit environment for a period of six years. These materials were not directly exposed to ram atomic oxygen and offer a unique opportunity for measuring the effect of atomic oxygen and UV radiation on mechanical properties with little concern to the effect of erosion. The viscoelastic characteristics of these materials were measured and compared to the viscoelastic characteristics of control samples. To aid in differentiating the effects of changes in crystallinity resulting from thermal cycling, from the effects of changes in chemical structure resulting from atomic oxygen/UV attack to the polymer, a second set of control specimens, annealed to increase crystallinity, were measured as well. The resulting characterization of these materials will offer insight into the impact of atomic oxygen/UV on the mechanical properties of polymeric materials. The viscoelastic properties measured for the control, annealed, and exposed specimens were the storage and loss modulus as a function of frequency and temperature. From these datum is calculated the viscoelastic master curve derived using the principle of time/temperature superposition. Using the master curve, the relaxation modulus is calculated using the method of Ninomiya and Ferry. The viscoelastic master curve and the stress relaxation modulus provide a direct measure of the changes in the chemical or morphological structure. In addition, the effect of these changes on long-term and short-term mechanical properties is known directly. It

  13. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  14. Experimentally verified model of viscoelastic behavior of multilayer unimorph dielectric elastomer actuators

    Science.gov (United States)

    Kadooka, Kevin; Imamura, Hiroya; Taya, Minoru

    2016-10-01

    This work presents a linear viscoelastic model to describe the time-dependent actuation behavior of multilayer unimorph dielectric elastomer actuators (MUDEA), with experimental validation by actuators produced by a robotic dispenser system. MUDEA are a type of soft actuator which can produce large bending deformation without prestretch typically required by dielectric elastomer actuators. Current analytical and finite element models of MUDEA do not consider material viscoelasticity and cannot predict the change over time of performance metrics such as tip displacement and blocking force. The linear viscoelastic model presented in this work is based on a linear elastic model for the MUDEA extended to account for viscous effects by the elastic-viscoelastic correspondence principle. The model is easily implemented because it is based on explicit expressions which can be evaluated numerically by any computer algebra system. The model was used to predict the tip displacement and blocking force of MUDEAs consisting of two, four, six, eight, and ten layers of dielectric elastomer material. The model predictions agreed well with experimental data obtained from MUDEA produced by a robotic dispenser system, which was capable of producing multilayered structures of thin layers of dielectric elastomer and carbon nanotube based electrode material.

  15. Rayleigh-Lamb wave propagation on a fractional order viscoelastic plate.

    Science.gov (United States)

    Meral, F Can; Royston, Thomas J; Magin, Richard L

    2011-02-01

    A previous study of the authors published in this journal focused on mechanical wave motion in a viscoelastic material representative of biological tissue [Meral et al., J. Acoust. Soc. Am. 126, 3278-3285 (2009)]. Compression, shear and surface wave motion in and on a viscoelastic halfspace excited by surface and sub-surface sources were considered. It was shown that a fractional order Voigt model, where the rate-dependent damping component that is dependent on the first derivative of time is replaced with a component that is dependent on a fractional derivative of time, resulted in closer agreement with experiment as compared with conventional (integer order) models, such as those of Voigt and Zener. In the present study, this analysis is extended to another configuration and wave type: out-of-plane response of a viscoelastic plate to harmonic anti-symmetric Lamb wave excitation. Theoretical solutions are compared with experimental measurements for a polymeric tissue mimicking phantom material. As in the previous configurations the fractional order modeling assumption improves the match between theory and experiment over a wider frequency range. Experimental complexities in the present study and the reliability of the different approaches for quantifying the shear viscoelastic properties of the material are discussed.

  16. Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media

    Science.gov (United States)

    Zhang, K.; Luo, Y.; Xia, J.; Chen, C.

    2011-01-01

    Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P

  17. Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2016-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and

  18. The influence of time dependent flight and maneuver velocities and elastic or viscoelastic flexibilities on aerodynamic and stability derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, Alexander P. [Aerospace Engineering Department, University of Glasgow, University Avenue, Glasgow, Lanarkshire (United Kingdom); Merrett, Craig G. [Mechanical and Aerospace Engineering Department, Carleton Univ., 1125 Col. By Dr., Ottawa, ON (Canada); Hilton, Harry H. [Aerospace Engineering Department in the College of Engineering and Private Sector Program Division at the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States)

    2014-12-10

    The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at

  19. Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient theory

    Science.gov (United States)

    Tang, Yugang; Liu, Ying; Zhao, Dong

    2016-10-01

    In this paper, the viscoelastic wave propagation in an embedded viscoelastic single-walled carbon nanotube (SWCNT) is studied based on the nonlocal strain gradient theory. The characteristic equation for the viscoelastic wave in SWCNTs is derived. The emphasis is placed on the influence of the tube diameter on the viscoelastic wave dispersion. A blocking diameter is observed, above which the wave could not propagate in SWCNTs. The results show that the blocking diameter is greatly dependent on the damping coefficient, the nonlocal and the strain gradient length scale parameters, as well as the Winkler modulus of the surrounding elastic medium. These findings may provide a prospective application of SWCNTs in nanodevices and nanocomposites.

  20. Investigation of multilayer printed circuit board (PCB) film warpage using viscoelastic properties measured by a vibration test

    Science.gov (United States)

    Joo, Sung-Jun; Park, Buhm; Kim, Do-Hyoung; Kwak, Dong-Ok; Song, In-Sang; Park, Junhong; Kim, Hak-Sung

    2015-03-01

    Woven glass fabric/BT (bismaleimide triazine) composite laminate (BT core), copper (Cu), and photoimageable solder resist (PSR) are the most widely used materials for semiconductors in electronic devices. Among these materials, BT core and PSR contain polymeric materials that exhibit viscoelastic behavior. For this reason, these materials are considered to have time- and temperature-dependent moduli during warpage analysis. However, the thin geometry of multilayer printed circuit board (PCB) film makes it difficult to identify viscoelastic characteristics. In this work, a vibration test method was proposed for measuring the viscoelastic properties of a multilayer PCB film at different temperatures. The beam-shaped specimens, composed of a BT core, Cu laminated on a BT core, and PSR and Cu laminated on a BT core, were used in the vibration test. The frequency-dependent variation of the complex bending stiffness was determined using a transfer function method. The storage modulus (E‧) of the BT core, Cu, and PSR as a function of temperature and frequency were obtained, and their temperature-dependent variation was identified. The obtained properties were fitted using a viscoelastic model for the BT core and the PSR, and a linear elastic model for the Cu. Warpage of a line pattern specimen due to temperature variation was measured using a shadow Moiré analysis and compared to predictions using a finite element model. The results provide information on the mechanism of warpage, especially warpage due to temperature-dependent variation in viscoelastic properties.

  1. Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory

    Science.gov (United States)

    Ansari, R.; Faraji Oskouie, M.; Gholami, R.

    2016-01-01

    In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.

  2. Ocean wave transmission and reflection between two connecting viscoelastic ice covers: An approximate solution

    Science.gov (United States)

    Zhao, Xin; Shen, Hayley H.

    2013-11-01

    An approximate solution for wave transmission and reflection between open water and a viscoelastic ice cover was developed earlier, in which both the water and the ice cover were treated as a continuum, each governed by its own equation of motion. The interface conditions included matching velocity and stresses between the two continua. The analysis provided a first step towards modeling the wave-in-ice climate on a geophysical scale, where properties of the ice cover change with time and location. In this study, we derive the wave transmission and reflection from one viscoelastic material to another. Only two modes of the dispersion relation are considered and the horizontal boundary conditions are approximated by matching the mean values. The reflection and transmission coefficients are first determined for simplified cases to compare with earlier theories. All results show reasonable agreement when the same physical parameters are used. Behaviors of the transmission and reflection coefficients are then obtained for a range of viscoelastic covers. A mode switching phenomenon with increasing ice shear modulus is found. This phenomenon was pointed out in the study of wave propagation from open water to a viscoelastic cover. For two connecting viscoelastic covers, such mode switching is found to terminate with increasing viscosity. Together with an earlier investigation of wave dispersion in a viscoelastic ice cover, the present study provides a way to implement theoretical results in a numerical model for wave propagation through a heterogeneous ice cover. In discretizing a continuously changing ice cover over the geophysical scale, on top of the energy advection, energy transmission between computational cells due to the heterogeneity can be estimated using the present method, while the attenuation and wave speed within each cell are from the previously obtained dispersion relation. In addition, on floe scales, this study provides a way to determine wave

  3. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    2010-01-01

    on the strain. The slope of the viscous response showed a strain rate dependence corresponding to a power function of powers 0.242 and 0.168 for the two patellar tendon fibrils, respectively. In conclusion, the present work provides direct evidence of viscoelastic behavior at the single fibril level, which has...

  4. Viscoelasticity of suspensions of long, rigid rods

    NARCIS (Netherlands)

    Dhont, Jan K.G.; Briels, W.J.

    2003-01-01

    A microscopic theory for the viscoelastic behaviour of suspensions of rigid rods with excluded volume interactions is presented, which is valid in the asymptotic limit of very long and thin rods. Stresses arising from translational and rotational Brownian motion and direct interactions are calculate

  5. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, René; Hassenkam, Tue; Hansen, Philip

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon fibr...

  6. DYNAMIC DEFORMATION THE VISCOELASTIC TWOCOMPONENT MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2015-01-01

    Full Text Available Summary. In the article are scope harmonious warping of the two-component medium, one component which are represent viscoelastic medium, hereditary properties which are described by the kernel aftereffect Abel integral-differential ratio BoltzmannVolterr, while second – compressible liquid. Do a study one-dimensional case. Use motion equation of two-component medium at movement. Look determination system these equalization in the form of damped wave. Introduce dimensionless coefficient. Combined equations happen to homogeneous system with complex factor relatively waves amplitude in viscoelastic component and in fluid. As a result opening system determinant receive biquadratic equation. Elastic operator express through kernel aftereffect Abel for space Fourier. With the help transformation and symbol series biquadratic equation reduce to quadratic equation. Come to the conclusion that in two-component viscoelastic medium exist two mode sonic waves. As a result solution of quadratic equation be found description advance of waves sonic in viscoelastic two-component medium, which physical-mechanical properties represent complex parameter. Velocity determination advance of sonic waves, attenuation coefficient, mechanical loss tangent, depending on characteristic porous medium and circular frequency formulas receive. Graph dependences of description advance of waves sonic from the temperature logarithm and with the fractional parameter γ are constructed.

  7. Viscoelastic properties of laryngeal posturing muscles

    Science.gov (United States)

    Alipour, Fariborz; Hunter, Eric; Titze, Ingo

    2003-10-01

    Viscoelastic properties of canine laryngeal muscles were measured in a series of in vitro experiments. Laryngeal posturing that controls vocal fold length and adduction/abduction is an essential component of the voice production. The dynamics of posturing depends on the viscoelastic and physiological properties of the laryngeal muscles. The time-dependent and nonlinear behaviors of these tissues are also crucial in the voice production and pitch control theories. The lack of information on some of these muscles such as posterior cricoarytenoid muscle (PCA), lateral cricoarytenoid muscle (LCA), and intraarytenoid muscle (IA) was the major incentive for this study. Samples of PCA and LCA muscles were made from canine larynges and mounted on a dual-servo system (Ergometer) as described in our previous works. Two sets of experiments were conducted on each muscle, a 1-Hz stretch and release experiment that provides stress-strain data and a stress relaxation test. Data from these muscles were fitted to viscoelastic models and Young's modulus and viscoelastic constants are obtained for each muscle. Preliminary data indicates that elastics properties of these muscles are similar to those of thyroarytenoid and cricothyroid muscles. The relaxation response of these muscles also shows some similarity to other laryngeal muscles in terms of time constants.

  8. Viscoelastic properties of the false vocal fold

    Science.gov (United States)

    Chan, Roger W.

    2004-05-01

    The biomechanical properties of vocal fold tissues have been the focus of many previous studies, as vocal fold viscoelasticity critically dictates the acoustics and biomechanics of phonation. However, not much is known about the viscoelastic response of the ventricular fold or false vocal fold. It has been shown both clinically and in computer simulations that the false vocal fold may contribute significantly to the aerodynamics and sound generation processes of human voice production, with or without flow-induced oscillation of the false fold. To better understand the potential role of the false fold in phonation, this paper reports some preliminary measurements on the linear and nonlinear viscoelastic behavior of false vocal fold tissues. Linear viscoelastic shear properties of human false fold tissue samples were measured by a high-frequency controlled-strain rheometer as a function of frequency, and passive uniaxial tensile stress-strain response of the tissue samples was measured by a muscle lever system as a function of strain and loading rate. Elastic moduli (Young's modulus and shear modulus) of the false fold tissues were calculated from the measured data. [Work supported by NIH.

  9. Viscoelastic Pavement Modeling with a Spreadsheet

    DEFF Research Database (Denmark)

    Levenberg, Eyal

    2016-01-01

    The aim herein was to equip civil engineers and students with an advanced pavement modeling tool that is both easy to use and highly adaptive. To achieve this, a mathematical solution for a layered viscoelastic half-space subjected to a moving load was developed and subsequently implemented...

  10. Dynamics of a reinforced viscoelastic plate

    Directory of Open Access Journals (Sweden)

    Igor V. Andrianov

    2006-01-01

    Full Text Available Oscillations and static bending deformation of a viscoelastic reinforced plate are considered. Analytical solutions are derived. An asymptotic technique, based on the homogenization method, is used for this purpose. In addition, a special perturbation approach is employed. An example is given for the purpose of illustration. The approximate analytical expressions are shown to adequately meet the requirements of optimal structural design.

  11. The role of viscoelasticity in subducting plates

    Science.gov (United States)

    Farrington, R. J.; Moresi, L.-N.; Capitanio, F. A.

    2014-11-01

    of tectonic plates into Earth's mantle occurs when one plate bends beneath another at convergent plate boundaries. The characteristic time of deformation at these convergent boundaries approximates the Maxwell relaxation time for olivine at lithospheric temperatures and pressures, it is therefore by definition a viscoelastic process. While this is widely acknowledged, the large-scale features of subduction can, and have been, successfully reproduced assuming the plate deforms by a viscous mechanism alone. However, the energy rates and stress profile within convergent margins are influenced by viscoelastic deformation. In this study, viscoelastic stresses have been systematically introduced into numerical models of free subduction, using both the viscosity and shear modulus to control the Maxwell relaxation time. The introduction of an elastic deformation mechanism into subduction models produces deviations in both the stress profile and energy rates within the subduction hinge when compared to viscous only models. These variations result in an apparent viscosity that is variable throughout the length of the plate, decreasing upon approach and increasing upon leaving the hinge. At realistic Earth parameters, we show that viscoelastic stresses have a minor effect on morphology yet are less dissipative at depth and result in an energy transfer between the energy stored during bending and the energy released during unbending. We conclude that elasticity is important during both bending and unbending within the slab hinge with the resulting stress loading and energy profile indicating that slabs maintain larger deformation rates at smaller stresses during bending and retain their strength during unbending at depth.

  12. Viscoelastic coagulation testing: technology, applications, and limitations.

    Science.gov (United States)

    McMichael, Maureen A; Smith, Stephanie A

    2011-06-01

    Use of viscoelastic point-of-care (POC) coagulation instrumentation is relatively new to veterinary medicine. In human medicine, this technology has recently undergone resurgence owing to its capacity to detect hypercoagulability. The lack of sensitive tests for detecting hypercoagulable states, along with our current understanding of in vivo coagulation, highlights the deficiencies of standard coagulation tests, such as prothrombin and partial thromboplastin times, which are performed on platelet-poor plasma. Viscoelastic coagulation analyzers can provide an assessment of global coagulation, from the beginning of clot formation to fibrinolysis, utilizing whole blood. In people, use of this technology has been reported to improve management of hemostasis during surgery and decrease usage of blood products and is being used as a rapid screen for hypercoagulability. In veterinary medicine, clinical use of viscoelastic technology has been reported in dogs, cats, foals, and adult horses. This article will provide an overview of the technology, reagents and assays, applications in human and veterinary medicine, and limitations of the 3 viscoelastic POC analyzers in clinical use.

  13. Construction of constant-Q viscoelastic model with three parameters

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-yu; YIN Xing-yao

    2007-01-01

    The popularly used viscoelastic models have some shortcomings in describing relationship between quality factor (Q) and frequency, which is not consistent with the observation data. Based on the theory of viscoelasticity, a new approach to construct constant-Q viscoelastic model in given frequency band with three parameters is developed. The designed model describes the frequency-independence feature of quality factor very well, and the effect of viscoelasticity on seismic wave field can be studied relatively accurate in theory with this model. Furthermore, the number of required parameters in this model has been reduced fewer than that of other constant-Q models, this can simplify the solution of the viscoelastic problems to some extent. At last, the accuracy and application range have been analyzed through numerical tests. The effect of viscoelasticity on wave propagation has been briefly illustrated through the change of frequency spectra and waveform in several different viscoelastic models.

  14. Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory

    Science.gov (United States)

    Ansari, R.; Faraji Oskouie, M.; Sadeghi, F.; Bazdid-Vahdati, M.

    2015-11-01

    In this article, the free vibration of a fractional viscoelastic Timoshenko nanobeam is studied through inserting fractional calculus as a viscoelastic material compatibility equations in nonlocal beam theory. The material properties of a single-walled carbon nanotube (SWCNT) are used and two solution procedures are proposed to solve the obtained equations in the time domain. The former is a semi-analytical approach in which the Galerkin scheme is employed to discretize the governing equations in the spatial domain and the obtained set of ordinary differential equations is solved using a direct numerical integration scheme. On the contrary, the latter is entirely numerical in which the governing equations of system on the spatial and time domains are first discretized using general differential quadrature (GDQ) technique and finite difference (FD) scheme, respectively and then the set of algebraic equations is solved to arrive at the time response of system under different boundary conditions. Considering the second solution procedure as the main approach, its validity and accuracy are verified by the semi-analytical approach which is more difficult to enter various boundary conditions. Numerical results are also presented to get an insight into the effects of fractional derivative order, nonlocal parameter, viscoelasticity coefficient and nanobeam length on the time response of fractional viscoelastic Timoshenko nanobeams under different boundary conditions.

  15. Unified viscoelasticity: Applying discrete element models to soft tissues with two characteristic times.

    Science.gov (United States)

    Anssari-Benam, Afshin; Bucchi, Andrea; Bader, Dan L

    2015-09-18

    Discrete element models have often been the primary tool in investigating and characterising the viscoelastic behaviour of soft tissues. However, studies have employed varied configurations of these models, based on the choice of the number of elements and the utilised formation, for different subject tissues. This approach has yielded a diverse array of viscoelastic models in the literature, each seemingly resulting in different descriptions of viscoelastic constitutive behaviour and/or stress-relaxation and creep functions. Moreover, most studies do not apply a single discrete element model to characterise both stress-relaxation and creep behaviours of tissues. The underlying assumption for this disparity is the implicit perception that the viscoelasticity of soft tissues cannot be described by a universal behaviour or law, resulting in the lack of a unified approach in the literature based on discrete element representations. This paper derives the constitutive equation for different viscoelastic models applicable to soft tissues with two characteristic times. It demonstrates that all possible configurations exhibit a unified and universal behaviour, captured by a single constitutive relationship between stress, strain and time as: σ+Aσ̇+Bσ¨=Pε̇+Qε¨. The ensuing stress-relaxation G(t) and creep J(t) functions are also unified and universal, derived as [Formula: see text] and J(t)=c2+(ε0-c2)e(-PQt)+σ0Pt, respectively. Application of these relationships to experimental data is illustrated for various tissues including the aortic valve, ligament and cerebral artery. The unified model presented in this paper may be applied to all tissues with two characteristic times, obviating the need for employing varied configurations of discrete element models in preliminary investigation of the viscoelastic behaviour of soft tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Impact of leg lengthening on viscoelastic properties of the deep fascia

    Science.gov (United States)

    Wang, Hai-Qiang; Wei, Yi-Yong; Wu, Zi-Xiang; Luo, Zhuo-Jing

    2009-01-01

    Background Despite the morphological alterations of the deep fascia subjected to leg lengthening have been investigated in cellular and extracellular aspects, the impact of leg lengthening on viscoelastic properties of the deep fascia remains largely unknown. This study aimed to address the changes of viscoelastic properties of the deep fascia during leg lengthening using uniaxial tensile test. Methods Animal model of leg lengthening was established in New Zealand white rabbits. Distraction was initiated at a rate of 1 mm/day and 2 mm/day in two steps, and preceded until increases of 10% and 20% in the initial length of tibia had been achieved. The deep fascia specimens of 30 mm × 10 mm were clamped with the Instron 1122 tensile tester at room temperature with a constant tensile rate of 5 mm/min. After 5 load-download tensile tests had been performed, the specimens were elongated until rupture. The load-displacement curves were automatically generated. Results The normal deep fascia showed typical viscoelastic rule of collagenous tissues. Each experimental group of the deep fascia after leg lengthening kept the properties. The curves of the deep fascia at a rate of 1 mm/day with 20% increase in tibia length were the closest to those of normal deep fascia. The ultimate tension strength and the strain at rupture on average of normal deep fascia were 2.69 N (8.97 mN/mm2) and 14.11%, respectively. The increases in ultimate tension strength and strain at rupture of the deep fascia after leg lengthening were statistically significant. Conclusion The deep fascia subjected to leg lengthening exhibits viscoelastic properties as collagenous tissues without lengthening other than increased strain and strength. Notwithstanding different lengthening schemes result in varied viscoelastic properties changes, the most comparable viscoelastic properties to be demonstrated are under the scheme of a distraction rate of 1 mm/day and 20% increase in tibia length. PMID:19698092

  17. Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil

    DEFF Research Database (Denmark)

    Bayat, Mehdi; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2016-01-01

    -resonance are presented .in series of Bessel's function. Important responses, such as dynamic stiffness and phase angle, are compared for different values of the loss factor as the material damping, Y0W1g's modulus and Poisson's ratio in a viscoelastic soil. Results are verified. with known results reported......, whilst the phase angle is independent of the properties of the soil. It is shown that the non-dimensional dynamic stiffness changes linearly with high-frequency load. The conclusion from the results of this study is that the material properties of soil are significant parameters in the dynamic stiffness...... when the dynamic vertical excitation is applied. The smooth surface along the entire interface is considered. The Betti reciprocal theorem along with Somigliana's identity and Green's function are employed to drive the dynamic stiffness of jacket structures. Modes of the resonance and anti...

  18. Large-scale ordering of nanoparticles using viscoelastic shear processing

    Science.gov (United States)

    Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.

    2016-06-01

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.

  19. Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Phillips, Jeffrey [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Tanzosh, James [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2016-10-01

    The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C). These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of

  20. Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior

    Science.gov (United States)

    Shah, Rushita; Vyroubal, Radek; Fei, Haojei; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-04-01

    Bacterial cellulose (BC) based hydrogels have been prepared in blended with carboxymethylcellulose and polyvinyl pyrrolidone by using heat treatment. The properties of BC-CMC and BC-PVP hydrogels were compared with pure BC, CMC and PVP hydrogels. These hydrogels were investigated by measuring their structural, morphological and viscoelastic properties. Through the morphological images, alignment of the porous flake like structures could be seen clearly within the inter-polymeric network of the hydrogels. Also, the detail structure analysis of the polymers blended during the hydrogel formation confirms their interactions with each other were studied. Further, the viscoelastic behavior of all the hydrogels in terms of elastic and viscous property was studied. It is observed that at 1% strain, including CMC and PVP hydrogels, all the BC based hydrogels exhibited the linear trend throughout. Also the elastic nature of the material remains high compared to viscous nature. Moreover, the changes could be noticed in case of blended polymer based hydrogels. The values of complex viscosity (η*) decreases with increase in angular frequency within the range of ω = 0.1-100 rad.s-1.

  1. Fractional characteristic times and dissipated energy in fractional linear viscoelasticity

    Science.gov (United States)

    Colinas-Armijo, Natalia; Di Paola, Mario; Pinnola, Francesco P.

    2016-08-01

    In fractional viscoelasticity the stress-strain relation is a differential equation with non-integer operators (derivative or integral). Such constitutive law is able to describe the mechanical behavior of several materials, but when fractional operators appear, the elastic and the viscous contribution are inseparable and the characteristic times (relaxation and retardation time) cannot be defined. This paper aims to provide an approach to separate the elastic and the viscous phase in the fractional stress-strain relation with the aid of an equivalent classical model (Kelvin-Voigt or Maxwell). For such equivalent model the parameters are selected by an optimization procedure. Once the parameters of the equivalent model are defined, characteristic times of fractional viscoelasticity are readily defined as ratio between viscosity and stiffness. In the numerical applications, three kinds of different excitations are considered, that is, harmonic, periodic, and pseudo-stochastic. It is shown that, for any periodic excitation, the equivalent models have some important features: (i) the dissipated energy per cycle at steady-state coincides with the Staverman-Schwarzl formulation of the fractional model, (ii) the elastic and the viscous coefficients of the equivalent model are strictly related to the storage and the loss modulus, respectively.

  2. Probing Viscoelasticity of Cholesteric Liquid Crystals in a Twisting Cell

    Science.gov (United States)

    Angelo, Joseph; Moheghi, Alireza; Diorio, Nick; Jakli, Antal

    2013-03-01

    Viscoelastic properties of liquid crystals are typically studied either using Poiseuille flow, which can be produced by a pressure gradient in a capillary tube,[2] or Couette flow, which can be generated by a shear between concentric cylinders.[3] We use a different method in which we twist the liquid crystal sandwiched between two cylindrical glass plates, one of which can rotate about its center, the other of which is fixed. When the cell is twisted, there is a force proportional to the twist angle and the twist elastic constant, and inversely proportional to the pitch and sample thickness, normal to the substrates due to the change in pitch in the cholesteric liquid crystal (CLC). Measuring this force on various CLCs with known pitch we could obtain the twist elastic constants. In addition to the equilibrium force, we observed a transient force during the rotation, which is related to the flow of the material, thus allowing us to determine the Leslie viscosity component α1, which typically cannot be assessed by other methods. We expect this apparatus to be a useful tool to study the visco-elastic properties of liquid crystals. The authors acknowledge support from NSF grant DMR-0907055.

  3. Linear Viscoelasticity and Swelling of Polyelectrolyte Complex Coacervates

    Science.gov (United States)

    Hamad, Fawzi; Colby, Ralph

    2012-02-01

    The addition of near equimolar amounts of poly(diallyldimethylammonium chloride) to poly(isobutylene-alt-maleate sodium), results in formation of a polyelectrolyte complex coacervate. Zeta-potential titrations conclude that these PE-complexes are nearly charge-neutral. Swelling and rheological properties are studied at different salt concentrations in the surrounding solution. The enhanced swelling observed at high salt concentration suggests the system behaves like a polyampholyte gel, and weaker swelling at very low salt concentrations implies polyelectrolyte gel behavior. Linear viscoelastic oscillatory shear measurements indicate that the coacervates are viscoelastic liquids and that increasing ionic strength of the medium weakens the electrostatic interactions between charged units, lowering the relaxation time and viscosity. We use the time-salt superposition idea recently proposed by Spruijt, et al., allowing us to construct master curves for these soft materials. Similar swelling properties observed when varying molecular weights. Rheological measurements reveal that PE-complexes with increasing molecular weight polyelectrolytes form a network with higher crosslink density, suggesting time-molecular weight superposition idea.

  4. Nonlinear waves in a fluid-filled thin viscoelastic tube

    Science.gov (United States)

    Zhang, Shan-Yuan; Zhang, Tao

    2010-11-01

    In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incompressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin—Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid—liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the exponent α of the perturbation parameter in Gardner—Morikawa transformation according to the order of viscous coefficient η, three kinds of evolution equations with soliton solution, i.e. Korteweg—de Vries (KdV)—Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.

  5. Nonlinear waves in a fluid-filled thin viscoelastic tube

    Institute of Scientific and Technical Information of China (English)

    Zhang Shan-Yuan; Zhang Tao

    2010-01-01

    In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incom-pressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin-Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the prop-agation of nonlinear pressure wave in the solid-liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the expo-η, three kinds of evolution equations with soliton solution, i.e. Korteweg-de Vries (KdV)-Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.

  6. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction

    Energy Technology Data Exchange (ETDEWEB)

    Ostowari, Ken; Nosson, Ali

    2000-09-30

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

  7. Stability of viscoelastic dynamic contact lines: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Spaid, M.A.; Homsy, G.M. [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States)

    1997-04-01

    An experimental study of the rivulet instability associated with spin coating a circular drop of fluid is conducted to examine the effect of elasticity on the onset and evolution of the instability. The spin coating experiments are conducted with viscoelastic drops consisting of a high molecular weight polystyrene in tricresyl phosphate (TCP), as well as the Newtonian solvent TCP. Results show an unequivocal delay in the onset of the instability when the appropriate Weissenberg number is sufficiently large, resulting in a larger coated area and more finger arms relative to Newtonian results. Experiments performed with the viscoelastic fluid at low Weissenberg number exhibit similar behavior to those performed with the Newtonian solvent as expected. Additionally, the growth rate of the instability is reduced for experiments in which the elastic forces are important, in agreement with the perturbation theory of Spaid and Homsy [Phys. Fluids {bold 8}, 460 (1996)], demonstrating that elastic forces have a stabilizing influence on the contact line instability. {copyright} {ital 1997 American Institute of Physics.}

  8. Viscoelastic Characterization of Gels at Metal-Protein Interfaces

    Science.gov (United States)

    Martin, Elizabeth; Shull, Kenneth

    2015-03-01

    The interfacial gelation of proteins at metallic surfaces was investigated with an electrochemical quartz crystal microbalance (QCM). When Cr electrodes were corroded in proteinaceous solutions, it was found that gels will form at the Cr surfaces if molybdate ions are also present in the solution. A similar film will form on Cr when the proteins are replaced with a poly(allylamine) polyelectrolyte, suggesting that the gelation is due to a cross-linking reaction between the protein amine groups and the molybdate ions. Further, a method was developed to characterize the viscoelastic properties of thin polymeric films in liquid media using the QCM as a high frequency rheometer. By measuring the frequency and dissipation at multiple harmonics of the resonant frequency, the viscoelastic phase angle, density --modulus product, and mass per unit area of a film can be determined. The method was applied to characterize the protein films, demonstrating that they have a phase angle near 80° and a density --modulus product of ~107 Pa-g/cm3. Data imply that the gels are comprised of a weak proteinaceous network and exhibit similar mechanical properties as solutions containing 50 wt% protein. This project was funded by NSF Grant CMMI-1200529.

  9. Viscoelasticity imaging using ultrasound: parameters and error analysis.

    Science.gov (United States)

    Sridhar, M; Liu, J; Insana, M F

    2007-05-07

    Techniques are being developed to image viscoelastic features of soft tissues from time-varying strain. A compress-hold-release stress stimulus commonly used in creep-recovery measurements is applied to samples to form images of elastic strain and strain retardance times. While the intended application is diagnostic breast imaging, results in gelatin hydrogels are presented to demonstrate the techniques. The spatiotemporal behaviour of gelatin is described by linear viscoelastic theory formulated for polymeric solids. Measured creep responses of polymers are frequently modelled as sums of exponentials whose time constants describe the delay or retardation of the full strain response. We found the spectrum of retardation times tau to be continuous and bimodal, where the amplitude at each tau represents the relative number of molecular bonds with a given strength and conformation. Such spectra indicate that the molecular weight of the polymer fibres between bonding points is large. Imaging parameters are found by summarizing these complex spectral distributions at each location in the medium with a second-order Voigt rheological model. This simplification reduces the dimensionality of the data for selecting imaging parameters while preserving essential information on how the creeping deformation describes fluid flow and collagen matrix restructuring in the medium. The focus of this paper is on imaging parameter estimation from ultrasonic echo data, and how jitter from hand-held force applicators used for clinical applications propagate through the imaging chain to generate image noise.

  10. Performance-based placement of manufactured viscoelastic dampers for design response spectrum

    Directory of Open Access Journals (Sweden)

    Yutaka eNakamura

    2016-05-01

    Full Text Available In this study, a viscoelastic damper (VED is developed by using a VE material with low temperature dependence, and a performance-based placement-design procedure of VEDs is developed for finding the storywise distribution of VEDs in a building such that each peak interstory drift coincides with the prescribed value. The mechanical properties of the employed VED’s dependence on amplitude and frequency of the excitation as well as material temperature are taken into account and a mechanical nonlinear four-element model that comprises two dashpot elements and two spring elements is proposed for the VED. The developed performance-based design procedure utilizes equivalent linearization of the VED and the expanded complete quadratic combination (CQC method, which involves modal analysis with complex eigenvalue analysis. An equivalent linear Voigt model of the VED is determined by the prescribed peak interstory drift and the fundamental natural period of the structure for which the VEDs are installed. Seismic response analyses are carried out for high-rise building models installed with the necessary number of wall-type VEDs, with the results demonstrating the effectiveness and validity of the proposed performance-based placement-design procedure.

  11. Nonlinear combination parametric resonance of axially accelerating viscoelastic strings constituted by the standard linear solid model

    Institute of Scientific and Technical Information of China (English)

    LIM; C.W.

    2010-01-01

    Nonlinear combination parametric resonance is investigated for an axially accelerating viscoelastic string.The governing equation of in-planar motion of the string is established by introducing a coordinate transform in the Eulerian equation of a string with moving boundaries.The string under investigation is constituted by the standard linear solid model in which the material,not partial,time derivative was used.The governing equation leads to the Mote model for transverse vibration by omitting the longitudinal component and higher order terms.The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string.The two models are respectively analyzed via the method of multiple scales for principal parametric resonance.The amplitudes and the existence conditions of steady-state response and its stability can be numerically determined.Numerical calculations demonstrate the effects of the string material parameters,the initial tension,and the axial speed fluctuation amplitude.The outcomes of the two models are qualitatively and quantitatively compared.

  12. Stability Loss and Buckling Delamination Three-Dimensional Linearized Approach for Elastic and Viscoelastic Composites

    CERN Document Server

    Akbarov, Surkay

    2013-01-01

    This book investigates stability loss and buckling delamination problems of the viscoelastic composite materials and structural members made from these materials within the framework of the Three-Dimensional Linearized Theory of Stability (TDLTS). The investigation of stability loss problems is based on the study of an evolution of the initial infinitesimal imperfection in the structure of the material or of the structural members with time (for viscoelastic composites) or with external compressing forces (for elastic composites). This study is made within the scope of the Three-Dimensional Geometrically Non-Linear Theory of the Deformable Solid Body Mechanics. The solution to the corresponding boundary-value problems is presented in the series form in a small parameter which characterizes the degree of the initial imperfection. The boundary form perturbation technique is employed and nonlinear problems for the domains bounded by noncanonical surfaces are reduced to the same nonlinear problem for the correspo...

  13. Application and Demonstration of a Series of Rare Earth Drought Resistant Materials in Western Area of China

    Institute of Scientific and Technical Information of China (English)

    Wang Guoqiang; Wang Jiachen

    2004-01-01

    The application and effects for a series of rare earth (RE) drought resistant materials used in arid, salina,hungriness, wind defending and sand fixing matter, withdraw farming and return to grass and forest in western of China were reported.The important discussion was technological innovation within two years: such as seed clothing agent,RE liquid field film, RE grass and woods transplant living agent, and RE complex pesticide development and application.

  14. Rashba semiconductor as spin Hall material: Experimental demonstration of spin pumping in wurtzite $n$-GaN:Si

    OpenAIRE

    2016-01-01

    Pure spin currents in semiconductors are essential for implementation in the next generation of spintronic elements. Heterostructures of III- nitride semiconductors are currently employed as central building-blocks for lighting and high-power devices. Moreover, the long relaxation times and the spin-orbit coupling (SOC) in these materials indicate them as privileged hosts for spin currents and related phenomena. Spin pumping is an efficient mechanism for the inception of spin current and its ...

  15. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms.

    Science.gov (United States)

    Hohne, Danial N; Younger, John G; Solomon, Michael J

    2009-07-01

    We introduce a flexible microfluidic device to characterize the mechanical properties of soft viscoelastic solids such as bacterial biofilms. In the device, stress is imposed on a test specimen by the application of a fixed pressure to a thin, flexible poly(dimethyl siloxane) (PDMS) membrane that is in contact with the specimen. The stress is applied by pressurizing a microfabricated air channel located above the test area. The strain resulting from the applied stress is quantified by measuring the membrane deflection with a confocal laser scanning microscope. The deflection is governed by the viscoelastic properties of the PDMS membrane and of the test specimen. The relative contributions of the membrane and test material to the measured deformation are quantified by comparing a finite element analysis with an independent (control) measurement of the PDMS membrane mechanical properties. The flexible microfluidic rheometer was used to characterize both the steady-state elastic modulus and the transient strain recoil of two soft materials: gellan gums and bacterial biofilms. The measured linear elastic moduli and viscoelastic relaxation times of gellan gum solutions were in good agreement with the results of conventional mechanical rheometry. The linear Young's moduli of biofilms of Staphylococcus epidermidis and Klebsiella pneumoniae, which could not be measured using conventional methods, were found to be 3.2 and 1.1 kPa, respectively, and the relaxation time of the S. epidermidis biofilm was 13.8 s. Additionally, strain hardening was observed in all the biofilms studied. Finally, design parameters and detection limits of the method show that the device is capable of characterizing soft viscoelastic solids with elastic moduli in the range of 102-105 Pa. The flexible microfluidic rheometer addresses the need for mechanical property characterization of soft viscoelastic solids common in fields such as biomaterials, food, and consumer products. It requires only 200 p

  16. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells.

    Science.gov (United States)

    Cameron, Andrew R; Frith, Jessica E; Gomez, Guillermo A; Yap, Alpha S; Cooper-White, Justin J

    2014-02-01

    Cell behaviours within tissues are influenced by a broad array of physical and biochemical microenvironmental factors. Whilst 'stiffness' is a recognised physical property of substrates and tissue microenvironments that influences many cellular behaviours, tissues and their extracellular matrices are not purely rigid but 'viscoelastic' materials, composed of both rigid-like (elastic) and dissipative (viscous) elements. This viscoelasticity results in materials displaying increased deformation with time under the imposition of a defined force or stress, a phenomenon referred to as time-dependent deformation or 'creep'. Previously, we compared the behaviour of human mesenchymal stem cells (hMSCs) on hydrogels tailored to have a constant stiffness, but to display varying levels of creep in response to an applied force. Using polyacrylamide as a model material, we showed that on high-creep hydrogels (HCHs), hMSCs displayed increased proliferation, spread area and differentiation towards multiple lineages, compared to their purely stiff analogue, with a particular propensity for differentiation towards a smooth muscle cell (SMC) lineage. In this present study, we investigate the mechanisms behind this phenomenon and show that hMSCs adhered to HCHs have increased expression of SMC induction factors, including soluble factors, ECM proteins and the cell-cell adhesion molecule, N-Cadherin. Further, we identify a key role for Rac1 signalling in mediating this increased N-Cadherin expression. Using a real-time Rac1-FRET biosensor, we confirm increased Rac1 activation on HCHs, an observation that is further supported functionally by observed increases in motility and lamellipodial protrusion rates of hMSCs. Increased Rac1 activity in hMSCs on HCHs provides underlying mechanisms for enhanced commitment towards a SMC lineage and the compensatory increase in spread area (isotonic tension) after a creep-induced loss of cytoskeletal tension on viscoelastic substrates, in contrast

  17. Effects of viscoelasticity on drop impact and spreading on a solid surface

    Science.gov (United States)

    Izbassarov, Daulet; Muradoglu, Metin

    2016-06-01

    The effects of viscoelasticity on drop impact and spreading on a flat solid surface are studied computationally using a finite-difference-front-tracking method. The finitely extensible nonlinear elastic-Chilcott-Rallison model is used to account for the fluid viscoelasticity. It is found that viscoelasticity favors advancement of contact line during the spreading phase, leading to a slight increase in the maximum spreading, in agreement with experimental observations [Huh, Jung, Seo, and Lee, Microfluid. Nanofluid. 18, 1221 (2015), 10.1007/s10404-014-1518-4]. However, in contrast with the well-known antirebound effects of polymeric additives, the viscoelasticity is found to enhance the tendency of the drop rebound in the receding phase. These results suggest that the antirebound effects are mainly due to the polymer-induced modification of wetting properties of the substrate rather than the change in the material properties of the drop fluid. A model is proposed to test this hypothesis. It is found that the model results in good qualitative agreement with the experimental observations and the antirebound behavior can be captured by the modification of surface wetting properties in the receding phase.

  18. Stochastic seismic response of structures with added viscoelastic dampers modeled by fractional derivative

    Institute of Scientific and Technical Information of China (English)

    叶昆; 李黎; 唐家祥

    2003-01-01

    Viscoelastic dampers, as supplementary energy dissipation devices, have been used in building structures under seismic excitation or wind loads. Different analytical models have been proposed to describe their dynamic force deformation characteristics. Among these analytical models, the fractional derivative models have attracted more attention as they can capture the frequency dependence of the material stiffness and damping properties observed from tests very well. In this paper, a Fourier-transform-based technique is presented to obtain the fractional unit impulse function and the response of structures with added viscoelastic dampers whose force-deformation relationship is described by a fractional derivative model. Then, a Duhamel integral-type expression is suggested for the response analysis of a fractional damped dynamic system subjected to deterministic or random excitation. Through numerical verification, it is shown that viscoelastic dampers are effective in reducing structural responses over a wide frequency range, and the proposed schemes can be used to accurately predict the stochastic seismic response of structures with added viscoelastic dampers described by a Kelvin model with fractional derivative.

  19. Viscoelastic shear properties of human vocal fold mucosa: theoretical characterization based on constitutive modeling.

    Science.gov (United States)

    Chan, R W; Titze, I R

    2000-01-01

    The viscoelastic shear properties of human vocal fold mucosa (cover) were previously measured as a function of frequency [Chan and Titze, J. Acoust. Soc. Am. 106, 2008-2021 (1999)], but data were obtained only in a frequency range of 0.01-15 Hz, an order of magnitude below typical frequencies of vocal fold oscillation (on the order of 100 Hz). This study represents an attempt to extrapolate the data to higher frequencies based on two viscoelastic theories, (1) a quasilinear viscoelastic theory widely used for the constitutive modeling of the viscoelastic properties of biological tissues [Fung, Biomechanics (Springer-Verlag, New York, 1993), pp. 277-292], and (2) a molecular (statistical network) theory commonly used for the rheological modeling of polymeric materials [Zhu et al., J. Biomech. 24, 1007-1018 (1991)]. Analytical expressions of elastic and viscous shear moduli, dynamic viscosity, and damping ratio based on the two theories with specific model parameters were applied to curve-fit the empirical data. Results showed that the theoretical predictions matched the empirical data reasonably well, allowing for parametric descriptions of the data and their extrapolations to frequencies of phonation.

  20. Directed self-assembly of spheres into a two-dimensional colloidal crystal by viscoelastic stresses.

    Science.gov (United States)

    Pasquino, Rossana; Snijkers, Frank; Grizzuti, Nino; Vermant, Jan

    2010-03-02

    Ordering induced by shear flow can be used to direct the assembly of particles in suspensions. Flow-induced ordering is determined by the balance between a range of forces, such as direct interparticle, Brownian, and hydrodynamic forces. The latter are modified when dealing with viscoelastic rather than Newtonian matrices. In particular, 1D stringlike structures of spherical particles have been observed to form along the flow direction in shear thinning viscoelastic fluids, a phenomenon not observed in Newtonian fluids at similar particle volume fractions. Here we report on the formation of freestanding crystalline patches in planes parallel to the shearing surfaces. The novel microstructure is formed when particles are suspended in viscoelastic, wormlike micellar solutions and only when the applied shear rate exceeds a critical value. In spite of the very low volume fraction (less than 0.01), particles arrange themselves in 2D crystalline patches along the flow direction. This is a bulk phenomenon because 2D crystals form throughout the whole gap between plates, with the gap thickness being much larger than the particle size. Shear flow may hence be an easy method to drive particles into crystalline order in suspensions with viscoelastic properties. The crystalline structure reported here could be used to design new materials with special mechanical, optical, thermal, or electric properties.

  1. Phased array focusing with guided waves in a viscoelastic coated hollow cylinder.

    Science.gov (United States)

    Luo, Wei; Rose, Joseph L

    2007-04-01

    Guided wave phased array focusing has shown many advantages in long-range pipeline inspection, such as, longer inspection distance, greater wave penetration power and higher detection resolution. Viscoelastic coatings applied to a large percentage of pipes for protection purposes created some challenges in terms of focusing feasibility and inspection ability. Previous studies were all based on bare pipe models. In this work, guided wave phased array focusing in viscoelastic coated pipes is studied for the first time. Work was carried out with both numerical and experimental methods. A three-dimensional finite element model was developed for quantitatively and systematically modeling guided waves in pipes with different viscoelastic materials. A method of transforming measured coating properties to finite element method inputs was created in order to create a physically based model of guided waves in coated pipes. Guided wave focusing possibilities in viscoelastic coated pipes and the effects from coatings were comprehensively studied afterwards. A comparison of focusing and nonfocusing inspections was also studied quantitatively in coated pipe showing that focusing increased the wave energy and consequently the inspection ability tremendously. This study provides an important base line and guidance for guided wave propagation and focusing in a real field pipeline under various coating and environmental conditions.

  2. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators

    Science.gov (United States)

    Galucio, A. C.; Deü, J.-F.; Ohayon, R.

    This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.

  3. STABILITY ANALYSIS OF MAXWELL VISCOELASTIC PIPES CONVEYING FLUID WITH BOTH ENDS SIMPLY SUPPORTED

    Institute of Scientific and Technical Information of China (English)

    赵凤群; 王忠民; 冯振宇; 刘宏昭

    2001-01-01

    On the basis of some studies of elastic pipe conveying fluid, the dynamic behavior and stability of Maxwell viscoelastic pipes conveying fluid with both ends simply supported, which are gyroscopic conservative system, were investigated by using the finite difference method and the corresponding recurrence formula. The effect of relaxation time of viscoelastic materials on the variation curve between dimensionless flow velocity and the real part and imaginary part of dimensionless complex frequencies in the first-three-order modes were analyzed concretely. It is found that critical flow velocities of divergence instability of Maxwell viscoelastic pipes conveying fluid with both ends simply supported decrease with the decrease of the relaxation time, while after the onset of divergence instability(buckling)critical flow velocities of coupled-mode flutter increase with the decrease of the relaxation time. Particularly, in the case of greater mass ratio, with the decrease of relaxation time,the onset of coupled-mode flutter delays, and even does not take place. When the relaxation time is greater than 103 , stability behavior of viscoelastic pipes conveying fluid is almost similar to the elastic pipes conveying fluid.

  4. Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon.

    Science.gov (United States)

    Fessel, Gion; Snedeker, Jess G

    2009-10-01

    The glycosaminoglycan (GAG) dermatan sulfate and chondroitin sulfate side-chains of small leucine-rich proteoglycans have been increasingly posited to act as molecular cross links between adjacent collagen fibrils and to directly contribute to tendon elasticity. GAGs have also been implicated in tendon viscoelasticity, supposedly affecting frictional loss during elongation or fluid flow through the extra cellular matrix. The current study sought to systematically test these theories of tendon structure-function by investigating the mechanical repercussions of enzymatic depletion of GAG complexes by chondroitinase ABC in a reproducible tendon structure-function model (rat tail tendon fascicles). The extent of GAG removal (at least 93%) was verified by relevant spectrophotometric assays and transmission electron microscopy. Dynamic viscoelastic tensile tests on GAG depleted rat tail tendon fascicle were not mechanically different from controls in storage modulus (elastic behavior) over a wide range of strain-rates (0.05, 0.5, and 5% change in length per second) in either the linear or nonlinear regions of the material curve. Loss modulus (viscoelastic behavior) was only affected in the nonlinear region at the highest strain-rate, and even this effect was marginal (19% increased loss modulus, p=0.035). Thus glycosaminoglycan chains of small leucine-rich proteoglycans do not appear to mediate dynamic elastic behavior nor do they appear to regulate the dynamic viscoelastic properties in rat tail tendon fascicles.

  5. The influence of the rotary inertia on the dynamic behavior of viscoelastic non-cylindrical helicoidal bars

    Science.gov (United States)

    Ermiş, Merve; Eratlı, Nihal; Omurtag, Mehmet H.

    2015-12-01

    The objective of this study is to investigate the influence of the rotary inertia on the dynamic behavior of linear viscoelastic non-cylindrical helicoidal bars due to variation of the active turns. Dynamic analysis is performed in the Laplace space by using the mixed finite element method. The standard model is used for defining the viscoelastic material behavior and by using the correspondence principle, the material constants are replaced with their complex counterparts in the Laplace space. The solution under the rectangular impulsive type loading is carried out in the Laplace space and then the results are transformed back to time domain numerically by the Modified Durbin's transformation algorithm. Some original numerical results for the dynamic behavior of linear viscoelastic non-cylindrical helices with rectangular cross-section are presented.

  6. Nonlinear Dynamics of Coiling in Viscoelastic Jets

    CERN Document Server

    Majmudar, Trushant; Hartt, William; McKinley, Gareth

    2010-01-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain less well understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in great detail; buckling instability in viscous jets leads to regular periodic coiling of the jet that exhibits a non-trivial frequency dependence with the height of the fall. Very few experimental or theoretical studies exist for continuous viscoelastic jets beyond the onset of the first instability. Here, we present a systematic study of the effects of viscoelasticity on the dynamics of free surface continuous jets of surfactant solutions that form worm-like micelles. We observe complex nonlinear spatio-temporal dynamics of the jet and uncover a transition from periodic to doubly-periodic or quasi-periodic to a multi-frequency, possibly chaotic dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the "leaping shampoo effect" or the Kaye effe...

  7. Viscoelasticity of Xenon near the Critical Point

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    Using a novel, overdamped, oscillator flown aboard the Space Shuttle, we measured the viscosity of xenon near the liquid-vapor critical point in the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz. The measured viscosity divergence is characterized by the exponent z(sub eta) = 0.0690 +/- 0.0006, in agreement with the value z(sub eta) = 0.067 +/- 0.002 calculated from a two-loop perturbation expansion. Viscoelastic behavior was evident when t = (T - T(sub c))/T(sub c) less than 10(exp -5) and dominant when t less than 10(exp -6), further from T(sub c) than predicted. Viscoelastic behavior scales as Af(tau) where tau is the fluctuation decay time. The measured value of A is 2.0 +/- 0.3 times the result of a one-loop calculation. (Uncertainties stated are one standard uncertainty.)

  8. The Stochastic Stability of a Viscoelastic Cable with Small Sag

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the almost sure stability of a viscoelastic cablesubjected to an initial stress on the uniform cross section is studied. The constitutive of the cable material is assumed to be the hereditary integral type, the relaxation kernels of which are represented by the sums of exponents. The initial stress and the damping coefficient to the environment and also relaxation kernel coefficients are a random wide-band stationary process. The partial differential-integral equation of motion is derived first. Then by applying Galerkins method, the governing equation is reduced to a set of second order differential integral equations. Based on the Liapunovs direct method, sufficient conditions for almost sure stability of viscoelstic cable are obtained.

  9. Thermal Viscoelastic Analysis of Plastic Components Considering Residual Stress

    Science.gov (United States)

    Choi, Chel Woo; Jeoung, Kab Sik; Moon, Hyung-Il; Kim, Heon Young

    Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity, but plastic components may often become distorted after injection molding due to residual stress after the filling, packing, and cooling processes. In addition, plastic deteriorates depending on various temperature conditions and the operating time, which can be characterized by stress relaxation and creep. The viscoelastic behavior of plastic materials in the time domain can be expressed by the Prony series using the ABAQUS commercial software package. This paper suggests a process for predicting post-production deformation under cyclic thermal loading. The process was applied to real plastic panels, and the deformation predicted by the analysis was compared to that measured in actual testing, showing the possibility of using this process for predicting the post-production deformation of plastic products under thermal loading.

  10. Numerical Simulation of Tidal Evolution of a Viscoelastic Body Modeled with a Mass-Spring Network

    CERN Document Server

    Frouard, Julien; Efroimsky, Michael; Giannella, David

    2016-01-01

    We use a damped mass-spring model within an N-body code, to simulate the tidal evolution of the spin and orbit of a viscoelastic spherical body moving around a point-mass perturber. The damped spring-mass model represents a Kelvin-Voigt viscoelastic solid. We derive the tidal quality function (the dynamical Love number $\\,k_2\\,$ divided by the tidal quality factor $\\,Q\\,$) from the numerically computed tidal drift of the semimajor axis of the binary. The obtained shape of $\\,k_2/Q\\,$, as a function of the principal tidal frequency, reproduces the typical kink shape predicted by Efroimsky (2012a; CeMDA 112$\\,:\\,$283) for the tidal response of near-spherical homogeneous viscoelastic rotators. Our model demonstrates that we can directly simulate the tidal evolution of viscoelastic objects. This opens the possibility for investigating more complex situations, since the employed spring-mass N-body model can be generalised to inhomogeneous and/or non-spherical bodies.

  11. A mixed finite element scheme for viscoelastic flows with XPP model

    Institute of Scientific and Technical Information of China (English)

    Xianhong Han; Xikui Li

    2008-01-01

    A mixed finite element formulation for viscoe-lastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractio-nal step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitu-tive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpola-tion approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) consti-tutive model for describing viscoelastic behaviors is particu-larly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demons-trate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.

  12. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.

    Science.gov (United States)

    Zhang, Xiaoming

    2016-11-01

    The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

  13. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    Science.gov (United States)

    Merrett, Craig G.

    Modern flight vehicles are fabricated from composite materials resulting in flexible structures that behave differently from the more traditional elastic metal structures. Composite materials offer a number of advantages compared to metals, such as improved strength to mass ratio, and intentional material property anisotropy. Flexible aircraft structures date from the Wright brothers' first aircraft with fabric covered wooden frames. The flexibility of the structure was used to warp the lifting surface for flight control, a concept that has reappeared as aircraft morphing. These early structures occasionally exhibited undesirable characteristics during flight such as interactions between the empennage and the aft fuselage, or control problems with the elevators. The research to discover the cause and correction of these undesirable characteristics formed the first foray into the field of aeroelasticity. Aeroelasticity is the intersection and interaction between aerodynamics, elasticity, and inertia or dynamics. Aeroelasticity is well suited for metal aircraft, but requires expansion to improve its applicability to composite vehicles. The first is a change from elasticity to viscoelasticity to more accurately capture the solid mechanics of the composite material. The second change is to include control systems. While the inclusion of control systems in aeroelasticity lead to aero-servo-elasticity, more control possibilities exist for a viscoelastic composite material. As an example, during the lay-up of carbon-epoxy plies, piezoelectric control patches are inserted between different plies to give a variety of control options. The expanded field is called aero-servo-viscoelasticity. The phenomena of interest in aero-servo-viscoelasticity are best classified according to the type of structure considered, either a lifting surface or a panel, and the type of dynamic stability present. For both types of structures, the governing equations are integral

  14. Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil

    Directory of Open Access Journals (Sweden)

    Mehdi Bayat

    2016-09-01

    Full Text Available Large offshore wind turbines are founded on jacket structures. In this study, an elastic full-space jacket structure foundation in an elastic and viscoelastic medium is investigated by using boundary integral equations. The jacket structure foundation is modeled as a hollow, long circular cylinder when the dynamic vertical excitation is applied. The smooth surface along the entire interface is considered. The Betti reciprocal theorem along with Somigliana’s identity and Green’s function are employed to drive the dynamic stiffness of jacket structures. Modes of the resonance and anti-resonance are presented in series of Bessel’s function. Important responses, such as dynamic stiffness and phase angle, are compared for different values of the loss factor as the material damping, Young’s modulus and Poisson’s ratio in a viscoelastic soil. Results are verified with known results reported in the literature. It is observed that the dynamic stiffness fluctuates with the loss factor, and the turning point is independent of the loss factor while the turning point increases with load frequency. It is seen that the non-dimensional dynamic stiffness is dependent on Young’s modulus and Poisson’s ratio, whilst the phase angle is independent of the properties of the soil. It is shown that the non-dimensional dynamic stiffness changes linearly with high-frequency load. The conclusion from the results of this study is that the material properties of soil are significant parameters in the dynamic stiffness of jacket structures, and the presented approach can unfold the behavior of soil and give an approachable physical meaning for wave propagation.

  15. Quantitative modelling of viscoelasticity of isotropic fibrous composites with viscoelastic matrices

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Despite the wide usage of isotropic fibrous composites with a viscoelastic polymer matrix,no analytic model for their mechanical behaviour is known.This paper develops such a model for time-dependent Young's modulus,showing that for typical constituents the time constants of composites are up to about 6% greater than the matrix shear time constant.Viscoelasticity is strongly suppressed for stiff fibres even at modest fibre volume fractions.Comparison with known results for particle and oriented fibre compos...

  16. Viscoelastic characterization of an EPDM rubber and finite element simulation of its dry rolling friction

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available The viscoelastic properties of an ethylene/propylene/diene rubber (EPDM containing 30 parts per hundred parts rubber [phr] carbon black (CB were determined by dynamic mechanical thermal analysis (DMTA measurements. A 15-term Maxwell-model was created to describe the time-dependent material behavior of this rubber. The frictional behavior under dry rolling conditions was studied on a home-built rolling ball (steel-on-plate (rubber (RBOP test rig. Both normal and tangential forces were detected during the measurements. The rolling test was simulated with the MSC.Marc finite element (FE software using the evaluated viscoelastic material properties. Results of the experimental tests and of the simulation were compared and a good agreement was found between them.

  17. TWO-MODE GALERKIN APPROACH IN DYNAMIC STABILITY ANALYSIS OF VISCOELASTIC PLATES

    Institute of Scientific and Technical Information of China (English)

    张能辉; 程昌钧

    2003-01-01

    The dynamic stability of viscoelastic thin plates with large deflections was investigated by using the largest Liapunov exponent analysis and other numerical and analytical dynamic methods. The material behavior was described in terms of the Boltzmann superposition principle. The Galerkin method was used to simplify the original integropartial-differential model into a two-mode approximate integral model, which further reduced to an ordinary differential model by introducing new variables. The dynamic properties of one-mode and two-mode truncated systems were numerically compared. The influence of viscoelastic properties of the material, the loading amplitude and the initial values on the dynamic behavior of the plate under in-plane periodic excitations was discussed.

  18. Spatiotemporal evolution of a fault shear stress patch due to viscoelastic interseismic fault zone rheology

    Science.gov (United States)

    Sone, Hiroki; Uchide, Takahiko

    2016-08-01

    We conducted numerical studies to explore how shear stress anomalies on fault planes (shear stress patches) evolve spatiotemporally during the interseismic period under the influence of viscoelastic rheology assigned to fault zones of finite thickness. 2-D viscoelastic models consisting of a fault zone and host rock were sheared to simulate shear stress accumulation along fault zones due to tectonic loading. No fault slip along a distinct fault planes is implied in the model, thus all fault shear motion is accommodated by distributed deformation in the viscoelastic fault zone. Results show that magnitudes of shear stress patches evolve not only temporally, but also spatially, especially when the stress anomaly is created by a geometrical irregularity (asperity) along the interface of an elastic host rock and viscoelastic fault zone. Such shear stress anomalies diffuse spatially so that the spatial dimension of the shear stress patch appears to grow over time. Models with varying fault zone viscoelastic properties and varying fault zone viscosity both show that such spatial diffusion of shear stress is enhanced by increasing the contribution of the viscous behavior. The absolute rate at which shear stress patches grow spatially is generally not influenced by the size of the shear stress patch. Therefore shear stress patches with smaller dimensions will appear to grow quicker, in the relative sense, compared to larger stress patches. These results suggest that the minimum dimensions of shear stress patches that can exist along a fault could be governed by the effective viscosity of the fault zone. Therefore patterns of accumulated shear stress could vary along faults when viscous properties are heterogeneous, for instance due to depth or material heterogeneity, which has implications on how earthquake rupture behavior could vary along faults.

  19. Dynamic analyses of viscoelastic dielectric elastomers incorporating viscous damping effect

    Science.gov (United States)

    Zhang, Junshi; Zhao, Jianwen; Chen, Hualing; Li, Dichen

    2017-01-01

    In this paper, based on the standard linear solid rheological model, a dynamics model of viscoelastic dielectric elastomers (DEs) is developed with incorporation of viscous damping effect. Numerical calculations are employed to predict the damping effect on the dynamic performance of DEs. With increase of damping force, the DEs show weak nonlinearity and vibration strength. Phase diagrams and Poincaré maps are utilized to detect the dynamic stability of DEs, and the results indicate that a transition from aperiodic vibration to quasi-periodic vibration occurs with enlargement of damping force. The resonance properties of DEs including damping effect are subsequently analyzed, demonstrating a reduction of resonant frequency and resonance peak with increase of damping force.

  20. Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garino, Terry J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Croes, Kenneth James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

  1. Demonstration of Mg2FeH6 as heat storage material at temperatures up to 550 °C

    Science.gov (United States)

    Urbanczyk, R.; Meggouh, M.; Moury, R.; Peinecke, K.; Peil, S.; Felderhoff, M.

    2016-04-01

    The storage of heat at high temperatures, which can be used to generate electricity after sunset in concentrating solar power plants, is one of the most challenging technologies. The use of metal hydride could be one possibility to solve the problem. During the endothermic heat storage process, the metal hydride is decomposed releasing hydrogen, which then can be stored. During the exothermic reaction of the metal with the hydrogen gas, the stored heat is then released. Previous research had shown that Mg and Fe powders can be used at temperatures up to 550 °C for heat storage and shows excellent cycle stability over hundreds of cycles without any degradation. Here, we describe the results of testing of a tube storage tank that contained 211 g of Mg and Fe powders in 2:1 ratio. Twenty-three dehydrogenations (storage) and 23 hydrogenations (heat release) in the temperature range between of 395 and 515 °C and pressure range between 1.5 and 8.6 MPa were done. During the dehydrogenation, 0.41-0.42 kWhth kg-1 of heat based on material 2 Mg/Fe can be stored in the tank. After testing, mainly Mg2FeH6 was observed and small amounts of MgH2 and Fe metal can be detected in the hydride samples. This means that the heat storage capacity of the system could be further increased if only Mg2FeH6 is produced during subsequent cycles.

  2. ON TRANSMISSION PROBLEM FOR VISCOELASTIC WAVE EQUATION WITH A LOCALIZED A NONLINEAR DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    Jeong Ja BAE; Seong Sik KIM

    2013-01-01

    In this article,we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials,one component being a Kirchhoff type wave equation with time dependent localized dissipation which is effective only on a neighborhood of certain part of boundary,while the other being a Kirchhoff type viscoelastic wave equation with nonlinear memory.

  3. Calculations of Turbulent Boundary Layer (TBL) Pressure Fluctuations Transmitted into a Viscoelastic Layer

    Science.gov (United States)

    2016-06-07

    turbulent boundary layer pressure fluctuation transmitted into a layer of viscoelastic material. The theoretical model used here is a plane elastomer...Spring 1985. The objective of this paper is to develop a model for calculating the turbulent boundary layer pressure fluctuation transmitted into a...the noise level calculated in terms of decibels. FIGURE 4 (CORCOS MODEL ) This is a model cross-spectrum of turbulent wall pressure , frequently

  4. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  5. A model for the compressible, viscoelastic behavior of human amnion addressing tissue variability through a single parameter.

    Science.gov (United States)

    Mauri, Arabella; Ehret, Alexander E; De Focatiis, Davide S A; Mazza, Edoardo

    2016-08-01

    A viscoelastic, compressible model is proposed to rationalize the recently reported response of human amnion in multiaxial relaxation and creep experiments. The theory includes two viscoelastic contributions responsible for the short- and long-term time-dependent response of the material. These two contributions can be related to physical processes: water flow through the tissue and dissipative characteristics of the collagen fibers, respectively. An accurate agreement of the model with the mean tension and kinematic response of amnion in uniaxial relaxation tests was achieved. By variation of a single linear factor that accounts for the variability among tissue samples, the model provides very sound predictions not only of the uniaxial relaxation but also of the uniaxial creep and strip-biaxial relaxation behavior of individual samples. This suggests that a wide range of viscoelastic behaviors due to patient-specific variations in tissue composition can be represented by the model without the need of recalibration and parameter identification.

  6. The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of CF/PPS composites

    NARCIS (Netherlands)

    Motta Dias, M.H.; Jansen, K.M.B.; Luinge, H.; Nayak, K.; Bersee, H.E.N.

    2014-01-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of as received and surface modified carbon fiber (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45°

  7. The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of CF/PPS composites

    NARCIS (Netherlands)

    Motta Dias, M.H.; Jansen, K.M.B.; Luinge, H.; Nayak, K.; Bersee, H.E.N.

    2014-01-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of as received and surface modified carbon fiber (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specime

  8. Validity of the second Fick's law for modeling ion-exchange diffusion in non-crystalline viscoelastic media (glasses)

    Science.gov (United States)

    Tagantsev, D. K.; Ivanenko, D. V.

    2016-04-01

    It is shown that, in general case, the diffusion equation (or the second Fick's law) does not provide an adequate description of ion-exchange transport phenomena in viscoelastic media, including glassy or any other non-crystalline media. In this connection the general phenomenological model of ion-exchange diffusion in viscoelastic media has been developed. A theoretical analysis of the model shows that, in the case of a linear dependence of medium density on the concentration of diffusing ions, the necessary and sufficient condition of the absolute validity of the diffusion equation in viscoelastic media is Φ ≫ 1, where Φ = τD/τR is the dimensionless value (or criterion of similarity), with τD = L2/D being the characteristic time of diffusion and τR = η/G being the characteristic time of stress relaxation, where L, D, η, and G are the characteristic length of diffusion, the diffusivity, the viscosity, and the shear modulus, respectively. The value of 1/Φ characterizes the accuracy which is provided if the second Fick's law is used in the simulation of ion-exchange diffusion in viscoelastic media. We have demonstrated the applicability of this criterion experimentally. Our experimental studies on ion-exchange diffusion in an oxide glass (typical viscoelastic media) have shown that under the condition the Φ > 105 the experimental concentration profiles are close to those predicted by the second Fick's law to within an accuracy of 1%.

  9. Mud-Wave Interaction: A Viscoelastic Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study is devoted to the interaction between water surface waves and a thin layer of viscoelastic mud on the bottom. On the assumption that the mud layer is comparable in thickness with the wave boundary layer and is much smaller than the wavelength, a two-layer Stokes boundary layer model is adopted to determine the mud motions under the waves. Analytical expressions are derived for the near-bottom water and mud velocity fields, surface wave-damping rate, and interface wave amplitude and phase lag. Examined in particular is how these kinematic quantities may depend on the viscous and elastic properties of the mud.

  10. Viscoelastic Phase Separation of Protein Solutions

    Science.gov (United States)

    Tanaka, Hajime; Nishikawa, Yuya

    2005-08-01

    In addition to the known behavior of normal phase separation and gelation, we report novel phase-separation behavior of protein solutions as their intermediate case. A network structure of the protein-rich phase may be formed even if it is the minority phase, contrary to the conventional wisdom. This behavior is characteristic of viscoelastic phase separation found in polymer solutions. This kinetic pathway may play crucial roles in the complex phase ordering of protein solutions, in particular, protein network formation in biological systems and foods.

  11. Absolute instability in viscoelastic mixing layers

    Science.gov (United States)

    Ray, Prasun K.; Zaki, Tamer A.

    2014-01-01

    The spatiotemporal linear stability of viscoelastic planar mixing layers is investigated. A one-parameter family of velocity profiles is used as the base state with the parameter, S, controlling the amount of shear and backflow. The influence of viscoelasticity in dilute polymer solutions is modeled with the Oldroyd-B and FENE-P constitutive equations. Both models require the specification of the ratio of the polymer-relaxation and convective time scales (the Weissenberg number, We) and the ratio of solvent and solution viscosities (β). The maximum polymer extensibility, L, must also be specified for the FENE-P model. We examine how the variation of these parameters along with the Reynolds number, Re, affects the minimum value of S at which the flow becomes locally absolutely unstable. With the Oldroyd-B model, the influence of viscoelasticity is shown to be almost fully captured by the elasticity, E^* equiv (1-β ) We/Re, and Scrit decreases as elasticity is increased, i.e., elasticity is destabilizing. A simple approximate dispersion relation obtained via long-wave asymptotic analysis is shown to accurately capture this destabilizing influence. Results obtained with the FENE-P model exhibit a rich variety of behavior. At large values of the extensibility, L, results are similar to those for the Oldroyd-B fluid as expected. However, when the extensibility is reduced to more realistic values (L ≈ 100), one must consider the scaled shear rate, η _c equiv We S/2L, in addition to the elasticity. When ηc is large, the base-state polymer stress obtained by the FENE-P model is reduced, and there is a corresponding reduction in the overall influence of viscoelasticity on stability. Additionally, elasticity exhibits a stabilizing effect which is driven by the streamwise-normal perturbation polymer stress. As ηc is reduced, the base-state and perturbation normal polymer stresses predicted by the FENE-P model move towards the Oldroyd-B values, and the destabilizing

  12. Light scanner based on a viscoelastic stretchable grating

    NARCIS (Netherlands)

    Simonov, A.N.; Akhzar-Mehr, O.; Vdovine, G.V.

    2005-01-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings wi

  13. Convergence of the Solution to General Viscoelastic Koiter Shell Equations

    Institute of Scientific and Technical Information of China (English)

    Fu Shan LI

    2007-01-01

    By applying the inequality of Korn's type without boundary conditions on a general surface, we prove that the scaled displacement of the two-dimensional linearly viscoelastic Koiter's shell converges to the solution of two-dimensional model system of linearly viscoelastic "membrane" shell.

  14. EXPERIMENTAL MODAL ANALYSIS OF VISCO-ELASTICALLY DAMPED STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The form of the modal analysis of viscoelastically damped structures is simplified and this simplified form is similar to the form of the modal analysis of linear viscously damped structures. As a result of this simplified form, the experimental modal analysis methods of linear viscously damped structures are applied to the experimental modal analysis of viscoelastically damped structures.

  15. Effect of Viscoelasticity on Adhesion of Bioinspired Micropatterned Epoxy Surfaces

    NARCIS (Netherlands)

    Castellanos, G.; Arzt, E.; Kamperman, M.M.G.

    2011-01-01

    The effect of viscoelasticity on adhesion was investigated for micropatterned epoxy surfaces and compared to nonpatterned surfaces. A two-component epoxy system was used to produce epoxy compositions with different viscoelastic properties. Pillar arrays with flat punch tip geometries were fabricated

  16. Light scanner based on a viscoelastic stretchable grating

    NARCIS (Netherlands)

    Simonov, A.N.; Akhzar-Mehr, O.; Vdovine, G.V.

    2005-01-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings wi

  17. Demonstration and Validation of Controlled Low-Strength Materials for Corrosion Mitigation of Buried Steel Pipes: Final Report on Project F09-A17

    Science.gov (United States)

    2015-12-01

    812 Park Drive Warner Robins , GA 31088 James B. Bushman and Bopinder S. Phull Bushman and Associates P. O. Box 425 Medina, OH 44258 Final report...Under Project F09-AR17, “Dilute Flowable Backfill Validation for Corrosion Mitigation of Buried Piping at Fort Hood , TX” ERDC/CERL TR-15-33 ii...Appendix C: Fort Hood Demonstration Equipment and Materials for ROI Analysis

  18. Geometrically-linear and nonlinear analysis of linear viscoelastic composites using the finite element method

    Science.gov (United States)

    Hammerand, Daniel C.

    Over the past several decades, the use of composite materials has grown considerably. Typically, fiber-reinforced polymer-matrix composites are modeled as being linear elastic. However, it is well-known that polymers are viscoelastic in nature. Furthermore, the analysis of complex structures requires a numerical approach such as the finite element method. In the present work, a triangular flat shell element for linear elastic composites is extended to model linear viscoelastic composites. Although polymers are usually modeled as being incompressible, here they are modeled as compressible. Furthermore, the macroscopic constitutive properties for fiber-reinforced composites are assumed to be known and are not determined using the matrix and fiber properties along with the fiber volume fraction. Hygrothermo-rheologically simple materials are considered for which a change in the hygrothermal environment results in a horizontal shifting of the relaxation moduli curves on a log time scale, in addition to the usual hygrothermal loads. Both the temperature and moisture are taken to be prescribed. Hence, the heat energy generated by the viscoelastic deformations is not considered. When the deformations and rotations are small under an applied load history, the usual engineering stress and strain measures can be used and the time history of a viscoelastic deformation process is determined using the original geometry of the structure. If, however, sufficiently large loads are applied, the deflections and rotations will be large leading to changes in the structural stiffness characteristics and possibly the internal loads carried throughout the structure. Hence, in such a case, nonlinear effects must be taken into account and the appropriate stress and strain measures must be used. Although a geometrically-nonlinear finite element code could always be used to compute geometrically-linear deformation processes, it is inefficient to use such a code for small deformations, due to

  19. Effects of viscoelasticity in the high Reynolds number cylinder wake

    KAUST Repository

    Richter, David

    2012-01-16

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  20. Rheology of human blood plasma: Viscoelastic versus Newtonian behavior

    CERN Document Server

    Brust, M; Pan, L; Garcia, M; Arratia, P E; Wagner, C; 10.1103/PhysRevLett.110.078305

    2013-01-01

    We investigate the rheological characteristics of human blood plasma in shear and elongational flows. While we can confirm a Newtonian behavior in shear flow within experimental resolution, we find a viscoelastic behavior of blood plasma in the pure extensional flow of a capillary break-up rheometer. The influence of the viscoelasticity of blood plasma on capillary blood flow is tested in a microfluidic device with a contraction-expansion geometry. Differential pressure measurements revealed that the plasma has a pronounced flow resistance compared to that of pure water. Supplementary measurements indicate that the viscoelasticity of the plasma might even lead to viscoelastic instabilities under certain conditions. Our findings show that the viscoelastic properties of plasma should not be ignored in future studies on blood flow.

  1. Is viscoelastic coagulation monitoring with ROTEM or TEG validated?

    Science.gov (United States)

    Solomon, Cristina; Asmis, Lars M; Spahn, Donat R

    2016-10-01

    Recent years have seen increasing worldwide interest in the use of viscoelastic coagulation monitoring tests, performed using devices such as ROTEM and TEG. The use of such tests to guide haemostatic therapy may help reduce transfusion of allogeneic blood products in bleeding patients and is supported in European guidelines for managing trauma and severe perioperative bleeding. In addition, viscoelastic tests form the basis of numerous published treatment algorithms. However, some publications have stated that viscoelastic tests are not validated. A specific definition of the term validation is lacking and regulatory requirements of the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) have been fulfilled by ROTEM and TEG assays. Viscoelastic tests have been used in pivotal clinical trials, and they are approved for use in most of the world's countries. Provided that locally approved indications are adhered to, the regulatory framework for clinicians to use viscoelastic tests in routine clinical practice is in place.

  2. Interfacial Dynamics of Thin Viscoelastic Films and Drops

    CERN Document Server

    Barra, Valeria; Kondic, Lou

    2016-01-01

    We present a computational investigation of thin viscoelastic films and drops on a solid substrate subject to the van der Waals interaction force. The governing equations are obtained within a long-wave approximation of the Navier-Stokes equations with Jeffreys model for viscoelastic stresses. We investigate the effects of viscoelasticity, Newtonian viscosity, and the substrate slippage on the dynamics of thin viscoelastic films. We also study the effects of viscoelasticity on drops that spread or recede on a prewetted substrate. For dewetting films, the numerical results show the presence of multiple secondary droplets for higher values of elasticity, consistently with experimental findings. For drops, we find that elastic effects lead to deviations from the Cox-Voinov law for partially wetting fluids. In general, elastic effects enhance spreading, and suppress retraction, compared to Newtonian ones.

  3. Multiaxial nonlinear viscoelastic characterization and modeling of a structural adhesive

    Energy Technology Data Exchange (ETDEWEB)

    Popelar, C.F.; Liechti, K.M. [Univ. of Texas, Austin, TX (United States)

    1997-07-01

    Many polymeric materials, including structural adhesives, exhibit a nonlinear viscoelastic response. The nonlinear free volume approach is based on the Doolittle concept that the free volume controls the mobility of polymer molecules and, thus, the inherent time scale of the material. It then follows that factors such as temperature and moisture, which change the free volume, will influence the time scale. Furthermore, stress-induced dilatation will also affect the free volume and, hence, the time scale. However, during this investigation dilatational effects alone were found to be insufficient in describing the response of near pure shear tests performed on a bisphenol A epoxy with an amido amine hardener. Thus, the free volume approach presented here has been modified to include distortional effects in the inherent time scale of the material. In addition to predicting the global response under a variety of multiaxial stress states, the modified free volume theory also accurately predicts the local displacement fields, including those associated with a localized region, as determined from geometric moire measurements at various stages of deformation.

  4. A Linear Viscoelastic Model Calibration of Sylgard 184.

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin Nicholas; Brown, Judith Alice

    2017-04-01

    We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANL data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.

  5. A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer

    KAUST Repository

    Khan, Kamran

    2012-11-10

    We formulate a variational constitutive framework that accounts for nonlinear viscous behavior of electrically sensitive polymers, specifically Dielectric Elastomers (DEs), under large deformation. DEs are highly viscoelastic and their actuation response is greatly affected in dynamic applications. We used the generalized Maxwell model to represent the viscoelastic response of DE allowing the material to relax with multiple mechanisms. The constitutive updates at each load increment are obtained by minimizing an objective function formulated using the free energy and electrostatic energy of the elastomer, in addition to the viscous dissipation potential of the dashpots in each Maxwell branch. The model is then used to predict the electromechanical instability (EMI) of DE. The electro-elastic response of the DE is verified with available analytical solutions in the literature and then the material parameters are calibrated using experimental data. The model is integrated with finite element software to perform a variety of simulations on different types of electrically driven actuators under various electromechanical loadings. The electromechanical response of the DE and the critical conditions at which EMI occurs were found to be greatly affected by the viscoelasticity. Our model predicts that under a dead load EMI can be avoided if the DE operates at a high voltage rate. Subjected to constant, ramp and cyclic voltage, our model qualitatively predicts responses similar to the ones obtained from the analytical solutions and experimental data available in the literature. © 2012 Springer-Verlag Berlin Heidelberg.

  6. CRITICAL VELOCITY OF CONTROLLABILITY OF SLIDING FRICTION BY NORMAL OSCILLATIONS IN VISCOELASTIC CONTACTS

    Directory of Open Access Journals (Sweden)

    Mikhail Popov

    2016-12-01

    Full Text Available Sliding friction can be reduced substantially by applying ultrasonic vibration in the sliding plane or in the normal direction. This effect is well known and used in many applications ranging from press forming to ultrasonic actuators. One of the characteristics of the phenomenon is that, at a given frequency and amplitude of oscillation, the observed friction reduction diminishes with increasing sliding velocity. Beyond a certain critical sliding velocity, there is no longer any difference between the coefficients of friction with or without vibration. This critical velocity depends on material and kinematic parameters and is a key characteristic that must be accounted for by any theory of influence of vibration on friction. Recently, the critical sliding velocity has been interpreted as the transition point from periodic stick-slip to pure sliding and was calculated for purely elastic contacts under uniform sliding with periodic normal loading. Here we perform a similar analysis of the critical velocity in viscoelastic contacts using a Kelvin material to describe viscoelasticity. A closed-form solution is presented, which contains previously reported results as special cases. This paves the way for more detailed studies of active control of friction in viscoelastic systems, a previously neglected topic with possible applications in elastomer technology and in medicine.

  7. Nonlocal Vibration Behavior of a Viscoelastic SLGS Embedded on Visco- Pasternak Foundation Under Magnetic Field

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour-Arani

    2013-12-01

    Full Text Available This paper is concerned with the surface and small scale effects on transverse vibration of a viscoelastic single-layered graphene sheet (SLGS subjected to an in-plane magnetic field. The SLGS is surrounded by an elastic medium which is simulated as Visco-Pasternak foundation. In order to investigate the small scale effects, the nonlocal elasticity theory is employed due to its simplicity and accuracy. The effect of structural damping of SLGS is taken into account based on Kelvin’s model on elastic materials. An analytical method is used to obtain the natural frequency of the system. A detailed parametric study is conducted to elucidate the effects of the surface layers, nonlocal parameter, magnetic field, Visco-Pasternak elastic medium, viscoelastic structural damping coefficient and aspect ratio of graphene sheet. The findings indicate that enhancing the magnetic field and the density of surface layers leads to an increase in the natural frequency of SLGS.

  8. Complex-mode Galerkin approach in transverse vibration of an axially accelerating viscoelastic string

    Institute of Scientific and Technical Information of China (English)

    ZHANG Neng-hui; WANG Jian-jun; CHENG Chang-jun

    2007-01-01

    Under the consideration of harmonic fluctuations of initial tension and axially velocity, a nonlinear governing equation for transverse vibration of an axially accelerating string is set up by using the equation of motion for a 3-dimensional deformable body with initial stresses. The Kelvin model is used to describe viscoelastic behaviors of the material. The basis function of the complex-mode Galerkin method for axially accelerating nonlinear strings is constructed by using the modal function of linear moving strings with constant axially transport velocity. By the constructed basis functions, the application of the complex-mode Galerkin method in nonlinear vibration analysis of an axially accelerating viscoelastic string is investigated. Numerical results show that the convergence velocity of the complex-mode Galerkin method is higher than that of the real-mode Galerkin method for a variable coefficient gyroscopic system.

  9. Elastic and viscoelastic solutions to rotating functionally graded hollow and solid cylinders

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are as* sumed to vary exponentially in the radial direction, and Poisson's ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compat-ibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric func-tion for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.

  10. PRINCIPAL RESONANCE IN TRANSVERSE NONLINEAR PARAMETRIC VIBRATION OF AN AXIALLY ACCELERATING VISCOELASTIC STRING

    Institute of Scientific and Technical Information of China (English)

    CHEN Liqun; Jean W.ZU; WU Jun

    2004-01-01

    To investigate the principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string, the method of multiple scales is applied directly to the nonlinear partial differential equation that governs the transverse vibration of the string. To derive the governing equation, Newton's second law, Lagrangean strain, and Kelvin's model are respectively used to account the dynamical relation, geometric nonlinearity and the viscoelasticity of the string material.Based on the solvability condition of eliminating the secular terms, closed form solutions are obtained for the amplitude and the existence conditions of nontrivial steady-state response of the principal parametric resonance. The Lyapunov linearized stability theory is employed to analyze the stability of the trivial and nontrivial solutions in the principal parametric resonance. Some numerical examples are presented to show the effects of the mean transport speed, the amplitude and the frequency of speed variation.

  11. 基于 Exp-ln 模型与广义黏弹性理论的橡胶本构模型及其应用研究%Constitutive model and its application for rubber material based on Exp-ln model and generalized viscoelastic theory

    Institute of Scientific and Technical Information of China (English)

    仲健林; 任杰; 马大为

    2015-01-01

    A visco-hyperelastic constitutive model was proposed to describe mechanical responses of rubber material under different strain rates.Firstly,the uniaxial tensile tests for rubber material were conducted with Instron testing machines and SHTB testing devices.Secondly,combined with Exp-ln hyperelastic constitutive model and the generalized viscoelastic method,the visco-hyperelastic constitutive model for rubber material was built.Thirdly,the three-dimensional incremental format of the visco-hyperelastic constitutive model was deduced,the user subroutine VUMAT was written,the one-dimensional effectiveness and three-dimensional one were verified.Finally,the impact additional load numerical simulation model of a rubber base was established,the results of impact additional load tests were compared with those of the numerical simulation.The results showed that the numerical results agree well with the uniaxial tensile test data,the error between the impact additional load test value and the simulation one is approximately 7%,the correctness of the visco-hyperelastic constitutive model is verified.%提出了一种描述橡胶材料不同应变率下力学响应的黏超弹本构模型。首先,利用 Instron 实验机和 SHTB实验装置,开展橡胶材料单轴拉伸实验;其次,结合 Exp -ln 超弹性本构模型和广义黏弹性方法,建立了橡胶材料黏超弹本构模型;再次,推导本构模型三维增量格式,编写了用户子程序(VUMAT),验证了本构模型的一维和三维有效性;最后,建立橡胶底座冲击附加载荷计算数值模型,并将冲击附加载荷实验与数值仿真进行对比验证。结果表明:单轴拉伸实验与数值解吻合较好,冲击附加载荷实验值与仿真值误差约为7%,验证了黏超弹本构模型的正确性。

  12. Mechanical vibration of viscoelastic liquid droplets

    Science.gov (United States)

    Sharp, James; Harrold, Victoria

    2014-03-01

    The resonant vibrations of viscoelastic sessile droplets supported on different substrates were monitored using a simple laser light scattering technique. In these experiments, laser light was reflected from the surfaces of droplets of high Mw poly acrylamide-co-acrylic acid (PAA) dissolved in water. The scattered light was allowed to fall on the surface of a photodiode detector and a mechanical impulse was applied to the drops using a vibration motor mounted beneath the substrates. The mechanical impulse caused the droplets to vibrate and the scattered light moved across the surface of the photodiode. The resulting time dependent photodiode signal was then Fourier transformed to obtain the mechanical vibrational spectra of the droplets. The frequencies and widths of the resonant peaks were extracted for droplets containing different concentrations of PAA and with a range of sizes. This was repeated for PAA loaded water drops on surfaces which displayed different values of the three phase contact angle. The results were compared to a simple model of droplet vibration which considers the formation of standing wave states on the surface of a viscoelastic droplet. We gratefully acknowledge the support of the Leverhulme trust under grant number RPG-2012-702.

  13. Viscoelastic struts for vibration mitigation of FORTE

    Science.gov (United States)

    Maly, Joseph R.; Butler, Thomas A.

    1996-05-01

    FORTE is a small satellite being developed by Los Alamos National Laboratory (LANL) and Sandia National Laboratories Albuquerque (SNLA). It will be placed into orbit via a Pegasus launch in 1996. Testing a full-scale engineering model of the structure using the proto- qualification, system-level vibration spectrum indicated that acceleration levels caused by structural resonances exceed component levels to which certain sensitive components had previously been qualified. Viscoelastic struts were designed to reduce response levels associated with these resonances by increasing the level of damping in key structural modes of the spacecraft. Four identical shear-lap struts were fabricated and installed between the two primary equipment decks. The struts were designed using a system finite element model (FEM) of the spacecraft, a component FEM of the strut, and measured viscoelastic properties. Direct complex stiffness testing was performed to characterize the frequency-dependent behavior of the struts, and these measured properties (shear modulus and loss factor) were used to represent the struts in the spacecraft model. System-level tests were repeated with the struts installed and the response power spectral densities at critical component locations were reduced by as much as 10 dB in the frequency range of interest.

  14. Measurement of tissue viscoelasticity with ultrasound

    Science.gov (United States)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  15. Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models

    CERN Document Server

    Henning, Wade G; Sasselov, Dimitar D; 10.1088/0004-637X/707/2/1000

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a Hot Earth and Hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid, and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale parti...

  16. Viscoelasticity and shear thinning of nanoconfined water

    Science.gov (United States)

    Kapoor, Karan; Amandeep, Patil, Shivprasad

    2014-01-01

    Understanding flow properties and phase behavior of water confined to nanometer-sized pores and slits is central to a wide range of problems in science, such as percolation in geology, lubrication of future nano-machines, self-assembly and interactions of biomolecules, and transport through porous media in filtration processes. Experiments with different techniques in the past have reported that viscosity of nanoconfined water increases, decreases, or remains close to bulk water. Here we show that water confined to less than 20-nm-thick films exhibits both viscoelasticity and shear thinning. Typically viscoelasticity and shear thinning appear due to shearing of complex non-Newtonian mixtures possessing a slowly relaxing microstructure. The shear response of nanoconfined water in a range of shear frequencies (5 to 25 KHz) reveals that relaxation time diverges with reducing film thickness. It suggests that slow relaxation under confinement possibly arises due to existence of a critical point with respect to slit width. This criticality is similar to the capillary condensation in porous media.

  17. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants.

    Science.gov (United States)

    Alzobaidi, Shehab; Da, Chang; Tran, Vu; Prodanović, Maša; Johnston, Keith P

    2017-02-15

    Ultralow water content carbon dioxide-in-water (C/W) foams with gas phase volume fractions (ϕ) above 0.95 (that is foams may be stabilized with viscoelastic aqueous phases formed with a single zwitterionic surfactant at a concentration of only 1% (w/v) in DI water and over a wide range of salinity. Moreover, they are stable with a foam quality ϕ up to 0.98 even for temperatures up to 120°C. The properties of aqueous viscoelastic solutions and foams containing these solutions are examined for a series of zwitterionic amidopropylcarbobetaines, R-ONHC3H6N(CH3)2CH2CO2, where R is varied from C12-14 (coco) to C18 (oleyl) to C22 (erucyl). For the surfactants with long C18 and C22 tails, the relaxation times from complex rheology indicate the presence of viscoelastic wormlike micelles over a wide range in salinity and pH, given the high surfactant packing fraction. The apparent viscosities of these ultralow water content foams reached more than 120cP with stabilities more than 30-fold over those for foams formed with the non-viscoelastic C12-14 surfactant. At 90°C, the foam morphology was composed of ∼35μm diameter bubbles with a polyhedral texture. The apparent foam viscosity typically increased with ϕ and then dropped at ϕ values higher than 0.95-0.98. The Ostwald ripening rate was slower for foams with viscoelastic versus non-viscoelastic lamellae as shown by optical microscopy, as a consequence of slower lamellar drainage rates. The ability to achieve high stabilities for ultralow water content C/W foams over a wide temperature range is of interest in various technologies including polymer and materials science, CO2 enhanced oil recovery, CO2 sequestration (by greater control of the CO2 flow patterns), and possibly even hydraulic fracturing with minimal use of water to reduce the requirements for wastewater disposal.

  18. Molecular motors transporting cargos in viscoelastic cytosol: how to beat subdiffusion with a power stroke?

    CERN Document Server

    Goychuk, Igor; Metzler, Ralf

    2013-01-01

    Anomalously slow passive diffusion, $\\langle \\delta x^2(t)\\rangle\\simeq t^{\\alpha}$, with $0<\\alpha<1$, of larger tracers such as messenger RNA and endogenous submicron granules in the cytoplasm of living biological cells has been demonstrated in a number of experiments and has been attributed to the viscoelastic physical nature of the cellular cytoplasm. This finding provokes the question to which extent active intracellular transport is affected by this viscoelastic environment: does the subdiffusion of free submicron cargo such as vesicles and organelles always imply anomalously slow transport by molecular motors such as kinesins, that is, directed transport characterized by a sublinear growth of the mean distance, $\\langle x(t)\\rangle\\simeq t^{\\alpha_{\\rm eff}}$, with $0<\\alpha_{\\rm eff}<1$? Here we study a generic model approach combining the commonly accepted two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubule driven by a flashing bind...

  19. A stable and convergent scheme for viscoelastic flow in contraction channels

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, David; Colella, Phillip; Miller, Gregory

    2004-02-15

    We present a new algorithm to simulate unsteady viscoelastic flows in abrupt contraction channels. In our approach we split the viscoelastic terms of the Oldroyd-B constitutive equation using Duhamel's formula and discretize the resulting PDEs using a semi-implicit finite difference method based on a Lax-Wendroff method for hyperbolic terms. In particular, we leave a small residual elastic term in the viscous limit by design to make the hyperbolic piece well-posed. A projection method is used to impose the incompressibility constraint. We are able to compute the full range of elastic flows in an abrupt contraction channel--from the viscous limit to the elastic limit--in a stable and convergent manner for elastic Mach numbers less than one. We demonstrate the method for unsteady Oldroyd-B and Maxwell fluids in planar contraction channels.

  20. Environmental and centrifugal factors influencing the visco-elastic properties of oral biofilms in vitro.

    Science.gov (United States)

    Peterson, Brandon W; Busscher, Henk J; Sharma, Prashant K; van der Mei, Henny C

    2012-01-01

    Centrifugal compaction causes changes in the surface properties of bacterial cells. It has been shown previously that the surface properties of planktonic cells change with increasing centrifugal compaction. This study aimed to analyze the influences of centrifugal compaction and environmental conditions on the visco-elastic properties of oral biofilms. Biofilms were grown out of a layer of initially adhering streptococci, actinomyces or a combination of these. Different uni-axial deformations were induced on the biofilms and the load relaxations were measured over time. Linear-Regression-Analysis demonstrated that both the centrifugation coefficient for streptococci and induced deformation influenced the percentage relaxation. Centrifugal compaction significantly influenced relaxation only upon compression of the outermost 20% of the biofilm (p centrifugal compaction of initially adhering, centrifuged bacteria extend to the visco-elastic properties of biofilms, indicating that the initial bacterial layer influences the structure of the entire biofilm.

  1. Linear and nonlinear viscoelastic arterial wall models: application on animals

    CERN Document Server

    Ghigo, Arthur; Armentano, Ricardo; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-01-01

    This work deals with the viscoelasticity of the arterial wall and its influence on the pulse waves. We describe the viscoelasticity by a non-linear Kelvin-Voigt model in which the coefficients are fitted using experimental time series of pressure and radius measured on a sheep's arterial network. We obtained a good agreement between the results of the nonlinear Kelvin-Voigt model and the experimental measurements. We found that the viscoelastic relaxation time-defined by the ratio between the viscoelastic coefficient and the Young's modulus-is nearly constant throughout the network. Therefore, as it is well known that smaller arteries are stiffer, the viscoelastic coefficient rises when approaching the peripheral sites to compensate the rise of the Young's modulus, resulting in a higher damping effect. We incorporated the fitted viscoelastic coefficients in a nonlinear 1D fluid model to compute the pulse waves in the network. The damping effect of viscoelasticity on the high frequency waves is clear especiall...

  2. Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C. P.; Lam, Y. C., E-mail: myclam@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 (Singapore); BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Han, J. [BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-15

    Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D{sub 2}) and the largest Lyapunov exponent (λ{sub 1}), with D{sub 2} being fractional and λ{sub 1} being positive. Contour maps of D{sub 2} and λ{sub 1} of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D{sub 2} and λ{sub 1} maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.

  3. Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel

    Directory of Open Access Journals (Sweden)

    C. P. Lim

    2015-07-01

    Full Text Available Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO and another immiscible fluid (silicone oil. A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D2 and the largest Lyapunov exponent (λ1, with D2 being fractional and λ1 being positive. Contour maps of D2 and λ1 of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D2 and λ1 maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.

  4. Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel.

    Science.gov (United States)

    Kim, Bookun; Kim, Ju Min

    2016-03-01

    Particle focusing is an essential step in a wide range of applications such as cell counting and sorting. Recently, viscoelastic particle focusing, which exploits the spatially non-uniform viscoelastic properties of a polymer solution under Poiseuille flow, has attracted much attention because the particles are focused along the channel centerline without any external force. Lateral particle migration in polymer solutions in square channels has been studied due to its practical importance in lab-on-a-chip applications. However, there are still many questions about how the rheological properties of the medium alter the equilibrium particle positions and about the flow rate ranges for particle focusing. In this study, we investigated lateral particle migration in a viscoelastic flow of DNA solution in a square microchannel. The elastic property is relevant due to the long relaxation time of a DNA molecule, even when the DNA concentration is extremely low. Further, the shear viscosity of the solution is essentially constant irrespective of shear rate. Our current results demonstrate that the particles migrate toward the channel centerline and the four corners of a square channel in the dilute DNA solution when the inertia is negligible (elasticity-dominant flow). As the flow rate increases, the multiple equilibrium particle positions are reduced to a single file along the channel centerline, due to the elasto-inertial particle focusing mechanism. The current results support that elasto-inertial particle focusing mechanism is a universal phenomenon in a viscoelastic fluid with constant shear viscosity (Boger fluid). Also, the effective flow rate ranges for three-dimensional particle focusing in the DNA solution were significantly higher and wider than those for the previous synthetic polymer solution case, which facilitates high throughput analysis of particulate systems. In addition, we demonstrated that the DNA solution can be applied to focus a wide range of

  5. Small-scale effects on the free vibrational behavior of embedded viscoelastic double-nanoplate-systems under thermal environment

    Science.gov (United States)

    Hosseini, M.; Jamalpoor, A.; Bahreman, M.

    2016-12-01

    The present paper deals with the theoretical investigation of small-scale effect on the thermo-mechanical vibration of double viscoelastic nanoplate-system made of functionally graded materials (FGMs). The small scale effect is taken into consideration via Eringen's nonlocal elasticity theory. It is considered that a Kelvin-Voigt viscoelastic layer connects two parallel viscoelastic nano-plates that surrounded by a Pasternak elastic foundation. The material properties in the thickness direction vary according to power low distribution. On the basis of nonlocal elasticity theory and employing Hamilton's principle, the exact solution for complex natural frequencies of a double nanoplate-system is determined for two types of vibrations, out-of-phase and in-phase. The detailed manner of deriving equations based on Navier method are presented and numerical studies are carried out to illustrate the influence of structural damping of the nanoplates, damping coefficient of viscoelastic medium, nonlocal parameter, higher wave numbers, aspect ratio, temperature change and other factors on the behavior of double nanoplate-system. Results from the analytical solution reveal that the temperature raising decreases the natural frequencies.

  6. Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads

    Science.gov (United States)

    Stepanov, Alexey B.; Antman, Stuart S.

    2017-08-01

    This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.

  7. Folding, stowage, and deployment of viscoelastic tape springs

    DEFF Research Database (Denmark)

    Kwok, Kawai; Pellegrino, Sergio

    2013-01-01

    This paper presents an experimental and numerical study of the folding, stowage, and deployment behavior of viscoelastic tape springs. Experiments show that during folding the relationship between load and displacement is nonlinear and varies with rate and temperature. In particular, the limit...... deployment and ends with a slow creep recovery. Unlike elastic tape springs, localized folds in viscoelastic tape springs do not move during deployment. Finite-element simulations based on a linear viscoelastic constitutive model with an experimentally determined relaxation modulus are shown to accurately...

  8. Thermal convection of viscoelastic shear-thinning fluids

    Science.gov (United States)

    Albaalbaki, Bashar; Khayat, Roger E.; Ahmed, Zahir U.

    2016-12-01

    The Rayleigh-Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien-Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity.

  9. The viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Bastholm, Sara K.; Becher, Naja; Stubbe, Peter Reimer;

    2014-01-01

    ObjectiveTo characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. DesignExperimental research. SettingDepartment of Obstetrics and Gynecology, Aarhus University Hospital, Denmark. Population/SampleSpontaneously shed CMPs from 18 healthy women in active...... labor. MethodsViscoelastic properties of CMPs were investigated with a dynamic oscillatory rheometer using frequency and stress sweep experiments within the linear viscoelastic region. Main outcome measuresThe rheological variables obtained were as follows: elastic modulus (G), viscous modulus (G...

  10. NUMERICAL SIMULATIONS OF VISCOELASTIC FLOWS THROUGH ONE SLOT CHANNEL

    Institute of Scientific and Technical Information of China (English)

    YIN Hong-jun; ZHONG Hui-ying; FU Chun-quan; WANG Lei

    2007-01-01

    In this article, the Modified Upper-Convected Maxwell equation (MUCM) is proposed. The viscoelastic polymer solution flow characteristics are described by the numerical method. The stream function contour, velocity contour and stress modulus contour of fluid in slot channel are drawn. The non-Newtonian power law property and viscoelasticity of MUCM fluid influence on the stream function are analyzed. The velocity contour move towards dead oil area with the viscoelasticity increase, flow area increase and the sweep area enlarges, so the sweep efficiency is enhanced.

  11. [Viscoelastic properties of relaxed papillary muscle at physiological hypertrophy].

    Science.gov (United States)

    Smoliuk, L T; Lisin, R V; Kuznetsov, D A; Protsenko, Iu L

    2012-01-01

    Viscoelastic properties of relaxed rat papillary muscles at physiological hypertrophy (intensive swimming for 5 weeks) have been obtained. It has been ascertained that viscoelastic properties of hypertrophied muscles are not significantly distinguished from those of control papillary muscles. A three-dimensional model of myocardial fascicle has been verified in compliance with experimental data of biomechanical tests of hypertrophied muscles. Elastic and viscous parameters of structural elements of the model negligibly differ from the parameters of the model of a control muscle. It is shown that physiological hypertrophy has a slight influence on viscoelastic properties of papillary muscles.

  12. Active-passive calibration of optical tweezers in viscoelastic media

    DEFF Research Database (Denmark)

    Fischer, Mario; Richardson, Andrew C; S Reihani, S Nader

    2010-01-01

    In order to use optical tweezers as a force measuring tool inside a viscoelastic medium such as the cytoplasm of a living cell, it is crucial to perform an exact force calibration within the complex medium. This is a nontrivial task, as many of the physical characteristics of the medium and probe......, e.g., viscosity, elasticity, shape, and density, are often unknown. Here, we suggest how to calibrate single beam optical tweezers in a complex viscoelastic environment. At the same time, we determine viscoelastic characteristics such as friction retardation spectrum and elastic moduli of the medium...

  13. Love wave dispersion in anisotropic visco-elastic medium

    Directory of Open Access Journals (Sweden)

    G. GIR SUBHASH

    1978-06-01

    Full Text Available The paper presents a study on Love wave propagation in a anisotropic
    visco-elastic layer overlying a rigid half space. The characteristic frequency
    equation is obtained and the variation of the wave number with frequency
    under the combined effect of visco-elasticity and anisotropy is analysed
    in detail. The results show that the effect of visco-elasticity on the
    wave is similar to that of anisotropy as long as the coefficient of anisotropy
    is less than unity.

  14. On the propagation of transient waves in a viscoelastic Bessel medium

    Science.gov (United States)

    Colombaro, Ivano; Giusti, Andrea; Mainardi, Francesco

    2017-06-01

    In this paper, we discuss the uniaxial propagation of transient waves within a semi-infinite viscoelastic Bessel medium. First, we provide the analytic expression for the response function of the material as we approach the wave front. To do so, we take profit of a revisited version of the so called Buchen-Mainardi algorithm. Secondly, we provide an analytic expression for the long-time behavior of the response function of the material. This result is obtained by means of the Tauberian theorems for the Laplace transform. Finally, we relate the obtained results to a peculiar model for fluid-filled elastic tubes.

  15. Quantitative diagnostics of soft tissue through viscoelastic characterization using time-based instrumented palpation.

    Science.gov (United States)

    Palacio-Torralba, Javier; Hammer, Steven; Good, Daniel W; Alan McNeill, S; Stewart, Grant D; Reuben, Robert L; Chen, Yuhang

    2015-01-01

    Although palpation has been successfully employed for centuries to assess soft tissue quality, it is a subjective test, and is therefore qualitative and depends on the experience of the practitioner. To reproduce what the medical practitioner feels needs more than a simple quasi-static stiffness measurement. This paper assesses the capacity of dynamic mechanical palpation to measure the changes in viscoelastic properties that soft tissue can exhibit under certain pathological conditions. A diagnostic framework is proposed to measure elastic and viscous behaviors simultaneously using a reduced set of viscoelastic parameters, giving a reliable index for quantitative assessment of tissue quality. The approach is illustrated on prostate models reconstructed from prostate MRI scans. The examples show that the change in viscoelastic time constant between healthy and cancerous tissue is a key index for quantitative diagnostics using point probing. The method is not limited to any particular tissue or material and is therefore useful for tissue where defining a unique time constant is not trivial. The proposed framework of quantitative assessment could become a useful tool in clinical diagnostics for soft tissue.

  16. Methods to improve harvested energy and conversion efficiency of viscoelastic dielectric elastomer generators

    Science.gov (United States)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2017-05-01

    As a new transduction technology, dielectric elastomer generators (DEGs) are capable of converting mechanical energy from diverse sources into electrical energy. However, their energy harvesting performance is strongly affected by the material viscoelasticity. Based on the finite-deformation viscoelasticity theory and the nonlinear coupled field theory for dielectric elastomers, this work presents a theoretical framework to model the performance of DEGs. Motivated by the recent experiments of DEGs with a triangular harvesting scheme, we propose a method to optimize the harvesting cycle, which could significantly improve the conversion efficiency of viscoelastic DEGs. From our simulation results, choosing a higher voltage power source appears to be an effective way to improve the performance of DEGs. In addition, optimizing the period of the discharging process of DEG can markedly increase its efficiency. Also, we have uncovered that the triangular harvesting scheme for DEGs, which is expected to harvest energy close to the maximum achievable energy, could be actually realized by choosing dielectric elastomers with a higher fraction of time-independent polymer networks. The theoretical framework and simulation results presented in this work are expected to benefit the optimal design of DEGs for different applications.

  17. Correlating Viscoelasticity with Metabolism in Single Cells using Atomic Force Microscopy

    Science.gov (United States)

    Caporizzo, Matthew; Roco, Charles; Coll-Ferrer, Carme; Eckmann, David; Composto, Russell

    2015-03-01

    Variable indentation-rate rheometric analysis by Laplace transform (VIRRAL), is developed to evaluate Dex-Gel drug carriers as biocompatible delivery agents. VIRRAL provides a general platform for the rapid characterization of the health of single cells by viscoelasticity to promote the self-consistent comparison between cells paramount to the development of early diagnosis and treatment of disease. By modelling the frequency dependence of elastic modulus, VIRRAL provides three metrics of cytoplasmic viscoelasticity: low frequency stiffness, high frequency stiffness, and a relaxation time. THP-1 cells are found to exhibit a frequency dependent elastic modulus consistent with the standard linear solid model of viscoelasticity. VIRRAL indicates that dextran-lysozyme drug carriers are biocompatible and deliver concentrated toxic material (rhodamine or silver nanoparticles) to the cytoplasm of THP-1 cells. The signature of cytotoxicity by rhodamine or silver exposure is a frequency independent 2-fold increase in elastic modulus and cytoplasmic viscosity while the cytoskeletal relaxation time remains unchanged independent of cytoplasmic stiffness. This is consistent with the known toxic mechanism of silver nanoparticles, where mitochondrial injury leads to ATP depletion and metabolic stress causes a decrease of mobility within cytoplasm. NSF DMR08-32802, NIH T32-HL007954, and ONR N000141410538.

  18. A Rate-Dependent Viscoelastic Damage Model for Simulation of Solid Propellant Impacts

    Science.gov (United States)

    Matheson, E. R.; Nguyen, D. Q.

    2006-07-01

    A viscoelastic deformation and damage model (VED) for solid rocket propellants has been developed based on an extensive set of mechanical properties experiments. Monotonic tensile tests performed at several strain rates showed rate and dilatation effects. During cyclic tensile tests, hysteresis and a rate-dependent shear modulus were observed. A tensile relaxation experiment showed significant stress decay in the sample. Taylor impact tests exhibited large dilatations without significant crack growth. Extensive modifications to a viscoelastic-viscoplastic model (VEP) necessary to capture these experimental results have led to development of the VED model. In particular, plasticity has been eliminated in the model, and the multiple Maxwell viscoelastic formulation has been replaced with a time-dependent shear modulus. Furthermore, the loading and unloading behaviors of the material are modeled independently. To characterize the damage and dilatation behavior, the Tensile Damage and Distention (TDD) model is run in conjunction with VED. The VED model is connected to a single-cell driver as well as to the CTH shock physics code. Simulations of tests show good comparisons with tensile tests and some aspects of the Taylor tests.

  19. A biphasic theory for the viscoelastic behaviors of vocal fold lamina propria in stress relaxation.

    Science.gov (United States)

    Zhang, Yu; Czerwonka, Lukasz; Tao, Chao; Jiang, Jack J

    2008-03-01

    In this study, a biphasic theory is applied to investigate the viscoelastic behaviors of vocal fold lamina propria during stress relaxation. The vocal fold lamina propria tissue is described as a biphasic material composed of a solid phase and an interstitial fluid phase. The biphasic theory reveals the interaction between the solid and the fluid. For the one-dimensional case, the analytical solutions of solid displacement, fluid velocity, and stress are derived. The biphasic theory predicts the stress relaxation of the vocal fold lamina propria. The quasilinear viscoelastic model as well as its higher-order elastic parameters can be derived from this biphasic theory. Furthermore, the fluid is found to support the majority of the stress at the early stage of stress relaxation; however, when the time becomes sufficiently large, the solid eventually bears all the stress. The early fluid stress support is much higher than the eventual solid support and may be important for understanding the effects of dehydration on tissue damage. By considering the solid-fluid structure of the vocal fold lamina propria, the biphasic theory allows for a more physical theory of tissue viscoelasticity than a single phase solid description and may provide a valuable physical mechanism for the observed vocal fold rheologic behaviors.

  20. Vibration and Damping Analysis of Composite Fiber Reinforced Wind Blade with Viscoelastic Damping Control

    Directory of Open Access Journals (Sweden)

    Tai-Hong Cheng

    2015-01-01

    Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.

  1. A new three-dimensional magneto-viscoelastic model for isotropic magnetorheological elastomers

    Science.gov (United States)

    Agirre-Olabide, I.; Lion, A.; Elejabarrieta, M. J.

    2017-03-01

    In this work, a four-parameter fractional derivative viscoelastic model was developed to describe the dynamic shear behaviour of magnetorheological elastomers (MREs) as a function of the matrix, particle content and magnetic field. The material parameters were obtained from experimental data measured with a Physica MCR 501 rheometer from the Anton Paar Company, equipped with a magnetorheological cell. The synthetised isotropic MRE samples were based on room-temperature vulcanising silicone rubber and spherical carbonyl iron powder micro particles as fillers, and seven volumetric particle contents were studied. The influence of particle contents was included in each parameter of the four-parameter fractional derivative model. The dependency of the storage modulus as a function of an external magnetic field (magnetorheological (MR) effect) was studied, and a dipole–dipole interaction model was used. A new three-dimensional magneto-viscoelastic model was developed to couple the viscoelastic model, the particle-matrix interaction and the magneto-induced modulus model, which predicts the influence of the magnetic field and the particle content in the MR effect of isotropic MREs.

  2. Compound piezoelectric cylindrical resonators as sensors of the rheological parameters of viscoelastic media.

    Science.gov (United States)

    Kiełczyński, Piotr; Szalewski, Marek

    2007-06-01

    The electro-elastic behavior of a viscoelastically loaded layered cylindrical resonator (sensor) comprising two coupled hollow cylinders is presented. The inner cylinder is a piezoelectric ceramic tube. The outer cylinder is a non-piezoelectric (passive) metallic cylinder. An analytical formula for the electrical admittance of a compound layered cylindrical resonator loaded with a viscoelastic liquid is established. Admittance (conductance) diagrams were obtained using a continuum electromechanical model. The established analytical formulas enable the determination of the influence of the liquid viscosity, material, and geometrical parameters of a compound cylindrical resonator on the response characteristics of the compound sensor. In the paper, the sensor implications resulting from the performed analysis are described. Moreover, the algorithm of the method developed by the authors to evaluate the rheological parameters of a viscoelastic liquid is presented. Good agreement between the theoretical results and experimental data is shown. The analysis presented in this paper can be utilized for the design and construction of cylindrical piezoelectric viscosity sensors, annular accelerometers, filters, transducers, and multilayer resonators.

  3. Dynamic properties comparisons between experimental measurements and nondeterministic numerical models of viscoelastic sandwich beams

    Directory of Open Access Journals (Sweden)

    Felippe Filho W. N.

    2015-01-01

    Full Text Available In order to design viscoelastic sandwich structures used as passive damping treatment, many aspects should be considered. In all methods available in the literature to model Viscoelastic Materials (VEM a crucial step is the determination of the complex modulus, usually obtained by curve fitting experimental results. Considering that dispersions are inherent to experimental tests and also those small variations in the fitted parameters lead to considerable changes on the dynamic behavior of VEMs hence a nondeterministic model seems to be more suitable than the usual deterministic ones. In that way, starting from dynamic properties of a VEM, a nondeterministic numerical model, which takes into account incertitudes in the VEM curve fitting procedure, is proposed. This model was used to evaluate the behavior of sandwich structures, showing the advantages and disadvantages of the presented methodology, comparing damping ratios and natural frequencies results of experimental tests with the ones extracted from the proposed nondeterministic numerical GHM based model, in order to establish a method to support viscoelastic sandwich beams design.

  4. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  5. 2.5-D frequency-domain viscoelastic wave modelling using finite-element method

    Science.gov (United States)

    Zhao, Jian-guo; Huang, Xing-xing; Liu, Wei-fang; Zhao, Wei-jun; Song, Jian-yong; Xiong, Bin; Wang, Shang-xu

    2017-10-01

    2-D seismic modelling has notable dynamic information discrepancies with field data because of the implicit line-source assumption, whereas 3-D modelling suffers from a huge computational burden. The 2.5-D approach is able to overcome both of the aforementioned limitations. In general, the earth model is treated as an elastic material, but the real media is viscous. In this study, we develop an accurate and efficient frequency-domain finite-element method (FEM) for modelling 2.5-D viscoelastic wave propagation. To perform the 2.5-D approach, we assume that the 2-D viscoelastic media are based on the Kelvin-Voigt rheological model and a 3-D point source. The viscoelastic wave equation is temporally and spatially Fourier transformed into the frequency-wavenumber domain. Then, we systematically derive the weak form and its spatial discretization of 2.5-D viscoelastic wave equations in the frequency-wavenumber domain through the Galerkin weighted residual method for FEM. Fixing a frequency, the 2-D problem for each wavenumber is solved by FEM. Subsequently, a composite Simpson formula is adopted to estimate the inverse Fourier integration to obtain the 3-D wavefield. We implement the stiffness reduction method (SRM) to suppress artificial boundary reflections. The results show that this absorbing boundary condition is valid and efficient in the frequency-wavenumber domain. Finally, three numerical models, an unbounded homogeneous medium, a half-space layered medium and an undulating topography medium, are established. Numerical results validate the accuracy and stability of 2.5-D solutions and present the adaptability of finite-element method to complicated geographic conditions. The proposed 2.5-D modelling strategy has the potential to address modelling studies on wave propagation in real earth media in an accurate and efficient way.

  6. Constitutive models of faults in the viscoelastic lithosphere

    Science.gov (United States)

    Moresi, Louis; Muhlhaus, Hans; Mansour, John; Miller, Meghan

    2013-04-01

    Moresi and Muhlhaus (2006) presented an algorithm for describing shear band formation and evolution as a coallescence of small, planar, fricition-failure surfaces. This algorithm assumed that sliding initially occurs at the angle to the maximum compressive stress dictated by Anderson faulting theory and demonstrated that shear bands form with the same angle as the microscopic angle of initial failure. Here we utilize the same microscopic model to generate frictional slip on prescribed surfaces which represent faults of arbitrary geometry in the viscoelastic lithosphere. The faults are actually represented by anisotropic weak zones of finite width, but they are instantiated from a 2D manifold represented by a cloud of points with associated normals and mechanical/history properties. Within the hybrid particle / finite-element code, Underworld, this approach gives a very flexible mechanism for describing complex 3D geometrical patterns of faults with no need to mirror this complexity in the thermal/mechanical solver. We explore a number of examples to demonstrate the strengths and weaknesses of this particular approach including a 3D model of the deformation of Southern California which accounts for the major fault systems. L. Moresi and H.-B. Mühlhaus, Anisotropic viscous models of large-deformation Mohr-Coulomb failure. Philosophical Magazine, 86:3287-3305, 2006.

  7. 考虑剪切效应有限变形粘弹性板的动力稳定性%Dynamic Stability of Viscoelastic Plates with Finite Deformation and Shear Effects

    Institute of Scientific and Technical Information of China (English)

    李晶晶; 程昌钧; 张能辉

    2002-01-01

    Based on Reddy' s theory of plates with higher-order shear deformations and the Boltzmann superposition principles, thegoverning equations were established for dynamic stability of viscoelastic plates with finite deformations taking account of shear ef-fects. The Galerkin method was applied to simplify the set of equations. The numerical methods in nonlinear dynamics were used tosolve the simplified system. It could be seen that there are plenty of dynamic properties for this kind of viscoelastic plates under trans-verse harmonic loads. The influences of the transverse shear deformations and material parameter on the dynamic behavior of nonlin-ear viscoelastic plates were investigated.

  8. Computerized Processing and Graphic Representation of Viscoelastic Material Property Data.

    Science.gov (United States)

    1979-08-01

    NF=NF+1 IF(CHISQ - CHIST ) 420,230,230 180 DO 200 J1I,NVP IF(J-JH)190,200 ,190 190 IF(CHISQ-CHI(J))230,200,200 200 CONTINUE IF(CHISQ-CHI(JH...250,270,270 230 DO 240 J=1,NV 240 Z(JH,J)=ZSTAR(J) CHI (JH) = CHIST GO TO 440 250 DO 260 J=1,NV 260 Z(JH,J)=X(J) CHIi (JH )=CHISQ 270 DO 280 J=1,NV IF(MASK(J

  9. Crack Tip Parameters for Growing Cracks in Linear Viscoelastic Materials

    DEFF Research Database (Denmark)

    Brincker, Rune

    intensity factors. In the special case of a constant Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions are given both for a slowly growing crack and for a crack that is suddenly arrested at a point at the crack extension path. Two examples are studied; a stress boundary...... value problem, and a displacement boundary value problem. The results show that the stress intensity factors and the displacement intensity factors do not depend explicitly upon the velocity of the crack tip....

  10. Analyses of transverse vibrations of axially pretensioned viscoelastic nanobeams with small size and surface effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongqiang [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Pang, Miao, E-mail: ppmmzju@163.com [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Fan, Lifeng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China)

    2016-07-01

    The general governing equation for transverse vibration of an axially pretensioned viscoelastic nanobeam embedded in elastic substrate medium is formulated on the basis of the Bernoulli–Euler beam theory and the Kelvin model. The factors of structural damping, initial axial tension, surrounding medium, small size, surface elasticity and residual surface tension are incorporated in the formulation. The explicit expression is obtained for the vibrational frequency of a simply supported nanobeam. The impacts of these factors on the properties of transverse vibration of the nanobeam are discussed. It is demonstrated that the dependences of natural frequency on the structural damping, surrounding medium, small size, surface elasticity and residual surface tension are significant, whereas the effect of initial axial tension on the natural frequency is limited. In addition, it can be concluded that the energy dissipation of transverse vibration of the viscoelastic nanobeam is related to the small size effect and structural damping. - Highlights: • The properties of transverse vibration of a pretensioned embedded viscoelastic nanobeam is investigated. • The vibrational equation is formulated based on Bernoulli–Euler beam theory and Kelvin model. • Explicit expression for the complex vibrational frequency is obtained. • Small size and surface effects on vibrational frequency are discussed. • Influences of structural damping, initial axial tension and surrounding medium are analyzed.

  11. Assessing the viscoelasticity of chicken liver by OCE and a Rayleigh wave model

    Science.gov (United States)

    Han, Zhaolong; Liu, Chih-hao; Singh, Manmohan; Aglyamov, Salavat R.; Raghunathan, Raksha; Wu, Chen; Larin, Kirill V.

    2017-02-01

    This study investigates the feasibility of quantifying the viscoelasticity of soft tissues with a dynamic noncontact optical coherence elastography (OCE) technique coupled with a Rayleigh wave model. Spectral analysis of an air-pulse induced elastic wave as measured by OCE provided the elastic wave dispersion curve. The dispersion curve was fitted to an analytical solution of the Rayleigh wave model to determine the Young's modulus and shear viscosity of samples. In order to validate the method, 10% gelatin phantoms with and without different concentrations of oil were prepared and tested by OCE and mechanical testing. Results demonstrated that the elasticities as assessed by the Rayleigh wave model generally agreed well with mechanical testing, and that the viscosity in the phantom with oil samples was higher than the phantoms without oil, which is in agreement with the literature. Further, this method was applied to quantify the viscoelasticity of chicken liver. The Young's modulus was E=2.04+/-0.88 kPa and the shear viscosity was η=1.20+/-0.13 Pa·s with R2=0.96+/-0.04 between the OCE-measured dispersion curve and Rayleigh wave model analytical solution. Combining OCE and the Rayleigh wave model shows promise as an effective tool for noninvasively quantifying the viscoelasticity of soft tissues.

  12. Enzymatic digestion of articular cartilage results in viscoelasticity changes that are consistent with polymer dynamics mechanisms

    Directory of Open Access Journals (Sweden)

    June Ronald K

    2009-11-01

    Full Text Available Abstract Background Cartilage degeneration via osteoarthritis affects millions of elderly people worldwide, yet the specific contributions of matrix biopolymers toward cartilage viscoelastic properties remain unknown despite 30 years of research. Polymer dynamics theory may enable such an understanding, and predicts that cartilage stress-relaxation will proceed faster when the average polymer length is shortened. Methods This study tested whether the predictions of polymer dynamics were consistent with changes in cartilage mechanics caused by enzymatic digestion of specific cartilage extracellular matrix molecules. Bovine calf cartilage explants were cultured overnight before being immersed in type IV collagenase, bacterial hyaluronidase, or control solutions. Stress-relaxation and cyclical loading tests were performed after 0, 1, and 2 days of incubation. Results Stress-relaxation proceeded faster following enzymatic digestion by collagenase and bacterial hyaluronidase after 1 day of incubation (both p ≤ 0.01. The storage and loss moduli at frequencies of 1 Hz and above were smaller after 1 day of digestion by collagenase and bacterial hyaluronidase (all p ≤ 0.02. Conclusion These results demonstrate that enzymatic digestion alters cartilage viscoelastic properties in a manner consistent with polymer dynamics mechanisms. Future studies may expand the use of polymer dynamics as a microstructural model for understanding the contributions of specific matrix molecules toward tissue-level viscoelastic properties.

  13. Small-amplitude swimmers can self-propel faster in viscoelastic fluids.

    Science.gov (United States)

    Riley, Emily E; Lauga, Eric

    2015-10-01

    Many small organisms self-propel in viscous fluids using travelling wave-like deformations of their bodies or appendages. Examples include small nematodes moving through soil using whole-body undulations or spermatozoa swimming through mucus using flagellar waves. When self-propulsion occurs in a non-Newtonian fluid, one fundamental question is whether locomotion will occur faster or slower than in a Newtonian environment. Here we consider the general problem of swimming using small-amplitude periodic waves in a viscoelastic fluid described by the classical Oldroyd-B constitutive relationship. Using Taylor's swimming sheet model, we show that if all travelling waves move in the same direction, the locomotion speed of the organism is systematically decreased. However, if we allow waves to travel in two opposite directions, we show that this can lead to enhancement of the swimming speed, which is physically interpreted as due to asymmetric viscoelastic damping of waves with different frequencies. A change of the swimming direction is also possible. By analysing in detail the cases of swimming using two or three travelling waves, we demonstrate that swimming can be enhanced in a viscoelastic fluid for all Deborah numbers below a critical value or, for three waves or more, only for a finite, non-zero range of Deborah numbers, in which case a finite amount of elasticity in the fluid is required to increase the swimming speed.

  14. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    Science.gov (United States)

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters.

  15. Superpressure Balloon Design Using Nonlinear Viscoelasticity

    Science.gov (United States)

    Rand, James; Rand, James; Wakefield, David

    Stratospheric balloon platforms are used extensively by scientists for a variety of purposes. The typical balloon used today is the zero pressure natural shape fabricated from a thin film of linear low density polyethylene. This material has been found to possess a variety of desirable characteristics suitable to this environment. This film will remain ductile at very low temperatures which will permit it to develop large strains if necessary to satisfy equilibrium considerations. However, in order to achieve long duration flight without significant changes in altitude, the balloon should be pressurized to the extent necessary to maintain constant volume during typical variations in temperature. In the past, pressurized balloons were fabricated from other materials in order to achieve significant increases in strength. Thin films of polyester or polyimide have been used to make relatively small spheres capable of long duration flight. Unfortunately, these materials do not have the ductility of polyethylene at low temperature and are somewhat more fragile and subject to damage. In recent years various organizations have attempted to use the characteristic shape of a pumpkin to limit the stresses in a balloon envelope to that which can be accommodated by laminated fabric materials. While developing the design, analysis and construction techniques for this type of system, the use of polyethylene has been successfully demonstrated to provide a reliable envelope. This shape is achieved by using high strength members in the meridional direction to carry the very high loads generated by the pressure. These so called "tendons" have very low elongation and serve to limit the deformation of the film in that direction. However, earlier designs attempted to limit the stresses in the circumferential direction by using a lobe angle to control the stress. Unfortunately this has led to a number of stability problems with this type of balloon. In order to control the stability of

  16. Oscillatory and electrohydrodynamic instabilities in flow over a viscoelastic gel

    Indian Academy of Sciences (India)

    R M Thaokar

    2015-05-01

    The stability of oscillatory flows over compliant surfaces is studied analytically and numerically. The type of compliant surfaces studied is the incompressible viscoelastic gel model. The stability is determined using the Floquet analysis, where amplitude of perturbations at time intervals separated by one time period is examined to determine whether perturbations grow or decay. Oscillatory flows pas viscoelastic gels exhibit an instability in the limit of zero Reynolds number, and the transition amplitude of the oscillatory velocity increases with the frequency of oscillations. The transition amplitude has a minimum at a finite wavenumber for the viscoelastic gel model. The instability is found to depend strongly on the gel viscosity $\\eta_{g}$, and the effect of oscillations on the continuation of viscous modes at intermediate Reynolds number shows a complicated dependence on the oscillation frequency. Experimental studies are carried out on the stability of an oscillatory flow past a viscoelastic gel at zero Reynolds number, and these confirm the theoretical predictions.

  17. STABILITY ANALYSIS OF VISCOELASTIC CURVED PIPES CONVEYING FLUID

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-min; ZHANG Zhan-wu; ZHAO Feng-qun

    2005-01-01

    Based on the Hamilton's principle for elastic systems of changing mass, a differential equation of motion for viscoelastic curved pipes conveying fluid was derived using variational method, and the complex characteristic equation for the viscoelastic circular pipe conveying fluid was obtained by normalized power series method. The effects of dimensionless delay time on the variation relationship between dimensionless complex frequency of the clamped-clamped viscoelastic circular pipe conveying fluid with the Kelvin-Voigt model and dimensionless flow velocity were analyzed. For greater dimensionless delay time, the behavior of the viscoelastic pipe is that the first, second and third mode does not couple, while the pipe behaves divergent instability in the first and second order mode, then single-mode flutter takes place in the first order mode.

  18. Linear Viscoelasticity, Reptation, Chain Stretching and Constraint Release

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Schieber, Jay D.; Venerus, David C.

    2000-01-01

    A recently proposed self-consistent reptation model - alreadysuccessful at describing highly nonlinear shearing flows of manytypes using no adjustable parameters - is used here to interpretthe linear viscoelasticity of the same entangled polystyrenesolution. Using standard techniques, a relaxatio...

  19. Lid-driven cavity flow of viscoelastic liquids

    CERN Document Server

    Sousa, R G; Afonso, A M; Pinho, F T; Oliveira, P J; Morozov, A; Alves, M A

    2016-01-01

    The lid-driven cavity flow is a well-known benchmark problem for the validation of new numerical methods and techniques. In experimental and numerical studies with viscoelastic fluids in such lid-driven flows, purely-elastic instabilities have been shown to appear even at very low Reynolds numbers. A finite-volume viscoelastic code, using the log-conformation formulation, is used in this work to probe the effect of viscoelasticity on the appearance of such instabilities in two-dimensional lid-driven cavities for a wide range of aspect ratios (0.125 < height/length < 4.0), at different Deborah numbers under creeping-flow conditions and to understand the effects of regularization of the lid velocity. The effect of the viscoelasticity on the steady-state results and on the critical conditions for the onset of the elastic instabilities are described and compared to experimental results.

  20. Experimental characterisation of a novel viscoelastic rectifier design

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin; Szabo, Peter

    2012-01-01

    A planar microfluidic system with contractions and obstacles is characterized in terms of anisotropic flow resistance due to viscoelastic effects. The working mechanism is illustrated using streak photography, while the diodicity performance is quantified by pressure drop measurements. The point...

  1. Cyclic viscoelasticity and viscoplasticity of polypropylene/clay nanocomposites

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Hog Lejre, Anne-Lise

    2012-01-01

    Observations are reported in tensile relaxation tests under stretching and retraction on poly-propylene/clay nanocomposites with various contents of filler. A two-phase constitutive model is developed in cyclic viscoelasticity and viscoplasticity of hybrid nanocomposites. Adjustable parameters...

  2. Viscoelastic behavior of yellow pitahaya treated with 1-MCP

    National Research Council Canada - National Science Library

    Laura Sofia Torres Valenzuela; Alfredo Adolfo Ayala-Aponte; Liliana Serna

    2016-01-01

    .... The purpose of this work was to evaluate the effect of the application of 1-MCP on the viscoelastic properties of minimally processed yellow pitahaya during refrigeration storage, by using a stress relaxation test...

  3. Experimental observations of flow instabilities and rapid mixing of two dissimilar viscoelastic liquids

    Directory of Open Access Journals (Sweden)

    Hiong Yap Gan

    2012-12-01

    Full Text Available Viscoelastically induced flow instabilities, via a simple planar microchannel, were previously used to produce rapid mixing of two dissimilar polymeric liquids (i.e. at least a hundredfold different in shear viscosity even at a small Reynolds number. The unique advantage of this mixing technology is that viscoelastic liquids are readily found in chemical and biological samples like organic and polymeric liquids, blood and crowded proteins samples; their viscoelastic properties could be exploited. As such, an understanding of the underlying interactions will be important especially in rapid microfluidic mixing involving multiple-stream flow of complex (viscoelastic fluids in biological assays. Here, we use the same planar device to experimentally show that the elasticity ratio (i.e. the ratio of stored elastic energy to be relaxed between two liquids indeed plays a crucial role in the entire flow kinematics and the enhanced mixing. We demonstrate here that the polymer stretching dynamics generated in the upstream converging flow and the polymer relaxation events occurring in the downstream channel are not exclusively responsible for the transverse flow mixing, but the elasticity ratio is also equally important. The role of elasticity ratio for transverse flow instability and the associated enhanced mixing were illustrated based on experimental observations. A new parameter Deratio = Deside / Demain (i.e. the ratio of the Deborah number (De of the sidestream to the mainstream liquids is introduced to correlate the magnitude of energy discontinuity between the two liquids. A new Deratio-Demain operating space diagram was constructed to present the observation of the effects of both elasticity and energy discontinuity in a compact manner, and for a general classification of the states of flow development.

  4. Quasi-linear viscoelastic properties of the human medial patello-femoral ligament.

    Science.gov (United States)

    Criscenti, G; De Maria, C; Sebastiani, E; Tei, M; Placella, G; Speziali, A; Vozzi, G; Cerulli, G

    2015-12-16

    The evaluation of viscoelastic properties of human medial patello-femoral ligament is fundamental to understand its physiological function and contribution as stabilizer for the selection of the methods of repair and reconstruction and for the development of scaffolds with adequate mechanical properties. In this work, 12 human specimens were tested to evaluate the time- and history-dependent non linear viscoelastic properties of human medial patello-femoral ligament using the quasi-linear viscoelastic (QLV) theory formulated by Fung et al. (1972) and modified by Abramowitch and Woo (2004). The five constant of the QLV theory, used to describe the instantaneous elastic response and the reduced relaxation function on stress relaxation experiments, were successfully evaluated. It was found that the constant A was 1.21±0.96MPa and the dimensionless constant B was 26.03±4.16. The magnitude of viscous response, the constant C, was 0.11±0.02 and the initial and late relaxation time constants τ1 and τ2 were 6.32±1.76s and 903.47±504.73s respectively. The total stress relaxation was 32.7±4.7%. To validate our results, the obtained constants were used to evaluate peak stresses from a cyclic stress relaxation test on three different specimens. The theoretically predicted values fit the experimental ones demonstrating that the QLV theory could be used to evaluate the viscoelastic properties of the human medial patello-femoral ligament.

  5. Application of prestressed structural elements in the erection of heavy viscoelastic arched structures with the use of an additive technology

    Science.gov (United States)

    Manzhirov, A. V.; Parshin, D. A.

    2016-11-01

    The process of erection an object under the action of gravity forces in the absence of additional loads is studied together with the technology of application of prestressed structure elements. The mathematically two-dimensional engineering problem of mechanics of gradual building of a heavy semicircular vault from a prestressed viscoelastic homogeneously aging material is solved analytically. The vault fixation on a rigid horizontal base by sliding fixation, which ensures continuous smooth contact between the vault foot and the base, is considered. The performed computations permit demonstrating high efficiency of preliminary stress creation in the material elements added to the vault in the process of its building in order to control its technological stress state. It is shown that this measure permits significantly decreasing the final values of the separating contact stresses on the foot of the built vault and obtaining the final state of the whole structure which is safer with respect to the level of tensile stresses than that obtain by using unstressed elements.

  6. Simulation of transient viscoelastic flow with second order time integration

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1995-01-01

    The Lagrangian Integral Method (LIM) for the simulation of time-dependent flow of viscoelastic fluids is extended to second order accuracy in the time integration. The method is tested on the established sphere in a cylinder benchmark problem.......The Lagrangian Integral Method (LIM) for the simulation of time-dependent flow of viscoelastic fluids is extended to second order accuracy in the time integration. The method is tested on the established sphere in a cylinder benchmark problem....

  7. Micro-mechanisms of residual oil mobilization by viscoelastic fluids

    Institute of Scientific and Technical Information of China (English)

    Zhang Lijuan; Yue Xiang'an; Guo Fenqiao

    2008-01-01

    Four typical types of residual oil, residual oil trapped in dead ends, oil ganglia in pore throats,oil at pore comers and oil film adhered to pore walls, were studied. According to main pore structure characteristics and the fundamental morphological features of residual oil, four displacement models for residual oil were proposed, in which pore-scale flow behavior of viscoelastic fluid was analyzed by a numerical method and micro-mechanisms for mobilization of residual oil were discussed. Calculated results indicate that the viscoelastic effect enhances micro displacement efficiency and increases swept volume. For residual oil trapped in dead ends, the flow field of viscoelastic fluid is developed in dead ends more deeply, resulting in more contact with oil by the displacing fluid, and consequently increasing swept volume. In addition, intense viscoelastic vortex has great stress, under which residual oil becomes small oil ganglia, and finally be carried into main channels. For residual oil at pore throats, its displacement mechanisms are similar to the oil trapped in dead ends. Vortices are developed in the depths of the throats and oil ganglia become smaller. Besides, viscoelastic fluid causes higher pressure drop on oil ganglia, as a driving force, which can overcome capillary force, consequently, flow direction can be changed and the displacing fluid enter smaller throats. For oil at pore comers, viscoelastic fluid can enhance displacement efficiency as a result of greater velocity and stress near the comers. For residual oil adhered to pore wall,viscoelastic fluid can provide a greater displacing force on the interface between viscoelastic fluid and oil,thus, making it easier to exceed the minimum interfacial tension for mobilizing the oil film.

  8. Viscoelastic assessment of anal canal function using acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2012-01-01

    Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis....

  9. FEM simulation of non-isothermal viscoelastic fluids

    OpenAIRE

    Damanik, Hogenrich

    2011-01-01

    Thermo-mechanically coupled transport processes of viscoelastic fluids are important components in many applications in mechanical and chemical engineering. The aim of this thesis is the development of efficient numerical techniques for incompressible, non-isothermal, viscoelastic fluids which take into account the multiscale behaviour in space and time, the multiphase character and significant geometrical changes. Based on special CFD techniques including adaptivity/local grid alignment in s...

  10. MECHANISM FOR VISCOELASTIC POLYMER SOLUTION PERCOLATING THROUGH POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-juan; YUE Xiang-an

    2007-01-01

    The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure drop and flow rate is developed, viscoelasticity and throat size are found to be two main factors in high flow resistance. According to pore throat model, 2-D stochastic channel bundle is put forward to model porous media, which is composed of pore throat models in series - parallel connection with size and length accord to Haring - Greenkorn stochastic distribution. Percolation model of viscoelastic fluid is developed on the basis of Darcy equation and pressure drop vs. flow rate relation in 2-D stochastic channel bundle. Results indicate that the seepage ability of viscoelastic polymer solution decreases with the increase of viscoelasticity, injection rate, and heterogeneity as well as the decrease of mean pore size of porous media. The high pressure drop of viscoelastic fluid at the connection of pore to throat plays a great role in its anomalous high flow resistance through porous media.

  11. Dynamic Behaviors of Axially Moving Viscoelastic Plate with Varying Thicknessn

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yinfeng; WANG Zhongmin

    2009-01-01

    Structural components of varying thickness draw increasing attention these days due to economy and light-weight considerations. In view of the absence of research in vibration analysis of viscoelastic plate with varying thickness, this study devotes to investigate the dynamic behaviors of axially moving viscoelastic plate with varying thickness. Based on the thin plate theory and the two-dimensional viscoelastic differential constitutive relation, the differential equation of motion of the axially moving viscoelastic rectangular plate is derived, the plate constituted by Kelvin-Voigt model has linearly varying thickness in the y-direction. The dimensionless complex frequencies of axially moving viscoelastic plate with four edges simply supported are calculated by the differential quadrature method, curves of real parts and imaginary parts of the first three-order dimensionless complex frequencies versus dimensionless moving speed are obtained, the effects of the aspect ratio, thickness ratio, the dimensionless moving speed and delay time on the dynamic behaviors of the axially moving viscoelastic rectangular plate with varying thickness are analyzed. When other parameters keep constant, with the decrease of thickness ratio, the real parts of the first three-order natural frequencies decrease, and the critical divergence speeds of various modes decrease too, moreover, whether the delay time is large or small, the frequencies are all complex numbers.

  12. Visco-Elastic Properties of Sodium Hyaluronate Solutions

    Science.gov (United States)

    Kulicke, Werner-Michael; Meyer, Fabian; Bingöl, Ali Ö.; Lohmann, Derek

    2008-07-01

    Sodium Hyaluronate (NaHA) is a member of the glycosaminoglycans and is present in the human organism as part of the synovial fluid and the vitreous body. HA is mainly commercialized as sodium or potassium salt. It can be extracted from cockscombs or can be produced by bacterial fermentation ensuring a low protein content. Because of its natural origin and toxicological harmlessness, NaHA is used to a great extent for pharmaceutical and cosmetic products. In medical applications, NaHA is already being used as a component of flushing and stabilizing fluids in the treatment of eye cataract and as a surrogate for natural synovial fluid. Another growing domain in the commercial utilization of NaHA is the field of skin care products like dermal fillers or moisturizers. In this spectrum, NaHA is used in dilute over semidilute up to concentrated (0viscoelastic behavior. We therefore present in this contribution the results of a comprehensive investigation of the viscous and elastic material functions of different NaHA samples. This includes, besides shear flow and oscillatory experiments, the performance of rheo-optical measurements in order to determine the elastic component in the range of low shear rates and low concentrations.

  13. Viscoelastic Behavior and Adhesion of Ionic Alginate Hydrogels

    Science.gov (United States)

    Webber, Rebecca; Shull, Kenneth

    2004-03-01

    Transient networks, polymer gels in which the physical crosslinks can be broken and recovered, have been of recent interest to the scientific community, especially due to their potential as soft, dissipative materials for biomedical applications. Alginates, naturally derived linear copolymers of mannuronic and guluronic acid residues, can form hydrogels in the presence of divalent ions. Alginate gels have been studied extensively and are useful model systems to elucidate the mechanisms behind the mechanical behavior of reversibly associating polymers. In this study, alginate hydrogels were formed by the addition of Ca ions to an aqueous solution of sodium alginate. The rheological and mechanical behavior of the hydrogels was studied using an axisymmetric probe tack apparatus with stress relaxation and cyclic movement capabilities. These hydrogels behave elastically at small strains and become viscoelastic at large strains, supporting transient network theories. During cyclic loading tests, it was found that the alginate hydrogels exhibit time-dependent adhesion. The effects of humidity, aging and ion exchange on the gel properties were also investigated.

  14. Tidal spin down rates of homogeneous triaxial viscoelastic bodies

    CERN Document Server

    Quillen, Alice C; Frouard, Julien; Ragozzine, Darin

    2016-01-01

    We use simulations to measure the sensitivity of the tidal spin down rate of a homogeneous triaxial ellipsoid to its axis ratios by comparing the drift rate in orbital semi-major axis to that of a spherical body with the same mass, volume and simulated rheology. We use a mass-spring model approximating a viscoelastic body spinning around its shortest body axis, with spin aligned with orbital spin axis, and in circular orbit about a point mass. The torque or drift rate can be estimated from that predicted for a sphere with equivalent volume if multiplied by $0.5 (1 + b^4/a^4)(b/a)^{-4/3} (c/a)^{-\\alpha_c}$ where $b/a$ and $c/a$ are the body axis ratios and index $\\alpha_c \\approx 1.1$ is consistent with the random lattice mass spring model simulations but $\\alpha_c \\sim 4/3$ suggested by scaling estimates. A homogeneous body with axis ratios 0.5 and and 0.8, like Haumea, has orbital semi-major axis drift rate about twice as fast as a spherical body with the same mass, volume and material properties. A simulati...

  15. Tested Demonstrations.

    Science.gov (United States)

    Sands, Robert; And Others

    1982-01-01

    Procedures for two demonstrations are provided. The solubility of ammonia gas in water is demonstrated by introducing water into a closed can filled with the gas, collapsing the can. The second demonstration relates scale of standard reduction potentials to observed behavior of metals in reactions with hydrogen to produce hydrogen gas. (Author/JN)

  16. Design and Development of a Sub-Zero Fluid System for Demonstration of Orion's Phase Change Material Heat Exchangers on ISS

    Science.gov (United States)

    Sheth, Rubik B.; Ahlstrom, Thomas D.; Le, Hung V.

    2016-01-01

    NASA's Orion Multipurpose Crew Vehicle's Exploration Mission 2 is expected to loiter in Lunar orbit for a relatively long period of time. In low Lunar orbit (LLO) the thermal environment is cyclic - extremely cold in the eclipse and relatively hot near the subsolar point. Phase change material heat exchangers (PCM HXs) are the best option for long term missions in these environments. A PCM HX allows a vehicle to store excess waste energy by thawing a phase change material such as n-pentadecane wax. During portions of the orbit that are extremely cold, the excess energy is rejected, resolidifying the wax. Due to the inherent risk of compromising the heat exchanger during multiple freeze and thaw cycles, a unique payload was designed for the International Space Station to test and demonstration the functions of a PCM HX. The payload incorporates the use of a pumped fluid system and a thermoelectric heat exchanger to promote the freezing and thawing of the PCM HX. This paper shall review the design and development undertaken to build such a system.

  17. The physics of aerobreakup. III. Viscoelastic liquids

    Science.gov (United States)

    Theofanous, T. G.; Mitkin, V. V.; Ng, C. L.

    2013-03-01

    We extend the work of Theofanous and Li [Phys. Fluids 20, 052103 (2008), 10.1063/1.2907989] on aerobreakup physics of water-like, low viscosity liquid drops, and of Theofanous et al. [Phys. Fluids 24, 022104 (2012), 10.1063/1.3680867] for Newtonian liquids of any viscosity, to polymer-thickened liquids over wide ranges of viscoelasticity. The scope includes the full range of aerodynamics from near incompressible to supersonic flows and visualizations are recorded with μs/μm resolutions. The key physics of Rayleigh-Taylor piercing (RTP, first criticality) and of Shear-Induced Entrainment (SIE, second criticality) are verified and quantified on the same scaling approach as in our previous work, but with modifications due to the shear-thinning and elastic nature of these liquids. The same holds for the onset of surface waves by Kelvin-Helmholtz instability, which is a key attribute of the second criticality. However, in the present case, even at conditions well-past the first criticality, there is no breakup (particulation) to be found; instead the apparently unstable (extensively stretched into sheets) drops rebound elastically to reconstitute an integral mass. Such a resistance to breakup is found also past the second criticality, now with extensive filament formation that maintain a significant degree of cohesiveness, until the gas-dynamic pressure is high enough to cause filament ruptures. Thereby we define the onset of a third criticality peculiar to viscoelastic liquids—SIER, for SIE with ruptures. Past this criticality the extent of particulation increases and the characteristic dimension of fragments generated decreases in a more or less continuous fashion with increasing dynamic pressure. We outline a rheology-based scaling approach for these elasticity-modulated phenomena and suggest a path to similitude (with polymer and solvent variations) in terms of a critical rupture stress that can be measured independently. The advanced stages of breakup and

  18. An investigation on the motion and deformation of viscoelastic drops descending in another viscoelastic media

    Science.gov (United States)

    Davoodi, M.; Norouzi, M.

    2016-10-01

    In the present study, an investigation of the motion and shape deformation of drops is carried out in creeping flow to highlight the effect of viscoelastic properties on the problem. A perturbation method is employed to derive an analytical solution for the general case that both interior and exterior fluids are viscoelastic, both fluids obeying the Giesekus model. An experiment is also performed for the limiting case of an immiscible drop of a 0.03% (w/w) polyacrylamide in an 80:20 glycerol/water solution falling through a viscous Newtonian silicon oil (410 cP polydimethylsiloxane oil) in order to check the accuracy of the analytical solution. It is shown that the addition of elastic properties to the interior fluid may cause a decrease in the terminal velocity of the droplet while an increase in the elastic properties of the exterior fluid results in the opposite behavior and increases the terminal velocity. The well-known spherical shape of creeping drops for Newtonian fluids is modified by elasticity into either prolate or oblate shapes. Using the analytical solution, it is shown that normal stresses play a key role on the final steady-state shape of the drops. To keep the drops spherical in viscoelastic phases, it is shown that the effect of normal stresses on the interior and exterior media can cancel out under certain conditions. The results presented here may be of interest to industries dealing with petroleum and medicine processing, paint and power-plant related fields where knowledge of the shape and terminal velocity of descending droplets is of great importance.

  19. Rotordynamic analysis using the Complex Transfer Matrix: An application to elastomer supports using the viscoelastic correspondence principle

    Science.gov (United States)

    Varney, Philip; Green, Itzhak

    2014-11-01

    Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM

  20. Evaluation of skin viscoelasticity in type 1 neurofibromatosis patients.

    Science.gov (United States)

    Mimoun, N; Razzouq, N; Wolkenstein, P; Moreno, J C; Marty, J P; Lantieri, L; Astier, A; Paul, M

    2006-01-01

    Neurofibromatosis type 1 (NF1) is a frequent autosomal dominant disease characterized by cutaneous benign tumors called neurofibromas. Surgery takes an important place in managing these skin disorders. However, skin distensibility and softness of NF1 patients quickly offset the surgical benefit. The aim of this study was to determine the rheological behavior of neurofibromas and compare it with healthy skin in an attempt to comprehend what leads to this phenomenon. Thirty patients were admitted to this study. A group of 24 healthy control subjects was also included. The skin elasticity was assessed by a noninvasive in vivo suction device (Cutometer) including 5 consecutive suctions. The assessments were performed on neurofibroma skin, the supposedly healthy skin around neurofibromas and the healthy skin of control subjects. The extensibility at the first and the fifth traction in NF1 patients (neurofibromas and the supposedly healthy skin around it) was significantly different compared to the healthy skin of control subjects. The viscoelastic parameters obtained from the neurofibromas were significantly different in comparison to those obtained from the supposedly healthy skin of NF1 patients and the healthy skin of control subjects. The rheological profiles of the neurofibromas and the apparent healthy skin of NF1 patients demonstrated a hyperextensibility behavior, but in neurofibromas, the skin was unable to return to its initial position at the end of the stretch.