WorldWideScience

Sample records for demembranated cardiac muscle

  1. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  2. Cross-talk between cardiac muscle and coronary vasculature.

    Science.gov (United States)

    Westerhof, Nico; Boer, Christa; Lamberts, Regis R; Sipkema, Pieter

    2006-10-01

    The cardiac muscle and the coronary vasculature are in close proximity to each other, and a two-way interaction, called cross-talk, exists. Here we focus on the mechanical aspects of cross-talk including the role of the extracellular matrix. Cardiac muscle affects the coronary vasculature. In diastole, the effect of the cardiac muscle on the coronary vasculature depends on the (changes in) muscle length but appears to be small. In systole, coronary artery inflow is impeded, or even reversed, and venous outflow is augmented. These systolic effects are explained by two mechanisms. The waterfall model and the intramyocardial pump model are based on an intramyocardial pressure, assumed to be proportional to ventricular pressure. They explain the global effects of contraction on coronary flow and the effects of contraction in the layers of the heart wall. The varying elastance model, the muscle shortening and thickening model, and the vascular deformation model are based on direct contact between muscles and vessels. They predict global effects as well as differences on flow in layers and flow heterogeneity due to contraction. The relative contributions of these two mechanisms depend on the wall layer (epi- or endocardial) and type of contraction (isovolumic or shortening). Intramyocardial pressure results from (local) muscle contraction and to what extent the interstitial cavity contracts isovolumically. This explains why small arterioles and venules do not collapse in systole. Coronary vasculature affects the cardiac muscle. In diastole, at physiological ventricular volumes, an increase in coronary perfusion pressure increases ventricular stiffness, but the effect is small. In systole, there are two mechanisms by which coronary perfusion affects cardiac contractility. Increased perfusion pressure increases microvascular volume, thereby opening stretch-activated ion channels, resulting in an increased intracellular Ca2+ transient, which is followed by an increase in Ca

  3. ATPase activity and contraction in porcine and human cardiac muscle

    Czech Academy of Sciences Publication Activity Database

    Griffiths, P. J.; Isackson, H.; Redwood, C.; Marston, S.; Pelc, Radek; Funari, S.; Watkins, H.; Ashley, C. C.

    2008-01-01

    Roč. 29, 6-8 (2008), s. 277-277 ISSN 0142-4319. [European Muscle Conference of the European Society for Muscle Research /37./. 13.09.2008-16.09.2008, Oxford] R&D Projects: GA MŠk(CZ) LC06063 Grant - others:EC(XE) RII3-CT-2004-506008 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * ATP-asa * cardiac muscle * molecular motor Subject RIV: ED - Physiology

  4. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A [Hijiyanna Park, Hiroshima JP; Nakashima, N; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction; (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically; and apparently is not associated with any cardiac abnormality; and (3) focal cardiac myocytolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by non-bacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  5. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A; Nakashima, T; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction, (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically, and apparently is not associated with any cardiac abnormality, and (3) focal cardiac myochtolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by nonbacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  6. Engineering Cardiac Muscle Tissue: A Maturating Field of Research.

    Science.gov (United States)

    Weinberger, Florian; Mannhardt, Ingra; Eschenhagen, Thomas

    2017-04-28

    Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair. © 2017 American Heart Association, Inc.

  7. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    Science.gov (United States)

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii

  8. A novel dynamic cardiac simulator utilizing pneumatic artificial muscle.

    Science.gov (United States)

    Liu, Hao; Yan, Jie; Zhou, Yuanyuan; Li, Hongyi; Li, Changji

    2013-01-01

    With the development of methods and skills of minimally invasive surgeries, equipments for doctors' training and practicing are in high demands. Especially for the cardiovascular surgeries, operators are requested to be familiar with the surgical environment of a beating heart. In this paper, we present a new dynamic cardiac simulator utilizing pneumatic artificial muscle to realize heartbeat. It's an artificial left ventricular of which the inner chamber is made of thermoplastic elastomers (TPE) with an anatomical structure of the real human heart. It is covered by another layer of material forming the artificial muscle which actuates the systole and diastole uniformly and omnidirectionally as the cardiac muscle does. Preliminary experiments were conducted to evaluate the performance of the simulator. The results indicated that the pressure at the terminal of the aorta could be controlled within the range of normal human systolic pressure, which quantitatively validated the new actuating mode of the heart-beating is effective.

  9. Cardiac cachexia and muscle wasting: definition, physiopathology, and clinical consequences

    Directory of Open Access Journals (Sweden)

    Okoshi MP

    2014-11-01

    Full Text Available Marina P Okoshi,1 Fernando G Romeiro,1 Paula F Martinez,1,2 Silvio A Oliveira Jr,1,2 Bertha F Polegato,1 Katashi Okoshi11Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Sao Paulo, Brazil; 2School of Physiotherapy, Federal University of Mato Grosso do Sul, Campo Grande, BrazilAbstract: Cachexia and muscle wasting are frequently observed in heart failure patients. Cachexia is a predictor of reduced survival, independent of important parameters such as age, heart failure functional class, and functional capacity. Muscle and fat wasting can also predict adverse outcome during cardiac failure. Only more recently were these conditions defined in International Consensus. Considering that heart failure is an inflammatory disease, cardiac cachexia has been diagnosed by finding a body weight loss >5%, in the absence of other diseases and independent of other criteria. Muscle wasting has been defined as lean appendicular mass corrected for height squared of 2 standard deviations or more below the mean for healthy individuals between 20 years and 30 years old from the same ethnic group. The etiology of heart failure-associated cachexia and muscle wasting is multifactorial, and the underlying physiopathological mechanisms are not completely understood. The most important factors are reduced food intake, gastrointestinal alterations, immunological activation, neurohormonal abnormalities, and an imbalance between anabolic and catabolic processes. Cachexia and muscle wasting have clinical consequences in several organs and systems including the gastrointestinal and erythropoietic systems, and the heart, previously affected by the primary disease. We hope that a better understanding of the mechanisms involved in their physiopathology will allow the development of pharmacological and nonpharmacological therapies to effectively prevent and treat heart failure-induced cachexia and muscle wasting before significant body

  10. Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle.

    Science.gov (United States)

    Carter, W J; Van Der Weijden Benjamin, W S; Faas, F H

    1980-10-01

    Since experimental hyperthyroidism reduces skeletal muscle mass while simultaneously increasing cardiac muscle mass, the effect of hyperthyroidism on muscle protein degradation was compared in skeletal and cardiac muscle. Pulse-labeling studies using (3H) leucine and (14C) carboxyl labeled aspartate and glutamate were carried out. Hyperthyroidism caused a 25%-29% increase in protein breakdown in both sarcoplasmic and myofibrillar fractions of skeletal muscle. Increased muscle protein degradation may be a major factor in the development of skeletal muscle wasting and weakness in hyperthyroidism. In contrast, protein breakdown appeared to be reduced 22% in the sarcoplasmic fraction of hyperthyroid heart muscle and was unchanged in the myofibrillar fraction. Possible reasons for the contrasting effects of hyperthyroidism on skeletal and cardiac muscle include increased sensitivity of the hyperthyroid heart to catecholamines, increased cardiac work caused by the hemodynamic effects of hyperthyroidism, and a different direct effect of thyroid hormone at the nuclear level in cardiac as opposed to skeletal muscle.

  11. Redox regulation of calcium release in skeletal and cardiac muscle

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2002-01-01

    Full Text Available In skeletal and cardiac muscle cells, specific isoforms of the Ryanodine receptor channels mediate Ca2+ release from the sarcoplasmic reticulum. These channels are highly susceptible to redox modifications, which regulate channel activity. In this work, we studied the effects of Ca2+ (endogenous agonist and Mg2+ (endogenous inhibitor on the kinetics of Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal or cardiac mammalian muscle. Native skeletal vesicles exhibited maximal stimulation of release kinetics by 10-20 µM [Ca2+], whereas in native cardiac vesicles, maximal stimulation of release required only 1 µM [Ca2+]. In 10 µM [Ca2+], free [Mg2+] < 0.1 mM produced marked inhibition of release from skeletal vesicles but free [Mg2+] ­ 0.8 mM did not affect release from cardiac vesicles. Incubation of skeletal or cardiac vesicles with the oxidant thimerosal increased their susceptibility to stimulation by Ca2+ and decreased the inhibitory effect of Mg2+ in skeletal vesicles. Sulfhydryl-reducing agents fully reversed the effects of thimerosal. The endogenous redox species, glutathione disulfide and S-nitrosoglutathione, also stimulated release from skeletal sarcoplasmic reticulum vesicles. In 10 µM [Ca2+], 35S-nitrosoglutathione labeled a protein fraction enriched in release channels through S-glutathiolation. Free [Mg2+] 1 mM or decreasing free [Ca2+] to the nM range prevented this reaction. Possible physiological and pathological consequences of redox modification of release channels on Ca2+ signaling in heart and muscle cells are discussed

  12. Placental Growth Factor Promotes Cardiac Muscle Repair via Enhanced Neovascularization

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2015-06-01

    Full Text Available Background/Aims: Transplantation of mesenchymal stem cells (MSCs improves post-injury cardiac muscle repair using ill-defined mechanisms. Recently, we have shown that production and secretion of placental growth factor (PLGF by MSCs play a critical role in the MSCs-mediated post-injury cardiac muscle repair. In this study, we addressed the underlying molecular mechanisms, focusing specifically on the interactions between MSCs, macrophages and endothelial cells. Methods: We isolated macrophages (BM-MΦ from mouse bone-marrow derived cells based on F4/80 expression by flow cytometry. BM-MΦ were treated with different doses of PLGF. Cell number was analyzed by a MTT assay. Macrophage polarization was examined based on CD206 expression by flow cytometry. PLGF levels in macrophage subpopulations were analyzed by RT-qPCR and ELISA. Effects of macrophages on vascularization were evaluated by a collagen gel assay using Human umbilical vein endothelial cells (HUVECs co-cultured with PLGF-treated macrophages. Results: PLGF did not increase macrophage number, but dose-dependently polarized macrophages into a M2 subpopulation. M2 macrophages expressed high levels of PLGF. PLGF-polarized M2 macrophages significantly increased tubular structures in the collagen gel assay. Conclusion: Our data suggest that MSCs-derived PLGF may induce macrophage polarization into a M2 subpopulation, which in turn releases more PLGF to promote local neovascularization for augmenting post-injury cardiac muscle repair. This study thus sheds novel light on the role of PLGF in cardiac muscle regeneration.

  13. Cardiac muscle: a miracle of creation.

    Science.gov (United States)

    Seely, S

    1989-09-01

    The paper proposes that energy conversion in muscle is a two-step process, chemical energy being first converted into electrical energy which is then converted into mechanical work. The chemo-electrical transducers are, in effect, minute voltaic cells--more precisely calcium-magnesium cells--with the magnesium electrodes on myosin heads and the calcium electrodes on the C subunits of troponin molecules associated with actin filaments. These cells are established when, after the passage of an action potential, calcium ions are admitted to the sarcomere. In an energy-consuming process, calcium ions are bound to troponin molecules, the energy for the process being supplied by hydrolysis of adenosine triphosphate. The electro-mechanical transducer utilises the electrostatic field established between the oppositely charged electrodes of the voltaic cell. As the two are pulled towards each other, doing mechanical work, energy is supplied by the voltaic cells. In the course of this action, calcium ions go back into solution. The action ceases when, after the passage of an action potential, calcium ions are withdrawn into the sarcoplasmic reticulum.

  14. In utero undernutrition programs skeletal and cardiac muscle metabolism

    Directory of Open Access Journals (Sweden)

    Brittany eBeauchamp

    2016-01-01

    Full Text Available In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease.

  15. Multiple skeletal muscle metastases revealing a cardiac intimal sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Crombe, Amandine [Institut Bergonie, Department of Radiology, Bordeaux (France); Lintingre, Pierre-Francois; Dallaudiere, Benjamin [Clinique du Sport de Bordeaux-Merignac, Department of Musculoskeletal Radiology, Merignac (France); Le Loarer, Francois [Institut Bergonie, Department of Pathology, Bordeaux (France); Lachatre, Denis [Dupuytren University Hospital, Department of Radiology, Limoges (France)

    2018-01-15

    We report the case of a 59-year-old female with progressive bilateral painful swelling of the thighs. MRI revealed multiple intramuscular necrotic masses with similar morphologic patterns. Whole-body CT and 18-FDG PET-CT scans demonstrated additional hypermetabolic muscular masses and a lobulated lesion within the left atrial cavity. As biopsy of a muscular mass was compatible with a poorly differentiated sarcoma with MDM2 oncogene amplification, two diagnoses were discussed: a dedifferentiated liposarcoma with muscle and heart metastases or a primary cardiac sarcoma, mainly a cardiac intimal sarcoma, with muscular metastases, which was finally confirmed by array-comparative genomic hybridization (aCGH) in a sarcoma reference center. This case emphasizes the potential for intimal sarcoma to disseminate in skeletal muscle prior to any other organ and the need for a genomic approach in addition to classical radiopathologic analyses to distinguish primary from secondary locations facing simultaneous tumors of the heart and skeletal muscles with MDM2 amplification. (orig.)

  16. Effects of growth hormone on morphology of cardiac muscle and skeletal muscle and hormone levels in rats

    International Nuclear Information System (INIS)

    Yang Ping; Liu Cong; Meng Fanbo; Zhu Jinming; Ni Jinsong; Zhou Hong; Tang Yubo

    2005-01-01

    Objective: To study the effects of growth hormone (GH) on morphology of cardiac muscle and skeletal muscle and hormone levels in Wistar rats. Methods: The GH was given with subcutaneous injection for 15 days, the level of serum GH was determined by radiation-immune method; the body weight and the ratio of organ weight to body weight were determined; the cell appearances of cardiac muscle and skeletal muscle were observed under microscope. the control group was set up. Results; The level of serum GH and rat body weight in experimental group were obviously higher than that in the control group, but the ratio of organ weight to body weight was not obviously different in two groups; musculature hypertrophy and cell nucleolus increasing were observed under microscopy, there were no capillary vessel hyperplasia and inflammatory soakage. Conclusion: GH can induce hypertrophy of cardiac muscle cells and skeletal muscle cells but not interstitial proliferation. (authors)

  17. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats

    Directory of Open Access Journals (Sweden)

    Fabricio Furtado Vieira

    Full Text Available Abstract Background: Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX in the cardiac muscle. Objectives: To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. Methods: We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt and relaxation (-df/dt, contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP, and contraction force induced by caffeine. Results: In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05, increased +df/dt and -df/dt (p < 0.001, low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001, reduction of the maximum force in caffeine-induced contraction (p < 0.003, and decreased total contraction time (p < 0.001. The maximal contraction force did not differ significantly between groups (p = 0.973. Conclusion: We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  18. Major vault protein in cardiac and smooth muscle.

    Science.gov (United States)

    Shults, Nataliia V; Das, Dividutta; Suzuki, Yuichiro J

    Major vault protein (MVP) is the major component of the vault particle whose functions are not well understood. One proposed function of the vault is to serve as a mechanism of drug transport, which confers drug resistance in cancer cells. We show that MVP can be found in cardiac and smooth muscle. In human airway smooth muscle cells, knocking down MVP was found to cause cell death, suggesting that MVP serves as a cell survival factor. Further, our laboratory found that MVP is S-glutathionylated in response to ligand/receptor-mediated cell signaling. The S-glutathionylation of MVP appears to regulate protein-protein interactions between MVP and a protein called myosin heavy chain 9 (MYH9). Through MYH9 and Vsp34, MVP may form a complex with Beclin-1 that regulates autophagic cell death. In pulmonary vascular smooth muscle, proteasome inhibition promotes the ubiquitination of MVP, which may function as a mechanism of proteasome inhibition-mediated cell death. Investigating the functions and the regulatory mechanisms of MVP and vault particles is an exciting new area of research in cardiovascular/pulmonary pathophysiology.

  19. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats.

    Science.gov (United States)

    Vieira, Fabricio Furtado; Olivoto, Robson Ruiz; Silva, Priscyla Oliveira da; Francisco, Julio Cesar; Fogaça, Rosalvo Tadeu Hochmuller

    2016-12-01

    Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  20. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    Science.gov (United States)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  1. The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W

    2016-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.

  2. Tissue-specific and substrate-specific mitochondrial bioenergetics in feline cardiac and skeletal muscles

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen

    2015-01-01

    fibers. Biopsies of left ventricular cardiac muscle and soleus muscle, a type I-rich oxidative skeletal muscle, were obtained from 15 healthy domestic cats. Enzymatic activity of citrate synthase (CS), a biomarker of mitochondrial content, was measured. Mitochondrial OXPHOS capacity with various kinds...

  3. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments.

    Science.gov (United States)

    Greiwe, L; Vinck, M; Suhr, F

    2016-05-01

    Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  4. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles.

    Science.gov (United States)

    Marrelli, Mauro Toledo; Brotto, Marco

    2016-11-02

    Malaria remains one of the most important infectious diseases in the world, being a significant public health problem associated with poverty and it is one of the main obstacles to the economy of an endemic country. Among the several complications, the effects of malaria seem to target the skeletal muscle system, leading to symptoms, such as muscle aches, muscle contractures, muscle fatigue, muscle pain, and muscle weakness. Malaria cause also parasitic coronary artery occlusion. This article reviews the current knowledge regarding the effect of malaria disease and the anti-malarial drugs on skeletal and cardiac muscles. Research articles and case report publications that addressed aspects that are important for understanding the involvement of malaria parasites and anti-malarial therapies affecting skeletal and cardiac muscles were analysed and their findings summarized. Sequestration of red blood cells, increased levels of serum creatine kinase and reduced muscle content of essential contractile proteins are some of the potential biomarkers of the damage levels of skeletal and cardiac muscles. These biomarkers might be useful for prevention of complications and determining the effectiveness of interventions designed to protect cardiac and skeletal muscles from malaria-induced damage.

  5. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting

    Science.gov (United States)

    Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.

    2011-01-01

    A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824

  6. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages.

    Science.gov (United States)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  7. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages

    International Nuclear Information System (INIS)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J.; Fernandez, Anne

    2008-01-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal β III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders

  8. Postoperative loss of skeletal muscle mass, complications and quality of life in patients undergoing cardiac surgery

    NARCIS (Netherlands)

    van Venrooij, Lenny M. W.; Verberne, Hein J.; de Vos, Rien; Borgmeijer-Hoelen, Mieke M. M. J.; van Leeuwen, Paul A. M.; de Mol, Bas A. J. M.

    2012-01-01

    Objective: The objective of this study was to describe postoperative undernutrition in terms of postoperative losses of appendicular skeletal muscle mass (ASMM) with respect to complications, quality of life, readmission, and 1-y mortality after cardiac surgery. Methods: Patients undergoing cardiac

  9. Accessory papillary muscles and papillary muscle hypertrophy are associated with sudden cardiac arrest of unknown cause.

    Science.gov (United States)

    Uhm, Jae-Sun; Youn, Jong-Chan; Lee, Hye-Jeong; Park, Junbeom; Park, Jin-Kyu; Shim, Chi Young; Hong, Geu-Ru; Joung, Boyoung; Pak, Hui-Nam; Lee, Moon-Hyoung

    2015-10-15

    The present study was performed for elucidating the associations between the morphology of the papillary muscles (PMs) and sudden cardiac arrest (SCA). We retrospectively reviewed history, laboratory data, electrocardiography, echocardiography, coronary angiography, and cardiac CT/MRI for 190 patients with SCA. The prevalence of accessory PMs and PM hypertrophy in patients with SCA of unknown cause was compared with that in patients with SCA of known causes and 98 age- and sex-matched patients without SCA. An accessory PM was defined as a PM with origins separated from the anterolateral and posteromedial PMs, or a PM that branched into two or three bellies at the base of the anterolateral or posteromedial PM. PM hypertrophy was defined as at least one of the two PMs having a diameter of ≥1.1cm. In 49 patients (age 49.9±15.9years; 38 men) the cause of SCA was unknown, whereas 141 (age 54.2±16.6years; 121 men) had a known cause. The prevalence of accessory PMs was significantly higher in the unknown-cause group than in the known-cause group (24.5% and 7.8%, respectively; p=0.002) or the no-SCA group (7.1%, p=0.003). The same was true for PM hypertrophy (unknown-cause 12.2%, known-cause 2.1%, p=0.010; no SCA group 1.0%, p=0.006). By logistic regression, accessory PM and PM hypertrophy were independently associated with sudden cardiac arrest of unknown cause. An accessory PM and PM hypertrophy are associated with SCA of unknown cause. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    International Nuclear Information System (INIS)

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-01-01

    Highlights: ► Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. ► Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. ► It is a widely believed that MYL2 is a poor substrate for smMLCK. ► In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. ► Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca 2+ sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis–Menten V max and K M for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.

  11. Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.

    Science.gov (United States)

    Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth

    2016-03-31

    Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.

  12. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  13. [Artificial muscle and its prospect in application for direct cardiac compression assist].

    Science.gov (United States)

    Dong, Jing; Yang, Ming; Zheng, Zhejun; Yan, Guozheng

    2008-12-01

    Artificial heart is an effective device in solving insufficient native heart supply for heart transplant, and the research and application of novel actuators play an important role in the development of artificial heart. In this paper, artificial muscle is introduced as the actuators of direct cardiac compression assist, and some of its parameters are compared with those of native heart muscle. The open problems are also discussed.

  14. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents.

    Science.gov (United States)

    Manfredi, L H; Paula-Gomes, S; Zanon, N M; Kettelhut, I C

    2017-10-19

    Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  15. Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne muscular dystrophy.

    Science.gov (United States)

    Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W

    2016-04-01

    In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.

  16. Functions of PDE3 Isoforms in Cardiac Muscle

    Science.gov (United States)

    Movsesian, Matthew; Ahmad, Faiyaz

    2018-01-01

    Isoforms in the PDE3 family of cyclic nucleotide phosphodiesterases have important roles in cyclic nucleotide-mediated signalling in cardiac myocytes. These enzymes are targeted by inhibitors used to increase contractility in patients with heart failure, with a combination of beneficial and adverse effects on clinical outcomes. This review covers relevant aspects of the molecular biology of the isoforms that have been identified in cardiac myocytes; the roles of these enzymes in modulating cAMP-mediated signalling and the processes mediated thereby; and the potential for targeting these enzymes to improve the profile of clinical responses. PMID:29415428

  17. The morphological development of the locomotor and cardiac muscles of the migratory barnacle goose (Branta leucopsis)

    NARCIS (Netherlands)

    Bishop, CM; Butler, PJ; ElHaj, AJ; Egginton, S; Loonen, MJJE

    The masses of the locomotor and cardiac muscles of wild barnacle goose goslings, from a migratory population, were examined systematically during development and their values compared to those of pre-migratory geese. Pre-flight development was typified by approximately linear increases of body, leg,

  18. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass

    NARCIS (Netherlands)

    Ide, K.; Pott, F.; van Lieshout, J. J.; Secher, N. H.

    1998-01-01

    We tested the hypothesis that pharmacological reduction of the increase in cardiac output during dynamic exercise with a large muscle mass would influence the cerebral blood velocity/perfusion. We studied the relationship between changes in cerebral blood velocity (transcranial Doppler), rectus

  19. Elevated Plasma Cardiac Troponin T Levels Caused by Skeletal Muscle Damage in Pompe Disease.

    Science.gov (United States)

    Wens, Stephan C A; Schaaf, Gerben J; Michels, Michelle; Kruijshaar, Michelle E; van Gestel, Tom J M; In 't Groen, Stijn; Pijnenburg, Joon; Dekkers, Dick H W; Demmers, Jeroen A A; Verdijk, Lex B; Brusse, Esther; van Schaik, Ron H N; van der Ploeg, Ans T; van Doorn, Pieter A; Pijnappel, W W M Pim

    2016-02-01

    Elevated plasma cardiac troponin T (cTnT) levels in patients with neuromuscular disorders may erroneously lead to the diagnosis of acute myocardial infarction or myocardial injury. In 122 patients with Pompe disease, the relationship between cTnT, cardiac troponin I, creatine kinase (CK), CK-myocardial band levels, and skeletal muscle damage was assessed. ECG and echocardiography were used to evaluate possible cardiac disease. Patients were divided into classic infantile, childhood-onset, and adult-onset patients. cTnT levels were elevated in 82% of patients (median 27 ng/L, normal values normal in all patients, whereas CK-myocardial band levels were increased in 59% of patients. cTnT levels correlated with CK levels in all 3 subgroups (Pmass index measured with echocardiography was normal in all the 3 subgroups. cTnT mRNA expression in skeletal muscle was not detectable in controls but was strongly induced in patients with Pompe disease. cTnT protein was identified by mass spectrometry in patient-derived skeletal muscle tissue. Elevated plasma cTnT levels in patients with Pompe disease are associated with skeletal muscle damage, rather than acute myocardial injury. Increased cTnT levels in Pompe disease and likely other neuromuscular disorders should be interpreted with caution to avoid unnecessary cardiac interventions. © 2016 American Heart Association, Inc.

  20. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  1. Effects of protein-calorie restriction on mechanical function of hypertrophied cardiac muscle

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Cicogna

    1999-04-01

    Full Text Available OBJECTIVE: To assess the effect of food restriction (FR on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR. METHODS: Isolated papillary muscle preparations of the left ventricle (LV of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1 reduction in the body weight and LV weight of SHR and WKY rats; 2 increase in the time to peak shortening and the time to peak developed tension (DT in the hypertrophied myocardium of the SHR; 3 diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.

  2. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.

    Science.gov (United States)

    Moretti, Alessandra; Caron, Leslie; Nakano, Atsushi; Lam, Jason T; Bernshausen, Alexandra; Chen, Yinhong; Qyang, Yibing; Bu, Lei; Sasaki, Mika; Martin-Puig, Silvia; Sun, Yunfu; Evans, Sylvia M; Laugwitz, Karl-Ludwig; Chien, Kenneth R

    2006-12-15

    Cardiogenesis requires the generation of endothelial, cardiac, and smooth muscle cells, thought to arise from distinct embryonic precursors. We use genetic fate-mapping studies to document that isl1(+) precursors from the second heart field can generate each of these diverse cardiovascular cell types in vivo. Utilizing embryonic stem (ES) cells, we clonally amplified a cellular hierarchy of isl1(+) cardiovascular progenitors, which resemble the developmental precursors in the embryonic heart. The transcriptional signature of isl1(+)/Nkx2.5(+)/flk1(+) defines a multipotent cardiovascular progenitor, which can give rise to cells of all three lineages. These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1(+) cardiovascular progenitor cell (MICP). The discovery of ES cell-derived MICPs suggests a strategy for cardiovascular tissue regeneration via their isolation, renewal, and directed differentiation into specific mature cardiac, pacemaker, smooth muscle, and endothelial cell types.

  3. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    Science.gov (United States)

    Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro

    2017-01-01

    The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P=0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P=0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P=0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P=0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P=0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P=0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P=0.03) of handgrip exercise in active older adults. The results indicate that

  4. Cardiac supporting device using artificial rubber muscle: preliminary study to active dynamic cardiomyoplasty.

    Science.gov (United States)

    Saito, Yoshiaki; Suzuki, Yasuyuki; Goto, Takeshi; Daitoku, Kazuyuki; Minakawa, Masahito; Fukuda, Ikuo

    2015-12-01

    Dynamic cardiomyoplasty is a surgical treatment that utilizes the patient's skeletal muscle to support circulation. To overcome the limitations of autologous skeletal muscles in dynamic cardiomyoplasty, we studied the use of a wrapped-type cardiac supporting device using pneumatic muscles. Four straight rubber muscles (Fluidic Muscle, FESTO, Esslingen, Germany) were used and connected to pressure sensors, solenoid valves, a controller and an air compressor. The driving force was compressed air. A proportional-integral-derivative system was employed to control the device movement. An overflow-type mock circulation system was used to analyze the power and the controllability of this new device. The device worked powerfully with pumped flow against afterload of 88 mmHg, and the beating rate and contraction/dilatation time were properly controlled using simple software. Maximum pressure inside the ventricle and maximum output were 187 mmHg and 546.5 ml/min, respectively, in the setting of 50 beats per minute, a contraction/dilatation ratio of 1:2, a preload of 18 mmHg, and an afterload of 88 mmHg. By changing proportional gain, contraction speed could be modulated. This study showed the efficacy and feasibility of a pneumatic muscle for use in a cardiac supporting device.

  5. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields

    Science.gov (United States)

    Mandal, Amrita; Holowiecki, Andrew; Song, Yuntao Charlie; Waxman, Joshua S.

    2017-01-01

    Canonical Wnt/β-catenin (Wnt) signaling plays multiple conserved roles during fate specification of cardiac progenitors in developing vertebrate embryos. Although lineage analysis in ascidians and mice has indicated there is a close relationship between the cardiac second heart field (SHF) and pharyngeal muscle (PM) progenitors, the signals underlying directional fate decisions of the cells within the cardio-pharyngeal muscle field in vertebrates are not yet understood. Here, we examined the temporal requirements of Wnt signaling in cardiac and PM development. In contrast to a previous report in chicken embryos that suggested Wnt inhibits PM development during somitogenesis, we find that in zebrafish embryos Wnt signaling is sufficient to repress PM development during anterior-posterior patterning. Importantly, the temporal sensitivity of dorso-anterior PMs to increased Wnt signaling largely overlaps with when Wnt signaling promotes specification of the adjacent cardiac progenitors. Furthermore, we find that excess early Wnt signaling can cell autonomously promote expansion of the first heart field (FHF) progenitors at the expense of PM and SHF within the anterior lateral plate mesoderm (ALPM). Our study provides insight into an antagonistic developmental mechanism that balances the sizes of the adjacent cardiac and PM progenitor fields in early vertebrate embryos. PMID:28087459

  6. Fatty acid oxidation in skeletal and cardiac muscle

    International Nuclear Information System (INIS)

    Glatz, J.F.C.

    1983-01-01

    The biochemical investigations described in this thesis deal with two aspects of fatty acid oxidation in muscle: a comparison of the use of cell-free and cellular systems for oxidation measurements, and studies on the assay and the role of the fatty acid binding protein in fatty acid metabolism. The fatty acid oxidation rates are determined radiochemically by the sum of 14 CO 2 and 14 C-labeled acid-soluble products formed during oxidation of [ 14 C]-fatty acids. A radiochemical procedure for the assay of fatty acid binding by proteins is described. (Auth.)

  7. Effects of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle as measured by [14C]tyrosine infusion.

    Science.gov (United States)

    Carter, W J; Benjamin, W S; Faas, F H

    1982-04-15

    The effect of T3 (3,3',5-tri-iodothyronine) on protein turnover in skeletal and cardiac muscle was measured in intact rats by means of a 6 h [14C]tyrosine-infusion technique. Treatment with 25-30 micrograms of T3/100 g body wt. daily for 4-7 days increased the fractional rate of protein synthesis in skeletal muscle. Since the fractional growth rate of the muscle was decreased or unchanged, T3 treatment increased the rate of muscle protein breakdown. These findings suggest that increased protein degradation is an important factor in decreasing skeletal-muscle mass in hyperthyroidism. In contrast with skeletal muscle, T3 treatment for 7 days caused an equivalent increase in the rate of cardiac muscle growth and protein synthesis. This suggests that hyperthyroidism does not increase protein breakdown in heart muscle as it does in skeletal muscle. The failure of T3 to increase proteolysis in heart muscle may be due to a different action on the cardiac myocyte or to systemic effects of T3 which increase cardiac work.

  8. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle Wehling-Henricks

    2010-05-01

    Full Text Available Duchenne muscular dystrophy (DMD is the most common, lethal disease of childhood. One of 3500 new-born males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal muscles and the heart is an important and potentially life-threatening feature of DMD.We use both genetic and nutritional manipulations to test whether changes in arginase metabolism promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2 phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis. In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography, although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have been reported as beneficial

  9. Respiratory muscle strength in relation to sarcopenia in elderly cardiac patients.

    Science.gov (United States)

    Izawa, Kazuhiro P; Watanabe, Satoshi; Oka, Koichiro; Kasahara, Yusuke; Morio, Yuji; Hiraki, Koji; Hirano, Yasuyuki; Omori, Yutaka; Suzuki, Norio; Kida, Keisuke; Suzuki, Kengo; Akashi, Yoshihiro J

    2016-12-01

    Little information exists on the relation between respiratory muscle strength such as maximum inspiratory muscle pressure (MIP) and sarcopenia in elderly cardiac patients. The present study aimed to determine the differences in MIP, and cutoff values for MIP according to sarcopenia in elderly cardiac patients. We enrolled 63 consecutive elderly male patients aged ≥65 years with cardiac disease in this cross-sectional study. Sarcopenia was defined based on the European Working Group on Sarcopenia in Older People algorithm, and, accordingly, the patients were divided into two groups: the sarcopenia group (n = 24) and non-sarcopenia group (n = 39). The prevalence of sarcopenia in cardiac patients and MIP in the patients with and without sarcopenia were assessed to determine cutoff values of MIP. After adjustment for body mass index, the MIP in the sarcopenia group was significantly lower than that in the non-sarcopenia group (54.7 ± 36.8 cmH 2 O; 95 % CI 42.5-72.6 vs. 80.7 ± 34.7 cmH 2 O; 95 % CI 69.5-92.0; F = 4.89, p = 0.029). A receiver-operating characteristic curve analysis of patients with and without sarcopenia identified a cutoff value for MIP of 55.6 cmH 2 O, with a sensitivity of 0.76, 1-specificity of 0.37, and AUC of 0.70 (95 % CI 0.56-0.83; p = 0.01) in the study patients. Compared with elderly cardiac patients without sarcopenia, MIP in those with sarcopenia may be negatively affected. The MIP cutoff value reported here may be a useful minimum target value for identifying elderly male cardiac patients with sarcopenia.

  10. Absence of acute skeletal and cardiac muscle injuries in amateur triathletes

    Directory of Open Access Journals (Sweden)

    Luiz Carlos C. Jovita

    2009-01-01

    Full Text Available Creatine kinase (CK and creatine kinase muscle-brain fraction (CK-MB might be associated with damage to muscle and cardiac tissue, respectively, as a consequence of intense prolonged exercise. The objective of the present study was to determine whether acute changes in CK and CK-MB reflect some risk of damage to skeletal and cardiac muscles in amateur athletes after Ironman 70.3. The sample consisted of 10 male athlete volunteers (age: 34.0 ± 9.2 years. A venous blood sample (2 mL was collected before and after the competition. The volunteers completed the race in 5h20min to 6 h. CK and CK-MB were analyzed by an enzymatic method using Wiener labreagent in an automatic spectrophotometer (Targa bt 3000. The nonparametric Wilcoxon test showed significant differences (p < .05 in the variables studied before and after the competition. Mean CK was 112.23 ± 34.9 and 458.0 ± 204.9 U/L (Δ% = 418.2, and mean CK-MB was 7.4 ± 2.6 and 10.8 ± 3.9 U/L (Δ% = 153.3 before and after the event, respectively. The relative variation in CK-MB compared to CK before (6.9% and after (2.5% the competition showed that the former is not a factor of concern during intense prolonged exercise such as Ironman 70.3. In conclusion, the acute increase in CK after the end of intense prolonged exercise indicates skeletal muscle damage which, however, is considered to be normal for athletes. With respect to CK-MB, cardiac muscle injury was inexistent.

  11. Myofibril ATPase activity of cardiac and skeletal muscle of exhaustively exercised rats.

    Science.gov (United States)

    Belcastro, A N; Turcotte, R; Rossiter, M; Secord, D; Maybank, P E

    1984-01-01

    The activation characteristics of Mg-ATP and Ca2+ on cardiac and skeletal muscle myofibril ATPase activity were studied in rats following a run to exhaustion. In addition, the effect of varying ionic strength was determined on skeletal muscle from exhausted animals. The exhausted group (E) ran at a speed of 25 m min-1 with an 8% incline. Myofibril ATPase activities for control (C) and E were determined with 1, 3 and 5 mM Mg-ATP and 1 and 10 microM Ca2+ at pH 7.0 and 30 degrees C. For control skeletal muscle, at 1 and 10 microM Ca2+, there was an increase in ATPase activity from 1 to 5 mM Mg-ATP (P less than 0.05). For E animals the myofibril ATPase activities at 10 microM Ca2+ and all Mg-ATP concentrations were similar to C (P greater than 0.05). At 1.0 microM Ca2+ and all Mg-ATP concentrations were similar to C (P greater than 0.05). At 1.0 microM Ca2+ the activities at 3 and 5 mM Mg-ATP were greater for the E animals (P less than 0.05). Increasing KCl concentrations resulted in greater inhibition for E animals. With cardiac muscle, the myofibril ATPase activities at 1.0 microM free Ca2+ were lower for E at all Mg-ATP levels (P less than 0.05). In contrast, at 10 microM Ca2+, the E group exhibited an elevated myofibril ATPase activity. The results indicate that Mg-ATP and Ca2+ activation of cardiac and skeletal muscle myofibril ATPase is altered with exhaustive exercise.

  12. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle function

    Science.gov (United States)

    Gallagher, Thomas L.; Arribere, Joshua A.; Geurts, Paul A.; Exner, Cameron R. T.; McDonald, Kent L.; Dill, Kariena K.; Marr, Henry L.; Adkar, Shaunak S.; Garnett, Aaron T.; Amacher, Sharon L.; Conboy, John G.

    2012-01-01

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos was strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle function. PMID:21925157

  13. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions.

    Science.gov (United States)

    Gallagher, Thomas L; Arribere, Joshua A; Geurts, Paul A; Exner, Cameron R T; McDonald, Kent L; Dill, Kariena K; Marr, Henry L; Adkar, Shaunak S; Garnett, Aaron T; Amacher, Sharon L; Conboy, John G

    2011-11-15

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions. Published by Elsevier Inc.

  14. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure.

    Science.gov (United States)

    González-Solá, Maryví; Al-Khayat, Hind A; Behra, Martine; Kensler, Robert W

    2014-04-15

    To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents

    Directory of Open Access Journals (Sweden)

    L.H. Manfredi

    2017-10-01

    Full Text Available Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  16. Biotin carboxylases in mitochondria and the cytosol from skeletal and cardiac muscle as detected by avidin binding

    NARCIS (Netherlands)

    Kirkeby, S.; Moe, D.; Bøg-Hansen, T. C.; van Noorden, C. J.

    1993-01-01

    Biotin carboxylases in mammalian cells are regulatory enzymes in lipogenesis and gluconeogenesis. In this study, endogenous biotin in skeletal and cardiac muscle was detected using avidin conjugated with alkaline phosphatase and applied in high concentrations to muscle sections. The avidin binding

  17. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    Directory of Open Access Journals (Sweden)

    Sarmento AO

    2017-06-01

    Full Text Available Adriana de Oliveira Sarmento,1–3 Amilton da Cruz Santos,1,4 Ivani Credidio Trombetta,2,5 Marciano Moacir Dantas,1 Ana Cristina Oliveira Marques,1,4 Leone Severino do Nascimento,1,4 Bruno Teixeira Barbosa,1,2 Marcelo Rodrigues Dos Santos,2 Maria do Amparo Andrade,3 Anna Myrna Jaguaribe-Lima,3,6 Maria do Socorro Brasileiro-Santos1,3,4 1Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil; 2Unit of Cardiovascular Rehabilitation and Exercise Physiology – Heart Institute (InCor/HC-FMUSP, University of São Paulo, São Paulo, Brazil; 3Graduate Program in Physiotherapy, Federal University of Pernambuco, Recife, Brazil; 4Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil; 5Graduate Program in Medicine, Universidade Nove de Julho (UNINOVE, São Paulo, Brazil; 6Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Recife, Brazil Abstract: The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis and muscle blood flow (venous occlusion plethysmography were measured for 10 minutes at rest (baseline and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver. Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac

  18. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Skovrind, Ida

    2016-01-01

    heart missing regenerative signals essential for directed differentiation of EPDCs. Herein, we aimed to evaluate the myogenic potential of neonatal EPDCs in adult and neonatal mouse myocardium, as well as in skeletal muscle. The two latter tissues have an intrinsic capability to develop and regenerate......, in contrast to the adult heart. METHODS: Highly purified mouse EPDCs were transplanted into damaged neonatal and adult myocardium as well as regenerating skeletal muscle. Co-cultures with skeletal myoblasts were used to distinguish fusion independent myogenic conversion. RESULTS: No donor EPDC...... that EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation....

  19. NAD+ : A big player in cardiac and skeletal muscle remodeling and aging.

    Science.gov (United States)

    Chaturvedi, Pankaj; Tyagi, Suresh C

    2018-03-01

    In the past decade, NAD+ has gained importance for its beneficial effects as antioxidant and anti-aging molecule. A paper in science by Zhang et al. () has described that NAD+ when replenished, ameliorates muscle dystrophy in mice by improving mitochondrial function. NAD+ was also demonstrated by the authors to improve the life span of mice. Cox et al. () demonstrated the cardiac effects of NAD+ which mitigated chronic heart failure via mitochondrial redox state mechanism. Cox et al. () also demonstrated that NAD+ is provided in the drinking water, it improves cardiac relaxation in volume overload model of heart failure. Although NAD+ has a profound anti-aging and anti-oxidant effects, its effect on humans and use as a dietary supplement needs more exploration. © 2017 Wiley Periodicals, Inc.

  20. Effects of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle as measured by [14C]tyrosine infusion.

    OpenAIRE

    Carter, W J; Benjamin, W S; Faas, F H

    1982-01-01

    The effect of T3 (3,3',5-tri-iodothyronine) on protein turnover in skeletal and cardiac muscle was measured in intact rats by means of a 6 h [14C]tyrosine-infusion technique. Treatment with 25-30 micrograms of T3/100 g body wt. daily for 4-7 days increased the fractional rate of protein synthesis in skeletal muscle. Since the fractional growth rate of the muscle was decreased or unchanged, T3 treatment increased the rate of muscle protein breakdown. These findings suggest that increased prote...

  1. Changes in cardiac and muscle biomarkers following an uphill-only marathon.

    Science.gov (United States)

    Da Ponte, Alessandro; Giovanelli, Nicola; Antonutto, Guglielmo; Nigris, Daniele; Curcio, Francesco; Cortese, Pietro; Lazzer, Stefano

    2018-01-01

    The aim of the study was to evaluate changes in cardiac troponin I levels (cTnI) and the main biomarkers of skeletal muscle damage after an uphill-only marathon, along with its relationship with athletes' physiological parameters. Twenty-two runners participated in the "Supermaratona dell'Etna" (43 km, 0-2850 m AMSL). Before and immediately after the race, body mass and hydration status were measured together with blood sampling. At the end of the race, mean cTnI increased significantly in all athletes (mean +900%), and in 52% of them the cTnI values were over the normal range. Mean creatinine and cortisol increased significantly (by 30.5% and 291.4%), while C-reactive protein levels did not change significantly. Then, an uphill-only marathon showed a significant increase in cardiac and skeletal muscle blood biomarkers of injury, and cTnI levels were not significantly correlated with age, body mass index, V̇O 2 max, training status, ultra-endurance training experience, race time and blood parameters.

  2. Glutaredoxin-2 is required to control oxidative phosphorylation in cardiac muscle by mediating deglutathionylation reactions.

    Science.gov (United States)

    Mailloux, Ryan J; Xuan, Jian Ying; McBride, Skye; Maharsy, Wael; Thorn, Stephanie; Holterman, Chet E; Kennedy, Christopher R J; Rippstein, Peter; deKemp, Robert; da Silva, Jean; Nemer, Mona; Lou, Marjorie; Harper, Mary-Ellen

    2014-05-23

    Glutaredoxin-2 (Grx2) modulates the activity of several mitochondrial proteins in cardiac tissue by catalyzing deglutathionylation reactions. However, it remains uncertain whether Grx2 is required to control mitochondrial ATP output in heart. Here, we report that Grx2 plays a vital role modulating mitochondrial energetics and heart physiology by mediating the deglutathionylation of mitochondrial proteins. Deletion of Grx2 (Grx2(-/-)) decreased ATP production by complex I-linked substrates to half that in wild type (WT) mitochondria. Decreased respiration was associated with increased complex I glutathionylation diminishing its activity. Tissue glucose uptake was concomitantly increased. Mitochondrial ATP output and complex I activity could be recovered by restoring the redox environment to that favoring the deglutathionylated states of proteins. Grx2(-/-) hearts also developed left ventricular hypertrophy and fibrosis, and mice became hypertensive. Mitochondrial energetics from Grx2 heterozygotes (Grx2(+/-)) were also dysfunctional, and hearts were hypertrophic. Intriguingly, Grx2(+/-) mice were far less hypertensive than Grx2(-/-) mice. Thus, Grx2 plays a vital role in modulating mitochondrial metabolism in cardiac muscle, and Grx2 deficiency leads to pathology. As mitochondrial ATP production was restored by the addition of reductants, these findings may be relevant to novel redox-related therapies in cardiac disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States); Martyn, J.A. Jeevendra, E-mail: jmartyn@partners.org [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States)

    2013-02-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.

  4. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    International Nuclear Information System (INIS)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao; Martyn, J.A. Jeevendra

    2013-01-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [ 3 H]glucose and 2-deoxy[ 14 C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats

  5. Evaluation of skeletal and cardiac muscle function after chronic administration of thymosin beta-4 in the dystrophin deficient mouse.

    Directory of Open Access Journals (Sweden)

    Christopher F Spurney

    2010-01-01

    Full Text Available Thymosin beta-4 (Tbeta4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tbeta4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ and mdx mice, 8-10 weeks old, were treated with 150 microg of Tbeta4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tbeta4 and amount of fibrosis were quantified using immunohistochemistry and Gomori's tri-chrome staining, respectively. Mdx mice treated with Tbeta4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tbeta4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tbeta4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.

  6. Relation between the Disability of the Arm, Shoulder and Hand Score and Muscle Strength in Post-Cardiac Surgery Patients.

    Science.gov (United States)

    Izawa, Kazuhiro P; Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi

    2017-11-27

    Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m²; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength ( r = -0.38, p = 0.01) and with knee extensor muscle strength ( r = -0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation.

  7. Relation between the Disability of the Arm, Shoulder and Hand Score and Muscle Strength in Post-Cardiac Surgery Patients

    Directory of Open Access Journals (Sweden)

    Kazuhiro P. Izawa

    2017-11-01

    Full Text Available Background: The Disabilities of the Arm, Shoulder, and Hand (DASH questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m2; left ventricular ejection fraction: 53.5 ± 13.7%. Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength (r = −0.38, p = 0.01 and with knee extensor muscle strength (r = −0.32, p = 0.04. Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation.

  8. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Elliott M McMillan

    Full Text Available Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY and spontaneously hypertensive rats (SHR were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG of hypertensive rats had higher (p<0.05 caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05 ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05 Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05 Beclin-1 and ATG7 protein, as well as decreased (p<0.05 caspase-3, calpain, and cathepsin activity. Left ventricle (LV of hypertensive rats had reduced (p<0.05 AMPKα and LC3II protein, as well as elevated (p<0.05 p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05 proteasome activity but reduced (p<0.05 caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.

  9. Effect of Ca2+ overload on phosphoinositide (PI) metabolism in cardiac muscle

    International Nuclear Information System (INIS)

    Otani, H.; Otani, H.; Engelman, R.M.; Das, D.K.

    1986-01-01

    The investigated the relationship between Ca 2+ load and PI metabolism in isolated rat papillary muscle labeled with [ 3 H]inositol. Increase in [Ca 2+ ]/sub o/ from 0-3.6 mM reduced the incorporation of [ 3 H] inositol into PI moderately and increased the resting tension slightly. The incorporation of the label into PI was unchanged by 10 μm A-23187 at 1.8 mM [Ca 2+ ]/sub o/ that increased the contractility by 70% without a significant change in the resting tension. However, either 10.8 mM [Ca 2+ ]/sub o/ or 0.3 mM ouabain at 1.8 mM [Ca 2+ ]/sub o/ markedly decreased the PI labeling with corresponding increase in the resting tension while inclusion of excess EGTA greatly enhanced the radioactivity in PI. Determination of the PI breakdown and the inositol phosphates production by pulse-chase experiments revealed that the reduced PI turnover in the Ca 2+ -overload muscle was due to both inhibition of the synthesis and stimulation of the breakdown of this lipid that accounted for 30% decrease in the labeled PI from the muscle during 45 min without significant loss of the net PI pool size, suggesting the presence of a relatively smaller compartment of PI pool undergoing a rapid breakdown during Ca 2+ overload. The authors propose that alteration of Ca 2+ homeostasis may modulate the production of putative second messengers, inositol trisphosphate and diacylglycerol, which feed back to regulate [Ca 2+ ]/sub i/ in cardiac muscle

  10. Effect of Skeletal Muscle Na+ Channel Delivered Via a Cell Platform on Cardiac Conduction and Arrhythmia Induction

    NARCIS (Netherlands)

    Boink, Gerard J. J.; Lu, Jia; Driessen, Helen E.; Duan, Lian; Sosunov, Eugene A.; Anyukhovsky, Evgeny P.; Shlapakova, Iryna N.; Lau, David H.; Rosen, Tove S.; Danilo, Peter; Jia, Zhiheng; Ozgen, Nazira; Bobkov, Yevgeniy; Guo, Yuanjian; Brink, Peter R.; Kryukova, Yelena; Robinson, Richard B.; Entcheva, Emilia; Cohen, Ira S.; Rosen, Michael R.

    2012-01-01

    Background-In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel is largely inactivated, contributing to slow conduction and reentry. We have demonstrated that adenoviral delivery of the skeletal muscle Na+ channel (SkM1) to epicardial border zones normalizes

  11. Atomic force microscope observation of branching in single transcript molecules derived from human cardiac muscle

    International Nuclear Information System (INIS)

    Reed, Jason; Hsueh, Carlin; Gimzewski, James K; Mishra, Bud

    2008-01-01

    We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing

  12. Chronic impairment of leg muscle blood flow following cardiac catheterization in childhood

    International Nuclear Information System (INIS)

    Skovranek, J.; Samanek, M.

    1979-01-01

    In 99 patients with congenital heart defects or chronic respiratory disease without clinical symptoms of disturbances in peripheral circulation, resting and maximal blood flow in the anterior tibial muscle of both extremities were investigated 2.7 yrs (average) after cardiac catheterization. The method used involved 133 Xe clearance. Resting blood flow was normal and no difference could be demonstrated between the extremity originally used for catheterization and the contralateral control extremity. No disturbance in maximal blood flow could be proved in the extremity used for catheterization by the venous route only. Maximal blood flow was significantly lower in that extremity where the femoral artery had been catheterized or cannulated for pressure measurement and blood sampling. The disturbance in maximal flow was shown regardless of whether the arterial catheterization involved the Seldinger percutaneous technique, arteriotomy, or mere cannulation of the femoral artery. The values in the involved extremity did not differ significantly from the values in a healthy population

  13. Morphometric and biochemical characteristics of short-term effects of ethanol on rat cardiac muscle.

    Science.gov (United States)

    Mihailović, D; Nikolić, J; Bjelaković, B B; Stanković, B N; Bjelaković, G

    1999-11-01

    Alcoholism is a very important cause of congestive cardiomyopathy in man. The aim of this study was to examine a short-term effect of ethanol in rat cardiac muscle, using histologic, morphometric and biochemical methods. Experiments were carried out in Wistar male albino rats, divided into two groups: the control group consisting of eight animals receiving tap water, and the experimental group comprising eight animals received ethyl alcohol for ten days, in a single daily dose of 3 g ethanol/kg body weight, per os, using esophageal intubation. The mean volume weighted nuclear volume of cardiac myocytes was estimated by point sampled intercept method, by objective x 100. The mean cubed nuclear intercept length was multiplied by pi and divided by 3. For biochemical analysis, a 10% water tissue homogenate from the left ventricle was made. In the experimental group, the mean volume-weighted nuclear volume (15.08 +/- 5.20 microm3) was significantly lower than in the control group (51.32 +/- 7.83 microm3) (p energy production.

  14. Inhibitory effects of tiamulin on contractile and electrical responses in isolated thoracic aorta and cardiac muscle of guinea-pigs.

    Science.gov (United States)

    Nakajyo, S; Hara, Y; Hirano, S; Agata, N; Shimizu, K; Urakawa, N

    1992-09-01

    The inhibitory effect of tiamulin, an antibiotic produced by Pleurotus mutilis, on contractile and electrical responses in isolated thoracic aorta and cardiac muscle of guinea-pigs was studied. In the thoracic aorta, tiamulin with an IC50 of 9.7 x 10(-6) M inhibited sustained contractions induced by isosmotically added 60 mM KCl. The inhibitory effect of tiamulin on a Ca(2+)-induced contraction in a depolarized muscle was competitively antagonized by raising external Ca2+ concentration. Bay K 8644 (10(-7) M) antagonized tiamulin's inhibition of the Ca(2+)-induced contraction. Tiamulin (2 x 10(-5) M) decreased the elevated cytoplasmic Ca2+ level measured by the fura 2 AM method in the depolarized muscle. In high K(+)-isoprenaline-treated left atria, tiamulin (2 x 10(-5)-2 x 10(-4) M) produced negative inotropic effects. On the other hand in the membrane action potential of papillary muscles, tiamulin (2 x 10(-6)-2 x 10(-4) M) produced decreases in action potential and durations and 2 x 10(-4) M tiamulin depressed the slow response action potential in depolarized muscles. Tiamulin produced prolongations of the PR interval in ECG, negative chrono- and inotropic effects, and an increase in perfusion flow in guinea-pig isolated and perfused hearts. These effects of tiamulin on the aorta or cardiac muscle were similar to those of verapamil and nifedipine. These results suggest that both the inhibitory action of tiamulin on the high K(+)-induced contraction in the aorta and the negative inotropic effect of tiamulin on the cardiac muscle are due to an inhibition of Ca2+ entry through the voltage-dependent Ca2+ channels of cells of both these muscles.

  15. Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish.

    Directory of Open Access Journals (Sweden)

    Tomoaki Fujii

    Full Text Available Modifications of histone tails are involved in the regulation of a wide range of biological processes including cell cycle, cell survival, cell division, and cell differentiation. Among the modifications, histone methylation plays a critical role in cardiac and skeletal muscle differentiation. In our earlier studies, we found that SMYD3 has methyltransferase activity to histone H3 lysine 4, and that its up-regulation is involved in the tumorigenesis of human colon, liver, and breast. To clarify the role of Smyd3 in development, we have studied its expression patterns in zebrafish embryos and the effect of its suppression on development using Smyd3-specific antisense morpholino-oligonucleotides. We here show that transcripts of smyd3 were expressed in zebrafish embryos at all developmental stages examined and that knockdown of smyd3 in embryos resulted in pericardial edema and defects in the trunk structure. In addition, these phenotypes were associated with abnormal expression of three heart-chamber markers including cmlc2, amhc and vmhc, and abnormal expression of myogenic regulatory factors including myod and myog. These data suggest that Smyd3 plays an important role in the development of heart and skeletal muscle.

  16. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  17. Cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI)

    DEFF Research Database (Denmark)

    Yousaf, Muhammad Naveed; Koppang, Erling Olaf; Skjødt, Karsten

    2012-01-01

    Heart and skeletal muscle inflammation (HSMI) is a disease of marine farmed Atlantic salmon where the pathological changes associated with the disease involve necrosis and an infiltration of inflammatory cells into different regions of the heart and skeletal muscle. The aim of this work...... with the cardiac pathology consisted of mainly CD3(+) T lymphocytes, moderate numbers of macrophages and eosinophilic granulocytes. Proliferative cell nuclear antigen (PCNA) immuno-reaction identified significantly increased nuclear and cytoplasmic staining as well as identifying hypertrophic nuclei. Strong...

  18. Squalene Modulates Radiation-Induced Structural, Ultrastructural And Biochemical Changes In Cardiac Muscles Of Male Albino Rats

    International Nuclear Information System (INIS)

    REZK, R.G.; YACOUB, S.F.; ABDEL AZIZ, N.

    2009-01-01

    The failing heart represents an enormous clinical problem and is a major cause of death throughout the world. Hyperlipidemia and oxidative stress have been shown to contribute to heart failure. Squalene is a remarkable bioactive substance that belongs to a class of antioxidants called isoprenoids, which neutralize the harmful effect of excessive free radicals production in the body.The present study was designed to determine the possible protective effect of squalene against oxidative cardiac muscle damage induced by gamma irradiation.Rats were treated daily by gavage with 0.4 ml/kg squalene for 42 days before whole body gamma irradiation at a dose of 4 Gy and continued until animals were sacrificed 3 days post irradiation.Histological examination of cardiac muscles sections by using light and electron microscopes showed that exposure of rats to ionizing radiation has provoked a severe architecture damage such as necrotic nuclei, nuclei located at the periphery, alteration in chromatin distribution, ruptured cell and mitochondrial membranes, cristae of mitochondria disappeared, sticking mitochondria and ruptured myofibers. Structural and ultra-structural changes were associated with severe oxidative stress. Significant increase of lipid peroxidation products (malondialdehyde) (MDA) along with reduction in the activity of the antioxidant enzymes; superoxide dismutase (SOD) and catalse (CAT), and glutathione content (GSH), were recorded.Treatment of rats with squalene has significantly attenuated the radiation-induced oxidative damage and histopathological changes in cardiac muscle which was substantiated by a significant amelioration in the activity of plasma lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and aspartate transaminase (AST). Furthermore, administration of squalene to rats has adjusted the radiation-induced increase in plasma triglycerides (TG), total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Based on these results, it

  19. Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in mdx mice of both genders.

    Science.gov (United States)

    Ferry, Arnaud; Benchaouir, Rachid; Joanne, Pierre; Peat, Rachel A; Mougenot, Nathalie; Agbulut, Onnik; Butler-Browne, Gillian

    2015-11-01

    The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender. © 2015 Wiley Periodicals, Inc.

  20. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    McGrew, S.G.; Inui, Makoto; Chadwick, C.C.; Boucek, R.J. Jr.; Jung, C.Y.; Fleischer, S.

    1989-01-01

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  1. Integration of miRNA and mRNA expression profiles reveals microRNA-regulated networks during muscle wasting in cardiac cachexia

    DEFF Research Database (Denmark)

    Moraes, Leonardo N; Fernandez, Geysson J; Vechetti-Júnior, Ivan J

    2017-01-01

    Cardiac cachexia (CC) is a common complication of heart failure (HF) associated with muscle wasting and poor patient prognosis. Although different mechanisms have been proposed to explain muscle wasting during CC, its pathogenesis is still not understood. Here, we described an integrative analysis...

  2. Do interindividual differences in cardiac output during submaximal exercise explain differences in exercising muscle oxygenation and ratings of perceived exertion?

    Science.gov (United States)

    Bentley, Robert F; Jones, Joshua H; Hirai, Daniel M; Zelt, Joel T; Giles, Matthew D; Raleigh, James P; Quadrilatero, Joe; Gurd, Brendon J; Neder, J Alberto; Tschakovsky, Michael E

    2018-01-01

    Considerable interindividual differences in the Q˙-V˙O2 relationship during exercise have been documented but implications for submaximal exercise tolerance have not been considered. We tested the hypothesis that these interindividual differences were associated with differences in exercising muscle deoxygenation and ratings of perceived exertion (RPE) across a range of submaximal exercise intensities. A total of 31 (21 ± 3 years) healthy recreationally active males performed an incremental exercise test to exhaustion 24 h following a resting muscle biopsy. Cardiac output (Q˙ L/min; inert gas rebreathe), oxygen uptake (V˙O2 L/min; breath-by-breath pulmonary gas exchange), quadriceps saturation (near infrared spectroscopy) and exercise tolerance (6-20; Borg Scale RPE) were measured. The Q˙-V˙O2 relationship from 40 to 160 W was used to partition individuals post hoc into higher (n = 10; 6.3 ± 0.4) versus lower (n = 10; 3.7 ± 0.4, P exercise (all P > 0.4). Lower cardiac responders had greater leg (P = 0.027) and whole body (P = 0.03) RPE only at 185 W, but this represented a higher %peak V˙O2 in lower cardiac responders (87 ± 15% vs. 66 ± 12%, P = 0.005). Substantially lower Q˙-V˙O2 in the lower responder group did not result in altered RPE or exercising muscle deoxygenation. This suggests substantial recruitment of blood flow redistribution in the lower responder group as part of protecting matching of exercising muscle oxygen delivery to demand. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Propagation velocity profile in a cross-section of a cardiac muscle bundle from PSpice simulation

    Directory of Open Access Journals (Sweden)

    Sperelakis Nicholas

    2006-08-01

    Full Text Available Abstract Background The effect of depth on propagation velocity within a bundle of cardiac muscle fibers is likely to be an important factor in the genesis of some heart arrhythmias. Model and methods The velocity profile of simulated action potentials propagated down a bundle of parallel cardiac muscle fibers was examined in a cross-section of the bundle using a PSpice model. The model (20 × 10 consisted of 20 chains in parallel, each chain being 10 cells in length. All 20 chains were stimulated simultaneously at the left end of the bundle using rectangular current pulses (0.25 nA, 0.25 ms duration applied intracellularly. The simulated bundle was symmetrical at the top and bottom (including two grounds, and voltage markers were placed intracellularly only in cells 1, 5 and 10 of each chain to limit the total number of traces to 60. All electrical parameters were standard values; the variables were (1 the number of longitudinal gap-junction (G-j channels (0, 1, 10, 100, (2 the longitudinal resistance between the parallel chains (Rol2 (reflecting the closeness of the packing of the chains, and (3 the bundle termination resistance at the two ends of the bundle (RBT. The standard values for Rol2 and RBT were 200 KΩ. Results The velocity profile was bell-shaped when there was 0 or only 1 gj-channel. With standard Rol2 and RBT values, the velocity at the surface of the bundle (θ1 and θ20 was more than double (2.15 × that at the core of the bundle (θ10, θ11. This surface:core ratio of velocities was dependent on the values of Rol2 and RBT. When Rol2 was lowered 10-fold, θ1 increased slightly and θ2decreased slightly. When there were 100 gj-channels, the velocity profile was flat, i.e. the velocity at the core was about the same as that at the surface. Both velocities were more than 10-fold higher than in the absence of gj-channels. Varying Rol2 and RBT had almost no effect. When there were 10 gj-channels, the cross-sectional velocity profile

  4. Overexpression of the muscle-specific protein, melusin, protects from cardiac ischemia/reperfusion injury.

    Science.gov (United States)

    Penna, Claudia; Brancaccio, Mara; Tullio, Francesca; Rubinetto, Cristina; Perrelli, Maria-Giulia; Angotti, Carmelina; Pagliaro, Pasquale; Tarone, Guido

    2014-07-01

    Melusin is a muscle-specific protein which interacts with β1 integrin cytoplasmic domain and acts as chaperone protein. Its overexpression induces improved resistance to cardiac overload delaying left ventricle dilation and reducing the occurrence of heart failure. Here, we investigated possible protective effect of melusin overexpression against acute ischemia/reperfusion (I/R) injury with or without Postconditioning cardioprotective maneuvers. Melusin transgenic (Mel-TG) mice hearts were subjected to 30-min global ischemia followed by 60-min reperfusion. Interestingly, infarct size was reduced in Mel-TG mice hearts compared to wild-type (WT) hearts (40.3 ± 3.5 % Mel-TG vs. 59.5 ± 3.8 % WT hearts; n = 11 animals/group; P level of AKT, ERK1/2 and GSK3β phosphorylation, and displayed increased phospho-kinases level after I/R compared to WT mice. Post-ischemic Mel-TG hearts displayed also increased levels of the anti-apoptotic factor phospho-BAD. Importantly, pharmacological inhibition of PI3K/AKT (Wortmannin) and ERK1/2 (U0126) pathways abrogated the melusin protective effect. Notably, HSP90, a chaperone known to protect heart from I/R injury, showed high levels of expression in the heart of Mel-TG mice suggesting a possible collaboration of this molecule with AKT/ERK/GSK3β pathways in the melusin-induced protection. Postconditioning, known to activate AKT/ERK/GSK3β pathways, significantly reduced IS and LDH release in WT hearts, but had no additive protective effects in Mel-TG hearts. These findings implicate melusin as an enhancer of AKT and ERK pathways and as a novel player in cardioprotection from I/R injury.

  5. The mode of inotropic action of ciguatoxin on guinea-pig cardiac muscle.

    Science.gov (United States)

    Seino, A.; Kobayashi, M.; Momose, K.; Yasumoto, T.; Ohizumi, Y.

    1988-01-01

    1. Ciguatoxin (CTX) caused a dose-dependent increase in the contractile force of the guinea-pig isolated left atria at concentrations ranging from 0.1 to 10 ng ml-1 with the ED50 value of 0.5 ng ml-1. 2. In the atria, tetrodotoxin (5 x 10(-7) M) inhibited markedly the inotropic action of CTX. The inotropic effect of CTX at low concentrations was abolished by practolol (10(-5) M) and reserpine (2 mg kg-1 daily, for 3 days), whereas that of CTX at high concentrations was partially inhibited by both drugs. 3. In single atrial cells, CTX (3 ng ml-1) produced a marked increase in the amplitude of longitudinal contractions. 4. CTX (3 ng ml-1) caused marked prolongation in the falling phase of action potentials of atrial strips without affecting the maximum rate of rise of action potentials and membrane resting potentials. The effect of CTX on action potentials was abolished by tetrodotoxin (10(-6) M). 5. The whole-cell patch-clamp experiments on myocytes revealed that CTX (20 ng ml-1) shifted the current-voltage curve of Na inward currents by 40 mV in the negative direction. CTX caused a small sustained Na inward current even at resting membrane potentials. 6. These results suggest that the inotropic action of lower concentrations of CTX is primarily due to an indirect action via noradrenaline release, whereas that of higher concentrations is caused not only by an indirect action but also by a direct action on voltage-dependent Na channels of cardiac muscle.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3207997

  6. Evaluation of microRNAs − 208 and 133a/b as differential biomarkers of acute cardiac and skeletal muscle toxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Calvano, Jacqueline, E-mail: Jacqueline.Calvano@bms.com [Drug Safety Evaluation, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08903 (United States); Achanzar, William; Murphy, Bethanne [Drug Safety Evaluation, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08903 (United States); DiPiero, Janet [Discovery Toxicology, Bristol-Myers Squibb, Route 206 and Province Line Road, Lawrenceville, NJ 08540 (United States); Hixson, Clifford; Parrula, Cecilia; Burr, Holly; Mangipudy, Raja; Tirmenstein, Mark [Drug Safety Evaluation, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08903 (United States)

    2016-12-01

    Conventional circulating biomarkers of cardiac and skeletal muscle (SKM) toxicity lack specificity and/or have a short half-life. MicroRNAs (miRNAs) are currently being assessed as biomarkers of tissue injury based on their long half-life in blood and selective expression in certain tissues. To assess the utility of miRNAs as biomarkers of cardiac and SKM injury, male Sprague–Dawley rats received a single dose of isoproterenol (ISO); metaproterenol (MET); allylamine (AAM); mitoxantrone (MIT); acetaminophen (APAP) or vehicle. Blood and tissues were collected from rats in each group at 4, 24 and 48 h. ISO, MET, and AAM induced cardiac and SKM lesions and APAP induced liver specific lesions. There was no evidence of tissue injury with MIT by histopathology. Serum levels of candidate miRNAs were compared to conventional serum biomarkers of SKM/cardiac toxicity. Increases in heart specific miR-208 only occurred in rats with cardiac lesions alone and were increased for a longer duration than cardiac troponin and FABP3 (cardiac biomarkers). ISO, MET and AAM induced increases in MyL3 and skeletal muscle troponin (sTnl) (SKM biomarkers). MIT induced large increases in sTnl indicative of SKM toxicity, but sTnl levels were also increased in APAP-treated rats that lacked SKM toxicity. Serum levels of miR-133a/b (enriched in cardiac and SKM) increased following ISO, MET, AAM and MIT treatments but were absent in APAP-treated rats. Our results suggest that miR-133a/b are sensitive and specific markers of SKM and cardiac toxicity and that miR-208 used in combination with miR-133a/b can be used to differentiate cardiac from SKM toxicity. - Highlights: • MiR-208 is specifically expressed in rat hearts. • MiR-133a/b are enriched in rat cardiac/skeletal muscle. • MiR-133a/b are sensitive and specific markers of muscle/cardiac toxicity. • MiR-208 can be used to differentiate cardiac toxicity from skeletal muscle toxicity.

  7. Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle.

    Science.gov (United States)

    Copeland, O'Neal; Sadayappan, Sakthivel; Messer, Andrew E; Steinen, Ger J M; van der Velden, Jolanda; Marston, Steven B

    2010-12-01

    A unique feature of MyBP-C in cardiac muscle is that it has multiple phosphorylation sites. MyBP-C phosphorylation, predominantly by PKA, plays an essential role in modulating contractility as part of the cellular response to β-adrenergic stimulation. In vitro studies indicate MyBP-C can be phosphorylated at Serine 273, 282, 302 and 307 (mouse sequence) but little is known about the level of MyBP-C phosphorylation or the sites phosphorylated in heart muscle. Since current methodologies are limited in specificity and are not quantitative we have investigated the use of phosphate affinity SDS-PAGE together with a total anti MyBP-C antibody and a range of phosphorylation site-specific antibodies for the main sites (Ser-273, -282 and -302). With these newly developed methods we have been able to make a detailed quantitative analysis of MyBP-C phosphorylation in heart tissue in situ. We have found that MyBP-C is highly phosphorylated in non-failing human (donor) heart or mouse heart; tris and tetra-phosphorylated species predominate and less than 10% of MyBP-C is unphosphorylated (0, 9.3 ± 1%: 1P, 13.4 ± 2.7%: 2P, 10.5 ± 3.3%: 3P, 28.7 ± 3.7%: 4P, 36.4 ± 2.7%, n=21). Total phosphorylation was 2.7 ± 0.07 mol Pi/mol MyBP-C. In contrast in failing heart and in myectomy samples from HCM patients the majority of MyBP-C was unphosphorylated. Total phosphorylation levels were 23% of normal in failing heart myofibrils (0, 60.1 ± 2.8%: 1P, 27.8 ± 2.8%: 2P, 4.8 ± 2.0%: 3P, 3.7 ± 1.2%: 4P, 2.8 ± 1.3%, n=19) and 39% of normal in myectomy samples. The site-specific antibodies showed a distinctive distribution pattern of phosphorylation sites in the multiple phosphorylation level species. We found that phosphorylated Ser-273, Ser-282 and Ser-302 were all present in the 4P band of MyBP-C but none of them were significant in the 1P band, indicating that there must be at least one other site of MyBP-C phosphorylation in human heart. The pattern of phosphorylation at the

  8. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    Science.gov (United States)

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  9. Recipient origin of neointimal vascular smooth muscle cells in cardiac allografts with transplant arteriosclerosis

    NARCIS (Netherlands)

    Hillebrands, JL; van den Hurk, BMH; Klatter, FA; Popa, ER; Nieuwenhuis, P; Rozing, J

    2000-01-01

    Background: Coronary artery disease is today's most important post-heart transplantation problem after the first perioperative year. Histologically, coronary artery disease is characterized by transplant arteriosclerosis. The current view on this vasculopathy is that vascular smooth muscle (VSM)

  10. Transient gestational and neonatal hypothyroidism-induced specific changes in androgen receptor expression in skeletal and cardiac muscles of adult rat.

    Science.gov (United States)

    Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M

    2013-03-01

    The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Comparative cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD)

    DEFF Research Database (Denmark)

    Yousaf, Muhammad Naveed; Koppang, Erling Olaf; Skjødt, Karsten

    2013-01-01

    The heart is considered the powerhouse of the cardiovascular system. Heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD) are cardiac diseases of marine farmed Atlantic salmon (Salmo salar) which commonly affect the heart in addition to the skeletal...

  12. Exercise training in Tgαq*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism.

    Science.gov (United States)

    Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta

    2017-08-01

    Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration

  13. Sirtuins as Mediator of the Anti-Ageing Effects of Calorie Restriction in Skeletal and Cardiac Muscle

    Directory of Open Access Journals (Sweden)

    Alberto Zullo

    2018-03-01

    Full Text Available Fighting diseases and controlling the signs of ageing are the major goals of biomedicine. Sirtuins, enzymes with mainly deacetylating activity, could be pivotal targets of novel preventive and therapeutic strategies to reach such aims. Scientific proofs are accumulating in experimental models, but, to a minor extent, also in humans, that the ancient practice of calorie restriction could prove an effective way to prevent several degenerative diseases and to postpone the detrimental signs of ageing. In the present review, we summarize the evidence about the central role of sirtuins in mediating the beneficial effects of calorie restriction in skeletal and cardiac muscle since these tissues are greatly damaged by diseases and advancing years. Moreover, we entertain the possibility that the identification of sirtuin activators that mimic calorie restriction could provide the benefits without the inconvenience of this dietary style.

  14. Chiral recognition of pinacidil and its 3-pyridyl isomer by canine cardiac and smooth muscle: Antagonism by sulfonylureas

    International Nuclear Information System (INIS)

    Steinberg, M.I.; Wiest, S.A.; Zimmerman, K.M.; Ertel, P.J.; Bemis, K.G.; Robertson, D.W.

    1991-01-01

    Pinacidil, a potassium channel opener (PCO), relaxes vascular smooth muscle by increasing potassium ion membrane conductance, thereby causing membrane hyperpolarization. PCOs also act on cardiac muscle to decrease action potential duration (APD) selectively. To examine the enantiomeric selectivity of pinacidil, the stereoisomers of pinacidil (a 4-pyridylcyanoguanidine) and its 3-pyridyl isomer (LY222675) were synthesized and studied in canine Purkinje fibers and cephalic veins. The (-)-enantiomers of both pinacidil and LY222675 were more potent in relaxing phenylephrine-contracted cephalic veins and decreasing APD than were their corresponding (+)-enantiomers. The EC50 values for (-)-pinacidil and (-)-LY222675 in relaxing cephalic veins were 0.44 and 0.09 microM, respectively. In decreasing APD, the EC50 values were 3.2 microM for (-)-pinacidil and 0.43 microM for (-)-LY222675. The eudismic ratio was greater for the 3-pyridyl isomer than for pinacidil in both cardiac (71 vs. 22) and vascular (53 vs. 17) tissues. (-)-LY222675 and (-)-pinacidil (0.1-30 microM) also increased 86Rb efflux from cephalic veins to a greater extent than did their respective optical antipodes. The antidiabetic sulfonylurea, glyburide (1-30 microM), shifted the vascular concentration-response curve of (-)-pinacidil to the right by a similar extent at each inhibitor concentration. Glipizide also antagonized the response to (-)-pinacidil, but was about 1/10 as potent with a maximal shift occurring at 10 and 30 microM. Glyburide antagonized the vascular relaxant effects of 0.3 microM (-)-LY222675 (EC50, 2.3 microM) and reversed the decrease in APD caused by 3 microM (-)-LY222675 (EC50, 1.9 microM). Nitroprusside did not alter 86Rb efflux, and vascular relaxation induced by sodium nitroprusside was unaffected by sulfonylureas

  15. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance-trained men: a [11C]TMSX PET study

    International Nuclear Information System (INIS)

    Mizuno, Masaki; Kimura, Yuichi; Tokizawa, Ken; Ishii, Kenji; Oda, Keiichi; Sasaki, Toru; Nakamura, Yoshio; Muraoka, Isao; Ishiwata, Kiichi

    2005-01-01

    We examined the densities of adenosine A 2A receptors in cardiac and skeletal muscles between untrained and endurance-trained subjects using positron emission tomography (PET) and [7-methyl- 11 C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([ 11 C]TMSX), a newly developed radioligand for mapping adenosine A 2A receptors. Five untrained and five endurance-trained subjects participated in this study. The density of adenosine A 2A receptors was evaluated as the distribution volume of [ 11 C]TMSX in cardiac and triceps brachii muscles in the resting state using PET. The distribution volume of [ 11 C]TMSX in the myocardium was significantly greater than in the triceps brachii muscle in both groups. Further, distribution volumes [ 11 C]TMSX in the trained subjects were significantly grater than those in untrained subjects (myocardium, 3.6±0.3 vs. 3.1±0.4 ml g -1 ; triceps brachii muscle, 1.7±0.3 vs. 1.2±0.2 ml g -1 , respectively). These results indicate that the densities of adenosine A 2A receptors in the cardiac and skeletal muscles are greater in the endurance-trained men than in the untrained men

  16. MUSCLEMOTION: A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo.

    Science.gov (United States)

    Sala, Luca; van Meer, Berend J; Tertoolen, Leon G J; Bakkers, Jeroen; Bellin, Milena; Davis, Richard P; Denning, Chris; Dieben, Michel A E; Eschenhagen, Thomas; Giacomelli, Elisa; Grandela, Catarina; Hansen, Arne; Holman, Eduard R; Jongbloed, Monique R M; Kamel, Sarah M; Koopman, Charlotte D; Lachaud, Quentin; Mannhardt, Ingra; Mol, Mervyn P H; Mosqueira, Diogo; Orlova, Valeria V; Passier, Robert; Ribeiro, Marcelo C; Saleem, Umber; Smith, Godfrey L; Burton, Francis L; Mummery, Christine L

    2018-02-02

    There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac "organoids," engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models. © 2017 The Authors.

  17. Decrease in sarcoplasmic reticulum calcium content, not myofilament function, contributes to muscle twitch force decline in isolated cardiac trabeculae

    Science.gov (United States)

    Milani-Nejad, Nima; Brunello, Lucia; Gyorke, Sándor; Janssen, Paul M.L.

    2014-01-01

    We set out to determine the factors responsible for twitch force decline in isolated intact rat cardiac trabeculae. The contractile force of trabeculae declined over extended periods of isometric twitch contractions. The force-frequency relationship within the frequency range of 4–8 Hz, at 37 °C, became more positive and the frequency optimum shifted to higher rates with this decline in baseline twitch tensions. The post-rest potentiation (37 °C), a phenomenon highly dependent on calcium handling mechanisms, became more pronounced with decrease in twitch tensions. We show that the main abnormality during muscle run-down was not due to a deficit in the myofilaments; maximal tension achieved using a K+ contracture protocol was either unaffected or only slightly decreased. Conversely, the sarcoplasmic reticulum (SR) calcium content, as assessed by rapid cooling contractures (from 27 °C to 0 °C), decreased, and had a close association with the declining twitch tensions (R2 ~ 0.76). SR Ca2+-ATPase, relative to Na+/Ca2+ exchanger activity, was not altered as there was no significant change in paired rapid cooling contracture ratios. Furthermore, confocal microscopy detected no abnormalities in the overall structure of the cardiomyocytes and t-tubules in the cardiac trabeculae (~23 °C). Overall, the data indicates that the primary mechanism responsible for force run-down in multi-cellular cardiac preparations is a decline in the SR calcium content and not the maximal tension generation capability of the myofilaments. PMID:25056841

  18. Hypothalamus-pituitary-thyroid axis activity and function of cardiac muscle in energy deficit

    Directory of Open Access Journals (Sweden)

    Katarzyna Lachowicz

    2017-12-01

    Full Text Available Frequently repeated statement that energy restriction is a factor that improves cardiovascular system function seems to be not fully truth. Low energy intake modifies the hypothalamus-pituitary-thyroid axis activity and thyroid hormone peripheral metabolism. Thyroid hormones, as modulators of the expression and activity of many cardiomyocyte proteins, control heart function. Decreased thyroid hormone levels and their disturbanced conversion and action result in alternation of cardiac remodeling, disorder of calcium homeostasis and diminish myocardial contractility. This review provides a summary of the current state of knowledge about the mechanisms of energy restriction effects on thyroidal axis activity, thyroid hormone peripheral metabolism and action in target tissues, especially in cardiac myocytes. We also showed the existence of energy restriction-thyroid-heart pathway.

  19. Effect of sildenafil on skeletal and cardiac muscle in Becker muscular dystrophy

    DEFF Research Database (Denmark)

    Witting, Nanna; Kruuse, Christina; Nyhuus, Bo

    2014-01-01

    OBJECTIVE: Patients with Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy lack neuronal nitric oxide synthase (nNOS). nNOS mediates physiological sympatholysis, thus ensuring adequate blood supply to working muscle. In mice lacking dystrophin, restoration of nNOS effects...

  20. The cardiac muscle duplex as a method to study myocardial heterogeneity

    Science.gov (United States)

    Solovyova, O.; Katsnelson, L.B.; Konovalov, P.V.; Kursanov, A.G.; Vikulova, N.A.; Kohl, P.; Markhasin, V.S.

    2014-01-01

    This paper reviews the development and application of paired muscle preparations, called duplex, for the investigation of mechanisms and consequences of intra-myocardial electro-mechanical heterogeneity. We illustrate the utility of the underlying combined experimental and computational approach for conceptual development and integration of basic science insight with clinically relevant settings, using previously published and new data. Directions for further study are identified. PMID:25106702

  1. Assessment of muscle tissue oxygen saturation after out-of-hospital cardiac arrest.

    Science.gov (United States)

    Orban, Jean-Christophe; Scarlatti, Audrey; Danin, Pierre-Eric; Dellamonica, Jean; Bernardin, Gilles; Ichai, Carole

    2015-12-01

    Pathophysiology of cardiac arrest corresponds to an ischemia-reperfusion syndrome with deep impairment of microcirculation. Muscular tissue oxygen saturation (StO2) is a noninvasive method of evaluation of microcirculation. Our study was aimed at assessing the prognosis value of muscular StO2 in patients admitted for out-of-hospital cardiac arrest (OHCA) and treated with hypothermia. We conducted a prospective bicentric observational study including OHCA patients treated with therapeutic hypothermia. Baseline StO2, derived variables (desaturation and resaturation slopes), and lactate levels were compared at different times between patients with good and poor outcomes. Prognosis was assessed by the Cerebral Performance Category (CPC) score at 6 months after admission (CPC 1-2, good outcome; CPC 3-5, poor outcome). Forty-four patients were included, 17 good and 27 poor outcomes at 6 months. At admission, StO2 and lactate levels were lower in good outcome patients. Desaturation and resaturation slopes did not differ between groups. After an OHCA treated with therapeutic hypothermia, StO2 was correlated with outcome. Further research is needed to better understand the pathophysiological process underlying our results. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Ayurvedic preparation of Zingiber officinale Roscoe: effects on cardiac and on smooth muscle parameters.

    Science.gov (United States)

    Leoni, Alberto; Budriesi, Roberta; Poli, Ferruccio; Lianza, Mariacaterina; Graziadio, Alessandra; Venturini, Alice; Broccoli, Massimiliano; Micucci, Matteo

    2017-08-28

    The rhizome of the Zingiber officinale Roscoe, a biennial herb growing in South Asia, is commonly known as ginger. Ginger is used in clinical disorders, such as constipation, dyspepsia, diarrhoea, nausea and vomiting and its use is also recommended by the traditional medicine for cardiopathy, high blood pressure, palpitations and as a vasodilator to improve the circulation. The decoction of ginger rhizome is widely used in Ayurvedic medicine. In this papery by high-performance liquid chromatography, we have seen that its main phytomarkers were 6-gingerol, 8-gingerol and 6-shogaol and we report the effects of the decoction of ginger rhizome on cardiovascular parameters and on vascular and intestinal smooth muscle. In our experimental models, the decoction of ginger shows weak negative inotropic and chronotropic intrinsic activities but a significant intrinsic activity on smooth muscle with a potency on ileum is greater than on aorta: EC 50  = 0.66 mg/mL versus EC 50  = 1.45 mg/mL.

  3. Predicting Effects of Tropomyosin Mutations on Cardiac Muscle Contraction through Myofilament Modeling

    Directory of Open Access Journals (Sweden)

    Lorenzo Rakesh Sewanan

    2016-10-01

    Full Text Available Point mutations to the human gene TPM1 have been implicated in the development of both hypertrophic and dilated cardiomyopathies. Such observations have led to studies investigating the link between single residue changes and the biophysical behavior of the tropomyosin molecule. However, the degree to which these molecular perturbations explain the performance of intact sarcomeres containing mutant tropomyosin remains uncertain. Here, we present a modeling approach that integrates various aspects of tropomyosin’s molecular properties into a cohesive paradigm representing their impact on muscle function. In particular, we considered the effects of tropomyosin mutations on (1 persistence length, (2 equilibrium between thin filament blocked and closed regulatory states, and (3 the crossbridge duty cycle. After demonstrating the ability of the new model to capture Ca-dependent myofilament responses during both dynamic and steady-state activation, we used it to capture the effects of hypertrophic cardiomyopathy (HCM related E180G and D175N mutations on skinned myofiber mechanics. Our analysis indicates that the fiber-level effects of the two mutations can be accurately described by a combination of changes to the three tropomyosin properties represented in the model. Subsequently, we used the model to predict mutation effects on muscle twitch. Both mutations led to increased twitch contractility as a consequence of diminished cooperative inhibition between thin filament regulatory units. Overall, simulations suggest that a common twitch phenotype for HCM-linked tropomyosin mutations includes both increased contractility and elevated diastolic tension.

  4. Long-term administration of the TNF blocking drug Remicade (cV1q) to mdx mice reduces skeletal and cardiac muscle fibrosis, but negatively impacts cardiac function

    Science.gov (United States)

    Ermolova, N.E.; Martinez, L.; Vetrone, S.A.; Jordan, M. C.; Roos, K. .P.; Sweeney, H.L.; Spencer, M.J.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease caused by mutations in the gene encoding dystrophin (DYS). Tumor necrosis factor (TNF) has been implicated in the pathogenesis of DMD since short-term treatment of mdx mice with TNF blocking drugs proved beneficial; however, it is not clear whether long-term treatment will also improve long-term outcomes of fibrosis and cardiac health. In this investigation, short and long-term dosing studies were carried out using the TNF blocking drug Remicade and a variety of outcome measures were assessed. Here we show no demonstrable benefit to muscle strength or morphology with 10mg/kg or 20 mg/kg Remicade; however, 3mg/kg produced positive strength benefits. Remicade treatment correlated with reductions in myostatin mRNA in the heart, and concomitant reductions in cardiac and skeletal fibrosis. Surprisingly, although Remicade treated mdx hearts were less fibrotic, reductions in LV mass and ejection fraction were also observed, and these changes coincided with reductions in AKT phosphorylation on threonine 308. Thus, TNF blockade benefits mdx skeletal muscle strength and fibrosis, but negatively impacts AKT activation, leading to deleterious changes to dystrophic heart function. These studies uncover a previously unknown relationship between TNF blockade and alteration of muscle growth signaling pathways. PMID:24844454

  5. Suppression of skeletal muscle signal using a crusher coil: A human cardiac (31) p-MR spectroscopy study at 7 tesla.

    Science.gov (United States)

    Schaller, Benoit; Clarke, William T; Neubauer, Stefan; Robson, Matthew D; Rodgers, Christopher T

    2016-03-01

    The translation of sophisticated phosphorus MR spectroscopy ((31)P-MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac (31)P spectra at 7T. We introduce the first surface-spoiling crusher coil for human cardiac (31)P-MRS at 7T. A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac (31)P-MRS at 7T. In a phantom, residual signals were 50 ± 10% with BISTRO (B1 -insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). A crusher coil is an SAR-efficient alternative for selectively suppressing skeletal muscle during cardiac (31)P-MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR-prohibitive, without compromising skeletal muscle suppression. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.

  6. Suppression of skeletal muscle signal using a crusher coil: A human cardiac 31p‐MR spectroscopy study at 7 tesla

    Science.gov (United States)

    Clarke, William T.; Neubauer, Stefan; Robson, Matthew D.; Rodgers, Christopher T.

    2015-01-01

    Purpose The translation of sophisticated phosphorus MR spectroscopy (31P‐MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac 31P spectra at 7T. We introduce the first surface‐spoiling crusher coil for human cardiac 31P‐MRS at 7T. Methods A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac 31P‐MRS at 7T. Results In a phantom, residual signals were 50 ± 10% with BISTRO (B1‐insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). Conclusion A crusher coil is an SAR‐efficient alternative for selectively suppressing skeletal muscle during cardiac 31P‐MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR‐prohibitive, without compromising skeletal muscle suppression. Magn Reson Med 75:962–972, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:25924813

  7. Muscle Contraction.

    Science.gov (United States)

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Javier Avila-Medina

    2018-03-01

    Full Text Available Cardiac, skeletal, and smooth muscle cells shared the common feature of contraction in response to different stimuli. Agonist-induced muscle's contraction is triggered by a cytosolic free Ca2+ concentration increase due to a rapid Ca2+ release from intracellular stores and a transmembrane Ca2+ influx, mainly through L-type Ca2+ channels. Compelling evidences have demonstrated that Ca2+ might also enter through other cationic channels such as Store-Operated Ca2+ Channels (SOCCs, involved in several physiological functions and pathological conditions. The opening of SOCCs is regulated by the filling state of the intracellular Ca2+ store, the sarcoplasmic reticulum, which communicates to the plasma membrane channels through the Stromal Interaction Molecule 1/2 (STIM1/2 protein. In muscle cells, SOCCs can be mainly non-selective cation channels formed by Orai1 and other members of the Transient Receptor Potential-Canonical (TRPC channels family, as well as highly selective Ca2+ Release-Activated Ca2+ (CRAC channels, formed exclusively by subunits of Orai proteins likely organized in macromolecular complexes. This review summarizes the current knowledge of the complex role of Store Operated Calcium Entry (SOCE pathways and related proteins in the function of cardiac, skeletal, and vascular smooth muscle cells.

  9. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    International Nuclear Information System (INIS)

    Zhao Yuqin; Xue Tao; Yang Xiaochun; Zhu Hong; Ding Xiaofei; Lou Liming; Lu Wei; Yang Bo; He Qiaojun

    2010-01-01

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  10. Inhibition of doxorubicin-induced senescence by PPARδ activation agonists in cardiac muscle cells: cooperation between PPARδ and Bcl6.

    Directory of Open Access Journals (Sweden)

    Paola Altieri

    Full Text Available Senescence and apoptosis are two distinct cellular programs that are activated in response to a variety of stresses. Low or high doses of the same stressor, i.e., the anticancer drug doxorubicin, may either induce apoptosis or senescence, respectively, in cardiac muscle cells. We have demonstrated that PPARδ, a ligand-activated transcriptional factor that controls lipid metabolism, insulin sensitivity and inflammation, is also involved in the doxorubicin-induced senescence program. This occurs through its interference with the transcriptional repressor protein B cell lymphoma-6 (Bcl6. Low doses of doxorubicin increase the expression of PPARδ that sequesters Bcl6, thus preventing it from exerting its anti-senescent effects. We also found that L-165041, a specific PPARδ activator, is highly effective in protecting cardiomyocytes from doxorubicin-induced senescence through a Bcl6 related mechanism. In fact, L-165041 increases Bcl6 expression via p38, JNK and Akt activation, and at the same time it induces the release of Bcl6 from PPARδ, thereby enabling Bcl6 to bind to its target genes. L-165041 also prevented apoptosis induced by higher doses of doxorubicin. However, while experiments performed with siRNA analysis techniques very clearly showed the weight of Bcl6 in the cellular senescence program, no role was found for Bcl6 in the anti-apoptotic effects of L-165041, thus confirming that senescence and apoptosis are two very distinct stress response cellular programs. This study increases our understanding of the molecular mechanism of anthracycline cardiotoxicity and suggests a potential role for PPARδ agonists as cardioprotective agents.

  11. The relationship between the hypokalaemic response to adrenaline, beta-adrenoceptors, and Na(+)-K+ pumps in skeletal and cardiac muscle membranes in the rabbit

    International Nuclear Information System (INIS)

    Elfellah, M.S.; Reid, J.L.

    1990-01-01

    The hypokalaemic response to adrenaline and the involvement of beta-adrenoceptors and Na(+)-K+ pumps were investigated in control rabbits and animals chronically pretreated with adrenaline. The hypokalaemic response to acute intravenous infusion of adrenaline was significantly reduced when rabbits were chronically pretreated with adrenaline for 10 days. Chronic pretreatment of rabbits with adrenaline significantly reduced the densities for [125I]cyanopindolol and [3H]ouabain binding sites in skeletal muscle and heart. Furthermore, there was a strong positive correlation (r = 0.97, p less than 0.001) between the Bmax for ICYP and [3H]ouabain, in the rabbit heart. Ouabain-sensitive 86Rb uptake and the activity of 3-O-methylfluorescein phosphate phosphatase were used to assess the function of the Na(+)-K+ pump in skeletal and cardiac muscle. There was no significant difference in these functional indices of the Na(+)-K+ pump between the control and adrenaline-pretreated animals, in skeletal or cardiac muscle. Thus, downregulation of the [3H]ouabain binding sites did not appear to be accompanied by reduced function of the Na(+)-K+ pump. Additional investigations are required to confirm further the dissociation between the function of the pump and the ouabain binding sites

  12. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.

    Science.gov (United States)

    Fusi, L; Brunello, E; Yan, Z; Irving, M

    2016-10-31

    Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.

  13. Evidence towards improved estimation of respiratory muscle effort from diaphragm mechanomyographic signals with cardiac vibration interference using sample entropy with fixed tolerance values.

    Directory of Open Access Journals (Sweden)

    Leonardo Sarlabous

    Full Text Available The analysis of amplitude parameters of the diaphragm mechanomyographic (MMGdi signal is a non-invasive technique to assess respiratory muscle effort and to detect and quantify the severity of respiratory muscle weakness. The amplitude of the MMGdi signal is usually evaluated using the average rectified value or the root mean square of the signal. However, these estimations are greatly affected by the presence of cardiac vibration or mechanocardiographic (MCG noise. In this study, we present a method for improving the estimation of the respiratory muscle effort from MMGdi signals that is robust to the presence of MCG. This method is based on the calculation of the sample entropy using fixed tolerance values (fSampEn, that is, with tolerance values that are not normalized by the local standard deviation of the window analyzed. The behavior of the fSampEn parameter was tested in synthesized mechanomyographic signals, with different ratios between the amplitude of the MCG and clean mechanomyographic components. As an example of application of this technique, the use of fSampEn was explored also in recorded MMGdi signals, with different inspiratory loads. The results with both synthetic and recorded signals indicate that the entropy parameter is less affected by the MCG noise, especially at low signal-to-noise ratios. Therefore, we believe that the proposed fSampEn parameter could improve estimates of respiratory muscle effort from MMGdi signals with the presence of MCG interference.

  14. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance.

    Science.gov (United States)

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-05-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.

  15. MURC, a Muscle-Restricted Coiled-Coil Protein That Modulates the Rho/ROCK Pathway, Induces Cardiac Dysfunction and Conduction Disturbance▿

    Science.gov (United States)

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-01-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias. PMID:18332105

  16. [Experimental study on potential for cardiac assist by latissimus dorsi myograft--an importance of muscle ischemia].

    Science.gov (United States)

    Morita, K; Koyanagi, K; Sakamoto, Y; Wakabayashi, K; Tanaka, K; Horikoshi, S; Matsui, M; Arai, T

    1991-03-01

    We have studied contractile property and fatigue rates of skeletal muscle ventricle (SMV) constructed using the latissimus dorsi muscles of 11 dogs. The role of early interruption of collateral blood supply in the prevention of muscle ischemia and SMV fatigue was evaluated. Systolic function of SMV was measured in a hydraulic test system; afterload was set at 70 mmHg and preload 15 or 25 mmHg. Control SMV (GI: N = 7), which was fashioned immediately after interruption of collateral blood supply, generated an initial SMV pressure of 222 +/- 50 mmHg and stroke volume of 15 +/- 7 ml/beat with muscle stimulation at a burst-frequency of 50 Hz, but could sustain flow for only 3.5 +/- 0.8 minutes. SMV subjected to a vascular delay (Group II: N = 4) demonstrated improvement of fatigue rates; duration of flow 32.4 +/- 14.0 and sufficient contractile property (initial SMV pressure 182 +/- 17 mmHg, stroke volume 1- +/- 2 ml/beat). Thermography surface temperature mapping revealed remarkable improvement of blood distribution in GII muscles. Flow rates of thoracodorsal artery were significantly greater in GII muscles compared to those in GI muscles (15.0 +/- 3.7 ml/min/LD 100 g, 10.1 +/- 3.1 ml/min/LD 100 g, p less than 0.05, respectively). Despite significant improvement of functional durability in GII muscles, the ratio of oxygen consumption to lactate output was not different between 2 groups. These results suggest that early interruption of collateral blood supply can minimize muscle ischemia, resulting in diminishing fatigue of latissimus dorsi muscles without changes in skeletal muscle metabolism.

  17. Exome Sequencing Identified a Splice Site Mutation in FHL1 that Causes Uruguay Syndrome, an X-Linked Disorder With Skeletal Muscle Hypertrophy and Premature Cardiac Death.

    Science.gov (United States)

    Xue, Yuan; Schoser, Benedikt; Rao, Aliz R; Quadrelli, Roberto; Vaglio, Alicia; Rupp, Verena; Beichler, Christine; Nelson, Stanley F; Schapacher-Tilp, Gudrun; Windpassinger, Christian; Wilcox, William R

    2016-04-01

    Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies. © 2016 American Heart Association, Inc.

  18. Skeletal, cardiac, and respiratory muscle function and histopathology in the P448Lneo- mouse model of FKRP-deficient muscular dystrophy.

    Science.gov (United States)

    Yu, Qing; Morales, Melissa; Li, Ning; Fritz, Alexander G; Ruobing, Ren; Blaeser, Anthony; Francois, Ershia; Lu, Qi-Long; Nagaraju, Kanneboyina; Spurney, Christopher F

    2018-04-06

    Fukutin-related protein (FKRP) mutations are the most common cause of dystroglycanopathies known to cause both limb girdle and congenital muscular dystrophy. The P448Lneo- mouse model has a knock-in mutation in the FKRP gene and develops skeletal, respiratory, and cardiac muscle disease. We studied the natural history of the P448Lneo- mouse model over 9 months and the effects of twice weekly treadmill running. Forelimb and hindlimb grip strength (Columbus Instruments) and overall activity (Omnitech Electronics) assessed skeletal muscle function. Echocardiography was performed using VisualSonics Vevo 770 (FujiFilm VisualSonics). Plethysmography was performed using whole body system (ADInstruments). Histological evaluations included quantification of inflammation, fibrosis, central nucleation, and fiber size variation. P448Lneo- mice had significantly increased normalized tissue weights compared to controls at 9 months of age for the heart, gastrocnemius, soleus, tibialis anterior, quadriceps, and triceps. There were no significant differences seen in forelimb or hindlimb grip strength or activity monitoring in P448Lneo- mice with or without exercise compared to controls. Skeletal muscles demonstrated increased inflammation, fibrosis, central nucleation, and variation in fiber size compared to controls (p muscular dystrophies.

  19. Cardiac ankyrin repeat protein (CARP) expression in human and murine atherosclerotic lesions - Activin induces carp in smooth muscle cells

    NARCIS (Netherlands)

    de Waard, Vivian; van Achterberg, Tanja A. E.; Beauchamp, Nicholas J.; Pannekoek, Hans; de Vries, Carlie J. M.

    2003-01-01

    Objective-Cardiac ankyrin repeat protein (CARP) is a transcription factor-related protein that has been studied most extensively in the heart. In the present study, we investigated the expression and the potential function of CARP in human and murine atherosclerosis. Methods and Results-CARP

  20. [Analysis of surgical treatment with pectoralis major muscle flap for deep sternal infection after cardiac surgery: a case series of 189 patients].

    Science.gov (United States)

    Liu, Dong; Wang, Wenzhang; Cai, Aibing; Han, Zhiyi; Li, Xiyuan; Ma, Jiagui

    2015-03-01

    To analyze and summarize the clinical features and experience in surgical treatment of deep sternal infection (DSWI). This was a retrospective study. From January 2008 to December 2013, 189 patients with secondary DSWI after cardiac surgery underwent the pectoralis major muscle flap transposition in our department. There were 116 male and 73 female patients. The mean age was (54 ± 21) years, the body mass index was (26. 1 ± 1. 3) kg/m2. The incidence of postoperation DSWI were after isolated coronary artery bypass grafting (CABG) in 93 patients, after other heart surgery plus CABG in 13 patients, after valve surgery in 47 patients, after thoracic aortic surgery in 16 patients, after congenital heart disease in 18 patients, and after cardiac injury in 2 patients. Clean patients' wound and extract secretions, clear the infection thoroughly by surgery and select antibiotics based on susceptibility results, and then repair the wound with appropriate muscle flap, place drain tube with negative pressure. Of all the 189 patients, 184 used isolate pectoralis, 1 used isolate rectus, and 4 used pectoralis plus rectus. The operative wounds of 179 patients were primary healing (94. 7%). Hospital discharge was postponed by 1 week for 7 patients, due to subcutaneous wound infection. Subcutaneous wound infection occurred again in 8 patients 1 week after hospital discharge, and their wounds healed after wound dressing. Nine patients (4. 7%) did not recover, due to residue of the sequestrum and costal chondritis, whom were later cured by undergoing a second treatment of debridement and pectoralis major muscle flap transposition. Eight patients died, in which 2 died of respiratory failure, 2 died of bacterial endocarditis with septicemia, 2 died of renal failure, 1 died of intraoperative bleeding leading to brain death and the 1 died of heart failure. The mortality rate was 4. 2% . The average length of postoperative hospital stay was (14 ± 5) days. The longest postoperative

  1. Interrelation between the changes of phase functions of cardiac muscle contraction and biochemical processes as an algorithm for identifying local pathologies in cardiovascular system

    Directory of Open Access Journals (Sweden)

    Yury V. Fedosov

    2012-11-01

    Full Text Available Aims The interrelation between hemodynamic changes, functions of the cardiovascular system and biochemical reactions in the cells of the heart muscle is investigated in the present paper. Materials and methods Several methods were used to influence the metabolism processes in the myocardium. The changes in the phase functions of contraction of different cardiac muscles were recorded. In order to have comprehensive influence on the metabolism processes, normalization of the acid-base balance was performed. L-carnitine and octolipen were used to affect the lipid metabolism. Results Phase blood volumes that are characteristic of hemodynamics changed in the course of treatment to reach their nornal values. The ECG shape during the heart cycle phases also changed to reach the norm. The initial ECG shape describing Brugada syndrome almost reached its normal value. Extrasystole disappeared therewith. Conclusion The method of the heart cycle phase analysis enables monitoring any changes in hemodynamics and functions of the cardiovascular system. The method can be used for identifying the original cause of pathologies and efficient monitoring of the treatment progress.

  2. MUSCLEMOTION : A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo

    NARCIS (Netherlands)

    Sala, Luca; van Meer, Berend J; Tertoolen, Leon T; Bakkers, Jeroen; Bellin, Milena; Davis, Richard P; Denning, Chris N; Dieben, Michel A; Eschenhagen, Thomas; Giacomelli, Elisa; Grandela, Catarina; Hansen, Arne; Holman, Eduard; Jongbloed, Monique R; Kamel, Sarah M; Koopman, Charlotte D; Lachaud, Quentin; Mannhardt, Ingra; Mol, Mervyn P; Mosqueira, Diogo; Orlova, Valeria V; Passier, Robert; Ribeiro, Marcelo C; Saleem, Umber; Smith, Godfrey; Burton, Francis L L; Mummery, Christine L

    2017-01-01

    Rationale: There are several methods to measure cardiomyocyte (CM) and muscle contraction but these require customized hardware, expensive apparatus and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across

  3. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia

    Science.gov (United States)

    Yoshida, Tadashi; Tabony, A. Michael; Galvez, Sarah; Mitch, William E.; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-01-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5′ AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. PMID:23769949

  4. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4 due to PTRF-CAVIN mutations.

    Directory of Open Access Journals (Sweden)

    Anna Rajab

    2010-03-01

    Full Text Available We investigated eight families with a novel subtype of congenital generalized lipodystrophy (CGL4 of whom five members had died from sudden cardiac death during their teenage years. ECG studies revealed features of long-QT syndrome, bradycardia, as well as supraventricular and ventricular tachycardias. Further symptoms comprised myopathy with muscle rippling, skeletal as well as smooth-muscle hypertrophy, leading to impaired gastrointestinal motility and hypertrophic pyloric stenosis in some children. Additionally, we found impaired bone formation with osteopenia, osteoporosis, and atlanto-axial instability. Homozygosity mapping located the gene within 2 Mbp on chromosome 17. Prioritization of 74 candidate genes with GeneDistiller for high expression in muscle and adipocytes suggested PTRF-CAVIN (Polymerase I and transcript release factor/Cavin as the most probable candidate leading to the detection of homozygous mutations (c.160delG, c.362dupT. PTRF-CAVIN is essential for caveolae biogenesis. These cholesterol-rich plasmalemmal vesicles are involved in signal-transduction and vesicular trafficking and reside primarily on adipocytes, myocytes, and osteoblasts. Absence of PTRF-CAVIN did not influence abundance of its binding partner caveolin-1 and caveolin-3. In patient fibroblasts, however, caveolin-1 failed to localize toward the cell surface and electron microscopy revealed reduction of caveolae to less than 3%. Transfection of full-length PTRF-CAVIN reestablished the presence of caveolae. The loss of caveolae was confirmed by Atomic Force Microscopy (AFM in combination with fluorescent imaging. PTRF-CAVIN deficiency thus presents the phenotypic spectrum caused by a quintessential lack of functional caveolae.

  5. Dynamic muscle O2 saturation response is impaired during major non-cardiac surgery despite goal-directed haemodynamic therapy.

    Science.gov (United States)

    Feldheiser, A; Hunsicker, O; Kaufner, L; Köhler, J; Sieglitz, H; Casans Francés, R; Wernecke, K-D; Sehouli, J; Spies, C

    2016-03-01

    Near-infrared spectroscopy combined with a vascular occlusion test (VOT) could indicate an impairment of microvascular reactivity (MVR) in septic patients by detecting changes in dynamic variables of muscle O2 saturation (StO2). However, in the perioperative context the consequences of surgical trauma on dynamic variables of muscle StO2 as indicators of MVR are still unknown. This study is a sub-analysis of a randomised controlled trial in patients with metastatic primary ovarian cancer undergoing debulking surgery, during which a goal-directed haemodynamic algorithm was applied using oesophageal Doppler. During a 3 min VOT, near-infrared spectroscopy was used to assess dynamic variables arising from changes in muscle StO2. At the beginning of surgery, values of desaturation and recovery slope were comparable to values obtained in healthy volunteers. During the course of surgery, both desaturation and recovery slope showed a gradual decrease. Concomitantly, the study population underwent a transition to a surgically induced systemic inflammatory response state shown by a gradual increase in norepinephrine administration, heart rate, and Interleukin-6, with a peak immediately after the end of surgery. Higher rates of norepinephrine and a higher heart rate were related to a faster decline in StO2 during vascular occlusion. Using near-infrared spectroscopy combined with a VOT during surgery showed a gradual deterioration of MVR in patients treated with optimal haemodynamic care. The deterioration of MVR was accompanied by the transition to a surgically induced systemic inflammatory response state. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. [Parameters of cardiac muscle repolarization on the electrocardiogram when changing anatomical and electric position of the heart].

    Science.gov (United States)

    Chaĭkovskiĭ, I A; Baum, O V; Popov, L A; Voloshin, V I; Budnik, N N; Frolov, Iu A; Kovalenko, A S

    2014-01-01

    While discussing the diagnostic value of the single channel electrocardiogram a set of theoretical considerations emerges inevitably, one of the most important among them is the question about dependence of the electrocardiogram parameters from the direction of electrical axis of heart. In other words, changes in what of electrocardiogram parameters are in fact liable to reflect pathological processes in myocardium, and what ones are determined by extracardiac factors, primarily by anatomic characteristics of patients. It is arguable that while analyzing electrocardiogram it is necessary to orient to such physiologically based informative indexes as ST segment displacement. Also, symmetry of the T wave shape is an important parameter which is independent of patients anatomic features. The results obtained are of interest for theoretical and applied aspects of the biophysics of the cardiac electric field.

  7. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass

    Science.gov (United States)

    Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.

    2003-01-01

    OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and

  8. [Cardiac cachexia].

    Science.gov (United States)

    Miján, Alberto; Martín, Elvira; de Mateo, Beatriz

    2006-05-01

    Chronic heart failure (CHF), especially affecting the right heart, frequently leads to malnutrition. If the latter is severe and is combined to other factors, it may lead to cardiac cachexia. This one is associated to increased mortality and lower survival of patients suffering from it. The causes of cardiac cachexia are diverse, generally associated to maintenance of a negative energy balance, with increasing evidence of its multifactorial origin. Neurohumoral, inflammatory, immunological, and metabolic factors, among others, are superimposed in the patient with CHF, leading to involvement and deterioration of several organs and systems, since this condition affects both lean (or active cellular) mass and adipose and bone tissue osteoporosis. Among all, the most pronounced deterioration may be seen at skeletal muscle tissue, at both structural and functional levels, the heart not being spared. As for treatment, it should be based on available scientific evidence. Assessment of nutritional status of any patient with CHF is a must, with the requirement of nutritional intervention in case of malnutrition. In this situation, especially if accompanied by cardiac cachexia, it is required to modify energy intake and oral diet quality, and to consider the indication of specific complementary or alternative artificial nutrition. Besides, the causal relationship of the beneficial role of moderate physical exertion is increasing, as well as modulation of metabolic and inflammatory impairments observed in cardiac cachexia with several drugs, leading to a favorable functional and structural response in CHF patients.

  9. Action of fractionated X-irradiation, continuous and a combination of continuous and acute (Co60) γ-irradiation on the catechol-amine content of the cardiac muscle of rats

    International Nuclear Information System (INIS)

    Karpovich, N.V.

    1976-01-01

    Changes in the catechol amine content of the cardiac muscle of white rats have been studied in the course and after the exposure to low-dose X- and gamma radiation. The data obtained show that the changes in the catechol amine content depend not merely on the cumulative dose of the ionizing radiation but also on its type and the time that has passed after irradiation

  10. Changes in the contractile state, fine structure and metabolism of cardiac muscle cells during the development of rigor mortis.

    Science.gov (United States)

    Vanderwee, M A; Humphrey, S M; Gavin, J B; Armiger, L C

    1981-01-01

    Transmural slices from the left anterior papillary muscle of dog hearts were maintained for 120 min in a moist atmosphere at 37 degrees C. At 15-min intervals tissue samples were taken for estimation of adenosine triphosphate (ATP) and glucose-6-phosphate (G6P) and for electron microscopic examination. At the same time the deformability under standard load of comparable regions of an adjacent slice of tissue was measured. ATP levels fell rapidly during the first 45 to 75 min after excision of the heart. During a subsequent further decline in ATP, the mean deformability of myocardium fell from 30 to 12% indicating the development of rigor mortis. Conversely, G6P levels increased during the first decline in adenosine triphosphate but remained relatively steady thereafter. Whereas many of the myocardial cells fixed after 5 min contracted on contact with glutaraldehyde, all cells examined after 15 to 40 min were relaxed. A progressive increase in the proportion of contracted cells was observed during the rapid increase in myocardial rigidity. During this late contraction the cells showed morphological evidence of irreversible injury. These findings suggest that ischaemic myocytes contract just before actin and myosin become strongly linked to maintain the state of rigor mortis.

  11. The Protective Effect of Proponyl-L-Carnitine Against Ultrastructural Alterations in Cardiac Muscle of Irradiated and / or diabetic Rats

    International Nuclear Information System (INIS)

    Abu Nour, S.M.; Abdel-Azeem, M.G.; El-Nashar, D.E.M.

    2011-01-01

    Heart dysfunction in chronic diabetes has been observed to be associated with depressed myofibrillar adenosine triphosphatase activities. Oxidative stress a factor implicated in the heart injury may contribute towards some of these alterations. The present study was designed to evaluate the efficacy of L-carnitine on gamma radiation and diabetes induced oxidative damage in the heart by investigating alterations in the ultrastructural level. Streptozotocin was intraperitoneally injected (i.p) to rats at a dose of 28 mg/Kg b.wt / day for 2 weeks pre-irradiation. In irradiated groups, animals were exposed to 6.5 Gy whole body gamma radiation. L-carnitine was intraperitoneally injected (i.p) to rats at a dose of 250 mg/Kg b.wt/day for 2 weeks pre-irradiation. Animals were sacrificed on the 7th day after irradiation. The results demonstrated that the whole body exposure of rats to ionizing radiation induce oxidative stress which showed alterations on the ultrastructural level included dis organization with mayofibrillolysis relatively intact z-band (Z), fibrosis, swollen mitochondria, apoptotic nuclei and thickened walls of capillaries. In diabetic rats cardio muscle focal loss of myofilaments, also swelling of mitochondria and rupture of sacroplasmic reticulum, apoptotic nuclei with dilation of capillaries were evident. Administration of L-carnitine pre-irradiation has improved the ultrastructural alterations of the heart tissue. It is proposed that the oxidative stress is associated with a deficit in the status of the antioxidant defense system which may play a critical role in subcellular remodeling, calcium-handling abnormalities and subsequent diabetic cardiomyopathy

  12. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes.

    Science.gov (United States)

    Shyu, Kou-Gi; Cheng, Wen-Pin; Wang, Bao-Wei; Chang, Hang

    2014-03-01

    The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.

  13. Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles.

    Science.gov (United States)

    Xiang, J Z; Kentish, J C

    1995-03-01

    The aim was to investigate whether, and how, increases in inorganic phosphate (Pi) and ADP, similar to those occurring intracellularly during early myocardial ischaemia, affect the calcium handling of the sarcoplasmic reticulum. Rat ventricular trabeculae were permeabilised with saponin. The physiological process of calcium induced calcium release (CICR) from the muscle sarcoplasmic reticulum was triggered via flash photolysis of the "caged Ca2+", nitr-5. Alternatively, calcium release was induced by rapid application of caffeine to give an estimate of sarcoplasmic reticular calcium loading. The initial rate of sarcoplasmic reticular calcium pumping was also assessed by photolysis of caged ATP at saturating [Ca2+]. Myoplasmic [Ca2+] (using fluo-3) and isometric force were measured. Pi (2-20 mM) significantly depressed the magnitude of CICR and the associated force transient. Sarcoplasmic reticular calcium loading was inhibited even more than CICR by Pi, suggesting that reduced calcium loading could account for all of the inhibitory effect of Pi on CICR and that Pi may slightly activate the calcium release mechanism. The reduced sarcoplasmic reticular calcium loading seemed to be due to a fall in the free energy of ATP hydrolysis (delta GATP) available for the calcium pump, since equal decreases in delta GATP produced by adding both Pi and ADP in various ratios caused similar falls in the calcium loading of the sarcoplasmic reticulum. The caged ATP experiments indicated that Pi (20 mM) did not affect the rate constant of sarcoplasmic reticular calcium uptake. ADP (10 mM) alone, or with 1 mM Pi, inhibited calcium loading. In spite of this, ADP (10 mM) did not alter CICR and, when 1 mM Pi was added, ADP increased CICR above control. An increase in intracellular Pi reduces sarcoplasmic reticular calcium loading and thus depresses the CICR. This could be an important contributing factor in the hypoxic or ischaemic contractile failure of the myocardium. However the

  14. Cardiac muscle organization revealed in 3-D by imaging whole-mount mouse hearts using two-photon fluorescence and confocal microscopy.

    Science.gov (United States)

    Sivaguru, Mayandi; Fried, Glenn; Sivaguru, Barghav S; Sivaguru, Vignesh A; Lu, Xiaochen; Choi, Kyung Hwa; Saif, M Taher A; Lin, Brian; Sadayappan, Sakthivel

    2015-11-01

    The ability to image the entire adult mouse heart at high resolution in 3-D would provide enormous advantages in the study of heart disease. However, a technique for imaging nuclear/cellular detail as well as the overall structure of the entire heart in 3-D with minimal effort is lacking. To solve this problem, we modified the benzyl alcohol:benzyl benzoate (BABB) clearing technique by labeling mouse hearts with periodic acid Schiff (PAS) stain. We then imaged the hearts with a combination of two-photon fluorescence microscopy and automated tile-scan imaging/stitching. Utilizing the differential spectral properties of PAS, we could identify muscle and nuclear compartments in the heart. We were also able to visualize the differences between a 3-month-old normal mouse heart and a mouse heart that had undergone heart failure due to the expression of cardiac myosin binding protein-C (cMyBP-C) gene mutation (t/t). Using 2-D and 3-D morphometric analysis, we found that the t/t heart had anomalous ventricular shape, volume, and wall thickness, as well as a disrupted sarcomere pattern. We further validated our approach using decellularized hearts that had been cultured with 3T3 fibroblasts, which were tracked using a nuclear label. We were able to detect the 3T3 cells inside the decellularized intact heart tissue, achieving nuclear/cellular resolution in 3-D. The combination of labeling, clearing, and two-photon microscopy together with tiling eliminates laborious and time-consuming physical sectioning, alignment, and 3-D reconstruction.

  15. Technetium-99m labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylp ropylamino)-piperidine and iodine-123 metaiodobenzylguanidine for studying cardiac adrenergic function: a comparison of the uptake characteristics in vascular smooth muscle cells and neonatal cardiac myocytes, and an investigation in rats

    International Nuclear Information System (INIS)

    Samnick, Samuel; Scheuer, Claudia; Muenks, Sven; El-Gibaly, Amr M.; Menger, Michael D.; Kirsch, Carl-Martin

    2004-01-01

    In developing technetium-99m-based radioligands for in vivo studies of cardiac adrenergic neurons, we compared the uptake characteristics of the 99m Tc-labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylpropylamino)-piperidine ( 99m Tc-FBPBAT) with those of the clinically established meta-[ 123 I]iodobenzylguanidine ( 123 I-MIBG) in rat vascular smooth muscle cells and neonatal cardiac myocytes. Furthermore, the cardiac and extracardiac uptake of both radiopharmaceuticals was assessed in intact rats and in rats pretreated with various α- and β-adrenoceptor drugs, and adrenergic reuptake blocking agents. The uptake of 99m Tc-FBPBAT and 123 I-MIBG into vascular smooth muscle cells and neonatal cardiac myocytes was rapid; more than 85% of the radioactivity accumulation into the cells occurring within the first 3 minutes. Radioactivity uptake after a 60-minute incubation at 37 degree sign C (pH 7.4) varied from 15% to 65% of the total loaded activity per million cells. In all cases, 99m Tc-FBPBAT showed the higher uptake, relative to 123 I-MIBG, at any given cell concentration. The cellular uptake of 99m Tc-FBPBAT was lower at 4 degree sign C and 20 degree sign C than at 37 degree sign C. In contrast, the 123 I-MIBG uptake was only slightly temperature dependent. Inhibition experiments confirmed that the cellular uptake of 123 I-MIBG is mediated by the uptake-I carrier, whereas α 1 - and β 1 -adrenoceptors were predominantly involved in the uptake of 99m Tc-FBPBAT into the cardiovascular tissues. Biodistribution studies in rats showed that 99m Tc-FBPBAT accumulated in myocardium after intravenous injection. Radioactivity in rat heart amounted to 2.32% and 1.91% of the injected dose per gram at 15 and 60 minutes postinjection, compared with 3.10% and 2.21% injected dose per gram of tissue (%ID/g) in the experiment with 123 I-MIBG, respectively. Prazosin, urapidil, and metoprolol were as effective as treatment with other adrenergic

  16. Technetium-99m labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylp ropylamino)-piperidine and iodine-123 metaiodobenzylguanidine for studying cardiac adrenergic function: a comparison of the uptake characteristics in vascular smooth muscle cells and neonatal cardiac myocytes, and an investigation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Samnick, Samuel E-mail: rassam@uniklinik-saarland.de; Scheuer, Claudia; Muenks, Sven; El-Gibaly, Amr M.; Menger, Michael D.; Kirsch, Carl-Martin

    2004-05-01

    In developing technetium-99m-based radioligands for in vivo studies of cardiac adrenergic neurons, we compared the uptake characteristics of the {sup 99m}Tc-labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylpropylamino)-piperidine ({sup 99m}Tc-FBPBAT) with those of the clinically established meta-[{sup 123}I]iodobenzylguanidine ({sup 123}I-MIBG) in rat vascular smooth muscle cells and neonatal cardiac myocytes. Furthermore, the cardiac and extracardiac uptake of both radiopharmaceuticals was assessed in intact rats and in rats pretreated with various {alpha}- and {beta}-adrenoceptor drugs, and adrenergic reuptake blocking agents. The uptake of {sup 99m}Tc-FBPBAT and {sup 123}I-MIBG into vascular smooth muscle cells and neonatal cardiac myocytes was rapid; more than 85% of the radioactivity accumulation into the cells occurring within the first 3 minutes. Radioactivity uptake after a 60-minute incubation at 37 degree sign C (pH 7.4) varied from 15% to 65% of the total loaded activity per million cells. In all cases, {sup 99m}Tc-FBPBAT showed the higher uptake, relative to {sup 123}I-MIBG, at any given cell concentration. The cellular uptake of {sup 99m}Tc-FBPBAT was lower at 4 degree sign C and 20 degree sign C than at 37 degree sign C. In contrast, the {sup 123}I-MIBG uptake was only slightly temperature dependent. Inhibition experiments confirmed that the cellular uptake of {sup 123}I-MIBG is mediated by the uptake-I carrier, whereas {alpha}{sub 1}- and {beta}{sub 1}-adrenoceptors were predominantly involved in the uptake of {sup 99m}Tc-FBPBAT into the cardiovascular tissues. Biodistribution studies in rats showed that {sup 99m}Tc-FBPBAT accumulated in myocardium after intravenous injection. Radioactivity in rat heart amounted to 2.32% and 1.91% of the injected dose per gram at 15 and 60 minutes postinjection, compared with 3.10% and 2.21% injected dose per gram of tissue (%ID/g) in the experiment with {sup 123}I

  17. Exercise Physiology of Zebrafish: Swimming Effects on Skeletal and Cardiac Muscle Growth, on the Immune Systeme, and the Involvement of the Stress Axis

    NARCIS (Netherlands)

    Palstra, A.P.; Schaaf, M.; Planas, J.V.

    2013-01-01

    Recently, we have established zebrafish as a novel exercise model and demonstrated the stimulation of growth by exercise. Exercise may also induce cardiac hypertrophy and cardiomyocyte proliferation in zebrafish making it an important model to study vertebrate heart regeneration and improved

  18. Severe isolated tricuspid insufficiency due to tricuspid papillary muscle rupture after a fall from a horse: treatment with port access minimally invasive cardiac surgery.

    Science.gov (United States)

    Öz, Kürsad; Mayeran, Yousef; Van Praet, Frank; Codens, Jose; Vanerman, Hugo

    2014-04-01

    We report on the successful treatment of tricuspid valve insufficiency due to blunt chest injury using port-access minimally invasive cardiac surgery. The optimal surgical treatment of traumatic valvular insufficiency is discussed, including a brief review of the relevant literature.

  19. Quantitative cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, M.; Dueber, C.; Wolff, P.; Erbel, R.; Hoffmann, T.

    1985-06-01

    The scope and limitations of quantitative cardiac CT have been evaluated in a series of experimental and clinical studies. The left ventricular muscle mass was estimated by computed tomography in 19 dogs (using volumetric methods, measurements in two axes and planes and reference volume). There was good correlation with anatomical findings. The enddiastolic volume of the left ventricle was estimated in 22 patients with cardiomyopathies; using angiography as a reference, CT led to systematic under-estimation. It is also shown that ECG-triggered magnetic resonance tomography results in improved visualisation and may be expected to improve measurements of cardiac morphology.

  20. Species selective resistance of cardiac muscle voltage gated sodium channels: characterization of brevetoxin and ciguatoxin binding sites in rats and fish.

    Science.gov (United States)

    Dechraoui, Marie-Yasmine Bottein; Wacksman, Jeremy J; Ramsdell, John S

    2006-11-01

    Brevetoxins (PbTxs) and ciguatoxins (CTXs) are two suites of dinoflagellate derived marine polyether neurotoxins that target the voltage gated sodium channel (VGSC). PbTxs are commonly responsible for massive fish kills and unusual mortalities in marine mammals. CTXs, more often noted for human intoxication, are suspected causes of fish and marine mammal intoxication, although this has never been reported in the field. VGSCs, present in the membrane of all excitable cells including those found in skeletal muscle, nervous and heart tissues, are found as isoforms with differential expression within species and tissues. To investigate the tissue and species susceptibility to these biotoxins, we determined the relative affinity of PbTx-2 and -3 and P-CTX-1 to native VGSCs in the brain, heart, and skeletal muscle of rat and the marine teleost fish Centropristis striata by competitive binding in the presence of [(3)H]PbTx-3. No differences between rat and fish were observed in the binding of PbTxs and CTX to either brain or skeletal muscle. However, [(3)H]PbTx-3 showed substantial lower affinity to rat heart tissue while in the fish it bound with the same affinity to heart than to brain or skeletal muscle. These new insights into PbTxs and CTXs binding in fish and mammalian excitable tissues indicate a species related resistance of heart VGSC in the rat; yet, with comparable sensitivity between the species for brain and skeletal muscle.

  1. Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function

    NARCIS (Netherlands)

    Chuang, Michael L.; Gona, Philimon; Hautvast, Gilion L T F; Salton, Carol J.; Blease, Susan J.; Yeon, Susan B.; Breeuwer, Marcel; O'Donnell, Christopher J.; Manning, Warren J.

    2012-01-01

    Objectives: The goal of this study was to assess the relationship of left ventricular (LV) trabeculae and papillary muscles (TPM) with clinical characteristics in a community-based, free-living adult cohort and to determine the effect of TPM on quantitative measures of LV volume, mass, and ejection

  2. Chronic ischemic mitral regurgitation and papillary muscle infarction detected by late gadolinium-enhanced cardiac magnetic resonance imaging in patients with ST-segment elevation myocardial infarction

    NARCIS (Netherlands)

    Bouma, Wobbe; Willemsen, Hendrik M.; Lexis, Chris P. H.; Prakken, Niek H.; Lipsic, Erik; van Veldhuisen, Dirk J.; Mariani, Massimo A.; van der Harst, Pim; van der Horst, Iwan C. C.

    2016-01-01

    Both papillary muscle infarction (PMI) and chronic ischemic mitral regurgitation (CIMR) are associated with reduced survival after myocardial infarction. The influence of PMI on CIMR and factors influencing both entities are incompletely understood. We sought to determine the influence of PMI on

  3. Animal models of cardiac cachexia.

    Science.gov (United States)

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  5. Automated Segmentation of Cardiac Magnetic Resonance Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...

  6. Acute cardiac failure in neuroleptic malignant syndrome.

    LENUS (Irish Health Repository)

    Sparrow, Patrick

    2012-02-03

    We present a case of rapid onset acute cardiac failure developing as part of neuroleptic malignant syndrome in a 35-year-old woman following treatment with thioridazine and lithium. Post mortem histology of cardiac and skeletal muscle showed similar changes of focal cellular necrosis and vacuolation suggesting a common disease process.

  7. Stem cell sources for cardiac regeneration

    NARCIS (Netherlands)

    Roccio, M.; Goumans, M. J.; Sluijter, J. P. G.; Doevendans, P. A.

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new

  8. Striated Muscle Function, Regeneration, and Repair

    Science.gov (United States)

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  9. Development of heart muscle-cell diversity: a help or a hindrance for phenotyping embryonic stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Fijnvandraat, Arnoud C.; Lekanne Deprez, Ronald H.; Moorman, Antoon F. M.

    2003-01-01

    Despite the advances in cardiovascular treatment, cardiac disease remains a major cause of morbidity in all industrialized countries. The extraordinary potential of (embryonic) stem cells for therapeutic purposes has revolutionized ideas about cardiac repair of diseased cardiac muscle to exciting

  10. Up-regulation of alpha-smooth muscle actin in cardiomyocytes from non-hypertrophic and non-failing transgenic mouse hearts expressing N-terminal truncated cardiac troponin I

    Directory of Open Access Journals (Sweden)

    Stephanie Kern

    2014-01-01

    Full Text Available We previously reported that a restrictive N-terminal truncation of cardiac troponin I (cTnI-ND is up-regulated in the heart in adaptation to hemodynamic stresses. Over-expression of cTnI-ND in the hearts of transgenic mice revealed functional benefits such as increased relaxation and myocardial compliance. In the present study, we investigated the subsequent effect on myocardial remodeling. The alpha-smooth muscle actin (α-SMA isoform is normally expressed in differentiating cardiomyocytes and is a marker for myocardial hypertrophy in adult hearts. Our results show that in cTnI-ND transgenic mice of between 2 and 3 months of age (young adults, a significant level of α-SMA is expressed in the heart as compared with wild-type animals. Although blood vessel density was increased in the cTnI-ND heart, the mass of smooth muscle tissue did not correlate with the increased level of α-SMA. Instead, immunocytochemical staining and Western blotting of protein extracts from isolated cardiomyocytes identified cardiomyocytes as the source of increased α-SMA in cTnI-ND hearts. We further found that while a portion of the up-regulated α-SMA protein was incorporated into the sarcomeric thin filaments, the majority of SMA protein was found outside of myofibrils. This distribution pattern suggests dual functions for the up-regulated α-SMA as both a contractile component to affect contractility and as possible effector of early remodeling in non-hypertrophic, non-failing cTnI-ND hearts.

  11. Cardiac Cachexia Syndrome

    Directory of Open Access Journals (Sweden)

    Teresa Raposo André

    2017-10-01

    Full Text Available Heart failure is a chronic, progressive, and incurable disease. Cardiac cachexia is a strong predictor of poor prognosis, regardless of other important variables. This review intends to gather evidence to enable recognition of cardiac cachexia, identification of early stages of muscle waste and sarcopenia, and improve identification of patients with terminal heart failure in need of palliative care, whose symptoms are no longer controlled by usual medical measures. The pathophysiology is complex and multifactorial. There are many treatment options to prevent or revert muscle waste and sarcopenia; although, these strategies are less effective in advanced stages of cardiac cachexia. In these final stages, symptomatic palliation plays an important role, focussing on the patient’s comfort and avoiding the ‘acute model’ treatment of aggressive, disproportionate, and inefficient care. In order to provide adequate care and attempt to prevent this syndrome, thus reducing its impact on healthcare, there should be improved communication between general practitioners, internal medicine physicians, cardiologists, and palliative care specialists since heart failure has an unforeseeable course and is associated with an increasing number of deaths and different levels of suffering.

  12. Discovery and progress of direct cardiac reprogramming.

    Science.gov (United States)

    Kojima, Hidenori; Ieda, Masaki

    2017-06-01

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  13. Living cardiac patch: the elixir for cardiac regeneration.

    Science.gov (United States)

    Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2012-12-01

    A thorough understanding of the cellular and muscle fiber orientation in left ventricular cardiac tissue is of paramount importance for the generation of artificial cardiac patches to treat the ischemic myocardium. The major challenge faced during cardiac patch engineering is to choose a perfect combination of three entities; cells, scaffolds and signaling molecules comprising the tissue engineering triad for repair and regeneration. This review provides an overview of various scaffold materials, their mechanical properties and fabrication methods utilized in cardiac patch engineering. Stem cell therapies in clinical trials and the commercially available cardiac patch materials were summarized in an attempt to provide a recent perspective in the treatment of heart failure. Various tissue engineering strategies employed thus far to construct viable thick cardiac patches is schematically illustrated. Though many strategies have been proposed for fabrication of various cardiac scaffold materials, the stage and severity of the disease condition demands the incorporation of additional cues in a suitable scaffold material. The scaffold may be nanofibrous patch, hydrogel or custom designed films. Integration of stem cells and biomolecular cues along with the scaffold may provide the right microenvironment for the repair of unhealthy left ventricular tissue as well as promote its regeneration.

  14. Hypertrophic cardiomyopathy mutation R58Q in the myosin regulatory light chain perturbs thick filament-based regulation in cardiac muscle.

    Science.gov (United States)

    Kampourakis, Thomas; Ponnam, Saraswathi; Irving, Malcolm

    2018-04-01

    Hypertrophic cardiomyopathy (HCM) is frequently linked to mutations in the protein components of the myosin-containing thick filaments leading to contractile dysfunction and ultimately heart failure. However, the molecular structure-function relationships that underlie these pathological effects remain largely obscure. Here we chose an example mutation (R58Q) in the myosin regulatory light chain (RLC) that is associated with a severe HCM phenotype and combined the results from a wide range of in vitro and in situ structural and functional studies on isolated protein components, myofibrils and ventricular trabeculae to create an extensive map of structure-function relationships. The results can be understood in terms of a unifying hypothesis that illuminates both the effects of the mutation and physiological signaling pathways. R58Q promotes an OFF state of the thick filaments that reduces the number of myosin head domains that are available for actin interaction and ATP utilization. Moreover this mutation uncouples two aspects of length-dependent activation (LDA), the cellular basis of the Frank-Starling relation that couples cardiac output to venous return; R58Q reduces maximum calcium-activated force with no significant effect on myofilament calcium sensitivity. Finally, phosphorylation of R58Q-RLC to levels that may be relevant both physiologically and pathologically restores the regulatory state of the thick filament and the effect of sarcomere length on maximum calcium-activated force and thick filament structure, as well as increasing calcium sensitivity. We conclude that perturbation of thick filament-based regulation may be a common mechanism in the etiology of missense mutation-associated HCM, and that this signaling pathway offers a promising target for the development of novel therapeutics. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S. (IIT); (Vermont); (BU)

    2012-09-19

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.

  16. Cardiac arrest

    Science.gov (United States)

    ... magnesium. These minerals help your heart's electrical system work. Abnormally high or low levels can cause cardiac arrest. Severe physical stress. Anything that causes a severe stress on your ...

  17. Cardiac Ochronosis

    Science.gov (United States)

    Erek, Ersin; Casselman, Filip P.A.; Vanermen, Hugo

    2004-01-01

    We report the case of 67-year-old woman who underwent aortic valve replacement and mitral valve repair due to ochronotic valvular disease (alkaptonuria), which was diagnosed incidentally during cardiac surgery. PMID:15745303

  18. Cardiac catheterization

    Science.gov (United States)

    ... tests. However, it is very safe when done by an experienced team. The risks include: Cardiac tamponade Heart attack Injury to a coronary artery Irregular heartbeat Low blood pressure Reaction to the contrast dye Stroke Possible complications ...

  19. Nuclear cardiac

    International Nuclear Information System (INIS)

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques

  20. Dynamic cardiomyoplasty using artificial muscle.

    Science.gov (United States)

    Suzuki, Yasuyuki; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Fukuda, Ikuo

    2008-01-01

    Dynamic cardiomyoplasty using latissimus dorsi muscle was previously used to compensate for congestive heart failure. Now, however, this method is not acceptable because the long-term result was not as expected owing to fatigue of the skeletal muscle. BioMetal fiber developed by Toki Corporation is one of the artificial muscles activated by electric current. The behavior of this fiber is similar to that of organic muscle. We made an artificial muscle like the latissimus dorsi using BioMetal fiber and tested whether we could use this new muscle as a cardiac supporting device. Testing one Biometal fiber showed the following performance: practical use maximal generative force was 30 g, exercise variation was 50%, and the standard driving current was 220 mA. We created a 4 x 12-cm tabular artificial muscle using 8 BioMetal fibers as a cardiac support device. We also made a simulation circuit composed of a 6 x 8-cm soft bag with unidirectional valves, reservoir, and connecting tube. The simulation circuit was filled with water and the soft bag was wrapped with the artificial muscle device. After powering the device electrically at 9 V with a current of 220 mA for each fiber, we measured the inside pressure and observed the movement of the artificial device. The artificial muscle contracted in 0.5 s for peak time and squeezed the soft bag. The peak pressure inside the soft bag was measured as 10 mmHg. Although further work will be needed to enhance the speed of deformability and movement simulating contraction, we conclude that artificial muscle may be potentially useful as a cardiac assistance device that can be developed for dynamic cardiomyoplasty.

  1. Ultrastructure and cytochemistry of cardiac intramitochondrial glycogen.

    Science.gov (United States)

    Sótonyi, P; Somogyi, E; Nemes, A; Juhász-Nagy, S

    1976-01-01

    Authors have observed abnormalities of glycogen localization in cardiac muscle, after normothermic cardiac arrest. The identification of these intramitrochondrial particles as glycogen was confirmed by selective staining with periodic acid-lead citrat, periodic acid-thiosemicarbazide protein methods and by their selective removal from tissue sections by alfa-amylase. The intramitochondrial glycogen particles were of beta-type. Some intramitochondrial particles were surrounded by paired membranes which resulted from protrusion of parts of mitochondrial membrane.

  2. Cardiac CT

    International Nuclear Information System (INIS)

    Dewey, Marc

    2011-01-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  3. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  4. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  5. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    Science.gov (United States)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  6. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  7. Ischemic Stroke Due to Cardiac Involvement: Emery Dreifuss Patient

    Directory of Open Access Journals (Sweden)

    Ersin Kasım Ulusoy

    2015-08-01

    Full Text Available Emery-Dreifuss muscular dystrophy (EDMD is a hereditary disease. It is characterized by early-onset contractures, slowly progressive weakness, fatigue related to skapulo-humero-peroneal muscle weakness, cardiomyopathy which develops in adulthood and cardiac conduction system block. Cardiac involvement has a prognostic significance in patients with EDMD and even sudden cardiac death may be the first clinical presentation. In this article, an EDMD patient with ischemic stroke clinic who didn’t have regular cardiac follow-up was reported and the importance of the treatment of cardiac diseases which could play a role in ischemic stroke etiology and the implantation of pace-maker was mentioned.

  8. Muscle Cramps

    Science.gov (United States)

    ... Talk to your provider about the risks and benefits of medicines. How can I prevent muscle cramps? To prevent muscle cramps, you can Stretch your muscles, especially before exercising. If you often get leg cramps at night, ...

  9. Design, construction and operation of a measurement device to evaluate the disturbance effect caused by the magnetic field in the cardiac muscle of rats; Diseno, construccion y operacion de un dispositivo de medicion para evaluar el efecto perturbador del campo magnetico en el funcionamiento del musculo cardiaco de ratas

    Energy Technology Data Exchange (ETDEWEB)

    Soibelzon, Hector Leopoldo; Arcione, Juan Carlos [Universidad de Buenos Aires (Argentina). Facultad de Ingenieria. Grupo Energia y Ambiente]. E-mail: hsoibel@fi.uba.br

    2001-07-01

    This article focuses the requirements and procedures for design, construction of inductors and measurement explorer coils in relation to an addressed device to analyse the effects of magnetic fields in the cardiac muscle of rats. It also offers information about tests and measurements involving heart systems made by Buenos Aires Medicine College. It also presents a description of a suitable mechanism that could explain the international current concern in relation to risks for the health starting from the submission to electric and magnetic fields.

  10. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    Fiandra, O.; Espasandin, W.; Fiandra, H.

    1984-01-01

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  11. Overview of the Muscle Cytoskeleton

    Science.gov (United States)

    Henderson, Christine A.; Gomez, Christopher G.; Novak, Stefanie M.; Mi-Mi, Lei; Gregorio, Carol C.

    2018-01-01

    Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. PMID:28640448

  12. Does Resistance Training Stimulate Cardiac Muscle Hypertrophy?

    Science.gov (United States)

    Bloomer, Richard J.

    2003-01-01

    Reviews the literature on the left ventricular structural adaptations induced by resistance/strength exercise, focusing on human work, particularly well-trained strength athletes engaged in regular, moderate- to high-intensity resistance training (RT). The article discusses both genders and examines the use of anabolic-androgenic steroids in…

  13. The ECG Vertigo in Diabetes and Cardiac Autonomic Neuropathy

    OpenAIRE

    Voulgari, Christina; Tentolouris, Nicholas; Stefanadis, Christodoulos

    2011-01-01

    The importance of diabetes in the epidemiology of cardiovascular diseases cannot be overemphasized. About one third of acute myocardial infarction patients have diabetes, and its prevalence is steadily increasing. The decrease in cardiac mortality in people with diabetes is lagging behind that of the general population. Cardiovascular disease is a broad term which includes any condition causing pathological changes in blood vessels, cardiac muscle or valves, and cardiac rhythm. The ECG offers...

  14. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy.

    Science.gov (United States)

    Parvatiyar, Michelle S; Marshall, Jamie L; Nguyen, Reginald T; Jordan, Maria C; Richardson, Vanitra A; Roos, Kenneth P; Crosbie-Watson, Rachelle H

    2015-12-23

    Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  16. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Lijuan [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Thayer, Patrick [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Fan, Huimin [Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai (China); Ledford, Benjamin; Chen, Miao [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Goldstein, Aaron [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Cao, Guohua [School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); He, Jia-Qiang, E-mail: jiahe@vt.edu [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States)

    2016-09-10

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.

  17. Neuromuscular blockade in cardiac surgery: An update for clinicians

    Directory of Open Access Journals (Sweden)

    Hemmerling Thomas

    2008-01-01

    Full Text Available There have been great advancements in cardiac surgery over the last two decades; the widespread use of off-pump aortocoronary bypass surgery, minimally invasive cardiac surgery, and robotic surgery have also changed the face of cardiac anaesthesia. The concept of "Fast-track anaesthesia" demands the use of nondepolarising neuromuscular blocking drugs with short duration of action, combining the ability to provide (if necessary sufficiently profound neuromuscular blockade during surgery and immediate re-establishment of normal neuromuscular transmission at the end of surgery. Postoperative residual muscle paralysis is one of the major hurdles for immediate or early extubation after cardiac surgery. Nondepolarising neuromuscular blocking drugs for cardiac surgery should therefore be easy to titrate, of rapid onset and short duration of action with a pathway of elimination independent from hepatic or renal dysfunction, and should equally not affect haemodynamic stability. The difference between repetitive bolus application and continuous infusion is outlined in this review, with the pharmacodynamic and pharmacokinetic characteristics of vecuronium, pancuronium, rocuronium, and cisatracurium. Kinemyography and acceleromyography are the most important currently used neuromuscular monitoring methods. Whereas monitoring at the adductor pollicis muscle is appropriate at the end of surgery, monitoring of the corrugator supercilii muscle better reflects neuromuscular blockade at more central, profound muscles, such as the diaphragm, larynx, or thoraco-abdominal muscles. In conclusion, cisatracurium or rocuronium is recommended for neuromuscular blockade in modern cardiac surgery.

  18. Cardiac involvement in adult and juvenile idiopathic inflammatory myopathies

    DEFF Research Database (Denmark)

    Schwartz, TThomas W; Diederichsen, L. P.; Lundberg, Ingrid E.

    2016-01-01

    Idiopathic inflammatory myopathies (IIM) include the main subgroups polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM) and juvenile DM ( JDM). The mentioned subgroups are characterised by inflammation of skeletal muscles leading to muscle weakness and other organs can also...... that statins might worsen muscle symptoms mimicking myositis relapse. On the basis of recent studies, we recommend a low threshold for cardiac workup and follow-up in patients with IIM. © 2016 Published by the BMJ Publishing Group Limited....

  19. Myostatin as a Marker for Doxorubicin Induced Cardiac Damage.

    Science.gov (United States)

    Kesik, Vural; Honca, Tevfik; Gulgun, Mustafa; Uysal, Bulent; Kurt, Yasemin Gulcan; Cayci, Tuncer; Babacan, Oguzhan; Gocgeldi, Ercan; Korkmazer, Nadir

    2016-01-01

    Doxorubicin (DXR) is an effective chemotherapeutic agent but causes severe cardiac failure over known doses. Thus, early detection and prevention of cardiac damage is important. Various markers have been tested for early detection of cardiac damage. Myostatin is a protein produced in skeletal muscle cells inhibits muscle differentiation and growth during myogenesis. We evaluated the role of myostatin as a marker for showing DXR induced cardiac damage and compared with well known cardiac markers like NT-proBNP, hs-TnT and CK in a rat model of chronic DXR cardiotoxicity. Myostatin, NT-proBNP, and hs-TnT but not CK rose significantly during DXR treatment. Myostatin can be used as an early marker of DXR induced cardiotoxicity. © 2016 by the Association of Clinical Scientists, Inc.

  20. Contractures and muscle disease.

    Science.gov (United States)

    Walters, R Jon

    2016-08-01

    Contractures are one of a handful of signs in muscle disease, besides weakness and its distribution, whose presence can help guide us diagnostically, a welcome star on the horizon. Contractures are associated with several myopathies, some with important cardiac manifestations, and consequently are important to recognise; their presence may also provide us with a potential satisfying 'penny dropping' diagnostic moment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. The ECG vertigo in diabetes and cardiac autonomic neuropathy.

    Science.gov (United States)

    Voulgari, Christina; Tentolouris, Nicholas; Stefanadis, Christodoulos

    2011-01-01

    The importance of diabetes in the epidemiology of cardiovascular diseases cannot be overemphasized. About one third of acute myocardial infarction patients have diabetes, and its prevalence is steadily increasing. The decrease in cardiac mortality in people with diabetes is lagging behind that of the general population. Cardiovascular disease is a broad term which includes any condition causing pathological changes in blood vessels, cardiac muscle or valves, and cardiac rhythm. The ECG offers a quick, noninvasive clinical and research screen for the early detection of cardiovascular disease in diabetes. In this paper, the clinical and research value of the ECG is readdressed in diabetes and in the presence of cardiac autonomic neuropathy.

  2. Mathematical Models of Cardiac Pacemaking Function

    Science.gov (United States)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  3. Mathematical Models of Cardiac Pacemaking Function

    Directory of Open Access Journals (Sweden)

    Pan eLi

    2013-10-01

    Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  4. Cardiac pacemaker

    International Nuclear Information System (INIS)

    Kolenik, S.A.

    1976-01-01

    The construction of a cardiac pacemaker is described which is characterized by particularly small dimensions, small weight and long life duration. The weight is under 100g, the specific weight under 1.7. Mass inertia forces which occur through acceleration and retardation processes, thus remain below the threshold values, above which one would have to reckon with considerable damaging of the surrounding body tissue. The maintaining of small size and slight weight is achieved by using an oscillator on COSMOS basis, where by considerably lower energy consumption, amongst others the lifetimes of the batteries used - a lithium anode with thionyl chloride electrolyte - is extended to over 5 years. The reliability can be increased by the use of 2 or more batteries. The designed dimension are 20x60x60 mm 3 . (ORU/LH) [de

  5. Cardiac ventriculography

    International Nuclear Information System (INIS)

    Hillis, L.D.; Grossman, W.

    1986-01-01

    Cardiac ventriculography has been used extensively to define the anatomy of the ventricles and related structures in patients with congenital, valvular, coronary, and cardiomyopathic heart disease. Specifically, left ventriculography may provide valuable information about global and segmental left ventricular function, mitral valvular incompetence, and the presence, location, and severity of a number of other abnormalities, including ventricular septal defect and hypertrophic cardiomyopathy. As a result, it should be a routine part of catheterization in patients being evaluated for coronary artery disease, aortic or mitral valvular disease, unexplained left ventricular failure, or congenital heart disease. Similarly, right ventriculography may provide information about global and segmental right ventricular function and can be especially helpful in patients with congenital heart disease

  6. Cardiac damage in athlete's heart: When the "supernormal" heart fails!

    Science.gov (United States)

    Carbone, Andreina; D'Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele

    2017-06-26

    Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete's blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete's heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded.

  7. [Cardiac myopathy due to overt hypothyroidism].

    Science.gov (United States)

    Harbeck, B; Berndt, M J; Lehnert, H

    2014-03-01

    A 51-year-old man presented with progressive tiredness, proximal muscle weakness, hair loss and weight gain for months. The patient showed mild pretibial myxedema and dry skin. Laboratory findings revealed strongly elevated cardiac enzymes as well as marked hypothyroidism. The electrocardiogram, echocardiography, abdominal sonography and chest X-ray were unremarkable. Thyroid ultrasound demonstrated features of Hashimoto thyroiditis. The findings supported the diagnosis of an overt hypothyroidism with myxedema and rhabdomyolysis. After starting levothyroxine and volume substitution laboratory parameters and clinical condition slowly normalized. Severe overt hypothyroidism may rarely present primarily as myopathy with myositis and cardiac involvement. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    NARCIS (Netherlands)

    Homburger, J.R. (Julian R.); Green, E.M. (Eric M.); Caleshu, C. (Colleen); Sunitha, M.S. (Margaret S.); Taylor, R.E. (Rebecca E.); Ruppel, K.M. (Kathleen M.); Metpally, R.P.R. (Raghu Prasad Rao); S.D. Colan (Steven); M. Michels (Michelle); Day, S.M. (Sharlene M.); I. Olivotto (Iacopo); Bustamante, C.D. (Carlos D.); Dewey, F.E. (Frederick E.); Ho, C.Y. (Carolyn Y.); Spudich, J.A. (James A.); Ashley, E.A. (Euan A.)

    2016-01-01

    textabstractMyosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac

  9. Spiral Wave Initiation in Reaction-Diffusion-Mechanics Systems: A Model for the Onset of Reentrant Cardiac Arrhythmia

    NARCIS (Netherlands)

    Weise, L.D.

    2012-01-01

    Heart failure due to cardiac arrhythmias is a major cause of death in the industrialized world. Cardiac arrhythmia is often caused by spi- ral waves of electrical activity in the cardiac muscle. Therefore, it is a major task in cardiology to understand the mechanisms of spiral wave initiation in the

  10. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  11. Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins.

    Directory of Open Access Journals (Sweden)

    Eric K Johnson

    Full Text Available Mutations affecting the expression of dystrophin result in progressive loss of skeletal muscle function and cardiomyopathy leading to early mortality. Interestingly, clinical studies revealed no correlation in disease severity or age of onset between cardiac and skeletal muscles, suggesting that dystrophin may play overlapping yet different roles in these two striated muscles. Since dystrophin serves as a structural and signaling scaffold, functional differences likely arise from tissue-specific protein interactions. To test this, we optimized a proteomics-based approach to purify, identify and compare the interactome of dystrophin between cardiac and skeletal muscles from as little as 50 mg of starting material. We found selective tissue-specific differences in the protein associations of cardiac and skeletal muscle full length dystrophin to syntrophins and dystrobrevins that couple dystrophin to signaling pathways. Importantly, we identified novel cardiac-specific interactions of dystrophin with proteins known to regulate cardiac contraction and to be involved in cardiac disease. Our approach overcomes a major challenge in the muscular dystrophy field of rapidly and consistently identifying bona fide dystrophin-interacting proteins in tissues. In addition, our findings support the existence of cardiac-specific functions of dystrophin and may guide studies into early triggers of cardiac disease in Duchenne and Becker muscular dystrophies.

  12. Cardiac MRI in restrictive cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Singh Gulati, G., E-mail: gulatigurpreet@rediffmail.com [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Seth, S. [Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Sharma, S. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India)

    2012-02-15

    Restrictive cardiomyopathy (RCM) is a specific group of heart muscle disorders characterized by inadequate ventricular relaxation during diastole. This leads to diastolic dysfunction with relative preservation of systolic function. Although short axis systolic function is usually preserved in RCM, the long axis systolic function may be severely impaired. Confirmation of diagnosis and information regarding aetiology, extent of myocardial damage, and response to treatment requires imaging. Importantly, differentiation from constrictive pericarditis (CCP) is needed, as only the latter is managed surgically. Echocardiography is the initial cardiac imaging technique but cannot reliably suggest a tissue diagnosis; although recent advances, especially tissue Doppler imaging and spectral tracking, have improved its ability to differentiate RCM from CCP. Cardiac catheterization is the reference standard, but is invasive, two-dimensional, and does not aid myocardial characterization. Cardiac magnetic resonance (CMR) is a versatile technique providing anatomical, morphological and functional information. In recent years, it has been shown to provide important information regarding disease mechanisms, and also been found useful to guide treatment, assess its outcome and predict patient prognosis. This review describes the CMR features of RCM, appearances in various diseases, its overall role in patient management, and how it compares with other imaging techniques.

  13. Your Muscles

    Science.gov (United States)

    ... and you need to throw up. The muscles push the food back out of the stomach so it comes up ... body the power it needs to lift and push things. Muscles in your neck and the top part of your back aren't as large, but they are capable ...

  14. Muscle metaboreflex control of the circulation during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2010-01-01

    . It can both elevate and decrease muscle blood flow depending on (1) the intensity and mode of contraction, (2) the limb in which the reflex is evoked, (3) the strength of the signal defined by the muscle mass, (4) the extent to which blood flow is redistributed from inactive vascular beds to increase......This review covers the control of blood pressure, cardiac output and muscle blood flow by the muscle metaboreflex which involves chemically sensitive nerves located in muscle parenchyma activated by metabolites accumulating in the muscle during contraction. The efferent response to metaboreflex...... activation is an increase in sympathetic nerve activity that constricts the systemic vasculature and also evokes parallel inotropic and chronotropic effects on the heart to increase cardiac output. The metaboreflex elicits a significant blood pressure elevating response during exercise and functions...

  15. The heart and cardiac pacing in Steinert disease

    OpenAIRE

    NIGRO, GERARDO; PAPA, ANDREA ANTONIO; POLITANO, LUISA

    2012-01-01

    Myotonic dystrophy (Dystrophia Myotonica, DM) is the most frequently inherited neuromuscular disease of adult life. It is a multisystemic disease with major cardiac involvement. Core features of myotonic dystrophy are myotonia, muscle weakness, cataract, respiratory failure and cardiac conduction abnormalities. Classical DM, first described by Steinert and called Steinert's disease or DM1 (Dystrophia Myotonica type 1) has been identified as an autosomal dominant disorder associated with the p...

  16. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.; Scacchi, S.; Verdi, C.; Zampieri, E.; Zampini, Stefano

    2017-01-01

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  17. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.

    2017-03-17

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  18. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    Gulati, Gurpreet S; Kothari, Shyam S

    2011-01-01

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  19. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Shimozu, Junko; Yasumura, Yoshio; Nagatani, Kenzo; Miyatake, Kunio

    1998-01-01

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of β-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  20. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Yoshio; Shimozu, Junko; Yasumura, Yoshio; Nagatani, Kenzo; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1998-02-01

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of {beta}-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  1. Drug-Induced Rhabdomyolysis with Elevated Cardiac Troponin T

    Directory of Open Access Journals (Sweden)

    Gro Egholm

    2015-01-01

    Full Text Available The essential role of cardiac troponin in the diagnosis of acute myocardial infarction has led to the development of high-sensitivity assays, which are able to detect very small amounts of myocardial necrosis. The high-sensitivity cardiac troponin T assay, however, is not entirely specific for myocardial injury. This case report describes a 48-year-old woman, who, two years after cardiac transplantation, presented with rhabdomyolysis. During the course of the disease, her troponin T level was elevated on repeated occasions, but other definitive evidence of myocardial injury was not found. Asymptomatic cardiac troponin T elevations during rhabdomyolysis may be due to either cardiac involvement or false positive results stemming from skeletal muscle injury.

  2. Peripheral vasodilatation determines cardiac output in exercising humans

    DEFF Research Database (Denmark)

    Bada, A A; Svendsen, J H; Secher, N H

    2012-01-01

    In dogs, manipulation of heart rate has no effect on the exercise-induced increase in cardiac output. Whether these findings apply to humans remain uncertain, because of the large differences in cardiovascular anatomy and regulation. To investigate the role of heart rate and peripheral...... arterial ATP infusion at rest. Exercise and ATP infusion increased cardiac output, leg blood flow and vascular conductance (P heart rate by up to 54 beats min(−1), cardiac output did not change in any of the three...... demonstrate that the elevated cardiac output during steady-state exercise is regulated by the increase in skeletal muscle blood flow and venous return to the heart, whereas the increase in heart rate appears to be secondary to the regulation of cardiac output....

  3. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  4. Muscle atrophy

    Science.gov (United States)

    ... People who cannot actively move one or more joints can do exercises using braces or splints . When ... A.M. Editorial team. Muscle Disorders Read more Neuromuscular Disorders Read more NIH MedlinePlus Magazine Read more ...

  5. Biomarkers for cardiac cachexia: reality or utopia.

    Science.gov (United States)

    Martins, Telma; Vitorino, Rui; Amado, Francisco; Duarte, José Alberto; Ferreira, Rita

    2014-09-25

    Cardiac cachexia is a serious complication of chronic heart failure, characterized by significant weight loss and body wasting. Chronic heart failure-related muscle wasting results from a chronic imbalance in the activation of anabolic or catabolic pathways, caused by a series of immunological, metabolic, and neurohormonal processes. In spite of the high morbidity and mortality associated to this condition, there is no universally accepted definition or specific biomarkers for cardiac cachexia, which makes its diagnosis and treatment difficult. Several hormonal, inflammatory and oxidative stress molecules have been proposed as serological markers of prognosis in cardiac cachexia but with doubtful success. As individual biomarkers may have limited sensitivity and specificity, multimarker strategies involving mediators of the biological processes modulated by cardiac cachexia will strongly contribute for the diagnosis and management of the disease, as well as for the establishment of new therapeutic targets. An integrated analysis of the biomarkers proposed so far for cardiac cachexia is made in the present review, highlighting the biological processes to which they are related. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  7. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P.; Venugopal, J.; Kai, Dan; Ramakrishna, Seeram

    2011-01-01

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  8. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  9. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  10. Preparation of human cardiac anti-myosin: a review

    International Nuclear Information System (INIS)

    Okada, H.; Souza, I.T.T.

    1990-01-01

    The present communication is a review of the physicochemical characterization and immunological properties of myosin isolated from the cardiac muscle, the production of monoclonal antibody anti-myosin, the radiolabeling of this antibody and its applications as radiopharmaceuticals to imaging myocardial infarcts. The classical example of radioimmunologic diagnosis of non malignant tissues is the detection of myocardial infarction by radiolabeled antibodies to myosin. (author)

  11. Cardiac cachexia: hic et nunc

    Science.gov (United States)

    Loncar, Goran; Springer, Jochen; Anker, Markus; Doehner, Wolfram

    2016-01-01

    Abstract Cardiac cachexia (CC) is the clinical entity at the end of the chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely, the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. A better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia, and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF. PMID:27386168

  12. The pathogenesis and treatment of cardiac atrophy in cancer cachexia.

    Science.gov (United States)

    Murphy, Kate T

    2016-02-15

    Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. In addition to a loss of skeletal muscle mass and function, many patients with cancer cachexia also experience cardiac atrophy, remodeling, and dysfunction, which in the field of cancer cachexia is described as cardiac cachexia. The cardiac alterations may be due to underlying heart disease, the cancer itself, or problems initiated by the cancer treatment and, unfortunately, remains largely underappreciated by clinicians and basic scientists. Despite recent major advances in the treatment of cancer, little progress has been made in the treatment of cardiac cachexia in cancer, and much of this is due to lack of information regarding the mechanisms. This review focuses on the cardiac atrophy associated with cancer cachexia, describing some of the known mechanisms and discussing the current and future therapeutic strategies to treat this condition. Above all else, improved awareness of the condition and an increased focus on identification of mechanisms and therapeutic targets will facilitate the eventual development of an effective treatment for cardiac atrophy in cancer cachexia. Copyright © 2016 the American Physiological Society.

  13. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Hieu T Nim

    Full Text Available The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP, an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1 relevant to cardiac literature, and (2 differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10 are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.

  14. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

    Science.gov (United States)

    Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Kitano, Hiroaki; Rosenthal, Nadia A; Boyd, Sarah E

    2015-01-01

    The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1) relevant to cardiac literature, and (2) differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.

  15. Marketing cardiac CT programs.

    Science.gov (United States)

    Scott, Jason

    2010-01-01

    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing.

  16. Update on new muscle glycogenosis

    DEFF Research Database (Denmark)

    Laforêt, Pascal; Malfatti, Edoardo; Vissing, John

    2017-01-01

    PURPOSE OF REVIEW: The field of muscle glycogenoses has progressed in recent years by the identification of new disorders, and by reaching a better understanding of pathophysiology of the disorders and the physiology of glycogen metabolism. RECENT FINDINGS: In this review, we describe the clinical...... and pathological features of the three most recently described muscle glycogenoses caused by recessive mutations in GYG1, RBCK1 and PGM1. The three involved enzymes play different roles in glycogen metabolism. Glycogenin-1 (GYG1) is involved in the initial steps of glycogen synthesis, whereas phosphoglucomutase...... with abnormal storage material in the heart, but most cases present with a polyglucosan body myopathy without cardiac involvement. SUMMARY: The recent identification of new glycogenosis not only allows to improve the knowledge of glycogen metabolism, but also builds bridges with protein glycosylation and immune...

  17. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.

    Science.gov (United States)

    Pillai, Indulekha C L; Li, Shen; Romay, Milagros; Lam, Larry; Lu, Yan; Huang, Jie; Dillard, Nathaniel; Zemanova, Marketa; Rubbi, Liudmilla; Wang, Yibin; Lee, Jason; Xia, Ming; Liang, Owen; Xie, Ya-Hong; Pellegrini, Matteo; Lusis, Aldons J; Deb, Arjun

    2017-02-02

    Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks. However the cell identity and mechanisms contributing to pathological heart muscle calcification remain unknown. Using lineage tracing, murine models of heart calcification and in vivo transplantation assays, we show that cardiac fibroblasts (CFs) adopt an osteoblast cell-like fate and contribute directly to heart muscle calcification. Small-molecule inhibition of ENPP1, an enzyme that is induced upon injury and regulates bone mineralization, significantly attenuated cardiac calcification. Inhibitors of bone mineralization completely prevented ectopic cardiac calcification and improved post injury heart function. Taken together, these findings highlight the plasticity of fibroblasts in contributing to ectopic calcification and identify pharmacological targets for therapeutic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Metabolic Adaptation to Muscle Ischemia

    Science.gov (United States)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  19. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  20. The ECG Vertigo in Diabetes and Cardiac Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Christina Voulgari

    2011-01-01

    Full Text Available The importance of diabetes in the epidemiology of cardiovascular diseases cannot be overemphasized. About one third of acute myocardial infarction patients have diabetes, and its prevalence is steadily increasing. The decrease in cardiac mortality in people with diabetes is lagging behind that of the general population. Cardiovascular disease is a broad term which includes any condition causing pathological changes in blood vessels, cardiac muscle or valves, and cardiac rhythm. The ECG offers a quick, noninvasive clinical and research screen for the early detection of cardiovascular disease in diabetes. In this paper, the clinical and research value of the ECG is readdressed in diabetes and in the presence of cardiac autonomic neuropathy.

  1. The heart and cardiac pacing in Steinert disease.

    Science.gov (United States)

    Nigro, Gerardo; Papa, Andrea Antonio; Politano, Luisa

    2012-10-01

    Myotonic dystrophy (Dystrophia Myotonica, DM) is the most frequently inherited neuromuscular disease of adult life. It is a multisystemic disease with major cardiac involvement. Core features of myotonic dystrophy are myotonia, muscle weakness, cataract, respiratory failure and cardiac conduction abnormalities. Classical DM, first described by Steinert and called Steinert's disease or DM1 (Dystrophia Myotonica type 1) has been identified as an autosomal dominant disorder associated with the presence of an abnormal expansion of a CTG trinucleotide repeat in the 3' untranslated region of DMPK gene on chromosome 19. This review will mainly focus on the various aspects of cardiac involvement in DM1 patients and the current role of cardiac pacing in their treatment.

  2. Safety in cardiac surgery

    NARCIS (Netherlands)

    Siregar, S.

    2013-01-01

    The monitoring of safety in cardiac surgery is a complex process, which involves many clinical, practical, methodological and statistical issues. The objective of this thesis was to measure and to compare safety in cardiac surgery in The Netherlands using the Netherlands Association for

  3. Cardiac Catheterization (For Kids)

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... Educators Search English Español Cardiac Catheterization KidsHealth / For Kids / Cardiac Catheterization What's in this article? What Is ...

  4. Inpatient cardiac rehabilitation programs' exercise therapy for patients undergoing cardiac surgery: National Korean Questionnaire Survey.

    Science.gov (United States)

    Seo, Yong Gon; Jang, Mi Ja; Park, Won Hah; Hong, Kyung Pyo; Sung, Jidong

    2017-02-01

    Inpatient cardiac rehabilitation (ICR) has been commonly conducted after cardiac surgery in many countries, and has been reported a lots of results. However, until now, there is inadequacy of data on the status of ICR in Korea. This study described the current status of exercise therapy in ICR that is performed after cardiac surgery in Korean hospitals. Questionnaires modified by previous studies were sent to the departments of thoracic surgery of 10 hospitals in Korea. Nine replies (response rate 90%) were received. Eight nurses and one physiotherapist completed the questionnaire. Most of the education on wards after cardiac surgery was conducted by nurses. On postoperative day 1, four sites performed sitting on the edge of bed, sit to stand, up to chair, and walking in the ward. Only one site performed that exercise on postoperative day 2. One activity (stairs up and down) was performed on different days at only two sites. Patients received education preoperatively and predischarge for preventing complications and reducing muscle weakness through physical inactivity. The results of the study demonstrate that there are small variations in the general care provided by nurses after cardiac surgery. Based on the results of this research, we recommended that exercise therapy programs have to conduct by exercise specialists like exercise physiologists or physiotherapists for patients in hospitalization period.

  5. Sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Neeraj Parakh

    2015-01-01

    Full Text Available Sudden cardiac death is one of the most common cause of mortality worldwide. Despite significant advances in the medical science, there is little improvement in the sudden cardiac death related mortality. Coronary artery disease is the most common etiology behind sudden cardiac death, in the above 40 years population. Even in the apparently healthy population, there is a small percentage of patients dying from sudden cardiac death. Given the large denominator, this small percentage contributes to the largest burden of sudden cardiac death. Identification of this at risk group among the apparently healthy individual is a great challenge for the medical fraternity. This article looks into the causes and methods of preventing SCD and at some of the Indian data. Details of Brugada syndrome, Long QT syndrome, Genetics of SCD are discussed. Recent guidelines on many of these causes are summarised.

  6. CARDIAC LYMPHOMA IN DOG

    Directory of Open Access Journals (Sweden)

    G. D. Cruz

    2016-11-01

    Full Text Available Lymphoma is a lymphoid tumor that originates in hematopoietic organs such as lymph node, spleen or liver. In dogs, the overall prevalence of cardiac tumors was estimated to be only 0.19% based on the results of the survey of a large database, and lymphomas accounts for approximately 2% of all cardiac tumors. In general, the involvement of the myocardium is rarely described in canine lymphoma. Currently, there is no evidence of a viral association with primary cardiac lymphoma in dogs, but other types of immunosuppression may contribute to abnormal events, such as involvement primary cardiac. The aim of this study was to analyze a case of sudden death of a bitch, SRD, aged 10, who had the final diagnosis of cardiac lymphoma.

  7. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  8. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  9. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  10. Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features

    Directory of Open Access Journals (Sweden)

    Lorenzo Maggi

    2016-08-01

    Full Text Available LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases.

  11. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...... accumulation and attenuates peripheral insulin resistance in obese mice........ In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  12. Evaluation of cardiac function in active and hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F

    2003-10-15

    To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.

  13. Muscle as a “Mediator“ of Systemic Metabolism

    Science.gov (United States)

    Baskin, Kedryn K.; Winders, Benjamin R.; Olson, Eric N.

    2015-01-01

    Skeletal and cardiac muscles play key roles in the regulation of systemic energy homeostasis and display remarkable plasticity in their metabolic responses to caloric availability and physical activity. In this Perspective we discuss recent studies highlighting transcriptional mechanisms that govern systemic metabolism by striated muscles. We focus on the participation of the Mediator complex in this process, and suggest that tissue-specific regulation of Mediator subunits impacts metabolic homeostasis. PMID:25651178

  14. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  15. Dual energy cardiac CT.

    Science.gov (United States)

    Carrascosa, Patricia; Deviggiano, Alejandro; Rodriguez-Granillo, Gastón

    2017-06-01

    Conventional single energy CT suffers from technical limitations related to the polychromatic nature of X-rays. Dual energy cardiac CT (DECT) shows promise to attenuate and even overcome some of these limitations, and might broaden the scope of patients eligible for cardiac CT towards the inclusion of higher risk patients. This might be achieved as a result of both safety (contrast reduction) and physiopathological (myocardial perfusion and characterization) issues. In this article, we will review the main clinical cardiac applications of DECT, that can be summarized in two core aspects: coronary artery evaluation, and myocardial evaluation.

  16. Alcohol, cardiac arrhythmias and sudden death.

    Science.gov (United States)

    Kupari, M; Koskinen, P

    1998-01-01

    Studies in experimental animals have shown varying and apparently opposite effects of alcohol on cardiac rhythm and conduction. Given acutely to non-alcoholic animals, ethanol may even have anti-arrhythmic properties whereas chronic administration clearly increases the animals' susceptibility to cardiac arrhythmias. Chronic heavy alcohol use has been incriminated in the genesis of cardiac arrhythmias in humans. The evidence has come from clinical observations, retrospective case-control studies, controlled studies of consecutive admissions for arrhythmias, and prospective epidemiological investigations. Furthermore, electrophysiological studies have shown that acute alcohol administration facilitates the induction of tachyarrhythmias in selected heavy drinkers. The role of alcohol appears particularly conspicuous in idiopathic atrial fibrillation. Occasionally, ventricular tachyarrhythmias have also been provoked by alcohol intake. Several lines of evidence suggest that heavy drinking increases the risk of sudden cardiac death with fatal arrhythmia as the most likely mechanism. According to epidemiological studies this effect appears most prominent in middle-aged men and is only partly explained by confounding traits such as smoking and social class. The basic arrhythmogenic effects of alcohol are still insufficiently delineated. Subclinical heart muscle injury from chronic heavy use may be instrumental in producing patchy delays in conduction. The hyperadrenergic state of drinking and withdrawal may also contribute, as may electrolyte abnormalities, impaired vagal heart rate control, repolarization abnormalities with prolonged QT intervals and worsening of myocardial ischaemia or sleep apnoea. Most of what we know about alcohol and arrhythmias relates to heavy drinking. The effect of social drinking on clinical arrhythmias in non-alcoholic cardiac patients needs to be addressed further.

  17. Cardiac Catheterization (For Parents)

    Science.gov (United States)

    ... cases, the doctor might call for a cardiac magnetic resonance imaging (MRI) scan or a CAT scan . ... first couple of days. This means no heavy lifting (more than 10 pounds) and no sports. After ...

  18. Cardiac Catheterization (For Teens)

    Science.gov (United States)

    ... doctor may also call for a cardiac MRI (magnetic resonance imaging) scan or a CT (computerized tomography) ... first couple of days. This means no heavy lifting (nothing over 10 pounds) and no sports. After ...

  19. Autonomic cardiac innervation

    Science.gov (United States)

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  20. Cardiac imaging in adults

    International Nuclear Information System (INIS)

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority

  1. Cardiac imaging in adults

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  2. Cardiac biomarkers in Neonatology

    OpenAIRE

    Vijlbrief, D.C.

    2015-01-01

    In this thesis, the role for cardiac biomarkers in neonatology was investigated. Several clinically relevant results were reported. In term and preterm infants, hypoxia and subsequent adaptation play an important role in cardiac biomarker elevation. The elevated natriuretic peptides are indicative of abnormal function; elevated troponins are suggestive for cardiomyocyte damage. This methodology makes these biomarkers of additional value in the treatment of newborn infants, separate or as a co...

  3. Post cardiac injury syndrome

    DEFF Research Database (Denmark)

    Nielsen, S L; Nielsen, F E

    1991-01-01

    The post-pericardiotomy syndrome is a symptom complex which is similar in many respects to the post-myocardial infarction syndrome and these are summarized under the diagnosis of the Post Cardiac Injury Syndrome (PCIS). This condition, which is observed most frequently after open heart surgery, i...... on the coronary vessels, with cardiac tamponade and chronic pericardial exudate. In the lighter cases, PCIS may be treated with NSAID and, in the more severe cases, with systemic glucocorticoid which has a prompt effect....

  4. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon

    2010-02-01

    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  5. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016.

    Science.gov (United States)

    Saitoh, Masakazu; Ishida, Junichi; Doehner, Wolfram; von Haehling, Stephan; Anker, Markus S; Coats, Andrew J S; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Cachexia in the context of heart failure (HF) has been termed cardiac cachexia, and represents a progressive involuntary weight loss. Cachexia is mainly the result of an imbalance in the homeostasis of muscle protein synthesis and degradation due to a lower activity of protein synthesis pathways and an over-activation of protein degradation. In addition, muscle wasting leads to of impaired functional capacity, even after adjusting for clinical relevant variables in patients with HF. However, there is no sufficient therapeutic strategy in muscle wasting in HF patients and very few studies in animal models. Exercise training represents a promising intervention that can prevent or even reverse the process of muscle wasting, and worsening the muscle function and performance in HF with muscle wasting and cachexia. The pathological mechanisms and effective therapeutic approach of cardiac cachexia remain uncertain, because of the difficulty to establish animal cardiac cachexia models, thus novel animal models are warranted. Furthermore, the use of improved animal models will lead to a better understanding of the pathways that modulate muscle wasting and therapeutics of muscle wasting of cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors

    NARCIS (Netherlands)

    Giacomazzi, G. (Giorgia); Holvoet, B. (Bryan); Trenson, S. (Sander); Caluwé, E. (Ellen); Kravic, B. (Bojana); Grosemans, H. (Hanne); Cortés-Calabuig, Á. (Álvaro); Deroose, C.M. (Christophe M.); D. Huylebroeck (Danny); Hashemolhosseini, S. (Said); S. Janssens (Stefan); McNally, E. (Elizabeth); Quattrocelli, M. (Mattia); Sampaolesi, M. (Maurilio)

    2017-01-01

    textabstractMuscular dystrophies (MDs) are often characterized by impairment of both skeletal and cardiac muscle. Regenerative strategies for both compartments therefore constitute a therapeutic avenue. Mesodermal iPSC-derived progenitors (MiPs) can regenerate both striated muscle types

  7. Direct Cardiac Reprogramming: Advances in Cardiac Regeneration

    Directory of Open Access Journals (Sweden)

    Olivia Chen

    2015-01-01

    Full Text Available Heart disease is one of the lead causes of death worldwide. Many forms of heart disease, including myocardial infarction and pressure-loading cardiomyopathies, result in irreversible cardiomyocyte death. Activated fibroblasts respond to cardiac injury by forming scar tissue, but ultimately this response fails to restore cardiac function. Unfortunately, the human heart has little regenerative ability and long-term outcomes following acute coronary events often include chronic and end-stage heart failure. Building upon years of research aimed at restoring functional cardiomyocytes, recent advances have been made in the direct reprogramming of fibroblasts toward a cardiomyocyte cell fate both in vitro and in vivo. Several experiments show functional improvements in mouse models of myocardial infarction following in situ generation of cardiomyocyte-like cells from endogenous fibroblasts. Though many of these studies are in an early stage, this nascent technology holds promise for future applications in regenerative medicine. In this review, we discuss the history, progress, methods, challenges, and future directions of direct cardiac reprogramming.

  8. Extraocular muscle function testing

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003397.htm Extraocular muscle function testing To use the sharing features on this page, please enable JavaScript. Extraocular muscle function testing examines the function of the eye muscles. ...

  9. Non-Coding RNAs in Muscle Dystrophies

    Directory of Open Access Journals (Sweden)

    Alessandra Ferlini

    2013-09-01

    Full Text Available ncRNAs are the most recently identified class of regulatory RNAs with vital functions in gene expression regulation and cell development. Among the variety of roles they play, their involvement in human diseases has opened new avenues of research towards the discovery and development of novel therapeutic approaches. Important data come from the field of hereditary muscle dystrophies, like Duchenne muscle dystrophy and Myotonic dystrophies, rare diseases affecting 1 in 7000–15,000 newborns and is characterized by severe to mild muscle weakness associated with cardiac involvement. Novel therapeutic approaches are now ongoing for these diseases, also based on splicing modulation. In this review we provide an overview about ncRNAs and their behavior in muscular dystrophy and explore their links with diagnosis, prognosis and treatments, highlighting the role of regulatory RNAs in these pathologies.

  10. Quantification of patterns of regional cardiac metabolism

    International Nuclear Information System (INIS)

    Lear, J.L.; Ackermann, R.F.

    1990-01-01

    To quantitatively map and compare patterns of regional cardiac metabolism with greater spatial resolution than is possible with positron emission tomography (PET), the authors developed autoradiographic techniques for use with combinations of radiolabeled fluorodeoxyglucose (FDG), glucose (GLU), and acetate (ACE) and applied the techniques to normal rats. Kinetic models were developed to compare GLU-based oxidative glucose metabolism with FDG-based total glucose metabolism (oxidative plus anaerobic) and to compare ACE-based overall oxidative metabolism with FDG-based total glucose metabolism. GLU-based metabolism generally paralleled FDG-based metabolism, but divergence occurred in certain structures such as the papillary muscles, where FDG-based metabolism was much greater. ACE-based metabolism also generally paralleled FDG-based metabolism, but again, the papillary muscles had relatively greater FDG-based metabolism. These discrepancies between FDG-based metabolism and GLU- or ACE-based metabolism suggest the presence of high levels of anaerobic glycolysis. Thus, the study indicates that anaerobic glycolysis, in addition to occurring in ischemic or stunned myocardium (as has been shown in recent PET studies), occurs normally in specific cardiac regions, despite the presence of abundant oxygen

  11. Solutions to muscle fiber equations and their long time behaviour

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Sainte-Marie, J.; Sorine, M.; Urquiza, J.M.

    2006-01-01

    Roč. 7, č. 4 (2006), s. 535-558 ISSN 1468-1218 Institutional research plan: CEZ:AV0Z10190503 Keywords : existence * uniqueness * muscle and cardiac mechanics Subject RIV: BA - General Mathematics Impact factor: 1.194, year: 2006 http://www.sciencedirect.com/science/article/pii/S1468121805000507

  12. Muscle blood volume assessment during exercise with Power Doppler Ultrasound

    NARCIS (Netherlands)

    Heres, H.M.; Tchang, B.C.Y.; Schoots, T.; Rutten, M.C.M.; van de Vosse, F.N.; Lopata, R.G.P.

    2016-01-01

    Assessment of perfusion adaptation in muscle during exercise can provide diagnostic information on cardiac and endothelial diseases. Power Doppler Ultrasound (PDUS) is known for its feasibility in the non-invasive measurement of moving blood volume (MBV), a perfusion related parameter. In this

  13. Skeletal muscle contraction-induced vasodilation in the microcirculation.

    Science.gov (United States)

    Hong, Kwang-Seok; Kim, Kijeong

    2017-10-01

    Maximal whole body exercise leads skeletal muscle blood flow to markedly increase to match metabolic demands, a phenomenon termed exercise hyperaemia that is accomplished by increasing vasodilation. However, local vasodilatory mechanisms in response to skeletal muscle contraction remain uncertain. This review highlights metabolic vasodilators released from contracting skeletal muscle, endothelium, or blood cells. As a considerable skeletal muscle vasodilation potentially results in hypotension, sympathetic nerve activity needs to be augmented to elevate cardiac output and blood pressure during dynamic exercise. However, since the enhanced sympathetic vasoconstriction restrains skeletal muscle blood flow, intramuscular arteries have an indispensable ability to blunt sympathetic activity for exercise hyperaemia. In addition, we discuss that mechanical compression of the intramuscular vasculature contributes to causing the initial phase of increasing vasodilation following a single muscle contraction. We have also chosen to focus on conducted (or ascending) electrical signals that evoke vasodilation of proximal feed arteries to elevate blood flow in the microcirculation of skeletal muscle. Endothelial hyperpolarization originating within distal arterioles ascends into the proximal feed arteries, thereby increasing total blood flow in contracting skeletal muscle. This brief review summarizes molecular mechanisms underlying the regulation of skeletal muscle blood flow to a single or sustained muscle contraction.

  14. Histomorphologic and Immunohistochemical Characterization of a Cardiac Purkinjeoma in a Bearded Seal (Erignathus barbatus

    Directory of Open Access Journals (Sweden)

    G. Krafsur

    2014-01-01

    Full Text Available The most common cardiac tumors of heart muscle are rhabdomyomas, solitary or multiple benign tumors of striated muscle origin. While cardiac rhabdomyomas are well described in human medical literature, limited information depicting the occurrence of cardiac rhabdomyomas in veterinary species exists. A case of multiple firm white nonencapsulated nodules in the heart of a bearded seal is described. Microscopic findings included cytoplasmic vacuolization with formation of spider cells, glycogen vacuoles, and striated myofibrils. These cells expressed immunoreactivity for neuron-specific enolase and protein gene product 9.5, a marker for neuronal tissue and Purkinje fiber cells. Immunoreactivity for protein gene product 9.5 along with other microscopic findings substantiates Purkinje fiber cell origin of the cardiac rhabdomyoma in the bearded seal and use of the term purkinjeoma to describe this lesion.

  15. Cardiac radiology: centenary review.

    Science.gov (United States)

    de Roos, Albert; Higgins, Charles B

    2014-11-01

    During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.

  16. Wound ventilation : A new concept for prevention of complications in cardiac surgery

    OpenAIRE

    Persson, Mikael

    2003-01-01

    Cardiac surgery through an open chest wound is a major operation both in size and duration. The wound exposure to ambient air implies considerable risks. 1) Air may enter the heart and great vessels and embolize to the brain or cardiac muscle where it may cause dysfunction or permanent damage. 2) The wound is exposed to airborne bacterial contamination, which may lead to postoperative wound infection. 3) The wound is subjected to desiccation, which may lead to serious adhesi...

  17. Hearts of dystonia musculorum mice display normal morphological and histological features but show signs of cardiac stress.

    Directory of Open Access Journals (Sweden)

    Justin G Boyer

    2010-03-01

    Full Text Available Dystonin is a giant cytoskeletal protein belonging to the plakin protein family and is believed to crosslink the major filament systems in contractile cells. Previous work has demonstrated skeletal muscle defects in dystonin-deficient dystonia musculorum (dt mice. In this study, we show that the dystonin muscle isoform is localized at the Z-disc, the H zone, the sarcolemma and intercalated discs in cardiac tissue. Based on this localization pattern, we tested whether dystonin-deficiency leads to structural defects in cardiac muscle. Desmin intermediate filament, microfilament, and microtubule subcellular organization appeared normal in dt hearts. Nevertheless, increased transcript levels of atrial natriuretic factor (ANF, 66% beta-myosin heavy chain (beta-MHC, 95% and decreased levels of sarcoplasmic reticulum calcium pump isoform 2A (SERCA2a, 26%, all signs of cardiac muscle stress, were noted in dt hearts. Hearts from two-week old dt mice were assessed for the presence of morphological and histological alterations. Heart to body weight ratios as well as left ventricular wall thickness and left chamber volume measurements were similar between dt and wild-type control mice. Hearts from dt mice also displayed no signs of fibrosis or calcification. Taken together, our data provide new insights into the intricate structure of the sarcomere by situating dystonin in cardiac muscle fibers and suggest that dystonin does not significantly influence the structural organization of cardiac muscle fibers during early postnatal development.

  18. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    OpenAIRE

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-s...

  19. Isolated Cardiac Hydatid Cyst

    International Nuclear Information System (INIS)

    Shakil, U.; Rehman, A. U.; Shahid, R.

    2015-01-01

    Hydatid cyst disease is common in our part of the world. Cardiac hydatid cyst is its rare manifestation. We report this case of 48-year male having isolated cardiac hydatid cyst, incidentally found on computed tomography. This patient presented in medical OPD of Combined Military Hospital, Lahore with one month history of mild retrosternal discomfort. His general physical and systemic examinations as well as ECG were unremarkable. Chest X-ray showed an enlarged cardiac shadow with mildly irregular left heart border. Contrast enhanced CT scan of the chest showed a large well defined multiloculated non-enhancing cystic lesion with multiple daughter cysts involving wall of left ventricle and overlying pericardium. Serology for echinococcus confirmed the diagnosis of hydatid cyst. Patient was offered the surgical treatment but he opted for medical treatment only. Albendezol was prescribed. His follow-up echocardiography after one month showed no significant decrease in size of the cyst. (author)

  20. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa

    2002-01-01

    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  1. Cardiac output measurement

    Directory of Open Access Journals (Sweden)

    Andreja Möller Petrun

    2014-02-01

    Full Text Available In recent years, developments in the measuring of cardiac output and other haemodynamic variables are focused on the so-called minimally invasive methods. The aim of these methods is to simplify the management of high-risk and haemodynamically unstable patients. Due to the need of invasive approach and the possibility of serious complications the use of pulmonary artery catheter has decreased. This article describes the methods for measuring cardiac output, which are based on volume measurement (Fick method, indicator dilution method, pulse wave analysis, Doppler effect, and electrical bioimpedance.

  2. Behavior of cardiac variables in animals exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Sergio Alberto Rupp de Paiva

    2003-09-01

    Full Text Available OBJECTIVE: To assess the behavior of cardiac variables in animals exposed to cigarette smoke. METHODS: Two groups of Wistar rats were studied as follows: control group (C, comprising 28 animals; and smoking group (S, comprising 23 animals exposed to cigarette smoke for 30 days. Left ventricular cardiac function was assessed in vivo with transthoracic echocardiography, and myocardial performance was analyzed in vitro in preparations of isolated left ventricular papillary muscle. The cardiac muscle was assessed in isometric contractions with an extracellular calcium concentration of 2.5 mmol/L. RESULTS: No statistical difference was observed in the values of the body variables of the rats and in the mechanical data obtained from the papillary muscle between the control and smoking groups. The values of left ventricular systolic diameter were significantly greater in the smoking animals than in the control animals (C= 3.39 ± 0.4 mm and S= 3.71 ± 0.51 mm, P=0.02. A significant reduction was observed in systolic shortening fraction (C= 56.7 ± 4.2% and S= 53.5 ± 5.3%, P=0.02 and in ejection fraction (C= 0.92 ± 0.02 and S= 0.89 ± 0.04, P=0.01. CONCLUSION: The rats exposed to cigarette smoke had a reduction in left ventricular systolic function, although their myocardial function was preserved.

  3. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior.

    Science.gov (United States)

    Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2013-01-01

    There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.

  4. Enteral leucine and protein synthesis in skeletal and cardiac muscle

    Science.gov (United States)

    There are three members of the Branch Chain Amino Acids: leucine, isoleucine, and valine. As essential amino acids, these amino acids have important functions which include a primary role in protein structure and metabolism. It is intriguing that the requirement for BCAA in humans comprise about 40–...

  5. Early remodeling of rat cardiac muscle induced by swimming training

    Directory of Open Access Journals (Sweden)

    Verzola R.M.M.

    2006-01-01

    Full Text Available The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group. Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05 was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05 in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05 with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01 after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05 after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.

  6. Observational Study of Human Electrical Muscle Incapacitation and Cardiac Effects

    Science.gov (United States)

    2016-05-01

    clarithromycin, and ketoconazole), anti-malarial drugs (quinine and chloroquine ), methadone, and cocaine.7,8,9 The Bazett method has been used ...distribution unlimited. Distribution A. Distribution authorized for public release NOTICE AND SIGNATURE PAGE Using Government drawings...corporation; or convey any rights or permission to manufacture, use , or sell any patented invention that may relate to them. Qualified requestors may

  7. Molecular and immunohistochemical analyses of cardiac troponin T during cardiac development in the Mexican axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Zhang, C; Pietras, K M; Sferrazza, G F; Jia, P; Athauda, G; Rueda-de-Leon, E; Rveda-de-Leon, E; Maier, J A; Dube, D K; Lemanski, S L; Lemanski, L F

    2007-01-01

    The Mexican axolotl, Ambystoma mexicanum, is an excellent animal model for studying heart development because it carries a naturally occurring recessive genetic mutation, designated gene c, for cardiac nonfunction. The double recessive mutants (c/c) fail to form organized myofibrils in the cardiac myoblasts resulting in hearts that fail to beat. Tropomyosin expression patterns have been studied in detail and show dramatically decreased expression in the hearts of homozygous mutant embryos. Because of the direct interaction between tropomyosin and troponin T (TnT), and the crucial functions of TnT in the regulation of striated muscle contraction, we have expanded our studies on this animal model to characterize the expression of the TnT gene in cardiac muscle throughout normal axolotl development as well as in mutant axolotls. In addition, we have succeeded in cloning the full-length cardiac troponin T (cTnT) cDNA from axolotl hearts. Confocal microscopy has shown a substantial, but reduced, expression of TnT protein in the mutant hearts when compared to normal during embryonic development. 2006 Wiley-Liss, Inc.

  8. Neonatal cardiac emergencies

    African Journals Online (AJOL)

    flow) or require intervention (surgical or catheter) within the first ... Cardiac. History. Risk factors, e.g. meconium-stained liquor, prematurity, ... 'snowman' sign for supracardiac total anomalous pulmonary venous drainage (TAPVD), cardiomegaly with plethora for ... central cyanosis and on auscultation you hear no murmurs.

  9. Comparative cardiac imaging

    International Nuclear Information System (INIS)

    Brundage, B.H.

    1990-01-01

    This book is designed to compare all major cardiac imaging techniques. All major imaging techniques - including conventional angiography, digital angiography, echocardiography and Doppler imaging, conventional radioisotope techniques, computed tomography, and magnetic resonance imaging - are covered in this text as they apply to the major cardiovascular disorders. There is brief coverage of positron emission tomography and an extensive presentation of ultrafast computed tomography

  10. Advanced Cardiac Life Support.

    Science.gov (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  11. Cardiac Pacemakers; Marcapasos Cardiacos

    Energy Technology Data Exchange (ETDEWEB)

    Fiandra, O [Universidad de la Republica, Facultad de Maedicina, Departamento de Cardiologia, Montevideo(Uruguay); Espasandin, W [Universidad de la Republica, Facultad de Medicina, Departamento de Cirugia Cardiaca, Montevideo (Uruguay); Fiandra, H [Instituto Nacional de Cirugia Cardiaca, Departamento de Hemodinamia y Marcapasos, Montevideo (Uruguay); and others

    1984-07-01

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control.

  12. Nonexercise cardiac stress testing

    International Nuclear Information System (INIS)

    Vacek, J.L.; Baldwin, T.

    1989-01-01

    Many patients who require evaluation for coronary artery disease are unable to undergo exercise stress testing because of physiologic or psychological limitations. Drs Vacek and Baldwin describe three alternative methods for assessment of cardiac function in these patients, all of which have high levels of diagnostic sensitivity and specificity. 23 references

  13. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  14. The role of adrenaline as a modulator of cardiac performance in three Notothenioid fishes

    DEFF Research Database (Denmark)

    Skov, Peter Vilhelm; Bushnell, P.; Tirsgaard, Bjørn

    2008-01-01

    The present work was performed to test the hypothesis that Antarctic teleosts rely mostly on cholinergic inhibition to modulate cardiac performance. Isometric muscle preparations were used to examine the inotropic and chronotropic properties of the ventricle and atrium in three Antarctic teleosts...... adrenaline appear to enhance force of contraction for atrial muscle. The study finds that adrenaline modulates ventricular inotropic properties in all species. For Notothenia coriiceps the regulation of power production purely by adrenergic stimulation appeared most beneficial, while for N. microlepidota...

  15. Resting spontaneous baroreflex sensitivity and cardiac autonomic control in anabolic androgenic steroid users

    OpenAIRE

    Santos, Marcelo R. dos; Sayegh, Ana L.C.; Armani, Rafael; Costa-Hong, Valéria; Souza, Francis R. de; Toschi-Dias, Edgar; Bortolotto, Luiz A.; Yonamine, Mauricio; Negrão, Carlos E.; Alves, Maria-Janieire N.N.

    2018-01-01

    OBJECTIVES: Misuse of anabolic androgenic steroids in athletes is a strategy used to enhance strength and skeletal muscle hypertrophy. However, its abuse leads to an imbalance in muscle sympathetic nerve activity, increased vascular resistance, and increased blood pressure. However, the mechanisms underlying these alterations are still unknown. Therefore, we tested whether anabolic androgenic steroids could impair resting baroreflex sensitivity and cardiac sympathovagal control. In addition, ...

  16. Cardiac atrophy after bed rest and spaceflight

    Science.gov (United States)

    Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.

    2001-01-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity

  17. Maternal cardiac metabolism in pregnancy

    Science.gov (United States)

    Liu, Laura X.; Arany, Zolt

    2014-01-01

    Pregnancy causes dramatic physiological changes in the expectant mother. The placenta, mostly foetal in origin, invades maternal uterine tissue early in pregnancy and unleashes a barrage of hormones and other factors. This foetal ‘invasion’ profoundly reprogrammes maternal physiology, affecting nearly every organ, including the heart and its metabolism. We briefly review here maternal systemic metabolic changes during pregnancy and cardiac metabolism in general. We then discuss changes in cardiac haemodynamic during pregnancy and review what is known about maternal cardiac metabolism during pregnancy. Lastly, we discuss cardiac diseases during pregnancy, including peripartum cardiomyopathy, and the potential contribution of aberrant cardiac metabolism to disease aetiology. PMID:24448314

  18. Decrease in coronary vascular volume in systole augments cardiac contraction.

    Science.gov (United States)

    Willemsen, M J; Duncker, D J; Krams, R; Dijkman, M A; Lamberts, R R; Sipkema, P; Westerhof, N

    2001-08-01

    Coronary arterial inflow is impeded and venous outflow is increased as a result of the decrease in coronary vascular volume due to cardiac contraction. We evaluated whether cardiac contraction is influenced by interfering with the changes of the coronary vascular volume over the heart cycle. Length-tension relationships were determined in Tyrode-perfused rat papillary muscle and when coronary vascular volume changes were partly inhibited by filling it with congealed gelatin or perfusing it with a high viscosity dextran buffer. Also, myocyte thickening during contraction was reduced by placing a silicon tube around the muscle. Increasing perfusion pressure from 8 to 80 cmH2O, increased developed tension by approximately 40%. When compared with the low perfusion state, developed tension of the gelatin-filled vasculature was reduced to 43 +/- 6% at the muscle length where the muscle generates the largest developed tension (n = 5, means +/- SE). Dextran reduced developed tension to 73 +/- 6% (n = 6). The silicon tube, in low perfusion state, reduced the developed tension to 83 +/- 7% (n = 4) of control. Time-control and oxygen-lowering experiments show that the findings are based on mechanical effects. Thus interventions to prevent myocyte thickening reduce developed tension. We hypothesize that when myocyte thickening is prevented, intracellular pressure increases and counteracts the force produced by the contractile apparatus. We conclude that emptying of the coronary vasculature serves a physiological purpose by facilitating cardiomyocyte thickening thereby augmenting force development.

  19. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy.

    Science.gov (United States)

    Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J

    2016-10-14

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy*

    Science.gov (United States)

    Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.

    2016-01-01

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547

  1. Incorporating Comorbidity Within Risk Adjustment for UK Pediatric Cardiac Surgery.

    Science.gov (United States)

    Brown, Katherine L; Rogers, Libby; Barron, David J; Tsang, Victor; Anderson, David; Tibby, Shane; Witter, Thomas; Stickley, John; Crowe, Sonya; English, Kate; Franklin, Rodney C; Pagel, Christina

    2017-07-01

    When considering early survival rates after pediatric cardiac surgery it is essential to adjust for risk linked to case complexity. An important but previously less well understood component of case mix complexity is comorbidity. The National Congenital Heart Disease Audit data representing all pediatric cardiac surgery procedures undertaken in the United Kingdom and Ireland between 2009 and 2014 was used to develop and test groupings for comorbidity and additional non-procedure-based risk factors within a risk adjustment model for 30-day mortality. A mixture of expert consensus based opinion and empiric statistical analyses were used to define and test the new comorbidity groups. The study dataset consisted of 21,838 pediatric cardiac surgical procedure episodes in 18,834 patients with 539 deaths (raw 30-day mortality rate, 2.5%). In addition to surgical procedure type, primary cardiac diagnosis, univentricular status, age, weight, procedure type (bypass, nonbypass, or hybrid), and era, the new risk factor groups of non-Down congenital anomalies, acquired comorbidities, increased severity of illness indicators (eg, preoperative mechanical ventilation or circulatory support) and additional cardiac risk factors (eg, heart muscle conditions and raised pulmonary arterial pressure) all independently increased the risk of operative mortality. In an era of low mortality rates across a wide range of operations, non-procedure-based risk factors form a vital element of risk adjustment and their presence leads to wide variations in the predicted risk of a given operation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    Science.gov (United States)

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  3. Cardiac arrest during gamete release in chum salmon regulated by the parasympathetic nerve system.

    Directory of Open Access Journals (Sweden)

    Yuya Makiguchi

    Full Text Available Cardiac arrest caused by startling stimuli, such as visual and vibration stimuli, has been reported in some animals and could be considered as an extraordinary case of bradycardia and defined as reversible missed heart beats. Variability of the heart rate is established as a balance between an autonomic system, namely cholinergic vagus inhibition, and excitatory adrenergic stimulation of neural and hormonal action in teleost. However, the cardiac arrest and its regulating nervous mechanism remain poorly understood. We show, by using electrocardiogram (ECG data loggers, that cardiac arrest occurs in chum salmon (Oncorhynchus keta at the moment of gamete release for 7.39+/-1.61 s in females and for 5.20+/-0.97 s in males. The increase in heart rate during spawning behavior relative to the background rate during the resting period suggests that cardiac arrest is a characteristic physiological phenomenon of the extraordinarily high heart rate during spawning behavior. The ECG morphological analysis showed a peaked and tall T-wave adjacent to the cardiac arrest, indicating an increase in potassium permeability in cardiac muscle cells, which would function to retard the cardiac action potential. Pharmacological studies showed that the cardiac arrest was abolished by injection of atropine, a muscarinic receptor antagonist, revealing that the cardiac arrest is a reflex response of the parasympathetic nerve system, although injection of sotalol, a beta-adrenergic antagonist, did not affect the cardiac arrest. We conclude that cardiac arrest during gamete release in spawning release in spawning chum salmon is a physiological reflex response controlled by the parasympathetic nervous system. This cardiac arrest represents a response to the gaping behavior that occurs at the moment of gamete release.

  4. Regulation of cardiac microRNAs by serum response factor

    Directory of Open Access Journals (Sweden)

    Wei Jeanne Y

    2011-02-01

    Full Text Available Abstract Serum response factor (SRF regulates certain microRNAs that play a role in cardiac and skeletal muscle development. However, the role of SRF in the regulation of microRNA expression and microRNA biogenesis in cardiac hypertrophy has not been well established. In this report, we employed two distinct transgenic mouse models to study the impact of SRF on cardiac microRNA expression and microRNA biogenesis. Cardiac-specific overexpression of SRF (SRF-Tg led to altered expression of a number of microRNAs. Interestingly, downregulation of miR-1, miR-133a and upregulation of miR-21 occurred by 7 days of age in these mice, long before the onset of cardiac hypertrophy, suggesting that SRF overexpression impacted the expression of microRNAs which contribute to cardiac hypertrophy. Reducing cardiac SRF level using the antisense-SRF transgenic approach (Anti-SRF-Tg resulted in the expression of miR-1, miR-133a and miR-21 in the opposite direction. Furthermore, we observed that SRF regulates microRNA biogenesis, specifically the transcription of pri-microRNA, thereby affecting the mature microRNA level. The mir-21 promoter sequence is conserved among mouse, rat and human; one SRF binding site was found to be in the mir-21 proximal promoter region of all three species. The mir-21 gene is regulated by SRF and its cofactors, including myocardin and p49/Strap. Our study demonstrates that the downregulation of miR-1, miR-133a, and upregulation of miR-21 can be reversed by one single upstream regulator, SRF. These results may help to develop novel therapeutic interventions targeting microRNA biogenesis.

  5. Dual-gated cardiac PET-clinical feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Teraes, Mika; Kokki, Tommi; Noponen, Tommi; Hoppela, Erika; Sipilae, Hannu T.; Knuuti, Juhani [Turku PET Centre, PO BOX 52, Turku (Finland); Durand-Schaefer, Nicolas [General Electric Medical Systems, Buc (France); Pietilae, Mikko [Turku University Hospital, Department of Internal Medicine, Turku (Finland); Kiss, Jan [Turku University Hospital, Department of Surgery, Turku (Finland)

    2010-03-15

    Both respiratory and cardiac motions reduce image quality in myocardial imaging. For accurate imaging of small structures such as vulnerable coronary plaques, simultaneous cardiac and respiratory gating is warranted. This study tests the feasibility of a recently developed robust method for cardiac-respiratory gating. List-mode data with triggers from respiratory and cardiac cycles are rearranged into dual-gated segments and reconstructed with standard algorithms of a commercial PET/CT scanner. Cardiac gates were defined as three fixed phases and one variable diastolic phase. Chest motion was measured with a respiratory gating device and post-processed to determine gates. Preservation of quantification in dual-gated images was tested with an IEC whole-body phantom. Minipig and human studies were performed to evaluate the feasibility of the method. In minipig studies, a coronary catheter with radioactive tip was guided in coronary artery for in vivo and ex vivo acquisitions. Dual gating in humans with suspected cardiac disorders was performed using 18-F-FDG as a tracer. The method was found feasible for in vivo imaging and the radioactive catheter tip was better resolved in gated images. In human studies, the dual gating was found feasible and easy for clinical routine. Maximal movement of myocardial surface in cranio-caudal direction was over 20 mm. The shape of myocardium was clearly different between the gates and papillary muscles become more visible in diastolic images. The first clinical experiences using robust cardiac-respiratory dual gating are encouraging. Further testing in larger clinical populations using tracers designed especially for plaque imaging is warranted. (orig.)

  6. Dual-gated cardiac PET-clinical feasibility study

    International Nuclear Information System (INIS)

    Teraes, Mika; Kokki, Tommi; Noponen, Tommi; Hoppela, Erika; Sipilae, Hannu T.; Knuuti, Juhani; Durand-Schaefer, Nicolas; Pietilae, Mikko; Kiss, Jan

    2010-01-01

    Both respiratory and cardiac motions reduce image quality in myocardial imaging. For accurate imaging of small structures such as vulnerable coronary plaques, simultaneous cardiac and respiratory gating is warranted. This study tests the feasibility of a recently developed robust method for cardiac-respiratory gating. List-mode data with triggers from respiratory and cardiac cycles are rearranged into dual-gated segments and reconstructed with standard algorithms of a commercial PET/CT scanner. Cardiac gates were defined as three fixed phases and one variable diastolic phase. Chest motion was measured with a respiratory gating device and post-processed to determine gates. Preservation of quantification in dual-gated images was tested with an IEC whole-body phantom. Minipig and human studies were performed to evaluate the feasibility of the method. In minipig studies, a coronary catheter with radioactive tip was guided in coronary artery for in vivo and ex vivo acquisitions. Dual gating in humans with suspected cardiac disorders was performed using 18-F-FDG as a tracer. The method was found feasible for in vivo imaging and the radioactive catheter tip was better resolved in gated images. In human studies, the dual gating was found feasible and easy for clinical routine. Maximal movement of myocardial surface in cranio-caudal direction was over 20 mm. The shape of myocardium was clearly different between the gates and papillary muscles become more visible in diastolic images. The first clinical experiences using robust cardiac-respiratory dual gating are encouraging. Further testing in larger clinical populations using tracers designed especially for plaque imaging is warranted. (orig.)

  7. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  8. Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study.

    Science.gov (United States)

    Kamenický, Peter; Redheuil, Alban; Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-11-01

    Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2-12 mo) after the treatment of hypercortisolism. Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism.

  9. Characterization of human cardiac myosin heavy chain genes

    International Nuclear Information System (INIS)

    Yamauchi-Takihara, K.; Sole, M.J.; Liew, J.; Ing, D.; Liew, C.C.

    1989-01-01

    The authors have isolated and analyzed the structure of the genes coding for the α and β forms of the human cardiac myosin heavy chain (MYHC). Detailed analysis of four overlapping MYHC genomic clones shows that the α-MYHC and β-MYHC genes constitute a total length of 51 kilobases and are tandemly linked. The β-MYHC-encoding gene, predominantly expressed in the normal human ventricle and also in slow-twitch skeletal muscle, is located 4.5 kilobases upstream of the α-MYHC-encoding gene, which is predominantly expressed in normal human atrium. The authors have determined the nucleotide sequences of the β form of the MYHC gene, which is 100% homologous to the cardiac MYHC cDNA clone (pHMC3). It is unlikely that the divergence of a few nucleotide sequences from the cardiac β-MYHC cDNA clone (pHMC3) reported in a MYHC cDNA clone (PSMHCZ) from skeletal muscle is due to a splicing mechanism. This finding suggests that the same β form of the cardiac MYHC gene is expressed in both ventricular and slow-twitch skeletal muscle. The promoter regions of both α- and β-MYHC genes, as well as the first four coding regions in the respective genes, have also been sequenced. The sequences in the 5'-flanking region of the α- and β-MYHC-encoding genes diverge extensively from one another, suggesting that expression of the α- and β-MYHC genes is independently regulated

  10. Socially differentiated cardiac rehabilitation

    DEFF Research Database (Denmark)

    Meillier, Lucette Kirsten; Nielsen, Kirsten Melgaard; Larsen, Finn Breinholt

    2012-01-01

    in recruitment and participation among low educated and socially vulnerable patients must be addressed to lower inequality in post-MI health. Our aim was to improve referral, attendance, and adherence rates among socially vulnerable patients by systematic screening and by offering a socially differentiated...... to a standard rehabilitation programme (SRP). If patients were identified as socially vulnerable, they were offered an extended version of the rehabilitation programme (ERP). Excluded patients were offered home visits by a cardiac nurse. Concordance principles were used in the individualised programme elements......%. Patients were equally distributed to the SRP and the ERP. No inequality was found in attendance and adherence among referred patients. Conclusions: It seems possible to overcome unequal referral, attendance, and adherence in cardiac rehabilitation by organisation of systematic screening and social...

  11. Ictal Cardiac Ryhthym Abnormalities.

    Science.gov (United States)

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy.

  12. Fetal cardiac assessment

    International Nuclear Information System (INIS)

    Greene, K.R.

    1983-01-01

    The better understanding of fetal cardiovascular physiology coupled with improved technology for non-invasive study of the fetus now enable much more detailed assessment of fetal cardiac status than by heart rate alone. Even the latter, relatively simple, measurement contains much more information than was previously realized. It is also increasingly clear that no single measurement will provide the answer to all clinical dilemmas either on cardiac function or the welfare of the fetus as a whole. There are obvious clinical advantages in measuring several variables from one signal and the measurement of heart rate, heart rate variation and waveform from the ECG in labour is a potentially useful combination. Systolic time intervals or flow measurements could easily be added or used separately by combining real-time and Doppler ultrasound probes

  13. Cardiac nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gerson, M.C.

    1987-01-01

    The book begins with a review of the radionuclide methods available for evaluating cardiac perfusion and function. The authors discuss planar and tomographic thallium myocardial imaging, first-pass and equilibrium radionuclide angiography, and imaging with infarct-avid tracers. Several common but more specialized procedures are then reviewed: nonogemetric measurement of left ventricular volume, phase (Fourier) analysis, stroke volume ratio, right ventricular function, and diastolic function. A separate chapter is devoted to drug interventions and in particular the use of radionuclide ventriculography to monitor doxorubicin toxicity and therapy of congestive heart failure. The subsequent chapters provide a comprehensive guide to test selection, accuracy, and results in acute myocardial infarction, in postmyocardial infarction, in chronic coronary artery disease, before and after medical or surgical revascularization, in valvular heart disease, in cardiomyopathies, and in cardiac trauma.

  14. Cardiac nuclear medicine

    International Nuclear Information System (INIS)

    Gerson, M.C.

    1987-01-01

    The book begins with a review of the radionuclide methods available for evaluating cardiac perfusion and function. The authors discuss planar and tomographic thallium myocardial imaging, first-pass and equilibrium radionuclide angiography, and imaging with infarct-avid tracers. Several common but more specialized procedures are then reviewed: nonogemetric measurement of left ventricular volume, phase (Fourier) analysis, stroke volume ratio, right ventricular function, and diastolic function. A separate chapter is devoted to drug interventions and in particular the use of radionuclide ventriculography to monitor doxorubicin toxicity and therapy of congestive heart failure. The subsequent chapters provide a comprehensive guide to test selection, accuracy, and results in acute myocardial infarction, in postmyocardial infarction, in chronic coronary artery disease, before and after medical or surgical revascularization, in valvular heart disease, in cardiomyopathies, and in cardiac trauma

  15. Cardiac function studies

    International Nuclear Information System (INIS)

    Horn, H.J.

    1986-01-01

    A total of 27 patients were subjected tointramyocardial sequential scintiscanning (first pass) using 99m-Tc human serum albumin. A refined method is described that is suitable to analyse clinically relevant parameters like blood volume, cardiac output, ejection fraction, stroke volume, enddiastolic and endsystolic volumes as well as pulmonal transition time and uses a complete camaracomputer system adapted to the requirements of a routine procedure. Unless there is special hardware available, the method does not yet appear mature enough to be put into general practice. Its importance recently appeared in a new light due to the advent of particularly shortlived isotopes. For the time being, however, ECG-triggered equilibrium studies are to be preferred for cardiac function tests. (TRV) [de

  16. CSI cardiac prevent 2015

    OpenAIRE

    S Ramakrishnan; Manisha Kaushik

    2015-01-01

    The CSI Cardiac Prevent 2015 was held at Hotel Taj Palace, New Delhi, on September 25-27, 2015. The major challenge was to create interest among cardiologists and physicians on preventive cardiology, a neglected area. The theme of the conference was "Innovations in Heart Disease Prevention.′′ This conference included "CSI at WHF Roadmap Workshop, Inauguration Ceremony, scientific program, plenary sessions, Nursing/Dietician track, Industry Exhibition, Social Events," Great India blood pressur...

  17. Multifractality in Cardiac Dynamics

    Science.gov (United States)

    Ivanov, Plamen Ch.; Rosenblum, Misha; Stanley, H. Eugene; Havlin, Shlomo; Goldberger, Ary

    1997-03-01

    Wavelet decomposition is used to analyze the fractal scaling properties of heart beat time series. The singularity spectrum D(h) of the variations in the beat-to-beat intervals is obtained from the wavelet transform modulus maxima which contain information on the hierarchical distribution of the singularities in the signal. Multifractal behavior is observed for healthy cardiac dynamics while pathologies are associated with loss of support in the singularity spectrum.

  18. Integrative Cardiac Health Project

    Science.gov (United States)

    2014-10-01

    primary cardiac arrest. Circulation. 1998;97(2):155Y160. 8. Sesso HD, Lee IM, Gaziano JM, Rexrode KM, Glynn RJ, Buring JE. Maternal and paternal ...to signal transduction, inflammation, and host–pathogen interactions .27 Whole blood RNA isolation systems such as PAXgene accurately capture in vivo...the effect of healthy behaviors on leukocyte function and leukocyte–endothelium interactions that are important for cardiovascular health

  19. Healthy Muscles Matter

    Science.gov (United States)

    ... or lying down, and faster when you’re running or playing sports and your skeletal muscles need more blood to help them do their work. What can go wrong? Injuries Almost everyone has had sore muscles after exercising ...

  20. Cardiac parasympathetic reactivation following exercise: implications for training prescription.

    Science.gov (United States)

    Stanley, Jamie; Peake, Jonathan M; Buchheit, Martin

    2013-12-01

    The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0-90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1-48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness

  1. Molecular nuclear cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Paeng, Jin Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-04-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

  2. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  3. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)

    MILICA RADISIC

    2005-03-01

    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  4. Molecular nuclear cardiac imaging

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Paeng, Jin Chul

    2004-01-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect

  5. Isometric exercise: cardiovascular responses in normal and cardiac populations.

    Science.gov (United States)

    Hanson, P; Nagle, F

    1987-05-01

    Isometric exercise produces a characteristic pressor increase in blood pressure which may be important in maintaining perfusion of muscle during sustained contraction. This response is mediated by combined central and peripheral afferent input to medullary cardiovascular centers. In normal individuals the increase in blood pressure is mediated by a rise in cardiac output with little or no change in systemic vascular resistance. However, the pressor response is also maintained during pharmacologic blockade or surgical denervation by increasing systemic vascular resistance. Left ventricular function is normally maintained or improves in normal subjects and cardiac patients with mild impairment of left ventricular contractility. Patients with poor left ventricular function may show deterioration during isometric exercise, although this pattern of response is difficult to predict from resting studies. Recent studies have shown that patients with uncomplicated myocardial infarction can perform submaximum isometric exercise such as carrying weights in the range of 30 to 50 lb without difficulty or adverse responses. In addition, many patients who show ischemic ST depression or angina during dynamic exercise may have a reduced ischemic response during isometric or combined isometric and dynamic exercise. Isometric exercises are frequently encountered in activities of daily living and many occupational tasks. Cardiac patients should be gradually exposed to submaximum isometric training in supervised cardiac rehabilitation programs. Specific job tasks that require isometric or combined isometric and dynamic activities may be evaluated by work simulation studies. This approach to cardiac rehabilitation may facilitate patients who wish to return to a job requiring frequent isometric muscle contraction. Finally, there is a need for additional research on the long-term effects of isometric exercise training on left ventricular hypertrophy and performance. The vigorous training

  6. Oxidative metabolism in muscle.

    OpenAIRE

    Ferrari, M; Binzoni, T; Quaresima, V

    1997-01-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantage...

  7. Initial Efficacy of a Cardiac Rehabilitation Transition Program: Cardiac TRUST

    Science.gov (United States)

    Zullo, Melissa; Boxer, Rebecca; Moore, Shirley M.

    2012-01-01

    Patients recovering from cardiac events are increasingly using postacute care, such as home health care and skilled nursing facility services. The purpose of this pilot study was to test the initial efficacy, feasibility, and safety of a specially designed postacute care transitional rehabilitation intervention for cardiac patients. Cardiac Transitional Rehabilitation Using Self- Management Techniques (Cardiac TRUST) is a family-focused intervention that includes progressive low-intensity walking and education in self-management skills to facilitate recovery following a cardiac event. Using a randomized two-group design, exercise self-efficacy, steps walked, and participation in an outpatient cardiac rehabilitation program were compared in a sample of 38 older adults; 17 who received the Cardiac TRUST program and 21 who received usual care only. At discharge from postacute care, the intervention group had a trend for higher levels of self-efficacy for exercise outcomes (X=39.1, SD=7.4) than the usual care group (X=34.5; SD=7.0) (t-test 1.9, p=.06). During the 6 weeks following discharge, compared with the usual care group, the intervention group had more attendance in out-patient cardiac rehabilitation (33% compared to 11.8%, F=7.1, p=.03) and a trend toward more steps walked during the first week (X=1,307, SD=652 compared to X=782, SD=544, t-test 1.8, p=.07). The feasibility of the intervention was better for the home health participants than for those in the skilled nursing facility and there were no safety concerns. The provision of cardiac-focused rehabilitation during postacute care has the potential to bridge the gap in transitional services from hospitalization to outpatient cardiac rehabilitation for these patients at high risk for future cardiac events. Further evidence of the efficacy of Cardiac TRUST is warranted. PMID:22084960

  8. Impact of statin use on exercise-induced cardiac troponin elevations.

    NARCIS (Netherlands)

    Eijsvogels, T.M.H.; Januzzi, J.L., Jr.; Taylor, B.A.; Isaacs, S.K.; D'Hemecourt, P.; Zaleski, A.; Dyer, S.; Troyanos, C.; Weiner, R.B.; Thompson, P.D.; Baggish, A.L.

    2014-01-01

    Marathon running commonly causes a transient elevation of creatine kinase and cardiac troponin I (cTnI). The use of statins before marathon running exacerbates the release of creatine kinase from skeletal muscle, but the effect of statin use on exercise-induced cTnI release is unknown. We therefore

  9. Scintigraphic evaluation of muscle damage following extreme exercise: concise communication

    International Nuclear Information System (INIS)

    Matin, P.; Lang, G.; Carretta, R.; Simon, G.

    1983-01-01

    Total body Tc-99m pyrophosphate scintigraphy was performed on 11 ''ultramarathon'' runners to assess the ability of nuclear medicine techniques to evaluate skeletal-muscle injury due to exercise. We found increased muscle radionuclide concentration in 90% of the runners. The pattern of muscle uptake correlated with the regions of maximum pain. The detection of exercise-induced rhabdomyolysis appeared to be best when scintigraphy was performed within 48 hr after the race, and to be almost undetectable after about a week. It was possible to differentiate muscle injury from joint and osseous abnormalities such as bone infarct or stress fracture. Although 77% of the runners had elevated serum creatine kinase MB activity, cardiac scintigraphy showed no evidence of myocardial injury

  10. Muscle metaboreflex and autonomic regulation of heart rate in humans

    DEFF Research Database (Denmark)

    Fisher, James P; Adlan, Ahmed M; Shantsila, Alena

    2013-01-01

    ) conditions, but attenuated with β-adrenergic blockade (0.2 ± 1 beats min(-1); P > 0.05 vs. rest). Thus muscle metaboreflex activation-mediated increases in HR are principally attributable to increased cardiac sympathetic activity, and only following exercise with a large muscle mass (PEI following leg......We elucidated the autonomic mechanisms whereby heart rate (HR) is regulated by the muscle metaboreflex. Eight male participants (22 ± 3 years) performed three exercise protocols: (1) enhanced metaboreflex activation with partial flow restriction (bi-lateral thigh cuff inflation) during leg cycling...... exercise, (2) isolated muscle metaboreflex activation (post-exercise ischaemia; PEI) following leg cycling exercise, (3) isometric handgrip followed by PEI. Trials were undertaken under control (no drug), β1-adrenergic blockade (metoprolol) and parasympathetic blockade (glycopyrrolate) conditions. HR...

  11. Making muscle elastic: the structural basis of myomesin stretching.

    Directory of Open Access Journals (Sweden)

    Larissa Tskhovrebova

    2012-02-01

    Full Text Available Skeletal and cardiac muscles are remarkable biological machines that support and move our bodies and power the rhythmic work of our lungs and hearts. As well as producing active contractile force, muscles are also passively elastic, which is essential to their performance. The origins of both active contractile and passive elastic forces can be traced to the individual proteins that make up the highly ordered structure of muscle. In this Primer, we describe the organization of sarcomeres--the structural units that produce contraction--and the nature of the proteins that make muscle elastic. In particular, we focus on an elastic protein called myomesin, whose novel modular architecture helps explain elasticity.

  12. Establishment of colloid gold immunity chromatography assay for cardiac troponin I (cTnI)

    International Nuclear Information System (INIS)

    Wang Dezhi; Chen Jiying; Qin Lili; Zhao Baojian; Zhang Chunming

    2006-01-01

    Objective: To establish the colloid gold Immunity chromatography assay for cardiac troponin I. Methods: To purify cTnI from human cardiac muscle and immunize rabbit with it. cTnI antibody of rabbit anti-human cardiac muscle has been prepared and colloid gold immunity chromatography assay was established by using immunity chromatography technology. Results: Anti-serum titles of cTnI were 1:100000, Ka=2.38 x 10 9 L/mol; Methodological index: Sensitivity: 5 ng/ml; Specificity: cTnI is no cross-reaction with cTnT, cTnC and CK-MB. conclusion: The assay is highly specific, quick and simple. It can be widely used for the early diagnosis of AMI and scientific research. (authors)

  13. Poorly Understood Aspects of Striated Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Alf Månsson

    2015-01-01

    Full Text Available Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP. Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.

  14. Cardiac involvement in myotonic muscular dystrophy (Steinert's disease): a prospective study of 25 patients

    International Nuclear Information System (INIS)

    Perloff, J.K.; Stevenson, W.G.; Roberts, N.K.; Cabeen, W.; Weiss, J.

    1984-01-01

    The presence, degree and frequency of disorders of cardiac conduction and rhythm and of regional or global myocardial dystrophy or myotonia have not previously been studied prospectively and systematically in the same population of patients with myotonic dystrophy. Accordingly, 25 adults with classic Steinert's disease underwent electrocardiography, 24-hour ambulatory electrocardiography, vectorcardiography, chest x-rays, echocardiography, electrophysiologic studies, and technetium-99m angiography. Clinically important cardiac manifestations of myotonic dystrophy reside in specialized tissues rather than in myocardium. Involvement is relatively specific, primarily assigned to the His-Purkinje system. The cardiac muscle disorder takes the form of dystrophy rather than myotonia, and is not selective, appearing with approximately equal distribution in all 4 chambers. Myocardial dystrophy seldom results in clinically overt ventricular failure, but may be responsible for atrial and ventricular arrhythmias. Since myotonic dystrophy is genetically transmitted, a primary biochemical defect has been proposed with complete expression of the gene toward striated muscle tissue, whether skeletal or cardiac. Specialized cardiac tissue and myocardium have close, if not identical, embryologic origins, so it is not surprising that the genetic marker affects both. Cardiac involvement is therefore an integral part of myotonic dystrophy, targeting particularly the infranodal conduction system, to a lesser extent the sinus node, and still less specifically, the myocardium

  15. Assessment of hypertrophic cardiomyopathy by ECG gated cardiac computed tomography

    International Nuclear Information System (INIS)

    Takeuchi, Kazuhide; Tanaka, Chujiro; Oku, Hisao

    1981-01-01

    The applicability of ECG gated cardiac computed tomography (CT) in 12 patients with hypertrophic cardiomyopathy was examined. Six of the 12 patients had hypertrophic obstructive cardiomyopathy, including one patient with mid-ventricular obstruction. Three of the 12 patients had hypertrophic non-obstructive cardiomyopathy, and three had apical hypertrophic cardiomyopathy. The diagnosis of hypertrophic cardiomyopathy was confirmed by the angiocardiogram in all patients. Cardiac CT was performed after intravenous administration of contrast media usually given as a bolus injection. The gantry was set with positive 20 0 tilt angle. In all patients with hypertrophic obstructive cardiomyopathy except for mid-ventricular obstruction, the hypertrophied interventricular septum in the basal and mid portions was observed, and the left ventricular cavity was narrowed in systole. In a patient with mid-ventricular obstruction, the marked hypertrophied interventricular septum and antero-lateral papillary muscle were observed. In diastole, the left ventricular cavity was narrow and divided into two parts. The apical cavity was completely disappeared in systole. In all patients with hypertrophic non-obstructive cardiomyopathy, the diffuse hypertrophied interventricular septum was observed in diastole. In systole, the apical portion of the left ventricular cavity was markedly narrow and antero-lateral papillary muscle was hypertrophic. In all patients with apical hypertrophic cardiomyopathy, the marked apical hypertrophy of the left ventricular wall was observed in diastole. It is concluded that ECG gated cardiac CT could estimate myocardial wall motion and thickness and differentiate the types of hypertrophic cardiomyopathy each other. (author)

  16. Effects of hypothyroidism on the skeletal muscle blood flow response to contractions.

    Science.gov (United States)

    Bausch, L; McAllister, R M

    2003-04-01

    Hypothyroidism is associated with impaired blood flow to skeletal muscle under whole body exercise conditions. It is unclear whether poor cardiac and/or vascular function account for blunted muscle blood flow. Our experiment isolated a small group of hindlimb muscles and simulated exercise via tetanic contractions. We hypothesized that muscle blood flow would be attenuated in hypothyroid rats (HYPO) compared with euthyroid rats (EUT). Rats were made hypothyroid by mixing propylthiouracil in their drinking water (2.35 x 10-3 mol/l). Treatment efficacy was evidenced by lower serum T3 concentrations and resting heart rates in HYPO (both Pmuscles at a rate of 30 tetani/min were induced via sciatic nerve stimulation. Regional blood flows were determined by the radiolabelled microsphere method at three time points: rest, 2 min of contractions and 10 min of contractions. Muscle blood flow generally increased from rest ( approximately 5-10 ml/min per 100 g) through contractions for both groups. Further, blood flow during contractions did not differ between groups for any muscle (eg. red section of gastrocnemius muscle; EUT, 59.9 +/- 14.1; HYPO, 61.1 +/- 15.0; NS between groups). These findings indicate that hypothyroidism does not significantly impair skeletal muscle blood flow when only a small muscle mass is contracting. Our findings suggest that impaired blood flow under whole body exercise is accounted for by inadequate cardiac function rather than abnormal vascular function.

  17. Contributions of central command and muscle feedback to sympathetic nerve activity in contracting human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Daniel eBoulton

    2016-05-01

    Full Text Available During voluntary contractions, muscle sympathetic nerve activity (MSNA to contracting muscles increases in proportion to force but the underlying mechanisms are not clear. To shed light on these mechanisms, particularly the influences of central command and muscle afferent feedback, the present study tested the hypothesis that MSNA is greater during voluntary compared with electrically-evoked contractions. Seven male subjects performed a series of 1-minute isometric dorsiflexion contractions (left leg separated by 2-minute rest periods, alternating between voluntary and electrically-evoked contractions at similar forces (5-10 % of maximum. MSNA was recorded continuously (microneurography from the left peroneal nerve and quantified from cardiac-synchronised, negative-going spikes in the neurogram. Compared with pre-contraction values, MSNA increased by 51 ± 34 % (P 0.05. MSNA analysed at 15-s intervals revealed that this effect of voluntary contraction appeared 15-30 s after contraction onset (P < 0.01, remained elevated until the end of contraction, and disappeared within 15 s after contraction. These findings suggest that central command, and not feedback from contracting muscle, is the primary mechanism responsible for the increase in MSNA to contracting muscle. The time-course of MSNA suggests that there is a longer delay in the onset of this effect compared with its cessation after contraction.

  18. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6

    Directory of Open Access Journals (Sweden)

    An Chung-Il

    2011-10-01

    Full Text Available Abstract Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development

  19. Antifibrinolytics in cardiac surgery

    Directory of Open Access Journals (Sweden)

    Achal Dhir

    2013-01-01

    Full Text Available Cardiac surgery exerts a significant strain on the blood bank services and is a model example in which a multi-modal blood-conservation strategy is recommended. Significant bleeding during cardiac surgery, enough to cause re-exploration and/or blood transfusion, increases morbidity and mortality. Hyper-fibrinolysis is one of the important contributors to increased bleeding. This knowledge has led to the use of anti-fibrinolytic agents especially in procedures performed under cardiopulmonary bypass. Nothing has been more controversial in recent times than the aprotinin controversy. Since the withdrawal of aprotinin from the world market, the choice of antifibrinolytic agents has been limited to lysine analogues either tranexamic acid (TA or epsilon amino caproic acid (EACA. While proponents of aprotinin still argue against its non-availability. Health Canada has approved its use, albeit under very strict regulations. Antifibrinolytic agents are not without side effects and act like double-edged swords, the stronger the anti-fibrinolytic activity, the more serious the side effects. Aprotinin is the strongest in reducing blood loss, blood transfusion, and possibly, return to the operating room after cardiac surgery. EACA is the least effective, while TA is somewhere in between. Additionally, aprotinin has been implicated in increased mortality and maximum side effects. TA has been shown to increase seizure activity, whereas, EACA seems to have the least side effects. Apparently, these agents do not differentiate between pathological and physiological fibrinolysis and prevent all forms of fibrinolysis leading to possible thrombotic side effects. It would seem prudent to select the right agent knowing its risk-benefit profile for a given patient, under the given circumstances.

  20. Adult Murine Skeletal Muscle Contains Cells That Can Differentiate into Beating Cardiomyocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Winitsky Steve O

    2005-01-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  1. Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Steve O Winitsky

    2005-04-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  2. Exercise-related cardiac arrest in cardiac rehabilitation - The ...

    African Journals Online (AJOL)

    Prescribed physical activity plays a major role in the rehabilitation of patients with coronary artery disease, and as with any other form of treatment its benefits must be weighed against its possible risks. This study attempted to establish the safety of cardiac rehabilitation as a medical intervention at the Johannesburg Cardiac ...

  3. Single ventricle cardiac defect

    International Nuclear Information System (INIS)

    Eren, B.; Turkmen, N.; Fedakar, R.; Cetin, V.

    2010-01-01

    Single ventricle heart is defined as a rare cardiac abnormality with a single ventricle chamber involving diverse functional and physiological defects. Our case is of a ten month-old baby boy who died shortly after admission to the hospital due to vomiting and diarrhoea. Autopsy findings revealed cyanosis of finger nails and ears. Internal examination revealed; large heart, weighing 60 grams, single ventricle, without a septum and upper membranous part. Single ventricle is a rare pathology, hence, this paper aims to discuss this case from a medico-legal point of view. (author)

  4. CSI cardiac prevent 2015

    Directory of Open Access Journals (Sweden)

    S Ramakrishnan

    2015-01-01

    Full Text Available The CSI Cardiac Prevent 2015 was held at Hotel Taj Palace, New Delhi, on September 25-27, 2015. The major challenge was to create interest among cardiologists and physicians on preventive cardiology, a neglected area. The theme of the conference was "Innovations in Heart Disease Prevention.′′ This conference included "CSI at WHF Roadmap Workshop, Inauguration Ceremony, scientific program, plenary sessions, Nursing/Dietician track, Industry Exhibition, Social Events," Great India blood pressure Survey, and CSI Smart Heart App. A total of 848 delegates/faculties attended this conference against a total of 1140 people registered for the meeting.

  5. Hypertension and Cardiac Arrhythmias

    DEFF Research Database (Denmark)

    Lip, Gregory Y H; Coca, Antonio; Kahan, Thomas

    2017-01-01

    Hypertension (HTN) is a common cardiovascular risk factor leading to heart failure (HF), coronary artery disease (CAD), stroke, peripheral artery disease and chronic renal failure. Hypertensive heart disease can manifest as many types of cardiac arrhythmias, most commonly being atrial fibrillation......) Council on Hypertension convened a Task Force, with representation from the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE), with the remit of comprehensively reviewing the available evidence...

  6. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    Science.gov (United States)

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms. Copyright © 2016. Published by Elsevier B.V.

  7. Cardiac Arrest: MedlinePlus Health Topic

    Science.gov (United States)

    ... Handouts Cardiac arrest (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus Email Updates Get Cardiac Arrest updates ... this? GO MEDICAL ENCYCLOPEDIA Cardiac arrest Related Health Topics Arrhythmia CPR Pacemakers and Implantable Defibrillators National Institutes ...

  8. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  9. Cardiac sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Jacobson, M.S.; Ambudkar, I.S.; Young, E.P.; Naseem, S.M.; Heald, F.P.; Shamoo, A.E.

    1985-01-01

    The effect on the cardiac sarcoplasmic reticulum of an atherogenic (1% cholesterol) diet fed during the neonatal vs the juvenile period of life was studied in Yorkshire swine. Male piglets were randomly assigned at birth to 1 of 4 groups: group I (control), group II (lactation feeding), group III (juvenile period feeding) and group IV (lactation and juvenile feeding). All animals were killed at 55 weeks of age and cardiac sarcoplasmic reticulum (SR) isolated for assay of calcium uptake, Ca 2+ -Mg 2+ ATPase activity, and lipid analysis by thin-layer chromatography and gas chromatography. The amount of cholesterol/mg SR protein and the cholesterol/phospholipid ratio were higher in the animals fed during lactation (groups II and IV) and lower in those fed only during the juvenile period (group III). Phospholipid fatty acid patterns as measured by gas chromatography were unaltered in any group. Calcium uptake was markedly diminished in all experimental conditions: group II 47%, group III 65% and group IV 96%. Compared to the observed changes in calcium transport, the ATP hydrolytic activity was relatively less affected. Only in group IV a significant decrease (41%) was seen. Groups II and III show no change in ATP hydrolytic activity. The decrease in calcium uptake and altered cholesterol/phospholipid ratio without effect on ATP hydrolytic activity is consistent with an uncoupling of calcium transport related to the atherogenic diet in early life. (author)

  10. Cardiac chamber scintiscanning

    International Nuclear Information System (INIS)

    Goretzki, G.

    1981-01-01

    The two methods of cardiac chamber scintiscanning, i.e. 'first pass' and 'ECG-triggered' examinations, are explained and compared. Two tables indicate the most significant radiation doses of the applied radio tracers, i.e. 99m-Tc-pertechnetate and 99m-Tc-HSA, to which a patient is exposed. These averaged values are calculated from various data given in specialised literature. On the basis of data given in literature, an effective half-life of approximately 5 hours in the intravascular space was calculated for the erythrocytes labelled with technetium 99m. On this basis, the radiation doses for the patients due to 99m-Tc-labelled erythrocytes are estimated. The advantages and disadvantages of the two methods applied for cardiac chamber scintiscanning are put into contrast and compared with the advantages and disadvantages of the quantitative X-ray cardiography of the left heart. The still existing problems connected with the assessment of ECG-triggered images are discussed in detail. The author performed investigations of his own, which concerned the above-mentioned problems. (orig./MG) [de

  11. MicroRNA-133 mediates cardiac diseases: Mechanisms and clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; Liang, Yan [Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, Guangdong (China); Zhang, Jin-fang [Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong (China); Fu, Wei-ming, E-mail: fuweiming76@smu.edu.cn [School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China)

    2017-05-15

    MicroRNAs (miRNAs) belong to the family of small non-coding RNAs that mediate gene expression by post-transcriptional regulation. Increasing evidence have demonstrated that miR-133 is enriched in muscle tissues and myogenic cells, and its aberrant expression could induce the occurrence and development of cardiac disorders, such as cardiac hypertrophy, heart failure, etc. In this review, we summarized the regulatory roles of miR-133 in cardiac disorders and the underlying mechanisms, which suggest that miR-133 may be a potential diagnostic and therapeutic tool for cardiac disorders. - Highlights: • miR-218 is frequently downregulated in multiple cancers. • miR-218 plays pivotal roles in carcinogenesis. • miR-218 mediates proliferation, apoptosis, metastasis, invasion, etc. • miR-218 mediates tumorigenesis and metastasis via multiple pathways.

  12. MicroRNA-133 mediates cardiac diseases: Mechanisms and clinical implications

    International Nuclear Information System (INIS)

    Liu, Yi; Liang, Yan; Zhang, Jin-fang; Fu, Wei-ming

    2017-01-01

    MicroRNAs (miRNAs) belong to the family of small non-coding RNAs that mediate gene expression by post-transcriptional regulation. Increasing evidence have demonstrated that miR-133 is enriched in muscle tissues and myogenic cells, and its aberrant expression could induce the occurrence and development of cardiac disorders, such as cardiac hypertrophy, heart failure, etc. In this review, we summarized the regulatory roles of miR-133 in cardiac disorders and the underlying mechanisms, which suggest that miR-133 may be a potential diagnostic and therapeutic tool for cardiac disorders. - Highlights: • miR-218 is frequently downregulated in multiple cancers. • miR-218 plays pivotal roles in carcinogenesis. • miR-218 mediates proliferation, apoptosis, metastasis, invasion, etc. • miR-218 mediates tumorigenesis and metastasis via multiple pathways.

  13. Cardiac arrest – cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Basri Lenjani

    2014-01-01

    Conclusions: All survivors from cardiac arrest have received appropriate medical assistance within 10 min from attack, which implies that if cardiac arrest occurs near an institution health care (with an opportunity to provide the emergent health care the rate of survival is higher.

  14. Lentiginosis, Deafness and Cardiac Abnormalities*

    African Journals Online (AJOL)

    1973-01-06

    Jan 6, 1973 ... His height. mass. intelligence and genitalia were normal. The aSSOCiatIOn between deafness and disturbance of cardiac conduction and between pigmented skin lesions and cardiac abnormalities, has been well described. Should. ~I patient present with multiple lentigines and/or familial sensineural ...

  15. Health Instruction Packages: Cardiac Anatomy.

    Science.gov (United States)

    Phillips, Gwen; And Others

    Text, illustrations, and exercises are utilized in these five learning modules to instruct nurses, students, and other health care professionals in cardiac anatomy and functions and in fundamental electrocardiographic techniques. The first module, "Cardiac Anatomy and Physiology: A Review" by Gwen Phillips, teaches the learner to draw…

  16. Neuromuscular diseases after cardiac transplantation

    NARCIS (Netherlands)

    Mateen, Farrah J.; van de Beek, Diederik; Kremers, Walter K.; Daly, Richard C.; Edwards, Brooks S.; McGregor, Christopher G. A.; Wijdicks, Eelco F. M.

    2009-01-01

    BACKGROUND: Cardiac transplantation is a therapeutic option in end-stage heart failure. Peripheral nervous system (PNS) disease is known to occur in cardiac transplant recipients but has not been fully characterized. METHODS: This retrospective cohort review reports the PNS-related concerns of 313

  17. Hypokalemia and sudden cardiac death

    DEFF Research Database (Denmark)

    Kjeldsen, Keld

    2010-01-01

    Worldwide, approximately three million people suffer sudden cardiac death annually. These deaths often emerge from a complex interplay of substrates and triggers. Disturbed potassium homeostasis among heart cells is an example of such a trigger. Thus, hypokalemia and, also, more transient...... of fatal arrhythmia and sudden cardiac death a patient is, the more attention should be given to the potassium homeostasis....

  18. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Xia, E-mail: zhai_xia_cool@126.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Qin, Ying, E-mail: qinyinggaofeng@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Chen, Yang, E-mail: cy_hmu@126.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Lin, Lexun, E-mail: linlexun@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wang, Tianying, E-mail: wangty0929@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhong, Xiaoyan, E-mail: littlerock712@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wu, Xiaoyu, E-mail: xiaoyu_wu2006@163.com [Department of Cardiology, The First Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Chen, Sijia, E-mail: chensj0802@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Li, Jing, E-mail: jing070822@163.com [Center of Electron Microscopy, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wang, Yan, E-mail: wangyan@hrbmu.edu.cn [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Fengmin, E-mail: fengminzhang@ems.hrbmu.edu.cn [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhao, Wenran, E-mail: zhaowenran2002@aliyun.com [Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); and others

    2016-12-10

    Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection. - Highlights: • CVB3 replication induced autophagosome assembly in primary cardiac fibroblasts. • Both IL-6 and TNF-α in cardiac fibroblasts infected by CVB3 were increased. • IL-6 and TNF-α were reduced in cardiac fibroblasts when autophagy was inhibited. • Autophagosome assembly in cardiac fibroblasts of CVB-infected mice was increased.

  19. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo

    International Nuclear Information System (INIS)

    Zhai, Xia; Qin, Ying; Chen, Yang; Lin, Lexun; Wang, Tianying; Zhong, Xiaoyan; Wu, Xiaoyu; Chen, Sijia; Li, Jing; Wang, Yan; Zhang, Fengmin; Zhao, Wenran

    2016-01-01

    Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection. - Highlights: • CVB3 replication induced autophagosome assembly in primary cardiac fibroblasts. • Both IL-6 and TNF-α in cardiac fibroblasts infected by CVB3 were increased. • IL-6 and TNF-α were reduced in cardiac fibroblasts when autophagy was inhibited. • Autophagosome assembly in cardiac fibroblasts of CVB-infected mice was increased.

  20. Cardiac changes in anorexia nervosa.

    Science.gov (United States)

    Spaulding-Barclay, Michael A; Stern, Jessica; Mehler, Philip S

    2016-04-01

    Introduction Anorexia nervosa is an eating disorder, which is associated with many different medical complications as a result of the weight loss and malnutrition that characterise this illness. It has the highest mortality rate of any psychiatric disorder. A large portion of deaths are attributable to the cardiac abnormalities that ensue as a result of the malnutrition associated with anorexia nervosa. In this review, the cardiac complications of anorexia nervosa will be discussed. A comprehensive literature review on cardiac changes in anorexia nervosa was carried out. There are structural, functional, and rhythm-type changes that occur in patients with anorexia nervosa. These become progressively significant as ongoing weight loss occurs. Cardiac changes are inherent to anorexia nervosa and they become more life-threatening and serious as the anorexia nervosa becomes increasingly severe. Weight restoration and attention to these cardiac changes are crucial for a successful treatment outcome.

  1. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  2. Digital stethoscope system: the feasibility of cardiac auscultation

    Science.gov (United States)

    Pariaszewska, Katarzyna; Młyńczak, Marcel; Niewiadomski, Wiktor; Cybulski, Gerard

    2013-10-01

    The application of the digital stethoscope system is a new tendency in methods of cardiac auscultation. Heart sounds, generated by the fluctuations of blood velocity and vibrations of muscle structure, are an important signal in the primary diagnosis of heart diseases. Since the XIXs century for physical examination an analog stethoscope was used, but the development of microelectronics enable the construction of digital stethoscopes which started modern phonocardiography. The typical hardware of the system could be divided into analog and digital parts, respectively. The first one consists of microphone and pre-amplifier. The second one contains a microcontroller with peripherals for data saving and transmission. Usually the specialized software is applied for the signal acquisition and digital signal processing (filtering, spectral analysis and others). This paper presents an overview of methods used in cardiac auscultation and expected developing path in the future. It also contains the description of our digital stethoscope system, which is planned to be used in poliphysiographical studies.

  3. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    , of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle......Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  4. Muscles, exercise and obesity

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Febbraio, Mark A

    2012-01-01

    During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines....... The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within...... the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal...

  5. Human skeletal muscle mitochondrial capacity.

    Science.gov (United States)

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  6. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

    Directory of Open Access Journals (Sweden)

    Elisa Belian

    Full Text Available Adult cardiac stem cells (CSCs express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT, and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains. MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized.(1 GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2 Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3 Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.

  7. Accessory piriformis muscle

    Directory of Open Access Journals (Sweden)

    Sedat Develi

    2017-03-01

    Full Text Available Piriformis muscle originates from facies pelvica of sacrum and inserts on the trochanter major. It is one of the lateral rotator muscles of the hip and a landmark point in the gluteal region since n. ischiadicus descends to the thigh by passing close to the muscle. This contiguity may be associated with the irritation of the nerve which is known as piriformis syndrome. A rare anatomic variation of the muscle which observed on 74 years old male cadaver is discussed in this case report. [Cukurova Med J 2017; 42(1.000: 182-183

  8. Myocardin-related transcription factors are required for cardiac development and function

    Science.gov (United States)

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2016-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146

  9. Is Growth Differentiation Factor 11 a Realistic Therapeutic for Aging-Dependent Muscle Defects?

    Science.gov (United States)

    Harper, Shavonn C; Brack, Andrew; MacDonnell, Scott; Franti, Michael; Olwin, Bradley B; Bailey, Beth A; Rudnicki, Michael A; Houser, Steven R

    2016-04-01

    This "Controversies in Cardiovascular Research" article evaluates the evidence for and against the hypothesis that the circulating blood level of growth differentiation factor 11 (GDF11) decreases in old age and that restoring normal GDF11 levels in old animals rejuvenates their skeletal muscle and reverses pathological cardiac hypertrophy and cardiac dysfunction. Studies supporting the original GDF11 hypothesis in skeletal and cardiac muscle have not been validated by several independent groups. These new studies have either found no effects of restoring normal GDF11 levels on cardiac structure and function or have shown that increasing GDF11 or its closely related family member growth differentiation factor 8 actually impairs skeletal muscle repair in old animals. One possible explanation for what seems to be mutually exclusive findings is that the original reagent used to measure GDF11 levels also detected many other molecules so that age-dependent changes in GDF11 are still not well known. The more important issue is whether increasing blood [GDF11] repairs old skeletal muscle and reverses age-related cardiac pathologies. There are substantial new and existing data showing that GDF8/11 can exacerbate rather than rejuvenate skeletal muscle injury in old animals. There is also new evidence disputing the idea that there is pathological hypertrophy in old C57bl6 mice and that GDF11 therapy can reverse cardiac pathologies. Finally, high [GDF11] causes reductions in body and heart weight in both young and old animals, suggestive of a cachexia effect. Our conclusion is that elevating blood levels of GDF11 in the aged might cause more harm than good. © 2016 American Heart Association, Inc.

  10. Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A; Janssen, Paulus M L; Martin, Paul T

    2015-10-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2(-/-)mdx). Galgt2(-/-) mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Cardiac and vascular malformations

    International Nuclear Information System (INIS)

    Ley, S.; Ley-Zaporozhan, J.

    2015-01-01

    Malformations of the heart and great vessels show a high degree of variation. There are numerous variants and defects with only few clinical manifestations and are only detected by chance, such as a persistent left superior vena cava or a partial anomalous pulmonary venous connection. Other cardiovascular malformations are manifested directly after birth and need prompt mostly surgical interventions. At this point in time echocardiography is the diagnostic modality of choice for morphological and functional characterization of malformations. Additional imaging using computed tomography (CT) or magnetic resonance imaging (MRI) is only required in a minority of cases. If so, the small anatomical structures, the physiological tachycardia and tachypnea are a challenge for imaging modalities and strategies. This review article presents the most frequent vascular, cardiac and complex cardiovascular malformations independent of the first line diagnostic imaging modality. (orig.) [de

  12. Pneumothorax in cardiac pacing

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2012-01-01

    AIM: To identify risk factors for pneumothorax treated with a chest tube after cardiac pacing device implantation in a population-based cohort.METHODS AND RESULTS: A nationwide cohort study was performed based on data on 28 860 patients from the Danish Pacemaker Register, which included all Danish...... age was 77 years (25th and 75th percentile: 69-84) and 55% were male (n = 15 785). A total of 190 patients (0.66%) were treated for pneumothorax, which was more often in women [aOR 1.9 (1.4-2.6)], and in patients with age >80 years [aOR 1.4 (1.0-1.9)], a prior history of chronic obstructive pulmonary...

  13. Sudden Cardiac Death

    DEFF Research Database (Denmark)

    Risgaard, Bjarke; Winkel, Bo Gregers; Jabbari, Reza

    2017-01-01

    Objectives This study sought to describe the use of pharmacotherapy in a nationwide cohort of young patients with sudden cardiac death (SCD). Background Several drugs have been associated with an increased risk of SCD and sudden arrhythmic death syndrome (SADS). It remains unclear how...... pharmacotherapy may contribute to the overall burden of SCD in the general population. Methods This was a nationwide study that included all deaths that occurred between 2000 and 2009 and between 2007 and 2009 in people age 1 to 35 years and 36 to 49 years, respectively. Two physicians identified all SCDs through...... review of death certificates. Autopsy reports were collected. Pharmacotherapy prescribed within 90 days before SCD was identified in the Danish Registry of Medicinal Product Statistics. Results We identified 1,363 SCDs; median age was 38 years (interquartile range: 29 to 45 years), and 72% (n = 975) were men...

  14. Cardiac Rehabilitation Series: Canada

    Science.gov (United States)

    Grace, Sherry L.; Bennett, Stephanie; Ardern, Chris I.; Clark, Alexander

    2015-01-01

    Cardiovascular disease is among the leading causes of mortality and morbidity in Canada. Cardiac rehabilitation (CR) has a long robust history here, and there are established clinical practice guidelines. While the effectiveness of CR in the Canadian context is clear, only 34% of eligible patients participate, and strategies to increase access for under-represented groups (e.g., women, ethnic minority groups) are not yet universally applied. Identified CR barriers include lack of referral and physician recommendation, travel and distance, and low perceived need. Indeed there is now a national policy position recommending systematic inpatient referral to CR in Canada. Recent development of 30 CR Quality Indicators and the burgeoning national CR registry will enable further measurement and improvement of the quality of CR care in Canada. Finally, the Canadian Association of CR is one of the founding members of the International Council of Cardiovascular Prevention and Rehabilitation, to promote CR globally. PMID:24607018

  15. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  16. Hypertension and cardiac arrhythmias

    DEFF Research Database (Denmark)

    Lip, Gregory Y.H.; Coca, Antonio; Kahan, Thomas

    2017-01-01

    Hypertension is a common cardiovascular risk factor leading to heart failure (HF), coronary artery disease, stroke, peripheral artery disease and chronic renal insufficiency. Hypertensive heart disease can manifest as many cardiac arrhythmias, most commonly being atrial fibrillation (AF). Both...... supraventricular and ventricular arrhythmias may occur in hypertensive patients, especially in those with left ventricular hypertrophy (LVH) or HF. Also, some of the antihypertensive drugs commonly used to reduce blood pressure, such as thiazide diuretics, may result in electrolyte abnormalities (e.g. hypokalaemia......, hypomagnesemia), further contributing to arrhythmias, whereas effective control of blood pressure may prevent the development of the arrhythmias such as AF. In recognizing this close relationship between hypertension and arrhythmias, the European Heart Rhythm Association (EHRA) and the European Society...

  17. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    Science.gov (United States)

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  18. Mediastinitis after cardiac transplantation

    Directory of Open Access Journals (Sweden)

    Noedir A. G. Stolf

    2000-05-01

    Full Text Available OBJECTIVE: Assessment of incidence and behavior of mediastinitis after cardiac transplantation. METHODS: From 1985 to 1999, 214 cardiac transplantations were performed, 12 (5.6% of the transplanted patients developed confirmed mediastinitis. Patient's ages ranged from 42 to 66 years (mean of 52.3±10.0 years and 10 (83.3% patients were males. Seven (58.3% patients showed sternal stability on palpation, 4 (33.3% patients had pleural empyema, and 2 (16.7% patients did not show purulent secretion draining through the wound. RESULTS: Staphylococcus aureus was the infectious agent identified in the wound secretion or in the mediastinum, or both, in 8 (66.7% patients. Staphylococcus epidermidis was identified in 2 (16.7% patients, Enterococcus faecalis in 1 (8.3% patient, and the cause of mediastinitis could not be determined in 1 (8.3% patient. Surgical treatment was performed on an emergency basis, and the extension of the débridement varied with local conditions. In 2 (16.7% patients, we chose to leave the surgical wound open and performed daily dressings with granulated sugar. Total sternal resection was performed in only 1 (8.3% patient. Out of this series, 5 (41.7% patients died, and the causes of death were related to the infection. Autopsy revealed persistence of mediastinitis in 1 (8.3% patient. CONCLUSION: Promptness in diagnosing mediastinitis and precocious surgical drainage have changed the natural evolution of this disease. Nevertheless, observance of the basic precepts of prophylaxis of infection is still the best way to treat mediastinitis.

  19. Cardiac function in acute hypothyroidism

    International Nuclear Information System (INIS)

    Donaghue, K.; Hales, I.; Allwright, S.; Cooper, R.; Edwards, A.; Grant, S.; Morrow, A.; Wilmshurst, E.; Royal North Shore Hospital, Sydney

    1985-01-01

    It has been established that chronic hypothyroidism may affect cardiac function by several mechanisms. It is not known how long the patient has to be hypothyroid for cardiac involvement to develop. This study was undertaken to assess the effect of a short period of hypothyroidism (10 days) on cardiac function. Nine patients who had had total tyroidectomy, had received ablative radioiodine for thyroid cancer and were euthyroid on replacement therapy were studied while both euthyroid and hypothyroid. Cardiac assessment was performed by X-ray, ECG, echocardiography and gated blood-pool scans. After 10 days of hypothyroidisms, the left-ventricular ejection fraction failed to rise after exercise in 4 of the 9 patients studied, which was significant (P<0.002). No significant changes in cardiac size or function at rest were detected. This functional abnormality in the absence of any demonstrable change in cardiac size and the absence of pericardial effussion with normal basal function suggest that short periods of hypothyroidism may reduce cardiac reserve, mostly because of alterations in metabolic function. (orig.)

  20. Trends in Cardiac Pacemaker Batteries

    Directory of Open Access Journals (Sweden)

    Venkateswara Sarma Mallela

    2004-10-01

    Full Text Available Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future.

  1. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  2. Cardiac cone-beam CT

    International Nuclear Information System (INIS)

    Manzke, Robert

    2005-01-01

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net

  3. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. I. An immunohistochemical analysis of creatine kinase isoenzyme expression patterns

    NARCIS (Netherlands)

    Wessels, A.; Vermeulen, J. L.; Virágh, S.; Kálmán, F.; Morris, G. E.; Man, N. T.; Lamers, W. H.; Moorman, A. F.

    1990-01-01

    Using monoclonal antibodies against the M and B subunit isoforms of creatine kinase (CK) we have investigated their distribution in developing human skeletal and cardiac muscle immunohistochemically. It is demonstrated that in skeletal muscle, a switch from CK-B to CK-M takes place around the week 8

  4. Acupuncture therapy related cardiac injury.

    Science.gov (United States)

    Li, Xue-feng; Wang, Xian

    2013-12-01

    Cardiac injury is the most serious adverse event in acupuncture therapy. The causes include needling chest points near the heart, the cardiac enlargement and pericardial effusion that will enlarge the projected area on the body surface and make the proper depth of needling shorter, and the incorrect needling method of the points. Therefore, acupuncture practitioners must be familiar with the points of the heart projected area on the chest and the correct needling methods in order to reduce the risk of acupuncture therapy related cardiac injury.

  5. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    Science.gov (United States)

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  6. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  7. the sternalis muscle

    African Journals Online (AJOL)

    2009-08-17

    Aug 17, 2009 ... CASE REPORT. CASE. 72. SA JOURNAL OF RADIOLOGY • August 2009. CASE R. Introduction ... tion is being given to imaging the medial breast, and the sternalis muscle will be revealed with increasing ... The origin of this muscle is uncertain, with pectoralis major, rectus abdominus and sternomastoid ...

  8. The hamstring muscle complex

    NARCIS (Netherlands)

    van der Made, A. D.; Wieldraaijer, T.; Kerkhoffs, G. M.; Kleipool, R. P.; Engebretsen, L.; van Dijk, C. N.; Golanó, P.

    2015-01-01

    The anatomical appearance of the hamstring muscle complex was studied to provide hypotheses for the hamstring injury pattern and to provide reference values of origin dimensions, muscle length, tendon length, musculotendinous junction (MTJ) length as well as width and length of a tendinous

  9. Papillary muscles of right ventricle-morphological variations and its clinical relevance.

    Science.gov (United States)

    Saha, Anubha; Roy, Sanchita

    2018-02-09

    Papillary muscle plays an important role in stabilizing the position of the tricuspid valve. Several pathologies can result in anatomical and functional abnormalities of the papillary muscles. The aim of the study is to deliberate the morphometry of papillary muscles in tricuspid valve and to analyze with the eminent research works previously done. The study was carried out in 52 formalin-fixed adult apparently normal cadaveric hearts belonging to either sex obtained from the Department of Anatomy. These hearts were dissected carefully to open the right ventricle and to expose the papillary muscles. Different morphological features of papillary muscles were noted, and measurements were taken. The classical picture of three papillary muscles existed in 23.07% of the specimens. Anterior papillary muscle was in all hearts, but posterior and septal muscle was off in 15.38% and 55.76%, respectively. Double and triple papillary muscles were seen too. Anterior and posterior muscle appeared predominantly flat-top and arose from the middle third (mostly), while septal muscle was chiefly conical and originated basically from the upper third of the ventricular wall. Chordopapillary relationship with tricuspid valve leaflets was beyond conventional. Mean length and breadth of anterior muscle were 2.19±0.59 cm and 0.76±0.26 cm, those of posterior muscle were 1.39±0.63 cm and 0.67±0.43 cm, and those of septal papillary muscle were 0.95±0.38 cm and 0.59±0.09 cm. Detailed knowledge of normal and variable anatomy of papillary muscles is not only necessary for better understanding of tricuspid pathologies but also valuable for successful newer surgical approaches in cardiac treatment. Copyright © 2018. Published by Elsevier Inc.

  10. Muscle as a secretory organ

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2013-01-01

    Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent e...... proteins produced by skeletal muscle are dependent upon contraction. Therefore, it is likely that myokines may contribute in the mediation of the health benefits of exercise.......Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent...... evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists...

  11. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  12. Trkb signaling in pericytes is required for cardiac microvessel stabilization.

    Directory of Open Access Journals (Sweden)

    Agustin Anastasia

    Full Text Available Pericyte and vascular smooth muscle cell (SMC recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF, expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown. To confirm the involvement of TrkB in vessel maturation, we evaluated TrkB deficient (trkb (-/- embryos and observed severe cardiac vascular abnormalities leading to lethality in late gestation to early prenatal life. Ultrastructural analysis demonstrates that trkb(-/- embryos exhibit defects in endothelial cell integrity and perivascular edema. As TrkB is selectively expressed by pericytes and SMCs in the developing cardiac vasculature, we generated mice deficient in TrkB in these cells. Mice with TrkB deficiency in perivascular cells exhibit reduced pericyte/SMC coverage of the cardiac microvasculature, abnormal endothelial cell ultrastructure, and increased vascular permeability. To dissect biological actions and the signaling pathways downstream of TrkB in pericytes/SMCs, human umbilical SMCs were treated with BDNF. This induced membranous protrusions and cell migration, events dependent on myosin light chain phosphorylation. Moreover, inhibition of Rho GTPase and the Rho-associated protein kinase (ROCK prevented membrane protrusion and myosin light chain phosphorylation in response to BDNF. These results suggest an important role for BDNF in regulating migration of TrkB-expressing pericytes/SMCs to promote cardiac blood vessel ensheathment and functional integrity during development.

  13. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Paulsen, G; Schjerling, P

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response...... in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal...

  14. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    The ability to sustain a given absolute submaximal workload declines with advancing age likely due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological...... consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved....

  15. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  16. Efeitos de um programa de reabilitação da musculatura inspiratória no pós-operatório de cirurgia cardíaca Efectos de un programa de rehabilitación de la musculatura inspiratoria en el postoperatorio de cirugía cardiaca Effects of an inspiratory muscle rehabilitation program in the postoperative period of cardiac surgery

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Gomes Ferreira

    2009-04-01

    ía ayudar a disminuir la disfunción respiratoria postoperatoria. MÉTODOS: Se dividieron en dos grupos, y de forma randómica, a 30 voluntarios -de ambos sexos, con edad mínima de 50 año- que aguardaban cirugía de revascularización del miocardio y/o cirugía de válvula cardiaca. Se incluyó a un total de 15 pacientes en un programa domiciliar, de por lo menos 2 semanas de entrenamiento preoperatorio de los músculos inspiratorios, utilizándose un dispositivo con una carga correspondiente al 40% de la presión inspiratoria máxima. Los otros 15 individuos recibieron orientaciones generales y no entrenaron los músculos inspiratorios. Tanto la espirometría, antes y luego del programa de entrenamiento, así como la evolución de los gases sanguíneos arteriales y de las presiones inspiratoria y espiratoria máximas, se las evaluaron en ambos grupos antes y tras la cirugía. Se compararon también los desenlaces clínicos de los dos grupos. RESULTADOS: Observamos que el entrenamiento de los músculos inspiratorios aumentó la capacidad vital forzada, la ventilación voluntaria máxima y la relación entre el volumen espirado forzado en el primer segundo y la capacidad vital forzada. La evolución de los gases sanguíneos y de las presiones espiratoria e inspiratoria máximas antes y tras la cirugía se mostró similar en ambos grupos, con desenlaces también similares. CONCLUSIÓN: Concluimos que nuestro programa domiciliar de entrenamiento de los músculos inspiratorios fue seguro y produjo la mejora de la capacidad vital forzada y la ventilación voluntaria máxima, aunque los beneficios clínicos de ese programa no han sido claramente demostrados en el presente estudio.BACKGROUND: Respiratory muscles are affected after cardiac surgeries. OBJECTIVE: To verify whether the preoperative conditioning of the inspiratory muscles might help to decrease postoperative respiratory dysfunction. METHODS: Thirty volunteers of both genders and with a minimum age of 50 years, while

  17. The Johannesburg cardiac rehabilitation programme

    African Journals Online (AJOL)

    1991-02-16

    Feb 16, 1991 ... sion 72,9% of patients were smokers, 26,3% had hypertension and 34,3% had ... Cardiac rehabilitation, including supervised exercise therapy, has become a .... sions on risk factor modification, diet, aspects of heart disease,.

  18. Recent developments in cardiac pacing.

    Science.gov (United States)

    Rodak, D J

    1995-10-01

    Indications for cardiac pacing continue to expand. Pacing to improve functional capacity, which is now common, relies on careful patient selection and technical improvements, such as complex software algorithms and diagnostic capabilities.

  19. Robotic Applications in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Alan P. Kypson

    2008-11-01

    Full Text Available Traditionally, cardiac surgery has been performed through a median sternotomy, which allows the surgeon generous access to the heart and surrounding great vessels. As a paradigm shift in the size and location of incisions occurs in cardiac surgery, new methods have been developed to allow the surgeon the same amount of dexterity and accessibility to the heart in confined spaces and in a less invasive manner. Initially, long instruments without pivot points were used, however, more recent robotic telemanipulation systems have been applied that allow for improved dexterity, enabling the surgeon to perform cardiac surgery from a distance not previously possible. In this rapidly evolving field, we review the recent history and clinical results of using robotics in cardiac surgery.

  20. Elevated Cardiac Troponin T in Patients With Skeletal Myopathies.

    Science.gov (United States)

    Schmid, Johannes; Liesinger, Laura; Birner-Gruenberger, Ruth; Stojakovic, Tatjana; Scharnagl, Hubert; Dieplinger, Benjamin; Asslaber, Martin; Radl, Roman; Beer, Meinrad; Polacin, Malgorzata; Mair, Johannes; Szolar, Dieter; Berghold, Andrea; Quasthoff, Stefan; Binder, Josepha S; Rainer, Peter P

    2018-04-10

    Cardiac troponins are often elevated in patients with skeletal muscle disease who have no evidence of cardiac disease. The goal of this study was to characterize cardiac troponin concentrations in patients with myopathies and derive insights regarding the source of elevated troponin T measurements. Cardiac troponin T (cTnT) and cardiac troponin I (cTnI) concentrations were determined by using high sensitivity assays in 74 patients with hereditary and acquired skeletal myopathies. Patients underwent comprehensive cardiac evaluation, including 12-lead electrocardiogram, 24-h electrocardiogram, cardiac magnetic resonance imaging, and coronary artery computed tomography. cTnT and cTnI protein expression was determined in skeletal muscle samples of 9 patients and in control tissues derived from autopsy using antibodies that are used in commercial assays. Relevant Western blot bands were subjected to liquid chromatography tandem mass spectrometry for protein identification. Levels of cTnT (median: 24 ng/l; interquartile range: 11 to 54 ng/l) were elevated (>14 ng/l) in 68.9% of patients; cTnI was elevated (>26 ng/l) in 4.1% of patients. Serum cTnT levels significantly correlated with creatine kinase and myoglobin (r = 0.679 and 0.786, respectively; both p < 0.001). Based on cTnT serial testing, 30.1% would have fulfilled current rule-in criteria for myocardial infarction. Noncoronary cardiac disease was present in 23%. Using cTnT antibodies, positive bands were found in both diseased and healthy skeletal muscle at molecular weights approximately 5 kDa below cTnT. Liquid chromatography tandem mass spectrometry identified the presence of skeletal troponin T isoforms in these bands. Measured cTnT concentrations were chronically elevated in the majority of patients with skeletal myopathies, whereas cTnI elevation was rare. Our data indicate that cross-reaction of the cTnT immunoassay with skeletal muscle troponin isoforms was the likely cause. Copyright © 2018 The

  1. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  2. Optimal Technique in Cardiac Anesthesia Recovery

    OpenAIRE

    Svircevic, V.

    2014-01-01

    The aim of this thesis is to evaluate fast-track cardiac anesthesia techniques and investigate their impact on postoperative mortality, morbidity and quality of life. The following topics will be discussed in the thesis. (1.) Is fast track cardiac anesthesia a safe technique for cardiac surgery? (2.) Does thoracic epidural anesthesia have an effect on mortality and morbidity after cardiac surgery? (3.) Does thoracic epidural anesthesia have an effect on quality of life after cardiac surgery? ...

  3. Cardiac Biomarkers and Cycling Race

    Directory of Open Access Journals (Sweden)

    Caroline Le Goff, Jean-François Kaux, Sébastien Goffaux, Etienne Cavalier

    2015-06-01

    Full Text Available In cycling as in other types of strenuous exercise, there exists a risk of sudden death. It is important both to understand its causes and to see if the behavior of certain biomarkers might highlight athletes at risk. Many reports describe changes in biomarkers after strenuous exercise (Nie et al., 2011, but interpreting these changes, and notably distinguishing normal physiological responses from pathological changes, is not easy. Here we have focused on the kinetics of different cardiac biomarkers: creatin kinase (CK, creating kinase midbrain (CK-MB, myoglobin (MYO, highly sensitive troponin T (hs-TnT and N-terminal brain natriuretic peptide (NT-proBNP. The population studied was a group of young trained cyclists participating in a 177-km cycling race. The group of individuals was selected for maximal homogeneity. Their annual training volume was between 10,000 and 16,000 kilometers. The rhythm of races is comparable and averages 35 km/h, depending on the race’s difficulty. The cardiac frequency was recorded via a heart rate monitor. Three blood tests were taken. The first blood test, T0, was taken approximately 2 hours before the start of the race and was intended to gather values which would act as references for the following tests. The second blood test, T1, was realized within 5 minutes of their arrival. The third and final blood test, T3, was taken 3 hours following their arrival. The CK, CK-MB, MYO, hs-TnT and NT-proBNP were measured on the Roche Diagnostic modular E (Manhein, Germany. For the statistical analysis, an ANOVA and post hoc test of Scheffé were calculated with the Statistica Software version 9.1. We noticed an important significant variation in the cardiac frequency between T0 and T1 (p < 0.0001, T0 and T3 (p < 0.0001, and T1 and T3 (p < 0.01. Table 1 shows the results obtained for the different biomarkers. CK and CK-MB showed significant variation between T0-T1 and T0-T3 (p < 0.0001. Myoglobin increased significantly

  4. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    Science.gov (United States)

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.

  5. Functional effects of the DCM mutant Gly159Asp troponin C in skinned muscle fibres

    DEFF Research Database (Denmark)

    Preston, Laura C; Lipscomb, Simon; Robinson, Paul

    2006-01-01

    We recently reported a dilated cardiomyopathy (DCM) causing mutation in a novel disease gene, TNNC1, which encodes cardiac troponin C (TnC). We have determined how this mutation, Gly159Asp, affects contractile regulation when incorporated into muscle fibres. Endogenous troponin in rabbit skinned...

  6. Myosin heavy chain expression in rabbit masseter muscle during postnatal development

    NARCIS (Netherlands)

    Bredman, J. J.; Weijs, W. A.; Korfage, H. A.; Brugman, P.; Moorman, A. F.

    1992-01-01

    The expression of isoforms of myosin heavy chain (MHC) during postnatal development was studied in the masseter muscle of the rabbit. Evidence is presented that in addition to adult fast and slow myosin, the rabbit masseter contains neonatal and 'cardiac' alpha-MHC. During postnatal growth myosin

  7. Cardiac effects of noncardiac neoplasms

    International Nuclear Information System (INIS)

    Schoen, F.J.; Berger, B.M.; Guerina, N.G.

    1984-01-01

    Clinically significant cardiovascular abnormalities may occur as secondary manifestations of noncardiac neoplasms. The principal cardiac effects of noncardiac tumors include the direct results of metastases to the heart or lungs, the indirect effects of circulating tumor products (causing nonbacterial thrombotic endocarditis, myeloma-associated amyloidosis, pheochromocytoma-associated cardiac hypertrophy and myofibrillar degeneration, and carcinoid heart disease), and the undesired cardiotoxicities of chemotherapy and radiotherapy. 89 references

  8. Simvastatin induces apoptosis by a Rho-dependent mechanism in cultured cardiac fibroblasts and myofibroblasts

    International Nuclear Information System (INIS)

    Copaja, Miguel; Venegas, Daniel; Aranguiz, Pablo; Canales, Jimena; Vivar, Raul; Catalan, Mabel; Olmedo, Ivonne; Rodriguez, Andrea E.; Chiong, Mario; Leyton, Lisette; Lavandero, Sergio; Diaz-Araya, Guillermo

    2011-01-01

    Several clinical trials have shown the beneficial effects of statins in the prevention of coronary heart disease. Additionally, statins promote apoptosis in vascular smooth muscle cells, in renal tubular epithelial cells and also in a variety of cell lines; yet, the effects of statins on cardiac fibroblast and myofibroblast, primarily responsible for cardiac tissue healing are almost unknown. Here, we investigated the effects of simvastatin on cardiac fibroblast and myofibroblast viability and studied the molecular cell death mechanism triggered by simvastatin in both cell types. Methods: Rat neonatal cardiac fibroblasts and myofibroblasts were treated with simvastatin (0.1-10 μM) up to 72 h. Cell viability and apoptosis were evaluated by trypan blue exclusion method and by flow cytometry, respectively. Caspase-3 activation and Rho protein levels and activity were also determined by Western blot and pull-down assay, respectively. Results: Simvastatin induces caspase-dependent apoptosis of cardiac fibroblasts and myofibroblasts in a concentration- and time-dependent manner, with greater effects on fibroblasts than myofibroblasts. These effects were prevented by mevalonate, farnesylpyrophosphate and geranylgeranylpyrophosphate, but not squalene. These last results suggest that apoptosis was dependent on small GTPases of the Rho family rather than Ras. Conclusion: Simvastatin triggered apoptosis of cardiac fibroblasts and myofibroblasts by a mechanism independent of cholesterol synthesis, but dependent of isoprenilation of Rho protein. Additionally, cardiac fibroblasts were more susceptible to simvastatin-induced apoptosis than cardiac myofibroblasts. Thus simvastatin could avoid adverse cardiac remodeling leading to a less fibrotic repair of the damaged tissues. - Research Highlights: → Simvastatin decreases CF and CMF viability independent of cholesterol synthesis. → Simvastatin induces CF and CMF apoptosis in a caspase-dependent manner being CMF more resistant

  9. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.

  10. Imaging in cardiac mass lesions

    International Nuclear Information System (INIS)

    Mundinger, A.; Gruber, H.P.; Dinkel, E.; Geibel, A.; Beck, A.; Wimmer, B.; Schlosser, V.

    1992-01-01

    In 26 patients with cardiac mass lesions confirmed by surgery, diagnostic imaging was performed preoperatively by means of two-dimensional echocardiography (26 patients), angiography (12 patients), correlative computed tomography (CT, 8 patients), and magnetic resonance imaging (MRI, 3 patients). Two-dimensional echocardiography correctly identified the cardiac masses in all patients. Angiography missed two of 12 cardiac masses; CT missed one of eight. MRI identified three of three cardiac masses. Although the sensitivity of two-dimensional echocardiography was high (100%), all methods lacked specificity. None of the methods allowed differentiation between myxoma (n=13) and thrombus (n=7). Malignancy of the lesions was successfully predicted by noninvasive imaging methods in all six patients. However, CT and MRI provided additional information concerning cardiac mural infiltration, pericardial involvement, and extracardiac tumor extension, and should be integrated within a preoperative imaging strategy. Thus two-dimensional echocardiography is the method of choice for primary assessment of patients with suspected cardiac masses. Further preoperative imaging by CT or MRI can be limited to patients with malignancies suspected on the grounds of pericardial effusion or other clinical results. (author)

  11. Cardiac imaging. A multimodality approach

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, Manfred [Johannes Gutenberg University Hospital, Mainz (Germany); Erbel, Raimund [University Hospital Essen (Germany). Dept. of Cardiology; Kreitner, Karl-Friedrich [Johannes Gutenberg University Hospital, Mainz (Germany). Clinic and Polyclinic for Diagnostic and Interventional Radiology; Barkhausen, Joerg (eds.) [University Hospital Schleswig-Holstein, Luebeck (Germany). Dept. of Radiology and Nuclear Medicine

    2009-07-01

    An excellent atlas on modern diagnostic imaging of the heart Written by an interdisciplinary team of experts, Cardiac Imaging: A Multimodality Approach features an in-depth introduction to all current imaging modalities for the diagnostic assessment of the heart as well as a clinical overview of cardiac diseases and main indications for cardiac imaging. With a particular emphasis on CT and MRI, the first part of the atlas also covers conventional radiography, echocardiography, angiography and nuclear medicine imaging. Leading specialists demonstrate the latest advances in the field, and compare the strengths and weaknesses of each modality. The book's second part features clinical chapters on heart defects, endocarditis, coronary heart disease, cardiomyopathies, myocarditis, cardiac tumors, pericardial diseases, pulmonary vascular diseases, and diseases of the thoracic aorta. The authors address anatomy, pathophysiology, and clinical features, and evaluate the various diagnostic options. Key features: - Highly regarded experts in cardiology and radiology off er image-based teaching of the latest techniques - Readers learn how to decide which modality to use for which indication - Visually highlighted tables and essential points allow for easy navigation through the text - More than 600 outstanding images show up-to-date technology and current imaging protocols Cardiac Imaging: A Multimodality Approach is a must-have desk reference for cardiologists and radiologists in practice, as well as a study guide for residents in both fields. It will also appeal to cardiac surgeons, general practitioners, and medical physicists with a special interest in imaging of the heart. (orig.)

  12. Cardiac imaging. A multimodality approach

    International Nuclear Information System (INIS)

    Thelen, Manfred; Erbel, Raimund; Kreitner, Karl-Friedrich; Barkhausen, Joerg

    2009-01-01

    An excellent atlas on modern diagnostic imaging of the heart Written by an interdisciplinary team of experts, Cardiac Imaging: A Multimodality Approach features an in-depth introduction to all current imaging modalities for the diagnostic assessment of the heart as well as a clinical overview of cardiac diseases and main indications for cardiac imaging. With a particular emphasis on CT and MRI, the first part of the atlas also covers conventional radiography, echocardiography, angiography and nuclear medicine imaging. Leading specialists demonstrate the latest advances in the field, and compare the strengths and weaknesses of each modality. The book's second part features clinical chapters on heart defects, endocarditis, coronary heart disease, cardiomyopathies, myocarditis, cardiac tumors, pericardial diseases, pulmonary vascular diseases, and diseases of the thoracic aorta. The authors address anatomy, pathophysiology, and clinical features, and evaluate the various diagnostic options. Key features: - Highly regarded experts in cardiology and radiology off er image-based teaching of the latest techniques - Readers learn how to decide which modality to use for which indication - Visually highlighted tables and essential points allow for easy navigation through the text - More than 600 outstanding images show up-to-date technology and current imaging protocols Cardiac Imaging: A Multimodality Approach is a must-have desk reference for cardiologists and radiologists in practice, as well as a study guide for residents in both fields. It will also appeal to cardiac surgeons, general practitioners, and medical physicists with a special interest in imaging of the heart. (orig.)

  13. Cardiac output during exercise

    DEFF Research Database (Denmark)

    Siebenmann, C; Rasmussen, P.; Sørensen, H.

    2015-01-01

    Several techniques assessing cardiac output (Q) during exercise are available. The extent to which the measurements obtained from each respective technique compares to one another, however, is unclear. We quantified Q simultaneously using four methods: the Fick method with blood obtained from...... the right atrium (Q(Fick-M)), Innocor (inert gas rebreathing; Q(Inn)), Physioflow (impedance cardiography; Q(Phys)), and Nexfin (pulse contour analysis; Q(Pulse)) in 12 male subjects during incremental cycling exercise to exhaustion in normoxia and hypoxia (FiO2  = 12%). While all four methods reported...... a progressive increase in Q with exercise intensity, the slopes of the Q/oxygen uptake (VO2) relationship differed by up to 50% between methods in both normoxia [4.9 ± 0.3, 3.9 ± 0.2, 6.0 ± 0.4, 4.8 ± 0.2 L/min per L/min (mean ± SE) for Q(Fick-M), Q(Inn), QP hys and Q(Pulse), respectively; P = 0...

  14. Muscles and their myokines.

    Science.gov (United States)

    Pedersen, Bente Klarlund

    2011-01-15

    In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular diseases, cancer, dementia and even depression. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an 'exercise factor', which could be released from skeletal muscle during contraction and mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We have suggested that cytokines or other peptides that are produced, expressed and released by muscle fibres and exert autocrine, paracrine or endocrine effects should be classified as 'myokines'. Given that skeletal muscle is the largest organ in the human body, our discovery that contracting skeletal muscle secretes proteins sets a novel paradigm: skeletal muscle is an endocrine organ producing and releasing myokines, which work in a hormone-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases.

  15. Recurrent late cardiac tamponade following cardiac surgery : a deceiving and potentially lethal complication

    NARCIS (Netherlands)

    Harskamp, Ralf E.; Meuzelaar, Jacobus J.

    2010-01-01

    Background - Cardiac tamponade, characterized by inflow obstruction of the heart chambers by extracardiac compression, is a potentially lethal complication following cardiac surgery. Case report - We present a case of recurrent cardiac tamponade following valve surgery. At first presentation,

  16. Recurrent late cardiac tamponade following cardiac surgery: a deceiving and potentially lethal complication

    NARCIS (Netherlands)

    Harskamp, Ralf E.; Meuzelaar, Jacobus J.

    2010-01-01

    Cardiac tamponade, characterized by inflow obstruction of the heart chambers by extracardiac compression, is a potentially lethal complication following cardiac surgery. We present a case of recurrent cardiac tamponade following valve surgery. At first presentation, diagnosis was delayed because of

  17. Cardiac function and cognition in older community-dwelling cardiac patients

    NARCIS (Netherlands)

    Eggermont, Laura H.P.; Aly, Mohamed F.A.; Vuijk, Pieter J.; de Boer, Karin; Kamp, Otto; van Rossum, Albert C.; Scherder, Erik J.A.

    2017-01-01

    Background: Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older

  18. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.

    Science.gov (United States)

    Gao, Jie; Li, Junling; Li, Bao-Jun; Yagil, Ezra; Zhang, Jianshe; Du, Shao Jun

    2014-01-01

    Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.

  19. A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase.

    Science.gov (United States)

    Fu, Zhiyao; Abou-Samra, Abdul B; Zhang, Ren

    2015-12-21

    Lipasin/Angptl8 is a feeding-induced hepatokine that regulates triglyceride (TAG) metabolism; its therapeutical potential, mechanism of action, and relation to the lipoprotein lipase (LPL), however, remain elusive. We generated five monoclonal lipasin antibodies, among which one lowered the serum TAG level when injected into mice, and the epitope was determined to be EIQVEE. Lipasin-deficient mice exhibited elevated postprandial activity of LPL in the heart and skeletal muscle, but not in white adipose tissue (WAT), suggesting that lipasin suppresses the activity of LPL specifically in cardiac and skeletal muscles. Consistently, mice injected with the effective antibody or with lipasin deficiency had increased postprandial cardiac LPL activity and lower TAG levels only in the fed state. These results suggest that lipasin acts, at least in part, in an endocrine manner. We propose the following model: feeding induces lipasin, activating the lipasin-Angptl3 pathway, which inhibits LPL in cardiac and skeletal muscles to direct circulating TAG to WAT for storage; conversely, fasting induces Angptl4, which inhibits LPL in WAT to direct circulating TAG to cardiac and skeletal muscles for oxidation. This model suggests a general mechanism by which TAG trafficking is coordinated by lipasin, Angptl3 and Angptl4 at different nutritional statuses.

  20. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    DEFF Research Database (Denmark)

    Habets, Daphna D J; Luiken, Joost J F P; Ouwens, Margriet

    2012-01-01

    Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-¿ knockout mice the roles of atypical PKCs (PKC-¿ and PKC-¿) in regulating...

  1. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  2. Muscle contraction and force

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Risbo, Jens; Pierzynowski, Stefan G.

    2008-01-01

    Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play a vital role in terms...... of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen "wires". This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable...

  3. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    Science.gov (United States)

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  4. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    Science.gov (United States)

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.

  5. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  6. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia

    Directory of Open Access Journals (Sweden)

    Landoni Giovanni

    2009-01-01

    Full Text Available Volatile anaesthetic agents have direct protective properties against ischemic myocardial damage. The implementation of these properties during clinical anaesthesia can provide an additional tool in the treatment or prevention, or both, of ischemic cardiac dysfunction in the perioperative period. A recent meta-analysis showed that desflurane and sevoflurane reduce postoperative mortality and incidence of myocardial infarction following cardiac surgery, with significant advantages in terms of postoperative cardiac troponin release, need for inotrope support, time on mechanical ventilation, intensive care unit and overall hospital stay. Multicentre, randomised clinical trials had previously demonstrated that the use of desflurane can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalisation following coronary artery bypass graft surgery either with and without cardiopulmonary bypass. The American College of Cardiology/American Heart Association Guidelines recommend volatile anaesthetic agents during non-cardiac surgery for the maintenance of general anaesthesia in patients at risk for myocardial infarction. Nonetheless, e vidence in non-coronary surgical settings is contradictory and will be reviewed in this paper together with the mechanisms of cardiac protection by volatile agents.

  7. Acute rhabdomyolysis of the soleus muscle induced by a lightning strike: magnetic resonance and scintigraphic findings

    International Nuclear Information System (INIS)

    Watanabe, Naofumi; Inaoka, Tsutomu; Shuke, Noriyuki; Takahashi, Koji; Aburano, Tamio; Chisato, Naoyuki; Go, Kazutomo; Nochi, Hitoshi

    2007-01-01

    Among natural disasters, a lightning strike is a rare but potentially life-threatening phenomenon. If victims survive a cardiac arrest due to instantaneous passage of an exceptionally high voltage electric charge through the whole body, they may be afflicted with various complications such as muscle necrosis resulting in acute renal failure. In this article, we report a case of a 54-year-old man with acute rhabdomyolysis of the left soleus muscle associated with a lightning strike. T2-weighted and short-tau inversion recovery MR images showed a high signal intensity in the left soleus muscle. A whole-body bone scintigram showed abnormal uptakes in the left soleus muscle and the dorsal aspect of the left foot. MR and scintigraphic evaluations were very useful in depicting the site and extent of muscle damage. Since the patient showed a surprisingly high level of serum creatine kinase, the added information was very valuable for determining the patient's management. (orig.)

  8. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten

    2016-01-01

    Aim: It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. Method: The study used...... isolated rat muscle, muscle homogenates and purified membranes as model systems. Na,K-ATPase activity was quantified from phosphate release due to ATP hydrolysis. Results: Exposure to the NO donor spermine NONOate (10 μm) increased the maximal Na,K-ATPase activity by 27% in isolated glycolytic muscles...... activity was depressed by oxidized glutathione. Conclusion: NO and cGMP stimulate the Na,K-ATPase in glycolytic skeletal muscle. Direct S-nitrosylation and interference with S-glutathionylation seem to be excluded. In addition, phosphorylation of phospholemman at serine 68 is not involved. Most likely...

  9. The giant protein titin regulates the length of the striated muscle thick filament.

    Science.gov (United States)

    Tonino, Paola; Kiss, Balazs; Strom, Josh; Methawasin, Mei; Smith, John E; Kolb, Justin; Labeit, Siegfried; Granzier, Henk

    2017-10-19

    The contractile machinery of heart and skeletal muscles has as an essential component the thick filament, comprised of the molecular motor myosin. The thick filament is of a precisely controlled length, defining thereby the force level that muscles generate and how this force varies with muscle length. It has been speculated that the mechanism by which thick filament length is controlled involves the giant protein titin, but no conclusive support for this hypothesis exists. Here we show that in a mouse model in which we deleted two of titin's C-zone super-repeats, thick filament length is reduced in cardiac and skeletal muscles. In addition, functional studies reveal reduced force generation and a dilated cardiomyopathy (DCM) phenotype. Thus, regulation of thick filament length depends on titin and is critical for maintaining muscle health.

  10. Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators

    Science.gov (United States)

    Shin, Su Ryon; Jung, Sung Mi; Zalabany, Momen; Kim, Keekyoung; Zorlutuna, Pinar; Kim, Sang bok; Nikkhah, Mehdi; Khabiry, Masoud; Azize, Mohamed; Kong, Jing; Wan, Kai-tak; Palacios, Tomas; Dokmeci, Mehmet R.; Bae, Hojae; Tang, Xiaowu (Shirley); Khademhosseini, Ali

    2013-01-01

    We engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT) incorporated photocrosslinkable gelatin methacrylate (GelMA) hydrogel. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick CNT-GelMA showed 3 times higher spontaneous synchronous beating rates and 85% lower excitation threshold, compared to those cultured on pristine GelMA hydrogels. Our results indicate that the electrically conductive and nanofibrous networks formed by CNTs within a porous gelatin framework is the key characteristics of CNT-GelMA leading to improved cardiac cell adhesion, organization, and cell-cell coupling. Centimeter-scale patches were released from glass substrates to form 3D biohybrid actuators, which showed controllable linear cyclic contraction/extension, pumping, and swimming actuations. In addition, we demonstrate for the first time that cardiac tissues cultured on CNT-GelMA resist damage by a model cardiac inhibitor as well as a cytotoxic compound. Therefore, incorporation of CNTs into gelatin, and potentially other biomaterials, could be useful in creating multifunctional cardiac scaffolds for both therapeutic purposes and in vitro studies. These hybrid materials could also be used for neuron and other muscle cells to create tissue constructs with improved organization, electroactivity, and mechanical integrity. PMID:23363247

  11. Rhabdomyolysis and compartment syndrome in a bodybuilder undergoing minimally invasive cardiac surgery

    Directory of Open Access Journals (Sweden)

    Sebastian John Baxter

    2017-01-01

    Full Text Available Rhabdomyolysis is the result of skeletal muscle tissue injury and is characterized by elevated creatine kinase levels, muscle pain, and myoglobinuria. It is caused by crush injuries, hyperthermia, drugs, toxins, and abnormal metabolic states. This is often difficult to diagnose perioperatively and can result in renal failure and compartment syndrome if not promptly treated. We report a rare case of inadvertent rhabdomyolysis and compartment syndrome in a bodybuilder undergoing minimally invasive cardiac surgery. The presentation, differential diagnoses, and management are discussed. Hyperkalemia may be the first presenting sign. Early recognition and management are essential to prevent life-threatening complications.

  12. COMPARISON OF CARDIAC BIOMARKERS AND ECHOCARDIOGRAPHY IN DIAGNOSING MYOCARDITIS

    Directory of Open Access Journals (Sweden)

    Nimi Bharathan

    2017-03-01

    Full Text Available BACKGROUND Conventional methods used to diagnose or rule out myocarditis is not useful in detecting cardiac myocyte injury in clinically suspected cases. Endomyocardial biopsy and histopathological examination is not feasible in most government hospitals in India. Sensitive parameters have yet to be found out. The study was conducted to find out whether diagnosis of myocarditis in clinically suspected cases can be done by measurement of serum levels of cardiac troponinI (cTnI and MB isoform of creatine kinase (CK-MB. MATERIALS AND METHODS 19 patients with clinically suspected myocarditis were screened for CK-MB activity and cTnI. Echocardiography, ECG and IgM for leptospirosis were also checked in these patients. RESULTS cTnI was elevated in 10 out of 19 patients with clinically suspected myocarditis. CK-MB was elevated in 7 patients. CONCLUSION Elevation of cTnI level in blood can be taken as an indicator of cardiac muscle cell injury in suspected cases of myocarditis.

  13. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    Science.gov (United States)

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  14. Cardiac rehabilitation costs.

    Science.gov (United States)

    Moghei, Mahshid; Turk-Adawi, Karam; Isaranuwatchai, Wanrudee; Sarrafzadegan, Nizal; Oh, Paul; Chessex, Caroline; Grace, Sherry L

    2017-10-01

    Despite the clinical benefits of cardiac rehabilitation (CR) and its cost-effectiveness, it is not widely received. Arguably, capacity could be greatly increased if lower-cost models were implemented. The aims of this review were to describe: the costs associated with CR delivery, approaches to reduce these costs, and associated implications. Upon finalizing the PICO statement, information scientists were enlisted to develop the search strategy of MEDLINE, Embase, CDSR, Google Scholar and Scopus. Citations identified were considered for inclusion by the first author. Extracted cost data were summarized in tabular format and qualitatively synthesized. There is wide variability in the cost of CR delivery around the world, and patients pay out-of-pocket for some or all of services in 55% of countries. Supervised CR costs in high-income countries ranged from PPP$294 (Purchasing Power Parity; 2016 United States Dollars) in the United Kingdom to PPP$12,409 in Italy, and in middle-income countries ranged from PPP$146 in Venezuela to PPP$1095 in Brazil. Costs relate to facilities, personnel, and session dose. Delivering CR using information and communication technology (mean cost PPP$753/patient/program), lowering the dose and using lower-cost personnel and equipment are important strategies to consider in containing costs, however few explicitly low-cost models are available in the literature. More research is needed regarding the costs to deliver CR in community settings, the cost-effectiveness of CR in most countries, and the economic impact of return-to-work with CR participation. A low-cost model of CR should be standardized and tested for efficacy across multiple healthcare systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Patch in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Alireza Alizadeh Ghavidel

    2014-06-01

    Full Text Available Introduction: Excessive bleeding presents a risk for the patient in cardiovascular surgery. Local haemostatic agents are of great value to reduce bleeding and related complications. TachoSil (Nycomed, Linz, Austria is a sterile, haemostatic agent that consists of an equine collagen patchcoated with human fibrinogen and thrombin. This study evaluated the safety and efficacy of TachoSil compared to conventional technique.Methods: Forty-two patients scheduled for open heart surgeries, were entered to this study from August 2010 to May 2011. After primary haemostatic measures, patients divided in two groups based on surgeon’s judgment. Group A: 20 patients for whom TachoSil was applied and group B: 22 patients that conventional method using Surgicel (13 patients or wait and see method (9 cases, were performed in order to control the bleeding. In group A, 10 patients were male with mean age of 56.95±15.67 years and in group B, 9 cases were male with mean age of 49.95±14.41 years. In case group 70% (14/20 of the surgeries were redo surgeries versus 100% (22/22 in control group.Results: Baseline characteristics were similar in both groups. In TachoSil group 75% of patients required transfusion versus 90.90% in group B (P=0.03.Most transfusions consisted of packed red blood cell; 2±1.13 units in group A versus 3.11±1.44 in group B (P=0.01, however there were no significant differences between two groups regarding the mean total volume of intra and post-operative bleeding. Re-exploration was required in 10% in group A versus 13.63% in group B (P=0.67.Conclusion: TachoSil may act as a superior alternative in different types of cardiac surgery in order to control the bleeding and therefore reducing transfusion requirement.

  16. Muscles and their myokines

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund

    2011-01-01

    In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence...... or endocrine effects should be classified as 'myokines'. Given that skeletal muscle is the largest organ in the human body, our discovery that contracting skeletal muscle secretes proteins sets a novel paradigm: skeletal muscle is an endocrine organ producing and releasing myokines, which work in a hormone......-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases....

  17. Pneumatic Muscle Actuator Control

    National Research Council Canada - National Science Library

    Lilly, John

    2000-01-01

    This research is relevant to the Air Fore mission because pneumatic muscle actuation devices arc advantageous for certain types of robotics as well as for strength and/or mobility assistance for humans...

  18. Brain–muscle interface

    Indian Academy of Sciences (India)

    2011-05-16

    May 16, 2011 ... Clipboard: Brain–muscle interface: The next-generation BMI. Radhika Rajan Neeraj Jain ... Keywords. Assistive devices; brain–machine interface; motor cortex; paralysis; spinal cord injury ... Journal of Biosciences | News ...

  19. Muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Gavras, H

    1982-01-01

    glycogenolysis during exercise: contractions principally stimulate glycogenolysis early in exercise, and a direct effect of epinephrine on muscle is needed for continued glycogenolysis. In addition, epinephrine increased oxygen consumption and glucose uptake in both resting and electrically stimulated...

  20. Water and Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Enrico Grazi

    2008-08-01

    Full Text Available The interaction between water and the protein of the contractile machinery as well as the tendency of these proteins to form geometrically ordered structures provide a link between water and muscle contraction. Protein osmotic pressure is strictly related to the chemical potential of the contractile proteins, to the stiffness of muscle structures and to the viscosity of the sliding of the thin over the thick filaments. Muscle power output and the steady rate of contraction are linked by modulating a single parameter, a viscosity coefficient. Muscle operation is characterized by working strokes of much shorter length and much quicker than in the classical model. As a consequence the force delivered and the stiffness attained by attached cross-bridges is much larger than usually believed.

  1. Muscle function loss

    Science.gov (United States)

    ... or head are damaged, you may have difficulty chewing and swallowing or closing your eyes. In these ... Medical Professional Muscle paralysis always requires immediate medical attention. If you notice gradual weakening or problems with ...

  2. Effects of gender, ejection fraction and weight on cardiac force development in patients undergoing cardiac surgery--an experimental examination.

    Science.gov (United States)

    Bening, Constanze; Weiler, Helge; Vahl, Christian-Friedrich

    2013-11-18

    It has long been recognized that differences exist between men and women in the impact of risc factors, symptoms, development and outcome of special diseases like the cardiovascular disease. Gender determines the cardiac baseline parameters like the number of cardiac myocyte, size and demand and may suggest differences in myofilament function among genders, which might be pronounced under pathological conditions. Does gender impact and maybe impair the contractile apparatus? Are the differences more prominent when other factors like weight, age, ejection fraction are added?Therefore we performed a study on 36 patients (21 male, 15 female) undergoing aortic valve replacement (AVR) or aortocoronary bypass operation (CABG) to examine the influence of gender, ejection fraction, surgical procedure and body mass index (BMI) on cardiac force development. Tissue was obtained from the right auricle and was stored in a special solution to prevent any stretching of the fibers. We used the skinned muscle fiber model and single muscle stripes, which were mounted on the "muscle machine" and exposed to a gradual increase of calcium concentration calculated by an attached computer program. 1.) In general female fibers show more force than male fibers: 3.9 mN vs. 2.0 mN (p = 0.03) 2.) Female fibers undergoing AVR achieved more force than those undergoing CABG operation: 5.7 mN vs. 2.8 mN (p = 0.02) as well as male fibers with AVR showed more force values compared to those undergoing CABG: 2.0 mN vs. 0.5 mN (p = 0.01). 3.) Male and female fibers of patients with EF > 55% developed significantly more force than from those with less ejection fraction than 30%: p = 0.002 for the male fibers (1.6 vs. 2.8 mN) and p = 0.04 for the female fibers (5.7 vs. 2.8 mN). 4.) Patients with a BMI between 18 till 25 develop significant more force than those with a BMI > 30: Females 5.1 vs. 2.6 mN; p 0.03, Males 3.8 vs. 0.8 mN; p 0.04). Our data suggest that female patients undergoing AVR or CABG

  3. Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Vicente Castro

    Full Text Available Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control, 0.65 (medium intensity and 1.31 (high intensity body lengths s(-1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first

  4. Comparative and Developmental Anatomy of Cardiac Lymphatics

    Directory of Open Access Journals (Sweden)

    A. Ratajska

    2014-01-01

    Full Text Available The role of the cardiac lymphatic system has been recently appreciated since lymphatic disturbances take part in various heart pathologies. This review presents the current knowledge about normal anatomy and structure of lymphatics and their prenatal development for a better understanding of the proper functioning of this system in relation to coronary circulation. Lymphatics of the heart consist of terminal capillaries of various diameters, capillary plexuses that drain continuously subendocardial, myocardial, and subepicardial areas, and draining (collecting vessels that lead the lymph out of the heart. There are interspecies differences in the distribution of lymphatic capillaries, especially near the valves, as well as differences in the routes and number of draining vessels. In some species, subendocardial areas contain fewer lymphatic capillaries as compared to subepicardial parts of the heart. In all species there is at least one collector vessel draining lymph from the subepicardial plexuses and running along the anterior interventricular septum under the left auricle and further along the pulmonary trunk outside the heart and terminating in the right venous angle. The second collector assumes a different route in various species. In most mammalian species the collectors run along major branches of coronary arteries, have valves and a discontinuous layer of smooth muscle cells.

  5. Ichthyophonus-induced cardiac damage: a mechanism for reduced swimming stamina in salmonids.

    Science.gov (United States)

    Kocan, R; Lapatra, S; Gregg, J; Winton, J; Hershberger, P

    2006-09-01

    Swimming stamina, measured as time-to-fatigue, was reduced by approximately two-thirds in rainbow trout experimentally infected with Ichthyophonus. Intensity of Ichthyophonus infection was most severe in cardiac muscle but multiple organs were infected to a lesser extent. The mean heart weight of infected fish was 40% greater than that of uninfected fish, the result of parasite biomass, infiltration of immune cells and fibrotic (granuloma) tissue surrounding the parasite. Diminished swimming stamina is hypothesized to be due to cardiac failure resulting from the combination of parasite-damaged heart muscle and low myocardial oxygen supply during sustained aerobic exercise. Loss of stamina in Ichthyophonus-infected salmonids could explain the poor performance previously reported for wild Chinook and sockeye salmon stocks during their spawning migration.

  6. Congenital heart disease in adolescents with gluteal muscle contracture.

    Science.gov (United States)

    You, Tian; Zhang, Xin-tao; Zha, Zhen-gang; Zhang, Wen-tao

    2015-02-01

    Gluteal muscle contracture (GMC), presented with hip abduction and external rotation when crouching, is common in several ethnicities, particularly in Chinese. It remains unclear that the reasons why these children are weak and have no choice to accept repeated intramuscular injection. Here, we found some unique cases which may be useful to explain this question. We describe a series of special GMC patients, who are accompanied with congenital heart disease (CHD). These cases were first observed in preoperative examinations of a patient with atrial septal defect (ASD), which was proved by chest X-ray and cardiac ultrasound. From then on, we gradually identified additional 3 GMC patients with CHD. The original patient with ASD was sent to cardiosurgery department to repair atrial septal first and received arthroscopic surgery later. While the other 3 were cured postoperative of ventricular septal defect (VSD), tetralogy of fallot (TOF), patent ductus arteriosus (PDA), respectively, and had surgery directly. The study gives us 3 proposals: (1) as to CHD children, it is essential to decrease the use of intramuscular injection, (2) paying more attention to cardiac examination especially cardiac ultrasound in perioperative period, and (3) taking 3D-CT to reconstruct gluteal muscles for observing contracture bands clearly in preoperation. However, more larger series of patients are called for to confirm these findings.

  7. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats.

    Science.gov (United States)

    Holloway, Tanya M; Bloemberg, Darin; da Silva, Mayne L; Simpson, Jeremy A; Quadrilatero, Joe; Spriet, Lawrence L

    2015-01-01

    There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT) in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET) that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P hypertension. However, HIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease.

  8. General Anesthesia in Cardiac Surgery: A Review of Drugs and Practices

    OpenAIRE

    Alwardt, Cory M.; Redford, Daniel; Larson, Douglas F.

    2005-01-01

    General anesthesia is defined as complete anesthesia affecting the entire body with loss of consciousness, analgesia, amnesia, and muscle relaxation. There is a wide spectrum of agents able to partially or completely induce general anesthesia. Presently, there is not a single universally accepted technique for anesthetic management during cardiac surgery. Instead, the drugs and combinations of drugs used are derived from the pathophysiologic state of the patient and individual preference and ...

  9. Myocardin-related transcription factors are required for cardiac development and function

    OpenAIRE

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2015-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the d...

  10. Sudden cardiac arrest following ventricular fibrillation attributed to anabolic steroid use in an adolescent.

    Science.gov (United States)

    Lichtenfeld, Jana; Deal, Barbara J; Crawford, Susan

    2016-06-01

    Anabolic androgenic steroids are synthetic derivatives of testosterone that promote the growth of skeletal muscles and have many recognised cardiovascular effects. We report the clinical presentation and pathological findings of an adolescent male whose sudden cardiac arrest following ventricular fibrillation was attributed to anabolic androgenic steroid use. The age of our patient reflects the usage of anabolic androgenic steroids among younger athletes and highlights the need for increased awareness among practitioners.

  11. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs.

    Science.gov (United States)

    Joyner, Michael J; Casey, Darren P

    2015-04-01

    This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. Copyright © 2015 the American Physiological Society.

  12. Differentiated muscles are mandatory for gas-filling of the Drosophila airway system

    Directory of Open Access Journals (Sweden)

    Yiwen Wang

    2015-12-01

    Full Text Available At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila.

  13. Electrocardiography as an early cardiac screening test in children with mitochondrial disease

    Directory of Open Access Journals (Sweden)

    Ran Baik

    2010-05-01

    Full Text Available Purpose : To evaluate myocardial conductivity to understand cardiac involvement in patients with mitochondrial disease. Methods : We performed retrospective study on fifty-seven nonspecific mitochondrial encephalopathy patients with no clinical cardiac manifestations. The patients were diagnosed with mitochondrial respiratory chain complex defects through biochemical enzyme assays of muscle tissue. We performed standard 12-lead electrocardiography (ECG on all patients. Results : ECG abnormalities were observed in 30 patients (52.6%. Prolongation of the QTc interval (&gt;440 ms was seen in 19 patients (33.3%, widening of the corrected QRS interval in 15 (26.3%, and bundle branch block in four (7.0%. Atrioventricular block, premature atrial contraction and premature ventricular contraction were seen in two patients each (3.5% and Wolff-Parkinson-White syndrome in one patient (1.8%. Conclusion : Given this finding, we recommend active screening with ECG in patients with mitochondrial disease even in patients without obvious cardiac manifestation.

  14. Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association.

    Science.gov (United States)

    Feingold, Brian; Mahle, William T; Auerbach, Scott; Clemens, Paula; Domenighetti, Andrea A; Jefferies, John L; Judge, Daniel P; Lal, Ashwin K; Markham, Larry W; Parks, W James; Tsuda, Takeshi; Wang, Paul J; Yoo, Shi-Joon

    2017-09-26

    For many neuromuscular diseases (NMDs), cardiac disease represents a major cause of morbidity and mortality. The management of cardiac disease in NMDs is made challenging by the broad clinical heterogeneity that exists among many NMDs and by limited knowledge about disease-specific cardiovascular pathogenesis and course-modifying interventions. The overlay of compromise in peripheral muscle function and other organ systems, such as the lungs, also makes the simple application of endorsed adult or pediatric heart failure guidelines to the NMD population problematic. In this statement, we provide background on several NMDs in which there is cardiac involvement, highlighting unique features of NMD-associated myocardial disease that require clinicians to tailor their approach to prevention and treatment of heart failure. Undoubtedly, further investigations are required to best inform future guidelines on NMD-specific cardiovascular health risks, treatments, and outcomes. © 2017 American Heart Association, Inc.

  15. Perioperative Rosuvastatin in Cardiac Surgery.

    Science.gov (United States)

    Zheng, Zhe; Jayaram, Raja; Jiang, Lixin; Emberson, Jonathan; Zhao, Yan; Li, Qi; Du, Juan; Guarguagli, Silvia; Hill, Michael; Chen, Zhengming; Collins, Rory; Casadei, Barbara

    2016-05-05

    Complications after cardiac surgery are common and lead to substantial increases in morbidity and mortality. Meta-analyses of small randomized trials have suggested that perioperative statin therapy can prevent some of these complications. We randomly assigned 1922 patients in sinus rhythm who were scheduled for elective cardiac surgery to receive perioperative rosuvastatin (at a dose of 20 mg daily) or placebo. The primary outcomes were postoperative atrial fibrillation within 5 days after surgery, as assessed by Holter electrocardiographic monitoring, and myocardial injury within 120 hours after surgery, as assessed by serial measurements of the cardiac troponin I concentration. Secondary outcomes included major in-hospital adverse events, duration of stay in the hospital and intensive care unit, left ventricular and renal function, and blood biomarkers. The concentrations of low-density lipoprotein cholesterol and C-reactive protein after surgery were lower in patients assigned to rosuvastatin than in those assigned to placebo (PSTICS ClinicalTrials.gov number, NCT01573143.).

  16. Comparing Methods for Cardiac Output

    DEFF Research Database (Denmark)

    Graeser, Karin; Zemtsovski, Mikhail; Kofoed, Klaus F

    2018-01-01

    of the left ventricular outflow tract. METHODS: The primary aim was a systematic comparison of CO with Doppler-derived 3D TEE and CO by thermodilution in a broad population of patients undergoing cardiac surgery. A subanalysis was performed comparing cross-sectional area by TEE with cardiac computed...... tomography (CT) angiography. Sixty-two patients, scheduled for elective heart surgery, were included; 1 was subsequently excluded for logistic reasons. Inclusion criteria were coronary artery bypass surgery (N = 42) and aortic valve replacement (N = 19). Exclusion criteria were chronic atrial fibrillation......, left ventricular ejection fraction below 0.40 and intracardiac shunts. Nineteen randomly selected patients had a cardiac CT the day before surgery. All images were stored for blinded post hoc analyses, and Bland-Altman plots were used to assess agreement between measurement methods, defined as the bias...

  17. Cerebral Oximetry in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    A. N. Shepelyuk

    2012-01-01

    Full Text Available Based on the data of numerous current references, the review describes different neuromonitoring methods during cardiac surgery under extracorporeal circulation. It shows that it is important and necessary to make neuromonitoring for the early diagnosis and prevention of neurological complications after cardiac surgery. Particular attention is given to cerebral oximetry; the possibilities and advantages of this technique are described. Correction of cerebral oximetric values is shown to improve survival rates and to reduce the incidence of postoperative complications. Lack of cerebral oximetry monitoring denudes a clinician of important information and possibilities to optimize patient status and to prevent potentially menacing complications, which allows one to conclude that it is necessary to use cerebral oximetry procedures within neu-romonitoring in cardiac surgery. Key words: extracorporeal circulation, cerebral oximetry, neurological dysfunction, cerebral oxygenation.

  18. Artificial muscle: the human chimera is the future.

    Science.gov (United States)

    Tozzi, P

    2011-12-14

    Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.

  19. The other side of cardiac Ca2+ signaling: transcriptional control

    Directory of Open Access Journals (Sweden)

    Alejandro eDomínguez-Rodríquez

    2012-11-01

    Full Text Available Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling, but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling. ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII and phosphatase calcineurin, both of which are activated by the complex Ca2+/ /Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n or cytoplasmic ([Ca2+]c, and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs in [Ca2+]c, needed to activate calcineurin.

  20. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  1. Hybrid options for treating cardiac disease.

    Science.gov (United States)

    Umakanthan, Ramanan; Leacche, Marzia; Zhao, David X; Gallion, Anna H; Mishra, Prabodh C; Byrne, John G

    2011-01-01

    The options for treating heart disease have greatly expanded during the course of the last 2 1/2 decades with the advent of hybrid technology. The hybrid option for treating cardiac disease implies using the technology of both interventional cardiology and cardiac surgery to treat cardiac disease. This rapidly developing technology has given rise to new and creative techniques to treat cardiac disease involving coronary artery disease, coronary artery disease and cardiac valve disease, and atrial fibrillation. It has also led to the establishment of new procedural suites called hybrid operating rooms that facilitate the integration of technologies of interventional cardiology catheterization laboratories with those of cardiac surgery operating rooms. The development of hybrid options for treating cardiac disease has also greatly augmented teamwork and collaboration between interventional cardiologists and cardiac surgeons. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Sudden Cardiac Arrest (SCA) Risk Assessment

    Science.gov (United States)

    ... HRS Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... people of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  3. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  4. miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Alberto Izarra

    2014-12-01

    Full Text Available miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs, but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue.

  5. Practolol in Hyperthyroid Cardiac Failure*

    African Journals Online (AJOL)

    1971-07-24

    Jul 24, 1971 ... operatively with Lugol's iodine: and in thyroid crisis.' While some ... Six months before admission, proximal muscle weakness de- developed and .... gestion, dyspnoea and pulse rate (from 140 to between 90 and. lOO/minute).

  6. Cardiac, Metabolic and Molecular Profiles of Sedentary Rats in the Initial Moment of Obesity

    Directory of Open Access Journals (Sweden)

    Bruno Barcellos Jacobsen

    2017-10-01

    Full Text Available Abstract Background: Different types of high-fat and/or high-energy diets have been used to induce obesity in rodents. However, few studies have reported on the effects observed at the initial stage of obesity induced by high-fat feeding on cardiac functional and structural remodelling. Objective: To characterize the initial moment of obesity and investigate both metabolic and cardiac parameters. In addition, the role of Ca2+ handling in short-term exposure to obesity was verified. Methods: Thirty-day-old male Wistar rats were randomized into two groups (n = 19 each: control (C; standard diet and high-fat diet (HF, unsaturated high-fat diet. The initial moment of obesity was defined by weekly measurement of body weight (BW complemented by adiposity index (AI. Cardiac remodelling was assessed by morphological, histological, echocardiographic and papillary muscle analysis. Ca2+ handling proteins were determined by Western Blot. Results: The initial moment of obesity occurred at the 3rd week. Compared with C rats, the HF rats had higher final BW (4%, body fat (20%, AI (14.5%, insulin levels (39.7%, leptin (62.4% and low-density lipoprotein cholesterol (15.5% but did not exhibit alterations in systolic blood pressure. Echocardiographic evaluation did not show alterations in cardiac parameters. In the HF group, muscles were observed to increase their +dT/dt (C: 52.6 ± 9.0 g/mm2/s and HF: 68.0 ± 17.0 g/mm2/s; p < 0.05. In addition, there was no changes in the cardiac expression of Ca2+ handling proteins. Conclusion: The initial moment of obesity promotes alterations to hormonal and lipid profiles without cardiac damage or changes in Ca2+ handling.

  7. Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Samer eAl-Samir

    2016-05-01

    Full Text Available We have studied cardiac and respiratory functions of aquaporin- 1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals’ hearts were analysed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min-1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: 1 left ventricular wall thickness was reduced by 12%, 2 left ventricular mass, normalized to tibia length, was reduced by 10-20%, 3 cardiac muscle fiber cross sectional area was decreased by 17%, and 4 capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wildtype heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output.

  8. Human technology after cardiac epigenesis. Artificial heart versus cardiac transplantation.

    Science.gov (United States)

    Losman, J G

    1977-09-24

    Cardiovascular disease is the chief cause of death in technologically advanced countries and accounts for more than 50% of all deaths in the USA. For a patient with end-stage cardiac failure the only treatment presently available is organ replacement, either by transplantation or by the use of a mechanical heart. Transplantation has demonstrated its value: survival of more than 8 years and restoration of a normal quality of life to patients who were in end-stage cardiac decompensation. However, the prospect of routine clinical application of an artificial heart remains distant. The development of a totally implantable artificial heart still presents a series of challenging engineering problems with regard to strict constraints of size, weight, blood-material compatibility, adaptability of output to demand, efficiency and reliability of the power supply, and safety if nuclear fuel is used. The totally artificial heart is presently not an alternative to the cardiac allograft, but could provide short-term support for patients awaiting cardiac transplantation.

  9. Health Literacy Predicts Cardiac Knowledge Gains in Cardiac Rehabilitation Participants

    Science.gov (United States)

    Mattson, Colleen C.; Rawson, Katherine; Hughes, Joel W.; Waechter, Donna; Rosneck, James

    2015-01-01

    Objective: Health literacy is increasingly recognised as a potentially important patient characteristic related to patient education efforts. We evaluated whether health literacy would predict gains in knowledge after completion of patient education in cardiac rehabilitation. Method: This was a re-post observational analysis study design based on…

  10. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury.

    Directory of Open Access Journals (Sweden)

    Jianqin Ye

    Full Text Available BACKGROUND: Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI. However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear. METHODOLOGY/PRINCIPAL FINDING: Using "middle aged" mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1(+CD45(- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1 in Sca-1(+CD45(- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1(+CD45(- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts. CONCLUSIONS/SIGNIFICANCE: These studies demonstrate that cloned Sca-1(+CD45(- cells derived from CSs from infarcted "middle aged" hearts are enriched for second heart field (i.e., Isl-1(+ precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.

  11. Quantitative analysis of energy metabolism in human muscle using SLOOP 31P-MR-spectroscopy

    International Nuclear Information System (INIS)

    Beer, M.; Koestler, H.; Buchner, S.; Sandstede, J.; Hahn, D.

    2002-01-01

    Objective: Energy metabolism is vital for regular muscle function. In humans, in vivo analysis using 31 P-MR-spectroscopy (MRS) is mostly restricted to semiquantitative parameters due to technical demands. We applied spatial localization with optimal pointspread function (SLOOP) for quantification in human skeletal and cardiac muscle. Subjects/Methods: 10 healthy volunteers and 4 patients with myotonic dystrophy type 1 were examined using a 1.5 T system (Magnetom VISION) and chemical shift imaging (CSI) for data collection. Concentrations of PCr, ATP and P i as well as PCr/ATP ratios were calculated by SLOOP. Results: Concentrations of PCr, ATP and P i were 29.9±3.4, 7.1±0.9 and 5.7±1.2 [mmol/kg] in normal skeletal muscle, corresponding to previously published studies. Two of the patients with a duration of disease longer than 10 years and a pronounced muscle weakness showed a significant decrease of PCr and ATP in skeletal muscle below 10 and 5 mmol/kg. One of these patients had an additional reduction of PCr in cardiac muscle. (orig.) [de

  12. Cardiac Auscultation for Noncardiologists: Application in Cardiac Rehabilitation Programs: PART I: PATIENTS AFTER ACUTE CORONARY SYNDROMES AND HEART FAILURE.

    Science.gov (United States)

    Compostella, Leonida; Compostella, Caterina; Russo, Nicola; Setzu, Tiziana; Iliceto, Sabino; Bellotto, Fabio

    2017-09-01

    During outpatient cardiac rehabilitation after an acute coronary syndrome or after an episode of congestive heart failure, a careful, periodic evaluation of patients' clinical and hemodynamic status is essential. Simple and traditional cardiac auscultation could play a role in providing useful prognostic information.Reduced intensity of the first heart sound (S1), especially when associated with prolonged apical impulse and the appearance of added sounds, may help identify left ventricular (LV) dysfunction or conduction disturbances, sometimes associated with transient myocardial ischemia. If both S1 and second heart sound (S2) are reduced in intensity, a pericardial effusion may be suspected, whereas an increased intensity of S2 may indicate increased pulmonary artery pressure. The persistence of a protodiastolic sound (S3) after an acute coronary syndrome is an indicator of severe LV dysfunction and a poor prognosis. In patients with congestive heart failure, the association of an S3 and elevated heart rate may indicate impending decompensation. A presystolic sound (S4) is often associated with S3 in patients with LV failure, although it could also be present in hypertensive patients and in patients with an LV aneurysm. Careful evaluation of apical systolic murmurs could help identifying possible LV dysfunction or mitral valve pathology, and differentiate them from a ruptured papillary muscle or ventricular septal rupture. Friction rubs after an acute myocardial infarction, due to reactive pericarditis or Dressler syndrome, are often associated with a complicated clinical course.During cardiac rehabilitation, periodic cardiac auscultation may provide useful information about the clinical-hemodynamic status of patients and allow timely detection of signs, heralding possible complications in an efficient and low-cost manner.

  13. Cardiac anatomy and physiology: a review.

    Science.gov (United States)

    Gavaghan, M

    1998-04-01

    This article reviews the normal anatomy and physiology of the heart. Understanding the normal anatomic and physiologic relationships described in this article will help perioperative nurses care for patients who are undergoing cardiac procedures. Such knowledge also assists nurses in educating patients about cardiac procedures and about activities that can prevent, reverse, or improve cardiac illness.

  14. Multimodality imaging to guide cardiac interventional procedures

    NARCIS (Netherlands)

    Tops, Laurens Franciscus

    2010-01-01

    In recent years, a number of new cardiac interventional procedures have been introduced. Catheter ablation procedures for atrial fibrillation (AF) have been refined and are now considered a good treatment option in patients with drug-refractory AF. In cardiac pacing, cardiac resynchronization

  15. Technique for producing cardiac radionuclide motion images

    International Nuclear Information System (INIS)

    Reese, I.C.; Mishkin, F.S.

    1975-01-01

    Sequential frames of different portions of the cardiac cycle are gated into a minicomputer by using an EKG signal recorded onto digital tape simultaneously with imaging information. Serial display of these frames on the computer oscilloscope or projection of 35-mm half frames of these images provides a cardiac motion image with information content adequate for qualitatively assessing cardiac motion. (U.S.)

  16. Optimal Technique in Cardiac Anesthesia Recovery

    NARCIS (Netherlands)

    Svircevic, V.

    2014-01-01

    The aim of this thesis is to evaluate fast-track cardiac anesthesia techniques and investigate their impact on postoperative mortality, morbidity and quality of life. The following topics will be discussed in the thesis. (1.) Is fast track cardiac anesthesia a safe technique for cardiac surgery?

  17. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat

    International Nuclear Information System (INIS)

    Qiu Tong; Xie Ping; Liu Ying; Li Guangyu; Xiong Qian; Hao Le; Li Huiying

    2009-01-01

    Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD 50 (14 μg MC-LReq kg -1 body weight) and 1LD 50 (87 μg MC-LReq kg -1 body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD 50 dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD 50 not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously, complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil

  18. Two-chambered right ventricle resulting from aberrant muscle bundles: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lim, T. H.; Ko, K. H.; Im, C. K.; Han, M. C.; Chi, J. G [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-12-15

    The 'Two-chambered right ventricle' is a rare, but unique congenital cardiac anomaly characterized by subdivision of the right ventricle into proximal high pressure chamber and distal low pressure chamber by hypertrophied aberrant muscle bundles. The aberrant muscle bundles traverse the right ventricle from the region of crista supraventricular is to the lower part of the anterior wall of the right ventricle. The ' Two-chambered right ventricle' is usually associated with other congenital cardiac anomalies such as ventricular septal defect, pulmonary valvular stenosis, etc. Therefore this anomaly could be mistakenly diagnosed as Tetralogy of Fallot or isolated interventricular septal defect. The need to separate this entity from other types of infundibular stenosis is emphasized because of the important surgical implications. Authors recently experienced a case of the {sup T}wo-chambered right ventricle' resulting from aberrant muscle bundles, that are associated with other cardiac anomalies i.e., pulmonary valvular stenosis, aysplastic tricuspid valve with regurgitation and partial anomalous pulmonary venous return to the right atrium. Here we present the findings of E.K.G., cardiac catheterization, simple chest pa, cine-right ventriculography, and autopsy together with a review of related articles.

  19. Two-chambered right ventricle resulting from aberrant muscle bundles: a case report

    International Nuclear Information System (INIS)

    Lim, T. H.; Ko, K. H.; Im, C. K.; Han, M. C.; Chi, J. G

    1979-01-01

    The 'Two-chambered right ventricle' is a rare, but unique congenital cardiac anomaly characterized by subdivision of the right ventricle into proximal high pressure chamber and distal low pressure chamber by hypertrophied aberrant muscle bundles. The aberrant muscle bundles traverse the right ventricle from the region of crista supraventricular is to the lower part of the anterior wall of the right ventricle. The ' Two-chambered right ventricle' is usually associated with other congenital cardiac anomalies such as ventricular septal defect, pulmonary valvular stenosis, etc. Therefore this anomaly could be mistakenly diagnosed as Tetralogy of Fallot or isolated interventricular septal defect. The need to separate this entity from other types of infundibular stenosis is emphasized because of the important surgical implications. Authors recently experienced a case of the T wo-chambered right ventricle' resulting from aberrant muscle bundles, that are associated with other cardiac anomalies i.e., pulmonary valvular stenosis, aysplastic tricuspid valve with regurgitation and partial anomalous pulmonary venous return to the right atrium. Here we present the findings of E.K.G., cardiac catheterization, simple chest pa, cine-right ventriculography, and autopsy together with a review of related articles.

  20. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles

    Directory of Open Access Journals (Sweden)

    Syamalima Dube

    2017-06-01

    Full Text Available In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM, a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4 generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversity in the horse is very limited. Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively. By qRT-PCR using both relative expression and copy number, we have shown that TPM1α expression compared to TPM1κ is very high in heart. On the other hand, the expression of TPM1α is higher in skeletal muscle compared to heart. Further, the expression of TPM2α and TPM3α are higher in skeletal muscle compared to heart. Using western blot analyses with CH1 monoclonal antibody we have shown the high expression levels of sarcomeric TPM proteins in cardiac and skeletal muscle. Due to the paucity of isoform specific antibodies we cannot specifically detect the expression of TPM1κ in horse striated muscle. To the best of our knowledge this is the very first report on the characterization of sarcmeric TPMs in horse striated muscle.

  1. Calcium versus strontium handling by the heart muscle.

    Science.gov (United States)

    Hendrych, Michal; Olejnickova, Veronika; Novakova, Marie

    2016-01-01

    Calcium plays a crucial role in numerous processes in living systems, from both intracellular and intercellular signalling to blood clotting. Calcium can be replaced by strontium in various intracellular processes due to high level of their similarity and strontium thus may serve as a valuable tool for different experimental studies. On the other hand, strontium is also used in clinical medicine and is commonly taken to the human body with food and water. The negative cardiac side effects of strontium therapy of osteoporosis and bone metastases are well known, but still not fully explained. This fact explains enhanced interest in this element and its impact on human body. This article reviews effects of calcium and strontium on several biochemical and physiological processes, with special emphasis on cardiac muscle.

  2. DIAGNOSTIC EFFICACY OF CARDIAC TROPONIN-T IN ACUTE MYOCARDIAL INFARCTION PATIENTS ADMITTED IN INTENSIVE CARDIAC CARE UNIT

    Directory of Open Access Journals (Sweden)

    Tapan

    2016-03-01

    Full Text Available INTRODUCTION Myocardial infarction is a common and severe manifestation of ischaemic heart disease (IHD. Acute myocardial infarction (AMI is the result of death of heart muscle cells following either from a prolonged or severe ischaemia. The World Health Organisation emphasises IHD as our "Modern Epidemic" and AMI as common cause of sudden death. AIM The present study has been undertaken with the aim to assess the role of cardiac Troponin-T in early diagnosis of AMI and to evaluate its positive roles over CK-MB and LDH enzyme assays. The study also aims to find out the role of cardiac Troponin-T test, where ECG changes are nondiagnostic and inconclusive for AMI. MATERIAL & METHOD One hundred cases of provisionally diagnosed AMI, who were admitted during June 2012 to July 2015 in ICC Unit of TMC & Dr. BRAM Teaching Hospital, formed the subjects for the study. Those patients reported 2 to 10 hours after onset of chest pain were included in this study. Patients reported beyond 10 hours after onset of chest pain of AMI cases and patients having chest pain of non-AMI causes are excluded from the study. The provisional diagnosis of AMI was done on the basis of the history, chest pain, clinical findings and ECG changes. Trop-T test (Troponin-T sensitive rapid test by Muller Bardoff, et al, 1991 as well as CK-MB (creatine kinase-MB isoenzymeassays were performed immediately for each and every patient. Trop-T test was repeated in some selective cases where the early changes were insignificant and the results were compared with those of CK-MB, at different period of the disease onset. RESULTS The rapid cardiac Troponin-T test (CTn-T has 100% specificity for AMI whereas CK-MB and LDH have specificities of 80% and 60% respectively. The CTn-T has diagnostic efficiency of 92% for AMI but ECG has only 69% sensitivity and 80% specificity. The overall diagnostic efficacy of cardiac Troponin-T is higher than that of CK-MB, LDH and ECG (94% versus 92%, 91 % and 72

  3. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    International Nuclear Information System (INIS)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu

    2001-01-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52±15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m 2 or higher were assigned to the high dose group and those given doses under 300 mg/m 2 to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3±218.2 mg/m 2 . In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m 2 appeared to be the borderline dose beyond which there were

  4. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG.

    Science.gov (United States)

    van Dam, Peter M; Gordon, Jeffrey P; Laks, Michael M; Boyle, Noel G

    2015-01-01

    Non-invasive electrocardiographic imaging (ECGI) of the cardiac muscle can help the pre-procedure planning of the ablation of ventricular arrhythmias by reducing the time to localize the origin. Our non-invasive ECGI system, the cardiac isochrone positioning system (CIPS), requires non-intersecting meshes of the heart, lungs and torso. However, software to reconstruct the meshes of the heart, lungs and torso with the capability to check and prevent these intersections is currently lacking. Consequently the reconstruction of a patient specific model with realistic atrial and ventricular wall thickness and incorporating blood cavities, lungs and torso usually requires additional several days of manual work. Therefore new software was developed that checks and prevents any intersections, and thus enables the use of accurate reconstructed anatomical models within CIPS. In this preliminary study we investigated the accuracy of the created patient specific anatomical models from MRI or CT. During the manual segmentation of the MRI data the boundaries of the relevant tissues are determined. The resulting contour lines are used to automatically morph reference meshes of the heart, lungs or torso to match the boundaries of the morphed tissue. Five patients were included in the study; models of the heart, lungs and torso were reconstructed from standard cardiac MRI images. The accuracy was determined by computing the distance between the segmentation contours and the morphed meshes. The average accuracy of the reconstructed cardiac geometry was within 2mm with respect to the manual segmentation contours on the MRI images. Derived wall volumes and left ventricular wall thickness were within the range reported in literature. For each reconstructed heart model the anatomical heart axis was computed using the automatically determined anatomical landmarks of the left apex and the mitral valve. The accuracy of the reconstructed heart models was well within the accuracy of the used

  5. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    2001-05-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52{+-}15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m{sup 2} or higher were assigned to the high dose group and those given doses under 300 mg/m{sup 2} to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3{+-}218.2 mg/m{sup 2}. In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m{sup 2} appeared to be the borderline dose beyond

  6. in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Espen E. Spangenburg

    2011-01-01

    Full Text Available Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs. Here, we describe the utilization of the BODIPY (493/503 dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503 dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.

  7. Hydraulically actuated artificial muscles

    Science.gov (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  8. Foot muscles strengthener

    Directory of Open Access Journals (Sweden)

    Boris T. Glavač

    2012-04-01

    Full Text Available Previous experience in the correction of flat feet consisted of the use of insoles for shoes and exercises with toys, balls, rollers, inclined planes, etc. A device for strengthening foot muscles is designed for the correction of flat feet in children and, as its name suggests, for strengthening foot muscles in adults. The device is made of wood and metal, with a mechanism and technical solutions, enabling the implementation of specific exercises to activate muscles responsible for the formation of the foot arch. It is suitable for home use with controlled load quantities since it has calibrated springs. The device is patented with the Intellectual Property Office, Republic of Serbia, as a petty patent.

  9. Long-term rescue of dystrophin expression and improvement in muscle pathology and function in dystrophic mdx mice by peptide-conjugated morpholino.

    Science.gov (United States)

    Wu, Bo; Lu, Peijuan; Cloer, Caryn; Shaban, Mona; Grewal, Snimar; Milazi, Stephanie; Shah, Sapana N; Moulton, Hong M; Lu, Qi Long

    2012-08-01

    Exon skipping is capable of correcting frameshift and nonsense mutations in Duchenne muscular dystrophy. Phase 2 clinical trials in the United Kingdom and the Netherlands have reported induction of dystrophin expression in muscle of Duchenne muscular dystrophy patients by systemic administration of both phosphorodiamidate morpholino oligomers (PMO) and 2'-O-methyl phosphorothioate. Peptide-conjugated phosphorodiamidate morpholino offers significantly higher efficiency than phosphorodiamidate morpholino, with the ability to induce near-normal levels of dystrophin, and restores function in both skeletal and cardiac muscle. We examined 1-year systemic efficacy of peptide-conjugated phosphorodiamidate morpholino targeting exon 23 in dystrophic mdx mice. The LD(50) of peptide-conjugated phosphorodiamidate morpholino was determined to be approximately 85 mg/kg. The half-life of dystrophin expression was approximately 2 months in skeletal muscle, but shorter in cardiac muscle. Biweekly injection of 6 mg/kg peptide-conjugated phosphorodiamidate morpholino produced >20% dystrophin expression in all skeletal muscles and ≤5% in cardiac muscle, with improvement in muscle function and pathology and reduction in levels of serum creatine kinase. Monthly injections of 30 mg/kg peptide-conjugated phosphorodiamidate morpholino restored dystrophin to >50% normal levels in skeletal muscle, and 15% in cardiac muscle. This was associated with greatly reduced serum creatine kinase levels, near-normal histology, and functional improvement of skeletal muscle. Our results demonstrate for the first time that regular 1-year administration of peptide-conjugated phosphorodiamidate morpholino can be safely applied to achieve significant therapeutic effects in an animal model. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. The effects of 60Co γ-ray irradiation on the sterilization of ready-made traditional Chinese medicine cardiac pill

    International Nuclear Information System (INIS)

    Zou Weimin; Li Lizhu; Li Xuejun

    1989-01-01

    60 Co γ-ray irradiation and epoxy-ethane treatment were used to sterilize the cardiac pill. The results showed that 60 Co γ-ray irradiation with the dosage of 4350-13050 Gy was more effective, while the epoxy-ethane treatment was not. By analyzing the sample, the bacterial number in cardiac pill treated with epoxy-ethane was more than 10,000 cells/g. The cardiac pill, however, sterilized by 60 Co γ-ray was only 0-600 cells/g, which completely correspond to the national bacteral inspect standard. In this treatment, the pharmacological analysis was done with white mice and rabbits raised with irradiated cardiac pill. The results showed that there was no abnormality in the persistence of the cardiac muscle to anemia and resistance to abnormal rhythm of the heart

  11. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions.

    Directory of Open Access Journals (Sweden)

    Rodrigo W A Souza

    Full Text Available Heart failure (HF is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting.We employed ascending aortic stenosis (AS inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET or to an untrained group (AS-UN. At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65, MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels.Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.

  12. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  13. Reninoma presenting as cardiac syncope

    Science.gov (United States)

    Tak, Shahid I; Wani, Mohd Lateef; Khan, Khursheed A; Alai, Mohd Sultan; Shera, Altaf Hussain; Ahangar, Abdul G; Khan, Yasir Bashir; Nayeem-ul-Hassan; Irshad, Ifat

    2011-01-01

    Reninoma, a renin-secreting tumor of the juxta-glomerular cells of the kidney, is a rare but surgically treatable cause of secondary hypertension in children. We report a case of reninoma presenting as cardiac syncope with long QTc on electrocardiogram due to hypokalemia. PMID:21677812

  14. Approach to cardiac resyncronization therapy

    DEFF Research Database (Denmark)

    Dobreanu, Dan; Dagres, Nikolaos; Svendsen, Jesper Hastrup

    2012-01-01

    fibrillation and standard criteria for CRT. In 24% of the centres, biventricular pacemaker (CRT-P) is implanted in all situations, unless there is an indication for secondary prevention of sudden cardiac death, while 10% always choose to implant a biventricular defibrillator (CRT-D). There are no clear...

  15. The cardiac patient in Ramadan.

    Science.gov (United States)

    Chamsi-Pasha, Majed; Chamsi-Pasha, Hassan

    2016-01-01

    Ramadan is one of the five fundamental pillars of Islam. During this month, the majority of the 1.6 billion Muslims worldwide observe an absolute fast from dawn to sunset without any drink or food. Our review shows that the impact of fasting during Ramadan on patients with stable cardiac disease is minimal and does not lead to any increase in acute events. Most patients with the stable cardiac disease can fast safely. Most of the drug doses and their regimen are easily manageable during this month and may need not to be changed. Ramadan fasting is a healthy nonpharmacological means for improving cardiovascular risk factors. Most of the Muslims, who suffer from chronic diseases, insist on fasting Ramadan despite being exempted by religion. The Holy Quran specifically exempts the sick from fasting. This is particularly relevant if fasting worsens one's illness or delays recovery. Patients with unstable angina, recent myocardial infarction, uncontrolled hypertension, decompensated heart failure, recent cardiac intervention or cardiac surgery or any debilitating diseases should avoid fasting.

  16. Cardiac abnormalities after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Bilt, I.A.C. van der

    2016-01-01

    Aneurysmal subarachnoid hemorrhage(aSAH) is a devastating neurological disease. During the course of the aSAH several neurological and medical complications may occur. Cardiac abnormalities after aSAH are observed often and resemble stress cardiomyopathy or Tako-tsubo cardiomyopathy(Broken Heart

  17. [Acute cardiac failure in pheochromocytoma.

    DEFF Research Database (Denmark)

    Jønler, Morten; Munk, Kim

    2008-01-01

    Pheochromocytoma (P) is an endocrine catecholamine-secreting tumor. Classical symptoms like hypertension, attacks of sweating, palpitations, headache and palor are related to catecholamine discharge. We provide a case of P in a 71 year-old man presenting with acute cardiac failure, severe reduction...

  18. Response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Versteeg, Henneke; Schiffer, Angélique A; Widdershoven, Jos W

    2009-01-01

    Cardiac resynchronization therapy (CRT) is a promising treatment for a subgroup of patients with advanced congestive heart failure and a prolonged QRS interval. Despite the majority of patients benefiting from CRT, 10-40% of patients do not respond to this treatment and are labeled as nonresponders...

  19. Guide to prosthetic cardiac valves

    International Nuclear Information System (INIS)

    Morse, D.; Steiner, R.M.; Fernandez, J.

    1985-01-01

    This book contains 10 chapters. Some of the chapter titles are: The development of artificial heart valves: Introduction and historical perspective; The radiology of prosthetic heart valves; The evaluation of patients for prosthetic valve implantation; Pathology of cardiac valve replacement; and Bioengineering of mechanical and biological heart valve substitutes

  20. Automatic referral to cardiac rehabilitation.

    Science.gov (United States)

    Fischer, Jane P

    2008-01-01

    The pervasive negative impact of cardiovascular disease in the United States is well documented. Although advances have been made, the campaign to reduce the occurrence, progression, and mortality continues. Determining evidence-based data is only half the battle. Implementing new and updated clinical guidelines into daily practice is a challenging task. Cardiac rehabilitation is an example of a proven intervention whose benefit is hindered through erratic implementation. The American Association of Cardiovascular and Pulmonary Rehabilitation (AACVPR), the American College of Cardiology (ACC), and the American Heart Association (AHA) have responded to this problem by publishing the AACVPR/ACC/AHA 2007 Performance Measures on Cardiac Rehabilitation for Referral to and Delivery of Cardiac Rehabilitation/Secondary Prevention Services. This new national guideline recommends automatic referral to cardiac rehabilitation for every eligible patient (performance measure A-1). This article offers guidance for the initiation of an automatic referral system, including individualizing your protocol with regard to electronic or paper-based order entry structures.

  1. Rectus abdominis muscle endometriosis

    International Nuclear Information System (INIS)

    Goker, A.

    2014-01-01

    Endometriosis is characterized by an abnormal existence of functional endometrial tissue outside the uterine cavity, typically occuring within the pelvis of women in reproductive age. We report two cases with endometriosis of the abdominal wall; the first one in the rectus abdominis muscle and the second one in the surgical scar of previous caesarean incision along with the rectus abdominis muscle. Pre-operative evaluation included magnetic resonance imaging. The masses were dissected free from the surrounding tissue and excised with clear margins. Diagnosis of the excised lesions were verified by histopathology. (author)

  2. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

    in the structure of fibrous collagen and myofibers at high-resolution. The results demonstrate that the collagen composition in the extra cellular matrix of Gadus morhua fish muscle is much more complex than previously anticipated, as it contains type III, IV, V  and VI collagen in addition to type I. The vascular....... Consequently, functional structures, ensuring "tissue maintenance" must form a major role of connective tissue, in addition that is to the force transmitting structures one typically finds in muscle. Vascular structures have also been shown to change their mechanical properties with age and it has been shown...

  3. ALDH2 restores exhaustive exercise-induced mitochondrial dysfunction in skeletal muscle

    International Nuclear Information System (INIS)

    Zhang, Qiuping; Zheng, Jianheng; Qiu, Jun; Wu, Xiahong; Xu, Yangshuo; Shen, Weili; Sun, Mengwei

    2017-01-01

    Background: Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is highly expressed in heart and skeletal muscles, and is the major enzyme that metabolizes acetaldehyde and toxic aldehydes. The cardioprotective effects of ALDH2 during cardiac ischemia/reperfusion injury have been recognized. However, less is known about the function of ALDH2 in skeletal muscle. This study was designed to evaluate the effect of ALDH2 on exhaustive exercise-induced skeletal muscle injury. Methods: We created transgenic mice expressing ALDH2 in skeletal muscles. Male wild-type C57/BL6 (WT) and ALDH2 transgenic mice (ALDH2-Tg), 8-weeks old, were challenged with exhaustive exercise for 1 week to induce skeletal muscle injury. Animals were sacrificed 24 h post-exercise and muscle tissue was excised. Results: ALDH2-Tg mice displayed significantly increased treadmill exercise capacity compared to WT mice. Exhaustive exercise caused an increase in mRNA levels of the muscle atrophy markers, Atrogin-1 and MuRF1, and reduced mitochondrial biogenesis and fusion in WT skeletal muscles; these effects were attenuated in ALDH2-Tg mice. Exhaustive exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of Beclin1 and Bnip3; the effects of which were mitigated by ALDH2 overexpression. In addition, ALDH2-Tg reversed the increase of an oxidative stress biomarker (4-hydroxynonenal) and decreased levels of mitochondrial antioxidant proteins, including manganese superoxide dismutase and NAD(P)H:quinone oxidoreductase 1, in skeletal muscle induced by exhaustive exercise. Conclusion: ALDH2 may reverse skeletal muscle mitochondrial dysfunction due to exhaustive exercise by regulating mitochondria dynamic remodeling and enhancing the quality of mitochondria. - Highlights: • Skeletal muscle ALDH2 expression and activity declines during exhaustive exercise. • ALDH2 overexpression enhances physical performance and restores muscle

  4. Muscle force depends on the amount of transversal muscle loading.

    Science.gov (United States)

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Can cardiac surgery cause hypopituitarism?

    Science.gov (United States)

    Francis, Flverly; Burger, Ines; Poll, Eva Maria; Reineke, Andrea; Strasburger, Christian J; Dohmen, Guido; Gilsbach, Joachim M; Kreitschmann-Andermahr, Ilonka

    2012-03-01

    Apoplexy of pituitary adenomas with subsequent hypopituitarism is a rare but well recognized complication following cardiac surgery. The nature of cardiac on-pump surgery provides a risk of damage to the pituitary because the vascular supply of the pituitary is not included in the cerebral autoregulation. Thus, pituitary tissue may exhibit an increased susceptibility to hypoperfusion, ischemia or intraoperative embolism. After on-pump procedures, patients often present with physical and psychosocial impairments which resemble symptoms of hypopituitarism. Therefore, we analyzed whether on-pump cardiac surgery may cause pituitary dysfunction also in the absence of pre-existing pituitary disease. Twenty-five patients were examined 3-12 months after on-pump cardiac surgery. Basal hormone levels for all four anterior pituitary hormone axes were measured and a short synacthen test and a growth hormone releasing hormone plus arginine (GHRH-ARG)-test were performed. Quality of life (QoL), depression, subjective distress for a specific life event, sleep quality and fatigue were assessed by means of self-rating questionnaires. Hormonal alterations were only slight and no signs of anterior hypopituitarism were found except for an insufficient growth hormone rise in two overweight patients in the GHRH-ARG-test. Psychosocial impairment was pronounced, including symptoms of moderate to severe depression in 9, reduced mental QoL in 8, dysfunctional coping in 6 and pronounced sleep disturbances in 16 patients. Hormone levels did not correlate with psychosocial impairment. On-pump cardiac surgery did not cause relevant hypopituitarism in our sample of patients and does not serve to explain the psychosocial symptoms of these patients.

  6. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

    Science.gov (United States)

    Wu, Yiming; Peng, Jun; Campbell, Kenneth B; Labeit, Siegfried; Granzier, Henk

    2007-01-01

    Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin expression was determined by transcript analysis, gel electrophoresis and immunoelectron microscopy. Diastolic function was measured at the isolated heart, skinned muscle, and cardiac myocyte levels. We found that hypothyroidism resulted in expression of a large titin isoform, the abundance of which gradually increased with time to become the most dominant isoform in long-term hypothyroid rats. This isoform co-migrates on high-resolution gels with fetal cardiac titin. Transcript analysis on myocardium of long-term PTU rats, provided evidence for expression of additional PEVK and Ig domain exons, similar to what has been described in fetal myocardium. Consistent with the expression of a large titin isoform, titin-based restoring and passive forces were significantly reduced in single cardiac myocytes and muscle strips of long-term hypothyroid rats. Overall muscle stiffness and LV diastolic wall stiffness were increased, however, due to increased collagen-based stiffness. We conclude that long term hypothyroidism triggers expression of a large cardiac titin isoform and that the ensuing reduction in titin-based passive stiffness functions as a compensatory mechanism to reduce LV wall stiffness.

  7. Effects of oblique muscle surgery on the rectus muscle pulley

    International Nuclear Information System (INIS)

    Okanobu, Hirotaka; Kono, Reika; Ohtsuki, Hiroshi

    2011-01-01

    The purpose of this study was to determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys. Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated. The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p=0.0234), but weakly correlated with that of the horizontal rectus muscles. The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery. (author)

  8. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Upregulation of triglyceride synthesis in skeletal muscle overexpressing DGAT1

    OpenAIRE

    Yang, Feifei; Wei, Zhuying; Ding, Xiangbin; Liu, Xinfeng; Ge, Xiuguo; Song, Guimin; Li, Guangpeng; Guo, Hong

    2013-01-01

    The gene encoding diacylglycerol acyltransferase (DGAT1) is a functional and positional candidate gene for milk and intramuscular fat content. A bovine DGAT1 overexpression vector was constructed containing mouse MCK promoter and bovine DGAT1 cDNA. MCK-DGAT1 transgene in FVB mice was researched in present study. The transgene DGAT1 had a high level of expression in contrast to the endogenous DGAT1 in posterior tibial muscle of the transgenic mice, but a low expression level in the cardiac mus...

  10. The papillary muscles as shock absorbers of the mitral valve complex. An experimental study.

    Science.gov (United States)

    Joudinaud, Thomas M; Kegel, Corrine L; Flecher, Erwan M; Weber, Patricia A; Lansac, Emmanuel; Hvass, Ulrich; Duran, Carlos M G

    2007-07-01

    Although it is known that the papillary muscles ensure the continuity between the left ventricle (LV) and the mitral apparatus, their precise mechanism needs further study. We hypothesize that the papillary muscles function as shock absorbers to maintain a constant distance between their tips and the mitral annulus during the entire cardiac cycle. Sonomicrometry crystals were implanted in five sheep in the mitral annulus at the trigones (T1 and T2), mid anterior annulus (AA) mid posterior annulus (PA), base of the posterior lateral scallops (P1 and P2), tips of papillary muscles (M1 and M2), and LV apex. LV and aortic pressures were simultaneously recorded and used to define the different phases of the cardiac cycle. No significant distance changes were found during the cardiac cycle between each papillary muscle tip and their corresponding mitral hemi-annulus: M1-T1, (3.5+/-2%); M1-P1 (5+/-2%); M1-PA (5+/-3%); M2-T2 (2.7+/-2%); M2-P2 (6.1+/-3%); and M2-AA (4.2+/-3%); (p>0.05, ANOVA). Significant changes were observed in distances between each papillary muscle tip and the contralateral hemi-mitral annulus: M1-T2 (1.7+/-3%); M1-P2 (23+/-6%); M1-AA (6+/-3%); M2-T1 (8+/-3%); M2-P1 (10.5+/-6%); and M2-PA (12.6+/-8%); (pshock absorbers to maintain the basic mitral valve geometry constant during the cardiac cycle.

  11. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  12. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  13. MRI appearance of muscle denervation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, S. [University Hospital of Wales, Department of Radiology, Cardiff (United Kingdom); Venkatanarasimha, N.; Walsh, M.A.; Hughes, P.M. [Derriford Hospital, Department of Radiology, Plymouth (United Kingdom)

    2008-05-15

    Muscle denervation results from a variety of causes including trauma, neoplasia, neuropathies, infections, autoimmune processes and vasculitis. Traditionally, the diagnosis of muscle denervation was based on clinical examination and electromyography. Magnetic resonance imaging (MRI) offers a distinct advantage over electromyography, not only in diagnosing muscle denervation, but also in determining its aetiology. MRI demonstrates characteristic signal intensity patterns depending on the stage of muscle denervation. The acute and subacutely denervated muscle shows a high signal intensity pattern on fluid sensitive sequences and normal signal intensity on T1-weighted MRI images. In chronic denervation, muscle atrophy and fatty infiltration demonstrate high signal changes on T1-weighted sequences in association with volume loss. The purpose of this review is to summarise the MRI appearance of denervated muscle, with special emphasis on the signal intensity patterns in acute and subacute muscle denervation. (orig.)

  14. Anti-smooth muscle antibody

    Science.gov (United States)

    ... gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the presence ...

  15. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Damián Hernández

    2016-01-01

    Full Text Available Background. Human induced pluripotent stem cells (iPSCs are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.

  16. Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology.

    Science.gov (United States)

    Lovering, Ruth C; Roncaglia, Paola; Howe, Douglas G; Laulederkind, Stanley J F; Khodiyar, Varsha K; Berardini, Tanya Z; Tweedie, Susan; Foulger, Rebecca E; Osumi-Sutherland, David; Campbell, Nancy H; Huntley, Rachael P; Talmud, Philippa J; Blake, Judith A; Breckenridge, Ross; Riley, Paul R; Lambiase, Pier D; Elliott, Perry M; Clapp, Lucie; Tinker, Andrew; Hill, David P

    2018-02-01

    A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects. © 2018 The Authors.

  17. The Role of Levosimendan in Patients with Decreased Left Ventricular Function Undergoing Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Marija Bozhinovska

    2016-06-01

    Full Text Available The postoperative low cardiac output is one of the most important complications following cardiac surgery and is associated with increased morbidity and mortality. The condition requires inotropic support to achieve adequate hemodynamic status and tissue perfusion. While catecholamines are utilised as a standard therapy in cardiac surgery, their use is limited due to increased oxygen consumption. Levosimendan is calcium sensitising inodilatator expressing positive inotropic effect by binding with cardiac troponin C without increasing oxygen demand. Furthermore, the drug opens potassium ATP (KATP channels in cardiac mitochondria and in the vascular muscle cells, showing cardioprotective and vasodilator properties, respectively. In the past decade, levosimendan demonstrated promising results in treating patients with reduced left ventricular function when administered in peri- or post- operative settings. In addition, pre-operative use of levosimendan in patients with severely reduced left ventricular ejection fraction may reduce the requirements for postoperative inotropic support, mechanical support, duration of intensive care unit stay as well as hospital stay and a decrease in post-operative mortality. However, larger studies are needed to clarify clinical advantages of levosimendan versus conventional inotropes.

  18. Impairment of Excitation-Contraction Coupling in Right Ventricular Hypertrophied Muscle with Fibrosis Induced by Pulmonary Artery Banding.

    Directory of Open Access Journals (Sweden)

    Yoichiro Kusakari

    Full Text Available Interstitial myocardial fibrosis is one of the factors responsible for dysfunction of the heart. However, how interstitial fibrosis affects cardiac function and excitation-contraction coupling (E-C coupling has not yet been clarified. We developed an animal model of right ventricular (RV hypertrophy with fibrosis by pulmonary artery (PA banding in rats. Two, four, and six weeks after the PA-banding operation, the tension and intracellular Ca2+ concentration of RV papillary muscles were simultaneously measured (n = 33. The PA-banding rats were clearly divided into two groups by the presence or absence of apparent interstitial fibrosis in the papillary muscles: F+ or F- group, respectively. The papillary muscle diameter and size of myocytes were almost identical between F+ and F-, although the RV free wall weight was heavier in F+ than in F-. F+ papillary muscles exhibited higher stiffness, lower active tension, and lower Ca2+ responsiveness compared with Sham and F- papillary muscles. In addition, we found that the time to peak Ca2+ had the highest correlation coefficient to percent of fibrosis among other parameters, such as RV weight and active tension of papillary muscles. The phosphorylation level of troponin I in F+ was significantly higher than that in Sham and F-, which supports the idea of lower Ca2+ responsiveness in F+. We also found that connexin 43 in F+ was sparse and disorganized in the intercalated disk area where interstitial fibrosis strongly developed. In the present study, the RV papillary muscles obtained from the PA-banding rats enabled us to directly investigate the relationship between fibrosis and cardiac dysfunction, the impairment of E-C coupling in particular. Our results suggest that interstitial fibrosis worsens cardiac function due to 1 the decrease in Ca2+ responsiveness and 2 the asynchronous activation of each cardiac myocyte in the fibrotic preparation due to sparse cell-to-cell communication.

  19. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder.

    Science.gov (United States)

    Debashree, Bandopadhyay; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Natarajan, Archana; Christopher, Rita; Nalini, Atchayaram; Bindu, Parayil Sankaran; Gayathri, Narayanappa; Srinivas Bharath, Muchukunte Mukunda

    2018-02-09

    Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. © 2018 International Society for Neurochemistry.

  20. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    chemical structure of DAG. We took advantage of the fact that insulin sensitivity is increased after exercise, and that mice knocked out (KO) of HSL accumulate DAG after exercise, and measured insulin stimulated glucose uptake after treadmill running in skeletal muscle from HSL KO mice and wildtype control...