WorldWideScience

Sample records for delta wing vortices

  1. Effects of external influences in subsonic delta wing vortices

    Science.gov (United States)

    Washburn, Anthony E.

    1992-01-01

    An experimental investigation was conducted to examine inconsistencies in reported studies for the vortical flow over highly-swept delta wings. A 76-deg swept delta wing was tested in three facilities with open and closed test sections and different model-support systems. The results obtained include surface oil-flow patterns, off-body laser-light-sheet flow visualization, and aerodynamic load measurements. Parameters such as the wall boundaries and model-support systems can drastically alter the loads. The effect of a high level of free-stream turbulence on the delta-wing flowfield was also examined and found to be significant. The increase in free-stream turbulence caused boundary-layer transition, unsteadiness in the vortex core positions, and altered the loads and moments.

  2. Vortical flows over delta wings and numerical prediction of vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    Navier-Stokes solutions of subsonic vortical flow over a 75 deg sweep delta wing with a sharp leading edge are presented. The sensitivity of the solution to the numerical scheme is examined using both a partially upwind scheme and a scheme with central differencing in all directions. At moderate angles of attack, no vortex breakdown is observed, whereas the higher angle-of-attack cases exhibit breakdown. The effect of numerical grid density is investigated, and solutions that are obtained with various grid densities are compared with experimental data. An embedded grid approach is implemented to enable higher resolution in selected isolated flow regions, such as the leeward-side surface, the leading-edge vortical flow, and the vortex breakdown region.

  3. Breaking down the delta wing vortex: The role of vorticity in the breakdown process

    Science.gov (United States)

    Nelson, R. C.; Visser, Kenneth Dale

    1991-01-01

    Experimental x-wire measurements of the flowfield above a 70 degree and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 degrees and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown region and the amount of vorticity present appears to reach a maximum immediately preceding breakdown. The axial velocity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wing sweep or angle of attack, in direct contrast to the visible components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced to a single curve.

  4. Breaking down the delta wing vortex: The role of vorticity in the breakdown process. Ph.D. Thesis Final Report

    Science.gov (United States)

    Nelson, Robert C.; Visser, Kenneth D.

    1990-01-01

    Experimental x-wire measurements of the flowfield above a 70 and 75 deg flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 and 30 deg. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown. The axial vorticity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wind sweep or angle of attack, in direct contrast to the positive components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced into a single curve.

  5. Numerical simulation of incidence and sweep effects on delta wing vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1994-01-01

    The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.

  6. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  7. EFFECT OF SWEEP ANGLE ON THE VORTICAL FLOW OVER DELTA WINGS AT AN ANGLE OF ATTACK OF 10°

    Directory of Open Access Journals (Sweden)

    JAMES BRETT

    2014-12-01

    Full Text Available CFD simulations have been used to analyse the vortical flows over sharp edged delta wings with differing sweep angles under subsonic conditions at an angle of attack of 10°. RANS simulations were validated against experimental data for a 65° sweep wing, with a flat cross-section, and the steadiness of the flow field was assessed by comparing the results against unsteady URANS and DES simulations. To assess the effect of sweep angle on the flow field, a range of sweep angles from 65° to 43° were simulated. For moderate sweep wings the primary vortex was observed to detach from the leading edge, undergoing vortex breakdown, and a weaker, replacement, "shadow" vortex was formed. The shadow vortex was observed for sweep angles of 50° and less, and resulted in reduced lift production near the wing tips loss of the stronger primary vortex.

  8. Navier-Stokes prediction of a delta wing in roll with vortex breakdown

    Science.gov (United States)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1993-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate vortical flow about a 65 degree sweep delta wing. Subsonic turbulent flow computations are presented for this delta wing at 30 degrees angle of attack and static roll angles up to 42 degrees. This work is part of an on going effort to validate the RANS approach for predicting high-incidence vortical flows, with the eventual application to wing rock. The flow is unsteady and includes spiral-type vortex breakdown. The breakdown positions, mean surface pressures, rolling moments, normal forces, and streamwise center-of-pressure locations compare reasonably well with experiment. In some cases, the primary vortex suction peaks are significantly underpredicted due to grid coarseness. Nevertheless, the computations are able to predict the same nonlinear variation of rolling moment with roll angle that appeared in the experiment. This nonlinearity includes regions of local static roll instability, which is attributed to vortex breakdown.

  9. Flow structures in end-view plane of slender delta wing

    Directory of Open Access Journals (Sweden)

    Sahin Besir

    2017-01-01

    Full Text Available Present investigation focuses on unsteady flow structures in end-view planes at the trailing edge of delta wing, X/C=1.0, where consequences of vortex bursting and stall phenomena vary according to angles of attack over the range of 25° ≤ α ≤ 35° and yaw angles, β over the range of 0° ≤ β ≤ 20°. Basic features of counter rotating vortices in end-view planes of delta win with 70° sweep angle, Λ are examined both qualitatively and quantitatively using Rhodamine dye and the PIV system. In the light of present experiments it is seen that with increasing yaw angle, β symmetrical flow structure is disrupted continuously. Dispersed wind-ward side leading edge vortices cover a large part of flow domain, on the other hand, lee-ward side leading edge vortices cover only a small portion of flow domain.

  10. Numerical modeling of the vortex breakdown phenomenon on a delta wing with trailing-edge jet-flap

    International Nuclear Information System (INIS)

    Kyriakou, Marilena; Missirlis, Dimitrios; Yakinthos, Kyros

    2010-01-01

    The flow development over delta wings is highly complicated since the interaction of the angle of attack with the delta-wing geometry leads to the appearance of a pair of well-organized counter-rotating leading-edge vortical structures. For relatively moderate angles of attack, these vortices remain robust and contribute to the enhancement of the overall lift performance. However, at higher angles of attack the vortices develop instabilities leading to the well-known vortex breakdown phenomenon, resulting in a deterioration of the aerodynamic properties. Thus, delaying vortex breakdown at higher angles of attack, is important and for this reason various techniques have been developed to control the breakdown mechanism. Such a technique is the use of trailing-edge jet-flaps. In the present work, an attempt to model the vortex breakdown together with its control, above a delta wing at high angles of attack, for cases with and without a trailing-edge jet-flap, is presented. To model the turbulent stresses, the low-Reynolds-number stress-omega model was used. The computational results were in good agreement with the available experimental data regarding the prediction of the onset of vortex breakdown and showed that the use of jet-flaps can lead to a significant delay of the breakdown process.

  11. Experimental study of flow field distribution over a generic cranked double delta wing

    Directory of Open Access Journals (Sweden)

    Mojtaba Dehghan Manshadi

    2016-10-01

    Full Text Available The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely “sharp” and “round”, were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 × 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.

  12. Aerodynamic improvement of a delta wing in combination with leading edge flaps

    Directory of Open Access Journals (Sweden)

    Tadateru Ishide

    2017-11-01

    Full Text Available Recently, various studies of micro air vehicle (MAV and unmanned air vehicle (UAV have been reported from wide range points of view. The aim of this study is to research the aerodynamic improvement of delta wing in low Reynold’s number region to develop an applicative these air vehicle. As an attractive tool in delta wing, leading edge flap (LEF is employed to directly modify the strength and structure of vortices originating from the separation point along the leading edge. Various configurations of LEF such as drooping apex flap and upward deflected flap are used in combination to enhance the aerodynamic characteristics in the delta wing. The fluid force measurement by six component load cell and particle image velocimetry (PIV analysis are performed as the experimental method. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated.

  13. Flow over 50º Delta Wings with Different Leading-Edge Radii

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2011-01-01

    The experimental study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model has a sharp leading edge and two other have a semi-circular leading edge of different radius. The vortical flow on and off the surface of the

  14. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  15. VORTICAL MODEL OF THE WING COVERED WITH CONTINUOUSLY DISTRIBUTED CIRCULATION OF THE VORTICAL LAYER

    Directory of Open Access Journals (Sweden)

    B. L. Artamonov

    2014-01-01

    Full Text Available The linear vortical model ot the final scope of a wing is exsamined. It representis the flat rectangular spatial veil covered with continuously distributed vortical layer. Elements of digitization of a veil are the quadrangular panels laying on its surface. Method, algorithms and the program of calculation of three making vectors of inductive speed from any guided rectangular platform covered with a vortical layer are created. Its intensity linearly changes on the surface of a platform. The decision is received in elementary functions. The numerical way solves the task of a definition of the law of circulation of the attached whirlwinds in scope of a wing and calculation of its aerodynamic characteristics, being based on the accepted vortical model and a hypothesis of flat sections.

  16. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.

    Science.gov (United States)

    Zhao, Liang; Deng, Xinyan; Sane, Sanjay P

    2011-09-01

    In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.

  17. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  18. Adaptive computations of flow around a delta wing with vortex breakdown

    Science.gov (United States)

    Modiano, David L.; Murman, Earll M.

    1993-01-01

    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  19. Static and Dynamic Flow Visualization Studies of Two Double-Delta Wing Models at High Angles of Attack

    Science.gov (United States)

    1992-03-01

    body, ft U.= free-stream velocity, ft/sec In the case of a wing pitching about its mid-chord location, it can be interpreted as the ratio of the...Over Moderately Swept Delta Wings," HTP -5 Workshop On Vortical Flow Breakdown and Structural Interactions, NASA Langley Research Center, August 15-16...January 6- 9,1992/Reno,Nevada. 18. User’s Manual , Flow Visualization Water Tunnel Operation for Model 1520, Eidelic International, Inc., Torrance

  20. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    Science.gov (United States)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  1. CFD simulations of steady flows over the IAR 65o delta wing

    International Nuclear Information System (INIS)

    Benmeddour, A.; Mebarki, Y.; Huang, X.Z.

    2004-01-01

    Computational Fluid Dynamics (CFD) studies have been conducted to simulate vortical flows around the IAR 65 o delta wing with a sharp leading edge. The effects of the centerbody on the aerodynamic characteristics of the wing are also investigated. Two flow solvers have been employed to compute steady inviscid flows over with and without centerbody configurations of the wing. These two solvers are an IAR in-house code, FJ3SOLV, and the CFD-FASTRAN commercial software. The computed flow solutions of the two solvers have been compared and correlated against the IAR wind tunnel data, including Pressure Sensitive Paint (PSP) measurements. The major features of the primary vortex have been well captured and overall reasonable accuracy was obtained. In accordance with the experimental observations for the flow conditions considered, the CFD computations revealed no major global effects of the centerbody on the surface pressure distributions of the wing and on the lift coefficient. However, CFD-FASTRAN seems to predict a vortex breakdown, which is neither predicted by FJ3SOLV nor observed in the wind tunnel for the flow conditions considered. (author)

  2. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3 is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  3. Flow structure and vorticity transport on a plunging wing

    Science.gov (United States)

    Eslam Panah, Azar

    circulation, in magnitude, as the leading-edge shear layer flux. A small but non-negligible vorticity source was also attributed to spanwise flow toward the end of the downstroke. Preliminary measurements of the structure and dynamics of the leading-edge vortex (LEV) are also investigated for plunging finite-aspect-ratio wings at a chord Reynolds number of 10,000 while varying aspect ratio and root boundary condition. Stereoscopic particle image velocimetry (SPIV) measurements are used to characterize LEV dynamics and interactions with the plate in multiple chordwise planes. The relationship between the vorticity field and the spanwise flow field over the wing, and the influence of root boundary conditions on these quantities has been investigated. The viscous symmetry plane is found to influence this flow field, in comparison to other studies YiRo:2010,Vi:2011b,CaWaGuVi:2012, by influencing tilting of the LEV near the symmetry wall, and introducing a corewise root-to-tip flow near the symmetry plane. Modifications in the root boundary conditions are found to significantly affect this. LEV circulations for the different aspect ratio plates are also compared. At the bottom of the downstroke, the maximum circulation is found at the middle of the semi-span in each case. The circulation of the sAR=2 wing is found to significantly exceed that of the sAR=1 wing and, surprisingly, the maximum circulation value is found to be independent of root boundary conditions for thesAR=2 case and also closely matched that of the quasi-2D case. Furthermore, the 3-D flow field of a finite wing ofsAR=2 was characterized using three-dimensional reconstructions of planar PIV data after minimizing the gap between the plunging plate and the top stationary wall. The LEV on the finite wing rapidly evolved into an arch structure centered at approximately the 50% spanwise position, similar to previous observations by Calderon et al., and Yilmaz and Rockwell. At that location, the circulation contribution

  4. Investigation of vortex breakdown on a delta wing using Euler and Navier-Stokes equations

    Science.gov (United States)

    Agrawal, S.; Barnett, R. M.; Robinson, B. A.

    1991-01-01

    A numerical investigation of leading edge vortex breakdown in a delta wing at high angles of attack is presented. The analysis was restricted to low speed flows on a flat plate wing with sharp leading edges. Both Euler and Navier-Stokes equations were used and the results were compared with experimental data. Predictions of vortex breakdown progression with angle of attack with both Euler and Navier-Stokes equations are shown to be consistent with the experimental data. However, the Navier-Stokes predictions show significant improvements in breakdown location at angles of attack where the vortex breakdown approaches the wing apex. The predicted trajectories of the primary vortex are in very good agreement with the test data, the laminar solutions providing the overall best comparison. The Euler shows a small displacement of the primary vortex, relative to experiment, due to the lack of secondary vortices. The turbulent Navier-Stokes, in general, fall between the Euler and laminar solutions.

  5. Experimental transonic flutter characteristics of two 72 deg-sweep delta-wing models

    Science.gov (United States)

    Doggett, Robert V., Jr.; Soistmann, David L.; Spain, Charles V.; Parker, Ellen C.; Silva, Walter A.

    1989-01-01

    Transonic flutter boundaries are presented for two simple, 72 deg. sweep, low-aspect-ratio wing models. One model was an aspect-ratio 0.65 delta wing; the other model was an aspect-ratio 0.54 clipped-delta wing. Flutter boundaries for the delta wing are presented for the Mach number range of 0.56 to 1.22. Flutter boundaries for the clipped-delta wing are presented for the Mach number range of 0.72 to 0.95. Selected vibration characteristics of the models are also presented.

  6. Delayed detached-eddy simulation of vortex breakdown over a 70 .deg. delta wing

    International Nuclear Information System (INIS)

    Son, Mi So; Sa, Jeong Hwan; Park, Soo Hyung; Byun, Yung Hwan; Cho, Kum Won

    2015-01-01

    To investigate the vortex breakdown over the ONERA70 delta wing at an angle-of-attack of 27 .deg., unsteady simulations were performed using Reynolds-averaged Navier-Stokes and Spalart-Allmaras delayed detached-eddy simulations. A low-diffusive preconditioned Roe scheme with third-order MUSCL interpolation scheme was applied, along with second-order dual-time stepping combined with diagonalized alternating direction implicit method for unsteady simulation. Vortex breakdown was investigated through an examination of total pressure loss, axial velocity, and axial vorticity around the primary vortex. Delayed dtached-eddy simulation provided good agreement with experimental data and predicted all physical phenomena related to vortex breakdown well.

  7. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    Science.gov (United States)

    Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.

    2017-03-01

    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.

  8. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  9. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows

    Science.gov (United States)

    Wood, R. M.; Miller, D. S.

    1985-01-01

    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  10. Numerical simulation of the effects of variation of angle of attack and sweep angle on vortex breakdown over delta wings

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    In the present investigation of the vortical flowfield structure over delta wings at high angles of attack, three-dimensional Navier-Stokes numerical simulations were conducted to predict the complex leeward flowfield characteristics; these encompass leading-edge separation, secondary separation, and vortex breakdown. Attention is given to the effect on solution accuracy of circumferential grid-resolution variations in the vicinity of the wing leading edge, and well as to the effect of turbulence modeling on the solutions. When a critical angle-of-attack was reached, bubble-type vortex breakdown was found. With further angle-of-attack increase, a change from bubble-type to spiral-type vortex breakdown was predicted by the numerical solution.

  11. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    Science.gov (United States)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  12. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore

    2016-01-01

    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...

  13. Reactive Flow Control of Delta Wing Vortex (Postprint)

    Science.gov (United States)

    2006-08-01

    wing aircraft. A substantial amount of research has been dedicated to the control of aerodynamic flows using both passive and active control mechanisms...Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...leading edges is also effective for changing the aerodynamic characteristics of delta wings [2] [3]. Gutmark and Guillot [5] proposed controlling

  14. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    Science.gov (United States)

    Horstmann, Jan T; Henningsson, Per; Thomas, Adrian L R; Bomphrey, Richard J

    2014-01-01

    Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV) of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body), angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  15. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    Directory of Open Access Journals (Sweden)

    Jan T Horstmann

    Full Text Available Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body, angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  16. The role of flow field structure in determining the aerodynamic response of a delta wing

    Science.gov (United States)

    Addington, Gregory Alan

    Delta wings have long been known to exhibit nonlinear aerodynamic responses as a result of the presence of helical leading-edge vortices. This nonlinearity, found under both steady-state and unsteady conditions, is particularly profound in the presence of vortex burst. Modeling such aerodynamic responses with the Nonlinear Indicial Response (NIR) methodology provides a means of simulating these nonlinearities through its inclusion of motion history in addition to superposition. The NIR model also includes provisions for a finite number of discrete locations where the aerodynamic response is discontinuous with response to a state variable. These critical states also separate regions of states where the unsteady aerodynamic responses are potentially of highly-disparate characters. Although these critical states have been found in the past, their relationship with flow field bifurcation is uncertain. The purpose of this dissertation is to explore the relationship between nonlinear aerodynamic responses, critical states and flow field bifurcations from an experimental approach. This task has been accomplished by comparing a comprehensive database of skin-friction line topologies with static and unsteady aerodynamic responses. These data were collected using a 65sp° delta wing which rolled about an inclined longitudinal body axis. In this study, compelling, but not conclusive, evidence was found to suggest that a bifurcation in the skin-friction line topology was a necessary condition for the presence of a critical state. Although the presence of critical states was well predicted through careful observation and analysis of highly-resolved static loading data alone, their precise placement as a function of the independent variable was aided through the consideration of the locations of skin-friction line bifurcations. Furthermore, these static data were found to contain indications of the basic lagged or unlagged behavior of the unsteady aerodynamic response. This

  17. Investigation of vortex breakdown on delta wings using Navier-Stokes equations

    Science.gov (United States)

    Hsu, C.-H.; Liu, C. H.

    1992-01-01

    An efficient finite-difference scheme solving for the three-dimensional incompressible Navier-Stokes equations is described. Numerical simulations of vortex breakdown are then carried out for a sharp-edged delta wing and a round-edged double-delta wing at high Reynolds numbers. Computed results show that several major features of vortex breakdown are qualitatively in agreement with observations made in experiments.

  18. On the structure, interaction, and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.; Schreiner, John A.; Rogers, Lawrence W.

    1989-01-01

    Slender wing vortex flows at subsonic, transonic, and supersonic speeds were investigated in a 6 x 6 ft wind tunnel. Test data obtained include off-body and surface flow visualizations, wing upper surface static pressure distributions, and six-component forces and moments. The results reveal the transition from the low-speed classical vortex regime to the transonic regime, beginning at a freestream Mach number of 0.60, where vortices coexist with shock waves. It is shown that the onset of core breakdown and the progression of core breakdown with the angle of attack were sensitive to the Mach number, and that the shock effects at transonic speeds were reduced by the interaction of the wing and the lead-edge extension (LEX) vortices. The vortex strengths and direct interaction of the wing and LEX cores (cores wrapping around each other) were found to diminish at transonic and supersonic speeds.

  19. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  20. Prediction of vortex breakdown on a delta wing

    Science.gov (United States)

    Agrawal, S.; Robinson, B. A.; Barnett, R. M.

    1992-01-01

    Recent studies of leading-edge vortex flows with computational fluid dynamics codes using Euler or Navier-Stokes formulations have shown fair agreement with experimental data. These studies have concentrated on simulating the flowfields associated with a sharp-edged flat plate 70 deg delta wing at angles of attack where vortex breakdown or burst is observed over the wing. There are, however, a number of discrepancies between the experimental data and the computed flowfields. The location of vortex breakdown in the computational solutions is seen to differ from the experimental data and to vary with changes in the computational grid and freestream Mach number. There also remain issues as to the validity of steady-state computations for cases which contain regions of unsteady flow, such as in the post-breakdown regions. As a partial response to these questions, a number of laminar Navier-Stokes solutions were examined for the 70 deg delta wing. The computed solutions are compared with an experimental database obtained at low subsonic speeds. The convergence of forces, moments and vortex breakdown locations are also analyzed to determine if the computed flowfields actually reach steady-state conditions.

  1. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    OpenAIRE

    Shabudin Mat; I. S. Ishak; Tholudin Mat Lazim; Shuhaimi Mansor; Mazuriah Said; Abdul Basid Abdul Rahman; Ahmad Shukeri Mohd. Kamaludim; Romain Brossay

    2014-01-01

    This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST). Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also per...

  2. Effect of Thickness-to-Chord Ratio on Flow Structure of Low Swept Delta Wing

    Science.gov (United States)

    Gulsacan, Burak; Sencan, Gizem; Yavuz, Mehmet Metin

    2017-11-01

    The effect of thickness-to-chord (t/C) ratio on flow structure of a delta wing with sweep angle of 35 degree is characterized in a low speed wind tunnel using laser illuminated smoke visualization, particle image velocimetry, and surface pressure measurements. Four different t/C ratio varying from 4.75% to 19% are tested at angles of attack 4, 6, 8, and 10 degrees for Reynolds numbers Re =10,000 and 35,000. The results indicate that the effect of thickness-to-chord ratio on flow structure is quite substantial, such that, as the wing thickness increases, the flow structure transforms from leading edge vortex to three-dimensional separated flow regime. The wing with low t/C ratio of 4.75% experiences pronounced surface separation at significantly higher angle of attack compared to the wing with high t/C ratio. The results might explain some of the discrepancies reported in previously conducted studies related to delta wings. In addition, it is observed that the thickness of the shear layer separated from windward side of the wing is directly correlated with the thickness of the wing. To conclude, the flow structure on low swept delta wing is highly affected by t/C ratio, which in turn might indicate the potential usage of wing thickness as an effective flow control parameter.

  3. Wing rock suppression using forebody vortex control

    Science.gov (United States)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  4. Aerodynamic Interaction between Delta Wing and Hemisphere-Cylinder in Supersonic Flow

    Science.gov (United States)

    Nishino, Atsuhiro; Ishikawa, Takahumi; Nakamura, Yoshiaki

    As future space vehicles, Reusable Launch Vehicle (RLV) needs to be developed, where there are two kinds of RLV: Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO). In the latter case, the shock/shock interaction and shock/boundary layer interaction play a key role. In the present study, we focus on the supersonic flow field with aerodynamic interaction between a delta wing and a hemisphere-cylinder, which imitate a TSTO, where the clearance, h, between the delta wing and hemisphere-cylinder is a key parameter. As a result, complicated flow patterns were made clear, including separation bubbles.

  5. Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.

  6. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 2nd Report. Behavior of the interacting flow field controlled passively; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 2. Judo seigyosareta nagareba no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents the behavior of a passively controlled horseshoe vortex at the root of NACA0024 wing which is established on a turbulent boundary layer, A pair of vortex generators of half delta wing is installed upstream of the wing. The flow field of the optimally controlled horseshoe vortex both in case of Common Flow Up (CFUC) and Common Flow Down Configuration (CFDC) is carefully investigated by an X-array hot-wire. In case of CFUC, the horseshoe vortex is not shifted from the wing, because the longitudinal vortex is restrained. The interacted vortex presents a circular profile, in a optimally controlled case. In case of CFDC, the interacted vortex that has strong vorticity by the pairing process is shifted away from the wing. Then, the high momentum fluid flow penetrates between the wing and the vortex. (author)

  7. Aerodynamics and vortical structures in hovering fruitflies

    Science.gov (United States)

    Meng, Xue Guang; Sun, Mao

    2015-03-01

    We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.

  8. Time Accurate Euler Calculations of Vortical Flow over a Delta Wing in Rolling Motion

    National Research Council Canada - National Science Library

    Fritz, W

    2003-01-01

    .... An important component of the program were the Common Exercises (CE), which promoted the exchange of knowledge between the participating nations and aided the development of computational methods to predict vortical flows...

  9. All-theoretical prediction of cabin noise due to impingement of propeller vortices on a wing structure

    Science.gov (United States)

    Martinez, R.; Cole, J. E., III; Martini, K.; Westagard, A.

    1987-01-01

    Reported calculations of structure-borne cabin noise for a small twin engine aircraft powered by tractor propellers rely on the following three-stage methodological breakup of the problem: (1) the unsteady-aerodynamic prediction of wing lift harmonics caused by the whipping action of the vortex system trailed from each propeller; (2) the associated wing/fuselage structural response; (3) the cabin noise field for the computed wall vibration. The first part--the estimate of airloads--skirts a full-fledged aeroelastic situation by assuming the wing to be fixed in space while cancelling the downwash field of the cutting vortices. The model is based on an approximate high-frequency lifting-surface theory justified by the blade rate and flight Mach number of application. Its results drive a finite-element representation of the wing accounting for upper and lower skin surfaces, spars, ribs, and the presence of fuel. The fuselage, modeled as a frame-stiffened cylindrical shell, is bolted to the wing.

  10. Large CYBER-205-model of the Euler equations for vortex-stretched turbulent flow around Delta wings

    International Nuclear Information System (INIS)

    Rizzi, A.; Purcell, C.J.

    1985-01-01

    The large-scale numerical simulation of fluid flow is described as a discipline within the field of software engineering. As an example of such work, a vortex flow field is analyzed for its essential physical flow features, an appropriate mathematical description is presented (the Euler equations with an artificial viscosity model), a numerical algorithm to solve mathematical equations is described, and the programming methodology which allows us to attain a very high degree of vectorization on the CYBER 205 is discussed. Four simulated flowfields with vorticity shed from wing edges are computed with up to as many as one million grid points and verify the realism of the simulation model. The computed solutions show all of the qualitative features that are expected in these flows. The twisted cranked-and-cropped delta case is one where the leading-edge vortex is highly stretched and unstable, displaying ultimately inviscid large-scale turbulent-like phenomena

  11. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    Science.gov (United States)

    Lentink, David; Dickinson, Michael H

    2009-08-01

    . We calculated the Rossby number from single-wing aspect ratios of over 300 insects, birds, bats, autorotating seeds, and pectoral fins of fish. We found that, on average, wings and fins have a Rossby number close to that of flies (Ro=3). Theoretically, many of these animals should therefore be able to generate a stable LEV, a prediction that is supported by recent findings for several insects, one bat, one bird and one fish. This suggests that force augmentation through stably attached (leading edge) vortices could represent a convergent solution for the generation of high fluid forces over a quite large range in size.

  12. IMPROVING THE AERODYNAMICS OF A TRANSPORT AIRCRAFT WING USING A DELTA PLANFORM WINGTIP LEADING EDGE EXTENSION

    Directory of Open Access Journals (Sweden)

    D. Gueraiche

    2018-01-01

    Full Text Available The article explores the possibility of improving the aerodynamic properties of a supercritical-airfoil wing, typical for a modern passenger aircraft, using delta planform passive devices of large relative areas, installed along the leading edge at the wing tip. Delta extensions of various configurations were considered to be used as wingtip devices, potentially improving or completely replacing classical R. Whitcomb winglets. As a result of two- and three-dimensional CFD simulations performed on DLR-F4 wing-body prototype, the potential advantage of these devices was confirmed, particularly when they are installed in a combination with an elliptical planform, largely swept, raked winglet in terms of reducing the induced drag and increasing the aerodynamic lift-to-drag ratio at flight angles of attack. The growth in lift-to-drag ratio applying these devices owes it solely to the drop in drag, without increasing the lift force acting on the wing. In comparison to the classical winglets that lead to a general increase in lifting and lateral forces acting on the wing structure, resulting in a weight penalty, the Wingtip Ledge Edge Triangular Extension (WLETE yields the same L/D ratio increase, but with a much smaller increase in the wing loading. A study has been made of the characteristics of the local (modified airfoil in the WLETE zone in a two-dimensional flow context, and a quantitative analysis has been conducted of the influence of WLETE on both the profile and induced drag components, as well as its influence on the overall lift coefficient of the wing. The resulted synthesis of the WLETE influence on the wing L/D ratio will consist of its influence on each of these components. A comparison of the efficiency of using delta extensions against classical winglets was carried out in a multidisciplinary way, where in addition to the changes in aerodynamic coefficients of lift and drag, the increments of magnitude and distribution of the loads

  13. Multi-cell vortices observed in fine-mesh solutions to the incompressible Euler equations

    International Nuclear Information System (INIS)

    Rizzi, A.

    1986-01-01

    Results are presented for a three dimensional flow, containing a vortex sheet shed from a delta wing. The numerical solution indicates that the shearing caused by the trailing edge of the wing set up a torsional wave on the vortex core and produces a structure with multiple cells of vorticity. Although observed in coarse grid solutions too, this effect becomes better resolved with mesh refinement to 614 000 grid volumes. In comparison with a potential solution in which the vortex sheet is fitted as a discontinuity, the results are analyzed for the position of the vortex features captured in the Euler flow field, the accuracy of the pressure field, and for the diffusion of the vortex sheets

  14. Experimental Investigations on Leading-Edge Vortex Structures for Flow over Non-Slender Delta Wings

    International Nuclear Information System (INIS)

    Jin-Jun, Wang; Wang, Zhang

    2008-01-01

    The dye injection and hydrogen bubble visualization techniques are used to investigate the dual-vortex structure including its development, breakdown and the spatial location of vortex core over nonslender delta wings. It is concluded that the dual-vortex structure can be affected significantly by sweep angle and Reynolds number, and generated only at small angle of attack. The angle between the projection of outer vortex core on delta wing surface and the root chord line has nothing to do with the Reynolds Number and angle of attack, but has simple linear relation with the sweep angle of the model tested. (fundamental areas of phenomenology (including applications))

  15. Aerodynamic control of NASP-type vehicles through vortex manipulation. Volume 3: Wing rock experiments

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  16. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  17. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    Science.gov (United States)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  18. Characterization and Control of Vortex Breakdown over a Delta Wing at High Angles of Attack

    National Research Council Canada - National Science Library

    Mitchell, Anthony

    2000-01-01

    .... The goal of this research is the control of leading-edge vortex breakdown by open-loop, along-the-core blowing near the apex of a delta wing to improve lift and maneuverability at high angles of attack...

  19. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  20. Computational Fluid Dynamics Investigation of Vortex Breakdown for a Delta Wing at High Angle of Attack

    National Research Council Canada - National Science Library

    Freeman, Jacob

    2003-01-01

    ... (a) in preparation for investigation of active control of vortex breakdown using steady, along- core blowing A flat delta-shaped half-wing with sharp leading edge and sweep angle of 600 was modeled...

  1. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  2. Twin Tail/Delta Wing Configuration Buffet Due to Unsteady Vortex Breakdown Flow

    Science.gov (United States)

    Kandil, Osama A.; Sheta, Essam F.; Massey, Steven J.

    1996-01-01

    The buffet response of the twin-tail configuration of the F/A-18 aircraft; a multidisciplinary problem, is investigated using three sets of equations on a multi-block grid structure. The first set is the unsteady, compressible, full Navier-Stokes equations. The second set is the coupled aeroelastic equations for bending and torsional twin-tail responses. The third set is the grid-displacement equations which are used to update the grid coordinates due to the tail deflections. The computational model consists of a 76 deg-swept back, sharp edged delta wing of aspect ratio of one and a swept-back F/A-18 twin-tails. The configuration is pitched at 32 deg angle of attack and the freestream Mach number and Reynolds number are 0.2 and 0.75 x 10(exp 6) respectively. The problem is solved for the initial flow conditions with the twin tail kept rigid. Next, the aeroelastic equations of the tails are turned on along with the grid-displacement equations to solve for the uncoupled bending and torsional tails response due to the unsteady loads produced by the vortex breakdown flow of the vortex cores of the delta wing. Two lateral locations of the twin tail are investigated. These locations are called the midspan and inboard locations.

  3. Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.

  4. Effect of a Finite Trailing Edge Thickness on the Drag of Rectangular and Delta Wings at Supersonic Speeds

    National Research Council Canada - National Science Library

    Klunker, E

    1952-01-01

    The effect of a finite trailing-edge thickness on the pressure drag of rectangular and delta wings with truncated diamond-shaped airfoil sections with a given thickness ratio is studied for supersonic...

  5. Evaluation of Aircraft Wing-Tip Vortex Using PIV

    Science.gov (United States)

    Alsayed, Omer A.; Asrar, Waqar; Omar, Ashraf A.

    2010-06-01

    The formation and development of a wing-tip vortex in a near and extended near filed were studied experimentally. Particle image velocimetry was used in a wind tunnel to measure the tip vortex velocity field and hence investigate the flow structure in a wake of aircraft half-wing model. The purpose of this investigation is to evaluate the main features of the lift generated vortices in order to find ways to alleviate hazardous wake vortex encounters for follower airplanes during start and approach such that the increase in airport capacity can be achieved. First the wake structure at successive downstream planes crosswise to the axis of the wake vortices was investigated by measuring parameters such as core radius, maximum tangential velocities, vorticities and circulation distributions. The effect of different angles of attack setting on vortex parameters was examined at one downstream location. In very early stages the vortex sheet evolution makes the tip vortex to move inward and to the suction side of the wing. While the core radius and circulation distributions hardly vary with the downstream distance, noticeable differences for the same vortex parameters at different angles of attack settings were observed. The center of the wing tip vortices scatter in a circle of radius nearly equal to 1% of the mean wing chord and wandering amplitudes shows no direct dependence on the vortex strength but linearly increase with the downstream distance.

  6. Flow around a corrugated wing over the range of dragonfly flight

    Science.gov (United States)

    Padinjattayil, Sooraj; Agrawal, Amit

    2017-11-01

    The dragonfly flight is very much affected by the corrugations on their wings. A PIV based study is conducted on a rigid corrugated wing for a range of Reynolds number 300-12000 and three different angles of attack (5°-15°) to understand the mechanism of dragonfly flight better. The study revealed that the shape of the corrugation plays a key role in generating vortices. The vortices trapped in the valleys of corrugation dictates the shape of a virtual airfoil around the corrugated wing. A fluid roller bearing effect is created over the virtual airfoil when the trapped vortices merge with each other. A travelling wave produced by the moving virtual boundary around the fluid roller bearings avoids the formation of boundary layer on the virtual surface, thereby leading to high aerodynamic performance. It is found that the lift coefficient increases as the number of vortices increases on the suction surface. Also, it is shown that the partially merged co- rotating vortices give higher lift as compared to fully merged vortices. Further, the virtual airfoil formed around the corrugated wing is compared with a superhydrophobic airfoil which exhibits slip on its surface; several similarities in their flow characteristics are observed. The corrugated airfoil performs superior to the superhydrophobic airfoil in the aerodynamic efficiency due to the virtual slip caused by the travelling wave.

  7. An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack

    International Nuclear Information System (INIS)

    Aris, M.S.; McGlen, R.; Owen, I.; Sutcliffe, C.J.

    2011-01-01

    Forced air convection heat pipe cooling systems play an essential role in the thermal management of electronic and power electronic devices such as microprocessors and IGBT's (Integrated Gate Bipolar Transistors). With increasing heat dissipation from these devices, novel methods of improving the thermal performance of fin stacks attached to the heat pipe condenser section are required. The current work investigates the use of a wing type surface protrusions in the form of 3-D delta wing tabs adhered to the fin surface, thin wings punched-out of the fin material and TiNi shape memory alloy delta wings which changed their angles of attack based on the fin surface temperature. The longitudinal vortices generated from the wing designs induce secondary mixing of the cooler free stream air entering the fin stack with the warmer fluid close to the fin surfaces. The change in angle of the attack of the active delta wings provide heat transfer enhancement while managing flow pressure losses across the fin stack. A heat transfer enhancement of 37% compared to a plain fin stack was obtained from the 3-D tabs in a staggered arrangement. The punched-out delta wings in the staggered and inline arrangements provided enhancements of 30% and 26% respectively. Enhancements from the active delta wings were lower at 16%. However, as these devices reduce the pressure drop through the fin stack by approximately 19% in the de-activate position, over the activated position, a reduction in fan operating cost may be achieved for systems operating with inlet air temperatures below the maximum inlet temperature specification for the device. CFD analysis was also carried out to provide additional detail of the local heat transfer enhancement effects. The CFD results corresponded well with previously published reports and were consistent with the experimental findings. - Highlights: → Heat transfer enhancements of heat pipe fin stacks was successfully achieved using fixed and active delta

  8. Three-dimensional vortex wake structure of flapping wings in hovering flight.

    Science.gov (United States)

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan

    2014-02-06

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

  9. A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.

  10. Forewings match the formation of leading-edge vortices and dominate aerodynamic force production in revolving insect wings.

    Science.gov (United States)

    Chen, Di; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Liu, Hao

    2017-10-20

    In many flying insects, forewings and hindwings are coupled mechanically to achieve flapping flight synchronously while being driven by action of the forewings. How the forewings and hindwings as well as their morphologies contribute to aerodynamic force production and flight control remains unclear yet. Here we demonstrate that the forewings can produce most of the aerodynamic forces even with the hindwings removed through a computational fluid dynamic study of three revolving insect wing models, which are identical to the wing morphologies and Reynolds numbers of hawkmoth (Manduca sexta), bumblebee (Bombus ignitus) and fruitfly (Drosophila melanogaster). We find that the forewing morphologies match the formation of leading-edge vortices (LEV) and are responsible for generating sufficient lift forces at the mean angles of attack and the Reynolds numbers where the three representative insects fly. The LEV formation and pressure loading keep almost unchanged with the hindwing removed, and even lead to some improvement in power factor and aerodynamic efficiency. Moreover, our results indicate that the size and strength of the LEVs can be well quantified with introduction of a conical LEV angle, which varies remarkably with angles of attack and Reynolds numbers but within the forewing region while showing less sensitivity to the wing morphologies. This implies that the forewing morphology very likely plays a dominant role in achieving low-Reynolds number aerodynamic performance in natural flyers as well as in revolving and/or flapping micro air vehicles. © 2017 IOP Publishing Ltd.

  11. Trailing vortices from low speed flyers

    Science.gov (United States)

    Waldman, Rye; Kudo, Jun; Breuer, Kenneth

    2009-11-01

    The structure and strength of the vortex wake behind a airplane or animal flying with a fixed or flapping wing contains valuable information about the aerodynamic load history. However, the amount of vorticity measured in the trailing vortex is not always in agreement with the known lift generated, and the behavior of these vortices at relatively low Reynolds numbers is also not well-understood. We present the results from a series of wind tunnel PIV experiments conducted behind a low-aspect ratio rectangular wing at a chord-Reynolds numbers of 30,000. In addition to wake PIV measurements measured in the cross-stream (Trefftz) plane, we measure the lift and drag directly using a six-axis force-torque transducer. We discuss how vortex size, shape, strength and position vary in time and downstream location, as well as the challenges associated with the use of PIV wake measurements to accurate determine aerodynamic forces.

  12. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  13. The role of vortices in animal locomotion in fluids

    Directory of Open Access Journals (Sweden)

    Dvořák R.

    2014-12-01

    Full Text Available The aim of this paper is to show the significance of vortices in animal locomotion in fluids on two deliberately chosen examples. The first example concerns lift generation by bird and insect wings, the second example briefly mentiones swimming and walking on water. In all the examples, the vortices generated by the moving animal impart the necessary momentum to the surrounding fluid, the reaction to which is the force moving or lifting the animal.

  14. Forced Rolling Oscillation of a 65 deg-Delta Wing in Transonic Vortex-Breakdown Flow

    Science.gov (United States)

    Menzies, Margaret A.; Kandil, Osama A.; Kandil, Hamdy A.

    1996-01-01

    Unsteady, transonic, vortex dominated flow over a 65 deg. sharp-edged, cropped-delta wing of zero thickness undergoing forced rolling oscillations is investigated computationally. The wing angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock which induces vortex breakdown of the leading edge vortex cores. The computational investigation uses the time accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux difference splitting, finite-volume scheme. While the maximum roll amplitude is kept constant at 4.0 deg., both Reynolds number and roll frequency are varied covering three cases of forced sinusoidal rolling. First, the Reynolds number is held at 3.23 x 10(exp 6) and the wing is forced to oscillate in roll around the axis of geometric symmetry at a reduced frequency of 2(pi). Second, the Reynolds number is reduced to 0.5 x 10(exp 6) to observe the effects of added viscosity on the vortex breakdown. Third, with the Reynolds number held at 0.5 x 10(exp 6), the roll frequency is reduced to 1(pi) to complete the study.

  15. POD Analysis of Flow Behind a Four-wing Vortex Generator

    Science.gov (United States)

    Hosseinali, Mahdi; Wilkins, Stephen; Hall, Joseph

    2015-11-01

    Wing-tip vortices that persist long after the passage of large aircraft are of major concern to aircraft controllers and are responsible for considerable delays between aircraft take-off times. Understanding these vortices is extremely important, with the ultimate goal to reduce or eliminate delays altogether. Simple theoretical models of vortices can be studied experimentally using a four-wing vortex generator. The cross-stream planes are measured with a two-component Particle Image Velocimetry (PIV) system, and the resulting vector fields were analyzed with a Proper Orthogonal Decomposition (POD) via the method of snapshots. POD analysis will be employed both before and after removing vortex core meandering to investigate the meandering effect on POD modes for a better understanding of it.

  16. Effects of Coupled Rolling and Pitching Oscillations on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex-breakdown flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The initial condition of the flow is characterized by a transverse terminating shock which induces of the leading edge vortex cores to breakdown. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex-breakdown flow by varying oscillation frequency and phase angle while keeping the maximum pitch and roll amplitude equal.

  17. Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes.

    Science.gov (United States)

    Bartol, Ian K; Gharib, Morteza; Webb, Paul W; Weihs, Daniel; Gordon, Malcolm S

    2005-01-01

    Boxfishes (Teleostei: Ostraciidae) are marine fishes having rigid carapaces that vary significantly among taxa in their shapes and structural ornamentation. We showed previously that the keels of the carapace of one species of tropical boxfish, the smooth trunkfish, produce leading edge vortices (LEVs) capable of generating self-correcting trimming forces during swimming. In this paper we show that other tropical boxfishes with different carapace shapes have similar capabilities. We conducted a quantitative study of flows around the carapaces of three morphologically distinct boxfishes (spotted boxfish, scrawled cowfish and buffalo trunkfish) using stereolithographic models and three separate but interrelated analytical approaches: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. The ventral keels of all three forms produced LEVs that grew in circulation along the bodies, resembling the LEVs produced around delta-winged aircraft. These spiral vortices formed above the keels and increased in circulation as pitch angle became more positive, and formed below the keels and increased in circulation as pitch angle became more negative. Vortices also formed along the eye ridges of all boxfishes. In the spotted boxfish, which is largely trapezoidal in cross section, consistent dorsal vortex growth posterior to the eye ridge was also present. When all three boxfishes were positioned at various yaw angles, regions of strongest concentrated vorticity formed in far-field locations of the carapace compared with near-field areas, and vortex circulation was greatest posterior to the center of mass. In general, regions of localized low pressure correlated well with regions of attached, concentrated vorticity, especially around the ventral keels. Although other features of the carapace also affect flow patterns and pressure distributions in different ways, the integrated effects of the flows were consistent for all forms

  18. Large eddy simulation of vortex breakdown behind a delta wing

    International Nuclear Information System (INIS)

    Mary, I.

    2003-01-01

    A large eddy simulation (LES) of a turbulent flow past a 70 deg. sweep angle delta wing is performed and compared with wind tunnel experiments. The angle of attack and the Reynolds number based on the root chord are equal to 27 deg. and 1.6x10 6 , respectively. Due to the high value of the Reynolds number and the three-dimensional geometry, the mesh resolution usually required by LES cannot be reached. Therefore a local mesh refinement technique based on semi-structured grids is proposed, whereas different wall functions are assessed in this paper. The goal is to evaluate if these techniques are sufficient to provide an accurate solution of such flow on available supercomputers. An implicit Miles model is retained for the subgrid scale (SGS) modelling because the resolution is too coarse to take advantage of more sophisticated SGS models. The solution sensitivity to grid refinement in the streamwise and wall normal direction is investigated

  19. Transport Mechanisms Governing initial Leading-Edge Vortex Development on a Pitching Wing

    Science.gov (United States)

    Wabick, Kevin; Berdon, Randall; Buchholz, James; Johnson, Kyle; Thurow, Brian

    2017-11-01

    The formation and evolution of Leading Edge Vortices (LEVs) are ubiquitous in natural fliers and maneuvering wings, and have a profound impact on aerodynamic loads. The formation of an LEV is experimentally investigated on a pitching flat-plate wing of aspect-ratio 2, and dimensionless pitch rates of k = Ωc / 2 U of 0.1, 0.2, and 0.5, at a Reynolds number of 104. The sources and sinks of vorticity that contribute to the growth and evolution of the LEV are investigated at spanwise regions of interest, and their relative balance is compared to other wing kinematics, and the case of a two-dimensional pitching wing. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  20. The lateral-directional characteristics of a 74-degree Delta wing employing gothic planform vortex flaps

    Science.gov (United States)

    Grantz, A. C.

    1984-01-01

    The low speed lateral/directional characteristics of a generic 74 degree delta wing body configuration employing the latest generation, gothic planform vortex flaps was determined. Longitudinal effects are also presented. The data are compared with theoretical estimates from VORSTAB, an extension of the Quasi vortex lattice Method of Lan which empirically accounts for vortex breakdown effects in the calculation of longitudinal and lateral/directional aerodynamic characteristics. It is indicated that leading edge deflections of 30 and 40 degrees reduce the magnitude of the wing effective dihedral relative to the baseline for a specified angle of attack or lift coefficient. For angles of attack greater than 15 degrees, these flap deflections reduce the configuration directional stability despite improved vertical tail effectiveness. It is shown that asymmetric leading edge deflections are inferior to conventional ailerons in generating rolling moments. VORSTAB calculations provide coarse lateral/directional estimates at low to moderate angles of attack. The theory does not account for vortex flow induced, vertical tail effects.

  1. Analysis of wake vortices of a medium range twin-propeller military cargo aircraft using statistically designed experiments

    Science.gov (United States)

    Sahin, Burhan

    An experimental study was initiated to analyze the trajectories of the streamwise vortices behind the wing tip and flap of a medium range and propeller driven twin-engine military cargo aircraft. The model used for the experimental study was a generic, high wing and half model of a propeller driven aircraft and mounted within Old Dominion University's Low Speed Wind Tunnel where the wind tunnel flow speed was set to constant value of 9 m/sec. The main purpose of the study was to reach regression models for the motion and vorticity strength of both vortices under varying factors such as angle of attack, flap angle, propeller pitch angle and downstream distance. Velocity measurements of the flow fields were accomplished using both Particle Image Velocimetry (PIV) and Hotwire Anemometry (HWA) to yield average velocities, turbulence levels, vorticity strengths and Reynolds shear stresses in the wake of the model. The results of measurements showed that the vertical motions, horizontal motions, and vorticity strengths of both vortices as well as the shortest distance between both vortices depend on the aforementioned factors and the interactions of some factors. It can be concluded that propeller pitch angle mainly affects the behaviors of the vortices as much as angle of attack to the extent that their second order terms take place in some of the regression models.

  2. Can Wing Tip Vortices Be Accurately Simulated?

    Science.gov (United States)

    2011-07-01

    Aerodynamics , Flow Visualization, Numerical Investigation, Aero Suite 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT 18...additional tail buffeting.2 In commercial applications, winglets have been installed on passenger aircraft to minimize vortex formation and reduce lift...air. In military applications, wing tip In commercial applications, winglets have been installed on passenger aircraft to minimize increases with downstream distances.

  3. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  4. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  5. A wind-tunnel investigation at high subsonic speeds of the lateral control characteristics of various plain spoiler configurations on a 3-percent-thick 60 degree delta wing

    Science.gov (United States)

    Wiley, Harleth G

    1954-01-01

    Results are presented of wind-tunnel investigations at Mach numbers of 0.60 to 0.94 and angles of attack of -2 degrees to about 24 degrees to determine the lateral control characteristics of spoilers with various wing chord-wise and spanwise locations and spoiler spans and deflections on thin 60 degree delta wing of NACA 65a003 airfoil section parallel to free stream.

  6. Flapping-wing mechanical butterfly on a wheel

    Science.gov (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  7. Flow structure and aerodynamic performance of a hovering bristled wing in low Re

    Science.gov (United States)

    Lee, Seunghun; Lahooti, Mohsen; Kim, Daegyoum

    2017-11-01

    Previous studies on a bristled wing have mainly focused on simple kinematics of the wing such as translation or rotation. The aerodynamic performance of a bristled wing in a quasi-steady phase is known to be comparable to that of a smooth wing without a gap because shear layers in the gaps of the bristled wing are sufficiently developed to block the gaps. However, we point out that, in the starting transient phase where the shear layers are not fully developed, the force generation of a bristled wing is not as efficient as that of a quasi-steady state. The performance in the transient phase is important to understand the aerodynamics of a bristled wing in an unsteady motion. In the hovering motion, due to repeated stroke reversals, the formation and development of shear layers inside the gaps is repeated in each stroke. In this study, a bristled wing in hovering is numerically investigated in the low Reynolds number of O(10). We especially focus on the development of shear layers during a stroke reversal and its effect on the overall propulsive performance. Although the aerodynamic force generation is slightly reduced due to the gap vortices, the asymmetric behavior of vortices in a gap between bristles during a stroke reversal makes the bristled wing show higher lift to drag ratio than a smooth wing.

  8. On vortex loops and filaments: three examples of numerical predictions of flows containing vortices.

    Science.gov (United States)

    Krause, Egon

    2003-01-01

    Vortex motion plays a dominant role in many flow problems. This article aims at demonstrating some of the characteristic features of vortices with the aid of numerical solutions of the governing equations of fluid mechanics, the Navier-Stokes equations. Their discretized forms will first be reviewed briefly. Thereafter three problems of fluid flow involving vortex loops and filaments are discussed. In the first, the time-dependent motion and the mutual interaction of two colliding vortex rings are discussed, predicted in good agreement with experimental observations. The second example shows how vortex rings are generated, move, and interact with each other during the suction stroke in the cylinder of an automotive engine. The numerical results, validated with experimental data, suggest that vortex rings can be used to influence the spreading of the fuel droplets prior to ignition and reduce the fuel consumption. In the third example, it is shown that vortices can also occur in aerodynamic flows over delta wings at angle of attack as well as pipe flows: of particular interest for technical applications of these flows is the situation in which the vortex cores are destroyed, usually referred to as vortex breakdown or bursting. Although reliable breakdown criteria could not be established as yet, the numerical predictions obtained so far are found to agree well with the few experimental data available in the recent literature.

  9. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  10. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    Science.gov (United States)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  11. Coupled Rolling and Pitching Oscillation Effects on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex dominated flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The wing mean angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock and vortex breakdown of the leading edge vortex cores. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex breakdown flow by varying oscillation frequency and phase angle while the maximum pitch and roll amplitude is kept constant at 4.0 deg. Four cases demonstrate the following: simultaneous motion at a frequency of 1(pi), motion with a 90 deg. phase lead in pitch, motion with a rolling frequency of twice the pitching frequency, and simultaneous motion at a frequency of 2(pi). Comparisons with single mode motion at these frequencies complete this study and illustrate the effects of coupling the oscillations.

  12. Supersonic vortex breakdown over a delta wing in transonic flow

    Science.gov (United States)

    Kandil, Hamdy A.; Kandil, Osama A.; Liu, C. H.

    1993-01-01

    The effects of freestream Mach number and angle of attack on the leading-edge vortex breakdown due to the terminating shock on a 65-degree, sharp-edged, cropped delta wing are investigated computationally, using the time-accurate solution of the laminar unsteady compressible full Navier-Stokes equations with the implicit upwind flux-difference splitting, finite-volume scheme. A fine O-H grid consisting of 125 x 85 x 84 points in the wrap-around, normal, and axial directions, respectively, is used for all the flow cases. Keeping the Reynolds number fixed at 3.23 x 10 exp 6, the Mach number is varied from 0.85 to 0.9 and the angle of attack is varied from 20 to 24 deg. The results show that, at 20-deg angle of attack, the increase of the Mach number from 0.85 to 0.9 results in moving the location of the terminating shock downstream. The results also show that, at 0.85 Mach number, the increase of the angle of attack from 20 to 24 deg results in moving the location of the terminating shock upstream. The results are in good agreement with the experimental data.

  13. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  14. Development of a High-Performance Fin-and-Tube Heat Exchanger with Vortex Generators for a Vending Machine

    Science.gov (United States)

    Iwasaki, Masamichi; Saito, Hiroshi; Mochizuki, Sadanari; Murata, Akira

    The effect of delta-wing-vortex generators (combination of a delta wing and a delta winglet pair) on the heat transfer performance of fin-and-tube heat exchangers for vending machines has been investegated. Flow visualizations, numerical simulations and heat transfer experiments were conducted to find an optimum geometrical shape and arrangement of the vortex generators. Maximum heat transfer enhancement was achieved by the combination of (a) the delta wing with the apex angle of 86 degrees and (b) the delta winglet pair with the inline angle of 45 degrees. In relatively low Reynolds number range, about 40 % increase in heat transfer coefficient was attained with the above mentioned combination of the vortex generators compared to the ordinary heat exchangers with plain fins. It was revealed that the heat transfer enhancement was attributed to (1) the longitudinal vortexes generated by the delta wing and (2) the reduction of wake area behind the tube. It was also found that an increase in the apex angle of the delta wing brought about heat transfer enhancement, and the scale as well as the streggth of the induced longitudinal vortices played an important role in the heat transfer performance.

  15. Management of Vortices Trailing Flapped Wings via Separation Control

    Science.gov (United States)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  16. Leading-edge vortex shedding from rotating wings

    Energy Technology Data Exchange (ETDEWEB)

    Kolomenskiy, Dmitry [Centre de Recherches Mathématiques (CRM), Department of Mathematics and Statistics, McGill University, 805 Sherbrooke W., Montreal, QC H3A 0B9 (Canada); Elimelech, Yossef [Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Schneider, Kai, E-mail: dkolom@gmail.com [M2P2–CNRS, Université d' Aix-Marseille, 39, rue Frédéric Joliot-Curie, F-13453 Marseille Cedex 13 (France)

    2014-06-01

    This paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number Re = 250. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented. (papers)

  17. Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism

    International Nuclear Information System (INIS)

    Manzo, Justin; Garcia, Ephrahim

    2010-01-01

    Research on efficient shore bird morphology inspired the hyperelliptical cambered span (HECS) wing, a crescent-shaped, aft-swept wing with vertically oriented wingtips. The wing reduces vorticity-induced circulation loss and outperforms an elliptical baseline when planar. Designed initially as a rigid wing, the HECS wing makes use of morphing to transition from a planar to a furled configuration, similar to that of a continuously curved winglet, in flight. A morphing wing concept mechanism is presented, employing shape memory alloy actuators to create a discretized curvature approximation. The aerodynamics for continuous wing shapes is validated quasi-statically through wind tunnel testing, showing enhanced planar HECS wing lift-to-drag performance over an elliptical wing, with the furled HECS wing showing minimal enhancements beyond this point. Wind tunnel tests of the active morphing wing prove the mechanism capable of overcoming realistic loading, while further testing may be required to establish aerodynamic merits of the HECS wing morphing maneuver

  18. Vorticity confinement technique for drag prediction

    Science.gov (United States)

    Povitsky, Alex; Snyder, Troy

    2011-11-01

    This work couples wake-integral drag prediction and vorticity confinement technique (VC) for the improved prediction of drag from CFD simulations. Induced drag computations of a thin wing are shown to be more accurate than the more widespread method of surface pressure integration when compared to theoretical lifting-line value. Furthermore, the VC method improves trailing vortex preservation and counteracts the shift from induced drag to numerical entropy drag with increasing distance of Trefftz plane downstream of the wing. Accurate induced drag prediction via the surface integration of pressure barring a sufficiently refined surface grid and increased computation time. Furthermore, the alternative wake-integral technique for drag prediction suffers from numerical dissipation. VC is shown to control the numerical dissipation with very modest computational overhead. The 2-D research code is used to test specific formulations of the VC body force terms and illustrate the computational efficiency of the method compared to a ``brute force'' reduction in spatial step size. For the 3-D wing simulation, ANSYS FLUENT is employed with the VC body force terms added to the solver with user-defined functions (UDFs). VC is successfully implemented to highly unsteady flows typical for Micro Air Vehicles (MAV) producing oscillative drag force either by natural vortex shedding at high angles of attack or by flapping wing motion.

  19. Numerical investigation of unsteady vortex breakdown past 80°/65° double-delta wing

    Directory of Open Access Journals (Sweden)

    Liu Jian

    2014-06-01

    Full Text Available An improved delayed detached eddy simulation (IDDES method based on the k-ω-SST (shear stress transport turbulence model was applied to predict the unsteady vortex breakdown past an 80°/65° double-delta wing (DDW, where the angles of attack (AOAs range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such measurements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36°, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.

  20. Effects of external stores on the air combat capability of a delta wing fighter

    Science.gov (United States)

    Spearman, M. L.; Sawyer, W. C.

    1977-01-01

    Delta wing point-design fighters with two pylon mounted missiles and aft tail controls (similar to several Soviet designs) have been investigated for a Mach number range from about 0.6 to 2.0. Whereas minimum drag penalties that are expected with the addition of external stores do occur, the effects at higher lifts, corresponding to maneuvering flight, are less severe and often favorable. The drag-due-to-lift factor is less with stores on although the lift curve slope is unaffected. The longitudinal stability level is reduced by the addition of stores while the pitch control effectiveness is unchanged. The directional stability was generally reduced at subsonic speeds and increased at supersonic speeds by the addition of stores but sufficiently high stability levels are obtainable that are compatible with the longitudinal maneuvering limits. Some examples of the potential maneuvering capability in terms of normal acceleration and turn radius are included.

  1. Pitot-pressure distributions of the flow field of a delta-wing orbiter

    Science.gov (United States)

    Cleary, J. W.

    1972-01-01

    Pitot pressure distributions of the flow field of a 0.0075-scale model of a typical delta wing shuttle orbiter are presented. Results are given for the windward and leeward sides on centerline in the angle-of-attack plane from wind tunnel tests conducted in air. Distributions are shown for three axial stations X/L = .35, .60, and .98 and for angles of attack from 0 to 60 deg. The tests were made at a Mach number of 7.4 and for Reynolds numbers based on body length from 1,500,000 to 9,000,000. The windward distributions at the two survey stations forward of the body boat tail demonstrate the compressive aspects of the flow from the shock wave to the body. Conversely, the distributions at the aft station display an expansion of the flow that is attributed to body boat tail. On the lee side, results are given at low angles of attack that illustrate the complicating aspects of the canopy on the flow field, while results are given to show the effects of flow separation at high angles of attack.

  2. A finite wake theory for two-dimensional rotary wing unsteady aerodynamics

    OpenAIRE

    Couch, Mark A.

    1993-01-01

    Approved for public release; distribution is unlimited. The unsteady aerodynamic forces and moments of an oscillating airfoil for the fixed wing case were determined by Theodorsen along with the development of a lift deficiency function. Loewy subsequently developed an analogous lift deficiency function for the rotary wing case in which there are an infinite number of layers of shed vorticity, or wakes, below the reference airfoil. With the advent of computer panel codes that calculate the...

  3. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2012-12-01

    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  4. Rotational accelerations stabilize leading edge vortices on revolving fly wings

    NARCIS (Netherlands)

    Lentink, D.; Dickinson, M.H.

    2009-01-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability

  5. An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows. Ph.D. Thesis

    Science.gov (United States)

    Visser, Kenneth D.

    1991-01-01

    Experimental crosswire measurements of the flowfield above a 70 and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Survey grids were taken normal to the platform at a series of chordwise locations for angles of attack of 20 and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core as well as on chordwise location was examined. The effects of nondimensionalization in comparison with other experimental data was made. The circulation distribution scales with the local semispan and grows approximately linearly in the chordwise direction. For regions of the flow outside of the vortex subcore, the circulation at any chordwise station was observed to vary logarithmically with distance from the vortex axis. The circulation was also found to increase linearly with angle of incidence at a given chordwise station. A reduction in the local circulation about the vortex axis occurred at breakdown. The spanwise distribution of axial vorticity was severely altered through the breakdown region and the spanwise distribution of axial vorticity present appeared to reach a maximum immediately preceding breakdown. The local concentration of axial vorticity about the vortex axis was reduced while the magnitude of the azimuthal vorticity decreased throughout the breakdown zone. The axial vorticity components with a negative sense, found in the secondary vortex, remained unaffected by changes in wing sweep or angle of attack, in direct contrast to the positive components. The inclusion of the local wing geometry into a previously derived correlation parameter indicated that the circulation of growing leading edge vortex flows were similar at corresponding radii from the vortex axis. It was concluded that the flow over a delta wing, upstream of the breakdown regions and away from the apex and trailing edge regions, is conical. In addition, the dominating

  6. Vortical flows

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie-Zhi [Peking Univ., Beijing (China). College of Engineering; Ma, Hui-Yang [Univ. of Chinese Academy of Sciences, Beijing (China). Dept. of Physics; Zhou, Ming-De [Arizona Univ., Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering

    2015-11-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  7. Vortical flows

    International Nuclear Information System (INIS)

    Wu, Jie-Zhi; Ma, Hui-Yang; Zhou, Ming-De

    2015-01-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  8. An experimental study of the nonlinear dynamic phenomenon known as wing rock

    Science.gov (United States)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1990-01-01

    An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.

  9. Intrinsic electromagnetic solitary vortices in magnetized plasma

    International Nuclear Information System (INIS)

    Liu, J.; Horton, W.

    1986-01-01

    Several Rossby type vortex solutions constructed for electromagnetic perturbations in magnetized plasma encounter the difficulty that the perturbed magnetic field and the parallel current are not continuous on the boundary between two regions. We find that fourth order differential equations must be solved to remove this discontinuity. Special solutions for two types of boundary value problems for the fourth order partial differential equations are presented. By applying these solutions to different nonlinear equations in magnetized plasma, the intrinsic electromagnetic solitary drift-Alfven vortex (along with solitary Alfven vortex) and the intrinsic electromagnetic solitary electron vortex (along with short-wavelength drift vortex) are constructed. While still keeping a localized dipole structure, these new vortices have more complicated radial structures in the inner and outer regions than the usual Rossby wave vortex. The new type of vortices guarantees the continuity of the perturbed magnetic field deltaB/sub perpendicular/ and the parallel current j/sub parallel/ on the boundary between inner and outer regions of the vortex. The allowed regions of propagation speeds for these vortices are analyzed, and we find that the complementary relation between the vortex propagating speeds and the corresponding phase velocities of the linear modes no longer exists

  10. Fluid vortices

    National Research Council Canada - National Science Library

    Green, Sheldon I

    1995-01-01

    ... . . . . . . . . . . . . . . . Vorticity Kinematics and Dynamics - Physical Principles The Vorticity Equation with Examples . . . . Summary . . . . . . . . . . . . . . . . . Vorticity in Orthogonal...

  11. Wingtip Vortices and Free Shear Layer Interaction in the Vicinity of Maximum Lift to Drag Ratio Lift Condition

    Science.gov (United States)

    Memon, Muhammad Omar

    Cost-effective air-travel is something everyone wishes for when it comes to booking flights. The continued and projected increase in commercial air travel advocates for energy efficient airplanes, reduced carbon footprint, and a strong need to accommodate more airplanes into airports. All of these needs are directly affected by the magnitudes of drag these aircraft experience and the nature of their wingtip vortex. A large portion of the aerodynamic drag results from the airflow rolling from the higher pressure side of the wing to the lower pressure side, causing the wingtip vortices. The generation of this particular drag is inevitable however, a more fundamental understanding of the phenomenon could result in applications whose benefits extend much beyond the relatively minuscule benefits of commonly-used winglets. Maximizing airport efficiency calls for shorter intervals between takeoffs and landings. Wingtip vortices can be hazardous for following aircraft that may fly directly through the high-velocity swirls causing upsets at vulnerably low speeds and altitudes. The vortex system in the near wake is typically more complex since strong vortices tend to continue developing throughout the near wake region. Several chord lengths distance downstream of a wing, the so-called fully rolled up wing wake evolves into a combination of a discrete wingtip vortex pair and a free shear layer. Lift induced drag is generated as a byproduct of downwash induced by the wingtip vortices. The parasite drag results from a combination of form/pressure drag and the upper and lower surface boundary layers. These parasite effects amalgamate to create the free shear layer in the wake. While the wingtip vortices embody a large portion of the total drag at lifting angles, flow properties in the free shear layer also reveal their contribution to the aerodynamic efficiency of the aircraft. Since aircraft rarely cruise at maximum aerodynamic efficiency, a better understanding of the balance

  12. Monostatic radar cross section of flying wing delta planforms

    Directory of Open Access Journals (Sweden)

    Sevoor Meenakshisundaram Vaitheeswaran

    2017-04-01

    Full Text Available The design of the flying wing and its variants shapes continues to have a profound influence in the design of the current and future use of military aircraft. There is very little in the open literature available to the understanding and by way of comparison of the radar cross section of the different wing planforms, for obvious reasons of security and sensitivity. This paper aims to provide an insight about the radar cross section of the various flying wing planforms that would aid the need and amount of radar cross section suppression to escape detection from surveillance radars. Towards this, the shooting and bouncing ray method is used for analysis. In this, the geometric optics theory is first used for launching and tracing the electromagnetic rays to calculate the electromagnetic field values as the waves bounce around the target. The physical optics theory is next used to calculate the final scattered electric field using the far field integration along the observation direction. For the purpose of comparison, all the planform shapes are assumed to be having the same area, and only the aspect ratio and taper ratio are varied to feature representative airplanes.

  13. A Survey of Factors Affecting Blunt Leading-Edge Separation for Swept and Semi-Slender Wings

    Science.gov (United States)

    Luckring, James M.

    2010-01-01

    A survey is presented of factors affecting blunt leading-edge separation for swept and semi-slender wings. This class of separation often results in the onset and progression of separation-induced vortical flow over a slender or semi-slender wing. The term semi-slender is used to distinguish wings with moderate sweeps and aspect ratios from the more traditional highly-swept, low-aspect-ratio slender wing. Emphasis is divided between a selection of results obtained through literature survey a section of results from some recent research projects primarily being coordinated through NATO s Research and Technology Organization (RTO). An aircraft context to these studies is included.

  14. Investigation at transonic speeds of the lateral-control and hinge-moment characteristics of a flap-type spoiler aileron on a 60 degree delta wing

    Science.gov (United States)

    Wiley, Harleth G; Taylor, Robert T

    1954-01-01

    This paper present results of an investigation of the lateral-control and hinge-moment characteristics of a 0.67 semispan flap-type spoiler aileron on a semispan thin 60 degree delta wing at transonic speeds by the reflection-plane technique. The spoiler-aileron had a constant chord of 10.29 percent mean aerodynamic chord and was hinged at the 81.9-percent-wing-root-chord station. Tests were made with the spoiler aileron slot open, partially closed, and closed. Incremental rolling-moment coefficients were obtained through a Mach number range of 0.62 to 1.08. Results indicated reasonably linear variations of rolling-moment and hinge-moment coefficients with spoiler projection except at spoiler projections of less than -2 percent mean aerodynamic chord and angles of attack greater than 12 degrees with results generally independent of slot geometry.

  15. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    Science.gov (United States)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  16. Lift generation by a two-dimensional symmetric flapping wing: immersed boundary-lattice Boltzmann simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Keigo; Suzuki, Kosuke; Inamuro, Takaji, E-mail: inamuro@kuaero.kyoto-u.ac.jp [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-08-01

    Two-dimensional (2D) symmetric flapping flight is investigated by an immersed boundary-lattice Boltzmann method (IB-LBM). In this method, we can treat the moving boundary problem efficiently on the Cartesian grid. We consider a model consisting of 2D symmetric flapping wings without mass connected by a hinge with mass. Firstly, we investigate the effect of the Reynolds number in the range of 40-200 on flows around symmetric flapping wings under no gravity field and find that for high Reynolds numbers (Re Greater-Than-Or-Slanted-Equal-To 55), asymmetric vortices with respect to the horizontal line appear and the time-averaged lift force is induced on the wings, whereas for low Reynolds numbers (Re Less-Than-Or-Slanted-Equal-To 50), only symmetric vortices appear around the wings and no lift force is induced. Secondly, the effect of the initial position of the wings is investigated, and the range of the initial phases where the upward flight is possible is found. The effects of the mass and flapping amplitude are also studied. Finally, we carry out free flight simulations under gravity field for various Reynolds numbers in the range 60 Less-Than-Or-Slanted-Equal-To Re Less-Than-Or-Slanted-Equal-To 300 and Froude numbers in the range 3 Less-Than-Or-Slanted-Equal-To Fr Less-Than-Or-Slanted-Equal-To 60 and identify the region where upward flight is possible. (paper)

  17. Unsteady transonic flow analysis for low aspect ratio, pointed wings.

    Science.gov (United States)

    Kimble, K. R.; Ruo, S. Y.; Wu, J. M.; Liu, D. Y.

    1973-01-01

    Oswatitsch and Keune's parabolic method for steady transonic flow is applied and extended to thin slender wings oscillating in the sonic flow field. The parabolic constant for the wing was determined from the equivalent body of revolution. Laplace transform methods were used to derive the asymptotic equations for pressure coefficient, and the Adams-Sears iterative procedure was employed to solve the equations. A computer program was developed to find the pressure distributions, generalized force coefficients, and stability derivatives for delta, convex, and concave wing planforms.

  18. Remarks on the development of a multiblock three-dimensional Euler code for out of core and multiprocessor calculations

    International Nuclear Information System (INIS)

    Jameson, A.; Leicher, S.; Dawson, J.; Tel Aviv Univ., Israel)

    1985-01-01

    A multiblock modification of the FLO57 code for three-dimensional wing calculations is described and demonstrated. The theoretical basis of the multistage time-stepping algorithm is reviewed; the multiblock grid structure is explained; and results from a computation of vortical flow past a delta wing, using 2.5 x 10 to the 6th grid points and performed on a Cray X/MP computer with a 128-Mword solid-state storage device, are presented graphically. 6 references

  19. Wind-tunnel investigation of a large-scale VTOL aircraft model with wing root and wing thrust augmentors. [Ames 40 by 80 foot wind tunnel

    Science.gov (United States)

    Aoyagi, K.; Aiken, T. N.

    1979-01-01

    Tests were conducted in the Ames 40 by 80 foot wind tunnel to determine the aerodynamic characteristics of a large-scale V/STOL aircraft model with thrust augmentors. The model had a double-delta wing of aspect ratio 1.65 with augmentors located in the wing root and the wing trailing edge. The supply air for the augmentor primary nozzles was provided by the YJ-97 turbojet engine. The airflow was apportioned approximately 74 percent to the wing root augmentor and 24 percent to wing augmentor. Results were obtained at several trailing-edge flap deflections with the nozzle jet-momentum coefficients ranging from 0 to 7.9. Three-component longitudinal data are presented with the agumentor operating with and without the horizontal tail. A limited amount of six component data are also presented.

  20. Flow Measurements of a Plunging Wing in Unsteady Environment

    Science.gov (United States)

    Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar

    2017-11-01

    Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.

  1. Energy conserving numerical methods for the computation of complex vortical flows

    Science.gov (United States)

    Allaneau, Yves

    One of the original goals of this thesis was to develop numerical tools to help with the design of micro air vehicles. Micro Air Vehicles (MAVs) are small flying devices of only a few inches in wing span. Some people consider that as their size becomes smaller and smaller, it would be increasingly more difficult to keep all the classical control surfaces such as the rudders, the ailerons and the usual propellers. Over the years, scientists took inspiration from nature. Birds, by flapping and deforming their wings, are capable of accurate attitude control and are able to generate propulsion. However, the biomimicry design has its own limitations and it is difficult to place a hummingbird in a wind tunnel to study precisely the motion of its wings. Our approach was to use numerical methods to tackle this challenging problem. In order to precisely evaluate the lift and drag generated by the wings, one needs to be able to capture with high fidelity the extremely complex vortical flow produced in the wake. This requires a numerical method that is stable yet not too dissipative, so that the vortices do not get diffused in an unphysical way. We solved this problem by developing a new Discontinuous Galerkin scheme that, in addition to conserving mass, momentum and total energy locally, also preserves kinetic energy globally. This property greatly improves the stability of the simulations, especially in the special case p=0 when the approximation polynomials are taken to be piecewise constant (we recover a finite volume scheme). In addition to needing an adequate numerical scheme, a high fidelity solution requires many degrees of freedom in the computations to represent the flow field. The size of the smallest eddies in the flow is given by the Kolmogoroff scale. Capturing these eddies requires a mesh counting in the order of Re³ cells, where Re is the Reynolds number of the flow. We show that under-resolving the system, to a certain extent, is acceptable. However our

  2. Spatial perturbation of a wing-tip vortex using pulsed span-wise jets

    Science.gov (United States)

    Heyes, A. L.; Smith, D. A. R.

    The separation distance required between transport aircraft to avoid wake vortices remains a limiting factor on airport capacity. The dissipation of the wake can be accelerated by perturbing co-operative instabilities between multiple pairs of vortices. This paper presents the results of a preliminary experimental investigation into the use of pulsed span-wise air jets in the wing tip to perturb a single tip vortex in the very near field. Velocity measurements were made using PIV and hot-wire anemometry. The results demonstrate that the vortex position can be modulated at frequencies up to 50 Hz and, as such, the method shows promise for forcing instability in multiple vortex wakes.

  3. Flutter analysis of low aspect ratio wings

    Science.gov (United States)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  4. Interaction of the elytra and hind wing of a rhinoceros beetle (Trypoxylus dichotomus) during a take-off mode

    Science.gov (United States)

    Oh, Seungyoung; Oh, Sehyeong; Choi, Haecheon; Lee, Boogeon; Park, Hyungmin; Kim, Sun-Tae

    2015-11-01

    The elytra are a pair of hardened wings that cover the abdomen of a beetle to protect beetle's hind wings. During the take-off, these elytra open and flap in phase with the hind wings. We investigate the effect of the elytra flapping on beetle's aerodynamic performance. Numerical simulations are performed at Re=10,000 (based on the wingtip mean velocity and mean chord length of the hind wing) using an immersed boundary method. The simulations are focused on a take-off, and the wing kinematics used is directly obtained from the experimental observations using high speed cameras. The simulation result shows three-dimensional vortical structures generated by the hind wing of the beetle and their interaction with the elytra. The presence of elytra has a negative effect on the lift generation by the hind wings, but the lift force on the elytra themselves is negligible. Further discussions on the elytra - hind wing interaction will be provided during the presentation. Supported by UD130070ID.

  5. Effect of rotation on the formation of longitudinal vortices in mixed convection flow over a flat plate

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Han [Ta-Hwa Institute of Technology, Department of Automation Engineering, Hsinchu (Taiwan); Chen, Chin-Tai [Ta-Hwa Institute of Technology, Department of Industrial Engineering and Management, Hsinchu (Taiwan)

    2006-01-01

    This paper presents a numerical study of the effect of rotation on the formation of longitudinal vortices in mixed convection flow over a flat plate. The criterion on the position of marking the onset of longitudinal vortices is defined in this paper. The onset position characterized by the Goertler number G{sub {delta}} depends on the Grashof number, the rotation number Ro, the Prandtl number Pr and the wave number. The results show that negative rotation stabilizes the boundary layer flow on the surface. On the contrary, positive rotation destabilizes the flow. The numerical data are compared with the experimental results. (orig.)

  6. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  7. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  8. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  9. Solitary magnetohydrodynamic vortices

    International Nuclear Information System (INIS)

    Silaev, I.I.; Skvortsov, A.T.

    1990-01-01

    This paper reports on the analytical description of fluid flow by means of localized vortices which is traditional for hydrodynamics, oceanology, plasma physics. Recently it has been widely applied to different structure turbulence models. Considerable results involved have been presented where it was shown that in magnetohydrodynamics alongside with the well-known kinds of localized vortices (e.g. Hill's vortex), which are characterized by quite a weak decrease of disturbed velocity or magnetic field (as a power of the inverse distance from vortex center), the vortices with screening (or solitary vortices) may exist. All disturbed parameters either exponentially vanish or become identically zero in outer region in the latter case. (In a number of papers numerical simulations of such the vortices are presented). Solutions in a form of solitary vortices are of particular interest due to their uniformity and solitonlike behavior. On the basis of these properties one can believe for such structures to occur in real turbulent flows

  10. Vortices, semi-local vortices in gauged linear sigma model

    International Nuclear Information System (INIS)

    Kim, Namkwon

    1998-11-01

    We consider the static (2+1)D gauged linear sigma model. By analyzing the governing system of partial differential equations, we investigate various aspects of the model. We show the existence of energy finite vortices under a partially broken symmetry on R 2 with the necessary condition suggested by Y. Yang. We also introduce generalized semi-local vortices and show the existence of energy finite semi-local vortices under a certain condition. The vacuum manifold for the semi-local vortices turns out to be graded. Besides, with a special choice of a representation, we show that the O(3) sigma model of which target space is nonlinear is a singular limit of the gauged linear sigma model of which target space is linear. (author)

  11. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils. As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle. In order to provide constructive

  12. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  13. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 1st Report. Potential for passive controlling by a pair of vortex generators; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 1. Ittsui no uzu hasseiki ni yoru judo seigyoho no teian

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H.; Takahashi, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Ikeda, K. [Toshiba Corp., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents a potential for a passive control of a horseshoe vortex at the root of the wing. NACA0024 wing is established on a turbulent boundary layer. A pair of vortex generators of halt delta wing is installed upstream of the wing. The controlled horseshoe vortex is tested qualitatively by flow visualization technique. Also, the potential for controlling is quantitatively investigated by wall static pressure and total pressure. The horseshoe vortex is remarkably controlled in Common Flow Up Configuration (CFUC) of vortex generators. The distortion of the total pressure contours is diminished by 49% and the vortex is located closer to the wing. In case of Common Flow Down Configuration (CFDC), the mass flow averaged pressure loss is decreased by 29% compared with the case without a pair of vortex generators. (author)

  14. Flow structures around a flapping wing considering ground effect

    Science.gov (United States)

    Van Truong, Tien; Kim, Jihoon; Kim, Min Jun; Park, Hoon Cheol; Yoon, Kwang Joon; Byun, Doyoung

    2013-07-01

    Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle ( Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle's wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle's wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle's wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.

  15. Distribution of flux-pinning energies in YBa2Cu3O(7-delta) and Bi2Sr2CaCu2O(8+delta) from flux noise

    Science.gov (United States)

    Ferrari, M. J.; Johnson, Mark; Wellstood, Frederick C.; Clarke, John; Mitzi, D.

    1990-01-01

    The spectral density of the magnetic flux noise measured in high-temperature superconductors in low magnetic fields scales approximately as the inverse of the frequency and increases with temperature. The temperature and frequency dependence of the noise are used to determine the pinning energies of individual flux vortices in thermal equilibrium. The distribution of pinning energies below 0.1 eV in YBa(2)Cu(3)O(7-delta) and near 0.2 eV in Bi(2)Sr(2)CaCu(2)O(8+delta). The noise power is proportional to the ambient magnetic field, indicating that the vortex motion is uncorrelated.

  16. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    Science.gov (United States)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  17. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Science.gov (United States)

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  18. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    Science.gov (United States)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  19. Interferometry with Vortices

    Directory of Open Access Journals (Sweden)

    P. Senthilkumaran

    2012-01-01

    Full Text Available Interference of optical beams with optical vortices is often encountered in singular optics. Since interferometry makes the phase observable by intensity measurement, it brings out a host of applications and helps to understand the optical vortex. In this article we present an optical vortex interferometer that can be used in optical testing and has the potential to increase the accuracy of measurements. In an optical vortex interferometer (OVI, a lattice of vortices is formed, and the movement of the cores of these vortices is tracked when one of the interfering beams is deformed. Instead of multiple vortices in an OVI, an isolated single vortex also finds applications in optical testing. Finally, singularity in scalar and vector fields is presented, and the relation between them is illustrated by the superposition of these beams.

  20. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers

    Science.gov (United States)

    Shields, Matt

    The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the

  1. Moving vortex matter with coexisting vortices and anti-vortices

    International Nuclear Information System (INIS)

    Carneiro, Gilson

    2009-01-01

    Moving vortex matter, driven by transport currents independent of time, in which vortices and anti-vortices coexist is investigated theoretically in thin superconducting films with nanostructured defects. A simple London model is proposed for the vortex dynamics in films with periodic arrays of nanomagnets or cylindrical holes (antidots). Common to these films is that vortex anti-vortex pairs may be created in the vicinity of the defects by relatively small transport currents, because it adds to the current generated by the defects - the nanomagnets screening current, or the antidots backflow current - and may exceed locally the critical value for vortex anti-vortex pair creation. The model assumes that vortex matter dynamics is governed by Langevin equations, modified to account for creation and annihilation of vortex anti-vortex pairs. For pair creation, it is assumed that whenever the total current at some location exceeds a critical value, equal to that needed to separate a vortex from an anti-vortex by a vortex core diameter, a pair is created instantaneously around this location. Pair annihilation occurs by vortex anti-vortex collisions. The model is applied to films at zero external magnetic field and low temperatures. It is found that several moving vortex matter steady-states with equal numbers of vortices and anti-vortices are possible.

  2. Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake

    Science.gov (United States)

    Shariff, Karim

    2016-01-01

    Aircraft trailing vortices pose a danger to following aircraft during take-off and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in IFR (Instrument Flight Regulations) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional precipitation and cloud radars. This is enabled by spraying a small quantity water into the wake from near the wing. The vortex strength is revealed by the doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow-field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles behind the aircraft. Small droplets evaporate away while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher frequency radars combined with spectral processing gives good SNR.

  3. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases

  4. Primordial vorticity and gradient expansion

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  5. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  6. Finiteness of corner vortices

    Science.gov (United States)

    Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu

    2018-04-01

    Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.

  7. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D

    2006-01-01

    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  8. Evaluation of Blended Wing-Body Combinations with Curved Plan Forms at Mach Numbers Up to 3.50

    Science.gov (United States)

    Holdaway, George H.; Mellenthin, Jack A.

    1960-01-01

    This investigation is a continuation of the experimental and theoretical evaluation of the effects of wing plan-form variations on the aerodynamic performance characteristics of blended wing-body combinations. The present report compares previously tested straight-edged delta and arrow models which have leading-edge sweeps of 59.04 and 70-82 deg., respectively, with related models which have plan forms with curved leading and trailing edges designed to result in the same average sweeps in each case. All the models were symmetrical, without camber, and were generally similar having the same span, length, and aspect ratios. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local wing chords in a streamwise direction. The wing sections were computed by varying their shapes along with the body radii (blending process) to match the selected area distribution and the given plan form. The models were tested with transition fixed at Reynolds numbers of roughly 4,000,000 to 9,000,000, based on the mean aerodynamic chord of the wing. The characteristic effect of the wing curvature of the delta and arrow models was an increase at subsonic and transonic speeds in the lift-curve slopes which was partially reflected in increased maximum lift-drag ratios. Curved edges were not evaluated on a diamond plan form because a preliminary investigation indicated that the curvature considered would increase the supersonic zero-lift wave drag. However, after the test program was completed, a suitable modification for the diamond plan form was discovered. The analysis presented in the appendix indicates that large reductions in the zero-lift wave drag would be obtained at supersonic Mach numbers if the leading- and trailing-edge sweeps are made to differ by indenting the trailing edge and extending the root of the leading edge.

  9. Dynamics of nonstationary dipole vortices

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nycander, J.

    1993-01-01

    The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or Hasegawa-Mima) equation is studied. A recent theory is compared with numerical simulations and found to describe the short time behavior of dipole vortices well. In the long time limit the dipoles are found to eithe...... disintegrate or relax toward a steady eastward propagating dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the dipole vortex....

  10. Nonquasineutral electron vortices in nonuniform plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Ottinger, P. F. [Engility Corporation, Chantilly, Virginia 20151 (United States)

    2014-11-15

    Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.

  11. Dynamics of vortices in polariton quantum fluids : From full vortices, to half vortices and vortex pairs

    Science.gov (United States)

    Deveaud-Plédran, Benoit

    2012-02-01

    Polariton quantum fluids may be created both spontaneously through a standard phase transition towards a Bose Einstein condensate, or may be resonantly driven with a well-defined speed. Thanks to the photonic component of polaritons, the properties of the quantum fluid may be accessed rather directly with in particular the possibility of detained interferometric studies. Here, I will detail the dynamics of vortices, obtained with a picosecond time resolution, in different configurations, with in particular their phase dynamics. I will show in particular the dynamics the dynamics of spontaneous creation of a vortex, the dissociation of a full vortex into two half vortices as well as the dynamics of the dissociation of a dark soliton line into a street of pairs of vortices. Work done at EPFL by a dream team of Postdocs PhD students and collaborators: K. Lagoudakis, G. Nardin, T. Paraiso, G. Grosso, F. Manni, Y L'eger, M. Portella Oberli, F. Morier-Genoud and the help of our friend theorists V, Savona, M. Vouters and T. Liew.

  12. Control of secondary instability of the crossflow and Görtler-like vortices (Success and problems)

    Science.gov (United States)

    Kozlov, Viktor V.; Grek, Genrich R.

    The secondary instability on a group of crossflow vortices developing in a swept wing boundary layer is described. It is shown that, for travelling waves, there is a region of linear development, and the growth rate of disturbances appreciably depends on the separation between the vortices. Methods of controlling the secondary instability of the vortices by a controlled wave and local suction are proposed and substantiated. The stability of a flat plate boundary layer modulated by G&ou ml;rtler-like stationary vortices is described. Vortices were generated inside the boundary layer by means of roughness elements arranged in a regular array along the spanwise (z) direction. Transition is not caused directly by these structures, but by the growth of small amplitude travelling waves riding on top of the steady vortices. This situation is analogous to the transition process in Görtler and cross-flows. The waves were found to amplify up to a stage where higher harmonics are gener ated, leading to turbulent breakdown and disintegration of the spanwise boundary layer structure. For strong modulations, the observed instability is quite powerful, and can be excited "naturally" by small uncontrollable background disturbances. Controlled oscillations were then introduced by means of a vibrating ribbon, allowing a detailed investigation of the wave characteristics. The instability seems to be associated with the spanwise gradients of the mean flow, , and at all z-positions, the maximum wave amplitude was found at a wall-normal position where the mean velocity is equal to the phase velocity of the wave, U(y)=c, i.e., at the local critical layer. Unstable waves were observed at frequency well above those for which Tollmien-Schlichting (TS) waves amplify in the Blasius boundary layer. Excitation at lower frequencies and milder basic flow modulation showed that TS-type waves may a lso develop. Study of the transition control in that flow by means of riblets shows that the effect

  13. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    the wing. Th 60° angle stop wing achieved the largest total stroke angle and generated the most lift for the lowest power consumption of the wings tested. 2. Phase averaged stereo Particle Image Velocimetry (PIV) data was collected at eight phases through the flap cycle on the 30°, 45°, and 60° angle stop wings. Wings were mounted transverse and parallel to the interrogating laser sheet, and planar velocity intersections at the wing mid-span, one chord below the wing, were compared to one another to verify data fidelity. A Rankine-Froude actuator disk model was adapted to calculate the approximate vertical thrust generated from the total momentum flux through the flapping semi-disk using the velocity field measurements. Three component stereo u, v, and w-velocity contour measurements confirmed the presence of extensive vortical structures in the vicinity of the wing. The leading edge vortex was successfully tracked through the stroke cycle appearing at approximately 25% span, increasing in circulatory strength and translational velocity down the span toward the tip, and dissipating just after 75% span. Thrust calculations showed the vertically mounted wing more accurately represented the vertical forces when compared to its corresponding force balance measurement than the horizontally mounted wing. The mid-span showed the highest vertical velocity profile below the wing; and hence, was the location responsible for the majority of lift production along the span.

  14. An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing

    Science.gov (United States)

    Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi

    2011-08-01

    An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.

  15. A PIV Study of Baseline and Controlled Flow over the Highly Deflected Flap of a Generic Low Aspect Ratio Trapezoidal Wing

    Science.gov (United States)

    Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel

    2017-11-01

    A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.

  16. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    -averaged thrust, while the average aerodynamic power is increased. Furthermore, increasing the number of variables (i.e., providing the wing shape with greater degrees of spatial freedom) is observed to enable superior designs. To gain a better understanding of the reasons for which the obtained optimised shapes produce efficient flapping flights, the wake pattern and its vorticity strength are examined. This work described in this paper should facilitate better guidance for shape design of engineered flying systems.

  17. Vorticity budget of a tornado-like vortex

    Energy Technology Data Exchange (ETDEWEB)

    Sassa, Koji; Takemura, Saki, E-mail: sassa@kochi-u.ac.jp [Department of Applied Science, Kochi University (Japan)

    2011-12-22

    We evaluated the vorticity budget of a tornado-like vortex by measuring vertical and horizontal circulations of it. Though spiral horizontal vortices are clearly observed to converge and tilted into the tornado-like vortex, their circulation is quite small. The conversion of the vertical vorticity concentrated at the side of the spiral horizontal vortices was found to mainly contribute to the maintenance of the tornado-like vortex.

  18. Review of vortices in wildland fire

    Science.gov (United States)

    Jason M. Forthofer; Scott L. Goodrick

    2011-01-01

    Vortices are almost always present in the wildland fire environment and can sometimes interact with the fire in unpredictable ways, causing extreme fire behavior and safety concerns. In this paper, the current state of knowledge of the interaction of wildland fire and vortices is examined and reviewed. A basic introduction to vorticity is given, and the two common...

  19. Vortices wiggled and dragged

    International Nuclear Information System (INIS)

    Reichardt, Charles

    2008-01-01

    When a sufficiently strong magnetic field is applied to a superconductor, some of the field can pierce it through the generation of magnetic vortices, each of which contains a quantized amount of magnetic flux. Although the superconducting state of the material outside each vortex is maintained (and destroyed within each vortex), the interaction of vortices with a current passing through the material can cause them to move, dissipating energy and thereby generating a source of electrical resistance. The ability to manipulate an individual superconducting vortex represents a powerful tool for studying the dynamics of vortices and the superconductors that support them. It could also lead to the development of a new class of fluxon-based electronics.

  20. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  1. The Keenan and Wing bands in S stars

    International Nuclear Information System (INIS)

    Lambert, D.L.; Clegg, R.E.S.

    1980-01-01

    New observations of the near infrared spectra of S stars are presented as part of a survey of the unidentified Keenan and Wing bands. Bandhead wavelengths accurate to 0.5 A are presented. A new band is found at 9014 A. The bands are not present in normal M giants and dwarfs. Laboratory spectroscopy of heavy element oxides is reported. Several new identifications are proposed. The 10 300 A Wing band is identified with the Δv = - 1 sequence of the ZrO 9300 A Δv = 0 bands. The ZrO B 1 PI-A 1 Δ (Δv = 0) system may be responsible for either the 9736 A or the 10 515 A Wing bands. Two new bands in the near infrared at 8219 and 8235 A are provided by CeO. A new band with heads at 7503 and 7509 A in a spectrum of R And is tentatively attributed to YS. A band at 8268 A in M stars is the TiO delta(2-1) head. The 8610 A Keenan band is not due to CrH. Potential carriers of the Keenan and Wing bands are reviewed. It is suggested that the heavy element sulphides and, perhaps, chlorides are leading candidates. Identification of YS in R And may provide the first evidence for these sulphides. ZrS is a leading candidate for which laboratory spectroscopy is needed. (author)

  2. Vortices on hyperbolic surfaces

    International Nuclear Information System (INIS)

    Manton, Nicholas S; Rink, Norman A

    2010-01-01

    It is shown that Abelian Higgs vortices on a hyperbolic surface M can be constructed geometrically from holomorphic maps f: M → N, where N is also a hyperbolic surface. The fields depend on f and on the metrics of M and N. The vortex centres are the ramification points, where the derivative of f vanishes. The magnitude of the Higgs field measures the extent to which f is locally an isometry. Witten's construction of vortices on the hyperbolic plane is rederived, and new examples of vortices on compact surfaces and on hyperbolic surfaces of revolution are obtained. The interpretation of these solutions as SO(3)-invariant, self-dual SU(2) Yang-Mills fields on R 4 is also given.

  3. Calculated Low-Speed Steady and Time-Dependent Aerodynamic Derivatives for Several Different Wings Using a Discrete Vortex Method

    Science.gov (United States)

    Riley, Donald R.

    2016-01-01

    Calculated numerical values for some aerodynamic terms and stability Derivatives for several different wings in unseparated inviscid incompressible flow were made using a discrete vortex method involving a limited number of horseshoe vortices. Both longitudinal and lateral-directional derivatives were calculated for steady conditions as well as for sinusoidal oscillatory motions. Variables included the number of vortices used and the rotation axis/moment center chordwise location. Frequencies considered were limited to the range of interest to vehicle dynamic stability (kb <.24 ). Comparisons of some calculated numerical results with experimental wind-tunnel measurements were in reasonable agreement in the low angle-of-attack range considering the differences existing between the mathematical representation and experimental wind-tunnel models tested. Of particular interest was the presence of induced drag for the oscillatory condition.

  4. Heat transfer augmentation along the tube wall of a louvered fin heat exchanger using practical delta winglets

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Michael J.; Thole, Karen A. [Mechanical and Nuclear Engineering Department, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-05-15

    Delta winglets are known to induce the formation of streamwise vortices and increase heat transfer between a working fluid and the surface on which the winglets are placed. This study investigates the use of delta winglets to augment heat transfer on the tube surface of louvered fin heat exchangers. It is shown that delta winglets placed on louvered fins produce augmentations in heat transfer along the tube wall as high as 47% with a corresponding increase of 19% in pressure losses. Manufacturing constraints are considered in this study whereby piercings in the louvered fins resulting from stamping the winglets into the louvered fins are simulated. Comparisons of measured heat transfer coefficients with and without piercings indicate that piercings reduce average heat transfer augmentations, but significant increases still occur with respect to no winglets present. (author)

  5. Theory of concentrated vortices an introduction

    CERN Document Server

    Alekseenko, S V; Okulov, V L

    2007-01-01

    Vortex motion is one of the basic states of a flowing continuum. Intere- ingly, in many cases vorticity is space-localized, generating concentrated vortices. Vortex filaments having extremely diverse dynamics are the most characteristic examples of such vortices. Notable examples, in particular, include such phenomena as self-inducted motion, various instabilities, wave generation, and vortex breakdown. These effects are typically ma- fested as a spiral (or helical) configuration of a vortex axis. Many publications in the field of hydrodynamics are focused on vortex motion and vortex effects. Only a few books are devoted entirely to v- tices, and even fewer to concentrated vortices. This work aims to highlight the key problems of vortex formation and behavior. The experimental - servations of the authors, the impressive visualizations of concentrated vortices (including helical and spiral) and pictures of vortex breakdown primarily motivated the authors to begin this work. Later, the approach based on the hel...

  6. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  7. Modeling of oceanic vortices

    Science.gov (United States)

    Cushman-Roisin, B.

    Following on a tradition of biannual meetings, the 5th Colloquium on the Modeling of Oceanic Vortices was held May 21-23, 1990, at the Thayer School of Engineering at Dartmouth College, Hanover, N.H. The colloquium series, sponsored by the Office of Naval Research, is intended to gather oceanographers who contribute to our understanding of oceanic mesoscale vortices via analytical, numerical and experimental modeling techniques.

  8. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  9. Sources of CAM3 vorticity bias during northern winter from diagnostic study of the vorticity equation

    Energy Technology Data Exchange (ETDEWEB)

    Grotjahn, Richard [University of California, Department of Land, Air and Water Resources, Davis, CA (United States); Pan, Lin-Lin; Tribbia, Joseph [National Center for Atmospheric Research, Boulder, CO (United States)

    2011-06-15

    CAM3 (Community Atmosphere Model version 3) simulation bias is diagnosed using the vorticity equation. The study compares CAM3 output with ECMWF (European Centre for Medium-Range Weather Forecasts) 40 year reanalysis (ERA-40) data. A time mean vorticity bias equation is also formulated and the terms are grouped into categories: linear terms, nonlinear terms, transient contributions, and friction (calculated as a residual). Frontal cyclone storms have much weaker band passed kinetic energy and enstrophy in CAM3. The downstream end of the North Atlantic storm track (NAST) has large location error. While the vorticity equation terms have similar amplitude ranking in CAM3 and ERA-40 at upper levels, the ranking differs notably in the lower troposphere. The linear and friction terms dominate the vorticity bias equation. The transient terms contribute along the storm track, but the nonlinear terms are generally much smaller, with the primary exception being over the Iberian peninsula. Friction is much stronger in CAM3. As evidence, nearly all wavelengths (including the longest planetary waves) have smaller amplitude in CAM3 than in ERA-40 vorticity data. Negative near surface vorticity tendency bias on the European side of the Arctic is linked to the NAST track error (evident in the divergence term). CAM3 misses the Beaufort high in sea level pressure (SLP) due to low level warm temperature bias, too little vortex compression, and to too little horizontal advection of negative vorticity compared with ERA-40. Generally lower SLP values in CAM3 over the entire Arctic follow from lower level warm bias in CAM3. (orig.)

  10. The Effect of Pitching Phase on the Vortex Circulation for a Flapping Wing During Stroke Reversal

    Science.gov (United States)

    Burge, Matthew; Ringuette, Matthew

    2017-11-01

    We study the effect of pitching-phase on the circulation behavior for the 3D flow structures produced during stroke reversal for a 2-degree-of-freedom flapping wing executing hovering kinematics. Previous research has related the choice in pitching-phase with respect to the wing rotation during stroke reversal (advanced vs. symmetric pitch-timing) to a lift peak preceding stroke reversal. However, results from experiments on the time-varying circulation contributions from the 3D vortex structures across the span produced by both rotation and pitching are lacking. The objective of this research is to quantitatively examine how the spanwise circulation of these structures is affected by the pitching-phase for several reduced pitching frequencies. We employ a scaled wing model in a glycerin-water mixture and measure the time-varying velocity using multiple planes of stereo digital particle image velocimetry. Data-plane positions along the wing span are informed by the unsteady behavior of the 3D vortex structures found in our prior flow visualization movies. Individual vortices are identified to calculate their circulation. This work is aimed at understanding how the behavior of the vortex structures created during stroke reversal vary with key motion parameters. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Ronald Joslin.

  11. Travelling water waves with compactly supported vorticity

    International Nuclear Information System (INIS)

    Shatah, Jalal; Walsh, Samuel; Zeng, Chongchun

    2013-01-01

    In this paper, we prove the existence of two-dimensional, travelling, capillary-gravity, water waves with compactly supported vorticity. Specifically, we consider the cases where the vorticity is a δ-function (a point vortex), or has small compact support (a vortex patch). Using a global bifurcation theoretic argument, we construct a continuum of finite-amplitude, finite-vorticity solutions for the periodic point vortex problem. For the non-periodic case, with either a vortex point or patch, we prove the existence of a continuum of small-amplitude, small-vorticity solutions. (paper)

  12. A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock

    Science.gov (United States)

    Quast, Thomas; Nelson, Robert C.; Fisher, David F.

    1991-01-01

    Free-to-roll experiments and flow visualization studies have been conducted for a 2.5-percent model of the F-18 undergoing unsteady wing rock oscillations. Data have been acquired in the form of roll angle time histories as well as video recordings and 35 mm photography of the forebody and leading edge extension vortices. The time histories were differentiated to produce angular velocity and angular acceleration. From this the roll moment as a function of time and/or roll angle could be estimated. A thorough analysis of the data has revealed a genuine wing-rock phenomenon. Off-surface flow visualization was used to identiify the forebody and LEX vortex core positions and their interaction in both static and dynamic configurations. A direct correlation between the dynamic data and visualized vortex activity during the wing-rock motion has been made.

  13. Effect of external stores on the stability and control characteristics of a delta wing fighter model at Mach numbers from 0.60 to 2.01

    Science.gov (United States)

    Spearman, M. L.

    1983-01-01

    An investigation has been made to determine the effects of external stores on the stability and control characteristics of a delta wing fighter airplane model at Mach numbers from 0.60 to 2.01 for a Reynolds number of 3.0 X 1 million per foot. The angle-of-attack range was from about -4 degrees to 20 degrees at a sideslip angle of 0 degrees for the transonic tests, and from about -4 degrees to 10 degrees at sideslip angles of 0 degrees and 3 degrees for the supersonic tests. In general, the results of the tests indicated no seriously detrimental effects of the stores on the stability and control characteristics of the model but did show an increase in the minimum drag level throughout the Mach number range. However, the drag-due-to-lift was such that for subsonic/transonic speeds, the drag at higher lifts was essentially unaffected and the indications are that the maneuvering capability may not be impaired by the stores.

  14. Vorticity and Λ polarization in baryon rich matter

    Science.gov (United States)

    Baznat, Mircea; Gudima, Konstantin; Prokhorov, George; Sorin, Alexander; Teryaev, Oleg; Zakharov, Valentin

    2018-02-01

    The polarization of Λ hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies in baryon-rich matter. The polarization of ¯ has the same sihn and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  15. An efficient coordinate transformation technique for unsteady, transonic aerodynamic analysis of low aspect-ratio wings

    Science.gov (United States)

    Guruswamy, G. P.; Goorjian, P. M.

    1984-01-01

    An efficient coordinate transformation technique is presented for constructing grids for unsteady, transonic aerodynamic computations for delta-type wings. The original shearing transformation yielded computations that were numerically unstable and this paper discusses the sources of those instabilities. The new shearing transformation yields computations that are stable, fast, and accurate. Comparisons of those two methods are shown for the flow over the F5 wing that demonstrate the new stability. Also, comparisons are made with experimental data that demonstrate the accuracy of the new method. The computations were made by using a time-accurate, finite-difference, alternating-direction-implicit (ADI) algorithm for the transonic small-disturbance potential equation.

  16. On the stability of shear-Alfven vortices

    International Nuclear Information System (INIS)

    Jovanovic, D.; Horton, W.

    1993-08-01

    Linear stability of shear-Alfven vortices is studied analytically using the Lyapunov method. Instability is demonstrated for vortices belonging to the drift mode, which is a generalization of the standard Hasegawa-Mima vortex to the case of large parallel phase velocities. In the case of the convective-cell mode, short perpendicular-wavelength perturbations are stable for a broad class of vortices. Eventually, instability of convective-cell vortices may occur on the perpendicular scale comparable with the vortex size, but it is followed by a simultaneous excitation of coherent structures with better localization than the original vortex

  17. Aerodynamics of a translating comb-like plate inspired by a fairyfly wing

    Science.gov (United States)

    Lee, Seung Hun; Kim, Daegyoum

    2017-08-01

    Unlike the smooth wings of common insects or birds, micro-scale insects such as the fairyfly have a distinctive wing geometry, comprising a frame with several bristles. Motivated by this peculiar wing geometry, we experimentally investigated the flow structure of a translating comb-like wing for a wide range of gap size, angle of attack, and Reynolds number, Re = O(10) - O(103), and the correlation of these parameters with aerodynamic performance. The flow structures of a smooth plate without a gap and a comb-like plate are significantly different at high Reynolds number, while little difference was observed at the low Reynolds number of O(10). At low Reynolds number, shear layers that were generated at the edges of the tooth of the comb-like plate strongly diffuse and eventually block a gap. This gap blockage increases the effective surface area of the plate and alters the formation of leading-edge and trailing-edge vortices. As a result, the comb-like plate generates larger aerodynamic force per unit area than the smooth plate. In addition to a quasi-steady phase after the comb-like plate travels several chords, we also studied a starting phase of the shear layer development when the comb-like plate begins to translate from rest. While a plate with small gap size can generate aerodynamic force at the starting phase as effectively as at the quasi-steady phase, the aerodynamic force drops noticeably for a plate with a large gap because the diffusion of the developing shear layers is not enough to block the gap.

  18. Method for solving an inverse problem of wing type by using a simple panel method; Kanbenna panel ho ni yoru yokugata gyaku mondai no ichikaiho

    Energy Technology Data Exchange (ETDEWEB)

    Ando, J; Matsumoto, D; Maita, S; Nakatake, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    This paper describes one method for solving an inverse problem of wing type based on the source and quasi continuous vortex lattice method (SQCM) in designing marine propellers and underwater wings. With the SQCM, vortices and control points are distributed on wing camber according to the QCM, and wing surface is divided into certain number of panels. This is the method to decide vortex intensity and blow-out intensity simultaneously from the condition that vertical speed on the camber and the wing surface is zero, upon having distributed blow-out with certain intensity inside the panel. The method solves the inverse problem with the following process: specific point distribution is so determined that the targeted velocity on the wing surface is satisfied when wing surface pressure distribution and uniform flow velocity are given; and then the panels are so rearranged as in parallel with direction of the flow on the surface of the wing calculated by using these specific points to derive the targeted wing shape. This paper describes the problem solving procedure in great detail. It also introduces examples of numerical calculations. It shows one method for solving the inverse problem in wing type using the SQCM as a simple panel method, whereas its good convergence and stability were verified. Considerations on effects of free surface and expansion of the method into three-dimensional problems will be implemented in the future. 11 refs., 8 figs.

  19. High resolution solutions of the Euler equations for vortex flows

    International Nuclear Information System (INIS)

    Murman, E.M.; Powell, K.G.; Rizzi, A.; Tel Aviv Univ., Israel)

    1985-01-01

    Solutions of the Euler equations are presented for M = 1.5 flow past a 70-degree-swept delta wing. At an angle of attack of 10 degrees, strong leading-edge vortices are produced. Two computational approaches are taken, based upon fully three-dimensional and conical flow theory. Both methods utilize a finite-volume discretization solved by a pseudounsteady multistage scheme. Results from the two approaches are in good agreement. Computations have been done on a 16-million-word CYBER 205 using 196 x 56 x 96 and 128 x 128 cells for the two methods. A sizable data base is generated, and some of the practical aspects of manipulating it are mentioned. The results reveal many interesting physical features of the compressible vortical flow field and also suggest new areas needing research. 16 references

  20. Effects of outer perturbances on dynamics of wake vortices

    International Nuclear Information System (INIS)

    Baranov, N.A.; Belotserkovsky, A.S.; Turchak, L.I.

    2004-01-01

    One of the problems in aircraft flight safety is reduction of the risk related with aircraft encounter with wake vortices generated by other aircraft. An efficient approach to this problem is design of systems providing information on areas of potential danger of wake vortices to pilots in real time. The main components of such a system are a unit for calculations of wake vortices behind aircraft and a unit for calculations of areas of potential danger. A promising way to development of real time algorithms for calculation of wake vortices is the use of vortex methods in CFD based on the hypothesis of quasi-3D flow in the area of wake vorticity. The mathematical model developed by our team calculates positions and intensity of wake vortices past aircraft taking account of such effects as viscous dissipation of vortices, effects of ambient turbulence, wind shear, as well as viscous interaction between wake vortices and the underlying surface. The necessity of including the last factor could be stems from the fact that in the case where wake vortices are in close proximity of the rigid surface, the viscous interaction between the wake vortices and the surface boundary layer results in the boundary layer separation changing the overall intensity and dynamics of the wake vortices. To evaluate the boundaries of the danger areas the authors use an approach based on calculation of additional aerodynamic forces and moments acting on the aircraft encountering wake vortices by means of evaluation of the aircraft additional velocities and angular rates corresponding to distribution of disturbed velocities on the aircraft surface. These criteria could be based on local characteristics of the vorticity areas or on characteristics related to the perturbation effects on the aircraft. The latter characteristics include the actual aerodynamic roll moment, the maximum angular rate or the maximum roll of the aircraft under perturbations in the wake vortices. To estimate the accuracy

  1. Dynamics of vortices in superconductors

    International Nuclear Information System (INIS)

    Weinan, E.

    1992-01-01

    We study the dynamics of vortices in type-II superconductors from the point of view of time-dependent Ginzburg-Landau equations. We outline a proof of existence, uniqueness and regularity of strong solutions for these equations. We then derive reduced systems of ODEs governing the motion of the vortices in the asymptotic limit of large Ginzburg-Landau parameter

  2. Computer program for prediction of the deposition of material released from fixed and rotary wing aircraft

    Science.gov (United States)

    Teske, M. E.

    1984-01-01

    This is a user manual for the computer code ""AGDISP'' (AGricultural DISPersal) which has been developed to predict the deposition of material released from fixed and rotary wing aircraft in a single-pass, computationally efficient manner. The formulation of the code is novel in that the mean particle trajectory and the variance about the mean resulting from turbulent fluid fluctuations are simultaneously predicted. The code presently includes the capability of assessing the influence of neutral atmospheric conditions, inviscid wake vortices, particle evaporation, plant canopy and terrain on the deposition pattern.

  3. Dynamics of fractional vortices in long Josephson junctions

    International Nuclear Information System (INIS)

    Gaber, Tobias

    2007-01-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-κ junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-κ junctions and fractional vortices are generalizations of the well-known 0-π junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-κ junctions that are based on standard Nb-AlO x -Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  4. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  5. Hawkmoth flight performance in tornado-like whirlwind vortices.

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L

    2014-06-01

    Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.

  6. Hawkmoth flight performance in tornado-like whirlwind vortices

    International Nuclear Information System (INIS)

    Ortega-Jimenez, Victor Manuel; Hedrick, Tyson L; Mittal, Rajat

    2014-01-01

    Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s −1 , respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack. (papers)

  7. Theory of Concentrated Vortices

    DEFF Research Database (Denmark)

    Alekseenko, Sergey; Kuibin, Pavel; Okulov, Valery

    This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have describ...... models of vortex structures used for interpretation of experimental data which serve as a ground for development of theoretical and numerical approaches to vortex investigation. Achievements in the fields of stability analysis, waves on vortices and vortex breakdown are also presented....

  8. Kinematical Compatibility Conditions for Vorticity Across Shock Waves

    Science.gov (United States)

    Baty, Roy

    2015-11-01

    This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.

  9. An experimental study of the effect of external turbulence on the decay of a single vortex and a vortex pair

    NARCIS (Netherlands)

    van Jaarsveld, J.P.J.; Holten, A.P.C.; Elsenaar, A.; Trieling, R.R.; Heijst, van G.J.F.

    2011-01-01

    This study is concerned with the effect of external turbulence on the decay of vortices. Single vortices and vortex pairs were generated with wing(s) mounted in the sidewalls of a wind tunnel. The distance between the two vortices could be adjusted such that they just touched each other or

  10. Gyrofluid potential vorticity equation and turbulent equipartion states

    DEFF Research Database (Denmark)

    Madsen, Jens; Juul Rasmussen, Jens; Naulin, Volker

    2015-01-01

    . The equation is relevant for transport barriers in magnetically confined plasmas because particle density, ion temperature and the radial electric field are mutually coupled through the potential vorticity. The potential vorticity equation is derived from an energy conserving, four-field, electrostatic, full......An equation governing potential vorticity in a magnetized plasmas is derived. The equation is analogous to Ertel's theorem. In the long wave-length limit the potential vorticity equals the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to the particle density...

  11. Effects of Sweep Angle on the Boundary-Layer Stability Characteristics of an Untapered Wing at Low Speeds

    Science.gov (United States)

    Boltz, Frederick W.; Kenyon, George C.; Allen, Clyde Q.

    1960-01-01

    An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure

  12. Quantized vortices in superfluids and superconductors

    International Nuclear Information System (INIS)

    Thoulessi, D.J.; Wexler, C.; Ping Ao, Ping; Niu, Qian; Geller, M.R.

    1998-01-01

    We give a general review of recent developments in the theory of vortices in superfluids and superconductors, discussing why the dynamics of vortices is important, and why some key results are still controversial. We discuss work that we have done on the dynamics of quantized vortices in a superfluid. Despite the fact that this problem has been recognized as important for forty years, there is still a lot of controversy about the forces on and masses of quantized vortices. We think that one can get unambiguous answers by considering a broken symmetry state that consists of one vortex in an infinite ideal system. We argue for a Magnus force that is proportional to the superfluid density, and we find that the effective mass density of a vortex in a neutral superfluid is divergent at low frequencies. We have generalized some of the results for a neutral superfluid to a charged system. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  13. The Theory of Vortical Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-04-01

    Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.

  14. Effects of Various Fillet Shapes on a 76/40 Double Delta Wing from Mach 0.18 to 0.7

    National Research Council Canada - National Science Library

    Gonzalez, Hugo

    2003-01-01

    .... These fillets were developed to control the shedding, trajectory, and subsequent breakdown of vortices to enhance aircraft aerodynamic performance at subsonic and transonic speeds, and at elevated angles of attack...

  15. Polarization in heavy-ion collisions: magnetic field and vorticity

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.

    2017-12-01

    The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  16. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  17. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H; Mitsudharmadi, Hatsari; Budiman, A C; Hasheminejad, S M; Nadesan, T; Tandiono; Low, H T; Lee, T S

    2015-01-01

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  18. Electrohydrodynamic (EHD) vortices in helical turbulence

    International Nuclear Information System (INIS)

    Kikuchi, H.

    1996-01-01

    The study of large-scale coherent hydrodynamic (HD) vortex generation has been extended to electrified charged dusty vortices to be termed as electrohydrodynamic (EHD) vortices, incorporating helical turbulence in electric and magnetic fields into that in fluid velocity, which are all created by an external DC electric field on the background. A new equation of EHD vortices is introduced on the basis of a set of EHD or electromagnetohydrodynamic (EMHD) equations, including equations of state and a full set of Maxwell's equations by using functional techniques for estimating equations for an ensemble average, turbulent background, and additional random field. In fact, EHD vortices for a charged dusty fluid can be more explosive with larger instabilities than HD vortices. In addition, it is inferred that an external DC electric field could provide the origin of additional self-organization to a coalescence of fluid vortex and electric field lines as a manifestation of a new frozen-in field concept for electric fields when the electric Reynolds number is sufficiently high. This is discussed on the basis of a set of general transport equations for fluid vorticity, magnetic and electric fields that are rederived concisely. In particular, a novel concept of electric field line merging-reconnection is developed in close relation to fluid vortex line merging, indicating a coalescence of fluid vortex breakdown or merging point and electric field line reconnection point, X-type or O-type with possible application to tornadic thunderstorms. In fact, a thundercloud charge distribution so as to provide a coalescence of fluid vortex and electric field lines is quite possible without theoretical inconsistency, and is thought most likely to occur from observations available so far. (orig.)

  19. Controlled Manipulation of Individual Vortices in a Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Straver, E.W.J.

    2010-04-05

    We report controlled local manipulation of single vortices by low temperature magnetic force microscope (MFM) in a thin film of superconducting Nb. We are able to position the vortices in arbitrary configurations and to measure the distribution of local depinning forces. This technique opens up new possibilities for the characterization and use of vortices in superconductors.

  20. On the motion of multiple helical vortices

    Science.gov (United States)

    Wood, D. H.; Boersma, J.

    2001-11-01

    The analysis of the self-induced velocity of a single helical vortex (Boersma & Wood 1999) is extended to include equally spaced multiple vortices. This arrangement approximates the tip vortices in the far wake of multi-bladed wind turbines, propellers, or rotors in ascending, descending, or hovering flight. The problem is reduced to finding, from the Biot Savart law, the additional velocity of a helix due to an identical helix displaced azimuthally. The resulting Biot Savart integral is further reduced to a Mellin Barnes integral representation which allows the asymptotic expansions to be determined for small and for large pitch. The Biot Savart integral is also evaluated numerically for a total of two, three and four vortices over a range of pitch values. The previous finding that the self-induced velocity at small pitch is dominated by a term inversely proportional to the pitch carries over to multiple vortices. It is shown that a far wake dominated by helical tip vortices is consistent with the one-dimensional representation that leads to the Betz limit on the power output of wind turbines. The small-pitch approximation then allows the determination of the blade&s bound vorticity for optimum power extraction. The present analysis is shown to give reasonable estimates for the vortex circulation in experiments using a single hovering rotor and a four-bladed propeller.

  1. Vortices and vortex lattices in quantum ferrofluids

    International Nuclear Information System (INIS)

    Martin, A M; Marchant, N G; Parker, N G; O’Dell, D H J

    2017-01-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition. (topical review)

  2. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O'Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  3. Tunneling decay of self-gravitating vortices

    Directory of Open Access Journals (Sweden)

    Dupuis Éric

    2018-01-01

    Full Text Available We investigate tunneling decay of false vortices in the presence of gravity, in which vortices are trapped in the false vacuum of a theory of scalar electrodynamics in three dimensions. The core of the vortex contains magnetic flux in the true vacuum, while outside the vortex is the appropriate topologically nontrivial false vacuum. We numerically obtain vortex solutions which are classically stable; however, they could decay via tunneling. To show this phenomenon, we construct the proper junction conditions in curved spacetime. We find that the tunneling exponent for the vortices is half that for Coleman-de Luccia bubbles and discuss possible future applications.

  4. Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.; Duan, Lian

    2016-01-01

    Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.

  5. Topological vortices in gauge models of graphene

    Science.gov (United States)

    Zhang, Xin-Hui; Li, Xueqin; Hao, Jin-Bo

    2018-06-01

    Graphene-like structure possessing the topological vortices and knots, and the magnetic flux of the vortices configuration quantized, are proposed in this paper. The topological charges of the vortices are characterized by Hopf indices and Brower degrees. The Abelian background field action (BF action) is a topological invariant for the knot family, which is just the total sum of all the self-linking numbers and all the linking numbers. Flux quantization opens the possibility of having Aharonov-Bohm-type effects in graphene without external electromagnetic field.

  6. Streamwise vortices destabilize swimming bluegill sunfish (Lepomis macrochirus).

    Science.gov (United States)

    Maia, Anabela; Sheltzer, Alex P; Tytell, Eric D

    2015-03-01

    In their natural environment, fish must swim stably through unsteady flows and vortices, including vertical vortices, typically shed by posts in a flow, horizontal cross-flow vortices, often produced by a step or a waterfall in a stream, and streamwise vortices, where the axis of rotation is aligned with the direction of the flow. Streamwise vortices are commonly shed by bluff bodies in streams and by ships' propellers and axial turbines, but we know little about their effects on fish. Here, we describe how bluegill sunfish use more energy and are destabilized more often in flow with strong streamwise vorticity. The vortices were created inside a sealed flow tank by an array of four turbines with similar diameter to the experimental fish. We measured oxygen consumption for seven sunfish swimming at 1.5 body lengths (BL) s(-1) with the turbines rotating at 2 Hz and with the turbines off (control). Simultaneously, we filmed the fish ventrally and recorded the fraction of time spent maneuvering side-to-side and accelerating forward. Separately, we also recorded lateral and ventral video for a combination of swimming speeds (0.5, 1.5 and 2.5 BL s(-1)) and turbine speeds (0, 1, 2 and 3 Hz), immediately after turning the turbines on and 10 min later to test for accommodation. Bluegill sunfish are negatively affected by streamwise vorticity. Spills (loss of heading), maneuvers and accelerations were more frequent when the turbines were on than in the control treatment. These unsteady behaviors, particularly acceleration, correlated with an increase in oxygen consumption in the vortex flow. Bluegill sunfish are generally fast to recover from roll perturbations and do so by moving their pectoral fins. The frequency of spills decreased after the turbines had run for 10 min, but was still markedly higher than in the control, showing that fish partially adapt to streamwise vorticity, but not completely. Coping with streamwise vorticity may be an important energetic

  7. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.

    1981-01-01

    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  8. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  9. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  10. Interaction of vortices with flexible piezoelectric beams

    Science.gov (United States)

    Goushcha, Oleg; Akaydin, Huseyin Dogus; Elvin, Niell; Andreopoulos, Yiannis

    2012-11-01

    A cantilever piezoelectric beam immersed in a flow is used to harvest fluidic energy. Pressure distribution induced by naturally present vortices in a turbulent fluid flow can force the beam to oscillate producing electrical output. Maximizing the power output of such an electromechanical fluidic system is a challenge. In order to understand the behavior of the beam in a fluid flow where vortices of different scales are present, an experimental facility was set up to study the interaction of individual vortices with the beam. In our set up, vortex rings produced by an audio speaker travel at specific distances from the beam or impinge on it, with a frequency varied up to the natural frequency of the beam. Depending on this frequency both constructive and destructive interactions between the vortices and the beam are observed. Vortices traveling over the beam with a frequency multiple of the natural frequency of the beam cause the beam to resonate and larger deflection amplitudes are observed compared to excitation from a single vortex. PIV is used to compute the flow field and circulation of each vortex and estimate the effect of pressure distribution on the beam deflection. Sponsored by NSF Grant: CBET #1033117.

  11. Dynamics of Chern-Simons vortices

    International Nuclear Information System (INIS)

    Collie, Benjamin; Tong, David

    2008-01-01

    We study vortex dynamics in three-dimensional theories with Chern-Simons interactions. The dynamics is governed by motion on the moduli space M in the presence of a magnetic field. For Abelian vortices, the magnetic field is shown to be the Ricci form over M; for non-Abelian vortices, it is the first Chern character of a suitable index bundle. We derive these results by integrating out massive fermions and following the fate of their zero modes.

  12. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  13. Why does gravitational radiation produce vorticity?

    International Nuclear Information System (INIS)

    Herrera, L; Barreto, W; Carot, J; Prisco, A Di

    2007-01-01

    We calculate the vorticity of worldlines of observers at rest in a Bondi-Sachs frame, produced by gravitational radiation, in a general Sachs metric. We claim that such an effect is related to the super-Poynting vector, in a similar way as the existence of the electromagnetic Poynting vector is related to the vorticity in stationary electrovacuum spacetimes

  14. Stability of relative equilibria of three vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2009-01-01

    Three point vortices on the unbounded plane have relative equilibria wherein the vortices either form an equilateral triangle or are collinear. While the stability analysis of the equilateral triangle configurations is straightforward, that of the collinear relative equilibria is considerably mor...

  15. Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight

    Science.gov (United States)

    Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.

    2017-12-01

    Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.

  16. Collision dynamics of two-dimensional non-Abelian vortices

    Science.gov (United States)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  17. Why superconducting vortices follow to moving hot sport?

    Science.gov (United States)

    Sergeev, Andrei; Michael, Reizer

    Recent experiments reported in Nature Comm. 7, 12801, 2016 show that superconducting vortices follow to the moving hot sport created by a focused laser beam, i.e. vortices move from the cold area to the moving hot area. This behavior is opposite to the vortex motion observed in numerous measurements of the vortex Nernst effect, where vortices always move against the temperature gradient. Taking into account that superconducting magnetization currents do not transfer entropy, we analyze the balance of forces acting on a vortex in stationary and dynamic temperature gradients. We show that the dynamic measurements may be described by a single vortex approximation, while in stationary measurements interaction between vortices is critical. Supported by NRC.

  18. On trailing vortices: A short review

    International Nuclear Information System (INIS)

    Jacquin, Laurent

    2005-01-01

    This paper reviews some mechanisms involved in the dynamics of vortices in fluid flows. The topic is first introduced by pointing out its importance in aerodynamics. Several basic notions useful to appraise experimental observations are then surveyed, namely: centrifugal instabilities, inertial waves, cooperative instabilities, vortex merger, vortex breakdown and turbulence in vortices. Each topic is illustrated with experimental or numerical results

  19. Airfoil Drag Reduction using Controlled Trapped Vorticity Concentrations

    Science.gov (United States)

    Desalvo, Michael; Glezer, Ari

    2017-11-01

    The aerodynamic performance of a lifting surface at low angles of attack (when the base flow is fully attached) is improved through fluidic modification of its ``apparent'' shape by superposition of near-surface trapped vorticity concentrations. In the present wind tunnel investigations, a controlled trapped vorticity concentration is formed on the pressure surface of an airfoil (NACA 4415) using a hybrid actuator comprising a passive obstruction of scale O(0.01c) and an integral synthetic jet actuator. The jet actuation frequency [Stact O(10)] is selected to be at least an order of magnitude higher than the characteristic unstable frequency of the airfoil wake, thereby decoupling the actuation from the global instabilities of the base flow. Regulation of vorticity accumulation in the vicinity of the actuator by the jet effects changes in the local pressure, leading in turn to changes in the airfoil's drag and lift. Trapped vorticity can lead to a significant reduction in drag and reduced lift (owing to the sense of the vorticity), e.g. at α =4° and Re = 6.7 .105 the drag and lift reductions are 14% and 2%, respectively. PIV measurements show the spatial variation in the distribution of vorticity concentrations and yield estimates of the corresponding changes in circulation.

  20. Vortices and turbulence (The 23rd Lanchester Memorial Lecture)

    Science.gov (United States)

    Lilley, G. M.

    1983-12-01

    A comprehensive discussion is presented concerning the phenomena characteristically treated in vortex and turbulence theory, as well as the degree of success achieved by various computation and visualization methods and theoretical models developed for vortex flow behavior prediction. Note is taken of the pioneering research conducted by F. W. Lanchester in 1893-1907, and attention is given to vortex tip and edge generation by rectangular and delta wings, the cool core effect of the Ranque-Hilsch vortex tube, the modeling of shear flows by means of vortex array methods, the classification and modelling of turbulent flows (together with a taxonomy of their calculation methods), and NASA ILLIAC IV computations of two-dimensional channel flow. Also noted are recent results concerning the boundary layer coherent structure of a flat plate at zero pressure gradient, including the regeneration structure and flow distortion and breakdown of a turbulent boundary layer.

  1. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  2. Thick vortices in SU(2) lattice gauge theory

    OpenAIRE

    Cheluvaraja, Srinath

    2004-01-01

    Three dimensional SU(2) lattice gauge theory is studied after eliminating thin monopoles and the smallest thick monopoles. Kinematically this constraint allows the formation of thick vortex loops which produce Z(2) fluctuations at longer length scales. The thick vortex loops are identified in a three dimensional simulation. A condensate of thick vortices persists even after the thin vortices have all disappeared. The thick vortices decouple at a slightly lower temperature (higher beta) than t...

  3. Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    Science.gov (United States)

    Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry

    2018-05-01

    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.

  4. Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals

    International Nuclear Information System (INIS)

    Hoffmann, Ch; Altmeyer, S; Pinter, A; Luecke, M

    2009-01-01

    We present numerical simulations of closed wavy Taylor vortices and of helicoidal wavy spirals in the Taylor-Couette system. These wavy structures appearing via a secondary bifurcation out of Taylor vortex flow and out of spiral vortex flow, respectively, mediate transitions between Taylor and spiral vortices and vice versa. Structure, dynamics, stability and bifurcation behaviour are investigated in quantitative detail as a function of Reynolds numbers and wave numbers for counter-rotating as well as corotating cylinders. These results are obtained by solving the Navier-Stokes equations subject to axial periodicity for a radius ratio η=0.5 with a combination of a finite differences method and a Galerkin method.

  5. Dynamical properties of vortical structures on the beta-plane

    DEFF Research Database (Denmark)

    Sutyrin, G.G.; Hesthaven, J.S.; Lynov, Jens-Peter

    1994-01-01

    The long-time evolution of monopolar and dipolar vortices influenced by the large-scale gradient of the ambient potential vorticity (the beta-effect) is studied by direct numerical solutions of the equivalent barotropic quasi-geostrophic equation. Translation and reorganization of vortical...... structures are shown to depend strongly on their intensity. Transport of trapped fluid by vortical structures is illustrated by calculating particle trajectories and by considering closed isolines of potential vorticity and the streamfunction in a co-moving reference frame. The initial behaviour of strong...... monopoles is found to be well described by a recent approximate theory for the evolution of azimuthal mode one, even for times longer than the linear Rossby wave period. In the long-time limit, strong monopoles transport particles mainly westward, although the meridional displacement is several times larger...

  6. CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

    International Nuclear Information System (INIS)

    Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan

    2012-01-01

    Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number

  7. CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan [Pusan National Univ., Busan (Korea, Republic of)

    2012-09-15

    Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number.

  8. Observation of Polarization Vortices in Momentum Space

    Science.gov (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  9. Navier-Stokes Computations of a Wing-Flap Model With Blowing Normal to the Flap Surface

    Science.gov (United States)

    Boyd, D. Douglas, Jr.

    2005-01-01

    A computational study of a generic wing with a half span flap shows the mean flow effects of several blown flap configurations. The effort compares and contrasts the thin-layer, Reynolds averaged, Navier-Stokes solutions of a baseline wing-flap configuration with configurations that have blowing normal to the flap surface through small slits near the flap side edge. Vorticity contours reveal a dual vortex structure at the flap side edge for all cases. The dual vortex merges into a single vortex at approximately the mid-flap chord location. Upper surface blowing reduces the strength of the merged vortex and moves the vortex away from the upper edge. Lower surface blowing thickens the lower shear layer and weakens the merged vortex, but not as much as upper surface blowing. Side surface blowing forces the lower surface vortex farther outboard of the flap edge by effectively increasing the aerodynamic span of the flap. It is seen that there is no global aerodynamic penalty or benefit from the particular blowing configurations examined.

  10. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  11. Correlations between Abelian monopoles and center vortices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Nejad, Seyed Mohsen, E-mail: smhosseininejad@ut.ac.ir; Deldar, Sedigheh, E-mail: sdeldar@ut.ac.ir

    2017-04-15

    We study the correlations between center vortices and Abelian monopoles for SU(3) gauge group. Combining fractional fluxes of monopoles, center vortex fluxes are constructed in the thick center vortex model. Calculating the potentials induced by fractional fluxes constructing the center vortex flux in a thick center vortex-like model and comparing with the potential induced by center vortices, we observe an attraction between fractional fluxes of monopoles constructing the center vortex flux. We conclude that the center vortex flux is stable, as expected. In addition, we show that adding a contribution of the monopole-antimonopole pairs in the potentials induced by center vortices ruins the Casimir scaling at intermediate regime.

  12. Doppler Velocity Signatures of Idealized Elliptical Vortices

    Directory of Open Access Journals (Sweden)

    Wen-Chau Lee

    2006-01-01

    Full Text Available Doppler radar observations have revealed a class of atmospheric vortices (tropical cyclones, tornadoes, dust devils that possess elliptical radar reflectivity signatures. One famous example is Typhoon Herb (1996 that maintained its elliptical reflectivity structure over a 40-hour period. Theoretical work and dual-Doppler analyses of observed tropical cyclones have suggested two physical mechanisms that can explain the formation of two types of elliptical vortices observed in nature, namely, the combination of a circular vortex with either a wavenumber two vortex Rossby wave or a deformation field. The characteristics of these two types of elliptical vortices and their corresponding Doppler velocity signatures have not been previously examined.

  13. Statistical balance of vorticity and a new scale for vortical structures in turbulence

    International Nuclear Information System (INIS)

    Novikov, E.A.

    1993-01-01

    The balance of one-point and two-point statistical characterics of vorticity, is considered on the basis of the Navier-Stokes equations. It is shown that within the inertial range of scales (L Re -3/4 much-lt r much-lt L, L external scale, Re Reynolds number) there is a physically distinguished scale l s ∼L Re -3/10 . The balance of vortical correlations with scales r≥l s is directly affected by the large-scale motion. l s is a natural length scale for the ''vortex strings,'' observed experimentally and numerically in three-dimensional turbulent flows. The twist of vortex lines in the internal structure of vortex strings is also briefly discussed

  14. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  15. A numerical study of vorticity-enhanced heat transfer

    Science.gov (United States)

    Wang, Xiaolin; Alben, Silas

    2012-11-01

    The Glezer lab at Georgia Tech has found that vorticity produced by vibrated reeds can improve heat transfer in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we simulate the heat transfer process in a 3-dimensional plate-fin heat sink. We propose a simplified model by considering flow and temperature in a 2-D channel, and extend the model to the third dimension using a 1-D heat fin model. We simulate periodically steady-state solutions. We determine how the global Nusselt number is increased, depending on the vortices' strengths and spacings, in the parameter space of Reynolds and Peclet numbers. We find a surprising spatial oscillation of the local Nusselt number due to the vortices. Support from NSF-DMS grant 1022619 is acknowledged.

  16. Point vortex description of drift wave vortices: Dynamics and transport

    International Nuclear Information System (INIS)

    Kono, M.; Horton, W.

    1991-05-01

    Point-vortex description for drift wave vortices is formulated based on the Hasegawa-Mima equation to study elementary processes for the interactions of vortices as well as statistical properties like vortex diffusion. Dynamical properties of drift wave vortices known by numerical experiments are recovered. Furthermore a vortex diffusion model discussed by Horton based on numerical simulations is shown to be analytically obtained. A variety of phenomena arising from the short-range nature of the interaction force of point vortices are suggested. 12 refs., 10 figs

  17. Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap

    Science.gov (United States)

    Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

    1992-01-01

    Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

  18. Dynamics of quantised vortices in superfluids

    CERN Document Server

    Sonin, Edouard B

    2016-01-01

    A comprehensive overview of the basic principles of vortex dynamics in superfluids, this book addresses the problems of vortex dynamics in all three superfluids available in laboratories (4He, 3He, and BEC of cold atoms) alongside discussions of the elasticity of vortices, forces on vortices, and vortex mass. Beginning with a summary of classical hydrodynamics, the book guides the reader through examinations of vortex dynamics from large scales to the microscopic scale. Topics such as vortex arrays in rotating superfluids, bound states in vortex cores and interaction of vortices with quasiparticles are discussed. The final chapter of the book considers implications of vortex dynamics to superfluid turbulence using simple scaling and symmetry arguments. Written from a unified point of view that avoids complicated mathematical approaches, this text is ideal for students and researchers working with vortex dynamics in superfluids, superconductors, magnetically ordered materials, neutron stars and cosmological mo...

  19. Potential vorticity field in the Bay of Bengal during southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Rao, D.P.

    theta), potential vorticity distribution is complex due to wind and freshwater forcings. The beta -effect dominates the potential vorticity field on 26.9 sigma theta isopycnal. The field of potential vorticity closely follows that of circulation...

  20. Improvement of a near wake model for trailing vorticity

    International Nuclear Information System (INIS)

    Pirrung, G R; Hansen, M H; Madsen, H A

    2014-01-01

    A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup of both lift and circulation in the attached flow region. The near wake model is validated against the test case of a finite wing with constant elliptical bound circulation. An unsteady simulation of the NREL 5 MW rotor shows the functionality of the coupled model

  1. Hairpin vortices in turbulent boundary layers

    International Nuclear Information System (INIS)

    Eitel-Amor, G; Schlatter, P; Flores, O

    2014-01-01

    The present work addresses the question whether hairpin vortices are a dominant feature of near-wall turbulence and which role they play during transition. First, the parent-offspring mechanism is investigated in temporal simulations of a single hairpin vortex introduced in a mean shear flow corresponding to turbulent channels and boundary layers up to Re τ = 590. Using an eddy viscosity computed from resolved simulations, the effect of a turbulent background is also considered. Tracking the vortical structure downstream, it is found that secondary hairpins are created shortly after initialization. Thereafter, all rotational structures decay, whereas this effect is enforced in the presence of an eddy viscosity. In a second approach, a laminar boundary layer is tripped to transition by insertion of a regular pattern of hairpins by means of defined volumetric forces representing an ejection event. The idea is to create a synthetic turbulent boundary layer dominated by hairpin-like vortices. The flow for Re τ < 250 is analysed with respect to the lifetime of individual hairpin-like vortices. Both the temporal and spatial simulations demonstrate that the regeneration process is rather short-lived and may not sustain once a turbulent background has formed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former DNS studies is an outer layer phenomenon not being connected to the onset of near-wall turbulence.

  2. A study on forces acting on a flapping wing

    Directory of Open Access Journals (Sweden)

    Cetiner O.

    2013-04-01

    Full Text Available In order to study the forces acting on a flapping wing, an experimental investigation is performed in steady water flow. In this study, a SD7003 airfoil undergoes combined pitching and plunging motion which simulates the forward flight of small birds. The frequency of pitching motion is equal to the frequency of plunging motion and pitch leads the plunge by a phase angle of 90 degrees. The experiments are conducted at Reynolds numbers of 2500 ≤ Re ≤ 13700 and the vortex formation is recorded using the digital particle image velocimetry (DPIV technique. A prediction of thrust force and efficiency is calculated from the average wake deficit of DPIV data, the near-wake vorticity patterns and time dependent velocity vectors are determined to comment on the thrust and drag indication. Direct force measurements are attempted using a Force/Torque sensor which is capable of measuring forces and moments in three axial directions.

  3. On the link between martian total ozone and potential vorticity

    Science.gov (United States)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  4. Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ziyang [Department of Physics, Zhejiang University, Hangzhou 310027 (China); College of Information Science and Engineering, Institute of Optics and Photonics, Huaqiao University, Xiamen, Fujian 361021 (China); Pu, Jixiong [College of Information Science and Engineering, Institute of Optics and Photonics, Huaqiao University, Xiamen, Fujian 361021 (China); Zhao, Daomu, E-mail: zhaodaomu@yahoo.com [Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2011-07-25

    The properties of a pair of vortices embedded in a Gaussian beam focused by a high numerical-aperture are studied on the basis of vector Debye integral. The vortices move and rotate in the vicinity of the focal plane for a pair of vortices with equal topological charges. For incident beam with a pair of vortices with opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane. -- Highlights: → The properties of a pair of vortices focused by a high numerical-aperture are studied. → It is shown that the focusing vortices with equal topological charges move toward and rotate. → It is shown that the focusing vortices with opposite topological charges move toward each other, annihilate and revive.

  5. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances

    Science.gov (United States)

    Marensi, Elena; Ricco, Pierre

    2017-11-01

    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus

  6. Physical properties corresponding to vortical flow geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, K, E-mail: nakayama@aitech.ac.jp [Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan)

    2014-10-01

    We examine a vortical flow geometry specified by the velocity gradient tensor ∇v, and derive properties representing the symmetry (axisymmetry or skewness) of the vortical flow in the swirl plane and a property specifying inflowing (outflowing) motion in all directions around the point. We focus on the radial and azimuthal velocities in a plane nonparallel to the eigenvector corresponding to the real eigenvalue of ∇v and show that these components are expressed as specific quadratic forms. The real and imaginary parts of the complex eigenvalues of ∇v represent averages of these eigenvalues of the quadratic forms, and are inadequate to specify the detailed flow geometry uniquely. The new properties complement specifying the precise flow geometry of the vortical flow.

  7. Towards laboratory detection of topological vortices in superfluid phases of QCD

    Science.gov (United States)

    Das, Arpan; Dave, Shreyansh S.; de, Somnath; Srivastava, Ajit M.

    2017-10-01

    Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from the glitches in pulsars. One also expects that the topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly different in energy/length scales, there are universal features in the formation of all these defects. Utilizing this universality, we investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions (HICs). Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give an unambiguous signal for superfluid transition resulting in vortices, allowing for the check of defect formation theories in a relativistic quantum field theory system, and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low energy HICs will give opportunity for laboratory controlled study of their properties, providing crucial inputs for the physics of pulsars.

  8. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics.

    Science.gov (United States)

    Zheng, Yue; Chen, W J

    2017-08-01

    Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects-vortices-have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.

  9. Nonautonomous Vortices in (2+1)-Dimensional Graded-Index Waveguide

    International Nuclear Information System (INIS)

    Lai Xian-Jing; Zhang Jie-Fang; Cai Xiao-Ou

    2015-01-01

    With the help of self-similarity transformation, we construct and study the nonautonomous vortices with different topological charges inside a planar graded-index nonlinear waveguide, analytically, and numerically. Although these vortices are approximate, they can reflect the real properties of self-similar optical beam during a short-term propagation. Existence of these autonomous vortices require delicate balances between the system parameters such as diffraction, nonlinearity, gain, and external potential. We are concerned with some special but interesting situations, and discussing the changes of the height, width, energy, and central position of the vortices as the increase of propagation distance. Moreover, we are also interested in the azimuthal modulational instability of the system, and comparing our prediction for the modulational instability growth rates to numerical results. (paper)

  10. Driven motion of vortices in superconductors

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Leaf, G.K.; Kaper, H.G.; Vinokur, V.M.; Koshelev, A.E.; Braun, D.W.; Levine, D.M.

    1995-09-01

    The driven motion of vortices in the solid vortex state is analyzed with the time-dependent Ginzburg-Landau equations. In large-scale numerical simulations, carried out on the IBM Scalable POWERparallel (SP) system at Argonne National Laboratory, many hundreds of vortices are followed as they move under the influence of a Lorentz force induced by a transport current in the presence of a planar defect (similar to a twin boundary in YBa 2 CU 3 O 7 ). Correlations in the positions and velocities of the vortices in plastic and elastic motion are identified and compared. Two types of plastic motion are observed. Organized plastic motion displaying long-range orientational correlation and shorter-range velocity correlation occurs when the driving forces are small compared to the pinning forces in the twin boundary. Disorganized plastic motion displaying no significant correlation in either the velocities or orientation of the vortex system occurs when the driving and pinning forces axe of the same order

  11. Coulomb energy, vortices, and confinement

    International Nuclear Information System (INIS)

    Greensite, Jeff; Olejnik, Stefan

    2003-01-01

    We estimate the Coulomb energy of static quarks from a Monte Carlo calculation of the correlator of timelike link variables in the Coulomb gauge. We find, in agreement with Cucchieri and Zwanziger, that this energy grows linearly with distance at large quark separations. The corresponding string tension, however, is several times greater than the accepted asymptotic string tension, indicating that a state containing only static sources, with no constituent gluons, is not the lowest energy flux tube state. The Coulomb energy is also measured on thermalized lattices with center vortices removed by the de Forcrand-D'Elia procedure. We find that when vortices are removed, the Coulomb string tension vanishes

  12. Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe

    2008-01-01

    This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues. (general)

  13. DELTAS: A new Global Delta Sustainability Initiative (Invited)

    Science.gov (United States)

    Foufoula-Georgiou, E.

    2013-12-01

    Deltas are economic and environmental hotspots, food baskets for many nations, home to a large part of the world population, and hosts of exceptional biodiversity and rich ecosystems. Deltas, being at the land-water interface, are international, regional, and local transport hubs, thus providing the basis for intense economic activities. Yet, deltas are deteriorating at an alarming rate as 'victims' of human actions (e.g. water and sediment reduction due to upstream basin development), climatic impacts (e.g. sea level rise and flooding from rivers and intense tropical storms), and local exploration (e.g. sand or aggregates, groundwater and hydrocarbon extraction). Although many efforts exist on individual deltas around the world, a comprehensive global delta sustainability initiative that promotes awareness, science integration, data and knowledge sharing, and development of decision support tools for an effective dialogue between scientists, managers and policy makers is lacking. Recently, the international scientific community proposed to establish the International Year of Deltas (IYD) to serve as the beginning of such a Global Delta Sustainability Initiative. The IYD was proposed as a year to: (1) increase awareness and attention to the value and vulnerability of deltas worldwide; (2) promote and enhance international and regional cooperation at the scientific, policy, and stakeholder level; and (3) serve as a launching pad for a 10-year committed effort to understand deltas as complex socio-ecological systems and ensure preparedness in protecting and restoring them in a rapidly changing environment. In this talk, the vision for such an international coordinated effort on delta sustainability will be presented as developed by a large number of international experts and recently funded through the Belmont Forum International Opportunities Fund. Participating countries include: U.S., France, Germany, U.K., India, Japan, Netherlands, Norway, Brazil, Bangladesh

  14. Numerical analysis of propeller induced ground vortices by actuator disk model

    NARCIS (Netherlands)

    Yang, Y.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: During the ground operation of aircraft, the interaction between the propulsor-induced flow field and the ground may lead to the generation of ground vortices. Utilizing numerical approaches, the source of vorticity entering ground vortices is investigated. The results show that the

  15. Potential Vorticity Evolution in the Co-orbital Region of Embedded Protoplanets

    International Nuclear Information System (INIS)

    Koller, J.

    2004-01-01

    This thesis presents two-dimensional hydrodynamic disk simulations with embedded protoplanets, emphasizing the non-linear dynamics in the co-orbital region. In particular, it demonstrates how a protoplanetary disk responds to embedded low mass planets at the inviscid limit. Since the potential vorticity (PV) flow is not conserved, due to the spiral shocks and possibly boundary layer effects emanating from the planet, the PV profile develops inflection points which eventually render the flow unstable. Vortices are produced in association with the potential vorticity minima. Born in the separatrix region, these vortices experience close encounters with the planet, consequently exerting strong torques on the planet. The existence of these vortices, if confirmed, have important implications on planetary migration rates. The formation of vortices is discussed in more detail and a key parameter is found which depends solely on planet mass and sound speed. With this key parameter, one can predict the disk evolution, PV growth rates, and threshold conditions for forming vortices in the co-orbital region. An analytical estimate for the change of PV due to shocks is compared to the actual change in PV in the hydrodynamic simulations. They match well except in the inner region where vortices form. In addition, extensive resolution tests were carried out but uncertainties remain about the physics of this particular region

  16. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    Science.gov (United States)

    Felici, Helene Marie

    1992-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  17. A Laboratory Study of Vortical Structures in Rotating Convection Plumes

    Science.gov (United States)

    Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team

    2015-11-01

    A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).

  18. Ginzburg-Landau vortices

    CERN Document Server

    Bethuel, Fabrice; Helein, Frederic

    2017-01-01

    This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy.  The location of the singularities is completely determined by minimiz...

  19. Error Propagation dynamics: from PIV-based pressure reconstruction to vorticity field calculation

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Richards, Geordie; Truscott, Tadd; USU Team; BYU Team

    2017-11-01

    Noninvasive data from velocimetry experiments (e.g., PIV) have been used to calculate vorticity and pressure fields. However, the noise, error, or uncertainties in the PIV measurements would eventually propagate to the calculated pressure or vorticity field through reconstruction schemes. Despite the vast applications of pressure and/or vorticity field calculated from PIV measurements, studies on the error propagation from the velocity field to the reconstructed fields (PIV-pressure and PIV-vorticity are few. In the current study, we break down the inherent connections between PIV-based pressure reconstruction and PIV-based vorticity calculation. The similar error propagation dynamics, which involve competition between physical properties of the flow and numerical errors from reconstruction schemes, are found in both PIV-pressure and PIV-vorticity reconstructions.

  20. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator

    Directory of Open Access Journals (Sweden)

    Han Menghu

    2015-04-01

    Full Text Available Experimental investigation of aerodynamic control on a 35° swept flying wing by means of nanosecond dielectric barrier discharge (NS-DBD plasma was carried out at subsonic flow speed of 20–40 m/s, corresponding to Reynolds number of 3.1 × 105–6.2 × 105. In control condition, the plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag ratio and an increase of 2° at stall angle of attack could be achieved compared with the baseline case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated. And the results revealed that control efficiency demonstrated strong dependence on pulsed frequency. Moreover, the results of pitching moment coefficient indicated that the breakdown of leading edge vortices could be delayed by plasma actuator at low pulsed frequencies.

  1. Lattice vortices in the two-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Grunewald, S.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    1986-01-01

    Multi-vortices of the 2D Abelian Higgs model on a finite lattice by relaxation of Monte-Carlo equilibrium configurations are generated and identified. The lattice vortices have action and a uniquely defined topological charge corresponding to the continuum ones. They exhibit the expected exponential decay behaviour and satisfy approximately the classical equations of motion. Vortex-antivortex superpositions are seen as well, supporting the dilute gas picture. Single vortices finally relax into ''dislocations'' and dissapear. A background charge construction turns out nearly insensitive with respect to dislocations

  2. Laboratory experiments on multipolar vortices in a rotating fluid

    NARCIS (Netherlands)

    Trieling, R.R.; Heijst, van G.J.F.; Kizner, Ziv

    2010-01-01

    The instability properties of isolated monopolar vortices have been investigated experimentally and the corresponding multipolar quasisteady states have been compared with semianalytical vorticity-distributed solutions to the Euler equations in two dimensions. A novel experimental technique was

  3. A Model for the Onset of Vortex Breakdown

    Science.gov (United States)

    Mahesh, K.

    1996-01-01

    A large body of information exists on the breakdown of incompressible streamwise vortices. Less is known about vortex breakdown at high speeds. An interesting example of supersonic vortex breakdown is the breakdown induced by the interaction of vortices with shock waves. The flow in supersonic engine inlets and over high-speed delta wings constitute technologically important examples of this phenomenon, which is termed 'shock-induced vortex breakdown'. In this report, we propose a model to predict the onset of shock-induced vortex breakdown. The proposed model has no adjustable constants, and is compared to both experiment and computation. The model is then extended to consider two other problems: the breakdown of a free compressible vortex, and free incompressible vortex breakdown. The same breakdown criterion is used in all three problems to predict the onset of breakdown. Finally, a new breakdown map is proposed that allows the simultaneous comparison of data from flows ranging from incompressible breakdown to breakdown induced by a shock wave.

  4. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  5. Vitality of optical vortices

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available Optical vortices are always created or annihilated in pairs with opposite topological charges. However, the presence of such a vortex dipole does not directly indicate whether they are associated with a creation or an annihilation event. Here we...

  6. Experiments on a low aspect ratio wing at low Reynolds numbers

    Science.gov (United States)

    Morse, Daniel R.

    At the start of the 21st century much of the focus of aircraft design has been turned to unmanned aerial vehicles (UAVs) which generally operate at much lower speeds in higher risk areas than manned aircraft. One subset of UAVs are Micro Air Vehicles (MAVs) which usually are no larger than 20cm and rely on non-traditional shapes to generate lift at very low velocities. This purpose of this work is to describe, in detail with experimental methods, the flow field around a low aspect ratio wing operating at low Reynolds numbers and at high angles of attack. Quantitative measurements are obtained by Three Component Time Resolved Particle Image Velocimetry (3C TR PIV) which describe the mean and turbulent flow field. This research focuses on the leading edge separation zone and the vortex shedding process which occurs at the leading edge. Streamwise wing tip vortices which dominate the lift characteristics are described with flow visualization and 3C TR PIV measurements. Turbulent Kinetic Energy (TKE) is described at the leading edge over several angles of attack. Turbulent Reynolds stresses in all three directions are described over the wing span and several Reynolds numbers. Two primary cyclic processes are observed within the flow field; one low frequency oscillation in the separated region and one high frequency event associated with leading edge vortex formation and convection. Two length scales are proposed and are shown to match well with each other, one based on leading edge vortex shedding frequency and convective velocity and the other based on mean vortex separation distance. A new method of rendering velocity frequency content over large data sets is proposed and used to illustrate the different frequencies observed at the leading edge.

  7. Crosswind Shear Gradient Affect on Wake Vortices

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  8. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  9. Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices.

    Science.gov (United States)

    Mehmood, M Q; Mei, Shengtao; Hussain, Sajid; Huang, Kun; Siew, S Y; Zhang, Lei; Zhang, Tianhang; Ling, Xiaohui; Liu, Hong; Teng, Jinghua; Danner, Aaron; Zhang, Shuang; Qiu, Cheng-Wei

    2016-04-06

    A multifocus optical vortex metalens, with enhanced signal-to-noise ratio, is presented, which focuses three longitudinal vortices with distinct topological charges at different focal planes. The design largely extends the flexibility of tuning the number of vortices and their focal positions for circularly polarized light in a compact device, which provides the convenience for the nanomanipulation of optical vortices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of centre vortices in dynamical mass generation

    International Nuclear Information System (INIS)

    Leinweber, Derek B.; Bowman, Patrick O.; Heller, Urs M.; Kusterer, Daniel-Jens; Langfeld, Kurt; Williams, Anthony G.

    2006-01-01

    The mass and renormalization functions of the nonperturbative quark propagator are studied in SU(3) gauge field theory with a Symanzik-improved gluon action and the AsqTad fermion action. Centre vortices in the gauge field are identified by fixing to maximal centre gauge. The role of centre vortices in dynamical mass generation is explored by removing centre vortices from the gauge fields and studying the associated changes in the quark propagator. We find that dynamical mass generation survives in the vortex-removed SU(3) gauge field theory despite the vanishing of the string tension and suppression of the gluon propagator in the infrared suggesting the possibility of decoupling dynamical mass generation from confinement

  11. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  12. AIAA Applied Aerodynamics Conference, 8th, Portland, OR, Aug. 20-22, 1990, Technical Papers. Parts 1 ampersand 2

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The present conference discusses topics in CFD methods and their validation, vortices and vortical flows, STOL/VSTOL aerodynamics, boundary layer transition and separation, wing airfoil aerodynamics, laminar flow, supersonic and hypersonic aerodynamics, CFD for wing airfoil and nacelle applications, wind tunnel testing, flight testing, missile aerodynamics, unsteady flow, configuration aerodynamics, and multiple body/interference flows. Attention is given to the numerical simulation of vortical flows over close-coupled canard-wing configuration, propulsive lift augmentation by side fences, road-vehicle aerodynamics, a shock-capturing method for multidimensional flow, transition-detection studies in a cryogenic environment, a three-dimensional Euler analysis of ducted propfan flowfields, multiple vortex and shock interaction at subsonic and supersonic speeds, and a Navier-Stokes simulation of waverider flowfields. Also discussed are the induced drag of crescent-shaped wings, the preliminary design aerodynamics of missile inlets, finite wing lift prediction at high angles-of-attack, optimal supersonic/hypersonic bodies, and adaptive grid embedding for the two-dimensional Euler equations

  13. Magnetic monopoles, center vortices, confinement and topology of gauge fields

    International Nuclear Information System (INIS)

    Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Schaefke, A.

    2000-01-01

    The vortex picture of confinement is studied. The deconfinement phase transition is explained as a transition from a phase in which vortices percolate to a phase of small vortices. Lattice results are presented in support of this scenario. Furthermore the topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills-theory. For this purpose the continuum analog of the maximum center gauge is constructed

  14. Magnetic Monopoles, Center Vortices, Confinement and Topology of Gauge Fields

    OpenAIRE

    Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Sch"afke, A.

    1999-01-01

    The vortex picture of confinement is studied. The deconfinement phase transition is explained as a transition from a phase in which vortices percolate to a phase of small vortices. Lattice results are presented in support of this scenario. Furthermore the topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills-theory. For this purpose the continuum analog of the maximum center gauge is constructed.

  15. Theory of Concentrated Vortices

    DEFF Research Database (Denmark)

    Alekseenko, Sergey; Kuibin, Pavel; Okulov, Valery

    This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have describ...

  16. Sharp vorticity gradients in two-dimensional turbulence and the energy spectrum

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry

    2010-01-01

    Formation of sharp vorticity gradients in two-dimensional (2D) hydrodynamic turbulence and their influence on the turbulent spectra are considered. The analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the di-vorticity lines...... is developed and compressibility of this mapping appears as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. In the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k −3 at large k, which appear to take the same form...

  17. Decay or collapse: Aircraft wake vortices in grid turbulence

    NARCIS (Netherlands)

    Ren, M.; Elsenaar, A.; van Heijst, G.J.F.; Kuczaj, Arkadiusz K.; Geurts, Bernardus J.

    2006-01-01

    Trailing vortices are naturally shed by airplanes and they typically evolve into a counter-rotating vortex pair. Downstream of the aircraft, these vortices can persist for a very long time and extend for several kilometers. This poses a potential hazard to following aircraft, particularly during

  18. Influence of artificial tip perturbation on asymmetric vortices flow over a chined fuselage

    Directory of Open Access Journals (Sweden)

    Shi Wei

    2015-08-01

    Full Text Available An experimental study was conducted with the aim of understanding behavior of asymmetric vortices flow over a chined fuselage. The tests were carried out in a wind tunnel at Reynolds number of 1.87 × 105 under the conditions of high angles of attack and zero angle of sideslip. The results show that leeward vortices flow becomes asymmetric vortices flow when angle of attack increases over 20°. The asymmetric vortices flow is asymmetry of two forebody vortices owing to the increase of angle of attack but not asymmetry of vortex breakdown which appears when angle of attack is above 35°. Asymmetric vortices flow is sensitive to tip perturbation and is non-deterministic due to randomly distributed natural minute geometrical irregularities on the nose tip within machining tolerance. Deterministic asymmetric vortices flow can be obtained by attaching artificial tip perturbation which can trigger asymmetric vortices flow and decide asymmetric vortices flow pattern. Triggered by artificial tip perturbation, the vortex on the same side with perturbation is in a higher position, and the other vortex on the opposite side is in a lower position. Vortex suction on the lower vortex side is larger, which corresponds to a side force pointing to the lower vortex side.

  19. On hairpin vortices in a transitional boundary layer

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2012-04-01

    Full Text Available In the presented paper the results of experiments on transitional boundary layer are presented. The boundary layer was generated on smooth flat wall with zero pressure gradient forming one side of the channel of rectangular cross section. The hairpin vortices, packets of hairpin vortices, turbulent spots and calmed regions were experimentally investigated using time-resolved PIV technique.

  20. Vortices and domain walls: 'Wormholes' in unconventional superconductors

    International Nuclear Information System (INIS)

    Bessarab, P F; Radievsky, A V

    2010-01-01

    In the framework of the 2D and 3D time-dependent Ginzburg-Landau model we study superconductors with multicomponent order parameter (d-pairing). We argue that topological defects inside the sample do affect its thermodynamic properties such as hysteresis loop, susceptibility, etc. Along with earlier known topological defects such as Abrikosov vortices, domain walls (DWs) which separate different magnetic phases and even vortices inside the DW, we found an interesting combination of DWs and vortices. Namely we show that equivalent magnetic phases may be linked together with a vortex going through the other magnetic phase. This configuration may correspond to a stable state even in a zero external magnetic field. We also mention that this configuration is topologically similar to the 'wormholes' in the quantum gravity.

  1. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model

    Science.gov (United States)

    Suzuki, Kosuke; Yoshino, Masato

    2017-06-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  2. Hard wall - soft wall - vorticity scattering in shear flow

    NARCIS (Netherlands)

    Rienstra, S.W.; Singh, D.K.

    2014-01-01

    An analytically exact solution, for the problem of lowMach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using theWiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall

  3. Hard wall - soft wall - vorticity scattering in shear flow

    NARCIS (Netherlands)

    Rienstra, S.W.; Singh, D.K.

    2014-01-01

    An analytically exact solution, for the problem of low Mach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using the Wiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall

  4. LONG-TERM EVOLUTION OF PLANET-INDUCED VORTICES IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Fu, Wen; Li, Hui; Li, Shengtai; Lubow, Stephen

    2014-01-01

    Recent observations of large-scale asymmetric features in protoplanetary disks suggest that large-scale vortices exist in such disks. Massive planets are known to be able to produce deep gaps in protoplanetary disks. The gap edges could become hydrodynamically unstable to the Rossby wave/vortex instability and form large-scale vortices. In this study we examine the long-term evolution of these vortices by carrying out high-resolution two-dimensional hydrodynamic simulations that last more than 10 4 orbits (measured at the planet's orbit). We find that the disk viscosity has a strong influence on both the emergence and lifetime of vortices. In the outer disk region where asymmetric features are observed, our simulation results suggest that the disk viscous α needs to be low, ∼10 –5 -10 –4 , to sustain vortices to thousands and up to 10 4 orbits in certain cases. The chance of finding a vortex feature in a disk then decreases with smaller planet orbital radius. For α ∼ 10 –3 or larger, even planets with masses of 5 M J will have difficulty either producing or sustaining vortices. We have also studied the effects of different disk temperatures and planet masses. We discuss the implications of our findings on current and future protoplanetary disk observations

  5. Vortices in a rotating dark matter condensate

    International Nuclear Information System (INIS)

    Yu, Rotha P; Morgan, Michael J

    2002-01-01

    We examine vortices in a self-gravitating dark matter Bose-Einstein condensate (BEC), consisting of ultra-low mass scalar bosons that arise during a late-time cosmological phase transition. Rotation of the dark matter BEC imprints a background phase gradient on the condensate, which establishes a harmonic trap potential for vortices. A numerical simulation of vortex dynamics shows that the vortex number density, n v ∝ r -1 , resulting in a flat velocity profile for the dark matter condensate. (letter to the editor)

  6. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  7. Comparing the dynamics of skyrmions and superconducting vortices

    International Nuclear Information System (INIS)

    Olson Reichhardt, C.J.; Lin, S.Z.; Ray, D.; Reichhardt, C.

    2014-01-01

    Highlights: • We describe similarities and differences between skyrmion and vortex dynamics. • The Magnus force can dramatically alter skyrmion transport. • The pinning becomes very weak when the Magnus force is strong. - Abstract: Vortices in type-II superconductors have attracted enormous attention as ideal systems in which to study nonequilibrium collective phenomena, since the self-ordering of the vortices competes with quenched disorder and thermal effects. Dynamic effects found in vortex systems include depinning, nonequilibrium phase transitions, creep, structural order–disorder transitions, and melting. Understanding vortex dynamics is also important for applications of superconductors which require the vortices either to remain pinned or to move in a controlled fashion. Recently, topological defects called skyrmions have been realized experimentally in chiral magnets. Here we highlight similarities and differences between skyrmion dynamics and vortex dynamics. Many of the previous ideas and experimental setups that have been applied to superconducting vortices can also be used to study skyrmions. We also discuss some of the differences between the two systems, such as the potentially large contribution of the Magnus force in the skyrmion system that can dramatically alter the dynamics and transport properties

  8. Control and navigation system for a fixed-wing unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Ruiyong Zhai

    2014-02-01

    Full Text Available This paper presents a flight control and navigation system for a fixed-wing unmanned aerial vehicle (UAV with low-cost micro-electro-mechanical system (MEMS sensors. The system is designed under the inner loop and outer loop strategy. The trajectory tracking navigation loop is the outer loop of the attitude loop, while the attitude control loop is the outer loop of the stabilization loop. The proportional-integral-derivative (PID control was adopted for stabilization and attitude control. The three-dimensional (3D trajectory tracking control of a UAV could be approximately divided into lateral control and longitudinal control. The longitudinal control employs traditional linear PID feedback to achieve the desired altitude of the UAV, while the lateral control uses a non-linear control method to complete the desired trajectory. The non-linear controller can automatically adapt to ground velocity change, which is usually caused by gust disturbance, thus the UAV has good wind resistance characteristics. Flight tests and survey missions were carried out with our self-developed delta fixed-wing UAV and MEMS-based autopilot to confirm the effectiveness and practicality of the proposed navigation method.

  9. 4D-flat compactifications with brane vorticities

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Rubakov, V.

    2004-07-01

    We present solutions in six-dimensional gravity coupled to a sigma model, in the presence of three-brane sources. The space transverse to the branes is a compact non-singular manifold. The example of O(3) sigma model in the presence of two three-branes is worked out in detail. We show that the four-dimensional flatness is obtained with a single condition involving the brane tensions, which are in general different and may be both positive, and another characteristic of the branes, vorticity. We speculate that the adjustment of the effective four- dimensional cosmological constant may occur through the exchange of vorticity between the branes. We then give exact instanton type solutions for sigma models targeted on a general Kaehler manifold, and elaborate in this framework on multi-instantons of the O(3) sigma model. The latter have branes, possibly with vorticities, at the instanton positions, thus generalizing our two-brane solution. (author)

  10. 4d-flat compactifications with brane vorticities

    International Nuclear Information System (INIS)

    Randjbar-Daemi, Seif; Rubakov, Valery

    2004-01-01

    We present solutions in six-dimensional gravity coupled to a sigma model, in the presence of three-brane sources. The space transverse to the branes is a compact non-singular manifold. The example of O(3) sigma model in the presence of two three-branes is worked out in detail. We show that the four-dimensional flatness is obtained with a single condition involving the brane tensions, which are in general different and may be both positive, and another characteristic of the branes, vorticity. We speculate that the adjustment of the effective four-dimensional cosmological constant may occur through the exchange of vorticity between the branes. We then give exact instanton type solutions for sigma models targeted on a general Kaehler manifold, and elaborate in this framework on multi-instantons of the O(3) sigma model. The latter have branes, possibly with vorticities, at the instanton positions, thus generalizing our two-brane solution. (author)

  11. Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serrate signaling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Roland Le Borgne

    2005-04-01

    Full Text Available Signaling by the Notch ligands Delta (Dl and Serrate (Ser regulates a wide variety of essential cell-fate decisions during animal development. Two distinct E3 ubiquitin ligases, Neuralized (Neur and Mind bomb (Mib, have been shown to regulate Dl signaling in Drosophila melanogaster and Danio rerio, respectively. While the neur and mib genes are evolutionarily conserved, their respective roles in the context of a single organism have not yet been examined. We show here that the Drosophila mind bomb (D-mib gene regulates a subset of Notch signaling events, including wing margin specification, leg segmentation, and vein determination, that are distinct from those events requiring neur activity. D-mib also modulates lateral inhibition, a neur- and Dl-dependent signaling event, suggesting that D-mib regulates Dl signaling. During wing development, expression of D-mib in dorsal cells appears to be necessary and sufficient for wing margin specification, indicating that D-mib also regulates Ser signaling. Moreover, the activity of the D-mib gene is required for the endocytosis of Ser in wing imaginal disc cells. Finally, ectopic expression of neur in D-mib mutant larvae rescues the wing D-mib phenotype, indicating that Neur can compensate for the lack of D-mib activity. We conclude that D-mib and Neur are two structurally distinct proteins that have similar molecular activities but distinct developmental functions in Drosophila.

  12. Compressible dynamic stall vorticity flux control using a dynamic ...

    Indian Academy of Sciences (India)

    systems, such as a wind turbine, are prevented from ever entering dynamic stall, essentially disregarding potential ... future generations of such systems, an overwhelming need has developed to avail this benefit safely. ... approach must diffuse the vorticity prior to its coalescence, but keep the vorticity over the airfoil up to ...

  13. Continuous control of asymmetric forebody vortices in a bi-stable state

    Science.gov (United States)

    Wang, Qi-te; Cheng, Ke-ming; Gu, Yun-song; Li, Zhuo-qi

    2018-02-01

    Aiming at the problem of continuous control of asymmetric forebody vortices at a high angle of attack in a bi-stable regime, a dual synthetic jet actuator embedded in an ogive forebody was designed. Alternating unsteady disturbance with varying degree asymmetrical flow fields near the nozzles is generated by adjusting the duty cycle of the drive signal of the actuator, specifically embodying the asymmetric time-averaged pattern of jet velocity, vorticity, and turbulent kinetic energy. Experimental results show that within the range of relatively high angles of attack, including the angle-of-attack region in a bi-stable state, the lateral force of the ogive forebody is continuously controlled by adjusting the duty cycle of the drive signal; the position of the forebody vortices in space, the vorticity magnitude, the total pressure coefficient near the vortex core, and the vortex breakdown location are continuously changed with the duty cycle increased observed from the time-averaged flow field. Instantaneous flow field results indicate that although the forebody vortices are in an unsteady oscillation state, a continuous change in the forebody vortices' oscillation balance position as the duty cycle increases leads to a continuous change in the model's surface pressure distribution and time-averaged lateral force. Different from the traditional control principle, in this study, other different degree asymmetrical states of the forebody vortices except the bi-stable state are obtained using the dual synthetic jet control technology.

  14. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  15. Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry

    2007-01-01

    The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...

  16. The Born-Infeld vortices induced from a generalized Higgs mechanism.

    Science.gov (United States)

    Han, Xiaosen

    2016-04-01

    We construct self-dual Born-Infeld vortices induced from a generalized Higgs mechanism. Two specific models of the theory are of focused interest where the Higgs potential is either of a | ϕ | 4 - or | ϕ | 6 -type. For the | ϕ | 4 -model, we obtain a sharp existence and uniqueness theorem for doubly periodic and planar vortices. For doubly periodic solutions, a necessary and sufficient condition for the existence is explicitly derived in terms of the vortex number, the Born-Infeld parameter, and the size of the periodic lattice domain. For the | ϕ | 6 -model, we show that both topological and non-topological vortices are present. This new phenomenon distinguishes the model from the classical Born-Infeld-Higgs theory studied earlier in the literature. A series of results regarding doubly periodic, topological, and non-topological vortices in the | ϕ | 6 -model are also established.

  17. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  18. Late-Stage Vortical Structures and Eddy Motions in a Transitional Boundary Layer

    International Nuclear Information System (INIS)

    Xiao-Bing, Liu; Zheng-Qing, Chen; Chao-Qun, Liu

    2010-01-01

    A high-order direct numerical simulation of flow transition over a flat-plate at a free stream Mach number 0.5 is carried out. Formation and development of three-dimensional vortical structures, typically shown as A-vortices, hairpin vortices and ring-like vortices, are observed. Numerical results show that there is a strong downdraft motion of fluid excited by every ring-like vortex in the late-stage of the transition process. At two sides of the vortical structure centerline, the downdraft motions induced by the ring-like vortex and the rotating legs superimpose. This is responsible for the appearance of a high-speed streak associated with the positive spike observed in a previous investigation and the appearance of a high-shear layer in the near wall region. (fundamental areas of phenomenology(including applications))

  19. Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation

    Directory of Open Access Journals (Sweden)

    Yuncheng You

    2008-12-01

    Full Text Available The asymptotic dynamics of high-order temporal-spatial derivatives of the two-dimensional vorticity and velocity of an incompressible, viscous fluid flow in $mathbb{R}^2$ are studied, which is equivalent to the 2D Navier-Stokes equation. It is known that for any integrable initial vorticity, the 2D vorticity solution converges to the Oseen vortex. In this paper, sharp exterior decay estimates of the temporal-spatial derivatives of the vorticity solution are established. These estimates are then used and combined with similarity and $L^p$ compactness to show the asymptotical attraction rates of temporal-spatial derivatives of generic 2D vorticity and velocity solutions by the Oseen vortices and velocity solutions respectively. The asymptotic estimates and the asymptotic attraction rates of all the derivatives obtained in this paper are independent of low or high Reynolds numbers.

  20. Longitudinal vortices in a transitioning boundary layer

    International Nuclear Information System (INIS)

    Anders, J.B.; Backwelder, R.F.

    1980-01-01

    Naturally occurring spanwise variations of the streamwise velocity component, characteristic of longitudinal vortices embedded in a transitioning boundary layer were explored using hot-wire anemometers. A vibrating ribbon introduced stable or unstable Tollmien-Schlichting waves into the laminar boundary layer. These damped or growing disturbances always developed a strong three-dimensional pattern even though no spanwise perturbations were artificially induced. Changing the radius of the leading edge and other modifications to the flat plate, wind tunnel and boundary layer did not alter the spanwise wavelength of the vortices. (orig.)

  1. Scaling properties of Wilson loops pierced by P-vortices

    DEFF Research Database (Denmark)

    Dunn, Patrick; Greensite, Jeffrey Paul

    2012-01-01

    P-vortices, in an SU(N) lattice gauge theory, are excitations on the center-projected Z(N) lattice. We study the ratio of expectation values of SU(2) Wilson loops, on the unprojected lattice, linked to a single P-vortex, to that of Wilson loops which are not linked to any P-vortices. When...

  2. Imparting small vorticity to a Bianchi type-VIh empty spacetime

    Science.gov (United States)

    Batakis, Nikos A.

    1981-04-01

    We present and briefly discuss a Bianchi type-VIh empty spacetime. The field equations have been solved after being linearized with respect to a parameter which imparts vorticity to the model. The limit of zero vorticity is an already known solution.

  3. The Interaction of Two Surface Vortices Near a Topographic Slope in a Stratified Ocean

    Directory of Open Access Journals (Sweden)

    Charly de Marez

    2017-10-01

    Full Text Available We study the influence of bottom topography on the interaction of two identical vortices in a two-layer, quasi-geostrophic model. The two vortices have piecewise-uniform potential vorticity and are lying in the upper layer of the model. The topography is a smooth bottom slope. For two cyclones, topography modifies the merger critical distance and the merger efficiency: the topographic wave and vortices can advect the two cyclones along the shelf when they are initially far from it or towards the shelf when they are initially closer to it. They can also advect the two cyclones towards each other and thus favour merger. The cyclones deform, and the potential vorticity field undergoes filamentation. Regimes of partial vortex merger or of vortex splitting are then observed. The interaction of the vorticity poles in the two layers are analysed to explain the evolution of the two upper layer cyclones. For taller topography, two new regimes appear: vortex drift and splitting; and filamentation and asymmetric merger. They are due to the hetonic coupling of lower layer vorticity with the upper layer vortices (a heton is a baroclinic vortex dipole, carrying heat and momentum and propagating horizontally in the fluid, or to the strong shear that the former exerts on the latter. The interaction of two anticyclones shows regimes of co-rotation or merger, but specifically, it leads to the drift of the two vortices away from the slope, via a hetonic coupling with oppositely-signed vorticity in the lower layer. This vorticity originates in the breaking of the topographic wave. The analysis of passive tracer evolution confirms the inshore or offshore drift of the fluid, the formation of tracer fronts along filaments and its stirring in regions of vortex merger. The trajectories of particles indicate how the fluid initially in the vortices is finally partitioned.

  4. Internal and vorticity waves in decaying stratified flows

    Science.gov (United States)

    Matulka, A.; Cano, D.

    2009-04-01

    Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.

  5. Lagrangian investigations of vorticity dynamics in compressible turbulence

    Science.gov (United States)

    Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji

    2017-10-01

    In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.

  6. Do the Golden-winged Warbler and Blue-winged Warbler Exhibit Species-specific Differences in their Breeding Habitat Use?

    Directory of Open Access Journals (Sweden)

    Laura L. Patton

    2010-12-01

    Full Text Available We compared habitat features of Golden-winged Warbler (Vermivora chrysoptera territories in the presence and absence of the Blue-winged Warbler (V. cyanoptera on reclaimed coal mines in southeastern Kentucky, USA. Our objective was to determine whether there are species specific differences in habitat that can be manipulated to encourage population persistence of the Golden-winged Warbler. When compared with Blue-winged Warblers, Golden-winged Warblers established territories at higher elevations and with greater percentages of grass and canopy cover. Mean territory size (minimum convex polygon was 1.3 ha (se = 0.1 for Golden-winged Warbler in absence of Blue-winged Warbler, 1.7 ha (se = 0.3 for Golden-winged Warbler coexisting with Blue-winged Warbler, and 2.1 ha (se = 0.3 for Blue-winged Warbler. Territory overlap occurred within and between species (18 of n = 73 territories, 24.7%. All Golden-winged and Blue-winged Warblers established territories that included an edge between reclaimed mine land and mature forest, as opposed to establishing territories in open grassland/shrubland habitat. The mean distance territories extended from a forest edge was 28.0 m (se = 3.8 for Golden-winged Warbler in absence of Blue-winged Warbler, 44.7 m (se = 5.7 for Golden-winged Warbler coexisting with Blue-winged Warbler, and 33.1 m (se = 6.1 for Blue-winged Warbler. Neither territory size nor distances to forest edges differed significantly between Golden-winged Warbler in presence or absence of Blue-winged Warbler. According to Monte Carlo analyses, orchardgrass (Dactylis glomerata, green ash (Fraxinus pennsylvanica seedlings and saplings, and black locust (Robinia pseudoacacia saplings were indicative of sites with only Golden-winged Warblers. Sericea lespedeza, goldenrod (Solidago spp., clematis vine (Clematis spp., and blackberry (Rubus spp. were indicative of sites where both species occurred. Our findings complement recent genetic studies and add

  7. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  8. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    Science.gov (United States)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  9. Adiabatic effective action for vortices in neutral and charged superfluids

    International Nuclear Information System (INIS)

    Hatsuda, M.; Sato, M.; Yahikozawa, S.; Hatsuda, T.

    1996-01-01

    Adiabatic effective action for vortices in neutral and charged superfluids at zero temperature are calculated using the topological Landau-Ginzburg theory recently proposed by Hatsuda, Yahikozawa, Ao and Thouless, and vortex dynamics are examined. The Berry phase term arising in the effective action naturally yields the Magnus force in both neutral and charged superfluids. It is shown that in neutral superfluid there is only one degree of freedom, namely the center of vorticities, and the vortex energy is proportional to the sum of all vorticities so that it is finite only for the vanishing total vorticity of the system. On the other hand the effective mass and the vortex energy for a vortex in charged superfluids are defined individually as expected. The effects of the vortex core on these quantities are also estimated. The possible depinning scenario which is governed by the Magnus force and the inertial mass is also discussed

  10. Wind Tunnel Investigation of Passive Vortex Control and Vortex-Tail Interactions on a Slender Wing at Subsonic and Transonic Speeds

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Langley 8-Foot Transonic Pressure Tunnel to determine the effects of passive porosity on vortex flow interactions about a slender wing configuration at subsonic and transonic speeds. Flow-through porosity was applied in several arrangements to a leading-edge extension, or LEX, mounted to a 65-degree cropped delta wing as a longitudinal instability mitigation technique. Test data were obtained with LEX on and off in the presence of a centerline vertical tail and twin, wing-mounted vertical fins to quantify the sensitivity of the aerodynamics to tail placement and orientation. A close-coupled canard was tested as an alternative to the LEX as a passive flow control device. Wing upper surface static pressure distributions and six-component forces and moments were obtained at Mach numbers of 0.50, 0.85, and 1.20, unit Reynolds number of 2.5 million, angles of attack up to approximately 30 degrees, and angles of sideslip to +/-8 degrees. The off-surface flow field was visualized in cross planes on selected configurations using a laser vapor screen flow visualization technique. Tunnel-to-tunnel data comparisons and a Reynolds number sensitivity assessment were also performed. 15.

  11. Superconducting vortices in Weinberg - Salam theory

    International Nuclear Information System (INIS)

    Garaud, J.

    2010-09-01

    In this dissertation, we analyze in detail the properties of new string-like solutions of the bosonic sector of the electroweak theory. The new solutions are current carrying generalizations of embedded Abrikosov-Nielsen-Olesen vortices. We were also able to reproduce all previously known features of vortices in the electroweak theory. Generically vortices are current carrying. They are made of a compact conducting core of charged W bosons surrounded by a nonlinear superposition of Z and Higgs field. Far away from the core, the solution is described by purely electromagnetic Biot and Savart field. Solutions exist for generic parameter values including experimental values of the coupling constants. We show that the current whose typical scale is the billion of Amperes can be arbitrarily large. In the second part the linear stability with respect to generic perturbations is studied. The fluctuation spectrum is qualitatively investigated. When negative modes are detected, they are explicitly constructed and their dispersion relation is determined. Most of the unstable modes can be eliminated by imposing periodic boundary conditions along the vortex. However there remains a unique negative mode which is homogeneous. This mode can probably be eliminated by curvature effects if a small piece of vortex is bent into a loop, stabilized against contraction by the electric current. (author)

  12. Localized vortices in ηi-modes

    International Nuclear Information System (INIS)

    Nycander, J.; Lynov, J.P.; Juul Rasmussen, J.

    1992-01-01

    For a wide variety of nonlinear wave equations necessary conditions for the existence of localized, stationary structures can be found by applying a simple procedure, involving two steps: First the linear dispersion relation is obtained and the regions of the phase velocity of linear waves found. Secondly, assuming that localized solutions exist, their velocities are determined by using integral relations. The obtained velocity takes the form of a ''center of mass velocity''. If this velocity falls outside the regions of phase velocities for linear waves then nonlinear localized vortices may exist. Otherwise, the structure will couple to the linear waves and gradually disperse. Applying this method we have shown that monopole vortex solutions exist for drift waves driven by the ion temperature gradient in a magnetized plasma, the so-called η i -modes. Numerical solutions show that such vortices are steadily propagating and stable and they generally emerge from localized initial conditions. Our study is motivated by recent high resolution simulations of η i -turbulence, where it was observed that coherent vortices developed spontaneously. These had a dominating influence on the evolution of the turbulence, and the associated anomalous transport was found to be significantly reduced as compared with the predictions from quasilinear theory. (author) 8 refs., 3 figs

  13. Electrochemical Analysis of Taylor Vortices.

    Czech Academy of Sciences Publication Activity Database

    Wouahbi, F.; Allaf, K.; Sobolík, Václav

    2007-01-01

    Roč. 37, 1 (2007) , s. 57-62 ISSN 0021-891X Institutional research plan: CEZ:AV0Z40720504 Keywords : electrodiffusion method * taylor vortices * three-segment electrode Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.417, year: 2007

  14. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  15. Analysis of propeller-induced ground vortices by particle image velocimetry

    NARCIS (Netherlands)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: The interaction between a propeller and its self-induced vortices originating on the ground is investigated in a scaled experiment. The velocity distribution in the flow field in two different planes containing the self-induced vortices is measured by particle image velocimetry (PIV).

  16. "Submesoscale Soup" Vorticity and Tracer Statistics During the Lateral Mixing Experiment

    Science.gov (United States)

    Shcherbina, A.; D'Asaro, E. A.; Lee, C. M.; Molemaker, J.; McWilliams, J. C.

    2012-12-01

    A detailed view of upper-ocean velocity, vorticity, and tracer statistics was obtained by a unique synchronized two-vessel survey in the North Atlantic in winter 2012. In winter, North Atlantic Mode water region south of the Gulf Stream is filled with an energetic, homogeneous, and well-developed submesoscale turbulence field - the "submesoscale soup". Turbulence in the soup is produced by frontogenesis and the surface layer instability of mesoscale eddy flows in the vicinity of the Gulf Stream. This region is a convenient representation of the inertial range of the geophysical turbulence forward cascade spanning scales of o(1-100km). During the Lateral Mixing Experiment in February-March 2012, R/Vs Atlantis and Knorr were run on parallel tracks 1 km apart for 500 km in the submesoscale soup region. Synchronous ADCP sampling provided the first in-situ estimates of full 3-D vorticity and divergence without the usual mix of spatial and temporal aliasing. Tracer distributions were also simultaneously sampled by both vessels using the underway and towed instrumentation. Observed vorticity distribution in the mixed layer was markedly asymmetric, with sparse strands of strong anticyclonic vorticity embedded in a weak, predominantly cyclonic background. While the mean vorticity was close to zero, distribution skewness exceeded 2. These observations confirm theoretical and numerical model predictions for an active submesoscale turbulence field. Submesoscale vorticity spectra also agreed well with the model prediction.

  17. An efficient and general numerical method to compute steady uniform vortices

    Science.gov (United States)

    Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.

    2011-07-01

    Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced "IVI diagram" stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.

  18. An experimental investigation of wind pressures on square pillars in tornado-like vortices

    International Nuclear Information System (INIS)

    Iwatani, Yoshiharu; Maruta, Eizou; Kanda, Makoto; Hattori, Yousuke; Hamano, Naoki; Matsuura, Takeshi

    1992-01-01

    This report describes a laboratory simulation of tornado-like vortices and laboratory measurements of steady wind loads on model structures in tornado-like vortices. The variations of wind direction and wind speed of tornado-like vortices and ground surface pressure under tornado-like vortices with the swirl ratio, Reynolds number and the surface roughness were investigated. Wind pressure distributions on square pillars were measured in tornado-like vortices. It was observed in the experiment that the negative pressures on the roof faces of square pillars were high and distributed rather uniformly but these on the side faces differed greatly from place to place and locally became high. The high pressure regions on the side faces were close to ground surface in the case where the model structures stood in the center of tornado-like vortex, and became higher as the increase of distance between the model structures and the center of tornado-like vortices. (author)

  19. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    Science.gov (United States)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  20. Interaction of plasma vortices with resonant particles

    DEFF Research Database (Denmark)

    Jovanovic, D.; Pécseli, Hans; Juul Rasmussen, J.

    1990-01-01

    Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime...... particles. The evolution equations indicate the possibility of excitation of plasma vortices by electron beams....... they possess localized solutions in the form of dipolar vortices, which can efficiently interact with resonant electrons. In the adiabatic limit, evolution equations are derived for the vortex parameters, describing exchange of the energy, enstrophy, and of the Poynting vector between the vortex and resonant...

  1. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  2. Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model

    Science.gov (United States)

    Sutyrin Georgi, G.

    2004-07-01

    A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.

  3. Generation of the vorticity mode by sound in a Bingham plastic

    Science.gov (United States)

    Perelomova, Anna; Wojda, Pawel

    2011-10-01

    This study investigates interaction between acoustic and non-acoustic modes, such as vorticity mode, in some class of a non-newtonian fluid called Bingham plastic. The instantaneous equations describing interaction between different modes are derived. The attention is paid to the nonlinear effects in the field of intense sound. The resulting equations which describe dynamics of both sound and the vorticity mode apply to both periodic and aperiodic sound of any waveform. They use only instantaneous quantities and do not imply averaging over the sound period. The theory is illustrated by an example of acoustic force of vorticity induced in the field of a Gaussian sound beam. Some unusual peculiarities in both sound and the vorticity induced in its field as compared to a newtonian fluid, are discovered.

  4. Lattice Boltzmann model capable of mesoscopic vorticity computation

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  5. Streaming vorticity flux from oscillating walls with finite amplitude

    Science.gov (United States)

    Wu, J. Z.; Wu, X. H.; Wu, J. M.

    1993-01-01

    How to describe vorticity creation from a moving wall is a long standing problem. This paper discusses relevant issues at the fundamental level. First, it is shown that the concept of 'vorticity flux due to wall acceleration' can be best understood by following fluid particles on the wall rather than observing the flow at fixed spatial points. This is of crucial importance when the time-averaged flux is to be considered. The averaged flux has to be estimated in a wall-fixed frame of reference (in which there is no flux due to wall acceleration at all); or, if an inertial frame of reference is used, the generalized Lagrangian mean (GLM) also gives the same result. Then, for some simple but typical configurations, the time-averaged vorticity flux from a harmonically oscillating wall with finite amplitude is analyzed, without appealing to small perturbation. The main conclusion is that the wall oscillation will produce an additional mean vorticity flux (a fully nonlinear streaming effect), which is partially responsible for the mechanism of vortex flow control by waves. The results provide qualitative explanation for some experimentally and/or computationally observed phenomena.

  6. Direct observation of rectified motion of vortices by Lorentz microscopy

    Indian Academy of Sciences (India)

    We have investigated the vortex dynamics for the `ratchet' operation in a niobium superconductor via a direct imaging of Lorentz microscopy. We directly observe one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from the rectification of vortices in a spatially asymmetric ...

  7. Propagation and diffraction of optical vortices

    International Nuclear Information System (INIS)

    Fischer, Pascal; Skelton, Susan E.; Leburn, Christopher G.; Streuber, Casey T.; Wright, Ewan M.; Dholakia, Kishan

    2008-01-01

    We explore the propagation and diffraction of optical vortices (Laguerre-Gaussian beams) of varying azimuthal index past a circular obstacle and Young's double slits. When the beam and obstacle centers are aligned the famous spot of Arago, which arises for zero azimuthal index, is replaced for non-zero azimuthal indices by a dark spot of Arago, a simple consequence of the conserved phase singularity at the beam center. We explore how for larger azimuthal indices, as the beam and obstacle centers are progressively misaligned, the central dark spot breaks up into several dark spots of Arago. Using Young's double slits we can easily measure the azimuthal index of the vortex beam, even for polychromatic vortices generated by broadband supercontinuum radiation

  8. On the evolution of vortices in massive protoplanetary discs

    Science.gov (United States)

    Pierens, Arnaud; Lin, Min-Kai

    2018-05-01

    It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range 4 - 30. We consider isothermal plus non-isothermal disc models that employ either the classical β prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with Q ≳ 15, vortex decay occurs due to the vortex self-gravitational torque. For discs with 3≲ Q ≲ 7, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for β ≲ 0.1, whereas it decays if β ≥ 1. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio χ ˜ 3 - 4. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.

  9. Vorticity and particle polarization in heavy ion collisions (experimental perspective

    Directory of Open Access Journals (Sweden)

    Voloshin Sergei A.

    2018-01-01

    Full Text Available The recent measurements of the global polarization and vector meson spin alignment along the system orbital momentum in heavy ion collisions are briefly reviewed. A possible connection between the global polarization and the chiral anomalous effects is discussed along with possible experimental checks. Future directions, in particular those aimed on the detailed mapping of the vorticity fields, are outlined. The Blast Wave model is used for an estimate of the anisotropic flow effect on the vorticity component along the beam direction. We also point to a possibility of a circular pattern in the vorticity field in asymmetric, e.g. Cu+Au, central collisions.

  10. The generation of two-dimensional vortices by transverse oscillation of a soap film

    International Nuclear Information System (INIS)

    Afenchenko, V.O.; Ezersky, A.B.; Kiyashko, S.V.; Rabinovich, M.I.; Weidman, P.D.

    1998-01-01

    An experimental investigation of the dynamics of horizontal soap films stretched over circular or square boundaries undergoing periodic transverse oscillations at frequencies in the range 20 - 200 Hz is reported. Concomitant with modes of transverse flexural oscillations, it was observed that two-dimensional vortices in the plane of the film are excited. The vortices may be either (i) large, scaling with the size of the cavity or (ii) small, localized at a wavelength or half-wavelength of the membrane modes. In the experiments a stable generation of one, two, hor-ellipsis, ten pairs of counter-rotating vortices were observed in finite regions of amplitude-frequency parameter space. The circulation strength of vortices in a given vortex pattern increases with increasing external forcing and with decreasing soap film thickness. A theoretical model based on the wave-boundary interaction of excited Marangoni waves reveals a vorticity generation mechanism active in vibrating soap films. This model shows that vorticity is generated throughout the entire liquid volume by viscous diffusion, and qualitatively reproduces many steady vortex patterns observed in the experiment. However, the model cannot explain the existence of the sometimes intense vortices observed far from the film boundary that do not appear to be generated by diffusive processes. copyright 1998 American Institute of Physics

  11. Indirect Combustion Noise: Noise Generation by Accelerated Vorticity in a Nozzle Flow

    Directory of Open Access Journals (Sweden)

    Nancy Kings

    2010-09-01

    Full Text Available The noise generation by accelerated vorticity waves in a nozzle flow was investigated in a model experiment. This noise generation mechanism belongs, besides entropy noise, to the indirect combustion noise phenomena. Vorticity as well as entropy fluctuations, originating from the highly turbulent combustion zone, are convected with the flow and produce noise during their acceleration in the outlet nozzle of the combustion chamber. In the model experiment, noise generation of accelerated vorticity fluctuations was achieved. The vorticity fluctuations in the tube flow were produced by injecting temporally additional air into the mean flow. As the next step, a parametric study was conducted to determine the major dependencies of the so called vortex noise. A quadratic dependency of the vortex noise on the injected air amount was found. In order to visualise and classify the artificially generated vorticity structures, planar velocity measurements have been conducted applying Particle Image Velocimetry (PIV.

  12. Pair interactions of heavy vortices in quantum fluids

    Science.gov (United States)

    Pshenichnyuk, Ivan A.

    2018-02-01

    The dynamics of quantum vortex pairs carrying heavy doping matter trapped inside their cores is studied. The nonlinear classical matter field formalism is used to build a universal mathematical model of a heavy vortex applicable to different types of quantum mixtures. It is shown how the usual vortex dynamics typical for undoped pairs qualitatively changes when heavy dopants are used: heavy vortices with opposite topological charges (chiralities) attract each other, while vortices with the same charge are repelled. The force responsible for such behavior appears as a result of superposition of vortices velocity fields in the presence of doping substance and can be considered as a special realization of the Magnus effect. The force is evaluated quantitatively and its inverse proportionality to the distance is demonstrated. The mechanism described in this paper gives an example of how a light nonlinear classical field may realize repulsive and attractive interactions between embedded heavy impurities.

  13. Influence of different organic fertilizers on quality parameters and the delta(15)N, delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of orange fruit (Citrus sinensis L. Osbeck).

    Science.gov (United States)

    Rapisarda, Paolo; Camin, Federica; Fabroni, Simona; Perini, Matteo; Torrisi, Biagio; Intrigliolo, Francesco

    2010-03-24

    To investigate the influence of different types of fertilizers on quality parameters, N-containing compounds, and the delta(15)N, delta(13)C, delta(2)H, delta (34)S, and delta(18)O values of citrus fruit, a study was performed on the orange fruit cv. 'Valencia late' (Citrus sinensis L. Osbeck), which was harvested in four plots (three organic and one conventional) located on the same farm. The results demonstrated that different types of organic fertilizers containing the same amount of nitrogen did not effect important changes in orange fruit quality parameters. The levels of total N and N-containing compounds such as synephrine in fruit juice were not statistically different among the different treatments. The delta(15)N values of orange fruit grown under fertilizer derived from animal origin as well as from vegetable compost were statistically higher than those grown with mineral fertilizer. Therefore, delta(15)N values can be used as an indicator of citrus fertilization management (organic or conventional), because even when applied organic fertilizers are of different origins, the natural abundance of (15)N in organic citrus fruit remains higher than in conventional ones. These treatments also did not effect differences in the delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of fruit.

  14. Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics

    International Nuclear Information System (INIS)

    Nakamura, T.K.M.; Hayashi, D.; Fujimoto, M.; Shinohara, I.

    2004-01-01

    We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed

  15. Challenges, Approaches and Experiences from Asian Deltas and the Rhine-Meuse Delta : Regional Training Workshop on Delta Planning and Management

    NARCIS (Netherlands)

    Wosten, J.H.M.; Douven, W.; Long Phi, H.; Fida Abdullah Khan, M.

    2013-01-01

    River delta's, like the Mekong Delta (Vietnam), Ganges-Brahmaputra Delta (Bangladesh), Ayeyarwady Delta (Myanmar), Nile (Egypt) and Ciliwung Delta (Indonesia) are developing rapidly and are characterised by large-scale urbanisation and industrialization processes. They are facing serious planning

  16. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality.

    Science.gov (United States)

    George, Joseph; Sujith, R I

    2009-10-01

    Chagelishvili et al. [Phys. Rev. Lett. 79, 3178 (1997)] discovered a linear mechanism of acoustic wave emergence from vorticity fluctuations in shear flows. This paper illustrates how this "nonresonant" phenomenon is related to the non-normality of the operator governing the linear dynamics of disturbances in shear flows. The non-self-adjoint nature of the governing operator causes the emergent acoustic wave to interact strongly with the vorticity disturbance. Analytical expressions are obtained for the nondivergent vorticity perturbation. A discontinuity in the x component of the velocity field corresponding to the vorticity disturbance was originally identified to be the cause of acoustic wave emergence. However, a different mechanism is proposed in this paper. The correct "acoustic source" is identified and the reason for the abrupt nature of wave emergence is explained. The impact of viscous damping is also discussed.

  17. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  18. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  19. Analysis of vorticity dynamics for hump characteristics of a pump turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyou; Gong, Ruzhi; Wang, Hongjie; Han, Lei; Wei, Xianzhu; Qin, Daqing [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China)

    2016-08-15

    Conventional parameters based on CFD methodology for the investigation on hump characteristics of a pump turbine cannot reflect the dynamic interaction mechanism between the runner and the fluid. This research presents a dynamic interaction mechanism of a pump turbine operating in the hump region. First, vorticity dynamic parameters were obtained based on the theory of vorticity dynamics. Second, 3-D unsteady flow simulations were performed in a full pump turbine model using the SST k-ω turbulence model, and numerical results have a good agreement with the experiments. Then, analysis was carried out to determine the relation between the vorticity dynamic parameters and hump characteristics. The results indicate that the theory of vorticity dynamics has an advantage in evaluating the dynamic performance of a pump turbine. The energy transfer between the runner and the fluid is through vorticity dynamic parameters-pressure and friction terms, in which the pressure term accounts for the most. Furthermore, vortex generation mainly results from the skin friction. Combining vorticity dynamic analysis with the method of Q-criterion indicates that hump characteristics are related to the reduction of the surface normal pressure work and vortex motion on the suction surfaces close to the leading edges in the runner, and the increase of skin friction work in the stay-guide vanes.

  20. Percolating cluster of center vortices and confinement

    International Nuclear Information System (INIS)

    Gliozzi, Ferdinando; Panero, Marco; Provero, Paolo

    2003-01-01

    We study the role of percolating clusters of center vortices in configurations of an Ising gauge theory in 3D. It is known that low energy features of gauge theories can be described in terms of an 'effective string picture', and that confinement properties are associated with topologically non-trivial configurations. We focus our attention upon percolating clusters of center vortices, and present numerical evidence for the fact that these objects play a preminent role in confinement phenomenon, since their removal sweeps off confinement altogether. Moreover, numerical simulations show that the string fluctuations, and in particular the Mischer term, are completely encoded in the percolating cluster

  1. A numerical study of the stabilitiy of helical vortices using vortex methods

    International Nuclear Information System (INIS)

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  2. A numerical study of the stabilitiy of helical vortices using vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  3. Motions of quantized vortices attached to a boundary in alternating currents of superfluid 4He

    International Nuclear Information System (INIS)

    Yano, H.; Hashimoto, N.; Handa, A.; Obara, K.; Ishikawa, O.; Hata, T.; Nakagawa, M.

    2007-01-01

    The motions of superfluid vortices attached to a boundary are investigated in alternating currents by using a vibrating wire. The attached vortices appear to form a layer on the wire and enhance the mass of the wire, even for low velocity currents. In turbulence, chaotic motions of vortices such as entanglement and reconnection reduce the thickness of the layer in spite of the fact that the vortices unstably expand. When turbulence subsides, the attached vortices appear to shrink, with the degree of shrinking influenced by thermal excitations in the superfluid

  4. Delta Plaza kohvik = Delta Plaza cafe

    Index Scriptorium Estoniae

    2010-01-01

    Tallinnas Pärnu mnt 141 asuva kohviku Delta Plaza sisekujundusest. Sisearhitektid Tiiu Truus ja Marja Viltrop (Stuudio Truus OÜ). Tiiu Truusi tähtsamate tööde loetelu. Büroohoone Delta Plaza arhitektid Marika Lõoke ja Jüri Okas (AB J. Okas & M. Lõoke)

  5. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    Science.gov (United States)

    Sheikhzada, Ahmad K.

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.

  6. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhzada, Ahmad [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.

  7. Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles

    Science.gov (United States)

    Marzo, Asier; Caleap, Mihai; Drinkwater, Bruce W.

    2018-01-01

    Acoustic vortices can transfer angular momentum and trap particles. Here, we show that particles trapped in airborne acoustic vortices orbit at high speeds, leading to dynamic instability and ejection. We demonstrate stable trapping inside acoustic vortices by generating sequences of short-pulsed vortices of equal helicity but opposite chirality. This produces a "virtual vortex" with an orbital angular momentum that can be tuned independently of the trapping force. We use this method to adjust the rotational speed of particles inside a vortex beam and, for the first time, create three-dimensional acoustics traps for particles of wavelength order (i.e., Mie particles).

  8. Coherent Vortices in Strongly Coupled Liquids

    International Nuclear Information System (INIS)

    Ashwin, J.; Ganesh, R.

    2011-01-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using ''first principles'' molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  9. Coherent Vortices in Strongly Coupled Liquids

    Science.gov (United States)

    Ashwin, J.; Ganesh, R.

    2011-04-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  10. Spatial-temporal and modal analysis of propeller induced ground vortices by particle image velocimetry

    NARCIS (Netherlands)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    During the ground operation of aircraft, there is potentially a system of vortices generated from the ground toward the propulsor, commonly denoted as ground vortices. Although extensive research has been conducted on ground vortices induced by turbofans which were simplified by suction tubes, these

  11. Dynamics of fractional vortices in long Josephson junctions; Dynamik fraktionaler Flusswirbel in langen Josephsonkontakten

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, Tobias

    2007-07-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-{kappa} junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-{kappa} junctions and fractional vortices are generalizations of the well-known 0-{pi} junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-{kappa} junctions that are based on standard Nb-AlO{sub x}-Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  12. Leading-edge vortex lifts swifts.

    Science.gov (United States)

    Videler, J J; Stamhuis, E J; Povel, G D E

    2004-12-10

    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60 degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel. Interactions with the flow were measured quantitatively with digital particle image velocimetry at Reynolds numbers realistic for the gliding flight of a swift between 3750 and 37,500. The results show that gliding swifts can generate stable leading-edge vortices at small (5 degrees to 10 degrees) angles of attack. We suggest that the flow around the arm-wings of most birds can remain conventionally attached, whereas the swept-back hand-wings generate lift with leading-edge vortices.

  13. Phase locking of moving magnetic vortices in bridge-coupled nanodisks

    International Nuclear Information System (INIS)

    Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Liu, Qingfang; Wang, Jianbo

    2015-01-01

    In this paper, phase locking dynamics of vortices induced by spin transfer torque in bridge-coupled nanodisks are studied by micromagnetic simulations. In the presence of the bridge coupling, the required time for the phase locking is dramatically reduced, and the phase difference between the two vortices keeps at a nonzero value after the phase locking. Moreover, the phase difference is affected significantly by bridge coupling, Oersted field distribution, nanodisk size, as well as in-plane bias magnetic field. In addition, the coupled gyrotropic frequency of vortices depends linearly on the perpendicular magnetic field. This systematic study of phase locking parameters, especially the phase difference, is important for the applications of vortex-based spin-torque nano-oscillators

  14. Phase locking of moving magnetic vortices in bridge-coupled nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Liu, Qingfang, E-mail: liuqf@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang, Jianbo [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2015-05-07

    In this paper, phase locking dynamics of vortices induced by spin transfer torque in bridge-coupled nanodisks are studied by micromagnetic simulations. In the presence of the bridge coupling, the required time for the phase locking is dramatically reduced, and the phase difference between the two vortices keeps at a nonzero value after the phase locking. Moreover, the phase difference is affected significantly by bridge coupling, Oersted field distribution, nanodisk size, as well as in-plane bias magnetic field. In addition, the coupled gyrotropic frequency of vortices depends linearly on the perpendicular magnetic field. This systematic study of phase locking parameters, especially the phase difference, is important for the applications of vortex-based spin-torque nano-oscillators.

  15. Growth laws for sub-delta crevasses in the Mississippi River Delta

    Science.gov (United States)

    Yocum, T. A.; Georgiou, I. Y.; Straub, K. M.

    2017-12-01

    River deltas are threatened by environmental change, including subsidence, global sea level rise, reduced sediment inputs and other local factors. In the Mississippi River Delta (MRD) these impacts are exemplified, and have led to proposed solutions to build land that include sediment diversions to reinitiate the delta cycle. Deltas were studied extensively using numerical models, theoretical and conceptual frameworks, empirical scaling relationships, laboratory models and field observations. But predicting the future of deltas relies on field observations where for most deltas data are still lacking. Moreover, empirical and theoretical scaling laws may be influenced by the data used to develop them, while laboratory deltas may be influenced by scaling issues. Anthropogenic crevasses in the MRD are large enough to overcome limitations of laboratory deltas, and small enough to allow for rapid channel and wetland development, providing an ideal setting to investigate delta development mechanics. Here we assessed growth laws of sub-delta crevasses (SDC) in the MRD, in two experimental laboratory deltas (LD - weakly and strongly cohesive) and compared them to river dominated deltas worldwide. Channel and delta geometry metrics for each system were obtained using geospatial tools, bathymetric datasets, sediment size, and hydrodynamic observations. Results show that SDC follow growth laws similar to large river dominated deltas, with the exception of some that exhibit anomalous behavior with respect to the frequency and distance to a bifurcation and the fraction of wetted delta shoreline (allometry metrics). Most SDC exhibit a systematic decrease of non-dimensional channel geometries with increased bifurcation order, indicating that channels are adjusting to decreased flow after bifurcations occur, and exhibit linear trends for land allometry and width-depth ratio, although geometries decrease more rapidly per bifurcation order. Measured distance to bifurcations in SDC

  16. Approach and separation of quantum vortices with balanced cores

    Science.gov (United States)

    Kerr, Robert M.; Rorai, C.; Skipper, J.; Sreenivasan, K. R.

    2014-11-01

    Using two innovations, smooth but different, scaling laws for the reconnection of pairs of initially orthogonal and anti-parallel quantum vortices are obtained using the three-dimensional Gross-Pitaevskii equations. For the anti-parallel case, the scaling laws just before and after reconnection obey the dimensional δ ~ | t - tr| 1 / 2 prediction with temporal symmetry about the reconnection time tr and physical space symmetry about xr, the mid-point between the vortices, with extensions forming the edges of an equilateral pyramid. For all of the orthogonal cases, before reconnection δin ~(t -tr) 1 / 3 and after reconnection δout ~(tr - t) 2 / 3 , which are respectively slower and faster than the dimensional prediction. In these cases, the reconnection takes place in a plane defined by the directions of the curvature and vorticity. Robert.Kerr@warwick.ac.uk.

  17. Fast Trailed Vorticity Modeling for Wind Turbine Aerodynamics and its Influence on Aeroelastic Stability

    DEFF Research Database (Denmark)

    Pirrung, Georg

    In this work, an aerodynamic model for the use in aeroelastic wind turbine codes is presented. It consists of a simplified lifting line model covering the induction due to the trailed vorticity in the near wake, a 2D shed vorticity model and a far wake model using the well known blade element...... to earlier implementations, the model has been improved in several ways: Among other things, the need for model-specific user input has been removed, the effect of downwind convection of the trailed vorticity is modeled, the near wake induction is iterated to stabilize the computations and the numerical......-of-plane vibrations agrees much better with high fidelity models. Further, the trailed vorticity effects on the aerodynamic work are found to be of the same order of magnitude as the shed vorticity effects. The trailed vorticity effects are, however, mainly important close to the tip in the investigated cases, which...

  18. Deformation characteristics of {delta} phase in the delta-processed Inconel 718 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y., E-mail: haiyanzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, S.H., E-mail: shzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Cheng, M. [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Z.X. [Beijing Institute of Aeronautica1 Materials, Beijing 100095 (China)

    2010-01-15

    The hot working characteristics of {delta} phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s{sup -1}, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like {delta} phase and the precipitation of spherical {delta} phase particles coexisted during the deformation, and the content of {delta} phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like {delta} phase was spheroidized and transferred to spherical {delta} phase particles. In the center with largest strain, the plate-like {delta} phase disappeared and spherical {delta} phase appeared in the interior of grains and grain boundaries.

  19. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  20. Vorticity perturbations and isotropy of the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Anile, A M [Catania Univ. (Italy). Seminario di Matematica; Motta, S

    1976-06-01

    We investigate the effect of vorticity perturbations of an arbitrary Robertson-Walker universe on the isotropy of the cosmic microwave background. The predicted temperature variations are then compared with the upper limits recently found by Parijskij (1974). In this way we obtain an upper limit on the present vorticity on scales L approximately 10 Mpc which is only marginally consistent with the value suggested by de Vaucouleurs (1971), de Vaucouleurs and Peters (1968).

  1. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    DEFF Research Database (Denmark)

    Johansson, L Christoffer; Håkansson, Jonas; Jakobsen, Lasse

    2016-01-01

    . We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains...... into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than...

  2. Efficient collective swimming by harnessing vortices through deep reinforcement learning.

    Science.gov (United States)

    Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros

    2018-06-05

    Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.

  3. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    International Nuclear Information System (INIS)

    Olson Reichhardt, C. J.; Wang, Y. L.; Argonne National Laboratory; Xiao, Z. L.; Northern Illinois University, DeKalb, IL

    2016-01-01

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction of the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.

  4. Multi-dimensional upwinding-based implicit LES for the vorticity transport equations

    Science.gov (United States)

    Foti, Daniel; Duraisamy, Karthik

    2017-11-01

    Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.

  5. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  6. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  7. Delta antibody radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Kselikova, M; Urbankova, J

    1985-11-15

    The principle and procedure are described of the radioimmunoassay of delta antibody (delta-Ab) using the ABBOTT ANTI-DELTA kit by Abbott Co. A description is given of the kit, the working procedure and the method of evaluation. The results are reported of the incidence of delta-Ab in sera of patients with viral hepatitis B, in haemophiliacs, carriers of the hepatitis B virus surface antigen (HBsAg) and blood donors. The presence was detected of delta-Ab in one HBsAg carrier. The necessity is emphasized of delta-Ab determinations in the blood of donors in view of the antibody transfer with blood and blood preparations.

  8. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    Science.gov (United States)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  9. Extreme-Ultraviolet Vortices from a Free-Electron Laser

    Directory of Open Access Journals (Sweden)

    Primož Rebernik Ribič

    2017-08-01

    Full Text Available Extreme-ultraviolet vortices may be exploited to steer the magnetic properties of nanoparticles, increase the resolution in microscopy, and gain insight into local symmetry and chirality of a material; they might even be used to increase the bandwidth in long-distance space communications. However, in contrast to the generation of vortex beams in the infrared and visible spectral regions, production of intense, extreme-ultraviolet and x-ray optical vortices still remains a challenge. Here, we present an in-situ and an ex-situ technique for generating intense, femtosecond, coherent optical vortices at a free-electron laser in the extreme ultraviolet. The first method takes advantage of nonlinear harmonic generation in a helical undulator, producing vortex beams at the second harmonic without the need for additional optical elements, while the latter one relies on the use of a spiral zone plate to generate a focused, micron-size optical vortex with a peak intensity approaching 10^{14}  W/cm^{2}, paving the way to nonlinear optical experiments with vortex beams at short wavelengths.

  10. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.

    2015-10-23

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  11. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.; Mitsudharmadi, Hatsari; Bouremel, Y.; Winoto, S.H.; Low, H.T.

    2015-01-01

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  12. Comparison of measured and computed pitot pressures in a leading edge vortex from a delta wing

    Science.gov (United States)

    Murman, Earll M.; Powell, Kenneth G.

    1987-01-01

    Calculations are presented for a 75-deg swept flat plate wing tested at a freestream Mach number of 1.95 and 10 degrees angle of attack. Good agreement is found between computational data and previous experimental pitot pressure measurements in the core of the vortex, suggesting that the total pressure losses predicted by the Euler equation solvers are not errors, but realistic predictions. Data suggest that the magnitude of the total pressure loss is related to the circumferential velocity field through the vortex, and that it increases with angle of attack and varies with Mach number and sweep angle.

  13. A novel mouse PKC{delta} splice variant, PKC{delta}IX, inhibits etoposide-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung D. [School of Biological Sciences, University of Ulsan, Ulsan (Korea, Republic of); Seo, Kwang W. [Department of Internal Medicines, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan (Korea, Republic of); Lee, Eun A.; Quang, Nguyen N. [School of Biological Sciences, University of Ulsan, Ulsan (Korea, Republic of); Cho, Hong R. [Department of Surgery, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan (Korea, Republic of); Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan (Korea, Republic of); Kwon, Byungsuk, E-mail: bskwon@mail.ulsan.as.kr [School of Biological Sciences, University of Ulsan, Ulsan (Korea, Republic of); Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan (Korea, Republic of)

    2011-07-01

    Highlights: {yields} A novel PKC{delta} isoform, named PKC{delta}IX, that lacks the C1 domain and the ATP-binding site is ubiquitously expressed. {yields} PKC{delta}IX inhibits etoposide-induced apoptosis. {yields} PKC{delta}IX may function as an endogenous dominant negative isoform for PKC{delta}. -- Abstract: Protein kinase C (PKC) {delta} plays an important role in cellular proliferation and apoptosis. The catalytic fragment of PKC{delta} generated by caspase-dependent cleavage is essential for the initiation of etoposide-induced apoptosis. In this study, we identified a novel mouse PKC{delta} isoform named PKC{delta}IX (Genebank Accession No. (HQ840432)). PKC{delta}IX is generated by alternative splicing and is ubiquitously expressed, as seen in its full-length PKC{delta}. PKC{delta}IX lacks the C1 domain, the caspase 3 cleavage site, and the ATP binding site but preserves an almost intact c-terminal catalytic domain and a nuclear localization signal (NLS). The structural characteristics of PKC{delta}IX provided a possibility that this PKC{delta} isozyme functions as a novel dominant-negative form for PKC{delta} due to its lack of the ATP-binding domain that is required for the kinase activity of PKC{delta}. Indeed, overexpression of PKC{delta}IX significantly inhibited etoposide-induced apoptosis in NIH3T3 cells. In addition, an in vitro kinase assay showed that recombinant PKC{delta}IX protein could competitively inhibit the kinase activity of PKC{delta}. We conclude that PKC{delta}IX can function as a natural dominant-negative inhibitor of PKC{delta}in vivo.

  14. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann

    2016-11-01

    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  15. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann; Mitsudharmadi, Hatsari; Budiman, Alexander C.; Winoto, Sonny H.

    2016-01-01

    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  16. A Preliminary Analysis of the Flying Qualities of the Consolidated Vultee MX-813 Delta-Wing Airplane Configuration at Transonic and Low Supersonic Speeds as Determined from Flights of Rocket-Powered Models

    Science.gov (United States)

    Mitcham, Grady L.

    1949-01-01

    A preliminary analysis of the flying qualities of the Consolidated Vultee MX-813 delta-wing airplane configuration has been made based on the results obtained from the first two 1/8 scale models flown at the NACA Pilotless Aircraft Research Station, Wallop's Island, VA. The Mach number range covered in the tests was from 0.9 to 1.2. The analysis indicates adequate elevator control for trim in level flight over the speed range investigated. Through the transonic range there is a mild trim change with a slight tucking-under tendency. The elevator control effectiveness in the supersonic range is reduced to about one-half the subsonic value although sufficient control for maneuvering is available as indicated by the fact that 10 deg elevator deflection produced 5g acceleration at Mach number of 1.2 at 40,000 feet.The elevator control forces are high and indicate the power required of the boost system. The damping. of the short-period oscillation is adequate at sea-level but is reduced at 40,000 feet. The directional stability appears adequate for the speed range and angles of attack covered.

  17. Effect of wing mass in free flight by a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Okada, Iori; Yoshino, Masato

    2016-11-01

    The effect of wing mass in free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a butterfly-like 3D flapping wing-model consisting of two square wings with uniform mass density connected by a rod-shaped body. We simulate free flights of the wing-body model with various mass ratios of the wing to the whole of the model. As a result, it is found that the lift and thrust forces decrease as the mass ratio increases, since the body with a large mass ratio experiences large vertical and horizontal oscillations in one period and consequently the wing tip speed relatively decreases. In addition, we find the critical mass ratio between upward flight and downward flight for various Reynolds numbers. This work was supported by JSPS KAKENHI Grant Number JP16K18012.

  18. How to distinguish between the annihilation and the creation of optical vortices

    CSIR Research Space (South Africa)

    Roux, FS

    2013-10-01

    Full Text Available , the term ‘optical vortex.’ The handedness of the phase circulation around the phase singularities allows optical vortices to be sep- arated into either positive or negative vortices. The sign is associated with the topological charge of the optical vortices... through a turbulent atmosphere. If the resulting scintillation is weak, the distortion can be represented by a single random phase modulation, which can be corrected in an adaptive optics system. On the other hand, if the scintillation is strong, the phase...

  19. Physical modeling of vortical cross-step flow in the American paddlefish, Polyodon spathula

    Science.gov (United States)

    Brooks, Hannah; Haines, Grant E.; Lin, M. Carly

    2018-01-01

    Vortical cross-step filtration in suspension-feeding fish has been reported recently as a novel mechanism, distinct from other biological and industrial filtration processes. Although crossflow passing over backward-facing steps generates vortices that can suspend, concentrate, and transport particles, the morphological factors affecting this vortical flow have not been identified previously. In our 3D-printed models of the oral cavity for ram suspension-feeding fish, the angle of the backward-facing step with respect to the model’s dorsal midline affected vortex parameters significantly, including rotational, tangential, and axial speed. These vortices were comparable to those quantified downstream of the backward-facing steps that were formed by the branchial arches of preserved American paddlefish in a recirculating flow tank. Our data indicate that vortices in cross-step filtration have the characteristics of forced vortices, as the flow of water inside the oral cavity provides the external torque required to sustain forced vortices. Additionally, we quantified a new variable for ram suspension feeding termed the fluid exit ratio. This is defined as the ratio of the total open pore area for water leaving the oral cavity via spaces between branchial arches that are not blocked by gill rakers, divided by the total area for water entering through the gape during ram suspension feeding. Our experiments demonstrated that the fluid exit ratio in preserved paddlefish was a significant predictor of the flow speeds that were quantified anterior of the rostrum, at the gape, directly dorsal of the first ceratobranchial, and in the forced vortex generated by the first ceratobranchial. Physical modeling of vortical cross-step filtration offers future opportunities to explore the complex interactions between structural features of the oral cavity, vortex parameters, motile particle behavior, and particle morphology that determine the suspension, concentration, and

  20. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    Science.gov (United States)

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  1. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  2. Layer-Mean Quantities, Local Conservation Laws, and Vorticity

    International Nuclear Information System (INIS)

    Camassa, R.; Levermore, C.D.

    1997-01-01

    We derive local conservation laws for layer-mean quantities in two general settings. When applied to Euler flows, the first of these settings yields well-known local conservation laws for quantities averaged between material surfaces. The second, however, leads to new local conservation laws for quantities involving the vorticity that are averaged between arbitrary surfaces. These produce the crucial vorticity conservation laws in shallow water models that admit nonhydrostatic and noncolumnar motion. Moreover, they seem to lie outside the Hamiltonian paradigm of fluid dynamics. The formalism generalizes to skew-symmetric matrix fields; applications to electromagnetism are suggested. copyright 1997 The American Physical Society

  3. First measurements of electron vorticity in the foreshock and solar wind

    International Nuclear Information System (INIS)

    Gurgiolo, C.; Goldstein, M.L.; Vinas, A.F.; Fazakerley, A.N.

    2010-01-01

    We describe the methodology used to set up and compute spatial derivatives of the electron moments using data acquired by the Plasma Electron And Current Experiment (PEACE) from the four Cluster spacecraft. The results are used to investigate electron vorticity in the foreshock. We find that much of the measured vorticity, under nominal conditions, appears to be caused by changes in the flow direction of the return (either reflected or leakage from the magnetosheath) and strahl electron populations as they couple to changes in the magnetic field orientation. This in turn results in deflections in the total bulk velocity producing the measured vorticity. (orig.)

  4. First measurements of electron vorticity in the foreshock and solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Gurgiolo, C. [Bitterroot Basic Research, Hamilton, MT (United States); Goldstein, M.L.; Vinas, A.F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Geospace Science Lab.; Fazakerley, A.N. [University College London (United Kingdom). Mullard Space Science Lab.

    2010-07-01

    We describe the methodology used to set up and compute spatial derivatives of the electron moments using data acquired by the Plasma Electron And Current Experiment (PEACE) from the four Cluster spacecraft. The results are used to investigate electron vorticity in the foreshock. We find that much of the measured vorticity, under nominal conditions, appears to be caused by changes in the flow direction of the return (either reflected or leakage from the magnetosheath) and strahl electron populations as they couple to changes in the magnetic field orientation. This in turn results in deflections in the total bulk velocity producing the measured vorticity. (orig.)

  5. First measurements of electron vorticity in the foreshock and solar wind

    Directory of Open Access Journals (Sweden)

    C. Gurgiolo

    2010-12-01

    Full Text Available We describe the methodology used to set up and compute spatial derivatives of the electron moments using data acquired by the Plasma Electron And Current Experiment (PEACE from the four Cluster spacecraft. The results are used to investigate electron vorticity in the foreshock. We find that much of the measured vorticity, under nominal conditions, appears to be caused by changes in the flow direction of the return (either reflected or leakage from the magnetosheath and strahl electron populations as they couple to changes in the magnetic field orientation. This in turn results in deflections in the total bulk velocity producing the measured vorticity.

  6. A (Dis)continuous finite element model for generalized 2D vorticity dynamics

    NARCIS (Netherlands)

    Bernsen, E.; Bokhove, Onno; van der Vegt, Jacobus J.W.

    2005-01-01

    A mixed continuous and discontinuous Galerkin finite element discretization is constructed for a generalized vorticity streamfunction formulation in two spatial dimensions. This formulation consists of a hyperbolic (potential) vorticity equation and a linear elliptic equation for a (transport)

  7. Experimental investigation of the dynamics of a hybrid morphing wing: time resolved particle image velocimetry and force measures

    Science.gov (United States)

    Jodin, Gurvan; Scheller, Johannes; Rouchon, Jean-François; Braza, Marianna; Mit Collaboration; Imft Collaboration; Laplace Collaboration

    2016-11-01

    A quantitative characterization of the effects obtained by high frequency-low amplitude trailing edge actuation is performed. Particle image velocimetry, as well as pressure and aerodynamic force measurements, are carried out on an airfoil model. This hybrid morphing wing model is equipped with both trailing edge piezoelectric-actuators and camber control shape memory alloy actuators. It will be shown that this actuation allows for an effective manipulation of the wake turbulent structures. Frequency domain analysis and proper orthogonal decomposition show that proper actuating reduces the energy dissipation by favoring more coherent vortical structures. This modification in the airflow dynamics eventually allows for a tapering of the wake thickness compared to the baseline configuration. Hence, drag reductions relative to the non-actuated trailing edge configuration are observed. Massachusetts Institute of Technology.

  8. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  9. Effect of electrical field on the quantized vortices in He II

    International Nuclear Information System (INIS)

    Natsik, V.D.

    2007-01-01

    Electrical polarization and interaction of quantized vortices with electrical field in superfluid Bose fluid are studied. Two types of the vortices polarization are considered; both of them are caused by action of centrifugal forces upon the fluid atoms at their azimuthal motion around the vortex line. Firstly, atoms obtain dipole moments (internal polarization when external polarization when external field is absent) and a nonuniform symmetrical distribution of the polarization density arises; at that, a vortex has no integral dipole moment but each element of the vortex line bears a quadrupole moment. Secondly, action of the centrifugal forces leads to a nonuniform distribution of the atomic density around the vortex line; therefore, the polarization density of the fluid in the external electrical field is also nonuniform in the vicinity of this line and each isolated element of the vortex line obtains dipole moment proportional to the field magnitude (inductive polarization). Analytical expressions for the polarization density around the straight and circular vortex lines are obtained and the effective dipole and quadrupole moments of the vortices are determined. A distribution of the ponderomotive forces acting on the superfluid fluid with quantized vortices in the external electrical field has been analyzed and the caused by field additives to the energy of the straight and circular vortices are found. Numerical estimations of the effects considered are given for He II

  10. Delta Dynamics

    DEFF Research Database (Denmark)

    Bendixen, Mette

    . The warming air temperature affects the soil temperature and permafrost thaws and destabilizes the material in the coastal zone. In Greenland, the warming temperature lowers the surface mass balance of the Greenland Ice Sheet and more material is transported to the coastal zone. The sea ice extent is thinning...... of a fjord and the second type is a wider fan-shaped open delta. Most deltas are directly coupled to the Greenland Ice Sheet or local icecaps and are highly influenced by the dynamics in the catchments. It is demonstrated how a modern changing climate directly affects delta dynamics, and that Greenlandic...... deltas are prograding, contrary to the global trend showing eroding Arctic coasts. Moreover, it is revealed that the increasing proglacial freshwater runoff, caused by a lowering of the surface mass balance of the Greenland Ice Sheet is the main determining agent in delta progradation. The final part...

  11. Vortices and domain walls: 'Wormholes' in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bessarab, P F [St. Petersburg State University, Universitetskaya nab. 7/9, 199164 St. Petersburg (Russian Federation); Radievsky, A V, E-mail: van_der_paul@yahoo.co.u [Immanuel Kant State University of Russia, Nevskogo str. 14, 236016 Kaliningrad (Russian Federation)

    2010-01-15

    In the framework of the 2D and 3D time-dependent Ginzburg-Landau model we study superconductors with multicomponent order parameter (d-pairing). We argue that topological defects inside the sample do affect its thermodynamic properties such as hysteresis loop, susceptibility, etc. Along with earlier known topological defects such as Abrikosov vortices, domain walls (DWs) which separate different magnetic phases and even vortices inside the DW, we found an interesting combination of DWs and vortices. Namely we show that equivalent magnetic phases may be linked together with a vortex going through the other magnetic phase. This configuration may correspond to a stable state even in a zero external magnetic field. We also mention that this configuration is topologically similar to the 'wormholes' in the quantum gravity.

  12. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan

    2015-07-26

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed particles in a fuel stream using continuous-wave (CW) Argon-ion laser. Velocity fields were also quantified with particle mage velocimetry (PIV) system having kHz repetition rate. The results showed that the dynamic motion of negative buoyance induced vortices near the nozzle exit was coupled strongly with a flame flickering instability. Typically during the flame flickering, the negative buoyant vortices oscillated at the flickering frequency. The vortices were distorted by the flickering motion and exhibited complicated transient vortical patterns, such as tilting and stretching. Numerical simulations were also implemented based on an open source C++ package, LaminarSMOKE, for further validations.

  13. Vorticity and divergence in the high-latitude upper thermosphere

    International Nuclear Information System (INIS)

    Thayer, J.P.; Killeen, T.L.

    1991-01-01

    Measurements made from the Dynamics Explorer-2 satellite in November 1981 through January 1982 and November 1982 through January 1983 have been analyzed to determine the divergence and vertical component of vorticity of the high-latitude neutral wind field in the upper thermosphere for quiet (kp≤6) geomagnetic conditions and for both northern (winter) and southern (summer) hemispheres in the polar thermosphere and provides insight into the relative strengths of the different sources of momentum and energy responsible for driving the winds. The principal findings from this work include the following: The mean neutral wind pattern is dominated by rotational flow rather than by divergent flow, with a typical vorticity: divergence ratio of ∼ 2:1 for active conditions and ∼ 4:1 for quiet conditions. Comparison of the divergence and vorticity patterns for quiet and active conditions indicates that the divergent component of the neutral flow intensifies more significantly with increasing geomagnetic activity than does the rotational component

  14. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  15. Holocene evolution of a wave-dominated fan-delta: Godavari delta, India

    Science.gov (United States)

    Saito, Y.; Nageswara Rao, K.; Nagakumar, K.; Demudu, G.; Rajawat, A.; Kubo, S.; Li, Z.

    2013-12-01

    The Godavari delta is one of the world's largest wave-dominated deltas. The Godavari River arises in the Western Ghats near the west coast of India and drains an area of about 3.1x10^5 km^2, flowing about 1465 km southeast across the Indian peninsula to the Bay of Bengal. The Godavari delta consists of a gentle seaward slope from its apex (12 m elevation) at Rajahmundry and a coastal beach-ridge plain over a distance of about 75 km and covers ~5200 km^2 as a delta plain. The river splits into two major distributary channels, the Gautami and the Vasishta, at a barrage constructed in the mid-1800s. The coastal environment of the deltaic coast is microtidal (~1 m mean tidal range) and wave-dominated (~1.5 m mean wave height in the June-September SW monsoon season, ~0.8 m in the NE monsoon season). Models of the Holocene evolution of the Godavari delta have changed from a zonal progradation model (e.g. Nageswara Rao & Sadakata, 1993) to a truncated cuspate delta model (Nageswara Rao et al., 2005, 2012). Twelve borehole cores (340 m total length), taken in the coastal delta plain during 2010-2013, yielded more than 100 C-14 dates. Sediment facies and C-14 dates from these and previous cores and remote-sensing data support a new delta evolution model. The Holocene coastal delta plain is divided into two parts by a set of linear beach ridges 12-14 km landward from the present shoreline in the central part of the delta. The location of the main depocenter (lobe) has shifted during the Holocene from 1) the center to 2) the west, 3) east, 4) center, 5) west, and 6) east. The linear beach ridges separate the first three from the last three stages. These lobe shifts are controlled by river channel shifts near the apex. Just as the current linear shoreline of the central part of the delta and the concave-up nearshore topography are the result of coastal erosion of a cuspate delta, the linear beach ridges indicate a former eroded shoreline. An unconformity within the deltaic

  16. Two species of vortices in massive gauged non-linear sigma models

    International Nuclear Information System (INIS)

    Alonso-Izquierdo, A.; Fuertes, W. García; Guilarte, J. Mateos

    2015-01-01

    Non-linear sigma models with scalar fields taking values on ℂℙ"n complex manifolds are addressed. In the simplest n=1 case, where the target manifold is the S"2 sphere, we describe the scalar fields by means of stereographic maps. In this case when the U(1) symmetry is gauged and Maxwell and mass terms are allowed, the model accommodates stable self-dual vortices of two kinds with different energies per unit length and where the Higgs field winds at the cores around the two opposite poles of the sphere. Allowing for dielectric functions in the magnetic field, similar and richer self-dual vortices of different species in the south and north charts can be found by slightly modifying the potential. Two different situations are envisaged: either the vacuum orbit lies on a parallel in the sphere, or one pole and the same parallel form the vacuum orbit. Besides the self-dual vortices of two species, there exist BPS domain walls in the second case. Replacing the Maxwell contribution of the gauge field to the action by the second Chern-Simons secondary class, only possible in (2+1)-dimensional Minkowski space-time, new BPS topological defects of two species appear. Namely, both BPS vortices and domain ribbons in the south and the north charts exist because the vacuum orbit consits of the two poles and one parallel. Formulation of the gauged ℂℙ"2 model in a reference chart shows a self-dual structure such that BPS semi-local vortices exist. The transition functions to the second or third charts break the U(1)×SU(2) semi-local symmetry, but there is still room for standard self-dual vortices of the second species. The same structures encompassing N complex scalar fields are easily generalized to gauged ℂℙ"N models.

  17. Two species of vortices in massive gauged non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A. [Departamento de Matemática Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales, Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. García [Departamento de Física, Universidad de Oviedo, Facultad de Ciencias, Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Física Fundamental, Universidad de Salamanca, Facultad de Ciencias, Plaza de la Merced, E-37008 Salamanca (Spain)

    2015-02-23

    Non-linear sigma models with scalar fields taking values on ℂℙ{sup n} complex manifolds are addressed. In the simplest n=1 case, where the target manifold is the S{sup 2} sphere, we describe the scalar fields by means of stereographic maps. In this case when the U(1) symmetry is gauged and Maxwell and mass terms are allowed, the model accommodates stable self-dual vortices of two kinds with different energies per unit length and where the Higgs field winds at the cores around the two opposite poles of the sphere. Allowing for dielectric functions in the magnetic field, similar and richer self-dual vortices of different species in the south and north charts can be found by slightly modifying the potential. Two different situations are envisaged: either the vacuum orbit lies on a parallel in the sphere, or one pole and the same parallel form the vacuum orbit. Besides the self-dual vortices of two species, there exist BPS domain walls in the second case. Replacing the Maxwell contribution of the gauge field to the action by the second Chern-Simons secondary class, only possible in (2+1)-dimensional Minkowski space-time, new BPS topological defects of two species appear. Namely, both BPS vortices and domain ribbons in the south and the north charts exist because the vacuum orbit consits of the two poles and one parallel. Formulation of the gauged ℂℙ{sup 2} model in a reference chart shows a self-dual structure such that BPS semi-local vortices exist. The transition functions to the second or third charts break the U(1)×SU(2) semi-local symmetry, but there is still room for standard self-dual vortices of the second species. The same structures encompassing N complex scalar fields are easily generalized to gauged ℂℙ{sup N} models.

  18. The characterisation of blood rotation in a human heart chamber based on statistical analysis of vorticity maps

    Science.gov (United States)

    Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Stephen G.; Sanders, Prashanthan; Mazumdar, Jagannath; Abbott, Derek

    2008-12-01

    Modelling of non-stationary cardiac structures is complicated by the complexity of their intrinsic and extrinsic motion. The first known study of haemodynamics due to the beating of heart was made by Leonardo Da Vinci, giving the idea of fluid-solid interaction by describing how vortices develop during cardiac structural interaction with the blood. Heart morphology affects in changes of cardio dynamics during the systolic and diastolic phrases. In a chamber of the heart, vortices are discovered to exist as the result of the unique morphological changes of the cardiac chamber wall by using flow-imaging techniques such as phase contrast magnetic resonance imaging. The first part of this paper attempts to quantify vortex characteristics by means of calculating vorticity numerically and devising two dimensional vortical flow maps. The technique relies on determining the properties of vorticity using a statistical quantification of the flow maps and comparison of these quantities based on different scenarios. As the characteristics of our vorticity maps vary depending on the phase of a cardiac cycle, there is a need for robust quantification method to analyse vorticity. In the second part of the paper, the approach is then utilised for examining vortices within the human right atrium. Our study has shown that a proper quantification of vorticity for the flow field can indicate the strength and number of vortices within a heart chamber.

  19. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  20. Machine learning vortices at the Kosterlitz-Thouless transition

    Science.gov (United States)

    Beach, Matthew J. S.; Golubeva, Anna; Melko, Roger G.

    2018-01-01

    Efficient and automated classification of phases from minimally processed data is one goal of machine learning in condensed-matter and statistical physics. Supervised algorithms trained on raw samples of microstates can successfully detect conventional phase transitions via learning a bulk feature such as an order parameter. In this paper, we investigate whether neural networks can learn to classify phases based on topological defects. We address this question on the two-dimensional classical XY model which exhibits a Kosterlitz-Thouless transition. We find significant feature engineering of the raw spin states is required to convincingly claim that features of the vortex configurations are responsible for learning the transition temperature. We further show a single-layer network does not correctly classify the phases of the XY model, while a convolutional network easily performs classification by learning the global magnetization. Finally, we design a deep network capable of learning vortices without feature engineering. We demonstrate the detection of vortices does not necessarily result in the best classification accuracy, especially for lattices of less than approximately 1000 spins. For larger systems, it remains a difficult task to learn vortices.

  1. DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers

    Science.gov (United States)

    Duan, L.; Choudhari, M.; Li, F.

    2014-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.

  2. Lagrangian structures in time-periodic vortical flows

    Directory of Open Access Journals (Sweden)

    S. V. Kostrykin

    2006-01-01

    Full Text Available The Lagrangian trajectories of fluid particles are experimentally studied in an oscillating four-vortex velocity field. The oscillations occur due to a loss of stability of a steady flow and result in a regular reclosure of streamlines between the vortices of the same sign. The Eulerian velocity field is visualized by tracer displacements over a short time period. The obtained data on tracer motions during a number of oscillation periods show that the Lagrangian trajectories form quasi-regular structures. The destruction of these structures is determined by two characteristic time scales: the tracers are redistributed sufficiently fast between the vortices of the same sign and much more slowly transported into the vortices of opposite sign. The observed behavior of the Lagrangian trajectories is quantitatively reproduced in a new numerical experiment with two-dimensional model of the velocity field with a small number of spatial harmonics. A qualitative interpretation of phenomena observed on the basis of the theory of adiabatic chaos in the Hamiltonian systems is given. The Lagrangian trajectories are numerically simulated under varying flow parameters. It is shown that the spatial-temporal characteristics of the Lagrangian structures depend on the properties of temporal change in the streamlines topology and on the adiabatic parameter corresponding to the flow. The condition for the occurrence of traps (the regions where the Lagrangian particles reside for a long time is obtained.

  3. Anaerobic Transformation of Furfural by Methanococcus deltae (Delta)LH

    Science.gov (United States)

    Belay, N.; Boopathy, R.; Voskuilen, G.

    1997-01-01

    Methanococcus deltae (Delta)LH was grown on H(inf2)-CO(inf2) in the presence of various concentrations of furfural. Furfural at higher concentrations, namely, 20 and 25 mM, inhibited growth of this organism. At concentration of 5 and 10 mM, no inhibition of growth was observed. The other methanogens in this study were not inhibited by 10 mM furfural. Among the methanogens tested, M. deltae was capable of transforming furfural, whereas Methanobacterium thermoautotrophicum Marburg, Methanosarcina barkeri 227, Methanococcus thermolithotrophicus, and Methanobrevibacter ruminantium lacked this capability. One hundred percent removal of furfural was observed within 48 h of incubation in M. deltae cultures. The end product observed during furfural metabolism was furfuryl alcohol. An almost stoichiometric amount of furfuryl alcohol was produced by M. deltae. This transformation is likely to be of value in the detoxification of furfural and in its ultimate conversion to methane and CO(inf2) by anaerobic digestion. PMID:16535618

  4. A numerical study of the role of the vertical structure of vorticity during tropical cyclone genesis

    International Nuclear Information System (INIS)

    Venkatesh, T N; Mathew, Joseph

    2010-01-01

    An eight-level axisymmetric model with simple parameterizations for clouds and the atmospheric boundary layer was developed to examine the evolution of vortices that are precursors to tropical cyclones. The effect of vertical distributions of vorticity, especially that arising from a merger of mid-level vortices, was studied by us to provide support for a new vortex-merger theory of tropical cyclone genesis. The basic model was validated with the analytical results available for the spin-down of axisymmetric vortices. With the inclusion of the cloud and boundary layer parameterizations, the evolution of deep vortices into hurricanes and the subsequent decay are simulated quite well. The effects of several parameters such as the initial vortex strength, radius of maximum winds, sea-surface temperature and latitude (Coriolis parameter) on the evolution were examined. A new finding is the manner in which mid-level vortices of the same strength decay and how, on simulated merger of these mid-level vortices, the resulting vortex amplifies to hurricane strength in a realistic time frame. The importance of sea-surface temperature on the evolution of full vortices was studied and explained. Also it was found that the strength of the surface vortex determines the time taken by the deep vortex to amplify to hurricane strength.

  5. Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices

    KAUST Repository

    Akosa, Collins Ashu; Ndiaye, Papa Birame; Manchon, Aurelien

    2017-01-01

    We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.

  6. Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices

    KAUST Repository

    Akosa, Collins Ashu

    2017-03-01

    We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.

  7. Pegasus(Registered trademark) Wing-Glove Experiment to Document Hypersonic Crossflow Transition: Measurement System and Selected Flight Results

    Science.gov (United States)

    Bertelrud, Arild; delaTova, Geva; Hamory, Philip J.; Young, Ronald; Noffz, Gregory K.; Dodson, Michael; Graves, Sharon S.; Diamond, John K.; Bartlett, James E.; Noack, Robert; hide

    2000-01-01

    In a recent flight experiment to study hypersonic crossflow transition, boundary layer characteristics were documented. A smooth steel glove was mounted on the first stage delta wing of Orbital Sciences Corporation's Pegasus (R) launch vehicle and was flown at speeds of up to Mach 8 and altitudes of up to 250,000 ft. The wing-glove experiment was flown as a secondary payload off the coast of Florida in October 1998. This paper describes the measurement system developed. Samples of the results obtained for different parts of the trajectory are included to show the characteristics and quality of the data. Thermocouples and pressure sensors (including Preston tubes, Stanton tubes, and a "probeless" pressure rake showing boundary layer profiles) measured the time-averaged flow. Surface hot-films and high-frequency pressure transducers measured flow dynamics. Because the vehicle was not recoverable, it was necessary to design a system for real-time onboard processing and transmission. Onboard processing included spectral averaging. The quality and consistency of data obtained was good and met the experiment requirements.

  8. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    Science.gov (United States)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  9. Aharonov-Bohm effect with many vortices

    International Nuclear Information System (INIS)

    Franchini, Fabio; Scharff Goldhaber, Alfred

    2008-01-01

    The Aharonov-Bohm (A-B) effect is the prime example of a zero-field-strength configuration where a nontrivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction, we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.

  10. Aharonov-Bohm effect with many vortices

    Science.gov (United States)

    Franchini, Fabio; Scharff Goldhaber, Alfred

    2008-12-01

    The Aharonov-Bohm (A-B) effect is the prime example of a zero-field-strength configuration where a nontrivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction, we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.

  11. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    Science.gov (United States)

    Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-04-01

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3-5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.

  12. delta-vision

    Data.gov (United States)

    California Natural Resource Agency — Delta Vision is intended to identify a strategy for managing the Sacramento-San Joaquin Delta as a sustainable ecosystem that would continue to support environmental...

  13. Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory

    Science.gov (United States)

    Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George

    2018-04-01

    We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.

  14. Growth laws for delta crevasses in the Mississippi River Delta: observations and modeling

    Science.gov (United States)

    Yocum, T. A.; Georgiou, I. Y.

    2016-02-01

    River deltas are accumulations of sedimentary deposits delivered by rivers via a network of distributary channels. Worldwide they are threatened by environmental changes, including subsidence, global sea level rise and a suite of other local factors. In the Mississippi River Delta (MRD) these impacts are exemplified, and have led to proposed solutions to build land that include sediment diversions, thereby reinitiating the delta cycle. While economically efficient, there are too few analogs of small deltas aside from laboratory studies, numerical modeling studies, theoretical approaches, and limited field driven observations. Anthropogenic crevasses in the modern delta are large enough to overcome limitations of laboratory deltas, and small enough to allow for "rapid" channel and wetland development, providing an ideal setting to investigate delta development mechanics. Crevasse metrics were obtained using a combination of geospatial tools, extracting key parameters (bifurcation length and width, channel order and depth) that were non-dimensionalized and compared to river-dominated delta networks previously studied. Analysis showed that most crevasses in the MRD appear to obey delta growth laws and delta allometry relationships, suggesting that crevasses do exhibit similar planform metrics to larger Deltas; the distance to mouth bar versus bifurcation order demonstrated to be a very reasonable first order estimate of delta-top footprint. However, some crevasses exhibited different growth metrics. To better understand the hydrodynamic and geomorphic controls governing crevasse evolution in the MRD, we assess delta dynamics via a suite of field observations and numerical modeling in both well-established and newly constructed crevasses. Our analysis suggests that delta development is affected by the relative influence of external (upstream and downstream) and internal controls on the hydrodynamic and sediment transport patterns in these systems.

  15. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Shear flow driven counter rotating vortices in an inhomogeneous dusty magnetoplasma

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.; Ijaz, Aisha; Haque, Q.

    2014-02-01

    The coupling of Shukla-Varma (SV) and convective cell modes is discussed in the presence of non-Boltzmannian electron response and parallel equilibrium shear flow. In the linear case, a new dispersion relation is derived and analyzed. It is found that the coupled SV and convective cell modes destabilize in the presence of electron shear flow. On the other hand, in the nonlinear regime, it is shown that Shukla-Varma mode driven counter rotating vortices can be formed for the system under consideration. It is found that these vortices move slowly by comparison with the ion acoustic or electron drift-wave driven counter rotating vortices. The relevance of the present investigation with regard to space plasmas is also pointed out.

  17. COMMD1 regulates the delta epithelial sodium channel ({delta}ENaC) through trafficking and ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tina; Ke, Ying; Ly, Kevin [Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054 (New Zealand); McDonald, Fiona J., E-mail: fiona.mcdonald@otago.ac.nz [Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054 (New Zealand)

    2011-08-05

    Highlights: {yields} The COMM domain of COMMD1 mediates binding to {delta}ENaC. {yields} COMMD1 reduces the cell surface population of {delta}ENaC. {yields} COMMD1 increases the population of {delta}ENaC-ubiquitin. {yields} Both endogenous and transfected {delta}ENaC localize with COMMD1 and transferrin suggesting they are located in early/recycling endosomes. -- Abstract: The delta subunit of the epithelial sodium channel ({delta}ENaC) is a member of the ENaC/degenerin family of ion channels. {delta}ENaC is distinct from the related {alpha}-, {beta}- and {gamma}ENaC subunits, known for their role in sodium homeostasis and blood pressure control, as {delta}ENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1 domain 1) was previously found to associate with and downregulate {delta}ENaC activity. Here, we show that COMMD1 interacts with {delta}ENaC through its COMM domain. Co-expression of {delta}ENaC with COMMD1 significantly reduced {delta}ENaC surface expression, and led to an increase in {delta}ENaC ubiquitination. Immunocytochemical and confocal microscopy studies show that COMMD1 promoted localization of {delta}ENaC to the early/recycling endosomal pool where the two proteins were localized together. These results suggest that COMMD1 downregulates {delta}ENaC activity by reducing {delta}ENaC surface expression through promoting internalization of surface {delta}ENaC to an intracellular recycling pool, possibly via enhanced ubiquitination.

  18. EFT for vortices with dilaton-dependent localized flux

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [Physics & Astronomy, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5 (Canada); Division PH -TH, CERN, CH-1211, Genève 23 (Switzerland); Diener, Ross [Physics & Astronomy, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5 (Canada); Williams, M. [Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, B-3001 Leuven (Belgium)

    2015-11-09

    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical ‘fat brane’ solution, and in the effective theory of ‘point branes’ appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper http://arxiv.org/abs/1506.08095 to include dilaton-dependence for the tension and localized flux. In the effective theory, such flux-localization is described by the next-to-leading effective interaction, and the boundary conditions to which it gives rise are known to play an important role in how (and whether) the vortex causes supersymmetry to break in the bulk. We track how both tension and localized flux determine the curvature of the space-filling dimensions. Our calculations provide the tools required for computing how scale-breaking vortex interactions can stabilize the extra-dimensional size by lifting the dilaton’s flat direction. For small vortices we derive a simple relation between the near-vortex boundary conditions of bulk fields as a function of the tension and localized flux in the vortex action that provides the most efficient means for calculating how physical vortices mutually interact without requiring a complete construction of their internal structure. In passing we show why a common procedure for doing so using a δ-function can lead to incorrect results. Our procedures generalize straightforwardly to general co-dimension objects.

  19. EFT for vortices with dilaton-dependent localized flux

    International Nuclear Information System (INIS)

    Burgess, C.P.; Diener, Ross; Williams, M.

    2015-01-01

    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical ‘fat brane’ solution, and in the effective theory of ‘point branes’ appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper http://arxiv.org/abs/1506.08095 to include dilaton-dependence for the tension and localized flux. In the effective theory, such flux-localization is described by the next-to-leading effective interaction, and the boundary conditions to which it gives rise are known to play an important role in how (and whether) the vortex causes supersymmetry to break in the bulk. We track how both tension and localized flux determine the curvature of the space-filling dimensions. Our calculations provide the tools required for computing how scale-breaking vortex interactions can stabilize the extra-dimensional size by lifting the dilaton’s flat direction. For small vortices we derive a simple relation between the near-vortex boundary conditions of bulk fields as a function of the tension and localized flux in the vortex action that provides the most efficient means for calculating how physical vortices mutually interact without requiring a complete construction of their internal structure. In passing we show why a common procedure for doing so using a δ-function can lead to incorrect results. Our procedures generalize straightforwardly to general co-dimension objects.

  20. Thin tailored composite wing for civil tiltrotor

    Science.gov (United States)

    Rais-Rohani, Masoud

    1994-01-01

    The tiltrotor aircraft is a flight vehicle which combines the efficient low speed (i.e., take-off, landing, and hover) characteristics of a helicopter with the efficient cruise speed of a turboprop airplane. A well-known example of such vehicle is the Bell-Boeing V-22 Osprey. The high cruise speed and range constraints placed on the civil tiltrotor require a relatively thin wing to increase the drag-divergence Mach number which translates into lower compressibility drag. It is required to reduce the wing maximum thickness-to-chord ratio t/c from 23% (i.e., V-22 wing) to 18%. While a reduction in wing thickness results in improved aerodynamic efficiency, it has an adverse effect on the wing structure and it tends to reduce structural stiffness. If ignored, the reduction in wing stiffness leads to susceptibility to aeroelastic and dynamic instabilities which may consequently cause a catastrophic failure. By taking advantage of the directional stiffness characteristics of composite materials the wing structure may be tailored to have the necessary stiffness, at a lower thickness, while keeping the weight low. The goal of this study is to design a wing structure for minimum weight subject to structural, dynamic and aeroelastic constraints. The structural constraints are in terms of strength and buckling allowables. The dynamic constraints are in terms of wing natural frequencies in vertical and horizontal bending and torsion. The aeroelastic constraints are in terms of frequency placement of the wing structure relative to those of the rotor system. The wing-rotor-pylon aeroelastic and dynamic interactions are limited in this design study by holding the cruise speed, rotor-pylon system, and wing geometric attributes fixed. To assure that the wing-rotor stability margins are maintained a more rigorous analysis based on a detailed model of the rotor system will need to ensue following the design study. The skin-stringer-rib type architecture is used for the wing

  1. Populists in Parliament : Comparing Left-Wing and Right-Wing Populism in the Netherlands

    NARCIS (Netherlands)

    Otjes, Simon; Louwerse, Tom

    2015-01-01

    In parliament, populist parties express their positions almost every day through voting. There is great diversity among them, for instance between left-wing and right-wing populist parties. This gives rise to the question: is the parliamentary behaviour of populists motivated by their populism or by

  2. Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    Science.gov (United States)

    Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.

    2015-01-01

    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.

  3. The impact of intraglottal vortices on vocal fold dynamics

    Science.gov (United States)

    Erath, Byron; Pirnia, Alireza; Peterson, Sean

    2016-11-01

    During voiced speech a critical pressure is produced in the lungs that separates the vocal folds and creates a passage (the glottis) for airflow. As air passes through the vocal folds the resulting aerodynamic loading, coupled with the tissue properties of the vocal folds, produces self-sustained oscillations. Throughout each cycle a complex flow field develops, characterized by a plethora of viscous flow phenomena. Air passing through the glottis creates a jet, with periodically-shed vortices developing due to flow separation and the Kelvin-Helmholtz instability in the shear layer. These vortices have been hypothesized to be a crucial mechanism for producing vocal fold vibrations. In this study the effect of vortices on the vocal fold dynamics is investigated experimentally by passing a vortex ring over a flexible beam with the same non-dimensional mechanical properties as the vocal folds. Synchronized particle image velocimetry data are acquired in tandem with the beam dynamics. The resulting impact of the vortex ring loading on vocal fold dynamics is discussed in detail. This work was supported by the National Science Foundation Grant CBET #1511761.

  4. MMS Observations of Vorticity Near Sites of Magnetic Reconnection

    Science.gov (United States)

    Paterson, W. R.; Giles, B. L.; Avanov, L. A.; Boardsen, S. A.; Dorelli, J.; Gershman, D. J.; Mackler, D. A.; Moore, T. E.; Pollock, C. J.; Schiff, C.; Shuster, J. R.; Viñas, A. F.; Russell, C. T.; Strangeway, R. J.; Burch, J. L.; Torbert, R. B.

    2017-12-01

    With highly capable plasma instruments on four spacecraft flown in tetrahedral formation, it is possible for MMS investigators to approximate spatial derivatives of the plasma parameters observed. Here, we examine vorticity of the electron and ion components of the plasma computed from the curl of velocity as measured by the Fast Plasma Investigation (FPI). Vorticity of magnetospheric plasma has not previously been studied on scales of tens-of-km to less than 10 km, which are the typical inter-spacecraft separations for MMS. Nor has it been explored on time scales of 30 ms for electrons and 150 ms for ions, which are the burst data rates for the FPI spectrometers. Review of observations from the magnetopause and magnetotail phases of the mission finds increases in vorticity associated with near encounters with the electron diffusion region, with nearby regions of measurable current, and with elevated electron and ion temperatures. These are suggestive of a possible role for turbulence in magnetic reconnection. In this presentation we provide an assessment of the quality of these measurements and discuss their potential significance.

  5. Detection probability of cliff-nesting raptors during helicopter and fixed-wing aircraft surveys in western Alaska

    Science.gov (United States)

    Booms, T.L.; Schempf, P.F.; McCaffery, B.J.; Lindberg, M.S.; Fuller, M.R.

    2010-01-01

    We conducted repeated aerial surveys for breeding cliff-nesting raptors on the Yukon Delta National Wildlife Refuge (YDNWR) in western Alaska to estimate detection probabilities of Gyrfalcons (Falco rusticolus), Golden Eagles (Aquila chrysaetos), Rough-legged Hawks (Buteo lagopus), and also Common Ravens (Corvus corax). Using the program PRESENCE, we modeled detection histories of each species based on single species occupancy modeling. We used different observers during four helicopter replicate surveys in the Kilbuck Mountains and five fixed-wing replicate surveys in the Ingakslugwat Hills near Bethel, AK. During helicopter surveys, Gyrfalcons had the highest detection probability estimate (p^;p^ 0.79; SE 0.05), followed by Golden Eagles (p^=0.68; SE 0.05), Common Ravens (p^=0.45; SE 0.17), and Rough-legged Hawks (p^=0.10; SE 0.11). Detection probabilities from fixed-wing aircraft in the Ingakslugwat Hills were similar to those from the helicopter in the Kilbuck Mountains for Gyrfalcons and Golden Eagles, but were higher for Common Ravens (p^=0.85; SE 0.06) and Rough-legged Hawks (p^=0.42; SE 0.07). Fixed-wing aircraft provided detection probability estimates and SEs in the Ingakslugwat Hills similar to or better than those from helicopter surveys in the Kilbucks and should be considered for future cliff-nesting raptor surveys where safe, low-altitude flight is possible. Overall, detection probability varied by observer experience and in some cases, by study area/aircraft type.

  6. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    Science.gov (United States)

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  8. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  9. Core sizes and dynamical instabilities of giant vortices in dilute Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Kuopanportti, Pekko; Lundh, Emil; Huhtamaeki, Jukka A. M.; Pietilae, Ville; Moettoenen, Mikko

    2010-01-01

    Motivated by a recent demonstration of cyclic addition of quantized vorticity into a Bose-Einstein condensate, the vortex pump, we study dynamical instabilities and core sizes of giant vortices. The core size is found to increase roughly as a square-root function of the quantum number of the vortex, whereas the strength of the dynamical instability either saturates to a fairly low value or increases extremely slowly for large quantum numbers. Our studies suggest that giant vortices of very high angular momenta may be achieved by gradually increasing the operation frequency of the vortex pump.

  10. Nuclear vorticity and the low-energy nuclear response. Towards the neutron drip line

    International Nuclear Information System (INIS)

    Papakonstantinou, P.; Athens Univ.; Wambach, J.; Ponomarev, V.Y.; Mavrommatis, E.

    2004-01-01

    The transition density and current provide valuable insight into the nature of nuclear vibrations. Nuclear vorticity is a quantity related to the transverse transition current. In this work, we study the evolution of the strength distribution, related to density fluctuations, and the vorticity strength distribution, as the neutron drip line is approached. Our results on the isoscalar, natural-parity multipole response of Ni isotopes, obtained by using a self-consistent Skyrme-Hartree-Fock+continuum RPA model, indicate that, close to the drip line, the low-energy response is dominated by L > 1 vortical transitions. (orig.)

  11. Four-Spacecraft Magnetic Curvature and Vorticity Analyses on Kelvin-Helmholtz Waves in MHD Simulations

    Science.gov (United States)

    Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit

    2018-01-01

    Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.

  12. Future Deltas Utrecht University research focus area: towards sustainable management of sinking deltas

    Science.gov (United States)

    Stouthamer, E.; van Asselen, S.

    2015-11-01

    Deltas are increasingly under pressure from human impact and climate change. To deal with these pressures that threat future delta functioning, we need to understand interactions between physical, biological, chemical and social processes in deltas. This requires an integrated approach, in which knowledge on natural system functioning is combined with knowledge on spatial planning, land and water governance and legislative frameworks. In the research focus area Future Deltas of Utrecht University an interdisciplinary team from different research groups therefore works together. This allows developing integrated sustainable and resilient delta management strategies, which is urgently needed to prevent loss of vital delta services.

  13. An extended self-organisation principle for modelling and calculating the dissipation of 2D confined vortices

    NARCIS (Netherlands)

    Eydeland, A.; van Groesen, Embrecht W.C.

    1989-01-01

    Steady Euler flows in a periodic square that, for positive vorticity distributions, minimise the entropy at given values of the energy and the circulations are non-confined vortices for optimal values of the circulation, and are confined vortices for certain non-optimal values. An extension of the

  14. Near field vorticity distributions from a sharp-edged rectangular jet

    International Nuclear Information System (INIS)

    Vouros, Alexandros P.; Panidis, Thrassos; Pollard, Andrew; Schwab, Rainer R.

    2015-01-01

    Highlights: • Axial mean vorticity equation terms are calculated from experimental data. • Appearance of ridges, dumbbell shape and saddleback velocity profiles is highlighted. • Explanations are provided using terms from the vorticity equation. - Abstract: Experimental results on the near field development of a free rectangular jet with aspect ratio 10 are presented. The jet issues from a sharp-edged orifice attached to a rectangular settling chamber at Re h ∼ 23,000, based on slot width, h. Measurements on cross plane grids were obtained with a two-component hot wire anemometry probe, which provided information on the three dimensional characteristics of the flow field. Two key features of this type of jet are mean axial velocity profiles presenting two off axis peaks, commonly mentioned as saddleback profiles, and a predominant dumbbell shape as described by, for example, a contour of the axial mean velocity. The saddleback shape is found to be significantly influenced by the vorticity distribution in the transverse plane of the jet, while the dumbbell is traced to two terms in the axial mean vorticity transport equation that diffuse fluid from the centre of the jet towards its periphery. At the farthest location where measurements were taken, 30 slot widths from the jet exit, the flow field resembles that of an axisymmetric jet

  15. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  16. Estimates of the initial vortex separation distance, bo, of commercial aircraft from pulsed lidar data

    Science.gov (United States)

    2013-01-07

    An aircraft in flight generates multiple wake vortices, the largest of which are a result of : the lift on the wings. These vortices rapidly roll up into a counter-rotating vortex pair : behind the aircraft. The initial separation between the centroi...

  17. Transverse ratchet effect and superconducting vortices: simulation and experiment

    International Nuclear Information System (INIS)

    Dinis, L; Parrondo, J M R; Perez de Lara, D; Gonzalez, E M; Vicent, J L; Anguita, J V

    2009-01-01

    A transverse ratchet effect has been measured in magnetic/superconducting hybrid films fabricated by electron beam lithography and magnetron sputtering techniques. The samples are Nb films grown on top of an array of Ni nanotriangles. Injecting an ac current parallel to the triangle reflection symmetry axis yields an output dc voltage perpendicular to the current, due to a net motion of flux vortices in the superconductor. The effect is reproduced by numerical simulations of vortices as Langevin particles with realistic parameters. Simulations provide an intuitive picture of the ratchet mechanism, revealing the fundamental role played by the random intrinsic pinning of the superconductor.

  18. Voltage quantization by ballistic vortices in two-dimensional superconductors

    International Nuclear Information System (INIS)

    Orlando, T.P.; Delin, K.A.

    1991-01-01

    The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions

  19. Interaction of ultrasound with vortices in type-II superconductors

    International Nuclear Information System (INIS)

    Sonin, E.B.

    1996-01-01

    The theory of ultrasound in the mixed state of type-II superconductors is suggested which takes into account the Magnus force on vortices, the anti-Magnus force on ions, and diamagnetism of the mixed state. The acoustic Faraday effect (rotation of polarization of the transverse ultrasonic wave propagating along vortices) is linear in the Magnus force in any regime of the flux flow for wavelengths now used in the ultrasound experiments. Therefore, in contrast to previous predictions, the Faraday effect should be looked for only in clean superconductors with a strong Magnus force. copyright 1996 The American Physical Society

  20. Monopoles, vortices, and confinement

    International Nuclear Information System (INIS)

    Mack, G.; Pietarinen, E.

    1981-10-01

    An exact relation is established between an SO(3) lattice gauge theory model without monopoles, and a corresponding SU(2) model. Elimination of the monopoles (and their strings) leads to a substantial lowering of the entropy of thin vortices and a corresponding decrease of the string tension for low γ. This is revealed by approximate calculations of the vortex free energy and is confirmed by Monte Carlo data. The value of the physical transition temperature to 'hot gluon soup' is also lowered considerably. (orig.)

  1. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses.

    Science.gov (United States)

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.

  2. Influence of the least-squares phase on optical vortices in strongly scintillated beams

    CSIR Research Space (South Africa)

    Chen, M

    2009-06-01

    Full Text Available , the average total number of vortices is reduced further. However, the reduction becomes smaller for each succes- sive step. This indicates that the ability of getting rid of optical vortices by removing the least-squares phase becomes progressively less...

  3. AFM study of structure influence on butterfly wings coloration

    OpenAIRE

    Dallaeva, Dinara; Tománek, Pavel

    2012-01-01

    This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM) can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body,...

  4. On stability of vortices in three-dimensional self-attractive Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Malomed, Boris A.; Lederer, Falk; Mazilu, Dumitru; Mihalache, Dumitru

    2007-01-01

    Results of accurate analysis of stability are reported for localized vortices in the Bose-Einstein condensate (BEC) with the negative scattering length, trapped in an anisotropic potential with the aspect ratio Ω. The cases of Ω-bar 1 and Ω-bar 1 correspond to the 'pancake' (nearly-2D) and 'cigar-shaped' (nearly-1D) configurations, respectively (in the latter limit, the vortices become 'tubular' solitons). The analysis is based on the 3D Gross-Pitaevskii equation. The family of solutions with vorticity S=1 is accurately predicted by the variational approximation. The relative size of the stability area for the vortices with S=1 (which was studied, in a part, before) increases with the decrease of Ω in terms of the number of atoms, but decreases in terms of the chemical potential. All states with S>=2 are unstable, while the stability of the ordinary solitons (S=0) obeys the Vakhitov-Kolokolov criterion. The stability predictions are verified by direct simulations of the full 3D equation

  5. Structure-Preserving Variational Multiscale Modeling of Turbulent Incompressible Flow with Subgrid Vortices

    Science.gov (United States)

    Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey

    2017-11-01

    In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.

  6. Quantifying the dynamic wing morphing of hovering hummingbird.

    Science.gov (United States)

    Maeda, Masateru; Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto; Liu, Hao

    2017-09-01

    Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird ( Amazilia amazilia ) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the 'washout' twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke.

  7. Tripolar vortices of dust-drift waves in dusty plasma with shear flow

    International Nuclear Information System (INIS)

    Chen Yinhua; Wang Ge

    2002-01-01

    Nonlinear equations governing dust-drift waves in magnetized dusty plasma with transverse shear flow are derived. For the specific profiles of flow and the plasma equilibrium density, a new type of solution in the form of tripolar vortices is found. The results show that the peak magnitude of tripolar vortices increases with increasing shear intensity and dust content

  8. Vortical structures for nanomagnetic memory induced by dipole-dipole interaction in monolayer disks

    Science.gov (United States)

    Liu, Zhaosen; Ciftja, Orion; Zhang, Xichao; Zhou, Yan; Ian, Hou

    2018-05-01

    It is well known that magnetic domains in nanodisks can be used as storage units for computer memory. Using two quantum simulation approaches, we show here that spin vortices on magnetic monolayer nanodisks, which are chirality-free, can be induced by dipole-dipole interaction (DDI) on the disk-plane. When DDI is sufficiently strong, vortical and anti-vortical multi-domain textures can be generated simultaneously. Especially, a spin vortex can be easily created and deleted through either external magnetic or electrical signals, making them ideal to be used in nanomagnetic memory and logical devices. We demonstrate these properties in our simulations.

  9. Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation

    Energy Technology Data Exchange (ETDEWEB)

    Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel

    2009-06-15

    A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)

  10. Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation

    International Nuclear Information System (INIS)

    Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel

    2009-01-01

    A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)

  11. Vorticity amplification and its effects on flow separation from simplified landing gear wheels

    Science.gov (United States)

    McCarthy, Philip; Feltham, Graham; Ekmekci, Alis

    2015-11-01

    In the presence of weak streams of inbound vorticity, the stagnation region of bluff bodies have been shown to support mechanisms for the collection and amplification of said vorticity into large-scale, discrete vortex structures. For extremely low aspect ratio cylinders, such as those which represent simplified aircraft landing gear wheels, these discrete vortex structures tilt around the sides of the geometry, orientating their axes in the streamwise direction. Once the oncoming vorticity is collected and amplified into discrete vortices, they are shed from the stagnation region and this cycle repeats itself periodically. The present work investigates the effect of the vortex tilting and subsequent shedding on the behaviour of the outboard side flow separation region present on simplified landing gear wheels. Experiments were conducted in a recirculating-type water tunnel on a two-wheel landing gear model, with the upstream vorticity source being a 100 µm platinum wire. Hydrogen bubble visualisations were first used for qualitative understanding of the flow, accompanied by 2D-PIV for vortex identification and tracking of the growth and movement of the observed structures. Finally, the side separation bubble has been characterised using 3D velocity measurements (using V3V). The authors would like to thank Bombardier, Messier-Bugatti-Dowty and NSERC for their support for this project.

  12. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Breuer, K S

    2012-01-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s −1 . (paper)

  13. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S

    2012-09-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  14. Rotating shallow water modeling of planetary,astrophysical and plasma vortical structures (plasma transport across a magnetic field,model of the jupiter's GRS, prediction of existence of giant vortices in spiral galaxies

    Directory of Open Access Journals (Sweden)

    M. V. Nezlin

    1999-01-01

    Full Text Available Three kinds of results have been described in this paper. Firstly, an experimental study of the Rossby vortex meridional drift on the rotating shallow water has been carried out. Owing to the stringent physical analogy between the Rossby vortices and drift vortices in the magnetized plasma, the results obtained have allowed one to make a conclusion that the transport rate of the plasma, trapped by the drift vortices, across the magnetic field is equivalent to the “gyro-Bohm” diffusion coefficient. Secondly, a model of big vortices of the type of the Great Red Spot of Jupiter, dominating in the atmospheres of the outer planets, has been produced. Thirdly, the rotating shallow water modeling has been carried out of the hydrodynamical generation mechanism of spiral structures in galaxies. Trailing spiral waves of various azimuthal modes, generated by a shear flow between fast rotating “nucleus” and slow rotating periphery, were produced. The spirals are similar to those existing in the real galaxies. The hydrodynamical concept of the spiral structure formation in galaxies has been substantiated. Strong anticyclonic vortices between the spiral arms of the structures under study have been discovered for the first time. The existence of analogous vortices in real galaxies has been predicted. (This prediction has been reliably confirmed recently in special astronomical observations, carried out on the basis of the mentioned laboratory modeling and the prediction made – see the paper by A. Fridman et al. (Astrophysics and Space Science, 1997, 252, 115.

  15. Global reconnection topology as inferred from plasma observations inside Kelvin-Helmholtz vortices

    Directory of Open Access Journals (Sweden)

    M. B. Bavassano Cattaneo

    2010-04-01

    Full Text Available During a long lasting period of northward interplanetary magnetic field and high solar wind speed (above 700 km/s, the Cluster spacecraft go across a number of very large rolled-up Kelvin-Helmholtz (KH vortices at the dusk magnetopause, close to the terminator. The peculiarity of the present event is a particular sequence of ions and electrons distribution functions observed repeatedly inside each vortex. In particular, whenever Cluster crosses the current layer inside the vortices, multiple field-aligned ion populations appear, suggesting the occurrence of reconnection. In addition, the ion data display a clear velocity filter effect both at the leading and at the trailing edge of each vortex. This effect is not present in the simultaneous electron data. Unlike other KH studies reported in the literature in which reconnection occurs within the vortices, in the present event the observations are not compatible with local reconnection, but are accounted for by lobe reconnection occurring along an extended X-line at the terminator in the Southern Hemisphere. The reconnected field lines "sink" across the magnetopause and then convect tailward-duskward where they become embedded in the vortices. Another observational evidence is the detected presence of solar wind plasma on the magnetospheric side of the vortices, which confirms unambiguously the occurrence of mass transport across the magnetopause already reported in the literature. The proposed reconnection scenario accounts for all the observational aspects, regarding both the transport process and the kinetic signatures.

  16. Connectivity in river deltas

    Science.gov (United States)

    Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.

    2016-12-01

    Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.

  17. Generation of optical vortices in an integrated optical circuit

    Science.gov (United States)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  18. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  19. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  20. Mass deformed world-sheet action of semi local vortices

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunguo [School of Space Science and Physics, Shandong University at Weihai,264209 Weihai (China); Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment,264209 Weihai (China)

    2014-02-10

    The mass deformed effective world-sheet theory of semi local vortices was constructed via the field theoretical method. By Euler-Lagrangian equations, the Ansatze for both the gauge field and the adjoint scalar were solved, this ensures that zero modes of vortices are minimal excitations of the system. Up to the 1/g{sup 2} order, all profiles are solved. The mass deformed effective action was obtained by integrating out the transverse plane of the vortex string. The effective theory interpolates between the local vortex and the lump. Respecting certain normalization conditions, the effective theory shows a Seiberg-like duality, which agrees with the result of the Kähler quotient construction.

  1. Calculations of the flow past bluff bodies, including tilt-rotor wing sections at alpha = 90 deg

    Science.gov (United States)

    Raghavan, V.; Mccroskey, W. J.; Baeder, J. D.; Van Dalsem, W. R.

    1990-01-01

    An attempt was made to model in two dimensions the effects of rotor downwash on the wing of the tilt-rotor aircraft and to compute the drag force on airfoils at - 90 deg angle of attack, using a well-established Navier-Stokes code. However, neither laminar nor turbulent calculations agreed well with drag and base-pressure measurements at high Reynolds numbers. Therefore, further efforts were concentrated on bluff-body flows past various shapes at low Reynolds numbers, where a strong vortex shedding is observed. Good results were obtained for a circular cylinder, but the calculated drag of a slender ellipse at right angles to the freestream was significantly higher than experimental values reported in the literature for flat plates. Similar anomalous results were obtained on the tilt-rotor airfoils, although the qualitative effects of flap deflection agreed with the wind tunnel data. The ensemble of results suggest that there may be fundamental differences in the vortical wakes of circular cylinders and noncircular bluff bodies.

  2. Delta 2.0

    DEFF Research Database (Denmark)

    Skott, Jeppe; Skott, Charlotte Krog; Jess, Kristine

    DELTA 2.0 er en ny og helt opdateret udgave af Delta, der i ti år været brugt i matematiklærernes grund-, efter- og videreuddannelse. DELTA 2.0 er seriens almene fagdidaktik. Der er også fagdidaktiske overvejelser i de øvrige bøger i serien, men de er knyttet til specifikt matematisk indhold. DELTA...... 2.0 behandler mere generelle matematikdidaktiske problemstillinger såsom læringsteoretiske overvejelser i forbindelse med matematik, centrale aspekter af det at undervise i matematik og digitale teknologier som værktøj til at støtte elevers faglige læring af matematik....

  3. Vortical flows in technical applications

    OpenAIRE

    Krause, Egon; Krause, Egon

    2006-01-01

    Two examples of flows dominated by vortical structures are discussed: In the first interaction and decay of vortex structures in in-cylinder flows of automotive engines are described. Numerical studies revealed clearly identifiable vortex rings, generated during the intake stroke. The influence of compressibility on the vortex formation was studied by using Mach-Zehnder interferometry in a specially designed test stand of a towed one-cylinder engine, and with numerical solutions of the Navier...

  4. Jovian Vortices and Barges: HST observations 1994-1998

    Science.gov (United States)

    Morales, R.; Sanchez-Lavega, A.; Lecacheux, J.; Colas, F.; Miyazaki, I.

    2000-10-01

    We have used the HST-WFPC2 archived images of Jupiter in the period 1994-1998 to study the zonal and meridional distributions, long-term motions, lifetimes, interactions and other properties of the vortices larger than 2 degrees. The latitude range covered spans from +75 to -75 degrees. High-resolution images obtained with the 890nm, 410nm and 953nm wavelength filters allowed us to make a morphological classification based on their appearance in each filter. The vortices are anticyclones, and their long-term motions have been completed with ground-based images and are compared to the mean Jovian zonal wind profile. Significant differences are found between the vortex velocities and the mean zonal winds. Some vortices exhibited important drift changes in short period times. We analyze a possible correlation between their size and zonal wind velocity. On the other hand, the "barges" lie in the cyclone domains of the wind-profile and have been identified in several latitudes. Their latitudinal size is similar in all of them (typically 1.6 degrees) but their longitudinal size ranges from 1 to 32 degrees. We discuss the temporal evolution of some of these cyclonic regions. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie." RM acknowledges a fellowship from Universidad Pais Vasco.

  5. Unfolding of Vortices into Topological Stripes in a Multiferroic Material

    Science.gov (United States)

    Wang, X.; Mostovoy, M.; Han, M. G.; Horibe, Y.; Aoki, T.; Zhu, Y.; Cheong, S.-W.

    2014-06-01

    Multiferroic hexagonal RMnO3 (R =rare earths) crystals exhibit dense networks of vortex lines at which six domain walls merge. While the domain walls can be readily moved with an applied electric field, the vortex cores so far have been impossible to control. Our experiments demonstrate that shear strain induces a Magnus-type force pulling vortices and antivortices in opposite directions and unfolding them into a topological stripe domain state. We discuss the analogy between this effect and the current-driven dynamics of vortices in superconductors and superfluids.

  6. Vortices in the SU(N) x SU(N) spin systems in two dimensions

    International Nuclear Information System (INIS)

    Kares, R.J.D.

    1982-01-01

    The SU(N) x SU(N) or chiral spin systems in two dimensions with spin variables in both the fundamental and the adjoint representations of SU(N) are considered. In the adjoint representation the chiral models are found to possess topologically stable, classical vortex solutions which carry a Z(N) topological charge. A relationship is established between the chiral models and massive Yang-Mills theory in two dimensions. This relationship is exploited to prove the asymptotic freedom of the chiral models and to find their weak coupling mass gap. The connection between the vortices of the chiral models and those of the massive Yang-Mills theory is discussed. The behavior of a gas of vortices in the SU(2) chiral model is considered. This gas is converted to an equivalent field theory and studied using the renormalization group. It is shown that the SU(2) vortex gas does not undergo a Kosterlitz-Thouless phase transition. This behavior probably persists for the higher SU(N) groups as well. Finally, using the massive Yang-Mills theory the effect of the coupling of vortices to spin wave fluctuations is investigated. It is argued that as a result of the vortex-spin wave interaction the vortices acquire a mass scale dynamically. A self consistency condition is derived for the vortex scale and used to compute the mass gap for the chiral models in the presence of vortices. The mass gap obtained in this way is found to be in agreement with the weak coupling result suggesting that vortices may be responsible for generating the mass gap in the chiral models near T = 0

  7. Further determination of the characteristics of magnetospheric plasma vortices with Isee 1 and 2

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Birn, J.; Bame, S.J.; Asbridge, J.R.; Paschmann, G.; Sckopke, N.; Haerendel, G.

    1981-01-01

    Further studies of the vortices in magnetospheric plasma flow with the Los Alamos Scientific Laboratory/Max-Planck-Institut (LASL/MPI) fast plasma experiment on Isee 1 and 2 have revealed that the pattern of vortical flow has a wavelength of approx.20-40 R/sub E/ and moves tailward through the magnetosphere at speed of several hundred kilometers per second. The tendency toward vorticity pervades the total breadth of the plasma sheet tailward of the dawn-dusk meridian. The sense of rotation of the plasma flow (as viewed from above the ecliptic plane) is clockwise in the morningside of the plasma sheet and counterclockwise in the eveningside. The sense of rotation in the morning and evening boundary layers is reversed from that in the contiguous regions of the plasma sheet. The occurrence of vortical flow is independent of the level of geomagnetic activity but is associated with long-period geomagnetic pulsations. We believe that the source of the vortical motion is a Kelvin-Helmholtz instability of the plasma boundary layer's inner surface (i.e., the interface between the plasma sheet and the boundary layer) that has recently been proposed by Sonnerup [1980

  8. Peat compaction in deltas : implications for Holocene delta evolution

    NARCIS (Netherlands)

    van Asselen, S.

    2010-01-01

    Many deltas contain substantial amounts of peat, which is the most compressible soil type. Therefore, peat compaction potentially leads to high amounts of subsidence in deltas. The main objective of this research was to quantify subsidence due to peat compaction in Holocene fluvial-deltaic settings

  9. Modeling and Optimization for Morphing Wing Concept Generation

    Science.gov (United States)

    Skillen, Michael D.; Crossley, William A.

    2007-01-01

    This report consists of two major parts: 1) the approach to develop morphing wing weight equations, and 2) the approach to size morphing aircraft. Combined, these techniques allow the morphing aircraft to be sized with estimates of the morphing wing weight that are more credible than estimates currently available; aircraft sizing results prior to this study incorporated morphing wing weight estimates based on general heuristics for fixed-wing flaps (a comparable "morphing" component) but, in general, these results were unsubstantiated. This report will show that the method of morphing wing weight prediction does, in fact, drive the aircraft sizing code to different results and that accurate morphing wing weight estimates are essential to credible aircraft sizing results.

  10. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    Science.gov (United States)

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  11. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  12. PEGIDA : fearful patriots or right-wing radicals?

    OpenAIRE

    Glasmeier, Ruth Katharina

    2016-01-01

    Right-wing movements have become more popular in recent years. This shows in the increase of right-wing populist or right-wing radical parties in different European governments. Despite this European wide trend, Germany did not have a successful right-wing movement. This changed with the creation of PEGIDA and the AfD. Since this type of movement is relatively new in Germany, this thesis aims to understand PEGIDA. The thesis aims to answer the question of Who are PEGIDA? To do so, it will...

  13. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    Science.gov (United States)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  14. A study of vorticity formation in high energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Becattini, F. [Universita di Firenze, Dipartimento di Fisica e Astronomia, Sesto F.no (Firenze) (Italy); INFN, Sezione di Firenze, Sesto F.no (Firenze) (Italy); Inghirami, G. [Universita di Firenze, Dipartimento di Fisica e Astronomia, Sesto F.no (Firenze) (Italy); Johann Wolfgang Goethe University, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany); Rolando, V.; Pagliara, G. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); INFN, Sezione di Ferrara, Ferrara (Italy); Beraudo, A.; De Pace, A.; Nardi, M. [INFN, Sezione di Torino, Turin (Italy); Del Zanna, L. [Universita di Firenze, Dipartimento di Fisica e Astronomia, Sesto F.no (Firenze) (Italy); INFN, Sezione di Firenze, Sesto F.no (Firenze) (Italy); INAF, Osservatorio Astrofisico di Arcetri, Florence (Italy); Chandra, V. [Indian Institute of Technology Gandhinagar, Ahmedabad, Gujrat (India)

    2015-09-15

    We present a quantitative study of vorticity formation in peripheral ultrarelativistic heavy-ion collisions at √(s{sub NN}) = 200 GeV by using the ECHO-QGP numerical code, implementing relativistic dissipative hydrodynamics in the causal Israel-Stewart framework in 3 + 1 dimensions with an initial Bjorken flow profile. We consider different definitions of vorticity which are relevant in relativistic hydrodynamics. After demonstrating the excellent capabilities of our code, which proves to be able to reproduce Gubser flow up to 8 fm/c, we show that, with the initial conditions needed to reproduce the measured directed flow in peripheral collisions corresponding to an average impact parameter b = 11.6 fm and with the Bjorken flow profile for a viscous Quark Gluon Plasma with η/s = 0.1 fixed, a vorticity of the order of some 10{sup -2} c/fm can develop at freeze-out. The ensuing polarization of Λ baryons does not exceed 1.4 % at midrapidity. We show that the amount of developed directed flow is sensitive to both the initial angular momentum of the plasma and its viscosity. (orig.)

  15. Stationary drift-Rossby vortices in shear flows

    International Nuclear Information System (INIS)

    Horihata, Satoshi; Irie, Haruyuki; Sato, Masatomo

    1990-01-01

    Starting from Hasegawa-Mima equation with the generalized vorticity q which describes both electrostatic drift waves in plasmas and Rossby waves in the atmosphere of rotating planets, the stationary solutions of this equation in the (x, y) plane were considered assuming that the equilibrium density no depends on x and the electron temperature T 0 is constant. The arbitrary function F(φ) yielded from integration of transformed Hasegawa-Mima equation was taken either linear or nonlinear in φ, where φ is the stream function. When F is linear, vortex solutions were obtained by dividing the entire plane into internal and external regions by a closed boundary curve. Imposing the boundary conditions at the boundary curve, the constants in the solutions φ ex and φ in were determined. 4 examples are figured. When F is nonlinear, isolated (localized) vortex was considered. Deriving the equation to determine F, the equation for ψ, the internal vortical motion beyond the boundary was given. 2 examples are shown. (M.T.)

  16. Abe homotopy classification of topological excitations under the topological influence of vortices

    International Nuclear Information System (INIS)

    Kobayashi, Shingo; Kobayashi, Michikazu; Kawaguchi, Yuki; Nitta, Muneto; Ueda, Masahito

    2012-01-01

    Topological excitations are usually classified by the nth homotopy group π n . However, for topological excitations that coexist with vortices, there are cases in which an element of π n cannot properly describe the charge of a topological excitation due to the influence of the vortices. This is because an element of π n corresponding to the charge of a topological excitation may change when the topological excitation circumnavigates a vortex. This phenomenon is referred to as the action of π 1 on π n . In this paper, we show that topological excitations coexisting with vortices are classified by the Abe homotopy group κ n . The nth Abe homotopy group κ n is defined as a semi-direct product of π 1 and π n . In this framework, the action of π 1 on π n is understood as originating from noncommutativity between π 1 and π n . We show that a physical charge of a topological excitation can be described in terms of the conjugacy class of the Abe homotopy group. Moreover, the Abe homotopy group naturally describes vortex-pair creation and annihilation processes, which also influence topological excitations. We calculate the influence of vortices on topological excitations for the case in which the order parameter manifold is S n /K, where S n is an n-dimensional sphere and K is a discrete subgroup of SO(n+1). We show that the influence of vortices on a topological excitation exists only if n is even and K includes a nontrivial element of O(n)/SO(n).

  17. Multi-wing hyperchaotic attractors from coupled Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe; Severance, Frank L.; Miller, Damon A.

    2009-01-01

    This paper illustrates an approach to generate multi-wing attractors in coupled Lorenz systems. In particular, novel four-wing (eight-wing) hyperchaotic attractors are generated by coupling two (three) identical Lorenz systems. The paper shows that the equilibria of the proposed systems have certain symmetries with respect to specific coordinate planes and the eigenvalues of the associated Jacobian matrices exhibit the property of similarity. In analogy with the original Lorenz system, where the two-wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four-wings (eight-wings) of these attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.

  18. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.

    2016-01-05

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out for a Reynolds number based on the pattern wavelength (λ) of 3080. The results depict the onset, development and breakdown of the vortical structures within the flat plate boundary layer. Moreover, the effect of one spanwise array of holes with diameter of 0.2λ (=3 mm) was examined. This investigation was done on two different flat plates with holes placed at the location x/λ = 2 downstream of the troughs and peaks. The presence of holes after troughs does not show any significant effect on the vortical structures. However, the plate with holes after peaks noticeably delays the vortex breakdown. In this case, the “mushroom-like” vortices move away from the wall and propagate downstream with stable vortical structures. The vortex growth is halted further downstream but start to tilt aside.

  19. Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation

    International Nuclear Information System (INIS)

    Demina, Maria V; Kudryashov, Nikolai A

    2012-01-01

    Stationary and translating relative equilibria of point vortices in the plane are studied. It is shown that stationary equilibria of any system containing point vortices with arbitrary choice of circulations can be described with the help of the Tkachenko equation. It is also obtained that translating relative equilibria of point vortices with arbitrary circulations can be constructed using a generalization of the Tkachenko equation. Roots of any pair of polynomials solving the Tkachenko equation and the generalized Tkachenko equation are proved to give positions of point vortices in stationary and translating relative equilibria accordingly. These results are valid even if the polynomials in a pair have multiple or common roots. It is obtained that the Adler–Moser polynomial provides non-unique polynomial solutions of the Tkachenko equation. It is shown that the generalized Tkachenko equation possesses polynomial solutions with degrees that are not triangular numbers. (paper)

  20. Grid refinement model in lattice Boltzmann method for stream function-vorticity formulations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dept. of Mechanical Engineering, Dongyang Mirae University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

  1. Insect Wing Displacement Measurement Using Digital Holography

    International Nuclear Information System (INIS)

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-01-01

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement

  2. On the Distinct Effects of Left-Wing and Right-Wing Populism on Democratic Quality

    Directory of Open Access Journals (Sweden)

    Robert A. Huber

    2017-12-01

    Full Text Available This study examines the differences and commonalities of how populist parties of the left and right relate to democracy. The focus is narrowed to the relationship between these parties and two aspects of democratic quality, minority rights and mutual constraints. Our argument is twofold: first, we contend that populist parties can exert distinct influences on minority rights, depending on whether they are left-wing or right-wing populist parties. Second, by contrast, we propose that the association between populist parties and mutual constraints is a consequence of the populist element and thus, we expect no differences between the left-wing and right-wing parties. We test our expectations against data from 30 European countries between 1990 and 2012. Our empirical findings support the argument for the proposed differences regarding minority rights and, to a lesser extent, the proposed similarities regarding mutual constraints. Therefore we conclude that, when examining the relationship between populism and democracy, populism should not be considered in isolation from its host ideology.

  3. Geostrophic tripolar vortices in a two-layer fluid: Linear stability and nonlinear evolution of equilibria

    Science.gov (United States)

    Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.

    2017-03-01

    We investigate equilibrium solutions for tripolar vortices in a two-layer quasi-geostrophic flow. Two of the vortices are like-signed and lie in one layer. An opposite-signed vortex lies in the other layer. The families of equilibria can be spanned by the distance (called separation) between the two like-signed vortices. Two equilibrium configurations are possible when the opposite-signed vortex lies between the two other vortices. In the first configuration (called ordinary roundabout), the opposite signed vortex is equidistant to the two other vortices. In the second configuration (eccentric roundabouts), the distances are unequal. We determine the equilibria numerically and describe their characteristics for various internal deformation radii. The two branches of equilibria can co-exist and intersect for small deformation radii. Then, the eccentric roundabouts are stable while unstable ordinary roundabouts can be found. Indeed, ordinary roundabouts exist at smaller separations than eccentric roundabouts do, thus inducing stronger vortex interactions. However, for larger deformation radii, eccentric roundabouts can also be unstable. Then, the two branches of equilibria do not cross. The branch of eccentric roundabouts only exists for large separations. Near the end of the branch of eccentric roundabouts (at the smallest separation), one of the like-signed vortices exhibits a sharp inner corner where instabilities can be triggered. Finally, we investigate the nonlinear evolution of a few selected cases of tripoles.

  4. Statistical mechanics and correlation properties of a rotating two-dimensional flow of like-sign vortices

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1993-01-01

    The Hamiltonian flow of a set of point vortices of like sign and strength has a low-temperature phase consisting of a rotating triangular lattice of vortices, and a normal temperature turbulent phase consisting of random clusters of vorticity that orbit about a common center along random tracks. The mean-field flow in the normal temperature phase has similarities with turbulent quasi-two-dimensional rotating laboratory and geophysical flows, whereas the low-temperature phase displays effects associated with quantum fluids. In the normal temperature phase the vortices follow power-law clustering distributions, while in the time domain random interval modulation of the vortex orbit radii fluctuations produces singular fractional exponent power-law low-frequency spectra corresponding to time autocorrelation functions with fractional exponent power-law tails. Enhanced diffusion is present in the turbulent state, whereas in the solid-body rotation state vortices thermally diffuse across the lattice. Over the entire temperature range the interaction energy of a single vortex in the field of the rest of the vortices follows positive temperature Fermi--Dirac statistics, with the zero temperature limit corresponding to the rotating crystal phase, and the infinite temperature limit corresponding to a Maxwellian distribution. Analyses of weather records dependent on the large-scale quasi-two-dimensional atmospheric circulation suggest the presence of singular fractional exponent power-law spectra and fractional exponent power-law autocorrelation tails, consistent with the theory

  5. Reynolds number scalability of bristled wings performing clap and fling

    Science.gov (United States)

    Jacob, Skyler; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    Tiny flying insects such as thrips show a distinctive physical adaptation in the use of bristled wings. Thrips use wing-wing interaction kinematics for flapping, in which a pair of wings clap together at the end of upstroke and fling apart at the beginning of downstroke. Previous studies have shown that the use of bristled wings can reduce the forces needed for clap and fling at Reynolds number (Re) on the order of 10. This study examines if the fluid dynamic advantages of using bristled wings also extend to higher Re on the order of 100. A robotic clap and fling platform was used for this study, in which a pair of physical wing models were programmed to execute clap and fling kinematics. Force measurements were conducted on solid (non-bristled) and bristled wing pairs. The results show lift and drag forces were both lower for bristled wings when compared to solid wings for Re ranging from 1-10, effectively increasing peak lift to peak drag ratio of bristled wings. However, peak lift to peak drag ratio was lower for bristled wings at Re =120 as compared to solid wings, suggesting that bristled wings may be uniquely advantageous for Re on the orders of 1-10. Flow structures visualized using particle image velocimetry (PIV) and their impact on force production will be presented.

  6. Reconstruction of propagating Kelvin-Helmholtz vortices at Mercury's magnetopause

    Science.gov (United States)

    Sundberg, Torbjörn; Boardsen, Scott A.; Slavin, James A.; Blomberg, Lars G.; Cumnock, Judy A.; Solomon, Sean C.; Anderson, Brian J.; Korth, Haje

    2011-12-01

    A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin-Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER's rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft's magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath.

  7. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    Science.gov (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  8. The influence of streamwise vortices on turbulent heat transfer in rectangular ducts with various aspect ratios

    International Nuclear Information System (INIS)

    Choi, Hang Seok; Park, Tae Seon

    2013-01-01

    Highlights: ► With changing aspect ratio, the effect of secondary flows on the turbulent heat transfer is scrutinized by a LES. ► The conditional sampling technique of instantaneous near-wall streamwise vortices is developed. ► Clockwise and counter-clockwise rotating streamwise vortices are sampled and discussed with the wall heat transfer. ► The hot-sweep motions of CW and CCW vortices clearly appear with increasing aspect ratio. -- Abstract: The effect of aspect ratio of rectangular duct on the turbulent flow and heat transfer is very important for its engineering applications. But the turbulent thermal fields have not been fundamentally scrutinized in spite of its engineering significance especially for cooling device. Hence, in the present study, large eddy simulation is applied to the turbulent flow and heat transfer in rectangular ducts with varying aspect ratio. The turbulent statistics of the flow and thermal quantities are calculated and the characteristics of wall Nusselt number are investigated for each rectangular duct. Especially, to scrutinize near-wall streamwise vortices, a conditional sampling technique is developed and adopted. Clockwise and counter-clockwise rotating streamwise vortices are sampled and the probability density function of the vortex circulation Reynolds number and wall Nusselt number are calculated. From the results, the time-averaged secondary flow caused by instantaneous vortical motions has a great effect on the heat and momentum transport of the flow in the rectangular ducts. Hence, the wall Nusselt number is enhanced near the downwash flow region of the secondary flow. However, with increasing the aspect ratio, the effects of the hot-sweep flow of the clockwise and counter-clockwise rotating vortices become equally dominant near the wall normal bisector of the ducts. During time averaging process, these two counter-rotating vortices are canceled out each other diminishing a secondary flow but they still enhance the

  9. Performance improvement in a tubular heat exchanger by punched delta-winglet vortex generators

    Science.gov (United States)

    Khanoknaiyakarn, C.; Promvonge, P.; Thianpong, C.; Skullong, S.

    2018-01-01

    A novel tubular heat exchanger incorporated with punched delta-winglet vortex generators (called perforated delta-winglet vortex generator, P-DWVG) is proposed for improving its thermal performance and energy saving. The P-DWVG elements are punched out from a straight tape having its width nearly equal to the tube diameter before insertion. The main aim at employing the P-DWVG insert is to produce counter-rotating vortices along the tube to promote turbulence intensity inside as well as to transport the cold fluid at the central core to the near-wall regions. The experiment was performed to study thermal behaviors in a uniform heat-fluxed tube inserted with P-DWVGs. The P-DWVGs with the attack angle of 45° were mounted periodically with three different blockage ratios (BR = 0.1, 0.2 and 0.3) and two pitch ratios (PR = 2 and 3). Air as the test fluid was varied to obtain turbulent airflow for Reynolds number (Re) in a range of 4,150-25,500. The experimental results show that the P-DWVG provides a considerable increase in the rate of heat transfer around 3.1-4.01 times whereas friction factor increases around 11.44- 34.23 times higher than the plain tube. To assess the real benefits of P-DWVGs, thermal performance factor (TEF) is examined and in the range of 1.39-1.48 where its maximum is at BR = 0.1 and PR = 2.

  10. $\\delta$-Expansion at Finite Temperature

    OpenAIRE

    Ramos, Rudnei O.

    1996-01-01

    We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.

  11. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  12. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  13. Variation in leaf water delta D and delta 18O values during the evapotranspiration process

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Foloni, L.L.

    1984-01-01

    A theoretical model was developed to evaluate leaf water delta D and delta 18 O variation in relation to: leaf temperature, relative humidity converted to leaf temperature and delta D and delta 18 O values of atmospheric water vapour and soil water. (M.A.C.) [pt

  14. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?

    Science.gov (United States)

    Jiggins, Chris D; Wallbank, Richard W R; Hanly, Joseph J

    2017-02-05

    A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological

  15. Fluid-Dynamics of Underwater Flight in Sea Butterflies: Analysis using Tomographic PIV

    Science.gov (United States)

    Adhikari, D.; Murphy, D. W.; Webster, D. R.; Yen, J.

    2014-11-01

    Sea butterflies, Limacina helicina, swim in sea water with a pair of gelatinous ``wings'' (or parapodia). Their unique propulsion mechanism has been hypothesized to consist of a combination of drag-based propulsion (rowing) and lift-based propulsion (flapping). Drag-based propulsion utilizes maximum drag on the wings during power stroke, followed by minimum drag during recovery stroke. Lift-based propulsion, in contrast, utilizes a pressure difference between the top and bottom of the wings. We present the 3D kinematics of a free-swimming sea butterfly and its induced volumetric velocity field using tomographic PIV. Both upstroke and downstroke motions propel the animal (1 - 3 mm) upward in a sawtooth-like trajectory with average speed of 5 - 15 mm/s (Re = 5 - 45) and roll the calcareous shell forwards-and-backwards at 4 - 5 Hz. The rolling motion effectively positions the wings such that they stroke downward during both the power and recovery strokes, hence inducing upward motion during both phases. A clap-and-fling mechanism is observed at the beginning of the flapping cycle. As the wings come into contact, the velocity of the organism is 2 mm/s. During fling motion, high (unsteady) lift causes the organism velocity to reach 35 mm/s. Separation vortices are observed during the fling motion, and vortices with an opposite sense of rotation form closer to the base of the wing due to the upward translation of the organism. The separation vortices shed into the wake, as the organism translates upward, in the form of separate vortex pairs.

  16. Making sound vortices by metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Liping; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang; Tang, Kun; Ke, Manzhu; Peng, Shasha [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jia, Han [State Key Laboratory of Acoustics and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhengyou [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2016-08-15

    Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

  17. Rise and Fall of one of World's largest deltas; the Mekong delta in Vietnam

    Science.gov (United States)

    Minderhoud, P. S. J.; Eslami Arab, S.; Pham, H. V.; Erkens, G.; van der Vegt, M.; Oude Essink, G.; Stouthamer, E.; Hoekstra, P.

    2017-12-01

    The Mekong delta is the third's largest delta in the world. It is home to almost 20 million people and an important region for the food security in South East Asia. As most deltas, the Mekong delta is the dynamic result of a balance of sediment supply, sea level rise and subsidence, hosting a system of fresh and salt water dynamics. Ongoing urbanization, industrialization and intensification of agricultural practices in the delta, during the past decades, resulted in growing domestic, agricultural and industrial demands, and have led to a dramatic increase of fresh water use. Since the year 2000, the amount of fresh groundwater extracted from the subsurface increased by 500%. This accelerated delta subsidence as the groundwater system compacts, with current sinking rates exceeding global sea level rise up to an order of magnitude. These high sinking rates have greatly altered the sediment budget of the delta and, with over 50% of the Mekong delta surface elevated less than 1 meter above sea level, greatly increase vulnerability to flooding and storm surges and ultimately, permanent inundation. Furthermore, as the increasingly larger extractions rapidly reduce the fresh groundwater reserves, groundwater salinization subsequently increases. On top of that, dry season low-flows by the Mekong river cause record salt water intrusion in the delta's estuarine system, creating major problems for rice irrigation. We present the work of three years research by the Dutch-Vietnamese `Rise and Fall' project on land subsidence and salinization in both groundwater and surface water in the Vietnamese Mekong delta.

  18. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  19. Losing ground in mega-deltas: basin-scale response to existential threats to the Mekong Delta

    Science.gov (United States)

    Arias, M. E.; Kondolf, G. M.; Schmitt, R. J. P.; Carling, P. A.; Darby, S. E.; Bizzi, S.; Castelletti, A.; Cochrane, T. A.; Gibson, S.; Kummu, M.; Oeurng, C.; Rubin, Z.; Wild, T. B.

    2017-12-01

    The Mekong Delta is, in terms of the number of livelihoods it supports, its economic importance, and in its vulnerability to climate change and sinking lands, one of the world's critically threatened mega-deltas. Livelihoods depend on the mere existence of the delta, but also on ecosystem services provided by the delta's drainage basin spanning 795,000 km2 in six abutting countries. These ecosystem services include delivery of sand required to build delta land in the face of rising sea-levels and sediment bound nutrients, provision of spawning habitat for fish that are ultimately harvested in the delta, and hydrologic regulation driving the delta's unique flood-pulse regime. However, while the delta is mainly located in Vietnam, the basin of the Mekong River is shared among China, Myanmar, Laos, Thailand, Cambodia, and Vietnam. In the context of the region's dynamic growth, individual countries are pushing their own development agendas, which include extensive dam building, in-channel sand mining, construction of dykes and canals, and groundwater pumping, all of which contribute to subsidence and erosion of the Delta. Our synthesis of recent research indicates that most of the Mekong's delta land will likely fall below sea-level by 2100 as result of these drivers, exacerbating the impacts of global climatic changes. In this context, local infrastructural projects and changes in land- and water-management may temporarily mitigate some negative effects, but do not address the existential threat to the delta as a whole. To prevent, or at least substantially postpone, the drowning of the Mekong Delta requires identification of the key drivers and immediate concerted management actions on the basin-scale to change the trajectory of subsidence and sediment deficit. A specific challenge is to find the institutional arrangements in this transnational context that could support the needed management changes and equitably distribute costs and impacts. The Mekong Delta is

  20. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.