WorldWideScience

Sample records for delta wing vortices

  1. Vortices around Dragonfly Wings

    OpenAIRE

    Kweon, Jihoon; Choi, Haecheon

    2009-01-01

    Dragonfly beats its wings independently, resulting in its superior maneuverability. Depending on the magnitude of phase difference between the fore- and hind-wings of dragonfly, the vortical structures and their interaction with wings become significantly changed, and so does the aerodynamic performance. In this study, we consider hovering flights of modelled dragonfly with three different phase differences (phi=-90, 90, 180 degrees). The three-dimensional wing shape is based on that of Aesch...

  2. EFFECT OF SWEEP ANGLE ON THE VORTICAL FLOW OVER DELTA WINGS AT AN ANGLE OF ATTACK OF 10°

    Directory of Open Access Journals (Sweden)

    JAMES BRETT

    2014-12-01

    Full Text Available CFD simulations have been used to analyse the vortical flows over sharp edged delta wings with differing sweep angles under subsonic conditions at an angle of attack of 10°. RANS simulations were validated against experimental data for a 65° sweep wing, with a flat cross-section, and the steadiness of the flow field was assessed by comparing the results against unsteady URANS and DES simulations. To assess the effect of sweep angle on the flow field, a range of sweep angles from 65° to 43° were simulated. For moderate sweep wings the primary vortex was observed to detach from the leading edge, undergoing vortex breakdown, and a weaker, replacement, "shadow" vortex was formed. The shadow vortex was observed for sweep angles of 50° and less, and resulted in reduced lift production near the wing tips loss of the stronger primary vortex.

  3. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  4. The Mechanism of Aerodynamic Hysteresis for Sinusoidally Oscillating Delta Wings

    Institute of Scientific and Technical Information of China (English)

    黄国创; 王玉明; 曹桂兴

    1994-01-01

    An unsteady model of vortex system is developed to simulate the phenomena of aerodynamic hysteresis of sinusoidally oscillating delta wings.The dynamic behavior of leading-edge separation vortices simulated by the present method is in qualitative agreement with that of flow visualization by Gad-el-Hak and Ho.The calculated lift hysteresis loops are in quantitative agreement with the force measurements in the tunnel.The aerodynamic mechanism of the hysteresis phenomena is further investigated by the present method.

  5. Vorticity Confinement Applied to Turbulent Wing Tip Vortices for Wake-Integral Drag Prediction

    Science.gov (United States)

    Pierson, Kristopher; Povitsky, Alex

    2013-11-01

    In the current study the vorticity confinement (VC) approach was applied to tip vortices shed by edges of stationary wings in order to predict induced drag by far-field integration in Trefftz plane. The VC parameter was evaluated first by application to convection of vortices in 2-D uniform flow and then to tip vortices shed in 3-D simulation of finite-aspect ratio rectangular wing in subsonic flight. Dependence of VC parameter on the flight Mach number and the angle of attack was evaluated. The aerodynamic drag results with application of VC to prevent numerical diffusion are much closer to analytic lifting line theory compared to integration over surface of wing while the viscous profile drag is more accurately evaluated by surface integration. To apply VC to viscous and turbulent flows, it is shown that VC does not affect the physical rate of dissipation of vortices in viscous/turbulent flows at time scales corresponding to convection of vortices from the wing to Trefftz plane of integration. To account for turbulent effects on tip vortices, VC was applied in combination with Spalart-Allmaras, k- ɛ, and six Reynolds stresses models of turbulence. The results are compared to experiments to validate the physical dissipation of tip vortex. This research was supported by The Dayton Area Graduate Studies Institute (DAGSI) and US Air Force Research Laboratory (AFRL) grants in 2009-2013, US Army Research Office (ARO) in 2012-2013 and ASEE/AFRL summer faculty grant.

  6. Can Wing Tip Vortices Be Accurately Simulated?

    Science.gov (United States)

    2011-07-01

    additional tail buffeting.2 In commercial applications, winglets have been installed on passenger aircraft to minimize vortex formation and reduce lift...air. In military applications, wing tip In commercial applications, winglets have been installed on passenger aircraft to minimize increases with downstream distances.

  7. Flow over 50º Delta Wings with Different Leading-Edge Radii

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2011-01-01

    The experimental study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model has a sharp leading edge and two other have a semi-circular leading edge of different radius. The vortical flow on and off the surface of the mod

  8. Effects of Leading-Edge Radius on Aerodynamic Characteristics of 50º Delta Wings

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2010-01-01

    The study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model having a sharp leading edge and the other two having a semi-circular leading edge of different radius. The vortical flow on and off the surface of the models

  9. Helical vortices generated by flapping wings of bumblebees

    Science.gov (United States)

    Farge, Marie; Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Lehmann, Fritz; Sesterhenn, Jörn

    2016-11-01

    We analyze high resolution numerical simulation data of a bumblebee with fixed body and prescribed wing motion, flying in a numerical wind tunnel, presented in. The inflow condition of the tunnel varies from unperturbed laminar to strongly turbulent. The flow generated by the flapping wings indicates the important role of the leading edge vortex (LEV), responsible for elevated lift production and which is not significantly altered by the inflow turbulence. The LEV has a conical structure due to the three-dimensional motion of the wings. This flow configuration produces strong vorticity on the sharp leading edge and the outwards velocity (from the root to the tip of the wing) in the spanwise direction. Flow visualizations show that the generated vortical structures are characterized by a strong helicity. We study the evolution of the mean helicity for each wing and analyze the impact of turbulent inflow. We thankfully acknowledge financial support from the French-German AIFIT project funded by DFG and ANR (Grant 15-CE40-0019). DK gratefully acknowledges financial support from the JSPS postdoctoral fellowship.

  10. Experimental study of flow field distribution over a generic cranked double delta wing

    Directory of Open Access Journals (Sweden)

    Mojtaba Dehghan Manshadi

    2016-10-01

    Full Text Available The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely “sharp” and “round”, were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 × 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.

  11. The Development and Control of Axial Vortices over Swept Wings

    OpenAIRE

    Klute, Sandra M.

    1999-01-01

    The natural unsteadiness in the post-breakdown flowfield of a 75° sweep delta wing at 40° angle of attack was studied with dual and single point hot-wire anemometry in the Engineering Science and Mechanics (ESM) Wind Tunnel at a Reynolds number Re = 210,000. Data were taken in five crossflow planes surrounding the wing's trailing edge. Results showed a dominant narrowband Strouhal frequency of St = 1.5 covering approximately 80% of the area with lower-intensity broadband secondary freque...

  12. Survey of research on unsteady aerodynamic loading of delta wings

    Science.gov (United States)

    Ashley, H.; Vaneck, T.; Katz, J.; Jarrah, M. A.

    1991-01-01

    For aeronautical applications, there has been recent interest in accurately determining the aerodynamic forces and moments experienced by low-aspect-ratio wings performing transient maneuvers which go to angles of attack as high as 90 deg. Focusing on the delta planform with sharp leading edges, the paper surveys experimental and theoretical investigations dealing with the associated unsteady flow phenomena. For maximum angles above a value between 30 and 40 deg, flow details and airloads are dominated by hysteresis in the 'bursting' instability of intense vortices which emanate from the leading edge. As examples of relevant test results, force and moment histories are presented for a model series with aspect ratios 1, 1.5 and 2. Influences of key parameters are discussed, notably those which measure unsteadiness. Comparisons are given with two theories: a paneling approximation that cannot capture bursting but clarifies other unsteady influences, and a simplified estimation scheme which uses measured bursting data.

  13. Survey of research on unsteady aerodynamic loading of delta wings

    Science.gov (United States)

    Ashley, H.; Vaneck, T.; Katz, J.; Jarrah, M. A.

    1991-01-01

    For aeronautical applications, there has been recent interest in accurately determining the aerodynamic forces and moments experienced by low-aspect-ratio wings performing transient maneuvers which go to angles of attack as high as 90 deg. Focusing on the delta planform with sharp leading edges, the paper surveys experimental and theoretical investigations dealing with the associated unsteady flow phenomena. For maximum angles above a value between 30 and 40 deg, flow details and airloads are dominated by hysteresis in the 'bursting' instability of intense vortices which emanate from the leading edge. As examples of relevant test results, force and moment histories are presented for a model series with aspect ratios 1, 1.5 and 2. Influences of key parameters are discussed, notably those which measure unsteadiness. Comparisons are given with two theories: a paneling approximation that cannot capture bursting but clarifies other unsteady influences, and a simplified estimation scheme which uses measured bursting data.

  14. A Study On Recent Trends In High Subsonic Flow Over Delta Wings .

    Directory of Open Access Journals (Sweden)

    Vishnu G Nair,

    2014-01-01

    Full Text Available An understanding of the vortical structures and vortex breakdown is essential for the development of highly maneuverable and high angle of attack flight. This is primarily due to the physical limits these phenomena impose on aircraft and missiles at extreme flight conditions. In today’s competitive world, demands for more maneuverable and stealthy air vehicles have encouraged the development of new control concepts for separated flows and vortex flow.An overview is given about investigations on a 65◦ delta wing using the Pressure Sensitive Paint (PSP and Particle Image Velocimetry (PIV techniques, carried out in the framework of Vortex flow experiment. For the delta wing with rounded leading edges and subsonic flow, the occurrence of a flat vortical structure as well as the onset of the primary vortex and the development of a vortex system consisting of an inner and outer vortex is described in dependency of the angle of attack and the Reynolds number. The Q - criterion is applied to the measured velocity data to estimate the circulation strength of individual vortices allowing for a quantitative description of the vortex developments and interactions. Furthermore, a case at transonic flow speeds (M = 0.8 is described, showing a sudden occurrence of vortex breakdown above the delta wing, most probably induced by a shock wave.Vortex Flow Experiment provided a variety of experimental data for a 65◦ swept delta wing sharp and blunt leading edges. Flow details including forces and moments, surface pressures,Pressure Sensitive Paint measurements, and off-surface flow variables from Particle Image Velocimetry were made available for comparisons with computational simulations. This paper concentrates on some typical problems of delta wings with rounded leading edges at subsonic speed: the prediction of the main leading edge separation, the generation of the second inner vortex, the effect of transition, and Reynolds number effects.

  15. Flow structures in end-view plane of slender delta wing

    Directory of Open Access Journals (Sweden)

    Sahin Besir

    2017-01-01

    Full Text Available Present investigation focuses on unsteady flow structures in end-view planes at the trailing edge of delta wing, X/C=1.0, where consequences of vortex bursting and stall phenomena vary according to angles of attack over the range of 25° ≤ α ≤ 35° and yaw angles, β over the range of 0° ≤ β ≤ 20°. Basic features of counter rotating vortices in end-view planes of delta win with 70° sweep angle, Λ are examined both qualitatively and quantitatively using Rhodamine dye and the PIV system. In the light of present experiments it is seen that with increasing yaw angle, β symmetrical flow structure is disrupted continuously. Dispersed wind-ward side leading edge vortices cover a large part of flow domain, on the other hand, lee-ward side leading edge vortices cover only a small portion of flow domain.

  16. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.

    Science.gov (United States)

    Zhao, Liang; Deng, Xinyan; Sane, Sanjay P

    2011-09-01

    In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.

  17. COMPUTATION OF FIELD STRUCTURE AND AERODYNAMIC CHARACTERISTICS OF DELTA WINGS AT HIGH ANGLES OF ATTACK

    Institute of Scientific and Technical Information of China (English)

    YANG Li-zhi; GAO Zheng-hong

    2005-01-01

    A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented.Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics that are dominated by the effect of the breakdown of the leading-edge vortices. The methods that analyze the flowfield structure quantitatively were given by using flowfield data from the computational results. In the region before the vortex breakdown, the vortex axes are approximated as being straight line. As the angle of attack increases, the vortex axes are closer to the root chord, and farther away from the wing surface. Along the vortex axes, as the adverse pressure gradients occur, the axial velocity decreases, that is, λ is negative, so the vortex is unstable, and it is possible to breakdown. The occurrence of the breakdown results in the instability of lateral motion for a delta wing, and the lateral moment diverges after a small perturbation occurs at high angles of attack. However,after a critical angle of attack is reached, the vortices breakdown completely at the wing apex, and the instability resulting from the vortex breakdown disappears.

  18. A low-speed wind tunnel study of vortex interaction control techniques on a chine-forebody/delta-wing configuration

    Science.gov (United States)

    Rao, Dhanvada M.; Bhat, M. K.

    1992-01-01

    A low speed wind tunnel evaluation was conducted of passive and active techniques proposed as a means to impede the interaction of forebody chine and delta wing vortices, when such interaction leads to undesirable aerodynamic characteristics particularly in the post stall regime. The passive method was based on physically disconnecting the chine/wing junction; the active technique employed deflection of inboard leading edge flaps. In either case, the intent was to forcibly shed the chine vortices before they encountered the downwash of wing vortices. Flow visualizations, wing pressures, and six component force/moment measurements confirmed the benefits of forced vortex de-coupling at post stall angles of attack and in sideslip, viz., alleviation of post stall zero beta asymmetry, lateral instability and twin tail buffet, with insignificant loss of maximum lift.

  19. Flow structure and vorticity transport on a plunging wing

    Science.gov (United States)

    Eslam Panah, Azar

    circulation, in magnitude, as the leading-edge shear layer flux. A small but non-negligible vorticity source was also attributed to spanwise flow toward the end of the downstroke. Preliminary measurements of the structure and dynamics of the leading-edge vortex (LEV) are also investigated for plunging finite-aspect-ratio wings at a chord Reynolds number of 10,000 while varying aspect ratio and root boundary condition. Stereoscopic particle image velocimetry (SPIV) measurements are used to characterize LEV dynamics and interactions with the plate in multiple chordwise planes. The relationship between the vorticity field and the spanwise flow field over the wing, and the influence of root boundary conditions on these quantities has been investigated. The viscous symmetry plane is found to influence this flow field, in comparison to other studies YiRo:2010,Vi:2011b,CaWaGuVi:2012, by influencing tilting of the LEV near the symmetry wall, and introducing a corewise root-to-tip flow near the symmetry plane. Modifications in the root boundary conditions are found to significantly affect this. LEV circulations for the different aspect ratio plates are also compared. At the bottom of the downstroke, the maximum circulation is found at the middle of the semi-span in each case. The circulation of the sAR=2 wing is found to significantly exceed that of the sAR=1 wing and, surprisingly, the maximum circulation value is found to be independent of root boundary conditions for thesAR=2 case and also closely matched that of the quasi-2D case. Furthermore, the 3-D flow field of a finite wing ofsAR=2 was characterized using three-dimensional reconstructions of planar PIV data after minimizing the gap between the plunging plate and the top stationary wall. The LEV on the finite wing rapidly evolved into an arch structure centered at approximately the 50% spanwise position, similar to previous observations by Calderon et al., and Yilmaz and Rockwell. At that location, the circulation contribution

  20. Nonlinear, unsteady aerodynamic loads on rectangular and delta wings

    Science.gov (United States)

    Atta, E. H.; Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1977-01-01

    Nonlinear unsteady aerodynamic loads on rectangular and delta wings in an incompressible flow are calculated by using an unsteady vortex-lattice model. Examples include flows past fixed wings in unsteady uniform streams and flows past wings undergoing unsteady motions. The unsteadiness may be due to gusty winds or pitching oscillations. The present technique establishes a reliable approach which can be utilized in the analysis of problems associated with the dynamics and aeroelasticity of wings within a wide range of angles of attack.

  1. Experimental investigation on tip vortices and aerodynamics of a wing with ground effect

    Institute of Scientific and Technical Information of China (English)

    Ruimin; Sun; Daichin

    2011-01-01

    The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the d...

  2. Feedback Linearization Controller Of The Delta WingRock Phenomena

    Directory of Open Access Journals (Sweden)

    Mohammed Alkandari

    2015-05-01

    Full Text Available This project deals with the control of the wing rock phenomena of a delta wing aircraft. a control schemeis proposed to stabilize the system. The controlleris a feedback linearization controller. It is shown that the proposed control scheme guarantee the asymptotic convergence to zero of all the states of the system. To illustrate the performance of the proposed controller, simulation results are presented and discussed. It is found that the proposed control scheme work well for the wing rock phenomena of a delta wing aircraft.

  3. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3 is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  4. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  5. Effect of leading edge roundness on a delta wing in wing-rock motion

    Science.gov (United States)

    Ng, T. Terry; Malcolm, Gerald N.

    1990-01-01

    The effect of wing leading-edge roundness on wing rock was investigated using flow visualization in a water tunnel. Eighty degree delta wing models were tested on free-to-roll and forced oscillation rigs. The onset of wing rock was delayed by increasing the roundness of the leading edges. The wing rock amplitude and frequency results suggested that damping was increased at lower angles of attack but reduced at higher angles of attack. Vortex lift-off and vortex breakdown, especially during dynamic situations, were strongly affected by the leading edge roundness. Different forms of wing rock motion could be sustained by combinations of vortex breakdown and vortex lift-off. Behaviors of the wing and vortex motions were explained by the influence of leading edge roundness on the separation location, vortex trajectory, and vortex breakdown.

  6. Numerical study of wingtip shed vorticity reduction by wing Boundary Layer Control

    Science.gov (United States)

    Posada, Jose Alejandro

    Wingtip vortex reductions have been obtained by Boundary Layer Control application to an AR=1.5 rectangular wing using a NACA 0012 airfoil. If wingtip shed vorticity could be reduced significantly, then so would induced drag resulting in improved cruise fuel economy. Power savings would be even more impressive at low flight speed or in climb. A two dimensional wing produces lift without wingtip vorticity. Its bound vorticity, Gamma, equals the contour integral of the boundary layer vorticity gamma or Gamma = ∮gamma · dl. Where the upper and lower boundary layers meet at the cusped TE, their local static pressure pu=pl then the boundary layer outer edge inviscid velocity Vupper=Vlower and gammalower=-gamma upper. This explains the 2-D wing self cancellation of the upper and lower surface boundary layer vorticity when they meet upon shedding at the trailing edge. In finite wings, the presence of spanwise pressure gradients near the wing tips misaligns gammalower and gammaupper at the wingtip TE preventing the upper and lower surface boundary layers from completely canceling each other. To prevent them from generating wing tip vortices, the local boundary layers need to be captured in suction slots. Once vorticity is captured, it can be eliminated by viscous mixing prior to venting over board. The objective of this dissertation was to use a commercial Computational Fluid Dynamics code (Fluent) to search for the best configuration to locate BLC suction slots to capture non-parallel boundary layer vorticity prior to shedding near the wingtips. The configuration selected for running the simulations was tested by trying to duplicate a 3D wing for which sufficient experimental and computational models by others are available. The practical case selected was done by Chow et al in the 32 x 48 in. low speed wind tunnel at the Fluid Mechanics Laboratory of NASA Ames Research Center, and computationally analyzed by Dacles-Mariani et al, and Khim and Rhee. The present

  7. Static measurements of slender delta wing rolling moment hysteresis

    Science.gov (United States)

    Katz, Joseph; Levin, Daniel

    1991-01-01

    Slender delta wing planforms are susceptible to self-induced roll oscillations due to aerodynamic hysteresis during the limit cycle roll oscillation. Test results are presented which clearly establish that the static rolling moment hysteresis has a damping character; hysteresis tends to be greater when, due to either wing roll or side slip, the vortex burst moves back and forth over the wing trailing edge. These data are an indirect indication of the damping role of the vortex burst during limit cycle roll oscillations.

  8. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    Science.gov (United States)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  9. Rotational accelerations stabilize leading edge vortices on revolving fly wings

    NARCIS (Netherlands)

    Lentink, D.; Dickinson, M.H.

    2009-01-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability

  10. Rotational accelerations stabilize leading edge vortices on revolving fly wings

    NARCIS (Netherlands)

    Lentink, D.; Dickinson, M.H.

    2009-01-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability ar

  11. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    Science.gov (United States)

    Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.

    2017-03-01

    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.

  12. Experimental Investigation on Limit Cycle Wing Rock Effect on Wing Body Configuration Induced by Forebody Vortices

    National Research Council Canada - National Science Library

    Rong, Zhen; Deng, Xueying; Ma, Baofeng; Wang, Bing

    2016-01-01

    ...° swept wing configuration undergoing a limit cycle oscillation using a synchronous measurement and control technique of wing rock/particle image velocimetry/dynamic pressure associated with the time...

  13. Management of Vortices Trailing Flapped Wings via Separation Control

    Science.gov (United States)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  14. Review of delta wing space shuttle vehicle dynamics

    Science.gov (United States)

    Reding, J. P.; Ericsson, L. E.

    1972-01-01

    The unsteady aerodynamics of the delta planform, high cross range, shuttle orbiter were investigated. It has been found that these vehicles are subject to five unsteady flow phenomena that could compromise the flight dynamics. They are: (1) leeside shock induced separation, (2) sudden leading edge stall, (3) vortex burst, (4) bow shock-flap shock interaction, (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding the detrimental effects of the stall phenomena. However, stall must be fixed or controlled when traversing the stall region. The other phenomena may be controlled by carefully programmed control deflections and some configuration modification. Ways to alter the occurrence of the various flow conditions are explored.

  15. Thin-Layer Navier-Stokes Solutions for a Cranked Delta Wing

    Science.gov (United States)

    1988-12-01

    and Purcell C., "Numerical Experiment with Inviscid Vortex- Streched Flow Around a Cranked Delta Wing: Supersonic Speed", Engineering Cns. Vol 3: pp...230-234, (1986). 8_! 16. Rizzi A. and Purcell C., "Numerical Experiment with Inviscid Vortex- Streched Flow Around a Cranked Delta Wing: Subsonic Speed

  16. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    A A Pashilkar

    2001-12-01

    A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a simple delta wing. The model is then extended to a wing/body combination where body-alone data are also available. The model is shown to be simple and consistent with experimental data. The pressure model can be used as a first approximation for the load estimation on the delta wing at high angles of attack.

  17. A flow visualization and aerodynamic force data evaluation of spanwise blowing on full and half span delta wings

    Science.gov (United States)

    Visser, K. D.; Nelson, R. C.; Ng, T. T.

    1989-01-01

    A wind-tunnel investigation has been performed to quantify the effects of a jet on the leading-edge vortices generated by a 70-deg-sweep sharp-edged delta wing at low Reynolds numbers. Efforts were made ot optimize the jet nozzle position with respect to maximum lift increments. Both half-span force-balance testing and half- and full-span flow visualization tests were conducted. Two angles of attack were investigated, 30 and 35 deg, at Reynolds numbers of 150,000 and 200,000. Aerodynamic enhancement, including lift and drag gains of about 20 and 17 percent respectively, were measured. Results indicate an optimum jet nozzle location to be close to the leading edge, tangent to the upper wing surface, and in a direction aligned parallel to the leading edge. Nozzle interference effects, especially near the apex, were not negligible.

  18. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  19. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    Directory of Open Access Journals (Sweden)

    Jan T Horstmann

    Full Text Available Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body, angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  20. Effects of flexibility on aerodynamic performance of delta wings with different sweep angles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Force measurement and surface oil flow visualization experiments were conducted in a wind tunnel to investigate the effects of flexibility on aerodynamic performance of delta wings with different sweep angles.The experimental results indicate that the maximum lift coefficient is increased and the stall angle is delayed as the sweep angle increases for both rigid and flexible wings.It is also found that the maximum lift coefficients of the flexible wings with a sweep angle from 35° to 50° are higher than those of the rigid ones.The increment of the maximum lift coefficient in particular achieves 32.9% compared with the case without lift enhancement for the 40° flexible delta wing.Moreover,the surface oil flow visualization experiments show that the stall of the flexible wing of the moderate low sweep angle is accompanied by helical flow structure,while the vortex bursting appears on the corresponding rigid wing.

  1. Vortex Breakdown over Slender Delta Wings (Eclatement tourbillonnaire sur les ailes delta effil es)

    Science.gov (United States)

    2009-11-01

    Velocity Component VB 21-33 A.4 Tangential Velocity Component WB 21-34 A.5 Axial Velocity Induced on the Centreline 21-34 A.6 Numerical...Three Dimensional Vortex Sheet Structure on Delta Wings,” AGARD-CP-438, October 1988. [59] Brandon, J.M. and Shah , G.H., “Effect of Large Amplitude...TR-AVT-080 5 - 25 403020100-10-20-30-40 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 dynamic Static ( σ=30°, ∆φ=33°, =0.14 )k φ° x VB 15c15c 403020100-10

  2. Laser Doppler velocimeter investigation of trailing vortices behind a semi-span swept wing in a landing configuration

    Science.gov (United States)

    Ciffone, D. L.; Orloff, K. L.; Grant, G. R.

    1973-01-01

    Measured axial and tangential velocity profiles in the near wake vortices of a semi-span model of the Convair 990 wing in the NASA-Ames 7- by 10-foot wind tunnel are presented. A scanning laser Doppler velocimeter was used to obtain data at two different downstream stations (0.49 and 1.25 wing spans) at various angles of attack and configurations from wing alone to wing plus nacelles, anti-shock bodies, and flaps deflected 27 deg (landing configuration). It is shown that the velocity distributions within the wake are quite sensitive to span loading. Specifically, it is illustrated that an aircraft flying at given lift coefficient (C SUB L), can substantially reduce its trailing vortex upset potential by deploying its flaps and altering its flight attitude to maintain the same C SUB L. This might be taken into consideration along with performance and noise considerations in the selection of aircraft approach lift over drag.

  3. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 2nd Report. Behavior of the interacting flow field controlled passively; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 2. Judo seigyosareta nagareba no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents the behavior of a passively controlled horseshoe vortex at the root of NACA0024 wing which is established on a turbulent boundary layer, A pair of vortex generators of half delta wing is installed upstream of the wing. The flow field of the optimally controlled horseshoe vortex both in case of Common Flow Up (CFUC) and Common Flow Down Configuration (CFDC) is carefully investigated by an X-array hot-wire. In case of CFUC, the horseshoe vortex is not shifted from the wing, because the longitudinal vortex is restrained. The interacted vortex presents a circular profile, in a optimally controlled case. In case of CFDC, the interacted vortex that has strong vorticity by the pairing process is shifted away from the wing. Then, the high momentum fluid flow penetrates between the wing and the vortex. (author)

  4. Numerical simulations of leading-edge vortex core axial velocity for flow over delta wings

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Numerical simulations have been performed to investigate the characteristics of leading-edge vortex core axial velocity over two delta wings with leading edge swept angles Λ =50°and 76°, respectively. It is obtained that Reynolds number has the most important effect on the axial velocity of the primary leading-edge vortex core. At Reynolds numbers larger than 105, the jet-like flow of the vortex core is the most common type for both the large and the moderate swept delta wings. While if Reynolds number decreases to 103―104, the core axial velocity distributions for these two delta wings present the wake-like profile for all angles of attack considered in the present investigation.

  5. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds

    Science.gov (United States)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.

    1994-01-01

    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  6. Reactive Flow Control of Delta Wing Vortex (Postprint)

    Science.gov (United States)

    2006-08-01

    Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...width. The dynamic test parameters are summarized in Table 2. The composite duty cycle input signal is denoted ( ) ( )ou t u u tδ= + in which ou

  7. Experimental investigation of high-incidence delta-wing flow control

    Science.gov (United States)

    Buzica, Andrei; Bartasevicius, Julius; Breitsamter, Christian

    2017-09-01

    The possibility of extending the flight envelope for configurations with slender delta-shaped wings is investigated in this study by means of active flow control through pulsating jets from slot pairs distributed along the leading edge. The experiments comprise stereoscopic particle image velocimetry as well as force and moment measurements on a half-delta wing model. The analysis focuses on three high-incidence regimes: pre-stall, stall, and post-stall. This study also compares different perturbation methods: blowing with spatially constant and variable parameters, frequency and phase. At an incidence of 45^circ, the unison pulsed blowing facilitates the most significant flow transformation. Here, the separated shear layer reattaches on the wing's suction side, thus increasing the lift. Phase-averaged flow field measurements describe, in this particular case, the underlying physics of the flow-disturbance interaction.

  8. Analytical and Experimental Investigations of Delta Wings in Incompressible Flow

    Science.gov (United States)

    1976-08-01

    redi’otions and to indicate aspects requtring special 3 tterti-;r, thec-eticalLy :r experientally . Tie available experi-ental evidence leads one to believe... Communicated by Dr. J.P. Jones", A.R.C. 24, 118, 1963. 40. Randall, D.G., "Oscillating Slender Wings in the Presence of Leading Edge Separation", R.A.E

  9. Monostatic radar cross section of flying wing delta planforms

    Directory of Open Access Journals (Sweden)

    Sevoor Meenakshisundaram Vaitheeswaran

    2017-04-01

    Full Text Available The design of the flying wing and its variants shapes continues to have a profound influence in the design of the current and future use of military aircraft. There is very little in the open literature available to the understanding and by way of comparison of the radar cross section of the different wing planforms, for obvious reasons of security and sensitivity. This paper aims to provide an insight about the radar cross section of the various flying wing planforms that would aid the need and amount of radar cross section suppression to escape detection from surveillance radars. Towards this, the shooting and bouncing ray method is used for analysis. In this, the geometric optics theory is first used for launching and tracing the electromagnetic rays to calculate the electromagnetic field values as the waves bounce around the target. The physical optics theory is next used to calculate the final scattered electric field using the far field integration along the observation direction. For the purpose of comparison, all the planform shapes are assumed to be having the same area, and only the aspect ratio and taper ratio are varied to feature representative airplanes.

  10. Effects of leading-edge flap oscillation on unsteady delta wing flow and rock control

    Science.gov (United States)

    Kandil, Osama A.; Salman, Ahmed A.

    1991-01-01

    The isolated and interdisciplinary problems of unsteady fluid dynamics and rigid-body dynamics and control of delta wings with and without leading-edge flap oscillation are considered. For the fluid dynamics problem, the unsteady, compressible, thin-layer Navier-Stokes (NS) equations, which are written relative to a moving frame of reference, are solved along with the unsteady, linearized, Navier-displacement (ND) equations. The NS equations are solved for the flowfield using an implicit finite-volume scheme. The ND equations are solved for the grid deformation, if the leading-edge flaps oscillate, using an ADI scheme. For the dynamics and control problem, the Euler equation of rigid-body rolling motion for a wing and its flaps are solved interactively with the fluid dynamics equations for the wing-rock motion and subsequently for its control. A four-stage Runge-Kutta scheme is used to explicitly integrate the dynamics equation.

  11. A Stationary Vortex Phenomenon above a Low-Aspect-Ratio Wing

    Institute of Scientific and Technical Information of China (English)

    TANG Jian; ZHU Ke-Qin; TAN Guang-Kun

    2004-01-01

    @@ A stationary vortex phenomenon above a nondelta low-aspect-ratio wing was obtained in three-dimensional unsteady numerical simulation. Flow visualization is conducted in water channel using hydrogen bubbles. The results verify that there is a vortex trapped above the low-aspect-ratio wing and the stationary vortex consisted of two semi-balls and anti-rotation vortices which are different from the leading edge vortices on the delta wing.

  12. Heat transfer enhancement using tip and junction vortices

    Science.gov (United States)

    Gentry, Mark Cecil

    1998-10-01

    Single-phase convective heat transfer can be enhanced by modifying the heat transfer surface to passively generate streamwise vortices. The swirling flow of the vortices modifies the temperature field, thinning the thermal boundary layer and increasing surface convection. Tip vortices generated by delta wings and junction vortices generated by hemispherical protuberances were studied in laminar flat-plate and developing channel flows. Local and average convective measurements were obtained, and the structure of the vortices was studied using quantitative flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement was also investigated. Tip vortices generated by delta wings enhanced local convection by as much as 300% over a flat-plate boundary layer flow. Vortex strength increased with Reynolds number based on chord length, wing aspect ratio, and wing angle of attack. As the vortices were advected downstream, they decayed because of viscous interactions. In the developing channel flow, tip vortices produced a significant local heat transfer enhancement on both sides of the channel. The largest spatially averaged heat transfer enhancement was 55%; it was accompanied by a 100% increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator. Junction vortices created by hemispherical surface protuberances provided local heat transfer enhancements as large as 250%. Vortex strength increased with an increasing ratio of hemisphere radius to local boundary layer thickness on a flat plate. In the developing channel flows, heat transfer enhancements were observed on both sides of the channel. The largest spatially averaged heat transfer enhancement was 50%; it was accompanied by a 90% pressure drop penalty relative to the same channel flow with no hemispherical vortex generator. This research is important in compact heat exchanger design. Enhancing heat transfer can lead to

  13. 3D flow visualization and tomographic particle image velocimetry for vortex breakdown over a non-slender delta wing

    Science.gov (United States)

    Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun

    2016-06-01

    Volumetric measurement for the leading-edge vortex (LEV) breakdown of a delta wing has been conducted by three-dimensional (3D) flow visualization and tomographic particle image velocimetry (TPIV). The 3D flow visualization is employed to show the vortex structures, which was recorded by four cameras with high resolution. 3D dye streaklines of the visualization are reconstructed using a similar way of particle reconstruction in TPIV. Tomographic PIV is carried out at the same time using same cameras with the dye visualization. Q criterion is employed to identify the LEV. Results of tomographic PIV agree well with the reconstructed 3D dye streaklines, which proves the validity of the measurements. The time-averaged flow field based on TPIV is shown and described by sections of velocity and streamwise vorticity. Combining the two measurement methods sheds light on the complex structures of both bubble type and spiral type of breakdown. The breakdown position is recognized by investigating both the streaklines and TPIV velocity fields. Proper orthogonal decomposition is applied to extract a pair of conjugated helical instability modes from TPIV data. Therefore, the dominant frequency of the instability modes is obtained from the corresponding POD coefficients of the modes based on wavelet transform analysis.

  14. Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings.

    Science.gov (United States)

    Jardin, T; David, L

    2014-07-01

    While a leading-edge vortex on an infinite translating wing is shed after a short distance of travel, its counterpart on a finite span revolving insect wing or maple seed membrane exhibits robust attachment. The latter explains the aerodynamic lift generated by such biological species. Here we analyze the mechanisms responsible for leading-edge vortex attachment. We compute the Navier-Stokes solution of the flow past a finite span wing (i) embedded in a uniform oncoming flow, (ii) embedded in a spanwise varying oncoming flow, and (iii) revolving about its root. We show that over flapping amplitudes typical of insect flight (ϕ = 120°), the spanwise gradient of the local wing speed may suffice in maintaining leading-edge vortex attachment. We correlate this result with the development of spanwise flow, driven by the spanwise gradient of pressure, and we evaluate the sensitivity of such a mechanism to the Reynolds number. It is noted, however, that leading-edge vortex attachment through the spanwise gradient of the local wing speed does not promote large lift, which ultimately arises from centrifugal and Coriolis effects.

  15. Design and Analysis of Delta Wing Tilt Rotor UAV

    Directory of Open Access Journals (Sweden)

    S.Ravikanth

    2015-07-01

    Full Text Available A tilt rotor is an aircraft of a special kind, which possesses the characteristics of a helicopter and a fixed-wing airplane. However, there are a great number of important technical problems waiting for settlements. Of them, the flight control system might be a critical one. A tiltrotor aircraft comprising a pair of contra-rotating co-axial tiltable rotors on the longitudinal center line of the aircraft. The rotors may be tiltable sequentially and independently. They may be moveable between a lift position and a flight position in front of or behind the fuselage.In this paper we present a project aimed for the designing of a small scale Unmanned Aerial Vehicle (UAV with Tiltrotor configuration (that uses two rotating rotors. he current paper describes the adopted design methodology, the mathematical and computational models created to represent the UAV, the physical components that constitute the UAV, and the results obtained so far. An unmanned aerial vehicle (UAV, also known as a remotely piloted aircraft (RPA or unmanned aircraft, is a machine which functions either by the remote control of a navigator or pilot or autonomously. A UAV is defined as a powered, aerial vehicle that does not carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or recoverable, and can carry payload.India‘s requirement of these unmanned aerial vehicles (UAV has become prior need for fighting in the northeast, against threat of terrorism, tension along the Pakistan border and its emerging role as a regional naval power and subsequent need for surveillance. The military wants to acquire at least 1,500 unmanned systems in the next 3-4 years, ranging from man-portable drones to high-altitude, long-endurance (HALE vehicles.Indian military is using Israeli-built UAVs such as the Heron, Searcher Mk II and Harop from Israel Aerospace Industries (IAI. Till date India has mostly deployed

  16. Sonic boom focusing prediction and delta wing shape optimization for boom mitigation studies

    Science.gov (United States)

    Khasdeo, Nitin

    Supersonic travel over land would be a reality if new aircraft are designed such that they produce quieter ground sonic booms, no louder than 0.3 psf according to the FAA requirement. An attempt is made to address the challenging goal of predicting the sonic boom focusing effects and mitigate the sonic boom ground overpressure for delta wing geometry. Sonic boom focusing is fundamentally a nonlinear phenomenon and can be predicted by numerically solving the nonlinear Tricomi equation. The conservative time domain scheme is developed to carry out the sonic boom focusing or super boom studies. The computational scheme is a type differencing scheme and is solved using a time-domain scheme, which is called a conservative type difference solution. The finite volume method is used on a structured grid topology. A number of input signals Concorde wave, symmetric and ax symmetric ramp, flat top and typical N wave type are simulated for sonic boom focusing prediction. A parametric study is launched in order to investigate the effects of several key parameters that affect the magnitude of shock wave amplification and location of surface of amplification or "caustics surface." A parametric studies includes the effects of longitudinal and lateral boundaries, footprint and initial shock strength of incoming wave and type of input signal on sonic boom focusing. Another very important aspect to be looked at is the mitigation strategies of sonic boom ground signature. It has been decided that aerodynamic reshaping and geometrical optimization are the main goals for mitigating the ground signal up to the acceptance level of FAA. Biconvex delta wing geometry with a chord length of 60 ft and maximum thickness ratio of 5% of the chord is used as a base line model to carry out the fundamental research focus. The wing is flying at an altitude 40,000 ft with a Mach number of 2.0. Boom mitigation work is focused on investigating the effects of wing thickness ratio, wing camber ratio, wing

  17. Analytical observations on the aerodynamics of a delta wing with leading edge flaps

    Science.gov (United States)

    Oh, S.; Tavella, D.

    1986-01-01

    The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.

  18. Study on Forms of Vortex Breakdown over Delta Wing%三角翼涡破裂形态研究

    Institute of Scientific and Technical Information of China (English)

    吕志咏; 祝立国

    2004-01-01

    通过对三角翼上漩涡破裂形态及涡破裂过程的流态变化的分析,可以得到以下结论.在三角翼上,除了通常知道的螺旋破裂核泡状破裂之外,还有双螺旋、涡丝以及蛙跳另外3种破裂形态.涡破裂是一个非定常过程,在机翼形状、迎角及来流条件不变的情况下,通常可以看到涡破裂形态的变化,即从螺旋破裂逐渐转化成泡状破裂又返回到螺旋破裂的过程.泡状破裂可以认为是螺旋破裂的一种特殊阶段.它与螺旋破裂并没有本质上的区别.从形态上看,泡状破裂中会出现涡核分叉,涡核中分离出一些带有涡量的流体微团,但总有一根涡丝(一部分涡核),自始至终存在,它或者表现成螺旋形态,或者由于自身的诱导形成了较复杂的缠绕形态.%Visualization test is performed at the water channel of BUAA. The vortex core is visualized by dye injection from a small tube located upstream the apex of a delta wing. The test results are recorded by a video camera connected to a computer and processed by Photoshop\\+ software. The test shows new findings in the following respects:(1) Besides the well known spiral and bubble forms of vortex breakdown, there are 3 other forms of vortex breakdown over delta wing found in the test. They are the frog-jump form, the double spiral form and the filiform spiral form.(2) It has also been found that there is a transition from the spiral form to the bubble form and then back to the spiral form in the test. Therefore it shows that the spiral form vortex breakdown over delta wing is often observed.(3) In a certain sense it can be said that the bubble form of vortex breakdown is a special case of the spiral form type. There is no essential difference between them. For the bubble form of vortex breakdown, there are branches of the vortex core and many elements carrying vorticity separated from the vortex core. However, there is at least one vortex filament that forms a spiral

  19. Wind Tunnel Application of a Pressure-Sensitive Paint Technique to a Double Delta Wing Model at Subsonic and Transonic Speeds

    Science.gov (United States)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2006-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to study the effect of wing fillets on the global vortex induced surface static pressure field about a sharp leading-edge 76 deg./40 deg. double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M(sub infinity) = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an insitu method featuring the simultaneous acquisition of electronically scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M(sub infinity) = 0.50 to 0.85 but increased to several percent at M(sub infinity) =0.95 and 1.20. The PSP pressure distributions and pseudo-colored, planform-view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having parabolic or diamond planforms situated at the strake-wing intersection were respectively designed to manipulate the vortical flows by removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  20. Stability Derivatives of a Delta Wing with Straight Leading Edge in the Newtonian Limit

    Directory of Open Access Journals (Sweden)

    Asha Crasta

    2014-03-01

    Full Text Available This paper presents an analytical method to predict the aerodynamic stability derivatives of oscillating delta wings with straight leading edge. It uses the Ghosh similitude and the strip theory to obtain the expressions for stability derivatives in pitch and roll in the Newtonian limit. The present theory gives a quick and approximate method to estimate the stability derivatives which is very essential at the design stage. They are applicable for wings of arbitrary plan form shape at high angles of attack provided the shock wave is attached to the leading edge of the wing. The expressions derived for stability derivatives become exact in the Newtonian limit. The stiffness derivative and damping derivative in pitch and roll are dependent on the geometric parameter of the wing. It is found that stiffness derivative linearly varies with the pivot position. In the case of damping derivative since expressions for these derivatives are non-linear and the same is reflected in the results. Roll damping derivative also varies linearly with respect to the angle of attack. When the variation of roll damping derivative was considered, it is found it also, varies linearly with angle of attack for given sweep angle, but with increase in sweep angle there is continuous decrease in the magnitude of the roll damping derivative however, the values differ for different values in sweep angle and the same is reflected in the result when it was studied with respect to sweep angle. From the results it is found that one can arrive at the optimum value of the angle of attack sweep angle which will give the best performance.

  1. A continuous-vorticity panel method for lifting surfaces

    Science.gov (United States)

    Yen, A.; Mook, D. T.; Nayfeh, A. H.

    1981-01-01

    A continuous-vorticity panel method is developed and utilized to predict the steady aerodynamic loads on lifting surfaces having sharp-edge separation. Triangular panels with linearly varying vorticity are used. The velocity field generated by an individual element is obtained in closed form. An optimization scheme is constructed for finding the vorticity at the nodes of the elements. The method is not restricted by aspect ratios, angles of attack, planforms, or camber. Rectangular and delta wings are presented as numerical examples. The numerical results are in good agreement with the experimental data for incompressible flows.

  2. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    Science.gov (United States)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  3. The lateral-directional characteristics of a 74-degree Delta wing employing gothic planform vortex flaps

    Science.gov (United States)

    Grantz, A. C.

    1984-01-01

    The low speed lateral/directional characteristics of a generic 74 degree delta wing body configuration employing the latest generation, gothic planform vortex flaps was determined. Longitudinal effects are also presented. The data are compared with theoretical estimates from VORSTAB, an extension of the Quasi vortex lattice Method of Lan which empirically accounts for vortex breakdown effects in the calculation of longitudinal and lateral/directional aerodynamic characteristics. It is indicated that leading edge deflections of 30 and 40 degrees reduce the magnitude of the wing effective dihedral relative to the baseline for a specified angle of attack or lift coefficient. For angles of attack greater than 15 degrees, these flap deflections reduce the configuration directional stability despite improved vertical tail effectiveness. It is shown that asymmetric leading edge deflections are inferior to conventional ailerons in generating rolling moments. VORSTAB calculations provide coarse lateral/directional estimates at low to moderate angles of attack. The theory does not account for vortex flow induced, vertical tail effects.

  4. DSMC calculations for the delta wing. [Direct Simulation Monte Carlo method

    Science.gov (United States)

    Celenligil, M. Cevdet; Moss, James N.

    1990-01-01

    Results are reported from three-dimensional direct simulation Monte Carlo (DSMC) computations, using a variable-hard-sphere molecular model, of hypersonic flow on a delta wing. The body-fitted grid is made up of deformed hexahedral cells divided into six tetrahedral subcells with well defined triangular faces; the simulation is carried out for 9000 time steps using 150,000 molecules. The uniform freestream conditions include M = 20.2, T = 13.32 K, rho = 0.00001729 kg/cu m, and T(wall) = 620 K, corresponding to lambda = 0.00153 m and Re = 14,000. The results are presented in graphs and briefly discussed. It is found that, as the flow expands supersonically around the leading edge, an attached leeside flow develops around the wing, and the near-surface density distribution has a maximum downstream from the stagnation point. Coefficients calculated include C(H) = 0.067, C(DP) = 0.178, C(DF) = 0.110, C(L) = 0.714, and C(D) = 1.089. The calculations required 56 h of CPU time on the NASA Langley Voyager CRAY-2 supercomputer.

  5. A three-dimensional boundary-layer method for flow over delta wings with leading-edge separation

    Science.gov (United States)

    Woodson, S. H.; Dejarnette, F. R.

    1985-01-01

    A three-dimensional, laminar boundary-layer method is applied to the incompressible flow over a slender delta wing at incidence. The predictor-corrector finite-difference scheme of Matsuno is used to difference the governing equations. The method has the advantages that no iterations are required to advance the solution and the cross-flow derivatives are formed independent of the cross-field direction. The difference scheme is demonstrated to yield accurate numerical results when compared to the exact solution of the three-dimensional boundary-layer equations for parabolic flow over a moving flat plate. The method is applied to delta wings of various sweep angles at angles of attack up to 20 deg., with the inviscid solution determined using a higher-order, three-dimensional panel method.

  6. Water tunnel results of leading-edge vortex flap tests on a delta wing vehicle

    Science.gov (United States)

    Delfrate, J. H.

    1986-01-01

    A water tunnel flow visualization test on leading edge vortex flaps was conducted at the flow visualization facility of the NASA Ames Research Center's Dryden Flight Research Facility. The purpose of the test was to visually examine the vortex structures caused by various leading edge vortex flaps on the delta wing of an F-106 model. The vortex flaps tested were designed analytically and empirically at the NASA Langley Research Center. The three flap designs were designated as full-span gothic flap, full-span untapered flap, and part-span flap. The test was conducted at a Reynolds number of 76,000/m (25,000/ft). This low Reynolds number was used because of the 0.076-m/s (0.25-ft/s) test section flow speed necessary for high quality flow visualization. However, this low Reynolds number may have influenced the results. Of the three vortex flaps tested, the part-span flap produced what appeared to be the strongest vortex structure over the flap area. The full-span gothic flap provided the next best performance.

  7. An experimental study of spanwise flow effects on lift generation in flapping wings

    Science.gov (United States)

    Hong, Youngsun

    Using a combination of force transducer measurement to quantify net lift force, a high frame rate camera to quantify and subtract inertial contributions, and Digital Particle Image Velocimetry (DPIV) to calculate aerodynamic contributions in the spanwise plane, the contribution of spanwise flow to the generation of lift force in wings undergoing a pure flapping motion in hover is shown as a function of flapping angle throughout the flapping cycle. When flapping a flat plate wing and a wing of identical wing area and aspect ratio, but cambered in span (both wings in hover with no change in pitch), the spanwise cambered wing was found to generate a greater mean lift force through the whole flap cycle under the same acceleration. However, depending on the angle in flapping arc, the spanwise cambered wing can generate less lift than the flat wing. Additionally, since the lift force generated by the wingtip vortex in the spanwise plane resulting from the flapping motion has yet to be directly quantified, the wingtip vortex is investigated to determine precisely how it augments the lift force through the various phases in the flapping motion. Vortices in the vicinity of the wingtip generate lift force in the spanwise plane of flapping wings. In classical fixed wing aerodynamics, the presence of wing tip vortices has been shown to increase the lift locally near the tip. Also, the impingement of large vortices on the upper surface of delta wings is considered to contribute largely to the lift force at higher angles of attack. This study determined that vortices in the spanwise plane (streamwise vorticity) generate lift in a similar manner in flapping wings. Using a mechanical ornithopter with wings fabricated in-house, vortices were identified at several different locations along the span of the wing, and at numerous different points throughout the flapping cycle under a variety of operating conditions. The lift generated by these spanwise planar oriented vortices was

  8. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification

    Science.gov (United States)

    Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.

    2014-10-01

    Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.

  9. The Influence of the Punched Delta Wings on Flow Pattern and Heat Transfer Characteristic in a Fin-and-Oval-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Amnart Boonloi

    2015-01-01

    Full Text Available 3D numerical investigations are performed to study the heat transfer, friction factor, and thermal performance of a fin-and-oval heat exchanger with punched delta wings for a range of 500 ≤ Re ≤ 2500 (based on the hydraulic diameter. The influences of the punched angles, 20°, 30°, and 45°, flow directions, wing tips pointing downstream and upstream, and pitch ratios, 2, 3, 4, 5, and 6, are investigated. The results show that the use of the punched delta wings in the fin-and-oval-tube heat exchanger leads to an enhancement in the heat transfer and friction loss as compared to the plain fin for all cases (Nu/Nu0 and f/f0 higher than 1. The enhancements of the heat transfer and friction factor are around 1.01–1.22 and 1.37–2.65 times higher than the base case, respectively. The punched delta wings create the vortex flows through the test section that helps enhance the strength of the impinging flow on the tube walls. The impingement of the fluid flow is an important key to augment the heat transfer rate and thermal performance in the heat exchanger.

  10. Heat transfer investigation of two Langley Research Center delta wing configurations at a Mach number of 10.5, volume 1

    Science.gov (United States)

    Eaves, R. H.; Buchanan, T. D.; Warmbrod, J. D.; Johnson, C. B.

    1972-01-01

    Heat transfer tests for two delta wing configurations were conducted in the hypervelocity wind tunnel. The 24-inch long models were tested at a Mach number of approximately 10.5 and at angles of attack of 20, 40, and 60 degrees over a length Reynolds number range from 5 million to 23 million on 4 May to 4 June 1971. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint.

  11. The Study of Delta Wing Structure Plan of A Supersonic Aircraft%一种超音速飞机三角机翼结构方案研究

    Institute of Scientific and Technical Information of China (English)

    刘健; 杨华保; 王建; 尚琳

    2011-01-01

    针对某超音速飞机的三角翼,设计了带平行翼梁的梁式三角翼结构和带内撑梁的梁式三角翼结构两种方案;分析了三角翼两种结构方案的受力特点,并采用有限元方法对比分析了两种结构方案的强度和刚度特点.通过分析和比较得出了带平行翼梁的梁式三角翼结构受力特性更好,更适合于能够布置中央翼的三角翼飞机.%Two types of wing structure plan were designed for a supersonic aircraft, which were the delta wing structure containing parallel beams and the delta wing structure with support beams. The two types of wing structure's mechanics characteristics were analyzed, and their stiffness and strength were compared with FEA. Through analysis and compare of the two types of wing structure, the delta wing structure containing parallel beams is better than the other and is more suitable for the aircraft with delta wing which can be arranged the central wing.

  12. Surface-Pressure and Flow-Visualization Data at Mach Number of 1.60 for Three 65 deg Delta Wings Varying in Leading-Edge Radius and Camber

    Science.gov (United States)

    McMIllin, S. Naomi; Byrd, James E.; Parmar, Devendra S.; Bezos-O'Connor, Gaudy M.; Forrest, Dana K.; Bowen, Susan

    1996-01-01

    An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data are electronically stored on the CD-ROM. The data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.

  13. Vortical flows

    CERN Document Server

    Wu, Jie-Zhi; Zhou, Ming-De

    2015-01-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers.  Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific ap...

  14. 低背鳍对细长平板三角翼分离涡稳定性影响的研究%Effects of low dorsal fin on the stability of vortex flow over slender delta wing

    Institute of Scientific and Technical Information of China (English)

    孟宣市; 蔡晋生; 罗时钧; 刘锋

    2012-01-01

    对细长锥体分离涡稳定性判据进行了介绍,并应用该判据对细长体平板三角翼和加上两个不同高度背鳍组合体分离涡流场的稳定性进行了分析.为了验证理论分析的有效性,并观察气动力随迎角的变化,根据理论分析模型设计了实验模型,并在低速风洞进行了六分量天平测力实验,三角翼后掠角为82.5°实验迎角范围12°~32°,侧滑角范围-10°~十10°,实验雷诺数1.66×106.实验结果表明:在翼面上发生旋涡破裂前,单独细长平板三角翼的横向力/力矩在实验迎角范围内始终为零;加了两个不同高度的背鳍后,在一定迎角下,三角翼的横向力/力矩变得不为零.理论分析结果和实验结果在定性上吻合得很好,初步验证了有关文献关于细长锥体分离涡的稳定性理论.%A vortex stability theory for slender conical bodies which was proposed by the professors of NWPU was reviewed and used to analyze the asymmetric vortices characteristics of a flat-plate delta wing and its combinations. To verify the validity of the theoretical predictions and show the force development versus angle of attack, a wind tunnel test was conducted on a flat-plate delta wing of 82. 5 degrees sweep angle and its combinations using a six-component internal strain-gage balance. The angles of attack is at 12°~32° and sideslip within ±10°. Two fins of different heights were tested. The ratios of the local fin height to the local wing semi-span were 0. 3 and 0. 6 respectively. The Reynolds number is 1. 66 million. The measurement of the aerodynamic forces and moments clearly indicates that no lateral force occurs over wing-alone model at lower angles, but a steady force-asymmetry occurs over the wing-fin models at certain angles. The experimental results and the theoretical results are in good agreement qualitatively, it provides force measurement evidence of the validity of the vortex stability theory preliminarily.

  15. Lift augmentation for highly swept wing aircraft

    Science.gov (United States)

    Rao, Dhanvada M. (Inventor)

    1993-01-01

    A pair of spaced slots, disposed on each side of an aircraft centerline and spaced well inboard of the wing leading edges, are provided in the wing upper surfaces and directed tangentially spanwise toward thin sharp leading wing edges of a highly swept, delta wing aircraft. The slots are individually connected through separate plenum chambers to separate compressed air tanks and serve, collectively, as a system for providing aircraft lift augmentation. A compressed air supply is tapped from the aircraft turbojet power plant. Suitable valves, under the control of the aircraft pilot, serve to selective provide jet blowing from the individual slots to provide spanwise sheets of jet air closely adjacent to the upper surfaces and across the aircraft wing span to thereby create artificial vortices whose suction generate additional lift on the aircraft. When desired, or found necessary, unequal or one-side wing blowing is employed to generate rolling moments for augmented lateral control. Trailing flaps are provided that may be deflected differentially, individually, or in unison, as needed for assistance in take-off or landing of the aircraft.

  16. Experimental studies of vertical mixing patterns in open channel flow generated by two delta wings side-by-side

    Science.gov (United States)

    Vaughan, Garrett

    Open channel raceway bioreactors are a low-cost system used to grow algae for biofuel production. Microalgae have many promises when it comes to renewable energy applications, but many economic hurdles must be overcome to achieve an economic fuel source that is competitive with petroleum-based fuels. One way to make algae more competitive is to improve vertical mixing in algae raceway bioreactors. Previous studies show that mixing may be increased by the addition of mechanisms such as airfoils. The circulation created helps move the algae from the bottom to top surface for necessary photosynthetic exchange. This improvement in light utilization allowed a certain study to achieve 2.2-2.4 times the amount of biomass relative to bioreactors without airfoils. This idea of increasing mixing in open channel raceways has been the focus of the Utah State University (USU) raceway hydraulics group. Computational Fluid Dynamics (CFD), Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV) are all methods used at USU to computationally and experimentally quantify mixing in an open channel raceway. They have also been used to observe the effects of using delta wings (DW) in increasing vertical mixing in the raceway. These efforts showed great potential in the DW in increasing vertical mixing in the open channel bioreactor. However, this research begged the question, does the DW help increase algae growth? Three algae growth experiments comparing growth in a raceway with and without DW were completed. These experiments were successful, yielding an average 27.1% increase in the biomass. The DW appears to be a promising method of increasing algae biomass production. The next important step was to quantify vertical mixing and understand flow patterns due to two DWs side-by-side. Raceway channels are wider as they increase in size; and arrays of DWs will need to be installed to achieve quality mixing throughout the bioreactor. Quality mixing was attained for

  17. Unsteady flow phenomena associated with leading-edge vortices

    Science.gov (United States)

    Breitsamter, C.

    2008-01-01

    This paper presents selected results from extensive experimental investigations on turbulent flow fields and unsteady surface pressures caused by leading-edge vortices, in particular, for vortex breakdown flow. Such turbulent flows may cause severe dynamic aeroelastic problems like wing and/or fin buffeting on fighter-type aircraft. The wind tunnel models used include a generic delta wing as well as a detailed aircraft configuration of canard-delta wing type. The turbulent flow structures are analyzed by root-mean-square and spectral distributions of velocity and pressure fluctuations. Downstream of bursting local maxima of velocity fluctuations occur in a limited radial range around the vortex center. The corresponding spectra exhibit significant peaks indicating that turbulent kinetic energy is channeled into a narrow band. These quasi-periodic velocity oscillations arise from a helical mode instability of the breakdown flow. Due to vortex bursting there is a characteristic increase in surface pressure fluctuations with increasing angle of attack, especially when the burst location moves closer to the apex. The pressure fluctuations also show dominant frequencies corresponding to those of the velocity fluctuations. Using the measured flow field data, scaling parameters are derived for design purposes. It is shown that a frequency parameter based on the local semi-span and the sinus of angle of attack can be used to estimate the frequencies of dynamic loads evoked by vortex bursting.

  18. Hodographic vortices

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Antonio, E-mail: a.moro@lboro.ac.u [School of Mathematics, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2009-08-17

    Vortices are screw phase dislocations associated with helicoidal wave-fronts. In nonlinear optics, vortices arise as singular solutions to the phase-intensity equations of geometric optics. They exist for a general class of nonlinear response functions. In this sense, vortices possess a universal character. Analysis of geometric optics equations on the hodograph plane leads to deformed vortex type solutions that are sensitive to the form of the nonlinearity. The case of a Kerr type nonlinear response is discussed as a specific example.

  19. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 1st Report. Potential for passive controlling by a pair of vortex generators; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 1. Ittsui no uzu hasseiki ni yoru judo seigyoho no teian

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H.; Takahashi, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Ikeda, K. [Toshiba Corp., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents a potential for a passive control of a horseshoe vortex at the root of the wing. NACA0024 wing is established on a turbulent boundary layer. A pair of vortex generators of halt delta wing is installed upstream of the wing. The controlled horseshoe vortex is tested qualitatively by flow visualization technique. Also, the potential for controlling is quantitatively investigated by wall static pressure and total pressure. The horseshoe vortex is remarkably controlled in Common Flow Up Configuration (CFUC) of vortex generators. The distortion of the total pressure contours is diminished by 49% and the vortex is located closer to the wing. In case of Common Flow Down Configuration (CFDC), the mass flow averaged pressure loss is decreased by 29% compared with the case without a pair of vortex generators. (author)

  20. Compact Vortices

    CERN Document Server

    Bazeia, D; Marques, M A; Menezes, R; Zafalan, I

    2016-01-01

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.

  1. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  2. Numerical study of the trailing vortex of a wing with wing-tip blowing

    Science.gov (United States)

    Lim, Hock-Bin

    1994-01-01

    Trailing vortices generated by lifting surfaces such as helicopter rotor blades, ship propellers, fixed wings, and canard control surfaces are known to be the source of noise, vibration, cavitation, degradation of performance, and other hazardous problems. Controlling these vortices is, therefore, of practical interest. The formation and behavior of the trailing vortices are studied in the present research. In addition, wing-tip blowing concepts employing axial blowing and spanwise blowing are studied to determine their effectiveness in controlling these vortices and their effects on the performance of the wing. The 3D, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The wing-tip blowing is simulated using the actuator plane concept, thereby, not requiring resolution of the jet slot geometry. Furthermore, the solution blanking feature of the chimera scheme is used to simplify the parametric study procedure for the wing-tip blowing. Computed results are shown to compare favorably with experimental measurements. It is found that axial wing-tip blowing, although delaying the rolling-up of the trailing vortices and the near-field behavior of the flowfield, does not dissipate the circulation strength of the trailing vortex farther downstream. Spanwise wing-tip blowing has the effect of displacing the trailing vortices outboard and upward. The increased 'wing-span' due to the spanwise wing-tip blowing has the effect of lift augmentation on the wing and the strengthening of the trailing vortices. Secondary trailing vortices are created at high spanwise wing-tip blowing intensities.

  3. Measurements of leading edge vortices in a supersonic stream

    Science.gov (United States)

    Milanovic, Ivana Milija

    An experimental investigation of the leading edge vortices from a 75° sweptback, sharp edge delta wing has been carried out in a Mach 2.49 stream. Five-hole conical probe traverses were conducted vertically and horizontally through the primary vortices at the trailing edge and at one half chord downstream station for 7° and 12° angles of attack. The main objective was to determine the Mach number and pressure distributions in the primary vortex and to present comparisons of flow properties at different survey stations. In response to the continued interest in efficient supersonic flight vehicles, particularly in the missile arena, the motivation for this research has been to provide the quantitative details of supersonic leading edge vortices, the understanding of which up to now has been largely based on flow visualizations and presumed similarity to low speed flows. As a prerequisite to the measurement campaign, the employed five-hole conical probe was numerically calibrated using a three-dimensional Thin Layer Navier-Stokes solver in order to circumvent the traditional experimental approach vastly demanding on resources. The pressure readings at the probe orifices were computed for a range of Mach numbers and pitch angles, and subsequently verified in wind tunnel tests. The calibration phase also demonstrated the profound influence of the probe bluntness on the nearby static pressure ports, its relevance to the ultimate modeling strategy and the resulting calibration charts. Flow diagnostics of the leading edge vortices included both qualitative flow visualizations, as well as quantitative measurements. Shadowgraphs provided information regarding the trajectory and relative size of the generated vortices while assuring that no probe-induced vortex breakdown occurred. Surface oil patterns revealed the general spanwise locations of leeward vortices, and confirmed topological similarity to their low speed counterparts. The probe measurements revealed substantial

  4. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.

    Science.gov (United States)

    Lehmann, Fritz-Olaf

    2008-01-01

    Understanding the fluid dynamics of force control in flying insects requires the exploration of how oscillating wings interact with the surrounding fluid. The production of vorticity and the shedding of vortical structures within the stroke cycle thus depend on two factors: the temporal structure of the flow induced by the wing's own instantaneous motion and the flow components resulting from both the force production in previous wing strokes and the motion of other wings flapping in close proximity. These wake-wing interactions may change on a stroke-by-stroke basis, confronting the neuro-muscular system of the animal with a complex problem for force control. In a single oscillating wing, the flow induced by the preceding half stroke may lower the wing's effective angle of attack but permits the recycling of kinetic energy from the wake via the wake capture mechanism. In two-winged insects, the acceleration fields produced by each wing may strongly interact via the clap-and-fling mechanism during the dorsal stroke reversal. Four-winged insects must cope with the fact that the flow over their hindwings is affected by the presence of the forewings. In these animals, a phase-shift between the stroke cycles of fore- and hindwing modulates aerodynamic performance of the hindwing via leading edge vortex destruction and changes in local flow condition including wake capture. Moreover, robotic wings demonstrate that phase-lag during peak performance and the strength of force modulation depend on the vertical spacing between the two stroke planes and the size ratio between fore- and hindwing. This study broadly summarizes the most prominent mechanisms of wake-wing and wing-wing interactions found in flapping insect wings and evaluates the consequences of these processes for the control of locomotor forces in the behaving animal.

  5. Vortex interactions with flapping wings and fins can be unpredictable

    NARCIS (Netherlands)

    Lentink, D.; Heijst, van G.J.F.; Muijres, F.T.; Leeuwen, van J.L.

    2010-01-01

    As they fly or swim, many animals generate a wake of vortices with their flapping fins and wings that reveals the dynamics of their locomotion. Previous studies have shown that the dynamic interaction of vortices in the wake with fins and wings can increase propulsive force. Here, we explore whether

  6. Review Results on Wing-Body Interference

    OpenAIRE

    Frolov Vladimir

    2016-01-01

    The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM) and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combin...

  7. Defining Coherent Vortices Objectively from the Vorticity

    CERN Document Server

    Haller, George; Farazmand, Mohammad; Huhn, Florian

    2015-01-01

    Rotationally coherent Lagrangian vortices are formed by tubes of deforming fluid elements that complete equal bulk material rotation relative to the mean rotation of the deforming fluid volume. We show that initial positions of such tubes coincide with tubular level surfaces of the Lagrangian-Averaged Vorticity Deviation (LAVD), the trajectory integral of the normed difference of the vorticity from its spatial mean. LAVD-based vortices are objective, i.e., remain unchanged under time-dependent rotations and translations of the coordinate frame. In the limit of vanishing Rossby numbers in geostrophic flows, cyclonic LAVD vortex centers are precisely the observed attractors for light particles. A similar result holds for heavy particles in anticyclonic LAVD vortices. We also establish a relationship between rotationally coherent Lagrangian vortices and their instantaneous Eulerian counterparts. The latter are formed by tubular surfaces of equal material rotation rate, objectively measured by the Instantaneous V...

  8. Two Optical Techniques Appropriate for Visualizing the Steady/Unsteady Vortical Flow Past a Highly Swept Delta—Wing Equipped with Double Vortex—Flaps in Low and High Speed Wind—Tunnel

    Institute of Scientific and Technical Information of China (English)

    GongNI; DingdingXIN; 等

    1998-01-01

    For a better understanding of the vortical flow past a highly swept deltawing equipped with double vortex-flaps,two optical techniques including the Laser-light-sheet with artificial particals put in the test-section and the Schlieren photography were used for steady/unsteady flow visualization in the low and high speed wind-tunnel respectively.SIne these techniques are seldom used for vortical flow visualization in the mentioned cases in our country.our success has the significance to indicate that they are appropriate for visualizing the development ,mutual interaction and bresk-down of the vortices appear in the complex flow field.In this paper,besides the experimental procedure,merits and demerits of these two techniques are discussed through comparisons.

  9. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  10. Steady vortex force theory and slender-wing flow diagnosis

    Institute of Scientific and Technical Information of China (English)

    Y.T.Yang; R.K.Zhang; Y.R.An; J.Z.Wu

    2007-01-01

    The concept vortex force in aerodynamics is sys-tematically examined based on a new steady vortex-force theory (Wu et al., Vorticity and vortex dynamics, Springer, 2006) which expresses the aerodynamic force (and moment) by the volume and boundary integrals of the Lamb vector.In this paper, the underlying physics of this theory is explo-red, including the general role of the Lamb vector in non-linear aerodynamics, its initial formation, and its relevance to the total-pressure non-uniformity. As a typical example, the theory is applied to the flow over a slender delta wing at a large angle of attack. The highly localized flow structures with high Lamb-vector peaks are identified in terms of their net contribution to various constituents of the total aerody-namic force. This vortex-force diagnosis sheds new light on the flow control and configuration optimization.

  11. The role of vortices in animal locomotion in fluids

    Directory of Open Access Journals (Sweden)

    Dvořák R.

    2014-12-01

    Full Text Available The aim of this paper is to show the significance of vortices in animal locomotion in fluids on two deliberately chosen examples. The first example concerns lift generation by bird and insect wings, the second example briefly mentiones swimming and walking on water. In all the examples, the vortices generated by the moving animal impart the necessary momentum to the surrounding fluid, the reaction to which is the force moving or lifting the animal.

  12. ON USEFUL SHAPES OF RIGID WINGS FOR LARGE-AMPLITUDE SCULLING PROPULSION

    NARCIS (Netherlands)

    SIJTSMA, P; SPARENBERG, JA

    1992-01-01

    If a wing of finite span moves through an incompressible and inviscid fluid, it will in general experience a resistance force, or equivalently, it leaves vorticity behind. We wonder if there are shapes of wings, which can move in a nontrivial way without leaving vorticity behind? We consider rigid,

  13. Separation vortices and pattern formation

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2010-01-01

    In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–P...... results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge.......-time evolution of the sand ripple pattern, which has the surprising features that it breaks the local sand conservation and has long-range interaction, features that can be underpinned by experiments. Very similar vortex dynamics takes place around oscillating structures such as wings and fins. Here, we present...

  14. 插入双面有三角形翅片的金属带对热交换管中流动和传热特性的影响%Influence of Double-sided Delta-wing Tape Insert with Alternate-axes on Flow and Heat Transfer Characteristics in a Heat Exchanger Tube

    Institute of Scientific and Technical Information of China (English)

    Smith Eiamsa-ard; Pongjet Promvonge

    2011-01-01

    The convective heat transfer and friction behaviors of turbulent tube flow through a straight tape with double-sided delta wings (T-W) have been studied experimentally. In the current work, the T-W formed on the tape was used as vortex generators for enhancing the heat transfer coefficient by breakdown of thermal boundary layer and by mixing of fluid flow in tubes. The T-W characteristics are (1) T-W with forward/backward-wing arrangement, (2) T-W with alternate axis (T-WA), (3) three wing-width ratios and (4) wing-pitch ratios. The experimental result reveals that for using the T-W, the increases in the mean Nusselt number (Nu) and friction factor are, respectively, up to 165% and 14.8 times of the plain tube and the maximum thermal performance factor is 1.19. It is also obvious that the T-W with forward-wing gives higher heat transfer rate than one with backward-wing around 7%.The present investigation also shows that the heat transfer rate and friction factor obtained from the T-WA is higher than that from the T-W. In addition, the flow pattern and temperature fields in the T-W tube with both backward and forward wings were also examined numerically.

  15. Fractional Vortices and Lumps

    CERN Document Server

    Eto, Minoru; Gudnason, Sven Bjarke; Konishi, Kenichi; Nagashima, Takayuki; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter

    2009-01-01

    We study what might be called fractional vortices, vortex configurations with the minimum winding from the viewpoint of their topological stability, but which are characterized by various notable substructures in the transverse energy distribution. The fractional vortices occur in diverse Abelian or non-Abelian generalizations of the Higgs model. The global and local features characterizing these are studied, and we identify the two crucial ingredients for their occurrence - the vacuum degeneracy leading to non-trivial vacuum moduli M, and the BPS nature of the vortices. Fractional vortices are further classified into two kinds. The first type of such vortices appear when M has orbifold Z_n singularities; the second type occurs in systems in which the vacuum moduli space M possesses either a deformed geometry or some singularity. These general features are illustrated with several concrete models.

  16. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  17. Characterization of vortical gusts produced by a heaving plate

    Science.gov (United States)

    Hufstedler, Esteban; McKeon, Beverley J.

    2016-11-01

    To experimentally investigate the interaction between a wing and a spanwise vortical gust, a simple gust generator has been built and tested. This consists of a transversely heaving flat plate that changes direction to release a vortex, which then convects downstream to interact with a wing. Previous experiments have shown that, immediately downstream of the plate, the circulation of the generated vortex is proportional to the heaving speed of the plate. The forces that the gusts exert on a downstream wing were shown to be strongly repeatable and consistent with a passing vortex. This presentation will discuss the properties of the vortical gusts as they move downstream, and relate those properties to the important dimensionless parameters of the flow. These properties include the convection speed and circulation of the vortex, as well as the enstrophy due to the wake of the plate. This research is funded by the Gordon and Betty Moore Foundation through Grant GBMF#2645 to the California Institute of Technology.

  18. 双三角翼俯仰振荡运动的流场特性数值模拟%Numerical Simulation of Unsteady Flow Around Double-delta Wing During Pitching Motion

    Institute of Scientific and Technical Information of China (English)

    刘昕; 林敬周; 陈亮中; 肖春华

    2012-01-01

    建立了适用于双三角翼大迎角非定常分离流场模拟的数值方法,研究双三角翼俯仰振荡时的动态流场特性,给出动态流场结构和气动力性能随迎角的变化规律,重点考察了减缩频率、转轴位置、平均迎角和振幅等参数对动态流场迟滞效应和气动力曲线迟滞环的影响.研究结果表明:俯仰振荡到相同大迎角时上仰和下俯的流场存在明显差异;减缩频率对气动力迟滞效应的影响相对大于转轴位置;平均迎角的变化导致双三角翼背风区流场结构呈现不同流态,而振幅的大小决定这些流态的数目,事实上俯仰运动时如果跨越的流态数目越多则流场结构的动态响应滞后现象就越显著.通过数值分析,有利于提高对双三角翼在俯仰振荡运动条件下的非定常特性和流场滞后效应等非线性现象的认识.%Numerical methods capable for computing the separated unsteady flow around a double-delta wing are established in this paper. The variation of the dynamic flow fields and aerodynamic performances following the change of the angle of attack Is studied, which concentrates on the investigation of the influences of several motion parameters on the time-lag effects of the dynamic flow fields and the hysteresis loops of the aerodynamic coefficients, such as reduced frequency, the position of rotation axis, the averaged angle of attack and the pitching amplitude. The numerical results show that there is great difference in the flow structure between pitch-up and pitch-down states at the same large angle of attack. The time-lag effect caused by the reduced frequency is relatively greater than that by the position of rotation axis. The variation of the averaged angles of attack causes different streamline forms on the leeward side of the double-delta wing; and the span of the streamline forms, which is related to the pitching amplitude, determines how much the dynamic response of the flow

  19. Vortex Interaction on Low Aspect Ratio Membrane Wings

    Science.gov (United States)

    Waldman, Rye M.; Breuer, Kenneth S.

    2013-11-01

    Inspired by the flight of bats and by recent interest in Micro Air Vehicles, we present measurements on the steady and unsteady behavior of low aspect ratio membrane wings. We conduct wind tunnel experiments with coupled force, kinematic, and flow field measurements, both on the wing and in the near wake. Membrane wings interact strongly with the vortices shed from the leading- and trailing-edges and the wing tips, and the details of the membrane support play an important role in the fluid-structure interaction. Membranes that are supported at the wing tip exhibit less membrane flutter, more coherent tip vortices, and enhanced lift. The interior wake can exhibit organized spanwise vortex shedding, and shows little influence from the tip vortex. In contrast, membranes with an unsupported wing tip show exaggerated static deformation, significant membrane fluttering and a diffuse, unsteady tip vortex. The unsteady tip vortex modifies the behavior of the interior wake, disrupting the wake coherence.

  20. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  1. Vortices as degenerate metrics

    CERN Document Server

    Baptista, J M

    2012-01-01

    We note that the Bogomolny equation for abelian vortices is precisely the condition for invariance of the Hermitian-Einstein equation under a degenerate conformal transformation. This leads to a natural interpretation of vortices as degenerate hermitian metrics that satisfy a certain curvature equation. Using this viewpoint, we rephrase standard results about vortices and make some new observations. We note the existence of a conceptually simple, non-linear rule for superposing vortex solutions, and we describe the natural behaviour of the L^2-metric on the moduli space upon certain restrictions.

  2. Vortices and Vortical Structures in Internal Aerodynamics

    Institute of Scientific and Technical Information of China (English)

    RudolfDvorak

    1997-01-01

    The paper aims at summarizing the author's recent phenomenological study of the origin,development and identification of vortical structures in internal aerodynamics.A connection between evolution of these structures and flow separation in closed curved channels is also discussed.It has been shown that in real fluids the individual vortex cores very sonn lose their identity and merge into a new dissipative structure,the properties of which still have to be defined.

  3. Basic research in wake vortex alleviation using a variable twist wing

    Science.gov (United States)

    Morris, D. J.; Holbrook, G. T.

    1981-01-01

    The variable twist wing concept was used to investigate the relative effects of lift and turbulence distribution on the rolled up vortex wake. Several methods of reducing the vortex strength behind an aircraft were identified. These involve the redistribution of lift spanwise on the wing and drag distribution along the wing. Initial attempts to use the variable twist wing velocity data to validate the WAKE computer code have shown a strong correlation, although the vorticity levels were not exactly matched.

  4. Imaging of trapped vortices in YBCO coated conductor by scanning SQUID microscope

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M. [Department of EESE, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan)]. E-mail: inoue@ees.kyushu-u.ac.jp; Kiss, T. [Department of EESE, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Koyanagi, S. [Department of EESE, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Imamura, K. [Department of EESE, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Takeo, M. [Department of EESE, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Iijima, Y. [Fujikura Ltd., Tokyo 135-8512 (Japan); Kakimoto, K. [Fujikura Ltd., Tokyo 135-8512 (Japan); Saitoh, T. [Fujikura Ltd., Tokyo 135-8512 (Japan); Matsuda, J. [Superconductivity Research Laboratory, Tokyo 130-0062 (Japan); Tokunaga, Y. [Superconductivity Research Laboratory, Tokyo 130-0062 (Japan); Izumi, T. [Superconductivity Research Laboratory, Tokyo 130-0062 (Japan); Shiohara, Y. [Superconductivity Research Laboratory, Tokyo 130-0062 (Japan)

    2005-10-01

    We investigated trapped vortices in Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) coated conductor by using a scanning SQUID microscope (SSM). Several peculiar properties of the vortices were observed such as a large bundle of vortices at a certain position and a coexistence of positive- and negative-sign vortices. Comparing the SSM images with that of low temperature scanning laser microscopy (LTSLM) and SEM, we identified the relationship between local dissipation and position of current blocking defect. Furthermore, regular vortex images were also observed by the SSM in the region where higher J {sub c} has been identified by the LTSLM.

  5. Unsteady flow over flexible wings at different low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, unsteady flow around flexible membrane wing which had aspect ratio of 1 (AR=1 was investigated experimentally at various Reynolds numbers (Re = 25000 and Re = 50000. Smoke-wire technique for flow visualization over the flexible membrane wing was utilized in the experiments. Digital Image Correlation system (DIC was used for measuring deformation of AR = 1 flexible membrane wing. Instantaneous deformation measurements of membrane wing were combined with the flow field measurements. In low aspect ratio flexible membrane wings, unsteadiness includes tip vortices and vortex shedding, and the combination of tip vortices. In these types of wings, complex unsteady deformations occurred due to vortex shedding. The results showed that the increasing angle of attack results in increase of membrane deformation. Moreover, it was concluded that analysis of the instantaneous deformation revealed chordwise and spanwise, modes which were due to the shedding of leading-edge vortices as well as tip vortices. Consequently, vibrational mode decreased and maximum standard deviation location approached to the trailing edge by reason of increasing angle of attack.

  6. Unsteady flow over flexible wings at different low Reynolds numbers

    Science.gov (United States)

    Genç, Mustafa Serdar; Özden, Mustafa; Hakan Açikel, Halil; Demir, Hacımurat; Isabekov, Iliasbek

    2016-03-01

    In this study, unsteady flow around flexible membrane wing which had aspect ratio of 1 (AR=1) was investigated experimentally at various Reynolds numbers (Re = 25000 and Re = 50000). Smoke-wire technique for flow visualization over the flexible membrane wing was utilized in the experiments. Digital Image Correlation system (DIC) was used for measuring deformation of AR = 1 flexible membrane wing. Instantaneous deformation measurements of membrane wing were combined with the flow field measurements. In low aspect ratio flexible membrane wings, unsteadiness includes tip vortices and vortex shedding, and the combination of tip vortices. In these types of wings, complex unsteady deformations occurred due to vortex shedding. The results showed that the increasing angle of attack results in increase of membrane deformation. Moreover, it was concluded that analysis of the instantaneous deformation revealed chordwise and spanwise, modes which were due to the shedding of leading-edge vortices as well as tip vortices. Consequently, vibrational mode decreased and maximum standard deviation location approached to the trailing edge by reason of increasing angle of attack.

  7. A method for localizing wing flow separation at stall to alleviate spin entry tendencies

    Science.gov (United States)

    Feistel, T. W.; Anderson, S. B.; Kroeger, R. A.

    1978-01-01

    A wing leading-edge modification has been developed, applicable at present to single-engine light aircraft, which produces stabilizing vortices at stall and beyond. These vortices have the effect of fixing the stall pattern of the wing such that the various portions of the wing upper surface stall nearly symmetrically. The lift coefficient produced is essentially constant to very high angles of attack above the stall angle of the unmodified wing. It is hypothesized that these characteristics will help prevent inadvertent spin entry after a stall. Results are presented from recent large-scale wind-tunnel tests of a complete light aircraft, both with and without the modification.

  8. Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing

    Institute of Scientific and Technical Information of China (English)

    胡文蓉; 张仕栋; 王雅赟

    2014-01-01

    It is shown that the leading edge protuberances on the flippers of a humpback whale can significantly improve the hydrodynamic performance. The present study numerically investigates the flow control mechanisms of the leading edge protuberances on a static wing and a pitching wing. For static wings, the performance in both laminar flow and turbulent flow are studied in the context of the flow control mechanisms. It is shown that the protuberances have slight effects on the performance of static wings in laminar flow. Also, it could be deduced that non-uniform downwash does not delay the stall occurrence in either laminar flow or turbulent flow. In turbulent flow, the leading edge protuberances act in a manner similar to vortex generators, enhancing the momentum exchange within the boundary layer. Streamwise vortices do contribute to the delay of the stall occurrence. The normal vorticity component also plays an important role in delaying the stall occurrence. However, for the pitching wing, the effect of leading edge protuberances is negligible in turbulent flow. Detailed analysis of the flow field indicates that for the wing with the leading edge protuberances, the leading edge vortices become more complex, while the thrust jet and the vortices in the wake are not changed significantly by the leading edge protuberances.

  9. Vortices and Jacobian varieties

    DEFF Research Database (Denmark)

    Manton, Nicholas S.; M. Romão, Nuno

    2011-01-01

    We investigate the geometry of the moduli space of N-vortices on line bundles over a closed Riemann surface of genus g > 1, in the little explored situation where 1 = 1, the vortex metric typically degenerates as the dissolving limit is approached, the degeneration occurring precisely...

  10. Theory of Concentrated Vortices

    DEFF Research Database (Denmark)

    Alekseenko, Sergey; Kuibin, Pavel; Okulov, Valery

    This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have describ...

  11. Vitality of optical vortices

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available Optical vortices are always created or annihilated in pairs with opposite topological charges. However, the presence of such a vortex dipole does not directly indicate whether they are associated with a creation or an annihilation event. Here we...

  12. Moist Potential Vorticity and Up-Sliding Slantwise Vorticity Development

    Institute of Scientific and Technical Information of China (English)

    GUI Xiao-Peng; GAO Shou-Ting; WU Guo-Xiong

    2003-01-01

    By using the moist potential vorticity equation derived from complete atmospheric equations including the effect of mass forcing, the theory of up-sliding slantwise vorticity development (USVD) is proposed based on the theory of slantwise vorticity development. When an air parcel slides up along a slantwise isentropic surface, its vertical component of relative vorticity is developed. Based on the theory of USVD, a complete vertical vorticity equation is expected with mass forcing, which explicitly includes the effect of both internal forcings and external forcings.

  13. Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges

    Science.gov (United States)

    2016-08-15

    AFRL-AFOSR-VA-TR-2016-0313 Theory, computation and experiment on criticality and stability of vortices separating from edges Ashok Gopalarathnam...computation and experiment on criticality and stability of vortices separating from edges 5a. CONTRACT NUMBER - 5b. GRANT NUMBER FA9550-13-1-0179...leading-edge suction on a finite wing reaches a critical value, LEV initiation takes place. The critical value is the same as that for the corresponding

  14. The Finiteness of Moffatt vortices

    CERN Document Server

    Kalita, Jiten C; Panda, Swapnendu; Unal, Aynur

    2016-01-01

    Till date, the sequence of vortices present in the solid corners of internal viscous incompressible flows, widely known as Moffatt vortices was thought to be infinite. In this paper, we propose two topological equivalence classes of Moffatt vortices in terms of orientation-preserving homeomorphism as well as critical point theory. We further quantify the centers of vortices as fixed points through Brower fixed point theorem and define boundary of a vortex as circle cell. With the aid of these new developments and some existing theorems in topology, we provide six proofs establishing that the sequence of Moffatt vortices cannot be infinite; in fact it is at most finite.

  15. Is the Chiral Vortical Effect Vanishing in Heavy Ion Collisions?

    CERN Document Server

    Landsteiner, Karl; Pena-Benitez, Francisco

    2013-01-01

    We study the frequency dependence of all the chiral vortical and magnetic conductivities for a relativistic chiral gas of free fermions and for a strongly coupled CFT with holographic dual in four dimensions. Both systems present gauge and gravitational anomalies and we compute their contribution to the conductivities. The chiral vortical conductivities and the chiral magnetic conductivity in the energy current show an unexpected frequency dependence in the form of a delta centered at zero frequency. We argue that this makes the CVE practically unobservable in heavy ion collisions. In the appendix we discuss why the CME seems to vanish in the consistent current for a particular implementation of the axial chemical potential.

  16. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  17. Vorticity in analogue gravity

    CERN Document Server

    Cropp, Bethan; Turcati, Rodrigo

    2015-01-01

    In the analogue gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in a curved spacetime. This description is possible only when the fluid under consideration is barotropic, inviscid and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric which depends algebrically on the local speed of sound, density and the background flow velocity, the latter assumed to be vorticity free. In this work we provide an straightforward extension in order to go beyond the irrotational constraint. Using a charged --- relativistic and non-relativistic --- Bose--Einstein condensate as a physical system, we show that in the low momentum limit and performing the eikonal approximation we can derive a d'Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on a flow velocity in the presence of vorticity.

  18. Vorticity in analog gravity

    Science.gov (United States)

    Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo

    2016-06-01

    In the analog gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in curved space-time. This description is possible only when the fluid under consideration is barotropic, inviscid, and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric that depends algebrically on the local speed of sound, density, and the background flow velocity, the latter assumed to be vorticity-free. In this work we provide a straightforward extension in order to go beyond the irrotational constraint. Using a charged—relativistic and nonrelativistic—Bose-Einstein condensate as a physical system, we show that in the low-momentum limit and performing the eikonal approximation we can derive a d’Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on flow velocity in the presence of vorticity.

  19. Vorticity in holographic fluids

    CERN Document Server

    Caldarelli, Marco M; Petkou, Anastasios C; Petropoulos, P Marios; Pozzoli, Valentina; Siampos, Konstadinos

    2012-01-01

    In view of the recent interest in reproducing holographically various properties of conformal fluids, we review the issue of vorticity in the context of AdS/CFT. Three-dimensional fluids with vorticity require four-dimensional bulk geometries with either angular momentum or nut charge, whose boundary geometries fall into the Papapetrou--Randers class. The boundary fluids emerge in stationary non-dissipative kinematic configurations, which can be cyclonic or vortex flows, evolving in compact or non-compact supports. A rich network of Einstein's solutions arises, naturally connected with three-dimensional Bianchi spaces. We use Fefferman--Graham expansion to handle holographic data from the bulk and discuss the alternative for reversing the process and reconstruct the exact bulk geometries.

  20. Puffed Noncommutative Nonabelian Vortices

    CERN Document Server

    Bouatta, N; MacCaferri, C; Bouatta, Nazim; Evslin, Jarah; Maccaferri, Carlo

    2007-01-01

    We present new solutions of noncommutative gauge theories in which coincident unstable vortices expand into unstable circular shells. As the theories are noncommutative, the naive definition of the locations of the vortices and shells is gauge-dependent, and so we define and calculate the profiles of these solutions using the gauge-invariant noncommutative Wilson lines introduced by Gross and Nekrasov. We find that charge 2 vortex solutions are characterized by two positions and a single nonnegative real number, which we demonstrate is the radius of the shell. We find that the radius is identically zero in all 2-dimensional solutions. If one considers solutions that depend on an additional commutative direction, then there are time-dependent solutions in which the radius oscillates, resembling a braneworld description of a cyclic universe. There are also smooth BIon-like space-dependent solutions in which the shell expands to infinity, describing a vortex ending on a domain wall.

  1. Vortices and Jacobian varieties

    CERN Document Server

    Manton, Nicholas S

    2010-01-01

    We investigate the geometry of the moduli space of N-vortices on line bundles over a closed Riemann surface of genus g > 1, in the little explored situation where 1 = 1, the vortex metric typically degenerates as the dissolving limit is approached, the degeneration occurring precisely on the critical locus of the Abel-Jacobi map at degree N. We describe consequences of this phenomenon from the point of view of multivortex dynamics.

  2. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.

    Science.gov (United States)

    Tay, W B; van Oudheusden, B W; Bijl, H

    2014-09-01

    The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the

  3. The influence of the wake of a flapping wing on the production of aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    Jianghao Wu; Mao Sun; Xing Zhang

    2005-01-01

    The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing "impinges" on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing.

  4. Formation Flight: Upstream Influence of a Wing on a Streamwise Vortex

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald; Lehigh University Fluids Lab Team

    2015-11-01

    Aircraft flying together in formation can experience aerodynamic advantages. Impingement of the tip vortex of the leader wing on the trailer wing can increase the lift to drag ratio L/D and the unsteady loading on the trailer wing. These increases are sensitive to the impingement location of the vortex on the wing. Particle image velocimetry is employed to determine patterns of velocity and vorticity on successive crossflow planes along the vortex, which lead to volume representations and thereby characterization of the streamwise evolution of the vortex structure as it approaches the trailer wing. This evolution of the incident vortex is affected by the upstream influence of the trailer wing, and is highly dependent on the location of vortex impingement. As the spanwise impingement location of the vortex moves from outboard of the wing tip to inboard, the upstream influence on the development of the vortex increases. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the in-plane vorticity; decrease the downwash; and increase the root-mean-square of both streamwise velocity and vorticity.

  5. Angel's Wings

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Angel's wings had fallen off. It started slowly,a couple of feathers breaking loose in the wind,floating away in carefree spirals, then in clumps in the shower, matted wet and clogging the drain,until one day he woke in a thick layer of white plumage, quills snagging on the stained sheets.

  6. Vorticity from irrotationally forced flow

    CERN Document Server

    Del Sordo, Fabio

    2010-01-01

    In the interstellar medium the turbulence is believed to be forced mostly through supernova explosions. In a first approximation these flows can be written as a gradient of a potential being thus devoid of vorticity. There are several mechanisms that could lead to vorticity generation, like viscosity and baroclinic terms, rotation, shear and magnetic fields, but it is not clear how effective they are, neither is it clear whether the vorticity is essential in determining the turbulent diffusion acting in the ISM. Here we present a study of the role of rotation, shear and baroclinicity in the generation of vorticity in the ISM.

  7. General vorticity conservation

    CERN Document Server

    Gümral, H

    1998-01-01

    The motion of an incompressible fluid in Lagrangian coordinates involves infinitely many symmetries generated by the left Lie algebra of group of volume preserving diffeomorphisms of the three dimensional domain occupied by the fluid. Utilizing a 1+3-dimensional Hamiltonian setting an explicit realization of this symmetry algebra and the related Lagrangian and Eulerian conservation laws are constructed recursively. Their Lie algebraic structures are inherited from the same construction. The laws of general vorticity and helicity conservations are formulated globally in terms of invariant differential forms of the velocity field.

  8. Vortices and Vermas

    CERN Document Server

    Bullimore, Mathew; Gaiotto, Davide; Hilburn, Justin; Kim, Hee-Cheol

    2016-01-01

    In three-dimensional gauge theories, monopole operators create and destroy vortices. We explore this idea in the context of 3d N=4 gauge theories in the presence of an Omega-background. In this case, monopole operators generate a non-commutative algebra that quantizes the Coulomb-branch chiral ring. The monopole operators act naturally on a Hilbert space, which is realized concretely as the equivariant cohomology of a moduli space of vortices. The action furnishes the space with the structure of a Verma module for the Coulomb-branch algebra. This leads to a new mathematical definition of the Coulomb-branch algebra itself, related to that of Braverman-Finkelberg-Nakajima. By introducing additional boundary conditions, we find a construction of vortex partition functions of 2d N=(2,2) theories as overlaps of coherent states (Whittaker vectors) for Coulomb-branch algebras, generalizing work of Braverman-Feigin-Finkelberg-Rybnikov on a finite version of the AGT correspondence. In the case of 3d linear quiver gaug...

  9. Vortices revealed: Swimming faster

    Science.gov (United States)

    van Houwelingen, Josje; van de Water, Willem; Kunnen, Rudie; van Heijst, Gertjan; Clercx, Herman

    2016-11-01

    Understanding and optimizing the propulsion in human swimming requires insight into the hydrodynamics of the flow around the swimmer. Experiments and simulations addressing the hydrodynamics of swimming have been conducted in studies before, including the visualization of the flow using particle image velocimetry (PIV). The main objective in this study is to develop a system to visualize the flow around a swimmer in practice inspired by this technique. The setup is placed in a regular swimming pool. The use of tracer particles and lasers to illuminate the particles is not allowed. Therefore, we choose to work with air bubbles with a diameter of 4 mm, illuminated by ambient light. Homogeneous bubble curtains are produced by tubes implemented in the bottom of the pool. The bubble motion is captured by six cameras placed in underwater casings. A first test with the setup has been conducted by pulling a cylinder through the bubbles and performing a PIV analysis. The vorticity plots of the resulting data show the expected vortex street behind the cylinder. The shedding frequency of the vortices resembles the expected frequency. Thus, it is possible to identify and follow the coherent structures. We will discuss these results and the first flow measurements around swimmers.

  10. Ginzburg-Landau vortices

    CERN Document Server

    Bethuel, Fabrice; Helein, Frederic

    2017-01-01

    This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy.  The location of the singularities is completely determined by minimiz...

  11. Induce Drag Reduction of an Airplane Wing

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available This work describes the aerodynamic characteristics for aircraft wing model with and without slotted winglet. When an aircraft moves forward with a high speed then a small circulatory motion of air is created at the wingtip due to the pressure difference between the upper and lower surface of the wing is called vortices. This circulatory fluid tends to leak from lower to upper surface of wing which causes downward motion is called “downwash” and generates a component of the local lift force in the direction of the free stream called induced drag. Downwash causes reduction of lift and contribute induced drag to the total drag. Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption, larger operational range, greater endurance and higher achievable speeds. An experimental study is conducted to examine the potentiality of slotted winglet for the reduction of induced drag, and for the improvement of lift coefficient without increasing the span of aircraft wing. The model composed of a swept wing built from NACA 0012 airfoil. The test conducted in subsonic wind tunnel of 1m×1m rectangular test section at flow speed 25m/s placing the wing without winglet, wing with winglet at 30° inclination, wing with winglet at 60° inclination, and wing with winglet at 70° inclination at angle of attack ranging from 0 to 16 degree. The test result shows 20- 25% reduction in drag coefficient and 10-20% increase in lift coefficient by using slotted winglet.

  12. Abelian Vortices with Singularities

    CERN Document Server

    Baptista, J M

    2012-01-01

    Let L --> X be a complex line bundle over a compact connected Riemann surface. We consider the abelian vortex equations on L when the metric on the surface has finitely many point degeneracies or conical singularities and the line bundle has parabolic structure. These conditions appear naturally in the study of vortex configurations with constraints, or configurations invariant under the action of a finite group. We first show that the moduli space of singular vortex solutions is the same as in the regular case. Then we compute the total volume and total scalar curvature of the moduli space singular vortex solutions. These numbers differ from the case of regular vortices by a very natural term. Finally we exhibit explicit non-trivial vortex solutions over the thrice punctured hyperbolic sphere.

  13. Turbulent Flow Over a Low-Camber Pitching Arc Wing

    Science.gov (United States)

    Molki, Majid

    2014-11-01

    Aerodynamics of pitching airfoils and wings are of great importance to the design of air vehicles. This investigation presents the effect of camber on flow field and force coefficient for a pitching circular-arc airfoil. The wing considered in this study is a cambered plate of zero thickness which executes a linear pitch ramp, hold and return of 45° amplitude. The momentum equation is solved on a mesh that is attached to the wing and executes a pitching motion with the wing about a pivot point located at 0.25-chord or 0.50-chord distance from the leading edge. Turbulence is modeled by the k - ω SST model. Using the open-source software OpenFOAM, the conservation equations are solved on a dynamic mesh and the flow is resolved all the way to the wall (y+ ~ 1). The computations are performed for Re = 40,000 with the reduced pitch rate equal to K = cθ˙ / 2U∞ = 0 . 2 . The results are presented for three wings, namely, a flat plate (zero camber) and wings of 4% and 10% camber. It is found that the flow has complex features such as leading-edge vortex, near-wake vortex pairs, clockwise and counter-clockwise vortices, and trailing-edge vortex. While vortices are formed over the flat plate, they are formed both over and under the cambered wing.

  14. Three-dimensional flow past rotating wing at low Reynolds number: a computational study

    Energy Technology Data Exchange (ETDEWEB)

    Ruifeng, Hu, E-mail: rfhu@xidian.edu.cn [School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071 (China)

    2015-08-15

    In this work, we performed a computational study on the three-dimensional (3D) flow past a rotating wing at a low Reynolds number (Re = 200). The 3D vortical structures and aerodynamic performances of the rotating wing with different aspect ratios and rotating speeds are computed and analyzed. A quasi-steady model is adopted for prediction of aerodynamic performances of the wing, and its applicability is evaluated by the computation. It is found that there exists a periodic vortex shedding pattern at a low rotating speed, while vortices may cluster near the wing when rotating speed is high enough. The wake vortex topology is also affected by the aspect ratio. The current quasi-steady aerodynamic model could only be used for rotating wing aerodynamics at a low rotating speed when regularly periodic vortex shedding exists. (paper)

  15. Three-dimensional vortex wake structure of flapping wings in hovering flight.

    Science.gov (United States)

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan

    2014-02-06

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

  16. Brief Analysis of Vorticity in Soil Hydrodynamics

    CERN Document Server

    Nader, José Jorge

    2014-01-01

    This note discusses basic properties of vorticity in groundwater flow theory. An evolution equation for the vorticity vector is derived to demonstrate that, when present, vorticity decreases very rapidly. In addition, it is shown how vorticity affects, though very little, the hydraulic head directional variation in the vicinity of a point.

  17. Fresnel Lens with Embedded Vortices

    Directory of Open Access Journals (Sweden)

    Sunil Vyas

    2012-01-01

    Full Text Available Vortices of different charges are embedded in a wavefront that has quadratic phase variation, and the intensity distribution near the focal plane is studied. This method may be useful in realizing complicated beam profiles. We have experimentally demonstrated the generation of vortex arrays having integer as well as fractional topological charges that produce different intensity profiles at the focal plane. The phase variation realized on a spatial light modulator (SLM acts as a Fresnel lens with embedded vortices.

  18. Primordial vorticity and gradient expansion

    Science.gov (United States)

    Giovannini, Massimo; Rezaei, Zahra

    2012-02-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the ΛCDM paradigm, the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the order of 10-37 G over the typical comoving scales ranging between 1 and 10 Mpc. While the obtained results seem to be irrelevant for seeding a reasonable galactic dynamo action, they demonstrate how the proposed fully inhomogeneous treatment can be used for the systematic scrutiny of pre-decoupling plasmas beyond the conventional perturbative expansions.

  19. Primordial vorticity and gradient expansion

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  20. Seismometer Detection of Dust Devil Vortices by Ground Tilt

    CERN Document Server

    Lorenz, Ralph D; Murdoch, Naomi; Lognonné, Philippe; Kawamura, Taichi; Mimoun, David; Banerdt, W Bruce

    2015-01-01

    We report seismic signals on a desert playa caused by convective vortices and dust devils. The long-period (10-100s) signatures, with tilts of ~10$^{-7}$ radians, are correlated with the presence of vortices, detected with nearby sensors as sharp temporary pressure drops (0.2-1 mbar) and solar obscuration by dust. We show that the shape and amplitude of the signals, manifesting primarily as horizontal accelerations, can be modeled approximately with a simple quasi-static point-load model of the negative pressure field associated with the vortices acting on the ground as an elastic half space. We suggest the load imposed by a dust devil of diameter D and core pressure {\\Delta}Po is ~({\\pi}/2){\\Delta}PoD$^2$, or for a typical terrestrial devil of 5 m diameter and 2 mbar, about the weight of a small car. The tilt depends on the inverse square of distance, and on the elastic properties of the ground, and the large signals we observe are in part due to the relatively soft playa sediment and the shallow installatio...

  1. Filamentation with nonlinear Bessel vortices.

    Science.gov (United States)

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.

  2. Aerodynamic forces and vortical structures in flapping butterfly's forward flight

    Science.gov (United States)

    Yokoyama, Naoto; Senda, Kei; Iima, Makoto; Hirai, Norio

    2013-02-01

    Forward flights of a bilaterally symmetrically flapping butterfly modeled as a four-link rigid-body system consisting of a thorax, an abdomen, and left and right wings are numerically simulated. The joint motions of the butterflies are adopted from experimental observations. Three kinds of the simulations, distinguished by ways to determine the position and attitude of the thorax, are carried out: a tethered simulation, a prescribed simulation, and free-flight simulations. The upward and streamwise forces as well as the wake structures in the tethered simulation, where the thorax of the butterfly is fixed, reasonably agree with those in the corresponding tethered experiment. In the prescribed simulation, where the thoracic trajectories as well as the joint angles are given by those observed in a free-flight experiment, it is confirmed that the butterfly can produce enough forces to achieve the flapping flights. Moreover, coherent vortical structures in the wake and those on the wings are identified. The generation of the aerodynamic forces due to the vortical structures are also clarified. In the free-flight simulation, where only the joint angles are given as periodic functions of time, it is found that the free flight is longitudinally unstable because the butterfly cannot maintain the attitude in a proper range. Focusing on the abdominal mass, which largely varies owing to feeding and metabolizing, we have shown that the abdominal motion plays an important role in periodic flights. The necessity of control of the thoracic attitude for periodic flights and maneuverability is also discussed.

  3. Flapping-wing mechanical butterfly on a wheel

    Science.gov (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  4. Superconducting vortices in semilocal models.

    Science.gov (United States)

    Forgács, Péter; Reuillon, Sébastien; Volkov, Mikhail S

    2006-02-01

    It is shown that the SU(2) semilocal model--the Abelian Higgs model with two complex scalars--admits a new class of stationary, straight string solutions carrying a persistent current and having finite energy per unit length. In the plane orthogonal to their direction they correspond to a nontrivial deformation of the embedded Abrikosov-Nielsen-Olesen (ANO) vortices by the current flowing through them. The new solutions bifurcate with the ANO vortices in the limit of vanishing current. They can be either static or stationary. In the stationary case, the relative phase of the two scalars rotates at constant velocity, giving rise to an electric field and angular momentum, while the energy remains finite. The new static vortex solutions have lower energy than the ANO vortices and could be of considerable importance in various physical systems (from condensed matter to cosmic strings).

  5. Observational $\\Delta\

    CERN Document Server

    Hernández, Antonio García; Monteiro, Mário J P F G; Suárez, Juan Carlos; Reese, Daniel R; Pascual-Granado, Javier; Garrido, Rafael

    2015-01-01

    Delta Scuti ($\\delta$ Sct) stars are intermediate-mass pulsators, whose intrinsic oscillations have been studied for decades. However, modelling their pulsations remains a real theoretical challenge, thereby even hampering the precise determination of global stellar parameters. In this work, we used space photometry observations of eclipsing binaries with a $\\delta$ Sct component to obtain reliable physical parameters and oscillation frequencies. Using that information, we derived an observational scaling relation between the stellar mean density and a frequency pattern in the oscillation spectrum. This pattern is analogous to the solar-like large separation but in the low order regime. We also show that this relation is independent of the rotation rate. These findings open the possibility of accurately characterizing this type of pulsator and validate the frequency pattern as a new observable for $\\delta$ Sct stars.

  6. General aspects of optical vortices

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available . Stef Roux CSIR National Laser Centre PO Box 395, Pretoria 0001, South Africa CSIR National Laser Centre – p.1/32 Contents . Definition of an optical vortex . Topological charge and vortex morphology . How to detect a vortex — interferometry . How... to generate optical vortices CSIR National Laser Centre – p.2/32 Persistent dark spots Optical vortices CSIR National Laser Centre – p.3/32 Speckle field Amplitude Phase CSIR National Laser Centre – p.4/32 Singular phase function CSIR National Laser Centre – p...

  7. A Variable Control Structure Controller for the Wing Rock Phenomenon

    OpenAIRE

    2016-01-01

    This paper presents the design of a variable structure controller for the model of the wing rock phenomenon of a delta wing aircraft. It is considered to be a continue study of the last two researches for the same phenomena "Feedback linearization [15] and back stepping controller [14] ". A control technique is proposed to stabilize the aircraft phenomena. The solution presented in this paper give a guarantee of asymptotic convergence to zero of all variables of the system. MATLAB...

  8. Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still

    Science.gov (United States)

    Pirrung, Georg; Madsen, Helge; Schreck, Scott

    2016-09-01

    Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.

  9. A Further Note on the Force Discrepancy for Wing Theory in Euler Flow

    Indian Academy of Sciences (India)

    Edmund Chadwick; Ali Hatam

    2009-11-01

    Uniform steady potential flow past a wing aligned at a small angle to the flow direction is considered. The standard approach is to model this by a vortex sheet, approximated by a finite distribution of horseshoe vortices. In the limit as the span of the horseshoe vortices tends to zero, an integral distribution of infinitesimal horseshoe vortices over the vortex sheet is obtained. The contribution to the force on the wing due to the presence of one of the infinitesimal horseshoe vortices in the distribution is focused upon. Most of the algebra in the force calculation is evaluated using Maple software and is given in the appendices. As in the two previous papers by the authors on wing theory in Euler flow [E Chadwick, A slender-wing theory in potential flow, Proc. R. Soc. A461 (2005) 415–432, and E Chadwick and A Hatam, The physical interpretation of the lift discrepancy in Lanchester–Prandtl lifting wing theory for Euler flow, leading to the proposal of an alternative model in Oseen flow, Proc. R. Soc. A463 (2007) 2257–2275], it is shown that the normal force is half that expected. In this further note, in addition it is demonstrated that the axial force is infinite. The implications and reasons for these results are discussed.

  10. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  11. Subwavelength vortical plasmonic lattice solitons.

    Science.gov (United States)

    Ye, Fangwei; Mihalache, Dumitru; Hu, Bambi; Panoiu, Nicolae C

    2011-04-01

    We present a theoretical study of vortical plasmonic lattice solitons, which form in two-dimensional arrays of metallic nanowires embedded into nonlinear media with both focusing and defocusing Kerr nonlinearities. Their existence, stability, and subwavelength spatial confinement are investigated in detail.

  12. Topological Vortices in Superfluid Films

    Institute of Scientific and Technical Information of China (English)

    WANGJun-Ping; DUANYi-Shi

    2005-01-01

    We study the topological structure of the vortex system in a superfluid film. Explicit expressions for the vortex density and velocity field as functions of the superfluid order parameter are derived. The evolution of vortices is also studied from the topological properties of the superfluid order parameter field.

  13. LARGE AERODYNAMIC FORCES ON A SWEEPING WING AT LOW REYNOLDS NUMBER

    Institute of Scientific and Technical Information of China (English)

    SUN Mao; WU Jianghao

    2004-01-01

    The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically. After an initial start from rest, the wing is made to execute an azimuthal rotation (sweeping) at a large angle of attack and constant angular velocity. The Reynolds number (Re) considered in the present note is 480 (Re is based on the mean chord length of the wing and the speed at 60% wing length from the wing root). During the constant-speed sweeping motion, the stall is absent and large and approximately constant lift and drag coefficients can be maintained. The mechanism for the absence of the stall or the maintenance of large aerodynamic force coefficients is as follows. Soon after the initial start, a vortex ring, which consists of the leading-edge vortex (LEV), the starting vortex, and the two wing-tip vortices, is formed in the wake of the wing. During the subsequent motion of the wing, a base-to-tip spanwise flow converts the vorticity in the LEV to the wing tip and the LEV keeps an approximately constant strength. This prevents the LEV from shedding. As a result,the size of the vortex ring increases approximately linearly with time, resulting in an approximately constant time rate of the first moment of vorticity, or approximately constant lift and drag coefficients.The variation of the relative velocity along the wing span causes a pressure gradient along the wingspan. The base-to-tip spanwise flow is mainly maintained by the pressure-gradient force.

  14. Drag reduction by wing tip slots in a gliding Harris' hawk, Parabuteo unicinctus

    Science.gov (United States)

    Tucker

    1995-01-01

    The anterior-most primary feathers of many birds that soar over land bend upwards and separate vertically to form slotted wing tips during flight. The slots are thought to reduce aerodynamic drag, although drag reduction has never been demonstrated in living birds. Wing theory explains how the feathers that form the tip slots can reduce induced drag by spreading vorticity horizontally along the wing and by acting as winglets, which are used on aircraft to make wings non-planar and to spread vorticity vertically. This study uses the induced drag factor to measure the induced drag of a wing relative to that of a standard planar wing with the same span, lift and speed. An induced drag factor of less than 1 indicates that the wing is non-planar. The minimum drag of a Harris' hawk gliding freely in a wind tunnel was measured before and after removing the slots by clipping the tip feathers. The unclipped hawk had 70­90 % of the drag of the clipped hawk at speeds between 7.3 and 15.0 m s-1. At a wing span of 0.8 m, the unclipped hawk had a mean induced drag factor of 0.56, compared with the value of 1.10 assumed for the clipped hawk. A Monte Carlo simulation of error propagation and a sensitivity analysis to possible errors in measured and assumed values showed that the true mean value of the induced drag factor for the unclipped hawk was unlikely to be more than 0.93. These results for a living bird support the conclusions from a previous study of a feathered tip on a model wing in a wind tunnel: the feathers that form the slotted tips reduce induced drag by acting as winglets that make the wings non-planar and spread vorticity both horizontally and vertically.

  15. Fast Prediction of Wing Rock Onset Based on Computational Fluid Dynamics

    Science.gov (United States)

    2005-09-14

    for an two dimensional aeroelastic prob- lem and was presented in [36] for the Duffing oscillator and in [37] for a three equation model problem. The...forebodies which produce vortical flows. At some critical angle of attack the aircraft can experience a roll oscillation which grows in amplitude until a...limit cycle oscillation is reached. A loss in roll damping is usually associated with wing rock. Although wing rock is a complicated motion which

  16. The Aerodynamics of Deforming Wings at Low Reynolds Number

    Science.gov (United States)

    Medina, Albert

    Flapping flight has gained much attention in the past decade driven by the desire to understand capabilities observed in nature and the desire to develop agile small-scale aerial vehicles. Advancing our current understanding of unsteady aerodynamics is an essential component in the development of micro-air vehicles (MAV) intended to utilize flight mechanics akin to insect flight. Thus the efforts undertaken that of bio-mimicry. The complexities of insect wing motion are dissected and simplified to more tractable problems to elucidate the fundamentals of unsteady aerodynamics in biologically inspired kinematics. The MAV's fruition would satisfy long established needs in both the military and civilian sectors. Although recent studies have provided great insight into the lift generating mechanisms of flapping wings the deflection response of such wings remains poorly understood. This dissertation numerically and experimentally investigates the aerodynamic performance of passively and actively deflected wings in hover and rotary kinematics. Flexibility is distilled to discrete lines of flexion which acknowledging major flexion lines in insect wings to be the primary avenue for deformation. Of primary concern is the development of the leading-edge vortex (LEV), a high circulation region of low pressure above the wing to which much of the wing's lift generation is attributed. Two-dimensional simulations of wings with chord-wise flexibility in a freestream reveal a lift generating mechanism unavailable to rigid wings with origins in vortical symmetry breaking. The inclusion of flexibility in translating wings accelerated from rest revealed the formation time of the initial LEV was very weakly dependent on the flexible stiffness of the wing, maintaining a universal time scale of four to five chords of travel before shedding. The frequency of oscillatory shedding of the leading and trailing-edge vortices that develops after the initial vortex shedding was shown to be

  17. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  18. High lift generation of low-aspect-ratio wings

    Science.gov (United States)

    Devoria, Adam; Mohseni, Kamran

    2016-11-01

    The time-averaged flow field in the center-span of low-aspect-ratio rectangular wings is experimentally measured. It is shown that lift stall is preceded by shedding of strong trailing-edge vorticity. The induced downwash of the tip vortices delays the growth of the attached boundary layer as well as leading-edge separation. Reattached flow occurs for sufficiently low aspect ratios and results in a smooth merging of the flow at the trailing edge thus assisting in satisfying a Kutta condition there. As a consequence, the strength of vorticity shed from the trailing edge is decreased and allows for continued lift generation at high angles of attack. When the reattachment point passes beyond the trailing edge, a strong shear layer is generated there and represents negative lift, leading to stall with a slight increase in angle of attack or aspect ratio.

  19. Formation Flight: Modes of Interaction of a Streamwise Vortex with a Wing

    Science.gov (United States)

    McKenna, Chris; Bross, Matthew; Rockwell, Donald

    2014-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex of the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to be sensitive to the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine patterns of velocity and vorticity in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying the spanwise location of the leader wing. These modes are defined by differences in the development of, and interaction between, the incident tip vortex from the leader wing and the tip vortex along the follower wing. Modes of development/interaction of the tip vortices include bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the follower tip vortex. In contrast, the mutual induction mode increases the strength of the follower tip vortex.

  20. Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover

    Science.gov (United States)

    Shahzad, Aamer; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.

    2016-11-01

    This numerical study is focused on assessing the effect on the aerodynamic hovering performance of wing shapes defined by the radius of the first moment of the wing area ( r 1 ¯ ) and aspect ratio (AR). In addition, the effect of introducing a deviation angle in the kinematics is examined. The performance of r 1 ¯ = 0 . 43 , 0.53, and 0.63 wings with AR of 1.5, 2.96, 4.5, and 6.0 is investigated at Reynolds numbers (Re) = 12, 400, and 13 500. The performance trends of the wing shapes have been observed to be independent of Re for both 2-angle and 3-angle kinematics. This is because high suction pressures associated with the leading-edge vortex are predominantly spread in the distal (away from the wing root) and leeward regions (towards the trailing-edge) of high flapping velocities for all the cases. While the deviation angle is detrimental to the production of lift and power economy (PE, defined as the ratio of the mean lift coefficient to the mean aerodynamic power coefficient) at Re = 12 due to strong viscous effects, it improves PE at Re = 400 and 13 500. A high instantaneous angle of attack at the stroke reversal results in high lift peak for 3-angle kinematics but its effect at Re = 400 and 13 500 is attenuated by strong vortical structures on the underside of the wing. Maximum PE is achieved at AR = 2.96, as a low AR wing does not produce enough lift and high AR wings consume more aerodynamic power. Although the lift is maximized using high r 1 ¯ and AR wings, our results show that low r 1 ¯ and high AR wings are best for maximizing PE for a given lift in insects.

  1. Vorticity production through rotation, shear and baroclinicity

    CERN Document Server

    Del Sordo, Fabio

    2010-01-01

    In the absence of rotation and shear, and under the assumption of constant temperature or specific entropy, purely potential forcing by localized expansion waves is known to produce irrotational flows that have no vorticity. Here we study the production of vorticity under idealized conditions when there is rotation, shear, or baroclinicity, to address the problem of vorticity generation in the interstellar medium in a systematic fashion. We use three-dimensional periodic box numerical simulations to investigate the various effects in isolation. We find that for slow rotation, vorticity production in an isothermal gas is small in the sense that the ratio of the root-mean-square values of vorticity and velocity is small compared with the wavenumber of the energy carrying motions. For Coriolis numbers above a certain level, vorticity production saturates at a value where the aforementioned ratio becomes comparable with the wavenumber of the energy carrying motions. Shear also raises the vorticity production, but...

  2. Delta robot

    NARCIS (Netherlands)

    Herder, J.L.; Van der Wijk, V.

    2010-01-01

    The invention relates to a delta robot comprising a stationary base (2) and a movable platform (3) that is connected to the base with three chains of links (4,5,6), and comprising a balancing system incorporating at least one pantograph (7) for balancing the robot's center of mass, wherein the at le

  3. Delta robot

    NARCIS (Netherlands)

    Herder, J.L.; Van der Wijk, V.

    2010-01-01

    The invention relates to a delta robot comprising a stationary base (2) and a movable platform (3) that is connected to the base with three chains of links (4,5,6), and comprising a balancing system incorporating at least one pantograph (7) for balancing the robot's center of mass, wherein the at le

  4. Vortical flow past a sphere

    Science.gov (United States)

    Mattner, Trent; Chong, Min; Joubert, Peter

    2000-11-01

    Vortical flow past a sphere in a constant diameter pipe was studied experimentally in a guide vane apparatus similar to those used in fundamental experimental studies of vortex breakdown. The initial effect of swirl was to shorten the downstream separation bubble. For a small range of the swirl intensity, an almost stagnant upstream separation bubble formed. As the swirl intensity was increased, the bubble became unstable and an unsteady spiral formed. At high swirl intensity there was a mean recirculation region which penetrated far upstream while the flow on the downstream hemisphere was attached. Measurements of the velocity field were obtained using laser Doppler velocimetry. Analysis of these results suggests that the onset of upstream separation is associated with the formation of a negative azimuthal vorticity component which slows the axial flow near the axis of symmetry. This is consistent with inviscid distortion of the vortex filaments in the diverging flow approaching the sphere.

  5. Numerical Simulation of Protoplanetary Vortices

    Science.gov (United States)

    2003-12-01

    UNCLASSIFIED Center for Turbulence Research 81 Annual Research Briefs 2003 Numerical simulation of protoplanetary vortices By H. Lin, J.A. Barranco t AND P.S...planetesimals and planets. In earlier works ( Barranco & Marcus 2000; Barranco et al. 2000; Lin et al. 2000) we have briefly described the possible physical...transport. In particular, Barranco et al. (2000) provided a general mathe- matical framework that is suitable for the asymptotic regime of the disk

  6. Vortical structures in a flume

    Science.gov (United States)

    Gurka, R.; Liberzon, A.; Hetsroni, G.

    2006-03-01

    We report the results of statistical spatial characterization of coherent structures in turbulent boundary layer in a flume. The characterization approach is based on the proper orthogonal decomposition (POD) of vorticity, elucidating large-scale coherent patterns in a turbulent boundary layer. The method was successfully applied to the two- and three-dimensional experimental data extracted from particle image velocimetry (PIV), and multi-plane stereoscopic PIV (XPIV) respectively, and the three-dimensional data from direct numerical simulation (DNS) in a channel flow. The large-scale structure was obtained by using linear combination of POD eigenmodes of vorticity. POD allows for methodological analysis of the properties of the educed structure in the different measurement planes (orthogonal in the case of 2D PIV and parallel in the case of XPIV) and in the different cross-sections of the DNS data. Based on the statistical approach we suggest a conceptual model of large-scale coherent structures in a turbulent boundary layer flow that incorporates the experimental and the numerical results. The proposed conceptual model is a spiral vortical structure attached to the wall and expanding in both the spanwise and the wall-normal directions. Its shape resembles a funnel structure and a `double-cone eddy' concept. The relationship of the model to the structures in the near wall region is presented.

  7. The fate of pancake vortices

    Science.gov (United States)

    Sutyrin, G. G.; Radko, T.

    2017-03-01

    Nonlinear evolution of pancake-like vortices in a uniformly rotating and stratified fluid is studied using a 3D Boussinesq numerical model at large Rossby numbers. After the initial stage of viscous decay, the simulations reveal exponential growth of toroidal circulation cells (aka Taylor vortices) at the peripheral annulus with a negative Rayleigh discriminant. At the nonlinear stage, these thin cells redistribute the angular momentum and density differently at the levels of radial outflow and inflow. Resulting layering, with a vertical stacking of sharp variations in velocity and density, enhances small-scale mixing and energy decay. Characteristic detectable stretching patterns are produced in the density field. The circulation patterns, induced by centrifugal instability, tend to homogenize the angular momentum in the vicinity of the unstable region. We demonstrate that the peak intensity of the cells and the vortex energy decay are dramatically reduced by the earth's rotation due to conservation of total absolute angular momentum. The results have important implications for better understanding the fate of pancake vortices and physical mechanisms of energy transfer in stratified fluids.

  8. Unsteady Low-Speed Windtunnel Test of a Straked Delta Wing, Oscillating in Pitch. Part 3. Plots of the Zeroth and First Harmonic Unsteady Pressure Distributions (Concluded) and Plots of Steady and First Harmonic Unsteady Overall Loads

    Science.gov (United States)

    1988-04-01

    3 CECTION 4 , ImCp 4 -4. ft. b C.p , SETO I SETO ETO ETO P. ; 12. -. . ’ . . . 2 ----.. . - . , . " . 9 . ., Ř ...’" . . . 44 -4 -1 2 .2 .4 .4. 0...34 . DELTA RUN . *4 MACH - .16 FREG . S.S0 Hz RCDFP = .24 SECTION I SECTION 2 SECTION 3 SECTION 4 2 IF ImCP .60 .2 .4 . .2 .4 . . . .0 .2 .4 .6 .9 2y’b 2~ t... Imcp 4 k 4. -0 .2 .4 .6 .8 2 4 .6 .e .e .2 .4 ,6, . .9 .2 .’ .6 .t, 2yb2y’b 2y’b " E LT LPNA . 24.,; de VOLP - 1.49 deg M *M. ITA RUN a 874 MACN .16

  9. Control of Pitching Airfoil Aerodynamics by Vorticity Flux Modification using Active Bleed

    Science.gov (United States)

    Kearney, John; Glezer, Ari

    2014-11-01

    Distributed active bleed driven by pressure differences across a pitching airfoil is used to regulate the vorticity flux over the airfoil's surface and thereby to control aerodynamic loads in wind tunnel experiments. The range of pitch angles is varied beyond the static stall margin of the 2-D VR-7 airfoil at reduced pitching rates up to k = 0.42. Bleed is regulated dynamically using piezoelectric louvers between the model's pressure side near the trailing edge and the suction surface near the leading edge. The time-dependent evolution of vorticity concentrations over the airfoil and in the wake during the pitch cycle is investigated using high-speed PIV and the aerodynamic forces and moments are measured using integrated load cells. The timing of the dynamic stall vorticity flux into the near wake and its effect on the flow field are analyzed in the presence and absence of bleed using proper orthogonal decomposition (POD). It is shown that bleed actuation alters the production, accumulation, and advection of vorticity concentrations near the surface with significant effects on the evolution, and, in particular, the timing of dynamic stall vortices. These changes are manifested by alteration of the lift hysteresis and improvement of pitch stability during the cycle, while maintaining cycle-averaged lift to within 5% of the base flow level with significant implications for improvement of the stability of flexible wings and rotor blades. This work is supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  10. Time-resolved scanning tomography PIV measurements around a flapping wing

    Energy Technology Data Exchange (ETDEWEB)

    David, L.; Jardin, T.; Braud, P.; Farcy, A. [Institut Prime, CNRS-Universite de Poitiers-ENSMA, UPR3346, Departement Fluides, Thermiques, Combustion, SP2MI, Futuroscope, Chasseneuil (France)

    2012-04-15

    The three-dimensional flow that develops around a finite flapping wing is investigated using a tomographic scanning PIV technique. The acquisition and correlation processes employed to achieve such measurements have been carefully validated. Issues regarding the relevant timescales of the flow and the spanwise space-resolution are addressed. Results obtained on a hovering flapping wing whose plunging phase is described by a rectilinear motion highlight the influence of the free end condition and the formation of the tip vortex on the leading edge vortices behavior, wing/wake interactions, and wake stabilization. (orig.)

  11. Leading-edge vortex shedding from rotating wings

    CERN Document Server

    Kolomenskiy, Dmitry; Schneider, Kai

    2014-01-01

    The paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number $Re=250$. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented.

  12. Circulation Produced by a Flapping Wing During Stroke Reversal

    Science.gov (United States)

    Burge, Matthew; Ringuette, Matthew

    2016-11-01

    We investigate the circulation behavior of the 3D flow structures formed during the stroke-reversal of a 2-degree-of-freedom flapping wing in hover. Previous work has related circulation peaks to the unsteady wing kinematics and forces. However, information from experiments detailing contributions from the multiple, 3D flow structures is lacking. The objective of this work is to quantitatively study the spanwise circulation as well as the spanwise flow which advects vorticity in the complex loop topology of a flapping wing during stroke reversal. We analyze the flow features of a scaled wing model using multi-plane stereo digital particle image velocimetry in a glycerin-water mixture. Data plane locations along the wing span are inspired by the time-resolved behavior of the 3D vortex structures observed in our earlier flow visualization studies. As with our prior work, we vary dimensionless parameters such as the pitching reduced frequency to understand their effect on the circulation. This research provides insight into the vortex dynamics produced by the coupled rotational and pitching wing motions during stroke reversal, when lift generation is challenging. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.

  13. Vortical sources of aerodynamic force and moment

    Science.gov (United States)

    Wu, J. Z.; Wu, J. M.

    1989-01-01

    It is shown that the aerodynamic force and moment can be expressed in terms of vorticity distribution (and entropy variation for compressible flow) on near wake plane, or in terms of boundary vorticity flux on the body surface. Thus the vortical sources of lift and drag are clearly identified, which is the real physical basis of optimal aerodynamic design. Moreover, these sources are highly compact, hence allowing one to concentrate on key local regions of the configuration, which have dominating effect to the lift and drag. A detail knowledge of the vortical low requires measuring or calculating the vorticity and dilatation field, which is however still a challenging task. Nevertheless, this type of formulation has some unique advantages; and how to set up a well-posed problem, in particular how to establish vorticity-dilatation boundary conditions, is addressed.

  14. Slotted Aircraft Wing

    Science.gov (United States)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  15. Vorticity production through rotation, shear and baroclinicity

    OpenAIRE

    Del Sordo, Fabio; Brandenburg, Axel

    2010-01-01

    In the absence of rotation and shear, and under the assumption of constant temperature or specific entropy, purely potential forcing by localized expansion waves is known to produce irrotational flows that have no vorticity. Here we study the production of vorticity under idealized conditions when there is rotation, shear, or baroclinicity, to address the problem of vorticity generation in the interstellar medium in a systematic fashion. We use three-dimensional periodic box numerical simulat...

  16. "Explosively growing" vortices of unstably stratified atmosphere

    Science.gov (United States)

    Onishchenko, O. G.; Horton, W.; Pokhotelov, O. A.; Fedun, V.

    2016-10-01

    A new type of "explosively growing" vortex structure is investigated theoretically in the framework of ideal fluid hydrodynamics. It is shown that vortex structures may arise in convectively unstable atmospheric layers containing background vorticity. From an exact analytical vortex solution the vertical vorticity structure and toroidal speed are derived and analyzed. The assumption that vorticity is constant with height leads to a solution that grows explosively when the flow is inviscid. The results shown are in agreement with observations and laboratory experiments

  17. A Vorticity-Magnetic Field Dynamo Instability

    OpenAIRE

    1997-01-01

    We generalize the mean field magnetic dynamo to include local evolution of the mean vorticity in addition to the mean magnetic field. The coupled equations exhibit a general mean field dynamo instability that enables the transfer of turbulent energy to the magnetic field and vorticity on larger scales. The growth of the vorticity and magnetic field both require helical turbulence which can be supplied by an underlying global rotation. The dynamo coefficients are derived including the backreac...

  18. Vitality of optical vortices (Presentation)

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available stream_source_info Roux3_2014.pdf.txt stream_content_type text/plain stream_size 3018 Content-Encoding UTF-8 stream_name Roux3_2014.pdf.txt Content-Type text/plain; charset=UTF-8 Title Vitality of optical vortices F Stef... Roux Presented at Complex Light and Optical Force VIII SPIE Photonics West 2014 Moscone Center, San Francisco, California USA 5 February 2014 CSIR National Laser Centre, Pretoria, South Africa – p. 1/11 Speckle Amplitude Phase – p. 2/11 Vortex...

  19. Separation vortices and pattern formation

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2010-01-01

    In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–P...... results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge....

  20. Making sound vortices by metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Liping; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang; Tang, Kun; Ke, Manzhu; Peng, Shasha [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jia, Han [State Key Laboratory of Acoustics and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhengyou [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2016-08-15

    Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

  1. Making sound vortices by metasurfaces

    CERN Document Server

    Ye, Liping; Lu, Jiuyang; Tang, Kun; Jia, Han; Ke, Manzhu; Peng, Shasha; Liu, Zhengyou

    2016-01-01

    Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

  2. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  3. Incompressible Turbulent Wing-Body Junction Flow

    Science.gov (United States)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.

    1998-01-01

    -stream flow. The lateral curvature of the wing/strat causes the oncoming turbulent layer to skew about am axis (x-axis) parallel to the plane (xz-plane) of the mean shear. This is the principle mechanism for the generation of secondary flow. Such skew-induced secondary flows are slow to be attenuated by Reynolds stresses. Additional contribution to the generation of secondary flow comes from anisotropies in Reynolds stresses. Upstream of the strut, the mean-vorticity is directed span wise (along the y-direction). The presence of secondary flow in the vicinity of the strut causes the vorticity to stretch around the obstacle in a horse-shoe shape, with each leg having a vorticity of the opposite sense. The blockage effect of the strut imposes a severe adverse pressure gradient on the oncoming turbulent shear layer, causing boundary layer separation ahead of the leading edge, resulting in a vortex that rolls up and flows downstream into the juncture region. The separation vortices trailing in the wake of the wing can alter the lift or drag characteristics of the surfaces downstream of the wing-body juncture. Likewise, on submarines, the wake flow behind the appendage can degrade the performance of the propeller located downstream. The complex nature of this flow is caused by the presence of all six components of Reynolds stresses. Devenport and Simpson report that in the vicinity of the horse-shoe vortex there is intense recirculation with turbulent stresses being much larger than those normally observed in turbulent flows. These features contribute to making this flow a challenge to predict numerically. Some of the past studies provide useful insights into this flow that would guide our numerical efforts. In measurements reported by Shabaka and Bradshaw, the eddy viscosity tensor is seen to be non-isotropic and has negative components in certain regions. In an effort to evaluate the closure assumptions of various turbulence models, Devenport and Simpson used their own extensive

  4. Comparative study of solid and bristled wings in flapping flight of tiny insects

    Science.gov (United States)

    Terrill, Christopher; Santhanakrishnan, Arvind

    2015-11-01

    Small insects such as thrips that are less than 1 mm in size fly at Reynolds numbers (Re) on the order of 10 and use wing-wing interaction during flapping. In this interaction, referred to as `clap-and-fling', the wings come in close contact with each other at the end of upstroke and rotate about the trailing edge during start of downstroke. The wings of these tiny insects consist of an array of bristles as opposed to a solid membrane. The goal of this study is to examine the effects of bristled wings on aerodynamic force generation and flow structures compared to solid wings. We used an experimental model for the study in which two model wings were prescribed to move along a simplified 2D representation of clap-and-fling kinematics. Forces were measured through the use of strain gauges and 2D phase-locked particle image velocimetry (PIV) was used to visualize the flow generated from flapping. The PIV results show that circulation of the leading edge vortices (LEVs) is attenuated when bristled wings are used. However, improved drag reduction is observed in the bristled wings. Aerodynamic efficiency variation with Re will be discussed. This research was supported by the National Science Foundation (CBET 1512071).

  5. Superexchange-Driven Magnetoelectricity in Magnetic Vortices

    NARCIS (Netherlands)

    Delaney, Kris T.; Mostovoy, Maxim; Spaldin, Nicola A.

    2009-01-01

    We demonstrate that magnetic vortices in which spins are coupled to polar lattice distortions via superexchange exhibit an unusually large linear magnetoelectric response. We show that the periodic arrays of vortices formed by frustrated spins on kagome lattices provide a realization of this concept

  6. Nonquasineutral electron vortices in nonuniform plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Ottinger, P. F. [Engility Corporation, Chantilly, Virginia 20151 (United States)

    2014-11-15

    Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.

  7. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  8. Theory of concentrated vortices an introduction

    CERN Document Server

    Alekseenko, S V; Okulov, V L

    2007-01-01

    Vortex motion is one of the basic states of a flowing continuum. Intere- ingly, in many cases vorticity is space-localized, generating concentrated vortices. Vortex filaments having extremely diverse dynamics are the most characteristic examples of such vortices. Notable examples, in particular, include such phenomena as self-inducted motion, various instabilities, wave generation, and vortex breakdown. These effects are typically ma- fested as a spiral (or helical) configuration of a vortex axis. Many publications in the field of hydrodynamics are focused on vortex motion and vortex effects. Only a few books are devoted entirely to v- tices, and even fewer to concentrated vortices. This work aims to highlight the key problems of vortex formation and behavior. The experimental - servations of the authors, the impressive visualizations of concentrated vortices (including helical and spiral) and pictures of vortex breakdown primarily motivated the authors to begin this work. Later, the approach based on the hel...

  9. Spatio-temporal optical vortices

    CERN Document Server

    Jhajj, N; Rosenthal, E W; Zahedpour, S; Wahlstrand, J K; Milchberg, H M

    2016-01-01

    We present the first experimental, theoretical, and numerical evidence of spatio-temporal optical vortices (STOVs). Quantized STOVs are a fundamental element of the nonlinear collapse and subsequent propagation of short optical pulses in material media. A STOV consists of a ring-shaped null in the electromagnetic field about which the phase is spiral, forming a dynamic torus which is concentric with and tracks the propagating pulse. Depending on the sign of the material dispersion, the local electromagnetic energy flow is saddle or spiral about the STOV. STOVs are born and evolve conserving topological charge; they can be simultaneously created in pairs with opposite windings, or generated from a point null. Our results, here obtained for optical pulse collapse and filamentation in air, are generalizable to a broad class of nonlinearly propagating waves.

  10. Breathers on Quantized Superfluid Vortices

    CERN Document Server

    Salman, Hayder

    2013-01-01

    We consider the propagation of breathers along a quantised superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schr\\"odinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localised in both space and time. The emergent structures on the vortex filament are analogous to loop solitons. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the cross-over range of scales in superfl...

  11. Electroweak Vortices and Gauge Equivalence

    Science.gov (United States)

    MacDowell, Samuel W.; Törnkvist, Ola

    Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the Abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)×U(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model.

  12. Analysis of streamwise-oriented vortex interactions for two wings in close proximity

    Science.gov (United States)

    Barnes, Caleb J.; Visbal, Miguel R.; Gordnier, Raymond E.

    2015-01-01

    This investigation addresses the impingement of the trailing vortex provided by a leader-wing upon a follower-wing operating in close proximity. Exploration of the relative spacing between the two wings reveals several distinct flow regimes occur within a small range of lateral positions of the incident vortex. These changes effectively alter the evolution of the follower-wing wake via mutual induction between the incident and trailing vortices. Several unsteady mechanisms impact the general flow field in each regime. The incident vortex for an inboard impingement rapidly decays over the wing due to transition to turbulence. A tip-aligned vortex results in a highly unsteady interaction and generates enhanced surface pressure fluctuations beneath the tip vortex. Placing the incident vortex outboard elicits mutual instability between the leader and follower-wing trailing vortices. While lift-enhancement was found to be dominated by an inviscid increase in effective angle of attack, viscous effects in the near-tip region alter the local surface force distribution and influence the rolling moment coefficient. These flow variations which occur over a small range of lateral positions could generate buffeting loads in the presence of a wandering streamwise vortex.

  13. Generation and Growth of Single Hairpin Vortices

    Science.gov (United States)

    Haji-Haidari, Ahmad

    The behavior of selectively generated single hairpin vortices are examined within a laminar boundary layer environment over a range of Reynolds numbers, the hairpin vortices are experimentally generated by means of controlled fluid injection from a streamwise slot. Flow visualization using both dye and hydrogen bubble wire is employed in conjunction with hot film anemometry to investigate the growth characteristics and evolution of these single hairpin vortices. Qualitatively, it is established that hairpin vortices form by local destabilization at the interface between the low-speed fluid introduced through the slot and the higher speed boundary layer flow. Kinematical considerations of the hairpin vortex are established. It is observed that a hairpin vortex generally displays visualization and velocity signatures characteristic of those observed for a turbulent boundary layer. Hydrogen-bubble wire visualization results specifically indicate that hairpin vortices generate two purely turbulent-like flow patterns. The first is a low-speed streak pattern developing immediately adjacent to the surface due to surface interaction by the counter -rotating legs of the hairpin vortex; the second pattern is a turbulent pocket-like pattern farther removed from the surface. It is determined from the visualization data that hairpin vortices manifest the necessary flow characteristics which give rise to the regenerative and sustained process required for maintenance of turbulence. The regeneration and the growth process takes place through the formation of similar hairpin-like vortices by one of two means. The first is an inviscid lateral propagation of the initial disturbance which gives rise to outboard (subsidiary), vortices which cause the lateral spreading of the structure. A more complicated and eruptive process occurs by means of viscous-inviscid interactions which give rise to trailing vortices (secondary), which cause the streamwise elongation of the disturbance. A

  14. A numerical method for three-dimensional vortical structure of spiral vortex in wind turbine with two-dimensional velocity data at plural azimuthal angles

    Science.gov (United States)

    Nakayama, Katsuyuki; Mizushima, Lucas Dias; Murata, Junsuke; Maeda, Takao

    2016-06-01

    A numerical method is presented to extract three-dimensional vortical structure of a spiral vortex (wing tip vortex) in a wind turbine, from two-dimensional velocity data at several azimuthal angles. This numerical method contributes to analyze a vortex observed in experiment where three-dimensional velocity field is difficult to be measured. This analysis needs two-dimensional velocity data in parallel planes at different azimuthal angles of a rotating blade, which facilitates the experiment since the angle of the plane does not change. The vortical structure is specified in terms of the invariant flow topology derived from eigenvalues and eigenvectors of three-dimensional velocity gradient tensor and corresponding physical properties. In addition, this analysis enables to investigate not only vortical flow topology but also important vortical features such as pressure minimum and vortex stretching that are derived from the three-dimensional velocity gradient tensor.

  15. Vorticity in Heavy-Ion Collisions

    CERN Document Server

    Deng, Wei-Tian

    2016-01-01

    We study the event-by-event generation of flow vorticity in RHIC Au + Au collisions and LHC Pb + Pb collisions by using the HIJING model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  16. Vorticity in heavy-ion collisions

    Science.gov (United States)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  17. Correlations between Abelian monopoles and center vortices

    Science.gov (United States)

    Hosseini Nejad, Seyed Mohsen; Deldar, Sedigheh

    2017-04-01

    We study the correlations between center vortices and Abelian monopoles for SU(3) gauge group. Combining fractional fluxes of monopoles, center vortex fluxes are constructed in the thick center vortex model. Calculating the potentials induced by fractional fluxes constructing the center vortex flux in a thick center vortex-like model and comparing with the potential induced by center vortices, we observe an attraction between fractional fluxes of monopoles constructing the center vortex flux. We conclude that the center vortex flux is stable, as expected. In addition, we show that adding a contribution of the monopole-antimonopole pairs in the potentials induced by center vortices ruins the Casimir scaling at intermediate regime.

  18. Wing Warping, Roll Control and Aerodynamic Optimization of Inflatable Wings

    Science.gov (United States)

    Simpson, Andrew

    2005-11-01

    The research presents work on aerodynamic control by warping inflatable wings. Inflatable wings are deformable by their nature. Mechanical manipulation of the wing's shape has been demonstrated to alter the performance and control the vehicle in flight by deforming the trailing edge of the wing near the wing tip. Predicting and correlating the forces required in deforming the wings to a particular shape and the deformation generated for a given internal pressure were conducted through the use of photogrammetry. This research focuses on optimizing the roll moments and aerodynamic performance of the vehicle, given the current level of wing warping ability. Predictions from lifting line theory applied to wing shape changes are presented. Comparisons from the experimental results are made with lifting line analysis for wings with arbitrary twist and the solutions are used to determine rolling moment and optimum L/D. Results from flight tests will also be presented.

  19. Regional eddy vorticity transport and the equilibrium vorticity budgets of a numerical model ocean circulation

    Science.gov (United States)

    Harrison, D. E.; Holland, W. R.

    1981-01-01

    A mean vorticity budget analysis is presented of Holland's (1978) numerical ocean general circulation experiment. The stable budgets are compared with classical circulation theory to emphasize the ways in which the mesoscale motions of the model alter (or leave unaltered) classical vorticity balances. The basinwide meridional transports of vorticity by the mean flow and by the mesoscale flow in the mean are evaluated to establish the role(s) of the mesoscale in the larger scale equilibrium vorticity transports. The vorticity equation for this model fluid system is presented and the budget analysis method is described. Vorticity budgets over the selected regions and on a larger scale are given, and a summary of budget results is provided along with remarks about the utility of this type of analysis.

  20. Regional eddy vorticity transport and the equilibrium vorticity budgets of a numerical model ocean circulation

    Science.gov (United States)

    Harrison, D. E.; Holland, W. R.

    1981-01-01

    A mean vorticity budget analysis is presented of Holland's (1978) numerical ocean general circulation experiment. The stable budgets are compared with classical circulation theory to emphasize the ways in which the mesoscale motions of the model alter (or leave unaltered) classical vorticity balances. The basinwide meridional transports of vorticity by the mean flow and by the mesoscale flow in the mean are evaluated to establish the role(s) of the mesoscale in the larger scale equilibrium vorticity transports. The vorticity equation for this model fluid system is presented and the budget analysis method is described. Vorticity budgets over the selected regions and on a larger scale are given, and a summary of budget results is provided along with remarks about the utility of this type of analysis.

  1. Delta III—an evolutionary delta growth

    Science.gov (United States)

    Arvesen, R. J.; Simpson, J. S.

    1996-03-01

    In order to remain competitive in the future and expand the McDonnell Douglas Aerospace market share, MDA has developed an expendable launch system strategy that devices cost-effective launch systems from the Delta II with a growth vehicle configuration called Delta III. The Delta III evolves from the Delta II launch system through development of a larger payload fairing (4-meter diameter), new cryogenically propelled upper stage, new first stage fuel tank, and larger strap-on solid rocket motors. We are developing the Delta III using Integrated Product Development Teams that capitalize on the experience base that has led us to a world record breaking mission success of 49 consecutive Delta II missions. The Delta III first-launch capability is currently planned for the spring of 1998 in support of our first spacecraft customer, Hughes Space and Communications International.

  2. ANALYTICAL SOLUTION OF NONLINEAR BAROTROPIC VORTICITY EQUATION

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-peng; SHI Wei-hui

    2008-01-01

    The stability of nonlinear barotropic vorticity equation was proved. The necessary and sufficient conditions for the initial value problem to be well-posed were presented. Under the conditions of well-posedness, the corresponding analytical solution was also gained.

  3. Vortices in simulations of solar surface convection

    CERN Document Server

    Moll, R; Schüssler, M

    2011-01-01

    We report on the occurrence of small-scale vortices in simulations of the convective solar surface. Using an eigenanalysis of the velocity gradient tensor, we find the subset of high vorticity regions in which the plasma is swirling. The swirling regions form an unsteady, tangled network of filaments in the turbulent downflow lanes. Near-surface vertical vortices are underdense and cause a local depression of the optical surface. They are potentially observable as bright points in the dark intergranular lanes. Vortex features typically exist for a few minutes, during which they are moved and twisted by the motion of the ambient plasma. The bigger vortices found in the simulations are possibly, but not necessarily, related to observations of granular-scale spiraling pathlines in "cork animations" or feature tracking.

  4. Active Control of Flapping Wings Using Wing Deformation

    Science.gov (United States)

    Tokutake, Hiroshi; Sunada, Shigeru; Ohtsuka, Yukio

    A new method for the attitude control of a flapping-wing aircraft is proposed. In this method, the variations in wing deformation, that is, the feathering angle and the camber, are controlled by pulling the wing at a certain point with a thread connected to a servomotor. The experimental setup for verifying the practicability of this method was developed, and aerodynamic forces and wing deformation were measured. It was concluded that thread control caused effective wing deformation, and the variation in the deformation generated the pitching moment that controls the attitude of a flapping-wing aircraft.

  5. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases

  6. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    the wing. Th 60° angle stop wing achieved the largest total stroke angle and generated the most lift for the lowest power consumption of the wings tested. 2. Phase averaged stereo Particle Image Velocimetry (PIV) data was collected at eight phases through the flap cycle on the 30°, 45°, and 60° angle stop wings. Wings were mounted transverse and parallel to the interrogating laser sheet, and planar velocity intersections at the wing mid-span, one chord below the wing, were compared to one another to verify data fidelity. A Rankine-Froude actuator disk model was adapted to calculate the approximate vertical thrust generated from the total momentum flux through the flapping semi-disk using the velocity field measurements. Three component stereo u, v, and w-velocity contour measurements confirmed the presence of extensive vortical structures in the vicinity of the wing. The leading edge vortex was successfully tracked through the stroke cycle appearing at approximately 25% span, increasing in circulatory strength and translational velocity down the span toward the tip, and dissipating just after 75% span. Thrust calculations showed the vertically mounted wing more accurately represented the vertical forces when compared to its corresponding force balance measurement than the horizontally mounted wing. The mid-span showed the highest vertical velocity profile below the wing; and hence, was the location responsible for the majority of lift production along the span.

  7. Refutation of stability proofs for dipole vortices

    DEFF Research Database (Denmark)

    Nycander, J.

    1992-01-01

    Five stability proofs for dipole vortices (modons) that have been presented by various authors are examined. It is shown that they are all incorrect, and that westward-propagating dipoles are in fact unstable, in contradiction to some of the proofs.......Five stability proofs for dipole vortices (modons) that have been presented by various authors are examined. It is shown that they are all incorrect, and that westward-propagating dipoles are in fact unstable, in contradiction to some of the proofs....

  8. Chaotic vortical flows and their manifestations

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Sorin, A.; Teryaev, O.

    2016-11-01

    We study vorticity and hydrodynamic helicity in semi-peripheral heavy-ion collisions using the kinetic model of Quark-Gluon Strings. The angular momentum, which is a source of P-odd observables, is preserved with a good accuracy. We observe formation of the specific toroidal structures of the vorticity field. Their existence, accompanied by the strange chemical potential, is mirrored in the polarization of hyperons of the percent order.

  9. Three dimensional steady and unsteady asymmetric flow past wings of arbitrary planforms

    Science.gov (United States)

    Kandil, O. A.; Atta, E. H.; Nayfeh, A. H.

    1978-01-01

    The nonlinear discrete vortex method is extended to treat the problem of asymmetric flows past a wing with leading edge separation, including steady and unsteady flows. The problem is formulated in terms of a body fixed frame of reference and the nonlinear-discrete vortex method is modified accordingly. Although the method is general, only examples of flows past delta wings are presented due to the availability of experimental data as well as approximate theories. Comparison of results with experimental results for a delta wing undergoing a steady rolling motion at zero angle of attack demonstrate the superiority of the present method over existing approximate theories in obtaining highly accurate loads. Numerical results for yawed wings at large angles of attack are also presented. In all cases, total load coefficients, pressure distributions, and shapes of the free vortex sheets are shown.

  10. Generation and propagation of optical vortices

    Science.gov (United States)

    Rozas, David

    Optical vortices are singularities in phase fronts of laser beams. They are characterized by a dark core whose size (relative to the size of the background beam) may dramatically affect their behavior upon propagation. Previously, only large-core vortices have been extensively studied. The object of the research presented in this dissertation was to explore ways of generating small-core optical vortices (also called optical vortex filaments ), and to examine their propagation using analytical, numerical and experimental methods. Computer-generated holography enabled us to create arbitrary distributions of optical vortex filaments for experimental exploration. Hydrodynamic analogies were used to develop an heuristic model which described the dependence of vortex motion on other vortices and the background beam, both qualitatively and quantitatively. We predicted that pair of optical vortex filaments will rotate with angular rates inversely proportional to their separation distance (just like vortices in a fluid). We also reported the first experimental observation of this novel fluid-like effect. It was found, however, that upon propagation in linear media, the fluid-like rotation was not sustained owing to the overlap of diffracting vortex cores. Further numerical studies and experiments showed that rotation angle may be enhanced in nonlinear self-defocusing media. The results presented in this thesis offer us a better understanding of dynamics of propagating vortices which may result in applications in optical switching, optical data storage, manipulation of micro-particles and optical limiting for eye protection.

  11. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O’Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition.

  12. The Delta 2 launcher

    Science.gov (United States)

    Ousley, Gilbert W., Sr.

    1991-12-01

    The utilization of the Delta 2 as the vehicle for launching Aristoteles into its near Sun synchronous orbit is addressed. Delta is NASA's most reliable launch vehicle and is well suited for placing the present Aristoteles spacecraft into a 400 m circular orbit. A summary of some of the Delta 2 flight parameters is presented. Diagrams of a typical Delta 2 two stage separation are included along with statistics on delta reliability and launch plans.

  13. Vortices and turbulence (The 23rd Lanchester Memorial Lecture)

    Science.gov (United States)

    Lilley, G. M.

    1983-12-01

    A comprehensive discussion is presented concerning the phenomena characteristically treated in vortex and turbulence theory, as well as the degree of success achieved by various computation and visualization methods and theoretical models developed for vortex flow behavior prediction. Note is taken of the pioneering research conducted by F. W. Lanchester in 1893-1907, and attention is given to vortex tip and edge generation by rectangular and delta wings, the cool core effect of the Ranque-Hilsch vortex tube, the modeling of shear flows by means of vortex array methods, the classification and modelling of turbulent flows (together with a taxonomy of their calculation methods), and NASA ILLIAC IV computations of two-dimensional channel flow. Also noted are recent results concerning the boundary layer coherent structure of a flat plate at zero pressure gradient, including the regeneration structure and flow distortion and breakdown of a turbulent boundary layer.

  14. Dynamics of Micro-Air-Vehicle with Flapping Wings

    Directory of Open Access Journals (Sweden)

    K. Sibilski

    2004-01-01

    Full Text Available Small (approximately 6 inch long, or hand-held reconnaissance micro air vehicles (MAVs will fly inside buildings, and require hover for observation, and agility at low speeds to move in confined spaces. For this flight envelope insect-like flapping wings seem to be an optimal mode of flying. Investigation of the aerodynamics of flapping wing MAVs is very challenging. The problem involves complex unsteady, viscous flow (mainly laminar, with the moving wing generating vortices and interacting with them. At this early stage of research only a preliminary insight into the nature of the little known aerodynamics of MAVs has been obtained. This paper describes computational models for simulation of the controlled motion of a microelectromechanical flying insect – entomopter. The design of software simulation for entomopter flight (SSEF is presented. In particular, we will estimate the flight control algorithms and performance for a Micromechanical Flying Insect (MFI, a 80–100 mm (wingtip-to-wingtip device capable of sustained autonomous flight. The SSEF is an end-to-end tool composed of several modular blocks which model the wing aerodynamics and dynamics, the body dynamics, and in the future, the environment perception, control algorithms, the actuators dynamics, and the visual and inertial sensors. We present the current state of the art of its implementation, and preliminary results. 

  15. Investigation of engine jet/wing-tip vortex interference

    Energy Technology Data Exchange (ETDEWEB)

    Huppertz, G.; Fares, E.; Abstiens, R.; Schroder, W. [Aerodynamisches Institut, RWTH Aachen (Germany)

    2004-04-01

    The wing-tip vortex of a rectangular wing half-model with a model engine is studied experimentally and numerically. The airfoil has a supercritical BAC 3-11/RES/30/21 geometry with a chord length of c = 150 mm. The investigations include three different span-wise positions of the engine and two jet velocities with a constant free stream velocity of u{infinity}=27 m/s yielding Rec = 2.8 x 10{sup 5}. The numerical simulation is divided into two parts. First the flow around the airfoil is calculated. In a second step the data is taken as an input to calculate the wake downstream of the trailing edge. Experiments include 2C- and 3C-PIV-measurements for the velocity distribution of the jet and the wing-tip vortices. The experimental and numerical results show the significance of the stream-wise velocity component for the analysis of the jet/wing-tip vortex interaction. (author)

  16. SU(3) centre vortices underpin confinement and dynamical chiral symmetry breaking

    CERN Document Server

    O'Malley, Elyse-Ann; Leinweber, Derek; Moran, Peter

    2011-01-01

    The mass function of the nonperturbative quark propagator in SU(3) gauge theory shows only a weak dependence on the vortex content of the gauge configurations. Of particular note is the survival of dynamical mass generation on vortex-free configurations having a vanishing string tension. This admits the possibility that mass generation associated with dynamical chiral symmetry breaking persists without confinement. In this presentation, we examine the low-lying ground-state hadron spectrum of the pi, rho, N and Delta and discover that while dynamical mass generation persists in the vortex-free theory, it is not connected to dynamical chiral symmetry breaking. In this way, centre vortices in SU(3) gauge theory are intimately linked to both confinement and dynamical chiral symmetry breaking. We conclude that centre vortices are the essential underlying feature of the QCD vacuum.

  17. Stability of helical tip vortices in a rotor far wake

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2007-01-01

    , corresponding to Rankine, Gaussian and Scully vortices, at radial extents ranging from the core radius of a tip vortex to several rotor radii. The analysis shows that the stability of tip vortices largely depends on the radial extent of the hub vorticity as well as on the type of vorticity distribution. As part......As a means of analysing the stability of the wake behind a multi-bladed rotor the stability of a multiplicity of helical vortices embedded in an assigned flow field is addressed. In the model the tip vortices in the far wake are approximated by infinitely long helical vortices with constant pitch...... and radius. The work is a further development of a model developed in Okulov (J. Fluid Mech., vol. 521, p. 319) in which the linear stability of N equally azimuthally spaced helical vortices was considered. In the present work the analysis is extended to include an assigned vorticity field due to root...

  18. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2012-12-01

    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  19. Delta Plaza kohvik = Delta Plaza cafe

    Index Scriptorium Estoniae

    2010-01-01

    Tallinnas Pärnu mnt 141 asuva kohviku Delta Plaza sisekujundusest. Sisearhitektid Tiiu Truus ja Marja Viltrop (Stuudio Truus OÜ). Tiiu Truusi tähtsamate tööde loetelu. Büroohoone Delta Plaza arhitektid Marika Lõoke ja Jüri Okas (AB J. Okas & M. Lõoke)

  20. Delta Plaza kohvik = Delta Plaza cafe

    Index Scriptorium Estoniae

    2010-01-01

    Tallinnas Pärnu mnt 141 asuva kohviku Delta Plaza sisekujundusest. Sisearhitektid Tiiu Truus ja Marja Viltrop (Stuudio Truus OÜ). Tiiu Truusi tähtsamate tööde loetelu. Büroohoone Delta Plaza arhitektid Marika Lõoke ja Jüri Okas (AB J. Okas & M. Lõoke)

  1. Hawkmoth flight performance in tornado-like whirlwind vortices.

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L

    2014-06-01

    Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.

  2. Characterizing a burst leading-edge vortex on a rotating flat plate wing

    Science.gov (United States)

    Jones, Anya R.; Medina, Albert; Spooner, Hannah; Mulleners, Karen

    2016-04-01

    Identifying, characterizing, and tracking incoherent vortices in highly separated flows is of interest for the development of new low-order models for unsteady lift prediction. The current work examines several methods to identify vortex burst and characterize a burst leading-edge vortex. Time-resolved stereoscopic PIV was performed on a rotating flat plate wing at Re = 2500. The burst process was found to occur at mid-span and is characterized by axial flow reversal, the entrainment of opposite-sign vorticity, and a rapid expansion of vortex size. A POD analysis revealed that variations in certain mode coefficients are indicative of the flow state changes characteristics of burst. During burst, the leading-edge vortex evolves to a region of inhomogeneous vorticity distributed over a large area. Several methods of defining the vortex size and circulation are evaluated and a combination of these can be used to characterize the leading-edge vortex both pre- and post-burst.

  3. Viscous tilting and production of vorticity in homogeneous turbulence

    Science.gov (United States)

    Holzner, M.; Guala, M.; Lüthi, B.; Liberzon, A.; Nikitin, N.; Kinzelbach, W.; Tsinober, A.

    2010-06-01

    Viscous depletion of vorticity is an essential and well known property of turbulent flows, balancing, in the mean, the net vorticity production associated with the vortex stretching mechanism. In this letter, we, however, demonstrate that viscous effects are not restricted to a mere destruction process, but play a more complex role in vorticity dynamics that is as important as vortex stretching. Based on the results from three dimensional particle tracking velocimetry experiments and direct numerical simulation of homogeneous and quasi-isotropic turbulence, we show that the viscous term in the vorticity equation can also locally induce production of vorticity and changes of the orientation of the vorticity vector (viscous tilting).

  4. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    Science.gov (United States)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  5. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  6. Vortices and vortex lattices in quantum ferrofluids

    CERN Document Server

    Martin, A M; O'Dell, D H J; Parker, N G

    2016-01-01

    The achievement of quantum-degenerate Bose gases composed of atoms with sizeable magnetic dipole moments has realized quantum ferrofluids, a form of fluid which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to circulate through vortices with quantized circulation. These excitations underpin a variety of rich phenomena, including vortex lattices, quantum turbulence, the Berenzinksii-Kosterlitz-Thouless transition and Kibble-Zurek defect formation. Here we provide a comprehensive review of the theory of vortices and vortex lattices in quantum ferrofluids created from dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. Our discussion is based on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, from analytic treatments based on the Thomas-Fermi and variational approaches to full numerical simula...

  7. Stability of periodic arrays of vortices

    CERN Document Server

    Dauxois, T; Tuckerman, L S; Dauxois, Thierry; Fauve, Stephan; Tuckerman, Laurette

    1995-01-01

    The stability of periodic arrays of Mallier-Maslowe or Kelvin-Stuart vortices is discussed. We derive with the energy-Casimir stability method the nonlinear stability of this solution in the inviscid case as a function of the solution parameters and of the domain size. We exhibit the maximum size of the domain for which the vortex street is stable. By adapting a numerical time-stepping code, we calculate the linear stability of the Mallier-Maslowe solution in the presence of viscosity and compensating forcing. Finally, the results are discussed and compared to a recent experiment in fluids performed by Tabeling et al.~[Europhysics Letters {\\bf 3}, 459 (1987)]. Electromagnetically driven counter-rotating vortices are unstable above a critical electric current, and give way to co-rotating vortices. The importance of the friction at the bottom of the experimental apparatus is also discussed.

  8. Cosmological Perturbations: Vorticity, Isocurvature and Magnetic Fields

    CERN Document Server

    Christopherson, Adam J

    2014-01-01

    In this paper I review some recent, interlinked, work undertaken using cosmological perturbation theory -- a powerful technique for modelling inhomogeneities in the Universe. The common theme which underpins these pieces of work is the presence of non-adiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or non-adiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduc...

  9. On n-quantum vortices in superconductors

    CERN Document Server

    Marchenko, V I

    2002-01-01

    The conditions of the n-quantum vortices observation in the superconductors are discussed. It is established in the course of calculating the coefficient by the |psi| sup 6 (psi - the order parameter) in the Ginzburg-Landau theory for the BCS standard model that the sign of this coefficient is negative. This favours the possibility of observing the n-quantum vortices in the superconductors, wherein the vortex lattice with gravitation is formed. The existence of gravitation is manifested in the magnetization finite jump in the H sub 0 = H sub c sub sup 1 field. When by the temperature change the superconductor behavior changes in such a way, that its magnetization in the H sub 0 = H sub c field reduces to the zero, than the observation of the n-quantum vortices near this transition is possible

  10. Twin Flavor Chicken Wings

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ingredients:1000g chicken wings,about,100g Shredded rape-seedleaves,100g black sesame seeds,7g salt,5g sugar,3gMSG,10g cooking wine,5g cassia bark,1000g cookingoil(actual consumption only 100 grams),one egg,anoptional amount of scallion,ginger root,starch and

  11. Martian polar vortices: Comparison of reanalyses

    Science.gov (United States)

    Waugh, D. W.; Toigo, A. D.; Guzewich, S. D.; Greybush, S. J.; Wilson, R. J.; Montabone, L.

    2016-09-01

    The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification.

  12. Flow mechanism of self-induced reversed limit-cycle wing rock for a chined forebody configuration

    Science.gov (United States)

    Shi, Wei; Deng, Xueying; Wang, Yankui; Li, Qian

    2015-11-01

    The wing rock phenomenon reduces the maneuverability and affects the flight safety of modern advanced fighters, such as the F-35, which have chined forebodies. Understanding the flow mechanism is critical to suppressing this phenomenon. In this study, experiments were conducted to reveal the motion and flow behavior over a chined forebody configuration. The tests were performed in a wind tunnel at an angle of attack of 50∘ with a Reynolds number of 1.87 × 105. Reversed limit-cycle oscillation was discovered in the free-to-roll tests. The unstable rolling moment around zero roll angle in the static case suggests that the model tends to be driven away from zero roll angle. Thus, the model cannot maintain its equilibrium at zero roll angle during free-to-roll motion. The unstable rolling moment is generated by the wing vortex structure above the upward wing, which is induced by the forebody asymmetric vortices. During wing rock, the wing vortex structure appears above the upward wing at a large roll angle after crossing zero roll angle owing to a time lag in the forebody vortex position, which is conducive to the motion. The forebody asymmetric vortices are thus the key to induce and maintain the motion.

  13. Up-Sliding Slantwise Vorticity Development and the Complete Vorticity Equation with Mass Forcing

    Institute of Scientific and Technical Information of China (English)

    崔晓鹏; 高守亭; 吴国雄

    2003-01-01

    The moist potential vorticity (MPV) equation is derived from complete atmospheric equations includingthe effect of mass forcing, with which the theory of Up-sliding Slantwise Vorticity Development (USVD)is proposed based on the theory of Slantwise Vorticity Development (SVD). When an air parcel slides upalong a slantwise isentropic surface, its vertical component of relative vorticity will develop, and the steeperthe isentropic surface is, the more violent the development will be. From the definition of MPV and theMPV equation produced here in, a complete vorticity equation is then put forward with mass forcing, whichexplicitly includes the effects of both internal forcings, such as variations of stability, baroclinicity, andvertical shear of horizontal wind, and external forcings, such as diabatic heating, friction, and mass forcing.When isentropic surfaces are flat, the complete vorticity equation matches its traditional counterpart. Thephysical interpretations of some of the items which are included in the complete vorticity equation butnot in the traditional one are studied with a simplified model of the Changjiang-Huaihe Meiyu front. A60-h simulation is then performed to reproduce a torrential rain event in the Changjiang-Huaihe regionand the output of the model is studied qualitatively based on the theory of USVD. The result shows thatthe conditions of the theory of USVD are easily satisfied immediately in front of mesoscale rainstorms inthe downwind direction, that is, the theory of USVD is important to the development and movement ofthese kinds of systems.

  14. Effect of spanwise pressure gradient on flow and heat transfer characteristics of longitudinal vortices embedded in a turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Min; Moon, Joo Hyun; Park, Jae Yong; Kim, Dae Yun; Lee, Seong Hyuk [Chung-Ang University, Seoul (Korea, Republic of)

    2015-02-15

    This study numerically investigated the influence of spanwise pressure gradient on heat transfer of a 3D turbulent boundary layer with longitudinal vortices. A 30° bend in the passage provided the spanwise pressure gradient. The longitudinal pair vortices were generated using a pair of delta winglets. The Reynolds-averaged Navier-Stokes and energy equations based on the conventional Reynolds stress model were used. The predictions agreed well with the experimental data for the straight plate. The turbulent boundary layer was significantly perturbed with the longitudinal vortices. The spanwise pressure gradient contributed to faster degradation of the longitudinal vortices and widened the perturbed flow region. The local Stanton number distributions were asymmetric because of the difference in the evolution of the longitudinal vortices in the curved region. Moreover, comparison showed that the local Stanton number in the downstream of the straight channel increased near the surface because of the secondary re-circulating vortex. The thickness of the thermal boundary layers increased in the streamwise direction because of the significant flow mixing and heat transfer.

  15. Slow light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states havin...... non-vanishing phase velocity inside the Brillouin zone. We also demonstrate that presence of vortices can be linked to the absence of slow-light at the zone edge, and present calculations illustrating these general results....

  16. Slow-light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states havin...... non-vanishing phase velocity inside the Brillouin zone. We also demonstrate that presence of vortices can be linked to the absence of slow-light at the zone edge, and present calculations illustrating these general results....

  17. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  18. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  19. Dust Devils and Convective Vortices on Mars

    Science.gov (United States)

    Ordonez-Etxeberria, I.; Hueso, R.; Sánchez-Lavega, A.

    2017-03-01

    Dust devils are low pressure convective vortices able to lift dust from the surface of a planet. They are a common feature on Mars and they can also be found on desertic locations on Earth. On Mars they are considered an important part of the atmospheric dust cycle. Dust in Mars is an essential ingredient of the atmosphere where it affects the radiative balance of the planet. Here we review observations of these dusty vortices from orbit, from in situ measurements on the surface of Mars and some of the models developed to simulate them.

  20. Horizontal Roll Vortices and Crown Fires.

    Science.gov (United States)

    Haines, Donald A.

    1982-06-01

    Observational evidence from nine crown fires suggests that horizontal roll vortices are a major mechanism in crown-fire spread. Post-burn aerial photography indicates that unburned tree-crown streets are common with crown fire. Investigation of the understory of these crown streets after two fires showed uncharred tree trunks along a center line. This evidence supports a hypothesis of vortex action causing strong downward motion of air along the streets. Additionally, photographs of two ongoing crown fires show apparent horizontal roll vortices. Discussion also includes laboratory and numerical studies in fluid dynamics that may apply to crown fires.

  1. Tracking Surface Cyclones with Moist Potential Vorticity

    Institute of Scientific and Technical Information of China (English)

    Zuohao CAO; Da-Lin ZHANG

    2004-01-01

    Surface cyclone tracks are investigated in the context of moist potential vorticity (MPV). A prognostic equation of surface absolute vorticity is derived which provides a basis for using negative MPV (NMPV) in the troposphere as an alternative approach to track surface cyclones. An observed case study of explosive lee cyclogenesis is performed to test the effectiveness of the MPV approach. It is shown that when a surface cyclone signal is absent due to the blocking of the Rocky Mountains, the surface cyclone can be well identified by tracing the peak NMPV.

  2. SMA actuators for morphing wings

    Science.gov (United States)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  3. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.

    1981-01-01

    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  4. Cyclones and attractive streaming generated by acoustical vortices.

    Science.gov (United States)

    Riaud, Antoine; Baudoin, Michael; Thomas, Jean-Louis; Bou Matar, Olivier

    2014-07-01

    Acoustical and optical vortices have attracted great interest due to their ability to capture and manipulate particles with the use of radiation pressure. Here we show that acoustical vortices can also induce axial vortical flow reminiscent of cyclones, whose topology can be controlled by adjusting the properties of the acoustical beam. In confined geometry, the phase singularity enables generating "attractive streaming" with the flow directed toward the transducer. This opens perspectives for contactless vortical flow control.

  5. Vorticity, Gyroscopic precession, and Spin-Curvature Force

    OpenAIRE

    Liang, Wei Chieh; Lee, Si Chen

    2012-01-01

    In investigating the relation between vorticity and gyroscopic precession, we calculate the vorticity vector in Godel, Kerr, Lewis, Schwarzschild, Minkowski metric and find out the vorticity vector of the specific observers is the angular velocity of gyroscopic precession. Furthermore, considering space-time torsion will flip the vorticity and spin-curvature force to opposite sign. This result is very similar to the behavior of positive and negative helicity of quantum spin in Stern-Gerlach f...

  6. Cyclones and attractive streaming generated by acoustical vortices

    CERN Document Server

    Riaud, Antoine; Thomas, Jean-Louis; Matar, Olivier Bou

    2014-01-01

    Acoustical and optical vortices have attracted large interest due to their ability in capturing and manipulating particles with the use of the radiation pressure. Here we show that acoustical vortices can also induce axial vortical flow reminiscent of cyclones whose topology can be controlled by adjusting the properties of the acoustical beam. In confined geometry, the phase singularity enables generating attractive streaming with a flow directed toward the transducer. This opens perspectives for contact-less vortical flow control.

  7. Confinement and fat-center-vortices model

    CERN Document Server

    Deldar, S

    2004-01-01

    In this paper I review shortly potentials obtained for SU(2), SU(3) and SU(4) static sources from fat-center-vortices model. Results confirm the confinement of quarks in all three gauge groups. Proportionality of string tensions with flux tube counting is better than Casimir scaling especially for SU(4).

  8. Equilibration of centrifugally unstable vortices: A review

    NARCIS (Netherlands)

    Carnevale, G.F.; Kloosterziel, R.C.; Orlandi, P.

    2016-01-01

    In three-dimensional flow, a vortex can become turbulent and be destroyed through a variety of instabilities. In rotating flow, however, the result of the breakup of a vortex is usually a state comprising several vortices with their axes aligned along the ambient rotation direction. This article is

  9. Long Term Changes in the Polar Vortices

    Science.gov (United States)

    Braathen, Geir O.

    2016-04-01

    As the amount of halogens in the stratosphere is slowly declining and the ozone layer slowly recovers it is of interest to see how the meteorological conditions in the vortex develop over the long term since such changes might alter the foreseen ozone recovery. In conjunction with the publication of the WMO Antarctic and Arctic Ozone Bulletins, WMO has acquired the ERA Interim global reanalysis data set for several meteorological parameters. This data set goes from 1979 - present. These long time series of data can be used for several useful studies of the long term development of the polar vortices. Several "environmental indicators" for vortex change have been calculated, and a climatology, as well as trends, for these parameters will be presented. These indicators can act as yardsticks and will be useful for understanding past and future changes in the polar vortices and how these changes affect polar ozone depletion. Examples of indicators are: vortex mean temperature, vortex minimum temperature, vortex mean PV, vortex "importance" (PV*area), vortex break-up time, mean and maximum wind speed. Data for both the north and south polar vortices have been analysed at several isentropic levels from 350 to 850 K. A possible link between changes in PV and sudden stratospheric warmings will be investigated, and the results presented. The unusual meteorological conditions of the 2015 south polar vortex and the 2010/11 and 2015/16 north polar vortices will be compared to other recent years.

  10. Vorticity dynamics in an intracranial aneurysm

    Science.gov (United States)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Direct Numerical Simulation is carried out to investigate the vortex dynamics of physiologic pulsatile flow in an intracranial aneurysm. The numerical solver is based on the CURVIB (curvilinear grid/immersed boundary method) approach developed by Ge and Sotiropoulos, J. Comp. Physics, 225 (2007) and is applied to simulate the blood flow in a grid with 8 million grid nodes. The aneurysm geometry is extracted from MRI images from common carotid artery (CCA) of a rabbit (courtesy Dr.Kallmes, Mayo Clinic). The simulation reveals the formation of a strong vortex ring at the proximal end during accelerated flow phase. The vortical structure advances toward the aneurysm dome forming a distinct inclined circular ring that connects with the proximal wall via two long streamwise vortical structures. During the reverse flow phase, the back flow results to the formation of another ring at the distal end that advances in the opposite direction toward the proximal end and interacts with the vortical structures that were created during the accelerated phase. The basic vortex formation mechanism is similar to that observed by Webster and Longmire (1998) for pulsed flow through inclined nozzles. The similarities between the two flows will be discussed and the vorticity dynamics of an aneurysm and inclined nozzle flows will be analyzed.This work was supported in part by the University of Minnesota Supercomputing Institute.

  11. RENORMALIZED ENERGY WITH VORTICES PINNING EFFECT

    Institute of Scientific and Technical Information of China (English)

    Ding Shijin

    2000-01-01

    This paper is a continuation of the previous paper in the Journal of Partial Differential Equations [1]. We derive in this paper the renormalized energy to further determine the locations of vortices in some case for the variational problem related to the superconducting thin films having variable thickness.

  12. Prometheus Induced Vorticity In Saturns F Ring

    CERN Document Server

    Sutton, Phil J

    2016-01-01

    Saturns rings are known to show remarkable real time variability in their structure. Many of which can be associated to interactions with nearby moons and moonlets. Possibly the most interesting and dynamic place in the rings, probably in the whole Solar System, is the F ring. A highly disrupted ring with large asymmetries both radially and azimuthally. Numerically non zero components to the curl of the velocity vector field (vorticity) in the perturbed area of the F ring post encounter are witnessed, significantly above the background vorticity. Within the perturbed area rich distributions of local rotations is seen located in and around the channel edges. The gravitational scattering of ring particles during the encounter causes a significant elevated curl of the vector field above the background F ring vorticity for the first 1-3 orbital periods post encounter. After 3 orbital periods vorticity reverts quite quickly to near background levels. This new found dynamical vortex life of the ring will be of grea...

  13. Potential vorticity formulation of compressible magnetohydrodynamics.

    Science.gov (United States)

    Arter, Wayne

    2013-01-04

    Compressible ideal magnetohydrodynamics is formulated in terms of the time evolution of potential vorticity and magnetic flux per unit mass using a compact Lie bracket notation. It is demonstrated that this simplifies analytic solution in at least one very important situation relevant to magnetic fusion experiments. Potentially important implications for analytic and numerical modelling of both laboratory and astrophysical plasmas are also discussed.

  14. Motion of three vortices near collapse

    Science.gov (United States)

    Leoncini, X.; Kuznetsov, L.; Zaslavsky, G. M.

    2000-08-01

    A system of three point vortices in an unbounded plane has a special family of self-similarly contracting or expanding solutions: during the motion, the vortex triangle remains similar to the original one, while its area decreases (grows) at a constant rate. A contracting configuration brings three vortices to a single point in a finite time; this phenomenon known as vortex collapse is of principal importance for many-vortex systems. Dynamics of close-to-collapse vortex configurations depends on the way the collapse conditions are violated. Using an effective potential representation, a detailed quantitative analysis of all the different types of near-collapse dynamics is performed when two of the vortices are identical. We discuss time and length scales, emerging in the problem, and their behavior as the initial vortex triangle is approaching an exact collapse configuration. Different types of critical behaviors, such as logarithmic or power-law divergences are exhibited, which emphasize the importance of the way the collapse is approached. Period asymptotics for all singular cases are presented as functions of the initial vortice's configurations. Special features of passive particle mixing by near-collapse flows are illustrated numerically.

  15. Bilinear Relative Equilibria of Identical Point Vortices

    DEFF Research Database (Denmark)

    Aref, H.; Beelen, Peter; Brøns, Morten

    2012-01-01

    -axis and n on the x-axis. We define generating polynomials q(z) and p(z), respectively, for each set of vortices. A second-order, linear ODE for p(z) given q(z) is derived. Several results relating the general solution of the ODE to relative equilibrium configurations are established. Our strongest result......A new class of bilinear relative equilibria of identical point vortices in which the vortices are constrained to be on two perpendicular lines, conveniently taken to be the x- and y-axes of a Cartesian coordinate system, is introduced and studied. In the general problem we have m vortices on the y......, obtained using Sturm’s comparison theorem, is that if p(z) satisfies the ODE for a given q(z) with its imaginary zeros symmetric relative to the x-axis, then it must have at least n−m+2 simple, real zeros. For m=2 this provides a complete characterization of all zeros, and we study this case in some detail...

  16. Controlled Manipulation of Individual Vortices in a Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Straver, E.W.J.

    2010-04-05

    We report controlled local manipulation of single vortices by low temperature magnetic force microscope (MFM) in a thin film of superconducting Nb. We are able to position the vortices in arbitrary configurations and to measure the distribution of local depinning forces. This technique opens up new possibilities for the characterization and use of vortices in superconductors.

  17. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  18. Prometheus Induced Vorticity in Saturn's F Ring

    Science.gov (United States)

    Sutton, Phil J.; Kusmartsev, Feo V.

    2016-11-01

    Saturn's rings are known to show remarkable real time variability in their structure. Many of which can be associated to interactions with nearby moons and moonlets. Possibly the most interesting and dynamic place in the rings, probably in the whole Solar System, is the F ring. A highly disrupted ring with large asymmetries both radially and azimuthally. Numerically non-zero components to the curl of the velocity vector field (vorticity) in the perturbed area of the F ring post encounter are witnessed, significantly above the background vorticity. Within the perturbed area rich distributions of local rotations is seen located in and around the channel edges. The gravitational scattering of ring particles during the encounter causes a significant elevated curl of the vector field above the background F ring vorticity for the first 1-3 orbital periods post encounter. After 3 orbital periods vorticity reverts quite quickly to near background levels. This new found dynamical vortex life of the ring will be of great interest to planet and planetesimals in proto-planetary disks where vortices and turbulence are suspected of having a significant role in their formation and migrations. Additionally, it is found that the immediate channel edges created by the close passage of Prometheus actually show high radial dispersions in the order 20-50 cm/s, up to a maximum of 1 m/s. This is much greater than the value required by Toomre for a disk to be unstable to the growth of axisymmetric oscillations. However, an area a few hundred km away from the edge shows a more promising location for the growth of coherent objects.

  19. Prometheus Induced Vorticity in Saturn's F Ring

    Science.gov (United States)

    Sutton, Phil J.; Kusmartsev, Feo V.

    2016-09-01

    Saturn's rings are known to show remarkable real time variability in their structure. Many of which can be associated to interactions with nearby moons and moonlets. Possibly the most interesting and dynamic place in the rings, probably in the whole Solar System, is the F ring. A highly disrupted ring with large asymmetries both radially and azimuthally. Numerically non-zero components to the curl of the velocity vector field (vorticity) in the perturbed area of the F ring post encounter are witnessed, significantly above the background vorticity. Within the perturbed area rich distributions of local rotations is seen located in and around the channel edges. The gravitational scattering of ring particles during the encounter causes a significant elevated curl of the vector field above the background F ring vorticity for the first 1-3 orbital periods post encounter. After 3 orbital periods vorticity reverts quite quickly to near background levels. This new found dynamical vortex life of the ring will be of great interest to planet and planetesimals in proto-planetary disks where vortices and turbulence are suspected of having a significant role in their formation and migrations. Additionally, it is found that the immediate channel edges created by the close passage of Prometheus actually show high radial dispersions in the order ~20-50 cm/s, up to a maximum of 1 m/s. This is much greater than the value required by Toomre for a disk to be unstable to the growth of axisymmetric oscillations. However, an area a few hundred km away from the edge shows a more promising location for the growth of coherent objects.

  20. An eddy closure for potential vorticity

    Energy Technology Data Exchange (ETDEWEB)

    Ringler, Todd D [Los Alamos National Laboratory

    2009-01-01

    The Gent-McWilliams (GM) parameterization is extended to include a direct influence in the momentum equation. The extension is carried out in two stages; an analysis of the inviscid system is followed by an analysis of the viscous system. In the inviscid analysis the momentum equation is modified such that potential vorticity is conserved along particle trajectories following a transport velocity that includes the Bolus velocity in a manner exactly analogous to the continuity and tracer equations. In addition (and in contrast to traditional GM closures), the new formulation of the inviscid momentum equation results in a conservative exchange between potential and kinetic forms of energy. The inviscid form of the eddy closure conserves total energy to within an error proportional to the time derivative of the Bolus velocity. The hypothesis that the viscous term in the momentum equation should give rise to potential vorticity being diffused along isopycnals in a manner analogous to other tracers is examined in detail. While the form of the momentum closure that follows from a strict adherence to this hypothesis is not immediately interpretable within the constructs of traditional momentum closures, three approximations to this hypothesis results in a form of dissipation that is consistent with traditional Laplacian diffusion. The first two approximations are that relative vorticity, not potential vorticity, is diffused along isopyncals and that the flow is in approximate geostrophic balance. An additional approximation to the Jacobian term is required when the dissipation coefficient varies in space. More importantly, the critique of this hypothesis results in the conclusion that the viscosity parameter in the momentum equation should be identical to the tradition GM closure parameter {Kappa}. Overall, we deem the viscous form of the eddy closure for potential vorticity as a viable closure for use in ocean circulation models.

  1. Method for solving an inverse problem of wing type by using a simple panel method; Kanbenna panel ho ni yoru yokugata gyaku mondai no ichikaiho

    Energy Technology Data Exchange (ETDEWEB)

    Ando, J.; Matsumoto, D.; Maita, S.; Nakatake, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    This paper describes one method for solving an inverse problem of wing type based on the source and quasi continuous vortex lattice method (SQCM) in designing marine propellers and underwater wings. With the SQCM, vortices and control points are distributed on wing camber according to the QCM, and wing surface is divided into certain number of panels. This is the method to decide vortex intensity and blow-out intensity simultaneously from the condition that vertical speed on the camber and the wing surface is zero, upon having distributed blow-out with certain intensity inside the panel. The method solves the inverse problem with the following process: specific point distribution is so determined that the targeted velocity on the wing surface is satisfied when wing surface pressure distribution and uniform flow velocity are given; and then the panels are so rearranged as in parallel with direction of the flow on the surface of the wing calculated by using these specific points to derive the targeted wing shape. This paper describes the problem solving procedure in great detail. It also introduces examples of numerical calculations. It shows one method for solving the inverse problem in wing type using the SQCM as a simple panel method, whereas its good convergence and stability were verified. Considerations on effects of free surface and expansion of the method into three-dimensional problems will be implemented in the future. 11 refs., 8 figs.

  2. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  3. Aerodynamics of flapping insect wing in inclined stroke plane hovering with ground effect

    Science.gov (United States)

    Gowda v, Krishne; Vengadesan, S.

    2014-11-01

    This work presents the time-varying aerodynamic forces and the unsteady flow structures of flapping insect wing in inclined stroke plane hovering with ground effect. Two-dimensional dragonfly model wing is chosen and the incompressible Navier-Stokes equations are solved numerically by using immersed boundary method. The main objective of the present work is to analyze the ground effect on the unsteady forces and vortical structures for the inclined stroke plane motions. We also investigate the influences of kinematics parameters such as Reynolds number (Re), stroke amplitude, wing rotational timing, for various distances between the airfoil and the ground. The effects of aforementioned parameters together with ground effect, on the stroke averaged force coefficients and regimes of force behavior are similar in both normal (horizontal) and inclined stroke plane motions. However, the evolution of the vortex structures which produces the effects are entirely different.

  4. Analytic State Space Model for an Unsteady Finite-Span Wing

    Science.gov (United States)

    Izraelevitz, Jacob; Zhu, Qiang; Triantafyllou, Michael

    2015-11-01

    Real-time control of unsteady flows, such as force control in flapping wings, requires simple wake models that easily translate into robust control designs. We analytically derive a state-space model for the unsteady trailing vortex system behind a finite aspect-ratio flapping wing. Contrary to prior models, the downwash and lift distributions over the span can be arbitrary, including tip effects. The wake vorticity is assumed to be a fully unsteady distribution, with the exception of quasi-steady (no rollup) geometry. Each discretization along the span has one to four states to represent the local unsteady wake-induced downwash, lift, and circulation. The model supports independently time-varying velocity, heave, and twist along the span. We validate this state-space model through comparison with existing analytic solutions for elliptic wings and an unsteady inviscid panel method.

  5. New Insights on Insect's Silent Flight. Part I: Vortex Dynamics and Wing Morphing

    Science.gov (United States)

    Ren, Yan; Liu, Geng; Dong, Haibo; Geng, Biao; Zheng, Xudong; Xue, Qian

    2016-11-01

    Insects are capable of conducting silent flights. This is attributed to its specially designed wing material properties for the control of vibration and surface morphing during the flapping flight. In current work, we focus on the roles of dynamic wing morphing on the unsteady vortex dynamics of a cicada in steady flight. A 3D image-based surface reconstruction method is used to obtain kinematical and morphological data of cicada wings from high-quality high-speed videos. The observed morphing wing kinematics is highly complex and a singular value decomposition method is used to decompose the wing motion to several dominant modes with distinct motion features. A high-fidelity immersed-boundary-based flow solver is then used to study the vortex dynamics in details. The results show that vortical structures closely relate to the morphing mode, which plays key role in the development and attachment of leading-edge vortex (LEV), thus helps the silent flapping of the cicada wings. This work is supported by AFOSR FA9550-12-1-0071 and NSF CBET-1313217.

  6. Experimental Investigation of Dynamic Stall on a Finite Span NACA 0012 Wing

    Science.gov (United States)

    Spellman, Wyatt; Bohl, Douglas

    2015-11-01

    In this work the velocity and vorticity fields around finite and ``infinite'' span wings with a NACA 0012 profile undergoing constant rate pitching were quantified using Molecular Tagging Velocimetry (MTV). The ``infinite'' span wing was bounded by walls to reduce the effects of the wing tip vortex while the finite span wing was bounded by a wall on one end and unbounded on the other. The wings were pitched from α = 0 to 55° with a constant non-dimensional pitch rate of Ω* = 0.1 at Rec = 12000. The Dynamic Stall Vortex (DSV) was identified and tracked using the `` Γ criteria.'' The results showed that the formation and trajectory of the DSV for the finite wing case varied with the spanwise location, with the location of the DSV remaining progressively closer to the airfoil surface towards the wingtip. These results were consistent with the ``Omega'' vortex structure previously observed in flow visualization. The DSV was also found to remain closer, and convect away from the airfoil surface slower, at all spanwise measurement planes when compared to the infinite span results. This work was supported by NSF Grant #845882.

  7. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    Science.gov (United States)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  8. Viscous tilting and production of vorticity in homogeneous turbulence

    CERN Document Server

    Holzner, M; Lüthi, B; Liberzon, A; Nikitin, N; Kinzelbach, W; Tsinober, A

    2010-01-01

    Viscous depletion of vorticity is an essential and well known property of turbulent flows, balancing, in the mean, the net vorticity production associated with the vortex stretching mechanism. In this letter we however demonstrate that viscous effects are not restricted to a mere destruction process, but play a more complex role in vorticity dynamics that is as important as vortex stretching. Based on results from particle tracking experiments (3D-PTV) and direct numerical simulation (DNS) of homogeneous and quasi isotropic turbulence, we show that the viscous term in the vorticity equation can also locally induce production of vorticity and changes of its orientation (viscous tilting).

  9. Vortical versus skyrmionic states in mesoscopic p -wave superconductors

    Science.gov (United States)

    Fernández Becerra, V.; Sardella, E.; Peeters, F. M.; Milošević, M. V.

    2016-01-01

    We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a multicomponent order parameter in the Ginzburg-Landau model for p -wave superconductivity. Conventional vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity. We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.

  10. AN ANALYTIC APPROACH TO THEORETICAL MODELING OF HIGHLY UNSTEADY VISCOUS FLOW EXCITED BY WING FLAPPING IN SMALL INSECTS

    Institute of Scientific and Technical Information of China (English)

    余永亮; 童秉纲; 马晖扬

    2003-01-01

    Numerous studies on the aerodynamics of insect wing flapping were carried out on different approaches of flight investigations, model experiments, and numerical simulations, but the theoretical modeling remains to be explored. In the present paper, an analytic approach is presented to model the flow interactions of wing flapping in air for small insects with the surrounding flow fields being highly unsteady and highly viscous. The model of wing flapping is a 2-D flat plate, which makes plunging and pitching oscillations as well as quick rotations reversing its positions of leading and trailing edges, respectively, during stroke reversals. It contains three simplified aerodynamic assumptions:(i) unsteady potential flow; (ii) discrete vortices shed from both leading and trailing edges of the wing; (iii) Kutta conditions applied at both edges. Then the problem is reduced to the solution of the unsteady Laplace equation, by using distributed singularities, i.e., sources/sinks, and vortices in the field. To validate the present physical model and analytic method proposed via benchmark examples, two elemental motions in wing flapping and a case of whole flapping cycles are analyzed,and the predicted results agree well with available experimental and numerical data. This verifies that the present analytical approach may give qualitatively correct and quantitatively reasonable results.Furthermore, the total fluid-dynamic force in the present method can be decomposed into three parts:one due to the added inertial (or mass) effect, the other and the third due to the induction of vortices shed from the leading- and the trailing-edge and their images respectively, and this helps to reveal the flow control mechanisms in insect wing flapping.

  11. Instability of isolated hollow vortices with zero circulation

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    Inviscid linear stability analysis and numerical simulations are used to investigate how temporal disturbances evolve in double-annular hollow vortices with an opposite-signed vorticity (the total circulation is zero). Two extrema exist in the vorticity profile and constitute a factor of instability. The dispersion relation is expressed as a simple cubic equation. The results show that the instabilities of vortices are strongly enhanced by the hollow effect of the annular vorticity. In addition, the growth rate of the dominant modes significantly increases with decreasing negative-vorticity thickness. During the initial stage, the dominant unstable modes obtained from simulations are consistent with those obtained from the linear analysis. In nonlinear developments, the flow field stretches out in one direction depending on the motion of the plural vortex pair formed by rolling up the positive and negative vorticities. Once such structures in the vortex are generated, the vortex immediately breaks down and does not become metastable.

  12. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    -averaged thrust, while the average aerodynamic power is increased. Furthermore, increasing the number of variables (i.e., providing the wing shape with greater degrees of spatial freedom) is observed to enable superior designs. To gain a better understanding of the reasons for which the obtained optimised shapes produce efficient flapping flights, the wake pattern and its vorticity strength are examined. This work described in this paper should facilitate better guidance for shape design of engineered flying systems.

  13. Solitonic vortices in Bose-Einstein condensates

    Science.gov (United States)

    Tylutki, M.; Donadello, S.; Serafini, S.; Pitaevskii, L. P.; Dalfovo, F.; Lamporesi, G.; Ferrari, G.

    2015-04-01

    We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongated quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.

  14. Vortices in Low-Dimensional Magnetic Systems

    Science.gov (United States)

    Costa, B. V.

    2011-05-01

    Vortices are objects that are important to describe several physical phenomena. There are many examples of such objects in nature as in a large variety of physical situations like in fluid dynamics, superconductivity, magnetism, and biology. Historically, the interest in magnetic vortex-like excitations begun in the 1960s. That interest was mainly associated with an unusual phase-transition phenomenon in two-dimensional magnetic systems. More recently, direct experimental evidence for the existence of magnetic vortex states in nano-disks was found. The interest in such model was renewed due to the possibility of the use of magnetic nano-disks as bit elements in nano-scale memory devices. The goal of this study is to review some key points for the understanding of the vortex behavior and the progress that have been done in the study of vortices in low-dimensional magnetic systems.

  15. Statistical mechanics of vortices from field theory

    CERN Document Server

    Kajantie, Keijo; Neuhaus, T; Rajantie, A; Rummukainen, K

    1999-01-01

    We study with lattice Monte Carlo simulations the interactions and macroscopic behaviour of a large number of vortices in the 3-dimensional U(1) gauge+Higgs field theory, in an external magnetic field. We determine non-perturbatively the (attractive or repelling) interaction energy between two or more vortices, as well as the critical field strength H_c, the thermodynamical discontinuities, and the surface tension related to the boundary between the Meissner phase and the Coulomb phase in the type I region. We also investigate the emergence of vortex lattice and vortex liquid phases in the type II region. For the type I region the results obtained are in qualitative agreement with mean field theory, except for small values of H_c, while in the type II region there are significant discrepancies. These findings are relevant for superconductors and some models of cosmic strings, as well as for the electroweak phase transition in a magnetic field.

  16. Mimicking graphene with polaritonic spin vortices

    Science.gov (United States)

    Gulevich, Dmitry R.; Yudin, Dmitry

    2017-09-01

    Exploring the properties of strongly correlated systems through quantum simulation with photons, cold atoms, or polaritons represents an active area of research. In fact, the latter sheds light on the behavior of complex systems that are difficult to address in the laboratory or to tackle numerically. In this study, we discuss an analog of graphene formed by exciton-polariton spin vortices arranged into a hexagonal lattice. We show how graphene-type dispersion at different energy scales arises for several types of exciton-polariton spin vortices. In contrast to previous studies of exciton polaritons in artificial lattices, the use of exciton-polariton spin vortex modes offers a richer playground for quantum simulations. In particular, we demonstrate that the sign of the nearest-neighbor coupling strength can be inverted.

  17. Holographic Fluids with Vorticity and Analogue Gravity

    CERN Document Server

    Leigh, Robert G; Petropoulos, P Marios

    2012-01-01

    We study holographic three-dimensional fluids with vorticity in local equilibrium and discuss their relevance to analogue gravity systems. The Fefferman-Graham expansion leads to the fluid's description in terms of a comoving and rotating Papapetrou-Randers frame. A suitable Lorentz transformation brings the fluid to the non-inertial Zermelo frame, which clarifies its interpretation as moving media for light/sound propagation. We apply our general results to the Lorentzian Kerr-AdS_4 and Taub-NUT-AdS_4 geometries that describe fluids in cyclonic and vortex flows respectively. In the latter case we associate the appearance of closed timelike curves to analogue optical horizons. In addition, we derive the classical rotational Hall viscosity of three-dimensional fluids with vorticity. Our formula remarkably resembles the corresponding result in magnetized plasmas.

  18. Analytic Modeling of Severe Vortical Storms.

    Science.gov (United States)

    1980-07-08

    AD---AO86 919 TR DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA -ETC F/6 4/2 ANALYTIC MODELING OF SEVERE VORTICAL, STDRMS.CW),7JUL G0 F FENDELL ...and Space Systems Group One Space 1ark ___Redondo Beach, California 90278 Francis E. Fendell , Principal Investigator for Artic and Earth Sciences... Fendell , principal investigator, and Phillip Feldman, numerical analyst, of TRW Defense and Space Systems Group, and George Carrier of Harvard University

  19. Vortices in a Bose-Einstein Condensate

    Science.gov (United States)

    Haljan, Paul C.

    2004-05-01

    Since the advent of Bose-Einstein condensation in the dilute alkalis, there has been considerable interest in observing effects in atomic condensates akin to the hallmark effects associated with superfluidity and superconductivity. In particular, the study of quantized vortices and vortex lattices represents an important connection between the traditional ``super" systems such as liquid Helium and this new atomic system. This thesis explores some of the first vortex experiments in a condensate of magnetically trapped Rubidium-87. Single vortex lines and rings are created using a wavefunction engineering technique, which is an ideal starting point to study the dynamical behavior of vortices within the condensate. An entirely different approach of ``intrinsic nucleation" has been developed to create rapidly rotating condensates with large amounts of vorticity. A novel variation of forced evaporation is used to simultaneously cool and spin up an ultracold gas. In this way, condensates can be formed that are rotating in excess of 95% of the centrifugal limit and contain large, extraordinarily regular lattices of well over 100 vortices. Direct detection of the vortex cores makes it possible to study the microscopic structure of the vortex arrangements both at equilibrium and under dynamical conditions where severe applied stresses distort the lattice far from its equilibrium configuration. In conclusion, the techniques developed in this work have helped to open up a new area of rotating condensate physics and, in the future, may lead to regimes of extreme rotation and quantum Hall physics. This work was performed at the University of Colorado, Boulder, under the supervision of Prof. Eric A. Cornell.

  20. Vorticity, Stokes' Theorem and the Gauss's Theorem

    Science.gov (United States)

    Narayanan, M.

    2004-12-01

    Vorticity is a property of the flow of any fluid and moving fluids acquire properties that allow an engineer to describe that particular flow in greater detail. It is important to recognize that mere motion alone does not guarantee that the air or any fluid has vorticity. Vorticity is one of four important quantities that define the kinematic properties of any fluid flow. The Navier-Stokes equations are the foundation of fluid mechanics, and Stokes' theorem is used in nearly every branch of mechanics as well as electromagnetics. Stokes' Theorem also plays a vital role in many secondary theorems such as those pertaining to vorticity and circulation. However, the divergence theorem is a mathematical statement of the physical fact that, in the absence of the creation or destruction of matter, the density within a region of space can change only by having it flow into, or away from the region through its boundary. This is also known as Gauss's Theorem. It should also be noted that there are many useful extensions of Gauss's Theorem, including the extension to include surfaces of discontinuity in V. Mathematically expressed, Stokes' theorem can be expressed by considering a surface S having a bounding curve C. Here, V is any sufficiently smooth vector field defined on the surface and its bounding curve C. Integral (Surface) [(DEL X V)] . dS = Integral (Contour) [V . dx] In this paper, the author outlines and stresses the importance of studying and teaching these mathematical techniques while developing a course in Hydrology and Fluid Mechanics. References Arfken, G. "Gauss's Theorem." 1.11 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 57-61, 1985. Morse, P. M. and Feshbach, H. "Gauss's Theorem." In Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 37-38, 1953. Eric W. Weisstein. "Divergence Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DivergenceTheorem.html

  1. Automated measurement of Drosophila wings

    Directory of Open Access Journals (Sweden)

    Mezey Jason

    2003-12-01

    Full Text Available Abstract Background Many studies in evolutionary biology and genetics are limited by the rate at which phenotypic information can be acquired. The wings of Drosophila species are a favorable target for automated analysis because of the many interesting questions in evolution and development that can be addressed with them, and because of their simple structure. Results We have developed an automated image analysis system (WINGMACHINE that measures the positions of all the veins and the edges of the wing blade of Drosophilid flies. A video image is obtained with the aid of a simple suction device that immobilizes the wing of a live fly. Low-level processing is used to find the major intersections of the veins. High-level processing then optimizes the fit of an a priori B-spline model of wing shape. WINGMACHINE allows the measurement of 1 wing per minute, including handling, imaging, analysis, and data editing. The repeatabilities of 12 vein intersections averaged 86% in a sample of flies of the same species and sex. Comparison of 2400 wings of 25 Drosophilid species shows that wing shape is quite conservative within the group, but that almost all taxa are diagnosably different from one another. Wing shape retains some phylogenetic structure, although some species have shapes very different from closely related species. The WINGMACHINE system facilitates artificial selection experiments on complex aspects of wing shape. We selected on an index which is a function of 14 separate measurements of each wing. After 14 generations, we achieved a 15 S.D. difference between up and down-selected treatments. Conclusion WINGMACHINE enables rapid, highly repeatable measurements of wings in the family Drosophilidae. Our approach to image analysis may be applicable to a variety of biological objects that can be represented as a framework of connected lines.

  2. Motion of Three Vortices near Collapse

    CERN Document Server

    Leoncini, X; Zaslavsky, G M

    2000-01-01

    A system of three point vortices in an unbounded plane has a special family of self-similarly contracting or expanding solutions: during the motion, vortex triangle remains similar to the original one, while its area decreases (grows) at a constant rate. A contracting configuration brings three vortices to a single point in a finite time; this phenomenon is known as vortex collapse and is of principal importance for many-vortex systems. The self-similar motion (contracting or expanding) is not generic, it arises when vortex strengths and initial positions satisfy two special collapse conditions. Dynamics of close-to-collapse vortex configurations depends on the way the collapse conditions are violated. We show, that when two of the vortices are identical, it is possible to reduce a three-vortex system to a problem of motion of a particle in an effective potential, defined by initial conditions. Using the effective potential representation, a detailed quantitative analysis of different types of near-collapse d...

  3. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  4. Delta hedging strategies comparison

    DEFF Research Database (Denmark)

    De Giovanni, Domenico; Ortobelli, S.; Rachev, S.T.

    2008-01-01

    In this paper we implement dynamic delta hedging strategies based on several option pricing models. We analyze different subordinated option pricing models and we examine delta hedging costs using ex-post daily prices of S&P 500. Furthermore, we compare the performance of each subordinated model ...

  5. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  6. Horizontal Symmetries $\\Delta(150)$ and $\\Delta(600)$

    CERN Document Server

    Lam, C S

    2013-01-01

    Using group theory of mixing to examine all finite subgroups of SU(3) with an order less than 512, we found recently that only the group $\\Delta(150)$ can give rise to a correct reactor angle $\\th_{13}$ of neutrino mixing without any free parameter. It predicts $\\sin^22\\th_{13}=0.11$ and a sub-maximal atmospheric angle with $\\sin^22\\th_{23}=0.94$, in good agreement with experiment. The solar angle $\\th_{12}$, the CP phase $\\d$, and the neutrino masses $m_i$ are left as free parameters. In this article we provide more details of this case, discuss possible gain and loss by introducing right-handed symmetries, and/or valons to construct dynamical models. A simple model is discussed where the solar angle agrees with experiment, and all its mixing parameters can be obtained from the group $\\Delta(600)$ by symmetry alone. The promotion of $\\Delta(150)$ to $\\Delta(600)$ is on the one hand analogous to the promotion of $S_3$ to $S_4$ in the presence of tribimaximal mixing, and on the other hand similar to the extens...

  7. Energy conserving numerical methods for the computation of complex vortical flows

    Science.gov (United States)

    Allaneau, Yves

    One of the original goals of this thesis was to develop numerical tools to help with the design of micro air vehicles. Micro Air Vehicles (MAVs) are small flying devices of only a few inches in wing span. Some people consider that as their size becomes smaller and smaller, it would be increasingly more difficult to keep all the classical control surfaces such as the rudders, the ailerons and the usual propellers. Over the years, scientists took inspiration from nature. Birds, by flapping and deforming their wings, are capable of accurate attitude control and are able to generate propulsion. However, the biomimicry design has its own limitations and it is difficult to place a hummingbird in a wind tunnel to study precisely the motion of its wings. Our approach was to use numerical methods to tackle this challenging problem. In order to precisely evaluate the lift and drag generated by the wings, one needs to be able to capture with high fidelity the extremely complex vortical flow produced in the wake. This requires a numerical method that is stable yet not too dissipative, so that the vortices do not get diffused in an unphysical way. We solved this problem by developing a new Discontinuous Galerkin scheme that, in addition to conserving mass, momentum and total energy locally, also preserves kinetic energy globally. This property greatly improves the stability of the simulations, especially in the special case p=0 when the approximation polynomials are taken to be piecewise constant (we recover a finite volume scheme). In addition to needing an adequate numerical scheme, a high fidelity solution requires many degrees of freedom in the computations to represent the flow field. The size of the smallest eddies in the flow is given by the Kolmogoroff scale. Capturing these eddies requires a mesh counting in the order of Re³ cells, where Re is the Reynolds number of the flow. We show that under-resolving the system, to a certain extent, is acceptable. However our

  8. Study on direct measurement method of vorticity from particle images

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaodong; FU Xin; YANG Huayong

    2007-01-01

    To overcome the shortcomings of conventional methods for vorticity measurement,a new direct measurement of vorticity (DMV) method extracting vorticity from particle images was proposed.Based on the theory of fluid flow,two matched particle patterns were extracted from particle images in the DMV method.The pattern vorticity was determined from the average angular displacement of rotation between the two matched particle patterns.The method was applied on standard particle images,and was compared with the second and third order central finite difference methods.Results show that the accuracy of DMV method is independent of the spatial resolution of the sampling,and the uncertainty errors in the velocity measurement are not propagated into the vorticity.The method is applicable for measuring vorticity of a stronger rotational flow.The time interval of image sampling should be shortened to increase the measurement ranges for higher shearing distortion flows.

  9. A Measure of Flow Vorticity with Helical Beams of Light

    CERN Document Server

    Rosales-Guzmán, Aniceto Belmonte Carmelo

    2015-01-01

    Vorticity describes the spinning motion of a fluid, i.e., the tendency to rotate, at every point in a flow. The interest in performing accurate and localized measurements of vorticity reflects the fact that many of the quantities that characterize the dynamics of fluids are intimately bound together in the vorticity field, being an efficient descriptor of the velocity statistics in many flow regimes. It describes the coherent structures and vortex interactions that are at the leading edge of laminar, transitional, and turbulent flows in nature. The measurement of vorticity is of paramount importance in many research fields as diverse as biology microfluidics, complex motions in the oceanic and atmospheric boundary layers, and wake turbulence on fluid aerodynamics. However, the precise measurement of flow vorticity is difficult. Here we put forward an optical sensing technique to obtain a direct measurement of vorticity in fluids using Laguerre-Gauss (LG) beams, optical beams which show an azimuthal phase vari...

  10. Strong swirl approximation and intensive vortices in the atmosphere

    CERN Document Server

    Klimenko, A Y

    2014-01-01

    This work investigates intensive vortices, which are characterised by the existence of a converging radial flow that significantly intensifies the flow rotation. Evolution and amplification of the vorticity present in the flow play important roles in the formation of the vortex. When rotation in the flow becomes sufficiently strong - and this implies validity of the strong swirl approximation developed by Einstein and Li (1951), Lewellen (1962), Turner (1966) and Lundgren (1985) - the analysis of Klimenko (2001a-c) and of the present work determine that further amplification of vorticity is moderated by interactions of vorticity and velocity. This imposes physical constraints on the flow resulting in the so-called compensating regime, where the radial distribution of the axial vorticity is characterised by the 4/3 and 3/2 power laws. This asymptotic treatment of a strong swirl is based on vorticity equations and involves higher order terms. This treatment incorporates multiscale analysis indicating downstream...

  11. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    Science.gov (United States)

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to

  12. A study on forces acting on a flapping wing

    Directory of Open Access Journals (Sweden)

    Cetiner O.

    2013-04-01

    Full Text Available In order to study the forces acting on a flapping wing, an experimental investigation is performed in steady water flow. In this study, a SD7003 airfoil undergoes combined pitching and plunging motion which simulates the forward flight of small birds. The frequency of pitching motion is equal to the frequency of plunging motion and pitch leads the plunge by a phase angle of 90 degrees. The experiments are conducted at Reynolds numbers of 2500 ≤ Re ≤ 13700 and the vortex formation is recorded using the digital particle image velocimetry (DPIV technique. A prediction of thrust force and efficiency is calculated from the average wake deficit of DPIV data, the near-wake vorticity patterns and time dependent velocity vectors are determined to comment on the thrust and drag indication. Direct force measurements are attempted using a Force/Torque sensor which is capable of measuring forces and moments in three axial directions.

  13. Thick vortices in SU(2) lattice gauge theory

    OpenAIRE

    Cheluvaraja, Srinath

    2004-01-01

    Three dimensional SU(2) lattice gauge theory is studied after eliminating thin monopoles and the smallest thick monopoles. Kinematically this constraint allows the formation of thick vortex loops which produce Z(2) fluctuations at longer length scales. The thick vortex loops are identified in a three dimensional simulation. A condensate of thick vortices persists even after the thin vortices have all disappeared. The thick vortices decouple at a slightly lower temperature (higher beta) than t...

  14. Direct observation of rectified motion of vortices by Lorentz microscopy

    Indian Academy of Sciences (India)

    Yoshihiko Togawa; Ken Harada; Tetsuya Akashi; Hiroto Kasai; Tsuyoshi Matsuda; Atsutaka maeda; Akira Tonomura

    2006-01-01

    We have investigated the vortex dynamics for the `ratchet' operation in a niobium superconductor via a direct imaging of Lorentz microscopy. We directly observe one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from the rectification of vortices in a spatially asymmetric potential under the oscillating magnetic field in a temporally symmetric manner. Based on the observation of the individual motion of vortices, we clarify the elementary process involved in this rectification.

  15. SIMULATION OF AIRCRAFT CONDENSATION TRAILS AND WAKE VORTICES INTERACTION

    Directory of Open Access Journals (Sweden)

    T. O. Aubakirov

    2015-01-01

    Full Text Available A technique of calculation of aircraft condensation trails (contrails and wake vortices interaction is described. The technique is based on a suitable for real-time applications mathematical model of far wake utilizes the method of discrete vortices. The technique is supplemented by account of the influence of axial velocities in the vortex nucleus on contrail and wake vortex location. Results of calculations of contrails and wake vortices interaction for Il-76 and B-747 aircraft are presented.

  16. Analysis of the Caudal Vortices Evolvement around Flapping Foil

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-dong; Zhang Xiao-qing; Su Yu-min; Xu Yu-ru

    2005-01-01

    The viscous flow field around two-dimensional flapping (heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different phase angles were obtained.The relationships between the structural characteristics of the vortices and the force acting on the foil and between the widths of the caudal vortex street and of the caudal flow field were analyzed. A method to determine the shedding frequency of the vortices was proposed.

  17. Assembly modes of dragonfly wings.

    Science.gov (United States)

    Zhao, Hong-Xiao; Yin, Ya-Jun; Zhong, Zheng

    2011-12-01

    The assembly modes of dragonfly wings are observed through FEG-ESEM. Different from airplane wings, dragonfly wings are found to be assembled through smooth transition mode and global package mode. First, at the vein/membrane conjunctive site, the membrane is divided into upper and lower portions from the center layer and transited smoothly to the vein. Then the two portions pack the vein around and form the outer surface of the vein. Second, at the vein/spike conjunctive site, the vein and spike are connected smoothly into a triplet. Last, at the vein/membrane/spike conjunctive site, the membrane (i.e., the outer layer of the vein) transits smoothly to the spike, packs it around, and forms its outer layer. In short, the membrane looks like a closed coat packing the wing as a whole. The smooth transition mode and the global package mode are universal assembly modes in dragonfly wings. They provide us the references for better understanding of the functions of dragonfly wings and the bionic manufactures of the wings of flights with mini sizes.

  18. On the width of N-Delta and Delta-Delta states

    CERN Document Server

    Niskanen, J A

    2016-01-01

    It is seen by a coupled-channel calculation that in the two-baryon N-Delta or Delta-Delta system the width of the state is greatly diminished due to the relative kinetic energy of the two baryons, since the internal energy of the particles, available for pionic decay, is smaller. A similar state dependent effect arises from the centrifugal barrier in N-Delta or Delta-Delta systems with non-zero orbital angular momentum. The double-Delta width can become even smaller than the free width of a single Delta. This has some bearing to the interpretation of the d'(2380) resonance recently discovered at COSY.

  19. Effect of streamwise vortices on Tollmien-Schlichting waves

    Science.gov (United States)

    Nayfeh, A. H.

    1981-01-01

    The method of multiple scales is used to determine a first-order uniform expansion for the effect of counter-rotating steady streamwise vortices in growing boundary layers on oblique Tollmien-Schlichting waves. The results show that such vortices have a strong tendency to amplify oblique Tollmien-Schlichting waves having a spanwise wavelength that is twice the wavelength of the vortices. An analytical expression is derived for the growth rates of these waves. These exponential growth rates increase linearly with increasing amplitudes of the vortices. Numerical results are presented. They suggest that this mechanism may dominate the instability.

  20. Vorticity, gyroscopic precession, and spin-curvature force

    Science.gov (United States)

    Liang, Wei Chieh; Lee, Si Chen

    2013-02-01

    In investigating the relationship between vorticity and gyroscopic precession, we calculate the vorticity vector in Godel, Kerr, Lewis, Schwarzschild, and Minkowski metrics and find that the vorticity vector of the specific observers is the angular velocity of the gyroscopic precession. Furthermore, when space-time torsion is included, the vorticity and spin-curvature force change sign. This result is very similar to the behavior of the positive and negative helicities of quantum spin in the Stern-Gerlach force. It implies that the inclusion of torsion will lead to an analogous property of quantum spin even in classical treatment.

  1. Vorticity, Gyroscopic precession, and Spin-Curvature Force

    CERN Document Server

    Liang, Wei Chieh

    2012-01-01

    In investigating the relation between vorticity and gyroscopic precession, we calculate the vorticity vector in Godel, Kerr, Lewis, Schwarzschild, Minkowski metric and find out the vorticity vector of the specific observers is the angular velocity of gyroscopic precession. Furthermore, considering space-time torsion will flip the vorticity and spin-curvature force to opposite sign. This result is very similar to the behavior of positive and negative helicity of quantum spin in Stern-Gerlach force. It implies that the inclusion of torsion will lead to analogous property of quantum spin even in classical treatment.

  2. On relation between scalar interfaces and vorticity in inviscid flows

    Science.gov (United States)

    Ramesh, O. N.; Patwardhan, Saurabh

    2013-11-01

    A great variety of applications like pollutant mixing in the atmosphere, mixing of reactants in combustion highlight the importance of passive scalar dynamics in fluid flows. The other dynamically important variable in the study of fluid flow is the vorticity. Vorticity though, unlike a passive scalar, does affect the fluid motion. The dynamics of scalar (linear) and vorticity (non-linear) are governed by the equations which inherently have different characteristics. This paper addresses the question of the faithfulness of representation of vorticity by scalar marker and the motivation for this comes from the experiment of Head and Bandyopadhyay (1981) which showed the existence of coherent vortices by using smoke flow visualization in a turbulent boundary layer. We will show analytically in regions where the molecular diffusion effects are negligible, the vorticity and scalar gradients are orthogonal to each other. The iso- surface of scalar follows the vorticity in an inviscid situation. Also, we will demonstrate that in the case of unsteady burgers vortex and vortex shedding behind a finite circular cylinder, the scalar gradient is orthogonal to vorticity and inner product of vorticity and scalar gradients is zero in regions away from the wall.

  3. Dynamics of circular arrangements of vorticity in two dimensions

    CERN Document Server

    Swaminathan, Rohith V; Perlekar, Prasad; Govindarajan, Rama

    2015-01-01

    The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical co-rotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long-lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to break down into individual vortices. In the pre-annular stage, vortical structures in a viscous flow tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so ...

  4. Vortices in Ionization Collisions by Positron Impact

    CERN Document Server

    Navarrete, F; Fiol, J; Barrachina, R O

    2013-01-01

    The presence of vortices in the ionisation of hydrogen atoms by positrons at intermediate impact energies is investigated. The present findings show that a previously reported minima in the fully-differential cross section is the signature of a vortex in the continuum positron-electron-proton system. The behaviour of the real and imaginary parts of the complex-valued transition matrix is studied in order to determine and characterize the vortex in momentum space. The obtained information is translated to fully-differential ionisation cross sections, feasible of being measured with currently available techniques.

  5. Interaction of plasma vortices with resonant particles

    DEFF Research Database (Denmark)

    Jovanovic, D.; Pécseli, Hans; Juul Rasmussen, J.

    1990-01-01

    Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime they poss......Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime...... particles. The evolution equations indicate the possibility of excitation of plasma vortices by electron beams....

  6. Internal waves and vortices in satellite images

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    Some recent papers proposed the use of the satellite images of Google Earth in teaching physics, in particular to see some behaviours of waves. Reflection, refraction, diffraction and interference are easy to be found in these satellite maps. Besides Google Earth, other sites exist, such as Earth Observatory or Earth Snapshot, suitable for illustrating the large-scale phenomena in atmosphere and oceans In this paper, we will see some examples for teaching surface and internal sea waves, and internal waves and the K\\'arm\\'an vortices in the atmosphere. Aim of this proposal is attracting the interest of students of engineering schools to the physics of waves.

  7. A splitting-free vorticity redistribution method

    Science.gov (United States)

    Kirchhart, M.; Obi, S.

    2017-02-01

    We present a splitting-free variant of the vorticity redistribution method. Spatial consistency and stability when combined with a time-stepping scheme are proven. We propose a new strategy preventing excessive growth in the number of particles while retaining the order of consistency. The novel concept of small neighbourhoods significantly reduces the method's computational cost. In numerical experiments the method showed second order convergence, one order higher than predicted by the analysis. Compared to the fast multipole code used in the velocity computation, the method is about three times faster.

  8. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  9. Aircraft Wake Vortices: An Annotated Bibliography (1923-1990)

    Science.gov (United States)

    1991-01-01

    and 1.25 wing spans) at various angles of attack and configurations from wing alone to wing plus nacelles , anti-shock bodies, and flaps deflected 27... nacelles . The maximum induced rolling moment on the trailing wing is only slightly reduced by the present engine installation or the simulated jet...incoherent Lidar , Raman shift techniques, fluorescence scattering, acoustic radar, ultraviolet emissions) were shown not to possess sufficient

  10. geomorphology_delta

    Data.gov (United States)

    California Department of Resources — Surficial geology of the Delta area of California by Brian Atwater of the U.S. Geological Survey. Source maps are from the USGS publication MF-1401. This digital...

  11. Delta-Reliability

    OpenAIRE

    Eugster, P.; Guerraoui, R.; Kouznetsov, P.

    2001-01-01

    This paper presents a new, non-binary measure of the reliability of broadcast algorithms, called Delta-Reliability. This measure quantifies the reliability of practical broadcast algorithms that, on the one hand, were devised with some form of reliability in mind, but, on the other hand, are not considered reliable according to the ``traditional'' notion of broadcast reliability [HT94]. Our specification of Delta-Reliability suggests a further step towards bridging the gap between theory and...

  12. Dynamics of Quantized Vortices Before Reconnection

    Science.gov (United States)

    Andryushchenko, V. A.; Kondaurova, L. P.; Nemirovskii, S. K.

    2016-12-01

    The main goal of this paper is to investigate numerically the dynamics of quantized vortex loops, just before the reconnection at finite temperature, when mutual friction essentially changes the evolution of lines. Modeling is performed on the base of vortex filament method using the full Biot-Savart equation. It was discovered that the initial position of vortices and the temperature strongly affect the dependence on time of the minimum distance δ (t) between tips of two vortex loops. In particular, in some cases, the shrinking and collapse of vortex loops due to mutual friction occur earlier than the reconnection, thereby canceling the latter. However, this relationship takes a universal square-root form δ ( t) =√{( κ /2π ) ( t_{*}-t) } at distances smaller than the distances, satisfying the Schwarz reconnection criterion, when the nonlocal contribution to the Biot-Savart equation becomes about equal to the local contribution. In the "universal" stage, the nearest parts of vortices form a pyramid-like structure with angles which neither depend on the initial configuration nor on temperature.

  13. Motion Equation of Vorticity for Newton Fluid

    CERN Document Server

    Jianhua, X

    2005-01-01

    The vorticity plays an important role in aerodynamics and rotational flow. Usually, they are studied with modified Navier-Stokes equation. This research will deduce the motion equation of vorticity from Navier-Stokes equation. To this propose, the velocity gradient field is decomposed as the stack of non-rotation field and pure-rotation field. By introducing the Chen S+R decomposition, the rotational flow is redefined. For elastic fluid, the research shows that for Newton fluid, the local average rotation always produces an additional pressure on the rotation plane. This item is deterministic rather than stochastic (as Reynolds stress) or adjustable. For non-elastic fluid, such as air, the research shows that the rotation will produce an additional stress along the rotation axis direction, that is on the normal direction of rotation plane. This result can be used to explain the lift force connected with vortex. The main purpose of this research is to supply a solvable mathematical model for the calculation of...

  14. Quantum vortices and trajectories in particle diffraction

    CERN Document Server

    Delis, N; Contopoulos, G

    2011-01-01

    We investigate the phenomenon of the diffraction of charged particles by thin material targets using the method of the de Broglie-Bohm quantum trajectories. The particle wave function can be modeled as a sum of two terms $\\psi=\\psi_{ingoing}+\\psi_{outgoing}$. A thin separator exists between the domains of prevalence of the ingoing and outgoing wavefunction terms. The structure of the quantum-mechanical currents in the neighborhood of the separator implies the formation of an array of \\emph{quantum vortices}. The flow structure around each vortex displays a characteristic pattern called `nodal point - X point complex'. The X point gives rise to stable and unstable manifolds. We find the scaling laws characterizing a nodal point-X point complex by a local perturbation theory around the nodal point. We then analyze the dynamical role of vortices in the emergence of the diffraction pattern. In particular, we demonstrate the abrupt deflections, along the direction of the unstable manifold, of the quantum trajector...

  15. Delta Flow Modulator

    NARCIS (Netherlands)

    Stamhuis, Eize; Lengkeek, W

    2015-01-01

    A support structure (2) is installed in or near a water (50). The support structure is holding a deltalike-wing (3) under an angle of incidence relative to an incoming flow (54), caused by at least a prevailing current in the water, thus generating a vortex (77). The action of the vortex is

  16. Conceptual design and optimization methodology for box wing aircraft

    OpenAIRE

    Jemitola, Paul Olugbeji

    2012-01-01

    A conceptual design optimization methodology was developed for a medium range box wing aircraft. A baseline conventional cantilever wing aircraft designed for the same mis- sion and payload was also optimized alongside a baseline box wing aircraft. An empirical formula for the mass estimation of the fore and aft wings of the box wing aircraft was derived by relating conventional cantilever wings to box wing aircraft wings. The results indicate that the fore and aft wings would ...

  17. Downstream Evolution of Longitudinal Embedded Vortices with Helical Structure

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2009-01-01

    In the present work the downstream development of device induced vortices with helical symmetry embedded in wall bounded flow on a bump is studied with the aid of Stereoscopic Particle Image Velocimetry (SPIV). The downstream evolution of characteristic parameters of helical vortices is studied...

  18. Gyrofluid potential vorticity equation and turbulent equipartion states

    DEFF Research Database (Denmark)

    Madsen, Jens; Juul Rasmussen, Jens; Naulin, Volker;

    2015-01-01

    An equation governing potential vorticity in a magnetized plasmas is derived. The equation is analogous to Ertel's theorem. In the long wave-length limit the potential vorticity equals the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to the particle density...

  19. Decay or collapse: Aircraft wake vortices in grid turbulence

    NARCIS (Netherlands)

    Ren, M.; Elsenaar, A.; Heijst, van G.J.F.; Kuczaj, A.K.; Geurts, B.J.

    2006-01-01

    Trailing vortices are naturally shed by airplanes and they typically evolve into a counter-rotating vortex pair. Downstream of the aircraft, these vortices can persist for a very long time and extend for several kilometers. This poses a potential hazard to following aircraft, particularly during tak

  20. A phase analysis of vorticity vectors associated with tropical convection

    Institute of Scientific and Technical Information of China (English)

    Cui Xiao-Peng

    2008-01-01

    Three new vorticity vectors have been proposed by Gao et al to study the two-dimensional tropical convection. In the present paper, phase relations between surface rain rate and the vorticity vectors are analysed with the calculations of lag correlation coefficients based on hourly zonally-averaged mass-integrated cloud-resolving simulation data. The cloud-resolving model is integrated with the vertical velocity, zonal wind, horizontal thermal and moisture advections, and sea surface temperature observed and derived from tropical ocean global atmosphere - coupled ocean atmosphere response experiment (TOGA-COARE) for 10 days. Maximum local increase of the vertical component of the convective vorticity vector leads maximum surface rain rate by 2 hours mainly due to the interaction between vorticity and zonal gradient of ice heating. While maximum local increase of the vertical component of the moist vorticity vector leads maximum surface rain rate by 2 hours mainly because of the interaction between zonal specific humidity gradient and zonal buoyancy gradient. And the maximum local decrease of the zonal component of the dynamic vorticity vector leads maximum surface rain rate by 2 hours mainly due to the interactions between vorticity and vertical pressure gradient as well as vorticity and buoyancy.

  1. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.;

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90......% for J ≲ 20.5 and K ≲ 19.4. The IR subsample with a Sersic fit comprises 71 687 objects. A morphological classification is available for 39 923 galaxies. We publish spectroscopic data, including 6132 redshifts, 5299 star formation histories, and 4381 equivalent widths. Finally, a calculation of local...

  2. Vorticity amplification near the stagnation point of landing gear wheels

    Science.gov (United States)

    Feltham, G.; Ekmekci, A.

    2014-04-01

    The vicinity near the forward stagnation point of landing-gear wheels has been found to support a mechanism for oncoming streams of weak vorticity to collect, grow, and amplify into discrete large-scale vortical structures that then shed with a distinct periodicity. To the authors' knowledge, such a flow phenomenon has never been reported before for landing gear wheels, which are in essence finite (three-dimensional) cylinders. To gain further insight into this phenomenon, a detailed experimental study has been undertaken employing the hydrogen bubble visualization and Particle Image Velocimetry techniques. A very thin platinum wire, similar to those used in hydrogen bubble visualization applications, was placed upstream of the wheel model to produce two streams of weak vorticity (with opposite sign) that convected toward the model. As the vorticity streams enter the stagnation region of the wheels, significant flow deceleration and vorticity stretching act to collect, grow, and amplify the incoming vorticity streams into large-scale vortical structures. Experiments were performed at a fixed Reynolds number, with a value of 32 500 when defined based on the diameter of the wheel and a value of 21 based on the diameter of the vorticity-generating upstream wire. First, to establish a baseline, the natural flow field (without the presence of an upstream wire) was characterized, where experimentally determined values for the stagnation boundary-layer thickness and the velocity profile along the stagnation streamline were both found to agree with the values provided in the literature for two-dimensional cylinders. Subsequently, the dynamics of vorticity collection, growth, amplification, and shedding were studied. The size, stand-off distance and the shedding frequency of the vortical structures forming near the stagnation region were all found to strongly depend on the impingement location of the inbound vorticity on the wheel. A simple relationship between the non

  3. Theoretical prediction of thick wing and pylon-fuselage-fanpod-nacelle aerodynamic characteristics at subcritical speeds. Part 1: Theory and results

    Science.gov (United States)

    Tulinius, J. R.

    1974-01-01

    The theoretical development and the comparison of results with data of a thick wing and pylon-fuselage-fanpod-nacelle analysis are presented. The analysis utilizes potential flow theory to compute the surface velocities and pressures, section lift and center of pressure, and the total configuration lift, moment, and vortex drag. The skin friction drag is also estimated in the analysis. The perturbation velocities induced by the wing and pylon, fuselage and fanpod, and nacelle are represented by source and vortex lattices, quadrilateral vortices, and source frustums, respectively. The strengths of these singularities are solved for simultaneously including all interference effects. The wing and pylon planforms, twists, cambers, and thickness distributions, and the fuselage and fanpod geometries can be arbitrary in shape, provided the surface gradients are smooth. The flow through nacelle is assumed to be axisymmetric. An axisymmetric center engine hub can also be included. The pylon and nacelle can be attached to the wing, fuselage, or fanpod.

  4. Developments and Validations of Fully Coupled CFD and Practical Vortex Transport Method for High-Fidelity Wake Modeling in Fixed and Rotary Wing Applications

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    A novel Computational Fluid Dynamics (CFD) coupling framework using a conventional Reynolds-Averaged Navier-Stokes (BANS) solver to resolve the near-body flow field and a Particle-based Vorticity Transport Method (PVTM) to predict the evolution of the far field wake is developed, refined, and evaluated for fixed and rotary wing cases. For the rotary wing case, the RANS/PVTM modules are loosely coupled to a Computational Structural Dynamics (CSD) module that provides blade motion and vehicle trim information. The PVTM module is refined by the addition of vortex diffusion, stretching, and reorientation models as well as an efficient memory model. Results from the coupled framework are compared with several experimental data sets (a fixed-wing wind tunnel test and a rotary-wing hover test).

  5. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  6. Generation of speckle vortices by Archimedes' spiral micro-holes

    Science.gov (United States)

    Sun, Haibin; Liu, Tingting; Chen, Jun; Sun, Ping

    2016-10-01

    Speckle plays an important role in the optical field. Optical vortices which exist in random speckle fields usually contain useful phase information. The distribution of speckle field is determined by these optical vortices. In order to study speckle vortices quantitatively, we established a micro-holes array model based on the law of Archimedes' spiral arrangement. Speckle vortices can be generated by the random diffuse reflection points (spiral micro-holes). In the experiments, the gray image of Archimedes' spiral micro-holes are displayed on the screen of liquid crystal spatial light modulator (LC-SLM), and the output optical field is captured by a CCD camera. The numerical simulations and experimental results show that the model can be used to generate speckle vortices.

  7. Generation of Optical Vortices by Linear Phase Ramps

    Directory of Open Access Journals (Sweden)

    Sunil Vyas

    2012-01-01

    Full Text Available Generation of optical vortices using linear phase ramps is experimentally demonstrated. When two regions of a wavefront have opposite phase gradients then along the line of phase discontinuity vortices can be generated. It is shown that vortices can evolve during propagation even with the unequal magnitude of tilt in the two regions of the wavefront. The number of vortices and their location depend upon the magnitude of tilt. vortex generation is experimentally realized by encoding phase mask on spatial light modulator and their presence is detected interferometrically. Numerical simulation has been performed to calculate the diffracted intensity distribution from the phase mask, and presence of vortices in the diffracted field is detected by computational techniques.

  8. Gyrofluid potential vorticity equation and turbulent equipartion states

    DEFF Research Database (Denmark)

    Madsen, Jens; Juul Rasmussen, Jens; Naulin, Volker

    2015-01-01

    An equation governing potential vorticity in a magnetized plasmas is derived. The equation is analogous to Ertel's theorem. In the long wave-length limit the potential vorticity equals the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to the particle density....... The equation is relevant for transport barriers in magnetically confined plasmas because particle density, ion temperature and the radial electric field are mutually coupled through the potential vorticity. The potential vorticity equation is derived from an energy conserving, four-field, electrostatic, full......-F gyrofluid model. It is shown that the gyrofluid model possesses two exact Lagrangian invariants. In systems where mixing uniformly distribute the Lagrangian invariants we derive the corresponding turbulent equipartion states. It is shown that the system is driven towards constant potential vorticity. Given...

  9. Nanoscale assembly of superconducting vortices with scanning tunnelling microscope tip

    Science.gov (United States)

    Ge, Jun-Yi; Gladilin, Vladimir N.; Tempere, Jacques; Xue, Cun; Devreese, Jozef T.; van de Vondel, Joris; Zhou, Youhe; Moshchalkov, Victor V.

    2016-12-01

    Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single-vortex level, is of great importance. Among many techniques to study single vortices, scanning tunnelling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single-quantum vortices into desired nanoscale configurations.

  10. Decay of high order optical vortices in anisotropic nonlinear optical media

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1997-01-01

    We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge.......We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge....

  11. Static aeroelastic analysis of composite wing

    Science.gov (United States)

    Lee, IN; Hong, Chang Sun; Miura, Hirokazu; Kim, Seung KO

    1990-01-01

    A static aeroelastic analysis capability that can predict aerodynamic loads for the deformed shape of the composite wing has been developed. The finite element method (FEM) was used for composite plate structural analysis, and the linear vortex lattice method (VLM) was used for steady aerodynamic analysis. The final deformed shape of the wing due to applied forces is determined by iterative manner using FEM and VLM. FEM and VLM analysis are related by a surface spline interpolation procedure. The wing with Gr/Ep composite material has been investigated to see the wing deformation effect. Aerodynamic load change due to wing flexibility has been investigated. Also, the effect of fiber orientation and sweep angle on the deformation pattern and aerodynamic coefficients are examined. For a certain fiber orientation, the deflection and aerodynamic loading of the composite wing is very much reduced. The swept forward wing has more significant effect of wing flexibility on aerodynamic coefficient than the swept back wing does.

  12. Computer program for prediction of the deposition of material released from fixed and rotary wing aircraft

    Science.gov (United States)

    Teske, M. E.

    1984-01-01

    This is a user manual for the computer code ""AGDISP'' (AGricultural DISPersal) which has been developed to predict the deposition of material released from fixed and rotary wing aircraft in a single-pass, computationally efficient manner. The formulation of the code is novel in that the mean particle trajectory and the variance about the mean resulting from turbulent fluid fluctuations are simultaneously predicted. The code presently includes the capability of assessing the influence of neutral atmospheric conditions, inviscid wake vortices, particle evaporation, plant canopy and terrain on the deposition pattern.

  13. Large-deviation statistics of vorticity stretching in isotropic turbulence.

    Science.gov (United States)

    Johnson, Perry L; Meneveau, Charles

    2016-03-01

    A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.

  14. Vorticity is a marker of right ventricular diastolic dysfunction.

    Science.gov (United States)

    Fenster, Brett E; Browning, James; Schroeder, Joyce D; Schafer, Michal; Podgorski, Chris A; Smyser, Jamie; Silveira, Lori J; Buckner, J Kern; Hertzberg, Jean R

    2015-09-15

    Right ventricular diastolic dysfunction (RVDD) is an important prognostic indicator in pulmonary arterial hypertension (PAH). RV vortex rings have been observed in healthy subjects, but their significance in RVDD is unknown. Vorticity, the local spinning motion of an element of fluid, may be a sensitive measure of RV vortex dynamics. Using four-dimensional (4D) flow cardiac magnetic resonance imaging (CMR), we investigated the relationship between right heart vorticity with echocardiographic indexes of RVDD. Thirteen (13) PAH subjects and 10 controls underwent same-day 4D flow CMR and echocardiography. RV diastolic function was assessed using trans-tricuspid valve (TV) early (E) and late (A) velocities, E/A ratio, and e' and a' tissue Doppler velocities. RV and right atrial (RA) integrated mean vorticity was calculated for E and A-wave filling periods using 4D datasets. Compared with controls, A-wave vorticity was significantly increased in RVDD subjects in both the RV [2343 (1,559-3,295) vs. 492 (267-2,649) 1/s, P = 0.028] and RA [30 (27-44) vs. 9 (5-27) 1/s, P = 0.005]. RA E vorticity was significantly decreased [13 (7-22) vs. 28 (15-31) 1/s, P = 0.038] in RVDD. E-wave vorticity correlated TV e', E-,and TV E/A (P < 0.05), and A-wave vorticity associated with both TV A and E/A (P < 0.02). RVDD is associated with alterations in E- and A-wave vorticity, and vorticity correlates with multiple echocardiographic markers of RVDD. Vorticity may be a robust noninvasive research tool for the investigation of RV fluid and tissue mechanical interactions in PAH. Copyright © 2015 the American Physiological Society.

  15. Dipole vortices in the Great Australian Bight

    DEFF Research Database (Denmark)

    Cresswell, George R.; Lund-Hansen, Lars C.; Nielsen, Morten Holtegaard

    2015-01-01

    Shipboard measurements from late 2006 made by the Danish Galathea 3 Expedition and satellite sea surface temperature images revealed a chain of cool and warm mushroom' dipole vortices that mixed warm, salty, oxygen-poor waters on and near the continental shelf of the Great Australian Bight (GAB......) with cooler, fresher, oxygen-rich waters offshore. The alternating jets' flowing into the mushrooms were directed mainly northwards and southwards and differed in temperature by only 1.5 degrees C; however, the salinity difference was as much as 0.5, and therefore quite large. The GAB waters were slightly...... denser than the cooler offshore waters. The field of dipoles evolved and distorted, but appeared to drift westwards at 5km day-1 over two weeks, and one new mushroom carried GAB water southwards at 7km day(-1). Other features encountered between Cape Leeuwin and Tasmania included the Leeuwin Current...

  16. Gradient evolution for potential vorticity flows

    Directory of Open Access Journals (Sweden)

    S. Balasuriya

    2001-01-01

    Full Text Available Two-dimensional unsteady incompressible flows in which the potential vorticity (PV plays a key role are examined in this study, through the development of the evolution equation for the PV gradient. For the case where the PV is conserved, precise statements concerning topology-conservation are presented. While establishing some intuitively well-known results (the numbers of eddies and saddles is conserved, other less obvious consequences (PV patches cannot be generated, some types of Lagrangian and Eulerian entities are equivalent are obtained. This approach enables an improvement on an integrability result for PV conserving flows (if there were no PV patches at time zero, the flow would be integrable. The evolution of the PV gradient is also determined for the nonconservative case, and a plausible experiment for estimating eddy diffusivity is suggested. The theory is applied to an analytical diffusive Rossby wave example.

  17. Abrikosov Gluon Vortices in Color Superconductors

    CERN Document Server

    Ferrer, Efrain J

    2010-01-01

    In this talk I will discuss how the in-medium magnetic field can influence the gluon dynamics in a three-flavor color superconductor. It will be shown how at field strengths comparable to the charged gluon Meissner mass a new phase can be realized, giving rise to Abrikosov's vortices of charged gluons. In that phase, the inhomogeneous gluon condensate anti-screens the magnetic field due to the anomalous magnetic moment of these spin-1 particles. This paramagnetic effect can be of interest for astrophysics, since due to the gluon vortex antiscreening mechanism, compact stars with color superconducting cores could have larger magnetic fields than neutron stars made up entirely of nuclear matter. I will also discuss a second gluon condensation phenomenon connected to the Meissner instability attained at moderate densities by two-flavor color superconductors. In this situation, an inhomogeneous condensate of charged gluons emerges to remove the chromomagnetic instability created by the pairing mismatch, and as a ...

  18. Analytical BPS Maxwell-Higgs vortices

    CERN Document Server

    Casana, R; da Hora, E; Santos, C dos

    2014-01-01

    We have established a prescription for the calculation of analytical vortex solutions in the context of generalized Maxwell-Higgs models whose overall dynamics is controlled by two positive functions of the scalar field. We have also determined a natural constraint between these functions and the Higgs potential allowing the existence of axially symmetric Bogomol'nyi-Prasad-Sommerfield (BPS) solutions possessing finite energy. Furthermore, when the generalizing functions are chosen suitably, the nonstandard BPS equations can be solved exactly. We have studied some examples, comparing them with the usual Abrikosov-Nielsen-Olesen (ANO) solution. The overall conclusion is that the analytical self-dual vortices are well-behaved in all relevant sectors, strongly supporting the generalized models they belong themselves. In particular, our results mimic well-known properties of the usual (numerical) configurations, as localized energy density, while contributing to the understanding of topological solitons and their...

  19. Instantons and vortices on noncommutative toric varieties

    Science.gov (United States)

    Cirio, Lucio S.; Landi, Giovanni; Szabo, Richard J.

    2014-09-01

    We elaborate on the quantization of toric varieties by combining techniques from toric geometry, isospectral deformations and noncommutative geometry in braided monoidal categories, and the construction of instantons thereon by combining methods from noncommutative algebraic geometry and a quantized twistor theory. We classify the real structures on a toric noncommutative deformation of the Klein quadric and use this to derive a new noncommutative four-sphere which is the unique deformation compatible with the noncommutative twistor correspondence. We extend the computation of equivariant instanton partition functions to noncommutative gauge theories with both adjoint and fundamental matter fields, finding agreement with the classical results in all instances. We construct moduli spaces of noncommutative vortices from the moduli of invariant instantons, and derive corresponding equivariant partition functions which also agree with those of the classical limit.

  20. Vorticity Fluctuations in Plane Couette Flow

    Science.gov (United States)

    Ortiz de Zarate, Jose; Sengers, Jan V.

    2010-11-01

    In this presentation we evaluate the flow-induced amplification of the thermal noise in plane Couette configuration. The physical origin of the noise is the random nature of molecular collisions, that contribute with a stochastic component to the stress tensor (Landau's fluctuating hydrodynamics). This intrinsic stochastic forcing is then amplified by the mode- coupling mechanisms associated to shear flow. In a linear approximation, noise amplification can be studied by solving stochastic Orr-Sommerfeld and Squire equations. We compare the efficiency of the different mechanisms, being the most important the direct coupling between Squire and Orr-Sommerfed equations. The main effect is to amplify wall-normal vorticity fluctuations with an spanwise modulation at wave number around 1.5, a configuration that resembles the streaks that have been proposed as precursors of the flow instability.

  1. Dynamic Assembly of Magnetic Colloidal Vortices

    Energy Technology Data Exchange (ETDEWEB)

    Mohorič, Tomaž; Kokot, Gašper; Osterman, Natan; Snezhko, Alexey; Vilfan, Andrej; Babič, Dušan; Dobnikar, Jure

    2016-04-29

    Magnetic colloids in external time-dependent fields are subject to complex induced many-body interactions governing their self-assembly into a variety of equilibrium and out-of-equilibrium structures such as chains, networks, suspended membranes, and colloidal foams. Here, we report experiments, simulations, and theory probing the dynamic assembly of superparamagnetic colloids in precessing external magnetic fields. Within a range of field frequencies, we observe dynamic large-scale structures such as ordered phases composed of precessing chains, ribbons, and rotating fluidic vortices. We show that the structure formation is inherently coupled to the buildup of torque, which originates from internal relaxation of induced dipoles and from transient correlations among the particles as a result of short-lived chain formation. We discuss in detail the physical properties of the vortex phase and demonstrate its potential in particle-coating applications.

  2. How strong are the Rossby vortices?

    CERN Document Server

    Meheut, H; Lai, D

    2013-01-01

    The Rossby wave instability, associated with density bumps in differentially rotating discs, may arise in several different astrophysical contexts, such as galactic or protoplanetary discs. While the linear phase of the instability has been well studied, the nonlinear evolution and especially the saturation phase remain poorly understood. In this paper, we test the non-linear saturation mechanism analogous to that derived for wave-particle interaction in plasma physics. To this end we perform global numerical simulations of the evolution of the instability in a two-dimensional disc. We confirm the physical mechanism for the instability saturation and show that the maximum amplitude of vorticity can be estimated as twice the linear growth rate of the instability. We provide an empirical fitting formula for this growth rate for various parameters of the density bump. We also investigate the effects of the azimuthal mode number of the instability and the energy leakage in the spiral density waves. Finally, we sh...

  3. Non-Abelian Chern-Simons Vortices

    CERN Document Server

    Lozano, G S; Moreno, E F; Schaposnik, F A

    2007-01-01

    We consider the bosonic sector of a ${\\cal N} = 2$ supersymmetric Chern-Simons-Higgs theory in 2 + 1 dimensions. The gauge group is $U(1)\\times SU(N)$ and has $N_f$ flavors of fundamental matter fields. The model supports non-Abelian (axially symmetric) vortices when $N_f \\geq N$, which have internal (orientational) moduli. When $N_f > N$, the solutions acquire additional collective coordinates parameterizing their transverse size. We solve the BPS equations numerically and obtain local ($N_f = N$) and semi-local ($N_f > N$) string solutions. A $CP^{N-1}$ low-energy effective action for the orientational moduli is obtained in both cases. In the semilocal case there is an additional term in the effective action induced by the transverse size moduli. We find such term in the limit of large transverse size, where exact solutions can be obtained analytically.

  4. Vortices in superconducting bulk, films and SQUIDs

    Indian Academy of Sciences (India)

    Ernst Helmut Brandt

    2006-01-01

    The properties of the ideal periodic vortex lattice in bulk superconductors and in films of any thickness can be calculated from Ginzburg-Landau theory by an iteration method using Fourier series. The London theory yields general analytic expressions for the magnetic field and energy of arbitrary arrangements of straight or curved vortex lines. The elasticity of the vortex lattice is highly nonlocal. The magnetic response of superconductors of realistic shapes like thin and thick strips and disks or thin rectangular plates or films, containing pinned vortices, can be computed within continuum theory by solving an integral equation. A useful example is a thin square with a central hole and a radial slit, used as superconducting quantum interference device (SQUID).

  5. Vortices and hysteresis in a rotating Bose-Einstein condensate with anharmonic confinement

    DEFF Research Database (Denmark)

    Jackson, A.D.; Kavoulakis, G.M.

    2004-01-01

    Vortices; Bose-Einstein condensation; phase diagrams; phase transformation Udgivelsesdato: 4 August......Vortices; Bose-Einstein condensation; phase diagrams; phase transformation Udgivelsesdato: 4 August...

  6. Aerodynamic Design and Experimental Investigation of the Sailplane Wing Tip Devices

    Directory of Open Access Journals (Sweden)

    P. Anderle

    2003-01-01

    Full Text Available This paper describes an experimental set-up for the investigation of wing tip devices developed as part of a study into the velocity and vorticity distributions in the flow field behind winglets, using hot-wire anemometry. In this study, effort was focused on gaining a greater understanding of what happens in the region where the winglet joins the wing. The measurements were performed in the Handley-Page wind tunnel of the Department of Aerospace Engineering at the University of Glasgow. In order to carry out measurements with the hot-wire anemometry system, a new traverse mechanism was designed and manufactured. This traverse mechanism was integrated with the other test instrumentation to create a complete measurement chain. The complete system allows fully automated hot wire measurements to be made over a defined area using programmable test parameters.

  7. Navier-Stokes computations on full-span wing-body configuration with oscillating control surfaces

    Science.gov (United States)

    Obayashi, Shigeru; Chiu, Ing-Tsau; Guruswamy, Guru P.

    1993-01-01

    Unsteady Navier-Stokes simulations have been performed for vortical flows over an 'arrow-wing' configuration of a supersonic transport in the transonic regime. Computed steady pressures and integrated force coefficients with and without control surface deflection at a moderate angle of attack are compared with experiment. For unsteady cases, oscillating trailing-edge control surfaces are modeled by using moving grids. Response characteristics between symmetric and anti-symmetric oscillatory motions of the control surfaces on the left and right wings are studied. The anti-symmetric case produces higher lift than the steady case with no deflection, and the unsteady symmetric case produces higher lift than the anti-symmetric case. The detailed analysis of the wake structure revealed a strong interaction between the primary vortex and the wake vortex sheet from the flap region when the flap is deflected up.

  8. Computational simulations of vorticity enhanced diffusion

    Science.gov (United States)

    Vold, Erik L.

    1999-11-01

    Computer simulations are used to investigate a phenomenon of vorticity enhanced diffusion (VED), a net transport and mixing of a passive scalar across a prescribed vortex flow field driven by a background gradient in the scalar quantity. The central issue under study here is the increase in scalar flux down the gradient and across the vortex field. The numerical scheme uses cylindrical coordinates centered with the vortex flow which allows an exact advective solution and 1D or 2D diffusion using simple numerical methods. In the results, the ratio of transport across a localized vortex region in the presence of the vortex flow over that expected for diffusion alone is evaluated as a measure of VED. This ratio is seen to increase dramatically while the absolute flux across the vortex decreases slowly as the diffusion coefficient is decreased. Similar results are found and compared for varying diffusion coefficient, D, or vortex rotation time, τv, for a constant background gradient in the transported scalar vs an interface in the transported quantity, and for vortex flow fields constant in time vs flow which evolves in time from an initial state and with a Schmidt number of order unity. A simple analysis shows that for a small diffusion coefficient, the flux ratio measure of VED scales as the vortex radius over the thickness for mass diffusion in a viscous shear layer within the vortex characterized by (Dτv)1/2. The phenomenon is linear as investigated here and suggests that a significant enhancement of mixing in fluids may be a relatively simple linear process. Discussion touches on how this vorticity enhanced diffusion may be related to mixing in nonlinear turbulent flows.

  9. Dynamics of Giant Planet Polar Vortices

    Science.gov (United States)

    Brueshaber, Shawn R.; Sayanagi, Kunio M.

    2016-10-01

    The polar atmospheres of the giant planets have come under increasing interest since a compact, warm-core, stable, cyclonic polar vortex was discovered at each of Saturn's poles. In addition, the south pole of Neptune appears to have a similar feature, and Uranus' north pole is exhibiting activity that could indicate the formation of a polar vortex. We investigate the formation and maintenance of these giant planet polar vortices by varying several key atmospheric dynamics parameters in a forced-dissipative, 1.5-layer shallow water model. Our simulations are run using the EPIC (Explicit Planetary Isentropic Coordinate) global circulation model, to which we have added a gamma-plane rectangular grid option appropriate for simulating polar atmospheric dynamics.In our numerical simulations, we vary the atmospheric deformation radius, planetary rotation rate, storm forcing intensity, and storm vorticity (cyclone-to-anticyclone) ratio to determine what combination of values favors the formation of a polar vortex. We find that forcing the atmosphere by injecting small-scale mass perturbations ("storms") to form either all cyclones, all anticyclones, or equal numbers of both, may all result in a cyclonic polar vortex. Additionally, we examine the role of eddy momentum convergence in the intensification and maintenance of a polar cyclone.Our simulation results are applicable to understanding all four of the solar system giant planets. In the future, we plan to expand our modeling effort with a more realistic 3D primitive equations model, also with a gamma-plane rectangular grid using EPIC. With our 3D primitive equations model, we will study how various vertical atmospheric stratification structures influence the formation and maintenance of a polar cyclone. While our shallow-water model only involves storms of a single layer, a 3D primitive equations model allows us to study how storms of finite vertical extent and at differing levels in the atmosphere may further favor

  10. {\\delta}M Formalism

    CERN Document Server

    Talebian-Ashkezari, Alireza; Abolhasani, Ali Akbar

    2016-01-01

    We study the evolution of the "non-perturbative" metric perturbations in a Bianchi background in the long-wavelength limit. By applying the gradient expansion to the equations of motion we exhibit a generalized "Separate Universe" approach to the cosmological perturbation theory. Having found this consistent separate universe picture, we introduce the "{\\delta}M formalism" for calculating the evolution of the tensor perturbations in anisotropic inflation models in almost similar way as the so-called {\\delta}N formula for the super-horizon dynamics of the curvature perturbations. Likewise its ancestor, {\\delta}N formalism, this new method can substantially reduce the amount of calculations related to the evolution of the tensor modes.

  11. Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)

    Science.gov (United States)

    Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth

    1993-01-01

    The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.

  12. Three-dimensional canard-wing shape optimization in aircraft cruise and maneuver environments

    Science.gov (United States)

    De Silva, B. M. E.; Carmichael, R. L.

    1978-01-01

    This paper demonstrates a numerical technique for canard-wing shape optimization at two operating conditions. For purposes of simplicity, a mean surface wing paneling code is employed for the aerodynamic calculations. The optimization procedures are based on the method of feasible directions. The shape functions for describing the thickness, camber, and twist are based on polynomial representations. The primary design requirements imposed restrictions on the canard and wing volumes and on the lift coefficients at the operating conditions. Results indicate that significant improvements in minimum drag and lift-to-drag ratio are possible with reasonable aircraft geometries. Calculations were done for supersonic speeds with Mach numbers ranging from 1 to 6. Planforms were mainly of a delta shape with aspect ratio of 1.

  13. Design of a wing shape for study of hypersonic crossflow transition in flight

    Science.gov (United States)

    Godil, A.; Bertelrud, A.

    1992-01-01

    Computational fluid dynamics methods were used in the design of a wing shape for study of hypersonic crossflow transition in flight. The flight experiment is to be performed on the delta wing of the first stage of a Pegasus launch vehicle as a piggy-back experiment to support boundary-layer stability code development and validation. The design goal is to obtain crossflow-induced transition at 20-40 percent of the chord for a flight Mach number of approximately six. The present paper describes the design and analysis process utilized to obtain desired glove shape. A variety of schemes were used in the design, ranging from simple empirical crossflow correlations to three-dimensional Navier-Stokes codes in conjunction with linear stability/N-factor computations. The sensitivity to various parameters, such as trajectory variations, allowable wing thickness, leading-edge radius and surface temperature, is also discussed.

  14. Coherence vortices of partially coherent beams in the far field

    Institute of Scientific and Technical Information of China (English)

    Liu Pu-Sheng; Lü Bai-da

    2007-01-01

    Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator, zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points.If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.

  15. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    Science.gov (United States)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  16. Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring

    Science.gov (United States)

    Stanford, Bret; Ifju, Peter; Albertani, Roberto; Shyy, Wei

    2008-05-01

    Fixed wing micro air vehicles (wingspan between 10 and 15 cm) are aerodynamically challenging due to the low Reynolds number regime (10 4-10 5) they operate in. The low aspect ratio wings (typically used to maximize area under a size constraint) promote strong tip vortices, and are susceptible to rolling instabilities. Wind gusts can be of the same order of magnitude as the flight speed (10-15 m/s). Standard control surfaces on an empennage must be eliminated for size considerations and drag reduction, and the range of stable center of gravity locations is only a few millimeters long. Membrane aeroelasticity has been identified as a tenable method to alleviate these issues: flexible wing structures with geometric twist (adaptive washout for gust rejection, delayed stall) and aerodynamic twist (adaptive inflation for high lift, larger stability margins) are both considered here. Recent investigations in static aeroelastic characterization, including flight loads, wing deformation, flow structures, aeroelastic-tailoring studies through laminate orientation, as well as unconventional techniques based on membrane pre-tension, are reviewed. Multi-objective optimization aimed at improving lift, drag, and pitching moment considerations is also discussed.

  17. On the link between martian total ozone and potential vorticity

    Science.gov (United States)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  18. A computational study of the wing-wing and wing-body interactions of a model insect

    Institute of Scientific and Technical Information of China (English)

    Xin Yu; Mao Sun

    2009-01-01

    The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of thebody are less than 2%. The reason for this is as following. During each down-or up-stroke, a wing produces a vortexring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex tings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.

  19. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  20. Insect Evolution: The Origin of Wings.

    Science.gov (United States)

    Ross, Andrew

    2017-02-06

    The debate on the evolution of wings in insects has reached a new level. The study of primitive fossil insect nymphs has revealed that wings developed from a combination of the dorsal part of the thorax and the body wall.

  1. Migration of anticyclonic vortices in the protoplanetary disk

    CERN Document Server

    Surville, Clément

    2012-01-01

    This contribution describes the evolution of the protoplanetary disk using 2D numerical simulations. The 2D Euler equations are solved with the finite volume method. The numerical simulations are used to study the persistence and migration of anticyclonic vortices. Two cases are presented : (1) vortices produced by a Rossby wave instability, (2) a non-linear vortex model initially implemented into the disk. The migration of the vortices is due to spiral density waves excited by the vortex in the gas of the disk

  2. Interaction of Vortices with a progressive Surface Wave

    Institute of Scientific and Technical Information of China (English)

    LinlinWANG; HuiyangMA

    1996-01-01

    Interaction of submerged vortices with a progressive surface wave is investigated by the finite-difference numerical solution of Navier-Stokes equations.The progressive wave is the surface gravity water wave in a finite depth.The initial vortex model is Oseen vortex.The numerical computations show that a special pattern of the wave surface may be observed by the interaction from the submerged vortices.The influences of Froude number,the initial geometric configuration of vortices,and the amplitude,inital phase of surface wave on the wave pattern are discussed.

  3. Kinetic study of ion-acoustic plasma vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S. A. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Aman-ur-Rehman, E-mail: amansadiq@gmail.com [Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Téchnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2014-09-15

    The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas.

  4. Dynamics of circular arrangements of vorticity in two dimensions

    Science.gov (United States)

    Swaminathan, Rohith V.; Ravichandran, S.; Perlekar, Prasad; Govindarajan, Rama

    2016-07-01

    The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more

  5. Image simulations of kinked vortices for transmission electron microscopy

    DEFF Research Database (Denmark)

    Beleggia, Marco; Pozzi, G.; Tonomura, A.

    2010-01-01

    We present an improved model of kinked vortices in high-Tc superconductors suitable for the interpretation of Fresnel or holographic observations carried out with a transmission electron microscope. A kinked vortex is composed of two displaced half-vortices, perpendicular to the film plane...... observations of high-Tc superconducting films, where the Fresnel contrast associated with some vortices showed a dumbbell like appearance. Here, we show that under suitable conditions the JV segment may reveal itself in Fresnel imaging or holographic phase mapping in a transmission electron microscope....

  6. Computer simulation studies of pulsed Doppler signals from vortices

    Institute of Scientific and Technical Information of China (English)

    CHEN Sizhong; WANG Yuanyuan; WANG Weiqi

    2001-01-01

    A computer simulation method for pulsed Doppler signals from vortices was proposed to generate simulated vortex Doppler signals under various given circumstances. The relative waveforms, such as the maximum frequency waveform, the mean frequency waveform and the bandwidth waveform, were obtained using the short time Fourier analysis of those simulated signals. The relations were studied between several spectrum parameters obtained from these waveforms and given simulation conditions, such as the position and the size of the sample volume, the distance between two vortices, the free stream velocity and the maximum tangent velocity of the vortex. The sensitive parameters were found to detect vortices using the pulsed Doppler techniques.

  7. Quantised vortices and mutual friction in relativistic superfluids

    CERN Document Server

    Andersson, N; Vickers, J A

    2016-01-01

    We consider the detailed dynamics of an array of quantised superfluid vortices in the framework of general relativity, as required for quantitative modelling of realistic neutron star cores. Our model builds on the variational approach to relativistic (multi-) fluid dynamics, where the vorticity plays a central role. The description provides a natural extension of, and as it happens a better insight into, existing Newtonian models. In particular, we account for the mutual friction associated with scattering of a second "normal" component in the mixture off of the superfluid vortices.

  8. The Niger Delta Crisis

    African Journals Online (AJOL)

    chifaou.amzat

    2013-09-28

    Sep 28, 2013 ... lions de barils par jour à environ 1 million au plus fort de la crise du Delta ... (JTF) between 13 May 2009 and 4 October 2009 (the deadline for embrac- ..... He had just ended his welcome address as the occasion's chairman.

  9. Span morphing using the GNATSpar wing

    OpenAIRE

    2016-01-01

    Rigid wings usually fly at sub-optimal conditions generating unnecessary aerodynamic loses represented in flight time, fuel consumption, and unfavourable operational characteristics. High aspect ratio wings have good range and fuel efficiency, but lack manoeuvrability. On the other hand, low aspect ratio wings fly faster and are more manoeuvrable, but have poor aerodynamic performance. Span morphing technology allows integrating both features in a single wing design and allows continuously ad...

  10. Structural Analysis of a Dragonfly Wing

    OpenAIRE

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensional scan of a dragonfly (Sympetrum vulgatum) fore- and hindwing with a micro-CT scanner. The scans c...

  11. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  12. An experimental study of a jet issuing from a lifting wing. [vertical-horizontal flight transitions in VTOL aircraft

    Science.gov (United States)

    Mcmahon, H. M.; Antani, D. L.

    1979-01-01

    An experimental program was conducted to determine the behavior of a round turbulent jet issuing from a lifting two-dimensional wing in crossflow. The jet was located at 65% wing chord on an NACA 0021 airfoil fitted with a 30% chord NACA 4415 flap. The flowfield associated with the jet was surveyed extensively with directional pressure probes to determine local velocity vectors and pressures for three different values of lift coefficient at jet effective velocity ratios (square root of the ratio of the jet dynamic pressure to the freestream dynamic pressure) of 4, 6, and 8. Data describing the jet centerline and the path of the contrarotating vortices accompanying the deflected jet are presented and compared with similar data for a round jet issuing from a large flat plate. The spacing and strength of the vortices are calculated using a simple vortex model previously proposed for the flat plate case. The results show that the penetration of the jet and the vortices increases significantly with increasing lift for the range of test parameters covered in the study. The calculated vortex spacing and strength also show an increase with lift.

  13. Formation and stability of tri-polar vortices in stratified geostrophic flows

    Energy Technology Data Exchange (ETDEWEB)

    Corread, S.M.; Carton, X.J. [French Navy Oceanography Center, Brest (France)

    1999-12-01

    The formation, stationary and stability of tri-polar vortices are investigated in a two-layer quasi-geostrophic model. On the f-plane, these tripoles form from the barotropic and baroclinic instabilities of circular isolated vortices. Various horizontal and vertical potential vorticity distributions, both piecewise constant and continuous, are considered here for these circular vortices.

  14. Point Vortices: Finding Periodic Orbits and their Topological Classification

    CERN Document Server

    Smith, Spencer A

    2015-01-01

    The motion of point vortices constitutes an especially simple class of solutions to Euler's equation for two dimensional, inviscid, incompressible, and irrotational fluids. In addition to their intrinsic mathematical importance, these solutions are also physically relevant. Rotating superfluid helium can support rectilinear quantized line vortices, which in certain regimes are accurately modeled by point vortices. Depending on the number of vortices, it is possible to have either regular integrable motion or chaotic motion. Thus, the point vortex model is one of the simplest and most tractable fluid models which exhibits some of the attributes of weak turbulence. The primary aim of this work is to find and classify periodic orbits, a special class of solutions to the point vortex problem. To achieve this goal, we introduce a number of algorithms: Lie transforms which ensure that the equations of motion are accurately solved; constrained optimization which reduces close return orbits to true periodic orbits; o...

  15. On the definition of a moist-air potential vorticity

    CERN Document Server

    Marquet, Pascal

    2014-01-01

    A new potential vorticity is derived by using a specific entropy formulation expressed in terms of a moist-air entropy potential temperature. The new formulation is compared with Ertel's version and with others based on virtual and equivalent potential temperatures. The new potential vorticity is subject to conservative properties ensured by the Second Law applied to the moist-air material derivatives. It is shown that the upper tropospheric and stratospheric (dry) structures are nearly the same as those obtained with Ertel's component. Moreover, new structures are observed in the low troposphere, with negative values associated with moist frontal regions. The negative values are observed in the frontal regions where slantwise convection instabilities may take place, but they are smaller than those observed with the equivalent potential vorticity. The main purpose of the article is to diagnose the behaviour of the new potential vorticity from numerical output generated by the ARPEGE NWP model, with the help o...

  16. Magnus and other forces on vortices in superfluids and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Michael [University of Illinois, IL (United States)

    1998-07-01

    I discuss some of the forces acting on vortices in charged superfluids, paying particular attention to the way that the Berry and Aharonov-Casher phases combine to reflect the classical magnetohydrodynamics. (Author). 28 refs.

  17. Are Superfluid Vortices in Pulsars Violating the Weak Equivalence Principle?

    CERN Document Server

    de Matos, Clovis Jacinto

    2010-01-01

    In the present paper we argue that timing irregularities in pulsars, like glitches and timing noise, could be associated with the violation of the weak equivalence principle for vortices in the superfluid core of rotating neutron stars.

  18. Stability of superfluid vortices in dense quark matter

    CERN Document Server

    Alford, Mark G; Vachaspati, Tanmay; Windisch, Andreas

    2016-01-01

    Superfluid vortices in the color-flavor-locked (CFL) phase of dense quark matter are known to be energetically disfavored relative to well-separated triplets of "semi-superfluid" color flux tubes. However, the short-range interaction (metastable versus unstable) has not been established. In this paper we perform numerical calculations using the effective theory of the condensate field, mapping the regions in the parameter space of coupling constants where the vortices are metastable versus unstable. For the case of zero gauge coupling we analytically identify a candidate for the unstable mode, and show that it agrees well with the results of the numerical calculations. We find that in the region of the parameter space that seems likely to correspond to real-world CFL quark matter the vortices are unstable, indicating that if such matter exists in neutron star cores it is very likely to contain semi-superfluid color flux tubes rather than superfluid vortices.

  19. Propagation dynamics of vortices in Helico-Conical optical beams

    CERN Document Server

    Bareza, Nestor

    2015-01-01

    We present the dynamics of optical vortices (OVs) that came from the propagation of helico-conical optical beam. This dynamics is investigated numerically by tracking the OVs at several distances using rigorous scalar diffraction theory. To ensure that our numerical calculations are correct, we compare the intensity profiles and their corresponding interferograms taken at different propagation distances between simulations and experiments. We observe that the peripheral isopolar vortices transport radially inward, toward the optical axis along the transverse spatial space as the beam propagates. When the beam has a central vortex, these vortices have significant induced angular rates of motion about the optical axis. These propagation dynamics of vortices influence the internal energy flow and the wave profile reconstruction of the beam, which can be important when deciding their applications.

  20. Vortical Structures in CT-based Breathing Lung Models

    Science.gov (United States)

    Choi, Jiwoong; Lee, Changhyun; Hoffman, Eric; Lin, Ching-Long

    2016-11-01

    The 1D-3D coupled computational fluid dynamics (CFD) lung model is applied to study vortical structures in the human airways during normal breathing cycles. During inhalation, small vortical structures form around the turbulent laryngeal jet and Taylor-Gőrtler-like vortices form near the curved walls in the supraglottal region and at airway bifurcations. On exhalation elongated vortical tubes are formed in the left main bronchus, whereas a relatively slower stream is observed in the right main bronchus. These structures result in helical motions in the trachea, producing long lasting high wall shear stress on the wall. The current study elucidates that the correct employment of image-based airway deformation and lung deflation information is crucial for capturing the physiologically consistent regional airflow structures. The pathophysiological implications of these structures in destruction of tracheal wall will be discussed.

  1. Artificial ice using superconducting vortices (Conference Presentation)

    Science.gov (United States)

    Trastoy Quintela, Juan; Malnou, Maxime; Ulysse, Christian; Bernard, Rozenn; Bergeal, Nicolas; Faini, Giancarlo; Lesueur, Jerome; Briatico, Javier; Villegas, Javier E.

    2016-10-01

    We use magnetic flux quanta (superconducting vortices) on artificial energy landscapes (pinning arrays) to create a new type of artificial ice. This vortex ice shows unusual temperature effects that offer new possibilities in the study of ice systems. We have investigated the matching of the flux lattice to pinning arrays that present geometrical frustration. The pinning arrays are fabricated on YBCO films using masked O+ ion irradiation. The details of the magneto-resistance imply that the flux lattice organizes into a vortex ice. The absence of history-dependent effects suggests that the vortex ice is highly ordered. Due to the technique used for the artificial energy landscape fabrication, we have the ability to change the pinning array geometry using temperature as a control knob. In particular we can switch the geometrical frustration on and off, which opens the door to performing a new type of annealing absent in other artificial ice systems. * Work supported by the French ANR "MASTHER", and the Fundación Barrié (Galicia, Spain)

  2. Analytical BPS Maxwell-Higgs Vortices

    Directory of Open Access Journals (Sweden)

    R. Casana

    2014-01-01

    Full Text Available We have established a prescription for the calculation of analytical vortex solutions in the context of generalized Maxwell-Higgs models whose overall dynamics is controlled by two positive functions of the scalar field, namely, fϕ and wϕ. We have also determined a natural constraint between these functions and the Higgs potential Uϕ, allowing the existence of axially symmetric Bogomol'nyi-Prasad-Sommerfield (BPS solutions possessing finite energy. Furthermore, when the generalizing functions are chosen suitably, the nonstandard BPS equations can be solved exactly. We have studied some examples, comparing them with the usual Abrikosov-Nielsen-Olesen (ANO solution. The overall conclusion is that the analytical self-dual vortices are well-behaved in all relevant sectors, strongly supporting the consistency of the respective generalized models. In particular, our results mimic well-known properties of the usual (numerical configurations, as localized energy density, while contributing to the understanding of topological solitons and their description by means of analytical methods.

  3. Chirp-driven giant phase space vortices

    Science.gov (United States)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2016-06-01

    In a collisionless, unbounded, one-dimensional plasma, modelled using periodic boundary conditions, formation of steady state phase space coherent structures or phase space vortices (PSV) is investigated. Using a high resolution one-dimensional Vlasov-Poisson solver based on piecewise-parabolic advection scheme, the formation of giant PSV is addressed numerically. For an infinitesimal external drive amplitude and wavenumber k, we demonstrate the existence of a window of chirped external drive frequency that leads to the formation of giant PSV. The linear, small amplitude, external drive, when chirped, is shown to couple effectively to the plasma and increase both streaming of "untrapped" and "trapped" particle fraction. The steady state attained after the external drive is turned off and is shown to lead to a giant PSV with multiple extrema and phase velocities, with excess density fraction, defined as the deviation from the Maxwellian background, Δ n / n 0 ≃ 20 % - 25 % . It is shown that the process depends on the chirp time duration Δt. The excess density fraction Δn/n0, which contains both trapped and untrapped particle contribution, is also seen to scale with Δt, only inhibited by the gradient of the distribution in velocity space. Both single step drive and multistep chirp processes are shown to lead to steady state giant PSV, with multiple extrema due to embedded holes and clumps, long after the external drive is turned off.

  4. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers

    Science.gov (United States)

    Shields, Matt

    The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the

  5. Bat flight with bad wings: is flight metabolism affected by damaged wings?

    Science.gov (United States)

    Voigt, Christian C

    2013-04-15

    Infection of North American bats with the keratin-digesting fungus Geomyces destructans often results in holes and ruptures of wing membranes, yet it is unknown whether flight performance and metabolism of bats are altered by such injuries. I conducted flight experiments in a circular flight arena with Myotis albescens and M. nigricans individuals with an intact or ruptured trailing edge of one of the plagiopatagial membranes. In both species, individuals with damaged wings were lighter, had a higher aspect ratio (squared wing span divided by wing area) and an increased wing loading (weight divided by wing area) than conspecifics with intact wings. Bats with an asymmetric reduction of the wing area flew at similar speeds to conspecifics with intact wings but performed fewer flight manoeuvres. Individuals with damaged wings showed lower metabolic rates during flight than conspecifics with intact wings, even when controlling for body mass differences; the difference in mass-specific metabolic rate may be attributable to the lower number of flight manoeuvres (U-turns) by bats with damaged wings compared with conspecifics with intact wings. Possibly, bats compensated for an asymmetric reduction in wing area by lowering their body mass and avoiding flight manoeuvres. In conclusion, it may be that bats suffer from moderate wing damage not directly, by experiencing increased metabolic rate, but indirectly, by a reduced manoeuvrability and foraging success. This could impede a bat's ability to gain sufficient body mass before hibernation.

  6. The Wings for Angels Project

    Science.gov (United States)

    McMillan, Liberty; McMillan, Ellen; Ayers, Ann

    2012-01-01

    How can the spirits of critically ill children be raised? Alexis Weisel (co-president of the Monarch High School National Art Honor Society, 2010-2011) had this question in mind when she initiated and developed the Wings for Angels Project after hearing about the Believe in Tomorrow (BIT) organization through her art teacher, Ellen McMillan. The…

  7. Wings: Women Entrepreneurs Take Flight.

    Science.gov (United States)

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  8. FLEXIBLE WING INDIVIDUAL DROP GLIDER

    Science.gov (United States)

    The feasibility of the paraglider concept as a means of descent for individual airborne troops is presented. Full-scale 22-foot inflatable wings and...in an effort to achieve system reliability. The feasibility of using the paraglider as a means of controlled delivery of airborne paratroopers was successfully demonstrated.

  9. [Winged scapula in lyme borreliosis].

    Science.gov (United States)

    Rausch, V; Königshausen, M; Gessmann, J; Schildhauer, T A; Seybold, D

    2016-06-01

    Here we present the case of a young patient with one-sided winged scapula and lyme borreliosis. This disease can be very delimitating in daily life. If non-operative treatment fails, dynamic or static stabilization of the scapula can be a therapeutic option.

  10. DELTAS: A new Global Delta Sustainability Initiative (Invited)

    Science.gov (United States)

    Foufoula-Georgiou, E.

    2013-12-01

    Deltas are economic and environmental hotspots, food baskets for many nations, home to a large part of the world population, and hosts of exceptional biodiversity and rich ecosystems. Deltas, being at the land-water interface, are international, regional, and local transport hubs, thus providing the basis for intense economic activities. Yet, deltas are deteriorating at an alarming rate as 'victims' of human actions (e.g. water and sediment reduction due to upstream basin development), climatic impacts (e.g. sea level rise and flooding from rivers and intense tropical storms), and local exploration (e.g. sand or aggregates, groundwater and hydrocarbon extraction). Although many efforts exist on individual deltas around the world, a comprehensive global delta sustainability initiative that promotes awareness, science integration, data and knowledge sharing, and development of decision support tools for an effective dialogue between scientists, managers and policy makers is lacking. Recently, the international scientific community proposed to establish the International Year of Deltas (IYD) to serve as the beginning of such a Global Delta Sustainability Initiative. The IYD was proposed as a year to: (1) increase awareness and attention to the value and vulnerability of deltas worldwide; (2) promote and enhance international and regional cooperation at the scientific, policy, and stakeholder level; and (3) serve as a launching pad for a 10-year committed effort to understand deltas as complex socio-ecological systems and ensure preparedness in protecting and restoring them in a rapidly changing environment. In this talk, the vision for such an international coordinated effort on delta sustainability will be presented as developed by a large number of international experts and recently funded through the Belmont Forum International Opportunities Fund. Participating countries include: U.S., France, Germany, U.K., India, Japan, Netherlands, Norway, Brazil, Bangladesh

  11. The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birds.

    Science.gov (United States)

    Hubel, Tatjana Y; Tropea, Cameron

    2010-06-01

    Over the last decade, interest in animal flight has grown, in part due to the possible use of flapping propulsion for micro air vehicles. The importance of unsteady lift-enhancing mechanisms in insect flight has been recognized, but unsteady effects were generally thought to be absent for the flapping flight of larger animals. Only recently has the existence of LEVs (leading edge vortices) in small vertebrates such as swifts, small bats and hummingbirds been confirmed. To study the relevance of unsteady effects at the scale of large birds [reduced frequency k between 0.05 and 0.3, k=(pifc)/U(infinity); f is wingbeat frequency, U(infinity) is free-stream velocity, and c is the average wing chord], and the consequences of the lack of kinematic and morphological refinements, we have designed a simplified goose-sized flapping model for wind tunnel testing. The 2-D flow patterns along the wing span were quantitatively visualized using particle image velocimetry (PIV), and a three-component balance was used to measure the forces generated by the wings. The flow visualization on the wing showed the appearance of LEVs, which is typically associated with a delayed stall effect, and the transition into flow separation. Also, the influence of the delayed stall and flow separation was clearly visible in measurements of instantaneous net force over the wingbeat cycle. Here, we show that, even at reduced frequencies as low as those of large bird flight, unsteady effects are present and non-negligible and have to be addressed by kinematic and morphological adaptations.

  12. Large-Eddy Simulations of Dust Devils and Convective Vortices

    Science.gov (United States)

    Spiga, Aymeric; Barth, Erika; Gu, Zhaolin; Hoffmann, Fabian; Ito, Junshi; Jemmett-Smith, Bradley; Klose, Martina; Nishizawa, Seiya; Raasch, Siegfried; Rafkin, Scot; Takemi, Tetsuya; Tyler, Daniel; Wei, Wei

    2016-11-01

    In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.

  13. Large-scale Alfvén vortices

    Energy Technology Data Exchange (ETDEWEB)

    Onishchenko, O. G., E-mail: onish@ifz.ru [Institute of Physics of the Earth, 10 B. Gruzinskaya, 123242 Moscow, Russian Federation and Space Research Institute, 84/32 Profsouznaya str., 117997 Moscow (Russian Federation); Pokhotelov, O. A., E-mail: pokh@ifz.ru [Institute of Physics of the Earth, 10 B. Gruzinskaya, 123242 Moscow (Russian Federation); Horton, W., E-mail: wendell.horton@gmail.com [Institute for Fusion Studies and Applied Research Laboratory, University of Texas at Austin, Austin, Texas 78713 (United States); Scullion, E., E-mail: scullie@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Fedun, V., E-mail: v.fedun@sheffield.ac.uk [Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S13JD (United Kingdom)

    2015-12-15

    The new type of large-scale vortex structures of dispersionless Alfvén waves in collisionless plasma is investigated. It is shown that Alfvén waves can propagate in the form of Alfvén vortices of finite characteristic radius and characterised by magnetic flux ropes carrying orbital angular momentum. The structure of the toroidal and radial velocity, fluid and magnetic field vorticity, the longitudinal electric current in the plane orthogonal to the external magnetic field are discussed.

  14. On the temperature dependence of the chiral vortical effects

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We discuss the origins of temperature dependence of the axial vortical effect (AVE), i.e. generation of an axial current in a rotating chiral medium along the rotation axis. We show that the corresponding transport coefficient depends on the number of light weakly interacting degrees of freedom, rather than on the gravitational anomaly. We also comment on the role of low-dimensional defects in the rotating medium, and appearance of the chiral vortical effect due to them.

  15. Onset of Vortices in Thin Superconducting Strips and Wires

    CERN Document Server

    Aranson, I S; Shapiro, B Y

    1994-01-01

    Spontaneous nucleation and the consequent penetration of vortices into thin superconducting films and wires, subjected to a magnetic field, can be considered as a nonlinear stage of primary instability of the current-carrying superconducting state. The development of the instability leads to the formation of a chain of vortices in strips and helicoidal vortex lines in wires. The boundary of instability was obtained analytically. The nonlinear stage was investigated by simulations of the time-dependent generalized Ginzburg-Landau equation.

  16. Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    Science.gov (United States)

    Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.

    2015-01-01

    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.

  17. Simulating living organisms with populations of point vortices

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W.

    1995-07-01

    The author has found that time-averaged images of small populations of point vortices can exhibit motions suggestive of the behavior of individual organisms. As an example, the author shows that collections of point vortices confined in a box and subjected to heating can generate patterns that are broadly similar to interspecies defense in certain sea anemones. It is speculated that other simple dynamical systems can be found to produce similar complex organism-like behavior.

  18. Conditions for Two-Cell Structure in Severe Vortical Storms.

    Science.gov (United States)

    1984-02-01

    SEVERE VORTICAL STORMS by G. F. Carrier, F. E. Fendell , P. S. Feldman, and S. F. Fink TRW Space and Technology Group, Redondo Beach, CA 90278 Thi...Claification Conditions for Two-Call Structure in Severe Vortical Storms (U) 12. PERSONAL AUTHOR(S) Carrier. G. F. (Harvard U.): Fendell , F. E., Feldman...cell structure will occur. Very roughly, about half of all tropical storms ( Fendell 1974), and about one-quarter to one-half of meso- cyclones (Brooks

  19. On Ginzburg-Landau Vortices of Superconducting Thin Films

    Institute of Scientific and Technical Information of China (English)

    Shi Jin DING; Qiang DU

    2006-01-01

    In this paper, we discuss the vortex structure of the superconducting thin films placed in a magnetic field. We show that the global minimizer of the functional modelling the superconducting thin films has a bounded number of vortices when the applied magnetic field hex < Hc1 + K log |log ε|where Hc1 is the lower critical field of the film obtained by Ding and Du in SIAM J. Math. Anal.,2002. The locations of the vortices are also given.

  20. Vorticity analysis in the Zagros orogen, Shiraz area, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Heibati, Zahra

    2016-10-01

    Quantitative vorticity analyses in orogenic belts are essential for studying the kinematics of deformation and can be performed using a range of methods. The combination of microstructural analysis for vorticity with other methods creates a more rigorous analysis. In order to determine the degree of non-coaxiality and spatial pattern of vorticity during deformation in the Zagros Orogenic Belt, a study area containing the boundary of the Zagros Folded Belt and the Zagros Fold-and-Thrust Belt is selected. The study area is situated in the Shiraz region of E-Zagros in Iran. The kinematic vorticity analysis is carried out using 4 methods based on: (1) the degree of asymmetry of the calcite c-axis fabric, (2) the assumption that the orientation of the long axes of calcite within an oblique stylolite foliation delineates the direction of the instantaneous stretching axis, (3) the assumption that the tension gash tips determine the direction of the instantaneous stretching axis and (4) stylolite teeth determine the direction of the instantaneous stretching axis. C-axis data from calcite give a kinematic vorticity number between 0.68 and 0.83, and the orientation of the long axes of calcite grains yields a range between 0.5 and 0.84. Stylolites provide a kinematic vorticity number between 0.5 and 0.79, and tension gashes provide a kinematic vorticity number between 0.56 and 0.81. This range of vorticity numbers confirms the contributions of both simple (33-59%) and pure shear (41-67%). Twining of calcite also reveals that the last stage of deformation occurred at a temperature of 170-200 °C. Spatial analysis reveals an increase in the simple shear component from the SW of the Zagros Folded Belt to the NE of the Zagros Fold-and-Thrust Belt.

  1. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    Science.gov (United States)

    Felici, Helene Marie

    1992-06-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  2. Comparison between ionospheric convection vortices and the associated equivalent currents

    Science.gov (United States)

    Liang, J.; Benkevitch, L.; Sofko, G. J.; Koustov, A. V.

    2004-12-01

    The equivalent current pattern derived from CANOPUS, NRCAN/GSC and MACCS magnetometers has been compared with the ionospheric convection pattern observed by SuperDARN HF radars. The discrepancies between the equivalent convection (EQC) and the SuperDARN-observed convection (SDC) patterns are explained in terms of the effect of day-night photoionization conductance gradient and the coupling between field-aligned currents (FACs) and ionospheric conductances. In particular, the agreement between the EQC and SDC patterns is usually worse for a counterclockwise convection vortex than for a clockwise cell, but a consistent pattern of discrepancy for counterclockwise convection vortices has been found. We suggest that the discrepancies are due to a downward FAC-conductance coupling process. Since the counterclockwise vortices and clockwise vortices occur predominantly in the dawn and dusk sectors, respectively, in accordance with the usual 2-cell global convection pattern, the asymmetry between the EQC and SDC patterns for counterclockwise vortices and clockwise vortices would naturally lead to a dawn-dusk asymmetry as well. This is revealed by a global statistical study of the deviation of direction between the magnetic equivalent convection and the SuperDARN convection in different time sectors and latitudes. In the dawn sector, the statistical results reveal that, at lower latitudes, the EQC direction deviation is slightly counterclockwise with respect to the SDC direction, whereas the deviation is significantly clockwise at high latitudes. These deviations are consistent with the discrepancy pattern for counterclockwise convection vortices, as found in the individual vortex event studies.

  3. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2015-09-15

    The increasing interest in the development of small flying air vehicles has given rise to a strong need to thoroughly understand low-speed aerodynamics. The barn owl is a well-known example of a biological system that possesses a high level of adaptation to its habitat and as such can inspire future small-scale air vehicle design. The combination of the owl-specific wing geometry and plumage adaptations with the flexibility of the wing structure yields a highly complex flow field, still enabling the owl to perform stable and at the same time silent low-speed gliding flight. To investigate the effects leading to such a characteristic flight, time-resolved stereoscopic particle-image velocimetry (TR-SPIV) measurements are performed on a prepared natural owl wing in a range of angles of attack 0° ≤ α ≤ 6° and Reynolds numbers 40,000 ≤ Re(c) ≤ 120,000 based on the chord length at a position located at 30% of the halfspan from the owl's body. The flow field does not show any flow separation on the suction side, whereas flow separation is found on the pressure side for all investigated cases. The flow field on the pressure side is characterized by large-scale vortices which interact with the flexible wing structure. The good agreement of the shedding frequency of the pressure side vortices with the frequency of the trailing-edge deflection indicates that the structural deformation is induced by the flow field on the pressure side. Additionally, the reduction of the time-averaged mean wing curvature at high Reynolds numbers indicates a passive lift-control mechanism that provides constant lift in the entire flight envelope of the owl.

  4. AST Composite Wing Program: Executive Summary

    Science.gov (United States)

    Karal, Michael

    2001-01-01

    The Boeing Company demonstrated the application of stitched/resin infused (S/RFI) composite materials on commercial transport aircraft primary wing structures under the Advanced Subsonic technology (AST) Composite Wing contract. This report describes a weight trade study utilizing a wing torque box design applicable to a 220-passenger commercial aircraft and was used to verify the weight savings a S/RFI structure would offer compared to an identical aluminum wing box design. This trade study was performed in the AST Composite Wing program, and the overall weight savings are reported. Previous program work involved the design of a S/RFI-base-line wing box structural test component and its associated testing hardware. This detail structural design effort which is known as the "semi-span" in this report, was completed under a previous NASA contract. The full-scale wing design was based on a configuration for a MD-90-40X airplane, and the objective of this structural test component was to demonstrate the maturity of the S/RFI technology through the evaluation of a full-scale wing box/fuselage section structural test. However, scope reductions of the AST Composite Wing Program pre-vented the fabrication and evaluation of this wing box structure. Results obtained from the weight trade study, the full-scale test component design effort, fabrication, design development testing, and full-scale testing of the semi-span wing box are reported.

  5. Topology of Vortex-Wing Interaction

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  6. Periodic and Chaotic Flapping of Insectile Wings

    CERN Document Server

    Huang, Yangyang

    2015-01-01

    Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. The maximum power output of these flight muscles is insufficient to maintain such wing oscillations unless there is good elastic storage of energy in the insect flight system. Here, we explore the intrinsic self-oscillatory behavior of an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring. We study the wings behavior as a function of the total energy and spring stiffness. Three types of behavior are identified: end-over-end rotation, chaotic motion, and periodic flapping. Interestingly, the region of periodic flapping decreases as energy increases but is favored as stiffness increases. These findings are consistent with the fact that insect wings and flight muscles are stiff. They further imply that, by adjusting their muscle stiffness to the desired energy level, insects can maintain periodic flapping mechanically for a range of operating condit...

  7. Piezoelectrically actuated insect scale flapping wing

    Science.gov (United States)

    Mukherjee, Sujoy; Ganguli, Ranjan

    2010-04-01

    An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

  8. Numerical study of a round tube heat exchanger with louvered fins and delta winglets

    Science.gov (United States)

    Huisseune, H.; T'Joen, C.; De Jaeger, P.; Ameel, B.; De Paepe, M.

    2012-11-01

    Louvered fin and round tube heat exchangers are widely used in air conditioning devices and heat pumps. In this study the effect of punching delta winglet vortex generators in the louvered fin surface is studied numerically. The delta winglets are located in a common-flow-down orientation behind each tube of the staggered tube layout. It is shown that the generated vortices significantly reduce the size of the tube wakes. Three important heat transfer enhancement mechanisms can be distinguished: a better flow mixing, boundary layer thinning and a delay in flow separation from the tube surface. The compound heat exchanger has a better thermal hydraulic performance then when only louvers or only delta winglets are used. Comparison to other enhanced fin designs clearly shows its potential, especially for low Reynolds number applications.

  9. Interaction between global-scale atmospheric vortices: Modeling with Hamiltonian dynamic system of antipodal point vortices on a rotating sphere

    CERN Document Server

    Mokhov, Igor I; Chefranov, A G

    2016-01-01

    We get point vortices dynamics equations on a rotating sphere surface directly from the hydrodynamic equations as representing their weak exact solution contrary to the conventional case of the use of a kinematic relationship between a given singular vortex field and velocity field. It is first time that the effect of a sphere rotation on the vortices interaction is accounted for in exact form. We show that only the stream function of a vortex pair of antipodal vortices (APV), and only it satisfies the original three-dimensional hydrodynamics equations on a sphere. We prove that only APV pair with two point vortices in the diameter-conjugated points of a sphere with equal by quantity but different sign circulations may be correctly considered as an elementary (stationary, not self-affecting) singular point object on a sphere. We suggest using the axis connecting the two point vortices in an APV for describing of an axis of rotation of the global vortices introduced in (Barrett, 1958) to reflect the observed g...

  10. A potential vorticity perspective on atmospheric blocking?

    Science.gov (United States)

    Croci Maspoli, M.; Schwierz, C.

    2003-04-01

    A persistent large-scale anomaly of the west to east flow in the midlatitudes with a weakening and meridional splitting of the jet can be specified as atmospheric blocking. Lifetimes last from several days up to weeks so that blocking can therefore significantly determine monthly circulation index values. The vertical range affected by this phenomenon covers the entire troposphere as mirrored in increased surface pressure as well as an elevated tropopause and is also felt in the lower-stratosphere. Here we seek to shed more light on the physical mechanisms related to blocking by adopting the PV (potential vorticity) perspective with a focus on tropopause-level dynamics. Processes such as Rossby-wave breaking and diabatic heating can modify the conservative behaviour of the PV and are therefore important features for the formation and maintenance of atmospheric blocking. This motivates the definition of a novel blocking index based upon the three-dimensional structure of the phenomenon. A vertically integrated measure (PV within the 500 - 150 hPa layer, VIPV) is calculated, underlining the quasi-barotropic nature of blocked atmospheric state. Benefits of the new index include: representation of the two-dimensional structure of the phenomenon, its lifecycle and geographical distribution. The investigation is conducted over the period 1979 to 2001 using ECMWF reanalysis data. Characteristics of the VIPV field are presented. The new VIPV index is compared to a standard blocking index (e.g. Tibaldi and Molteni (1989)) on a case study basis and also with respect to seasonal variability. Relations to climate modes/indices (NAO, AO) are also discussed.

  11. Quantum information processing with optical vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Antonio Z. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In this work we discuss several proposals for quantum information processing using the transverse structure of paraxial beams. Different techniques for production and manipulation of optical vortices have been employed and combined with polarization transformations in order to investigate fundamental properties of quantum entanglement as well as to propose new tools for quantum information processing. As an example, we have recently proposed and demonstrated a controlled NOT (CNOT) gate based on a Michelson interferometer in which the photon polarization is the control bit and the first order transverse mode is the target. The device is based on a single lens design for an astigmatic mode converter that transforms the transverse mode of paraxial optical beams. In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the non-separability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and non-separable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 2007. As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for non-separable modes. The inequality is discussed both in the classical and quantum domains. We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories. (author)

  12. Complex Convective Thermal Fluxes and Vorticity Structure

    Science.gov (United States)

    Redondo, Jose M.; Tellez, Jackson; Sotillos, Laura; Lopez Gonzalez-Nieto, Pilar; Sanchez, Jesus M.; Furmanek, Petr; Diez, Margarita

    2015-04-01

    Local Diffusion and the topological structure of vorticity and velocity fields is measured in the transition from a homogeneous linearly stratified fluid to a cellular or layered structure by means of convective cooling and/or heating[1,2]. Patterns arise by setting up a convective flow generated by an array of Thermoelectric devices (Peltier/Seebeck cells) these are controlled by thermal PID generating a buoyant heat flux [2]. The experiments described here investigate high Prandtl number mixing using brine and fresh water in order to form density interfaces and low Prandtl number mixing with temperature gradients. The set of dimensionless parameters define conditions of numeric and small scale laboratory modeling of environmental flows. Fields of velocity, density and their gradients were computed and visualized [3,4]. When convective heating and cooling takes place the combination of internal waves and buoyant turbulence is much more complicated if the Rayleigh and Reynolds numbers are high in order to study entrainment and mixing. Using ESS and selfsimilarity structures in the velocity and vorticity fieds and intermittency [3,5] that forms in the non-homogeneous flow is related to mixing and stiring. The evolution of the mixing fronts are compared and the topological characteristics of the merging of plumes and jets in different configurations presenting detailed comparison of the evolution of RM and RT, Jets and Plumes in overall mixing. The relation between structure functions, fractal analysis and spectral analysis can be very useful to determine the evolution of scales. Experimental and numerical results on the advance of a mixing or nonmixing front occurring at a density interface due to body forces [6]and gravitational acceleration are analyzed considering the fractal and spectral structure of the fronts like in removable plate experiments for Rayleigh-Taylor flows. The evolution of the turbulent mixing layer and its complex configuration is studied

  13. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics

    Science.gov (United States)

    Zheng, Yue; Chen, W. J.

    2017-08-01

    Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects—vortices—have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.

  14. Slowly-growing gap-opening planets trigger weaker vortices

    Science.gov (United States)

    Hammer, Michael; Kratter, Kaitlin M.; Lin, Min-Kai

    2017-04-01

    The presence of a giant planet in a low-viscosity disc can create a gap edge in the disc's radial density profile sharp enough to excite the Rossby wave instability. This instability may evolve into dust-trapping vortices that might explain the 'banana-shaped' features in recently observed asymmetric transition discs with inner cavities. Previous hydrodynamical simulations of planet-induced vortices have neglected the time-scale of hundreds to thousands of orbits to grow a massive planet to Jupiter size. In this work, we study the effect of a giant planet's runaway growth time-scale on the lifetime and characteristics of the resulting vortex. For two different planet masses (1 and 5 Jupiter masses) and two different disc viscosities (α = 3 × 10-4 and 3 × 10-5), we compare the vortices induced by planets with several different growth time-scales between 10 and 4000 planet orbits. In general, we find that slowly-growing planets create significantly weaker vortices with lifetimes and surface densities reduced by more than 50 per cent. For the higher disc viscosity, the longest growth time-scales in our study inhibit vortex formation altogether. Additionally, slowly-growing planets produce vortices that are up to twice as elongated, with azimuthal extents well above 180° in some cases. These unique, elongated vortices likely create a distinct signature in the dust observations that differentiates them from the more concentrated vortices that correspond to planets with faster growth time-scales. Lastly, we find that the low viscosities necessary for vortex formation likely prevent planets from growing quickly enough to trigger the instability in self-consistent models.

  15. MHD Flow Visualization of Magnetopause and Polar Cusps Vortices

    Science.gov (United States)

    Collado-Vega, Y. M.; Kessel, R. L.; Shao, X.; Boller, R. A.

    2007-01-01

    Detailed analysis of Wind, Geotail, and Cluster data shows how magnetopause boundary and polar cusps vortices associated with high speed streams can be a carrier of energy flux to the Earth's magnetosphere. For our analysis time interval, March 29 . - April 5 2002, the Interplanetary Magnetic Field (IMF) is primarily northward and MHD simulations of vortices along the flanks within nine hours of the time interval suggest that a Kelvin Helmholtz (KH) instability is likely present. Vortices were classified by solar wind input provided by the Wind satellite located 70-80 RE upstream from Earth. We present statistics for a total of 304 vortices found near the ecliptic plane on the magnetopause flanks, 273 with northward IMF and 31 with southward IMF. The vortices generated under northward IMF were more driven into the dawnside than into the duskside, being substantially more ordered on the duskside. Most of the vortices were large in scale, up to 10 RE, and with a rotation axis closely aligned with the Z(sub GSE) direction. They rotated preferentially clockwise on the dawnside, and. counter-clockwise on the duskside. Those generated under southward IMF were less ordered, fewer in number, and also smaller in diameter. Significant vortex activity occurred on the nightside region of the magnetosphere for these southward cases in contrast to the northward IMF cases on which most of the activity was driven onto the magnetopause flanks. Magnetopause crossings seen by the Geotail spacecraft for the time interval were analyzed and compared with the MHD simulation to validate our results. Vortices over the polar cusps are also being analyzed and the simulation results will be compared to the multi-point measurements of the four Cluster satellites.

  16. The vorticity and angular momentum budgets of Asian summer monsoon

    Indian Academy of Sciences (India)

    P L S Rao; U C Mohanty; P V S Raju; M A Arain

    2004-09-01

    The study delineates the vorticity and angular momentum balances of Asian summer monsoon during the evolution and established phases. It also elucidates the differences between these balances in the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis and the National Centre for Medium Range Weather Forecasts (NCM- RWF) analysis fields. The NCEP/NCAR reanalysis for a 40 year period (1958-97) and the NCM- RWF analysis for a three year (1994-96) period are made use of for the purpose. The time mean summer monsoon circulation is bifurcated into stable mean and transient eddy components and the mean component is elucidated. The generation of vorticity due to stretching of isobars balances most of the vorticity transported out of the monsoon domain during the evolution period. However, during the established period, the transportation by the relative and planetary vorticity components exceeds the generation due to stretching. The effective balancing mechanism is provided by vorticity generation due to sub-grid scale processes. The flux convergence of omega and relative momenta over the monsoon domain is effectively balanced by pressure torque during the evolution and established phases. Nevertheless, the balance is stronger during the established period due to the increase in the strength of circulation. Both the NCMRWF and NCEP fields indicate the mean features related to vorticity and angular momentum budgets realistically. Apart from the oceanic bias (strong circulation over oceans rather than continents), the summer monsoon circulation indicated by the NCEP is feeble compared to NCMRWF. The significant terms in the large-scale budgets of vorticity and angular momentum enunciate this aspect.

  17. Timelike gamma* N -> Delta form factors and Delta Dalitz decay

    CERN Document Server

    Ramalho, G

    2012-01-01

    We extend a covariant model, tested before in the spacelike region for the physical and lattice QCD regimes, to a calculation of the gamma* N -> Delta reaction in the timelike region, where the square of the transfered momentum, q^2, is positive (q^2>0). We estimate the Dalitz decay Delta -> Ne+e- and the Delta distribution mass distribution function. The results presented here can be used to simulate the NN -> NNe+e- reactions at moderate beam kinetic energies.

  18. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  19. Control of Trapped Vorticity in an Offset Diffuser

    Science.gov (United States)

    Burrows, Travis J.; Vukasinovic, Bojan; Glezer, Ari

    2015-11-01

    Vorticity concentrations trapped within in a recessed section in the moldline of an offset diffuser are manipulated using fluidic actuation to alter the flow evolution within the diffuser. Trapped vorticity is engendered by deliberate local flow separation owing to the aggressive moldline curvature. The strength and scale of the trapped vortex and its interaction with the cross flow are controlled by a spanwise array of streamwise, surface-integrated fluidic actuators that are placed just upstream of the recessed moldline. The local and global characteristics of the diffuser flow in the absence and presence of the actuation are investigated at Mach numbers up to M = 0 . 7 , using static pressure distributions, hot-wire anemometry, and particle image velocimetry. It is shown that flow distortion as measured by cross sectional variations of the total pressure distribution within the diffuser can be significantly modified by manipulation of the trapped vorticity, and is reduced (by over 50%) with increasing momentum of the actuation jets. The mitigation of flow distortion by trapped vorticity actuation is associated with manipulation of the evolution of streamwise secondary vortices within the diffuser. Supported by ONR.

  20. Vortical structures in pool fires: Observation, speculation, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tieszen, S.R.; Nicolette, V.F.; Gritzo, L.A.; Moya, J.L. [Sandia National Labs., Albuquerque, NM (United States); Holen, J.K. [SINTEF/NTH, Trondheim (Norway). Div. Thermodynamics; Murray, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1996-11-01

    While all fires are complex and involve many phenomena, this report is limited to large, turbulent liquid-hydrocarbon pool fires. Large, liquid-hydrocarbon pool fires present a risk in petrochemical storage and processing facilities and transportation systems that contain large amounts of liquid hydrocarbons. This report describes observations, speculations, and numerical simulations of vortical structures in pool fires. Vortical structures are observed in fires with length scales ranging from those that bend millimeter-thick flame zones to those that entrain air many meters from the edge of the fire to its centerline. The authors propose that baroclinic vorticity generation is primarily responsible for production of rotational motion at small scale and that amalgamation is responsible for the production of large-scale rotational structures from the myriad of small-scale structures. Numerical simulations show that vortical structures having time-mean definitions can be resolved with a Reynolds-Average Navier-Stokes (RANS) approach. However, for vortical structures without time-mean definition, RANS is inappropriate, and another technique, such as Large Eddy Simulation (LES), should be employed. 39 refs., 52 figs., 3 tabs.

  1. Delta II commercial space transportation

    Science.gov (United States)

    Meyers, J. F.

    1988-07-01

    Delta II is an upgraded variant of the Delta family of launch vehicles that has been in use by NASA since 1960. Among the design improvements incorporated by Delta II is a cryogenic-propellant second stage, a 2.89-m diameter satellite-protecting nose fairing, graphite/epoxy solid rocket motor cases, and 12:1 main engine expansion nozzle. The manufacturer/operator offers Delta II customers a dedicated, single satellite launch capability fully tailored to the given spacecraft's unique mission requirements.

  2. Fundamental Characterization of Spanwise Loading and Trailed Wake Vortices

    Science.gov (United States)

    2016-07-01

    tunnel dynamic pressure q = 70 psf, which corresponds to roughly V∞ = 280 ft/s and is shown in the paper. Initial tests allowed construction of a loading ...0.3 0.4 0.5 0.6 0.7 0.8 8 30 46.5 52.5 58.5 64.5 c n y (in) Fence plate Tunnel wall Figure 5. Example wing loading distribution from...wing between the tunnel wall and the fence. If the wing lift on the tunnel wall side of the fence is assumed to follow the loading distribution further

  3. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  4. Rotor/Wing Interactions in Hover

    Science.gov (United States)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  5. Experimental Study on the Wing Formation of a Paraglider Canopy Cell (Inflatable Wing)

    Science.gov (United States)

    Yamamori, Keitaro; Umemura, Akira; Hishida, Manabu

    This study focuses on the formation mechanism of para-foil canopy. Three types of model wing, which represent each cell of para-foil canopy (a rigid wing with air intake, an inflatable wing and a cassette model) were prepared to explore the effects of air intake on inflatable wing formation in wind tunnel experiments. The flow fields both outside and inside of the wings were investigated, together with the process that the flexible wing inflates to form a wing. It was found that the robust nature of canopy is derived from the concaving deformation of the leading edge at small angles of attack, and the enhanced outward suction pressure acting on the leading edge, which are caused by the flexibility of the wing as well as the pressure of air intake in sacrifice of increased drag coefficient.

  6. Validation of a multi-block solver on aerospace test cases

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, A.; Rao, K.V.L. [Aeronautical Development Agency, Bangalore (India)]. E-mail: agogoi@yahoo.com

    2003-07-01

    The paper presents validation of a multi block solver on test cases of the aerospace industry like the RAE S duct, ONERA M6 wing and a delta wing. The flow features like curvature effects, cross flow vortices, overall diffusion of the S duct, {lambda} shock on the ONERA wing and leading edge vortex on the delta wing are well captured. These results demonstrate the robustness and versatility of the multi block solver. (author)

  7. Morphing fixed wing MAV modeling using VAM

    OpenAIRE

    2012-01-01

    The design and implementation of a morphing Micro Air Vehicle (MAV) wing using a smart composite is attempted in this research work. Control surfaces actuated by traditional servos are difficult to instrument and fabricate on thin composite-wings of MAVs. Piezoelectric Fiber Reinforced Composites (PFRCs) are the chosen smart structural materials in the current work for incorporation onto fixed-wing MAVs to simultaneously perform the dual functions of structural load-bearing and actuatio...

  8. Phenotypic expressions of CCR5-Delta 32/Delta 32 homozygosity

    NARCIS (Netherlands)

    Nguyen, GT; Carrington, M; Beeler, JA; Dean, M; Aledort, LM; Blatt, PM; Cohen, AR; DiMichele, D; Eyster, ME; Kessler, CM; Konkle, B; Leissinger, C; Luban, N; O'Brien, SJ; Goedert, JJ; O'Brien, TR

    1999-01-01

    Objective: As blockade of CC-chemokine receptor 5 (CCR5) has been proposed as therapy for HIV-1, we examined whether the CCR5-Delta 32/Delta 32 homozygous genotype has phenotypic expressions other than those related to HIV-1. Design: Study subjects were white homosexual men or men with hemophilia

  9. Phenotypic expressions of CCR5-Delta 32/Delta 32 homozygosity

    NARCIS (Netherlands)

    Nguyen, GT; Carrington, M; Beeler, JA; Dean, M; Aledort, LM; Blatt, PM; Cohen, AR; DiMichele, D; Eyster, ME; Kessler, CM; Konkle, B; Leissinger, C; Luban, N; O'Brien, SJ; Goedert, JJ; O'Brien, TR

    1999-01-01

    Objective: As blockade of CC-chemokine receptor 5 (CCR5) has been proposed as therapy for HIV-1, we examined whether the CCR5-Delta 32/Delta 32 homozygous genotype has phenotypic expressions other than those related to HIV-1. Design: Study subjects were white homosexual men or men with hemophilia wh

  10. Peat compaction in deltas : implications for Holocene delta evolution

    NARCIS (Netherlands)

    van Asselen, S.|info:eu-repo/dai/nl/304838101

    2010-01-01

    Many deltas contain substantial amounts of peat, which is the most compressible soil type. Therefore, peat compaction potentially leads to high amounts of subsidence in deltas. The main objective of this research was to quantify subsidence due to peat compaction in Holocene fluvial-deltaic settings

  11. Phenotypic expressions of CCR5-Delta 32/Delta 32 homozygosity

    NARCIS (Netherlands)

    Nguyen, GT; Carrington, M; Beeler, JA; Dean, M; Aledort, LM; Blatt, PM; Cohen, AR; DiMichele, D; Eyster, ME; Kessler, CM; Konkle, B; Leissinger, C; Luban, N; O'Brien, SJ; Goedert, JJ; O'Brien, TR

    1999-01-01

    Objective: As blockade of CC-chemokine receptor 5 (CCR5) has been proposed as therapy for HIV-1, we examined whether the CCR5-Delta 32/Delta 32 homozygous genotype has phenotypic expressions other than those related to HIV-1. Design: Study subjects were white homosexual men or men with hemophilia wh

  12. Stationary bathtub vortices and a critical regime of liquid discharge

    Science.gov (United States)

    Stepanyants, Yury A.; Yeoh, Guan H.

    A modified Lundgren model is applied for the description of stationary bathtub vortices in a viscous liquid with a free surface. Laminar liquid flow through the circular bottom orifice is considered in the horizontally unbounded domain. The liquid is assumed to be undisturbed at infinity and its depth is taken to be constant. Three different drainage regimes are studied: (i) subcritical, where whirlpool dents are less than the fluid depth; (ii) critical, where the whirlpool tips touch the outlet orifice; and (iii) supercritical, where surface vortices entrain air into the intake pipe. Particular attention is paid to critical vortices; the condition for their existence is determined and analysed. The influence of surface tension on subcritical whirlpools is investigated. Comparison of results with known experimental data is discussed.

  13. Drift and ion acoustic wave driven vortices with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ali Shan, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan); Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan)

    2012-08-15

    Linear and nonlinear analysis of coupled drift and acoustic mode is presented in an inhomogeneous electron-ion plasma with {kappa}-distributed electrons. A linear dispersion relation is found which shows that the phase speed of both the drift wave and the ion acoustic wave decreases in the presence of superthermal electrons. Several limiting cases are also discussed. In the nonlinear regime, stationary solutions in the form of dipolar and monopolar vortices are obtained. It is shown that the condition for the boundedness of the solution implies that the speed of drift wave driven vortices reduces with increase in superthermality effect. Ignoring density inhomogeniety, it is investigated that the lower and upper limits on the speed of the ion acoustic driven vortices spread with the inclusion of high energy electrons. The importance of results with reference to space plasmas is also pointed out.

  14. On the local stability of vortices in differentially rotating discs

    CERN Document Server

    Railton, A D

    2014-01-01

    In order to circumvent the loss of solid material through radial drift towards the central star, the trapping of dust inside persistent vortices in protoplanetary discs has often been suggested as a process that can eventually lead to planetesimal formation. Although a few special cases have been discussed, exhaustive studies of possible quasi-steady configurations available for dust-laden vortices and their stability have yet to be undertaken, thus their viability or otherwise as locations for the gravitational instability to take hold and seed planet formation is unclear. In this paper we generalise and extend the well known Kida solution to obtain a series of steady state solutions with varying vorticity and dust density distributions in their cores, in the limit of perfectly coupled dust and gas. We then present a local stability analysis of these configurations, considering perturbations localised on streamlines. Typical parametric instabilities found have growthrates of $~0.05\\Omega_P$, where $\\Omega_P$...

  15. Transverse commensurability effect for vortices on periodic pinning arrays

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory

    2008-01-01

    Using computer simulations, we demonstrate a type of commensurability that occurs for vortices moving longitudinally through periodic pinning arrays in the presence of an additional transverse driving force. As a function of vortex density, there is a series of broad maxima in the transverse critical depinning force that do not fall at the matching fields where the number of vortices equals an integer multiple of the number of pinning sites. The commensurability effects are associated with dynamical states in which evenly spaced structures consisting of one or more moving rows of vortices form between rows of pinning sites. Remarkably, the critical transverse depinning force can be more than an order of magnitude larger than the longitudinal depinning force.

  16. Stability of model flocks in a vortical flow

    Science.gov (United States)

    Baggaley, A. W.

    2016-06-01

    We investigate the stability of self-propelled particle flocks in the Taylor-Green vortex, a steady vortical flow. We consider a model in which particles align themselves to a combination of the orientation and the acceleration of particles within a critical radius. We identify two distinct regimes: If alignment with orientation is dominant, the particles tend to be expelled from regions of high vorticity. In contrast, if anticipation is dominant, the particles accumulate in areas of large vorticity. In both regimes, the relative order of the flock is reduced. However, we show that there can be a critical balance of the two effects that stabilizes the flock in the presence of external fluid forcing. This strategy could provide a mechanism for animal flocks to remain globally ordered in the presence of fluid forcing, and it may also have applications in the design of flocking autonomous drones and artificial microswimmers.

  17. Rapid expulsion of microswimmers by a vortical flow.

    Science.gov (United States)

    Sokolov, Andrey; Aranson, Igor S

    2016-03-23

    Interactions of microswimmers with their fluid environment are exceptionally complex. Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. Here we report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a vortical flow created by a rotating microparticle. We observe a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a vortical structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model reveals that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed light on bacteria-flow interactions.

  18. Rapid expulsion of microswimmers by a vortical flow

    Science.gov (United States)

    Sokolov, Andrey; Aranson, Igor S.

    2016-01-01

    Interactions of microswimmers with their fluid environment are exceptionally complex. Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. Here we report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a vortical flow created by a rotating microparticle. We observe a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a vortical structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model reveals that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed light on bacteria–flow interactions. PMID:27005581

  19. Vorticity production and survival in viscous and magnetized cosmologies

    CERN Document Server

    Dosopoulou, F; Tsagas, C G; Brandenburg, A

    2011-01-01

    We study the role of viscosity and the effects of a magnetic field on a rotating, self-gravitating fluid, using Newtonian theory and adopting the ideal magnetohydrodynamic approximation. Our results confirm that viscosity can generate vorticity in inhomogeneous environments, while the magnetic tension can produce vorticity even in the absence of fluid pressure and density gradients. Linearizing our equations around an Einstein-de Sitter cosmology, we find that viscosity adds to the diluting effect of the universal expansion. Typically, however, the dissipative viscous effects are confined to relatively small scales. We also identify the characteristic length bellow which the viscous dissipation is strong and beyond which viscosity is essentially negligible. In contrast, magnetism seems to favor cosmic rotation. The magnetic presence is found to slow down the standard decay-rate of linear vortices, thus leading to universes with more residual rotation than generally anticipated.

  20. Inelastic scattering of xenon atoms by quantized vortices in superfluids

    CERN Document Server

    Pshenichnyuk, I A

    2016-01-01

    We study inelastic interactions of particles with quantized vortices in superfluids by using a semi-classical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.

  1. Instabilities of coherent vortices in a free shear layer

    Science.gov (United States)

    Couet, B.

    The LARGE-SCALE structures observed in a shear layer can be described by a family of well-defined vortices. A Lagrangian vortex method is most appropriate to study the behavior of these vortices, provided an accurate initial representation can be obtained for the simulation. Using the vortex-in-cell method, a full three-dimensional numerical simulation of the steady-state vortices discovered by Stuart is presented here. The subharmonic pairing instability is examined both in its two-dimensional (vortex pairing) and its three-dimensional form (helical pairing) and the growth rates are compared with the stability results of Pierrehumbert and Widnall. Three-dimensionality is also generated in this flow by means of the broadband translative instability identified experimentally as the streamwise streak structure. Growth rates for the translative modes are also compared with the stability analysis.

  2. High performance forward swept wing aircraft

    Science.gov (United States)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  3. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  4. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.

  5. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  6. Vorticity and Capillaries at the Surface of a Jet

    CERN Document Server

    Andre, Matthieu A

    2012-01-01

    Shear layer instability at the free surface of a water jet is studied. The accompanying video shows experimental data recorded using measurement methods such as Planar Laser Induced Fluorescence (PLIF) and Particle Image Velocity (PIV). These results reveal the mechanisms leading to the formation of capillary waves on the surface due to the roll-up of the shear layer. These capillary waves eventually collide to each other, injecting vorticity in the bulk of the flow. Shear layer and injected vorticity interact to form a counter rotating vortex pair that moves down to the flow.

  7. Observation of Solitonic Vortices in Bose-Einstein Condensates

    Science.gov (United States)

    Donadello, Simone; Serafini, Simone; Tylutki, Marek; Pitaevskii, Lev P.; Dalfovo, Franco; Lamporesi, Giacomo; Ferrari, Gabriele

    2014-08-01

    We observe solitonic vortices in an atomic Bose-Einstein condensate (BEC) after free expansion. Clear signatures of the nature of such defects are the twisted planar density depletion around the vortex line, observed in absorption images, and the double dislocation in the interference pattern obtained through homodyne techniques. Both methods allow us to determine the sign of the quantized circulation. Experimental observations agree with numerical simulations. These solitonic vortices are the decay product of phase defects of the BEC order parameter spontaneously created after a rapid quench across the BEC transition in a cigar-shaped harmonic trap and are shown to have a very long lifetime.

  8. Nontopological self-dual Maxwell-Higgs vortices

    CERN Document Server

    Bazeia, D; Ferreira, M M; da Hora, E

    2015-01-01

    We study the existence of self-dual nontopological vortices in generalized Maxwell-Higgs models recently introduced in Ref. \\cite{gv}. Our investigation is explicitly illustrated by choosing a sixth-order self-interaction potential, which is the simplest one allowing the existence of nontopological structures. We specify some Maxwell-Higgs models yielding BPS nontopological vortices having energy proportional to the magnetic flux, $\\Phi_{B}$, and whose profiles are numerically achieved. Particularly, we investigate the way the new solutions approach the boundary values, from which we verify their nontopological behavior. Finally, we depict the profiles numerically found, highlighting the main features they present.

  9. Toroidal vortices as a solution to the dust migration problem

    CERN Document Server

    Loren-Aguilar, Pablo

    2015-01-01

    In an earlier letter, we reported that dust settling in protoplanetary discs may lead to a dynamical dust-gas instability that produces global toroidal vortices. In this letter, we investigate the evolution of a dusty protoplanetary disc with two different dust species (1 mm and 50 cm dust grains), under the presence of the instability. We show how toroidal vortices, triggered by the interaction of mm grains with the gas, stop the radial migration of metre-sized dust, potentially offering a natural and efficient solution to the dust migration problem.

  10. Hamiltonian dynamics of several rigid bodies interacting with point vortices

    CERN Document Server

    Weissmann, Steffen

    2013-01-01

    We introduce a Hamiltonian description for the dynamics of several rigid bodies interacting with point vortices in an inviscid, incompressible fluid. We adopt the idea of Vankerschaver et al. (2009) to derive the Hamiltonian formulation via symplectic reduction of a canonical Hamiltonian system on a principle fibre bundle. On the reduced phase space we determine the magnetic symplectic form directly, without resorting to the machinery of mechanical connections on principle fibre bundles. We derive the equations of motion for the general case, and also for the special Lie-Poisson case of a single rigid body and zero total vorticity. Finally we give a partly degenerate Lagrangian formulation for the system.

  11. Vortices in the Two-Dimensional Simple Exclusion Process

    Science.gov (United States)

    Bodineau, T.; Derrida, B.; Lebowitz, Joel L.

    2008-06-01

    We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.

  12. Random organization of vortices under an anisotropic condition

    Science.gov (United States)

    Ienaga, K.; Dobroka, M.; Shirahata, Y.; Kawamura, Y.; Kaneko, S.; Okuma, S.

    2017-07-01

    Many colliding particles that are periodically sheared by ac drive self-organize to avoid future collisions, which is known as random organization. Recently, we have observed the random organization in the vortex system of a strip-shaped amorphous Mo x Ge1-x film, where the vortices experience periodic local shear from ac drive and the random pinning potential. In this work, we study how random organization changes in the vortex system under the tilted field, where an anisotropic vortex-vortex interaction is introduced. We find that characteristic times of random organization for the vortices driven in the tilted direction are significantly smaller than those in the untilted field.

  13. Unfolding of Vortices into Topological Stripes in a Multiferroic Material

    Science.gov (United States)

    Wang, X.; Mostovoy, M.; Han, M. G.; Horibe, Y.; Aoki, T.; Zhu, Y.; Cheong, S.-W.

    2014-06-01

    Multiferroic hexagonal RMnO3 (R =rare earths) crystals exhibit dense networks of vortex lines at which six domain walls merge. While the domain walls can be readily moved with an applied electric field, the vortex cores so far have been impossible to control. Our experiments demonstrate that shear strain induces a Magnus-type force pulling vortices and antivortices in opposite directions and unfolding them into a topological stripe domain state. We discuss the analogy between this effect and the current-driven dynamics of vortices in superconductors and superfluids.

  14. Experimental results on chiral magnetic and vortical effects

    CERN Document Server

    Wang, Gang

    2016-01-01

    Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions, and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. The goal of this review is to describe the current status of experimental studies at Relativistic Heavy Ion Collider at BNL and the Large Hadron Collider at CERN, and to outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.

  15. Giant vortices in the Ginzburg-Landau model

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter

    The time-dependent Ginzburg-Landau equation is solved in a region of two spatial dimensions and with complex geometry using the finite element method. The geometry has a marked influence on the vortex distribution and we have observed generation of giant vortices at boundary defects.......The time-dependent Ginzburg-Landau equation is solved in a region of two spatial dimensions and with complex geometry using the finite element method. The geometry has a marked influence on the vortex distribution and we have observed generation of giant vortices at boundary defects....

  16. Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices

    KAUST Repository

    Akosa, Collins Ashu

    2017-03-01

    We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.

  17. Explosion of relativistic electron vortices in laser plasmas

    CERN Document Server

    Lezhnin, K V; Esirkepov, T Zh; Bulanov, S V; Gu, Y; Weber, S; Korn, G

    2016-01-01

    The interaction of high intensity laser radiation with underdense plasma may lead to the formation of electron vortices. Though being quasistationary on an electron timescales, these structures tend to expand on a proton timescale due to Coloumb repulsion of ions. Using a simple analytical model of a stationary vortex as initial condition, 2D PIC simulations are performed. A number of effects are observed such as vortex boundary field intensification, multistream instabilities at the vortex boundary, and bending of the vortex boundary with the subsequent transformation into smaller electron vortices.

  18. Laminar-turbulent transition delay on a swept wing

    Science.gov (United States)

    Borodulin, V. I.; Ivanov, A. V.; Kachanov, Y. S.; Hanifi, A.

    2016-10-01

    The paper describes the results of experiments on robustness of laminar-turbulent transition control on a swept-wing using distributed micro-sized roughness (DMSR) elements. These elements introduce controlled stationary vortices which are able to significantly modify the base flow and its stability characteristics. We have performed parametric study first varying height and period of the DMSR elements in order to find the most stabilizing effect on boundary later flow in compare to uncontrolled reference case without DMSR. Significant downstream shift of laminar-turbulent transition position due to application of DMSR is found and well documented with help of thermography. The robustness of this flow control method was studied by variation of the wind-tunnel flow quality introducing significant sound background or introducing enhanced turbulence level (applying turbulizing grids). The wind-tunnel tests performed with turbulence-generating grids (at enhanced turbulence levels) have shown that laminar-turbulent transition moves upstream in this case, while DMSR-elements loose their effectiveness for transition control (no matter in quiet sound conditions or at elevated sound background). The experiments on acoustic influence have shown that without DMSR acoustic does not effect transition location. However, in case then laminar-turbulent transition is delayed by presence of DMSR, an additional transition delay was observed when harmonic acoustic waves of certain frequency were excited.

  19. Projection moire interferometry measurements of micro air vehicle wings

    Science.gov (United States)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-11-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat's wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  20. $\\Delta$-N Electromagnetic Transition

    CERN Document Server

    Loan, M

    1999-01-01

    The EM ratio for a free Delta electromagnetic transition is discussed within the frame work of nonrelativistic approach. Such an approach gives a good account of data for a free Delta but is less important for an intrinsically relativistic nuclear many body problem.

  1. Mida pakub Delta? / Teele Kurm

    Index Scriptorium Estoniae

    Kurm, Teele

    2011-01-01

    Politsei- ja Piirivalveamet võtab kasutusele ühise Siseministeeriumi infotehnoloogia- ja arenduskeskuse ning Webmedia AS koostööna loodud dokumendihaldussüsteemi Delta. Kust sai Delta oma nime? Projekti "Dokumendihaldussüsteemi juurutamine Siseministeeriumi haldusalas" eesmärgid

  2. Delta Electroproduction in 12-C

    Energy Technology Data Exchange (ETDEWEB)

    Steven McLauchlan

    2003-01-31

    The Delta-nucleus potential is a crucial element in the understanding of the nuclear system. Previous electroexcitation measurements in the delta region reported a Q2 dependence of the delta mass indicating that this potential is dependent on the momentum of the delta. Such a dependence is not observed for protons and neutrons in the nuclear medium. This thesis presents the experimental study of the electroexcitation of the delta resonance in 12C, performed using the high energy electron beam at the Thomas Jefferson National Accelerator Facility, and the near 4(pie) acceptance detector CLAS that enables the detection of the full reaction final state. Inclusive, semi inclusive, and exclusive cross sections were measured with an incident electron beam energy of 1.162GeV over the Q2 range 0.175-0.475 (GeV/c)2. A Q2 dependence of the delta mass was only observed in the exclusive measurements indicating that the delta-nucleus potential is affected by the momentum of the delta.

  3. Mida pakub Delta? / Teele Kurm

    Index Scriptorium Estoniae

    Kurm, Teele

    2011-01-01

    Politsei- ja Piirivalveamet võtab kasutusele ühise Siseministeeriumi infotehnoloogia- ja arenduskeskuse ning Webmedia AS koostööna loodud dokumendihaldussüsteemi Delta. Kust sai Delta oma nime? Projekti "Dokumendihaldussüsteemi juurutamine Siseministeeriumi haldusalas" eesmärgid

  4. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  5. Mackenzie River Delta, Canada

    Science.gov (United States)

    2007-01-01

    The Mackenzie River in the Northwest Territories, Canada, with its headstreams the Peace and Finley, is the longest river in North America at 4241 km, and drains an area of 1,805,000 square km. The large marshy delta provides habitat for migrating Snow Geese, Tundra Swans, Brant, and other waterfowl. The estuary is a calving area for Beluga whales. The Mackenzie (previously the Disappointment River) was named after Alexander Mackenzie who travelled the river while trying to reach the Pacific in 1789. The image was acquired on August 4, 2005, covers an area of 55.8 x 55.8 km, and is located at 68.6 degrees north latitude, 134.7 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  6. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  7. Interaction of Global-Scale Atmospheric Vortices: Modeling Based on Hamiltonian System for Antipodal Vortices on Rotating Sphere

    CERN Document Server

    Mokhov, Igor I; Chefranov, Alexander G

    2012-01-01

    It is shown for the first time that only an antipodal vortex pair (APV) is the elementary singular vortex object on the sphere compatible with the hydrodynamic equations. The exact weak solution of the absolute vorticity equation on the rotating sphere is obtained in the form of Hamiltonian dynamic system for interacting APVs. This is the first model describing interaction of Barrett vortices corresponding to atmospheric centers of action (ACA). In particular, new steady-state conditions for N=2 are obtained. These analytical conditions are used for the analysis of coupled cyclone-anticyclone ACAs over oceans in the Northern Hemisphere.

  8. 3D optical vortices generated by micro-optical elements and its novel applications

    Institute of Scientific and Technical Information of China (English)

    BU J.; LIN J.; K. J. Moh; B. P. S. Ahluwalia; CHEN H. L.; PENG X.; NIU H. B.; YUAN X.C.

    2007-01-01

    In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure free space optical communication

  9. The Realization and Study of Optical Wings

    Science.gov (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  10. Biaxial mechanical characterization of bat wing skin.

    Science.gov (United States)

    Skulborstad, A J; Swartz, S M; Goulbourne, N C

    2015-04-21

    The highly flexible and stretchable wing skin of bats, together with the skeletal structure and musculature, enables large changes in wing shape during flight. Such compliance distinguishes bat wings from those of all other flying animals. Although several studies have investigated the aerodynamics and kinematics of bats, few have examined the complex histology and mechanical response of the wing skin. This work presents the first biaxial characterization of the local deformation, mechanical properties, and fiber kinematics of bat wing skin. Analysis of these data has provided insight into the relationships among the structural morphology, mechanical properties, and functionality of wing skin. Large spatial variations in tissue deformation and non-negligible fiber strains in the cross-fiber direction for both chordwise and spanwise fibers indicate fibers should be modeled as two-dimensional elements. The macroscopic constitutive behavior was anisotropic and nonlinear, with very low spanwise and chordwise stiffness (hundreds of kilopascals) in the toe region of the stress-strain curve. The structural arrangement of the fibers and matrix facilitates a low energy mechanism for wing deployment and extension, and we fabricate examples of skins capturing this mechanism. We propose a comprehensive deformation map for the entire loading regime. The results of this work underscore the importance of biaxial field approaches for soft heterogeneous tissue, and provide a foundation for development of bio-inspired skins to probe the effects of the wing skin properties on aerodynamic performance.

  11. Slowly-growing gap-opening planets trigger weaker vortices

    CERN Document Server

    Hammer, Michael; Lin, Min-Kai

    2016-01-01

    The presence of a giant planet in a low-viscosity disc can create a gap edge in the disc's radial density profile sharp enough to excite the Rossby Wave Instability. This instability may evolve into dust-trapping vortices that might explain the "banana-shaped" features in recently observed asymmetric transition discs with inner cavities. Previous hydrodynamical simulations of planet-induced vortices have neglected the timescale of hundreds to thousands of orbits to grow a massive planet to Jupiter-size. In this work, we study the effect of a giant planet's runaway growth timescale on the lifetime and characteristics of the resulting vortex. For two different planet masses (1 and 5 Jupiter masses) and two different disc viscosities ($\\alpha$=3$\\times 10^{-4}$ and 3$\\times10^{-5}$), we compare the vortices induced by planets with several different growth timescales between 10 and 4000 planet orbits. In general, we find that slowly-growing planets create significantly weaker vortices with lifetimes and surface d...

  12. Hamiltonian vortices and reconnection in a magnetized plasma

    NARCIS (Netherlands)

    Kuvshinov, B. N.; Lakhin, V. P.; Pegoraro, F.; Schep, T. J.

    1998-01-01

    Hamiltonian vortices and reconnection in magnetized plasmas are investigated analytically and numerically using a two-fluid model. The equations are written in the Lagrangian form of three fields that are advected with different velocities. This system can be considered as a generalization and exten

  13. Propagation of magnetic vortices using nanocontacts as tunable attractors

    Science.gov (United States)

    Manfrini, M.; Kim, Joo-Von; Petit-Watelot, S.; van Roy, W.; Lagae, L.; Chappert, C.; Devolder, T.

    2014-02-01

    Magnetic vortices in thin films are in-plane spiral spin configurations with a core in which the magnetization twists out of the film plane. Vortices result from the competition between atomic-scale exchange forces and long-range dipolar interactions. They are often the ground state of magnetic dots, and have applications in medicine, microwave generation and information storage. The compact nature of the vortex core, which is 10-20 nm wide, makes it a suitable probe of magnetism at the nanoscale. However, thus far the positioning of a vortex has been possible only in confined structures, which prevents its transport over large distances. Here we show that vortices can be propagated in an unconstrained system that comprises electrical nanocontacts (NCs). The NCs are used as tunable vortex attractors in a manner that resembles the propelling of space craft with gravitational slingshots. By passing current from the NCs to a ferromagnetic film, circulating magnetic fields are generated, which nucleate the vortex and create a potential well for it. The current becomes spin polarized in the film, and thereby drives the vortex into gyration through spin-transfer torques. The vortex can be guided from one NC to another by tuning attractive strengths of the NCs. We anticipate that NC networks may be used as multiterminal sources of vortices and spin waves (as well as heat, spin and charge flows) to sense the fundamental interactions between physical objects and fluxes of the next-generation spintronic devices.

  14. Numerical and Experimental Study of Electromagnetically Driven Vortical Flows

    NARCIS (Netherlands)

    Kenjeres, S.; Verdoold, J.; Tummers, M.J.; Hanjalic, K.; Kleijn, C.R.

    2009-01-01

    The paper reports on numerical and experimental investigations of electromagnetically driven vortical flows of an electrically conductive fluid in a generic setup. Two different configurations of permanent magnets are considered: a 3-magnet configuration in which the resulting Lorentz force is focus

  15. The vorticity budget of developing Typhoon Nuri (2008

    Directory of Open Access Journals (Sweden)

    D. J. Raymond

    2010-07-01

    Full Text Available The formation of west Pacific tropical cyclone Nuri (2008 was observed over four days from easterly wave to typhoon stage by aircraft using scanning Doppler radar and dropsonde data. This typhoon intensified rapidly in a significantly sheared environment. In spite of the shear, overlapping closed circulations existed in the storm frame of reference in the boundary layer and at 5 km elevation, providing a deep region protected from environmental influences. The vorticity budget was analyzed and it was found that vorticity convergence dominated vortex tilting on the storm scale in the lower troposphere. At times vorticity convergence also greatly exceeded frictional spindown in the boundary layer. Thus, the Ekman pumping hypothesis was found to be a poor approximation in the early stages of the development of this typhoon. As Nuri developed, convective sources of boundary layer vorticity became fewer but more intense, culminating in a single nascent eyewall at the tropical storm stage. A non-developing tropical wave case was also analyzed. This system started with much weaker circulations in the boundary layer and aloft, leaving it unprotected against environmental intrusion. This may explain its failure to develop.

  16. Ionospheric travelling convection vortices observed by the Greenland magnetometer chain

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Stolle, Claudia; Friis-Christensen, Eigil

    2013-01-01

    The Greenland magnetometer array continuously provides geomagnetic variometer data since the early eighties. With the polar cusp passing over it almost every day, the array is suitable to detect ionospheric traveling convection vortices (TCVs), which were rst detected by Friis-Christensen et al...

  17. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices

    Science.gov (United States)

    Huhn, F.; van Rees, W. M.; Gazzola, M.; Rossinelli, D.; Haller, G.; Koumoutsakos, P.

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  18. On the Stability of Dust-Laden Protoplanetary Vortices

    CERN Document Server

    Chang, Philip

    2010-01-01

    The formation of planetesimals via gravitational instability of the dust layer in a protoplanetary disks demands that there be local patches where dust is concentrated by a factor of $\\sim$ a few $\\times 10^3$ over the background value. Vortices in protoplanetary disks may concentrate dust to these values allowing them to be the nurseries of planetesimals. The concentration of dust in the cores of vortices increases the dust-gas ratio of the core compared to the background disk, creating a "heavy vortex." In this work, we show that these vortices are subject to an instability which we have called the heavy-core instability. Using Floquet theory, we show that this instability occurs in elliptical protoplanetary vortices when the gas-dust density of the core of the vortex is heavier than the ambient gas-dust density by a few tens of percent. The heavy-core instability grows very rapidly, with a growth timescale of a few vortex rotation periods. While the nonlinear evolution of this instability remains unknown, ...

  19. Streaming vorticity flux from oscillating walls with finite amplitude

    Science.gov (United States)

    Wu, J. Z.; Wu, X. H.; Wu, J. M.

    1993-01-01

    How to describe vorticity creation from a moving wall is a long standing problem. This paper discusses relevant issues at the fundamental level. First, it is shown that the concept of 'vorticity flux due to wall acceleration' can be best understood by following fluid particles on the wall rather than observing the flow at fixed spatial points. This is of crucial importance when the time-averaged flux is to be considered. The averaged flux has to be estimated in a wall-fixed frame of reference (in which there is no flux due to wall acceleration at all); or, if an inertial frame of reference is used, the generalized Lagrangian mean (GLM) also gives the same result. Then, for some simple but typical configurations, the time-averaged vorticity flux from a harmonically oscillating wall with finite amplitude is analyzed, without appealing to small perturbation. The main conclusion is that the wall oscillation will produce an additional mean vorticity flux (a fully nonlinear streaming effect), which is partially responsible for the mechanism of vortex flow control by waves. The results provide qualitative explanation for some experimentally and/or computationally observed phenomena.

  20. Self-similar motion of three point vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2010-01-01

    One of the counter-intuitive results in the three-vortex problem is that the vortices can converge on and meet at a point in a finite time for certain sets of vortex circulations and for certain initial conditions. This result was already included in Groumlbli's thesis of 1877 and has since been...

  1. Restrictions on the geometry of the periodic vorticity equation

    CERN Document Server

    Escher, Joachim

    2010-01-01

    We prove that several evolution equations arising as mathematical models for fluid motion cannot be realized as metric Euler equations on the Lie group of all smooth and orientation-preserving diffeomorphisms on the circle. These include the quasi-geostrophic model equation, the axisymmetric Euler flow in higher space dimensions, and De Gregorio's vorticity model equation.

  2. The decay of wake vortices in the convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F.; Gerz, T.; Frech, M.; Doernbrack, A.

    2000-03-01

    The decay of three wake vortex pairs of B-747 aircraft in a convectively driven atmospheric boundary layer is investigated by means of large-eddy simulations (LES). This situation is considered as being hazardous as the updraft velocities of a thermal may compensate the induced descent speed of the vortex pair resulting in vortices stalled in the flight path. The LES results, however, illustrate that (i) the primary rectilinear vortices are rapidly deformed on the scale of the alternating updraft and downdraft regions; (ii) parts of the vortices stay on flight level but are quickly eroded by the enhanced turbulence of an updraft; (iii) longest living sections of the vortices are found in regions of relatively calm downdraft flow which augments their descent. Strip theory calculations are used to illustrate the temporal and spatial development of lift and rolling moments experienced by a following medium weight class B-737 aircraft. Characteristics of the respective distributions are analysed. Initially, the maximum rolling moments slightly exceed the available roll control of the B-737. After 60 seconds the probability of rolling moments exceeding 50% of the roll control, a value which is considered as a threshold for acceptable rolling moments, has decreased to 1% of its initial probability. (orig.)

  3. Generalized self-dual Chern-Simons vortices

    OpenAIRE

    Bazeia, D.(Departamento de Física, Universidade Federal da Paraíba, João Pessoa, PB, 58051-970, Brazil); da Hora, E.; Santos, C. dos(Centro de Física e Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, 4169-007, Porto, Portugal); Menezes, R.(Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB, Brazil)

    2010-01-01

    We search for vortices in a generalized Abelian Chern-Simons model with a nonstandard kinetic term. We illustrate our results, plotting and comparing several features of the vortex solution of the generalized model with those of the vortex solution found in the standard Chern-Simons model.

  4. Vorticity and non-coaxiality in progressive deformations

    NARCIS (Netherlands)

    Means, W.D.; Hobbs, B.E.; Lister, G.S.; Williams, P.F.

    1980-01-01

    A measure of the non-coaxiality involved in progressive deformation histories is proposed in the form of the kinematical vorticity number, Wk. This number is a measure of the relative effects of rotation of material lines (relative to the instantaneous stretching axes) and of stretching of these mat

  5. Instability of helical tip vortices in rotor wakes

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    The conditions for the appearance of instabilities in systems of helical vortices constitute an intriguing problem that still remains partly unsolved. The experimental study of Felli, Camussi & Di Felice (J. Fluid Mech., this issue, vol. 682, 2011, pp. 5-53) has shed new light on some of the basi...

  6. Ionospheric travelling convection vortices observed by the Greenland magnetometer chain

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Stolle, Claudia; Friis-Christensen, Eigil

    2013-01-01

    The Greenland magnetometer array continuously provides geomagnetic variometer data since the early eighties. With the polar cusp passing over it almost every day, the array is suitable to detect ionospheric traveling convection vortices (TCVs), which were rst detected by Friis-Christensen et al...

  7. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    Science.gov (United States)

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  8. Vortices as Nurseries for Planetesimal Formation in Protoplanetary Discs

    CERN Document Server

    Heng, Kevin

    2010-01-01

    Turbulent, two-dimensional, hydrodynamic flows are characterized by the emergence of coherent, long-lived vortices without a need to invoke special initial conditions. Vortices have the ability to sequester particles, with typical radii from about 1 mm to 10 cm, that are slightly decoupled from the gas. A generic feature of discs with surface density and effective temperature profiles that are decreasing, power-law functions of radial distance is that four vortex zones exist for a fixed particle size. In particular, two of the zones form an annulus at intermediate radial distances within which small particles reside. Particle capture by vortices occurs on a dynamical time scale near and at the boundaries of this annulus. As the disc ages and the particles grow via coagulation, the size of the annulus shrinks. Older discs prefer to capture smaller particles, a phenomenon we term "vortex aging". More viscous, more dust-opaque and/or less massive discs can have vortices that age faster and trap a broader range o...

  9. Data Mining for Vortices on the Earth's Magnetosphere

    Science.gov (United States)

    Collado-Vega, Y. M.; Kalb, V.; Sibeck, D. G.

    2016-12-01

    This research validates a method to detect and characterize vortices based on velocity from simulation data. The current algorithm involves systematically searching the 3-dimensional velocity fields to identify critical points, points where the magnitude of the velocity vector field vanishes, making these points candidates for vortex centers. We utilize the Community Coordinated Modeling Center (CCMC) run on request capability to create a series of model runs initialized from the conditions observed by the Cluster mission in the Hwang et al., 2011 analysis of Kelvin Helmholtz vortices observed during southward IMF. The fast data characterization and vortex detection will permit the scientist to focus in on different magnetosphere locations for further investigation in large data sets. This not only saves time to scientist, but also diminishes the potential for missing features of interest. We also analyze further the properties of the vortices found including the velocity changes within their motion across the magnetosheath, and the potential of our tool to characterize transient features (e.g. Flux Transfer Event (FTEs)) with vortical internal structures.

  10. Tip vorticity reduction and optimization of lifting surfaces

    NARCIS (Netherlands)

    Sparenberg, JA

    2001-01-01

    In linearized optimization theory, lifting surfaces, moving in an inviscid and incompressible fluid, shed tip vorticity of which the strength has infinite square-root singularities. Here we discuss that an optimization procedure can be coupled to constraints so that the strength of the shed vorticit

  11. Streaming vorticity flux from oscillating walls with finite amplitude

    Science.gov (United States)

    Wu, J. Z.; Wu, X. H.; Wu, J. M.

    1993-01-01

    How to describe vorticity creation from a moving wall is a long standing problem. This paper discusses relevant issues at the fundamental level. First, it is shown that the concept of 'vorticity flux due to wall acceleration' can be best understood by following fluid particles on the wall rather than observing the flow at fixed spatial points. This is of crucial importance when the time-averaged flux is to be considered. The averaged flux has to be estimated in a wall-fixed frame of reference (in which there is no flux due to wall acceleration at all); or, if an inertial frame of reference is used, the generalized Lagrangian mean (GLM) also gives the same result. Then, for some simple but typical configurations, the time-averaged vorticity flux from a harmonically oscillating wall with finite amplitude is analyzed, without appealing to small perturbation. The main conclusion is that the wall oscillation will produce an additional mean vorticity flux (a fully nonlinear streaming effect), which is partially responsible for the mechanism of vortex flow control by waves. The results provide qualitative explanation for some experimentally and/or computationally observed phenomena.

  12. Winglets on low aspect ratio wings

    Science.gov (United States)

    Kuhlman, John M.; Liaw, Paul

    1987-01-01

    The drag reduction potentially available from the use of winglets at the tips of low aspect ratio (1.75-2.67) wings with pronounced (45-60 deg) leading edge sweep is assessed numerically for the case of a cruise design point at Mach of 0.8 and a lift coefficient of 0.3. Both wing-winglet and wing-alone design geometries are derived from a linear-theory, minimum induced drag design methodology. Relative performance is evaluated with a nonlinear extended small disturbance potential flow analysis code. Predicted lift coefficient/pressure drag coefficient increases at equal lift for the wing-winglet configurations over the wing-alone planform are of the order of 14.6-15.8, when boundary layer interaction is included.

  13. On the evaluation of vorticity using cardiovascular magnetic resonance velocity measurements.

    Science.gov (United States)

    Garcia, J; Larose, E; Pibarot, P; Kadem, L

    2013-12-01

    Vorticity and vortical structures play a fundamental role affecting the evaluation of energetic aspects (mainly left ventricle work) of cardiovascular function. Vorticity can be derived from cardiovascular magnetic resonance (CMR) imaging velocity measurements. However, several numerical schemes can be used to evaluate the vorticity field. The main objective of this work is to assess different numerical schemes used to evaluate the vorticity field derived from CMR velocity measurements. We compared the vorticity field obtained using direct differentiation schemes (eight-point circulation and Chapra) and derivate differentiation schemes (Richardson 4* and compact Richardson 4*) from a theoretical velocity field and in vivo CMR velocity measurements. In all cases, the effect of artificial spatial resolution up-sampling and signal-to-noise ratio (SNR) on vorticity computation was evaluated. Theoretical and in vivo results showed that the eight-point circulation method underestimated vorticity. Up-sampling evaluation showed that the artificial improvement of spatial resolution had no effect on mean absolute vorticity estimation but it affected SNR for all methods. The Richardson 4* method and its compact version were the most accurate and stable methods for vorticity magnitude evaluation. Vorticity field determination using the eight-point circulation method, the most common method used in CMR, has reduced accuracy compared to other vorticity schemes. Richardson 4* and its compact version showed stable SNR using both theoretical and in vivo data.

  14. Fundamental interactions of vortical structures with boundary layers in two-dimensional flows

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Lynov, Jens-Peter

    1991-01-01

    in the vorticity-stream function representation for bounded geometries. Fundamental processes connected to vorticity detachment from the boundary layers caused by the proximity of vortical structures are described. These processes include enstrophy enhancement of the main flow during bursting events, and pinning...

  15. Aerodynamics of a translating comb-like plate inspired by a fairyfly wing

    Science.gov (United States)

    Lee, Seung Hun; Kim, Daegyoum

    2017-08-01

    Unlike the smooth wings of common insects or birds, micro-scale insects such as the fairyfly have a distinctive wing geometry, comprising a frame with several bristles. Motivated by this peculiar wing geometry, we experimentally investigated the flow structure of a translating comb-like wing for a wide range of gap size, angle of attack, and Reynolds number, Re = O(10) - O(103), and the correlation of these parameters with aerodynamic performance. The flow structures of a smooth plate without a gap and a comb-like plate are significantly different at high Reynolds number, while little difference was observed at the low Reynolds number of O(10). At low Reynolds number, shear layers that were generated at the edges of the tooth of the comb-like plate strongly diffuse and eventually block a gap. This gap blockage increases the effective surface area of the plate and alters the formation of leading-edge and trailing-edge vortices. As a result, the comb-like plate generates larger aerodynamic force per unit area than the smooth plate. In addition to a quasi-steady phase after the comb-like plate travels several chords, we also studied a starting phase of the shear layer development when the comb-like plate begins to translate from rest. While a plate with small gap size can generate aerodynamic force at the starting phase as effectively as at the quasi-steady phase, the aerodynamic force drops noticeably for a plate with a large gap because the diffusion of the developing shear layers is not enough to block the gap.

  16. Internal and vorticity waves in decaying stratified flows

    Science.gov (United States)

    Matulka, A.; Cano, D.

    2009-04-01

    Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.

  17. WORLD DELTAS AND THEIR EVOLUTION

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In August 1998, an international symposium on the world deltas was held in New Orleans, Louisiana, USA. This symposium attracted discussion about more than 25 deltas from around the world with emphasis placed on those that are most densely populated and impacted by humans. Keynote papers printed details about the physical, biological, engineering and socioeconomic aspects of six deltas including the Mississippi, Nile, Ganges-Brahmaputra, Rhine-Meuse, Changjiang and Po. The main purpose of this symposium was to inform scientists, engineers and decision-makers about information that is currently available and to provide them a basis for working in such environments.

  18. Dynamical Casimir effect with $\\delta-\\delta^{\\prime}$ mirrors

    CERN Document Server

    Silva, Jeferson Danilo L; Alves, Danilo T

    2016-01-01

    We calculate the spectrum and the total rate of created particles for a real massless scalar field in $1+1$ dimensions, in the presence of a partially transparent moving mirror simulated by a Dirac $\\delta-\\delta^{\\prime}$ point interaction. We show that, strikingly, a partially reflecting mirror can produce a larger number of particles in comparison with a perfectly reflecting one. In the limit of a perfect mirror, our formulas recover those found in the literature for the Robin boundary condition.

  19. Study of vortex generator influence on the flow in the wake of high-lift system wing

    Science.gov (United States)

    Bragin, N. N.; Ryabov, D. I.; Skomorokhov, S. I.; Slitinskaya, A. Yu.

    2016-10-01

    Passive vortex generators (VG) are known as one of the ways to improve the flow of the wings and other surfaces in the presence of flow separation. In particular, the VG are installed on the wings and nacelles of many foreign airplanes, including the most recent ones (for example, Boeing 787, Airbus A-350). The principle of the passive VG effects on flow is to transfer the kinetic energy of the external flow separation region by the vortices system arising from the flow VG themselves. For example, by increasing the angle of attack of the wing separation it is highly three-dimensional picture of the flow and sufficiently sensitive to external influences. Thus separated flow can be controlled when using the VG destroy large separation vortices. The VG effectiveness depends on many parameters. This is primarily the relative position of the second harmonic and the separation region on the wing and their size and position relative to each other, the orientation of the second harmonic relative to the local flow direction of the external flow, etc. Obviously, the VG effect will depend essentially on the intensity ratio of the second harmonic vortexes and nature of flow separation in the separation area. In the presence of intense flow separation the effect of conventional VG may be reduced or not occur at all. Until recently, investigations and selection of position of conventional VG were made only experimentally. Currently, the possibilities of calculation methods allow estimating the VG effect on the flow in the separation area. However, due to the phenomenon complexity the accuracy of these calculations is low. The experimental data are required to validate the computational methods, including information not only about the total impact, but also about the flow structure in the separation area. To obtain such information is the subject of this paper. In the test model of high-lift devices swept wing with modern supercritical profile the parametric studies were

  20. Habitat variation and wing coloration affect wing shape evolution in dragonflies.

    Science.gov (United States)

    Outomuro, D; Dijkstra, K-D B; Johansson, F

    2013-09-01

    Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing water or standing water with tolerance for temporary conditions) and landscape (forested to open) using 32 species of dragonflies of the genus Trithemis (80% of the known species). We included a potential source of variation linked to sexual selection: the extent of wing coloration on hindwings. We used geometric morphometric methods for studying wing shape. We also explored the phenotypic correlation of wing shape between the sexes. We found that wing shape showed a phylogenetic structure and therefore also ran phylogenetic independent contrasts. After correcting for the phylogenetic effects, we found (i) no significant effect of water body on wing shape; (ii) male forewings and female hindwings differed with regard to landscape, being progressively broader from forested to open habitats; (iii) hindwings showed a wider base in wings with more coloration, especially in males; and (iv) evidence for phenotypic correlation of wing shape between the sexes across species. Hence, our results suggest that natural and sexual selection are acting partially independently on fore- and hindwings and with differences between the sexes, despite evidence for phenotypic correlation of wing shape between males and females.