WorldWideScience

Sample records for delivery system loaded

  1. LOGISTIC SYSTEM OF LOAD DELIVERY AND QUALITY OF ITS OPERATION

    Directory of Open Access Journals (Sweden)

    O. G. Drozdovskaya

    2006-01-01

    Full Text Available The paper considers an opportunity for obtaining a competitive advantage by a transport and dispatch service company in the market of transport services while establishing a logistic system of load delivery. A model of delivery system, an universal scheme of system designing for every specific case are presented and also indices for evaluation of its operational quality are proposed in the paper.

  2. Loaded Self-Nanoemulsifying Drug Delivery System

    African Journals Online (AJOL)

    series of tests were carried out to study the effect of oil content, dilution, and drug loading on particle size. ... commercially marketed dosage forms are tablets ... stability. Solubility studies. The solubility of berberine in various solvents.

  3. Preparation and evaluation of nattokinase-loaded self-double-emulsifying drug delivery system

    OpenAIRE

    Wang, Xiaona; Jiang, Sifan; Wang, Xinyue; Liao, Jie; Yin, Zongning

    2015-01-01

    In the present study, we prepared nattokinase-loaded self-double-emulsifying drug delivery system (SDEDDS) and investigated its preliminary pharmacodynamics. The type and concentration of oil phase, inner aqueous phase and emulsifier were screened to prepare optimum nattokinase-loaded SDEDDS. Next, the optimum formulations were characterized based on microstructure, volume-weighted mean droplet size, self-emulsifying rate, yield, storage stability, in vitro release and in vivo pharmacodynamic...

  4. Bioactive Molecule-loaded Drug Delivery Systems to Optimize Bone Tissue Repair.

    Science.gov (United States)

    Oshiro, Joao Augusto; Sato, Mariana Rillo; Scardueli, Cassio Rocha; Lopes de Oliveira, Guilherme Jose Pimentel; Abucafy, Marina Paiva; Chorilli, Marlus

    2017-01-01

    Bioactive molecules such as peptides and proteins can optimize the repair of bone tissue; however, the results are often unpredictable when administered alone, owing to their short biological half-life and instability. Thus, the development of bioactive molecule-loaded drug delivery systems (DDS) to repair bone tissue has been the subject of intense research. DDS can optimize the repair of bone tissue owing to their physicochemical properties, which improve cellular interactions and enable the incorporation and prolonged release of bioactive molecules. These characteristics are fundamental to favor bone tissue homeostasis, since the biological activity of these factors depends on how accessible they are to the cell. Considering the importance of these DDS, this review aims to present relevant information on DDS when loaded with osteogenic growth peptide and bone morphogenetic protein. These are bioactive molecules that are capable of modulating the differentiation and proliferation of mesenchymal cells in bone tissue cells. Moreover, we will present different approaches using these peptide and protein-loaded DDS, such as synthetic membranes and scaffolds for bone regeneration, synthetic grafts, bone cements, liposomes, and micelles, which aim at improving the therapeutic effectiveness, and we will compare their advantages with commercial systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Preparation and evaluation of nattokinase-loaded self-double-emulsifying drug delivery system

    Directory of Open Access Journals (Sweden)

    Xiaona Wang

    2015-10-01

    Full Text Available In the present study, we prepared nattokinase-loaded self-double-emulsifying drug delivery system (SDEDDS and investigated its preliminary pharmacodynamics. The type and concentration of oil phase, inner aqueous phase and emulsifier were screened to prepare optimum nattokinase-loaded SDEDDS. Next, the optimum formulations were characterized based on microstructure, volume-weighted mean droplet size, self-emulsifying rate, yield, storage stability, in vitro release and in vivo pharmacodynamics studies. The water/oil/water multiple emulsions exhibited typical multiple structure, with relatively small volume-weighted mean droplet size 6.0 ± 0.7 μm and high self-emulsifying ability (self-emulsifying time <2 min. Encapsulation of nattokinase was up to 86.8 ± 8.2%. The cumulative release of nattokinase within 8 h was about 30%, exhibiting a sustained release effect. The pharmacodynamics study indicated that nattokinase-loaded SDEDDS could significantly prolong the whole blood clotting time in mouse and effectively improve the carrageenan-induced tail thrombosis compared with nattokinase solution. Moreover, we showed that SDEDDS could successfully self-emulsify into water/oil/water multiple emulsions upon dilution in dispersion medium with gentle stirring and effectively protect nattokinase activity in gastric environment. Our findings suggested that SDEDDS could be a promising strategy for peptide and protein drugs by oral administration.

  6. Influence of lipid composition and drug load on the in vitro performance of self-nanoemulsifying drug delivery systems

    DEFF Research Database (Denmark)

    Thomas, Nicky; Müllertz, Anette; Graf, Anja

    2012-01-01

    The influence of lipid composition and drug load on the in vitro performance of lipid-based drug delivery systems was investigated during dispersion and in vitro lipolysis of two self-nanoemulsifying drug delivery systems (SNEDDS). SNEDDS preconcentrates consisted of the same mass ratios of lipid...... of SNEDDS. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:1721–1731, 2012...

  7. Curcumin-loaded ultradeformable nanovesicles as a potential delivery system for breast cancer therapy.

    Science.gov (United States)

    Abdel-Hafez, Salma M; Hathout, Rania M; Sammour, Omaima A

    2018-07-01

    In the current study, the transdermal route has been investigated to deliver the poorly bioavailable drug; curcumin into the systemic circulation, aiming to target both superficial and subcutaneous tumors such as the breast tumors. Accordingly, different colloidal carriers viz. ultradeformable nanovesicles comprising various penetration enhancers were exploited. Curcumin-loaded deformable vesicles were prepared by the thin film hydration method followed by extrusion. Sodium cholate and Tween 80 were set as standard edge activators and Labrasol, Transcutol, limonene and oleic acid were the penetration enhancers that were evaluated for their efficacy in skin permeation. The particle size and zeta potential of the prepared vesicles were significantly affected by the type of surfactant/penetration enhancer. The polydispersity measurements showed uniform particle size distribution indicating the sufficiency of the extrusion cycles performed. Curcumin, as a hydrophobic molecule, was well accommodated within the lipid bilayers of the prepared vesicles with entrapment efficiency (EE%) percentages and drug loading percentages (DL%) as high as 93.91% and 7.04%, respectively. The ex-vivo permeation studies were performed on male albino mice skin mounted on Franz diffusion cells. Oleic acid and Transcutol exhibited comparable fluxes to sodium cholate and Tween 80 (∼16 μg cm -2  h -1 ), whereas the fluxes of Labrasol and limonene were significantly lower. Cytotoxicity studies were performed using MTT assay on human breast cancer cell lines (MCF-7 cells). The results of the MTT assay demonstrated that oleic acid ultradeformable nanovesicles scored an IC 50 of 20 μg/ml which introduce these new curcumin-loaded nanovesicles as a successful delivery system for breast cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Chitosan nanoparticles as non-viral gene delivery systems: determination of loading efficiency.

    Science.gov (United States)

    Carrillo, Carolina; Suñé, Josep Maria; Pérez-Lozano, Pilar; García-Montoya, Encarna; Sarrate, Rocío; Fàbregas, Anna; Miñarro, Montserrat; Ticó, Josep Ramon

    2014-07-01

    Chitosan has been studied for use in particle delivery systems for therapeutic purposes, since one of its most important applications is as a non-viral vector in gene therapy. Due to its positive charge, it is capable of forming DNA complexes (polyplexes) obtained through several methods and with the property of protecting nucleic acids. Two methods for obtaining the nanoparticles of chitosan-nucleic acids are reported in this study: simple complexation (of depolymerized chitosan or of different chitosan salts with plasmid) and ionic gelation (by adsorption of plasmid in the nanoparticles or by encapsulation of plasmid into nanoparticles). The determination of the loading efficiency of chitosan nanoparticles with the plasmid is carried out by electrophoretic mobility of the samples on agarose gel. Furthermore, the nanoparticles have been characterized according to their morphology, size and surface charge using AFM, TEM, laser diffraction and dynamic light scattering techniques. The polyplexes obtained have been found to be spherical and nanometric in size (between 100-230nm) with a zeta potential between 37 and 48mV. Positive results have been obtained by agarose gel electrophoresis for all studied cases: a concentration of between 20 and 30μg/mL of chitosan salts is required while for the remaining chitosan samples studied, 100% loading efficiency does not occur until a concentration equal to 100μg/mL (regardless of previous depolymerisation and the method performed). Chitosan-plasmid nanocapsules have been obtained at the polymer concentrations worked with (between 0.025 and 0.2%). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy.

    Science.gov (United States)

    Nittayacharn, Pinunta; Nasongkla, Norased

    2017-07-01

    The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human

  10. Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    International Nuclear Information System (INIS)

    Susa, Michiro; Iyer, Arun K; Ryu, Keinosuke; Hornicek, Francis J; Mankin, Henry; Amiji, Mansoor M; Duan, Zhenfeng

    2009-01-01

    Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy. Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOS R2 , U-2OS, and U-2OS R2 cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed. Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone. Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma

  11. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    Science.gov (United States)

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care.

  12. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading

    Science.gov (United States)

    Streck, Letícia; Sarmento, Víctor H. V.; Machado, Paula R. L.; Farias, Kleber J. S.; Fernandes-Pedrosa, Matheus F.; da Silva-Júnior, Arnóbio Antônio

    2016-01-01

    Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment. PMID:27376278

  13. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading

    Directory of Open Access Journals (Sweden)

    Letícia Streck

    2016-06-01

    Full Text Available Previous studies reported low benznidazole (BNZ loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR and oil-to-water ratio w/w (OWR change the phase behavior of different lipid-based drug delivery systems (LBDDS produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16 stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4 were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment.

  14. Increased Loading, Efficacy and Sustained Release of Silibinin, a Poorly Soluble Drug Using Hydrophobically-Modified Chitosan Nanoparticles for Enhanced Delivery of Anticancer Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Cha Yee Kuen

    2017-11-01

    Full Text Available Conventional delivery of anticancer drugs is less effective due to pharmacological drawbacks such as lack of aqueous solubility and poor cellular accumulation. This study reports the increased drug loading, therapeutic delivery, and cellular accumulation of silibinin (SLB, a poorly water-soluble phenolic compound using a hydrophobically-modified chitosan nanoparticle (pCNP system. In this study, chitosan nanoparticles were hydrophobically-modified to confer a palmitoyl group as confirmed by 2,4,6-Trinitrobenzenesulfonic acid (TNBS assay. Physicochemical features of the nanoparticles were studied using the TNBS assay, and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR analyses. The FTIR profile and electron microscopy correlated the successful formation of pCNP and pCNP-SLB as nano-sized particles, while Dynamic Light Scattering (DLS and Field Emission-Scanning Electron Microscopy (FESEM results exhibited an expansion in size between pCNP and pCNP-SLB to accommodate the drug within its particle core. To evaluate the cytotoxicity of the nanoparticles, a Methylthiazolyldiphenyl-tetrazolium bromide (MTT cytotoxicity assay was subsequently performed using the A549 lung cancer cell line. Cytotoxicity assays exhibited an enhanced efficacy of SLB when delivered by CNP and pCNP. Interestingly, controlled release delivery of SLB was achieved using the pCNP-SLB system, conferring higher cytotoxic effects and lower IC50 values in 72-h treatments compared to CNP-SLB, which was attributed to the hydrophobic modification of the CNP system.

  15. Preparation and in Vivo Evaluation of a Dutasteride-Loaded Solid-Supersaturatable Self-Microemulsifying Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Min-Soo Kim

    2015-05-01

    Full Text Available The purpose of this study was to prepare a dutasteride-loaded solid-supersaturatable self-microemulsifying drug delivery system (SMEDDS using hydrophilic additives with high oral bioavailability, and to determine if there was a correlation between the in vitro dissolution data and the in vivo pharmacokinetic parameters of this delivery system in rats. A dutasteride-loaded solid-supersaturatable SMEDDS was generated by adsorption of liquid SMEDDS onto Aerosil 200 colloidal silica using a spray drying process. The dissolution and oral absorption of dutasteride from solid SMEDDS significantly increased after the addition of hydroxypropylmethyl cellulose (HPMC or Soluplus. Solid SMEDDS/Aerosil 200/Soluplus microparticles had higher oral bioavailability with 6.8- and 5.0-fold higher peak plasma concentration (Cmax and area under the concentration-time curve (AUC values, respectively, than that of the equivalent physical mixture. A linear correlation between in vitro dissolution efficiency and in vivo pharmacokinetic parameters was demonstrated for both AUC and Cmax values. Therefore, the preparation of a solid-supersaturatable SMEDDS with HPMC or Soluplus could be a promising formulation strategy to develop novel solid dosage forms of dutasteride.

  16. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems.

    Science.gov (United States)

    Singh, Jasvinder; Pandit, Sreenivas; Bramwell, Vincent W; Alpar, H Oya

    2006-02-01

    Poly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles. The highest uptake mediated by the most hydrophobic nanoparticles using Caco-2 cells was mirrored in the in vivo studies following nasal administration. PCL nanoparticles induced DT serum specific IgG antibody responses significantly higher than PLGA. A significant positive correlation between hydrophobicity of the nanoparticles and the immune response was observed following intramuscular administration. The positive correlation between hydrophobicity of the nanoparticles and serum DT specific IgG antibody response was also observed after intranasal administration of the nanoparticles. The cytokine assays showed that the serum IgG antibody response induced is different according to the route of administration, indicated by the differential levels of IL-6 and IFN-gamma. The nanoparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-6 and IFN-gamma.

  17. Fast Disintegrating Quercetin-Loaded Drug Delivery Systems Fabricated Using Coaxial Electrospinning

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Li

    2013-10-01

    Full Text Available The objective of this study is to develop a structural nanocomposite of multiple components in the form of core-sheath nanofibres using coaxial electrospinning for the fast dissolving of a poorly water-soluble drug quercetin. Under the selected conditions, core-sheath nanofibres with quercetin and sodium dodecyl sulphate (SDS distributed in the core and sheath part of nanofibres, respectively, were successfully generated, and the drug content in the nanofibres was able to be controlled simply through manipulating the core fluid flow rates. Field emission scanning electron microscope (FESEM images demonstrated that the nanofibres prepared from the single sheath fluid and double core/sheath fluids (with core-to-sheath flow rate ratios of 0.4 and 0.7 have linear morphology with a uniform structure and smooth surface. The TEM images clearly demonstrated the core-sheath structures of the produced nanocomposites. Differential scanning calorimetry (DSC and X-ray diffraction (XRD results verified that quercetin and SDS were well distributed in the polyvinylpyrrolidone (PVP matrix in an amorphous state, due to the favourite second-order interactions. In vitro dissolution studies showed that the core-sheath composite nanofibre mats could disintegrate rapidly to release quercetin within 1 min. The study reported here provides an example of the systematic design, preparation, characterization and application of a new type of structural nanocomposite as a fast-disintegrating drug delivery system.

  18. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation.

    Directory of Open Access Journals (Sweden)

    Juçara Ribeiro Franca

    Full Text Available The purpose of the present study was to develop and assess a novel sustained-release drug delivery system of Bimatoprost (BIM. Chitosan polymeric inserts were prepared using the solvent casting method and characterized by swelling studies, infrared spectroscopy, differential scanning calorimetry, drug content, scanning electron microscopy and in vitro drug release. Biodistribution of 99mTc-BIM eye drops and 99mTc-BIM-loaded inserts, after ocular administration in Wistar rats, was accessed by ex vivo radiation counting. The inserts were evaluated for their therapeutic efficacy in glaucomatous Wistar rats. Glaucoma was induced by weekly intracameral injection of hyaluronic acid. BIM-loaded inserts (equivalent to 9.0 µg BIM were administered once into conjunctival sac, after ocular hypertension confirmation. BIM eye drop was topically instilled in a second group of glaucomatous rats for 15 days days, while placebo inserts were administered once in a third group. An untreated glaucomatous group was used as control. Intraocular pressure (IOP was monitored for four consecutive weeks after treatment began. At the end of the experiment, retinal ganglion cells and optic nerve head cupping were evaluated in the histological eye sections. Characterization results revealed that the drug physically interacted, but did not chemically react with the polymeric matrix. Inserts sustainedly released BIM in vitro during 8 hours. Biodistribution studies showed that the amount of 99mTc-BIM that remained in the eye was significantly lower after eye drop instillation than after chitosan insert implantation. BIM-loaded inserts lowered IOP for 4 weeks, after one application, while IOP values remained significantly high for the placebo and untreated groups. Eye drops were only effective during the daily treatment period. IOP results were reflected in RGC counting and optic nerve head cupping damage. BIM-loaded inserts provided sustained release of BIM and seem to be a

  19. Physicochemical interactions among α-eleostearic acid-loaded liposomes applied to the development of drug delivery systems

    Science.gov (United States)

    Nogueira, Alessandro Oliveira de Moraes; de Sousa, Robson Simplício; Pereira, Luiza Silveira; Mallmann, Christian; da Silva Ferreira, Ailton; Clementin, Rosilene Maria; de Lima, Vânia Rodrigues

    2018-02-01

    In this study, α-eleostearic acid-loaded (α-ESA-loaded) dimyristoylphosphatidylcholine (DMPC) liposomes had their physicochemical properties characterized by horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy, nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). In vitro thiobarbituric acid reactive substance (TBARS) assays were performed to obtain preliminary information on the oxidative potential of the system. An α-ESA-promoted ordering effect in the lipid phosphate region was observed. It was associated with a rotation restriction due to an increase in the amount of lipid group hydrogen bonds. The fatty acid was responsible for the reduction in the degree of hydration of carbonyl groups located in the interfacial region of lipids. α-ESA disordered the DMPC methylene acyl chains by trans-gauche isomerization and increased its rotation rate. TBARS results showed pro-oxidant behavior on liposomes, induced by α-ESA. The discussion about the responses considered the degree of saturation of phosphatidylcholines and suggested that the α-ESA oxidative effects may be modulated by the liposome lipid composition. The versatility of liposomal carriers may be promising for the development of efficacious α-ESA-based drug delivery systems. Results described in this study contribute to the selection of adequate material to produce them.

  20. Fluoride loaded polymeric nanoparticles for dental delivery.

    Science.gov (United States)

    Nguyen, Sanko; Escudero, Carlos; Sediqi, Nadia; Smistad, Gro; Hiorth, Marianne

    2017-06-15

    The overall aim of the present paper was to develop fluoride loaded nanoparticles based on the biopolymers chitosan, pectin, and alginate, for use in dental delivery. First, the preparation of nanoparticles in the presence of sodium fluoride (NaF) as the active ingredient by ionic gelation was investigated followed by an evaluation of their drug entrapment and release properties. Chitosan formed stable, spherical, and monodisperse nanoparticles in the presence of NaF and tripolyphoshate as the crosslinker, whereas alginate and pectin were not able to form any definite nanostructures in similar conditions. The fluoride loading capacity was found to be 33-113ppm, and the entrapment efficiency 3.6-6.2% for chitosan nanoparticles prepared in 0.2-0.4% (w/w) NaF, respectively. A steady increase in the fluoride release was observed for chitosan nanoparticles prepared in 0.2% NaF both in pH5 and 7 until it reached a maximum at time point 4h and maintained at this level for at least 24h. Similar profiles were observed for formulations prepared in 0.4% NaF; however the fluoride was released at a higher level at pH5. The low concentration, but continuous delivery of fluoride from the chitosan nanoparticles, with possible expedited release in acidic environment, makes these formulations highly promising as dental delivery systems in the protection against caries development. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Loading of microcontainers for oral drug delivery

    DEFF Research Database (Denmark)

    Marizza, Paolo

    The pharmaceutical research is facing several obstacles in the development of drug products for the oral delivery. The main problem deals with the intrinsic chemical nature of the new drug candidates, which are often poorly soluble and barely absorbed in the gastro-intestinal tract. Furthermore......, they are usually degraded before they are absorbed. These combined factors considerably reduce the bioavailability of many active ingredients. Several strategies have been developed to overcome these challenges. One of them are microfabricated drug delivery devices. Microreservoir based-systems are characterized...... of UV photolithography was developed. The fabrication of polymer patterns was optimized and loading with both small hydrophobic drugs and proteins was demonstrated. Finally, structural properties of hydrogels were elucidated by rheology and NMR with the perspective of controlling the drug release...

  2. Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics

    Directory of Open Access Journals (Sweden)

    David Vehlow

    2016-03-01

    Full Text Available An improved interfacial drug delivery system (DDS based on polyelectrolyte complex (PEC coatings with controlled drug loading and improved release performance was elaborated. The cationic homopolypeptide poly(l-lysine (PLL was complexed with a mixture of two cellulose sulfates (CS of low and high degree of substitution, so that the CS and PLL solution have around equal molar charged units. As drugs the antibiotic rifampicin (RIF and the bisphosphonate risedronate (RIS were integrated. As an important advantage over previous PEC systems this one can be centrifuged, the supernatant discarded, the dense pellet phase (coacervate separated, and again redispersed in fresh water phase. This behavior has three benefits: (i Access to the loading capacity of the drug, since the concentration of the free drug can be measured by spectroscopy; (ii lower initial burst and higher residual amount of drug due to removal of unbound drug and (iii complete adhesive stability due to the removal of polyelectrolytes (PEL excess component. It was found that the pH value and ionic strength strongly affected drug content and release of RIS and RIF. At the clinically relevant implant material (Ti40Nb similar PEC adhesive and drug release properties compared to the model substrate were found. Unloaded PEC coatings at Ti40Nb showed a similar number and morphology of above cultivated human mesenchymal stem cells (hMSC compared to uncoated Ti40Nb and resulted in considerable production of bone mineral. RIS loaded PEC coatings showed similar effects after 24 h but resulted in reduced number and unhealthy appearance of hMSC after 48 h due to cell toxicity of RIS.

  3. Formulation and Optimization of Multiparticulate Drug Delivery System Approach for High Drug Loading.

    Science.gov (United States)

    Shah, Neha; Mehta, Tejal; Gohel, Mukesh

    2017-08-01

    The aim of the present work was to develop and optimize multiparticulate formulation viz. pellets of naproxen by employing QbD and risk assessment approach. Mixture design with extreme vertices was applied to the formulation with high loading of drug (about 90%) and extrusion-spheronization as a process for manufacturing pellets. Independent variables chosen were level of microcrystalline cellulose (MCC)-X 1 , polyvinylpyrrolidone K-90 (PVP K-90)-X 2 , croscarmellose sodium (CCS)-X 3 , and polacrilin potassium (PP)-X 4 . Dependent variables considered were disintegration time (DT)-Y 1 , sphericity-Y 2 , and percent drug release-Y 3 . The formulation was optimized based on the batches generated by MiniTab 17 software. The batch with maximum composite desirability (0.98) proved to be optimum. From the evaluation of design batches, it was observed that, even in low variation, the excipients affect the pelletization property of the blend and also the final drug release. In conclusion, pellets with high drug loading can be effectively manufactured and optimized systematically using QbD approach.

  4. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery.

    Science.gov (United States)

    Fonseca-Santos, Bruno; Dos Santos, Aline Martins; Rodero, Camila Fernanda; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1) and hexagonal mesophases (Formulations 2 and 3), which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G'>G″), as evidenced by the increased G' values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone). The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug delivery systems to the skin.

  5. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery

    Directory of Open Access Journals (Sweden)

    Fonseca-Santos B

    2016-09-01

    Full Text Available Bruno Fonseca-Santos, Aline Martins dos Santos, Camila Fernanda Rodero, Maria Palmira Daflon Gremião, Marlus Chorilli School of Pharmaceutical Sciences, UNESP – São Paulo State University, Araraquara, São Paulo Brazil Abstract: From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5 polyoxyethylene (20 cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1 and hexagonal mesophases (Formulations 2 and 3, which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G'>G'', as evidenced by the increased G' values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone. The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug

  6. A targeted liposome delivery system for combretastatin A4: formulation optimization through drug loading and in vitro release studies.

    Science.gov (United States)

    Nallamothu, Ramakrishna; Wood, George C; Kiani, Mohammad F; Moore, Bob M; Horton, Frank P; Thoma, Laura A

    2006-01-01

    Efficient liposomal therapeutics require high drug loading and low leakage. The objective of this study is to develop a targeted liposome delivery system for combretastatin A4 (CA4), a novel antivascular agent, with high loading and stable drug encapsulation. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, and distearoyl phosphoethanolamine-PEG-2000 conjugate (DSPE-PEG) were prepared by the lipid film hydration and extrusion process. Cyclic arginine-glycine-aspartic acid (RGD) peptides with affinity for alphav beta3-integrins overexpressed on tumor vascular endothelial cells were coupled to the distal end of polyethylene glycol (PEG) on the liposomes sterically stabilized with PEG (non-targeted liposomes; LCLs). Effect of lipid concentration, drug-to-lipid ratio, cholesterol, and DSPE-PEG content in the formulation on CA4 loading and its release from the liposomes was studied. Total liposomal CA4 levels obtained increased with increasing lipid concentration in the formulation. As the drug-to-lipid ratio increased from 10:100 to 20:100, total drug in the liposome formulation increased from 1.05+/-0.11 mg/mL to 1.55+/-0.13 mg/mL, respectively. When the drug-to-lipid ratio was further raised to 40:100, the total drug in liposome formulation did not increase, but the amount of free drug increased significantly, thereby decreasing the percent of entrapped drug. Increasing cholesterol content in the formulation decreased drug loading. In vitro drug leakage from the liposomes increased with increase in drug-to-lipid ratio or DSPE-PEG content in the formulation; whereas increasing cholesterol content of the formulation up to 30 mol-percent, decreased CA4 leakage from the liposomes. Ligand coupling to the liposome surface increased drug leakage as a function of ligand density. Optimized liposome formulation with 100 mM lipid concentration, 20:100 drug-to-lipid ratio, 30 mol-percent cholesterol, 4 mol-percent DSPE-PEG, and 1 mol

  7. Dry Gel Containing Optimized Felodipine-Loaded Transferosomes: a Promising Transdermal Delivery System to Enhance Drug Bioavailability.

    Science.gov (United States)

    Kassem, Mohammed Ali; Aboul-Einien, Mona Hassan; El Taweel, Mai Magdy

    2018-04-30

    Felodipine has a very low bioavailability due to first-pass metabolism. The aim of this study was to enhance its bioavailability by transdermal application. Felodipine-loaded transferosomes were prepared by thin-film hydration using different formulation variables. An optimized formula was designed using statistical experimental design. The independent variables were the used edge activator, its molar ratio to phosphatidylcholine, and presence or absence of cholesterol. The responses were entrapment efficiency of transferosomes, their size, polydispersity index, zeta potential, and percent drug released after 8 h. The optimized formula was subjected to differential scanning calorimetry studies and its stability on storage at 4°C for 6 months was estimated. This formula was improved by incorporation of different permeation enhancers where ex vivo drug flux through mice skin was estimated and the best improved formula was formulated in a gel and lyophilized. The prepared gel was subjected to in vivo study using Plendil® tablets as a reference. According to the calculated desirability, the optimized transferosome formula was that containing sodium deoxycholate as edge activator at 5:1 M ratio to phosphatidylcholine and no cholesterol. The thermograms of this formula indicated the incorporation of felodipine inside the prepared vesicles. None of the tested parameters differed significantly on storage. The lyophilized gel of labrasol-containing formula was chosen for in vivo study. The relative bioavailability of felodipine from the designed gel was 1.7. In conclusion, topically applied lyophilized gel containing felodipine-loaded transferosomes is a promising transdermal delivery system to enhance its bioavailability.

  8. Bioavailability Enhancement of Paclitaxel via a Novel Oral Drug Delivery System: Paclitaxel-Loaded Glycyrrhizic Acid Micelles

    Directory of Open Access Journals (Sweden)

    Fu-Heng Yang

    2015-03-01

    Full Text Available Paclitaxel (PTX, taxol, a classical antitumor drug against a wide range of tumors, shows poor oral bioavailability. In order to improve the oral bioavailability of PTX, glycyrrhizic acid (GA was used as the carrier in this study. This was the first report on the preparation, characterization and the pharmacokinetic study in rats of PTX-loaded GA micelles The PTX-loaded micelles, prepared with ultrasonic dispersion method, displayed small particle sizes and spherical shapes. Differential scanning calorimeter (DSC thermograms indicated that PTX was entrapped in the GA micelles and existed as an amorphous state. The encapsulation efficiency was about 90%, and the drug loading rate could reach up to 7.90%. PTX-loaded GA micelles displayed a delayed drug release compared to Taxol in the in vitro release experiment. In pharmacokinetic study via oral administration, the area under the plasma concentration-time curve (AUC0→24 h of PTX-loaded GA micelles was about six times higher than that of Taxol (p < 0.05. The significant oral absorption enhancement of PTX from PTX-loaded GA micelles could be largely due to the increased absorption in jejunum and colon intestine. All these results suggested that GA would be a promising carrier for the oral delivery of PTX.

  9. Self-nanoemulsifying drug delivery systems for oral insulin delivery

    DEFF Research Database (Denmark)

    Li, Ping; Tan, Angel; Prestidge, Clive A

    2014-01-01

    This study aims at evaluating the combination of self-nanoemulsifying drug delivery systems (SNEDDS) and enteric-coated capsules as a potential delivery strategy for oral delivery of insulin. The SNEDDS preconcentrates, loaded with insulin-phospholipid complex at different levels (0, 2.5 and 10% w...

  10. Folate attached, curcumin loaded Fe_3O_4 nanoparticles: A novel multifunctional drug delivery system for cancer treatment

    International Nuclear Information System (INIS)

    Thu Huong, Le Thi; Nam, Nguyen Hoai; Doan, Do Hai; My Nhung, Hoang Thi; Quang, Bui Thuc; Nam, Pham Hong; Thong, Phan Quoc; Phuc, Nguyen Xuan; Thu, Ha Phuong

    2016-01-01

    Study and development of drug delivery nanosystem for cancer treatment are attracting great attention in recent years. In this work, we studied the role of folic acid as a targeting factor on magnetic nanoparticle Fe_3O_4 based curcumin loading nanosystem. Characteristics of the nanosystems were investigated by Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and vibrating sample magnetometer (VSM), while targeting role of folic was accessed in vivo on tumor bearing mice. The results showed that folate attached Fe_3O_4 based curcumin loading nanosystem has very small size and exhibits better targeting effect compared to the counterpart without folate. In addition, magnetic induction heating of this nanosystem evidenced its potential for cancer hyperthermia. - Highlights: • Folate attached, curcumin loaded Fe3O4 nanoparticles were prepared and characterized. • The NPs have high curcumin loading capacity and good ability for hyperthermia. • Folate shows its bioactivity of effectively targeting the NPs to tumor tissues. • Chemotherapy, hyperthermia and targeting factor are all well combined in the NPs.

  11. On-chip microreactor system for the production of nano-emulsion loaded liposomes: towards targeted delivery of lipophilic drugs

    NARCIS (Netherlands)

    Langelaan, M.L.P.; Emmelkamp, J.; Segers, M.J.A.; Lenting, H.B.M.

    2011-01-01

    An on-chip microreactor system for the production of novel nano-biodevices is presented. This nano-biodevice consists of a nano-emulsion loaded with lipophilic drugs, entrapped in liposomes. These nano-biodevices can be equipped with targeting molecules for higher drug efficiency. The microreactor

  12. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment

    Science.gov (United States)

    Wang, Wenyi; Wat, Elaine; Hui, Patrick C. L.; Chan, Ben; Ng, Frency S. F.; Kan, Chi-Wai; Wang, Xiaowen; Hu, Huawen; Wong, Eric C. W.; Lau, Clara B. S.; Leung, Ping-Chung

    2016-04-01

    The treatment of atopic dermatitis (AD) has long been viewed as a problematic issue by the medical profession. Although a wide variety of complementary therapies have been introduced, they fail to combine the skin moisturizing and drug supply for AD patients. This study reports the development of a thermo-sensitive Poloxamer 407/Carboxymethyl cellulose sodium (P407/CMCs) composite hydrogel formulation with twin functions of moisture and drug supply for AD treatment. It was found that the presence of CMCs can appreciably improve the physical properties of P407 hydrogel, which makes it more suitable for tailored drug loading. The fabricated P407/CMCs composite hydrogel was also characterized in terms of surface morphology by field emission scanning electron microscopy (FE-SEM), rheological properties by a rheometer, release profile in vitro by dialysis method and cytotoxicity test. More importantly, the findings from transdermal drug delivery behavior revealed that P407/CMCs showed desirable percutaneous performance. Additionally, analysis of cytotoxicity test suggested that P407/CMCs composite hydrogel is a high-security therapy for clinical trials and thus exhibits a promising way to treat AD with skin moisturizing and medication.

  13. UAV Delivery Monitoring System

    Directory of Open Access Journals (Sweden)

    San Khin Thida

    2018-01-01

    Full Text Available UAV-based delivery systems are increasingly being used in the logistics field, particularly to achieve faster last-mile delivery. This study develops a UAV delivery system that manages delivery order assignments, autonomous flight operation, real time control for UAV flights, and delivery status tracking. To manage the delivery item assignments, we apply the concurrent scheduler approach with a genetic algorithm. The present paper describes real time flight data based on a micro air vehicle communication protocol (MAVLink. It also presents the detailed hardware components used for the field tests. Finally, we provide UAV component analysis to choose the suitable components for delivery in terms of battery capacity, flight time, payload weight and motor thrust ratio.

  14. Project delivery system (PDS)

    CERN Document Server

    2001-01-01

    As business environments become increasingly competitive, companies seek more comprehensive solutions to the delivery of their projects. "Project Delivery System: Fourth Edition" describes the process-driven project delivery systems which incorporates the best practices from Total Quality and is aligned with the Project Management Institute and ISO Quality Standards is the means by which projects are consistently and efficiently planned, executed and completed to the satisfaction of clients and customers.

  15. Topical Application of Retinyl Palmitate-Loaded Nanotechnology-Based Drug Delivery Systems for the Treatment of Skin Aging

    Directory of Open Access Journals (Sweden)

    Marcela B. Oliveira

    2014-01-01

    Full Text Available The objective of this study was to perform a structural characterization and evaluate the in vitro safety profile and in vitro antioxidant activity of liquid crystalline systems (LCS with and without retinyl palmitate (RP. LCS containing polyether functional siloxane (PFS as a surfactant, silicon glycol copolymer (SGC as oil phase, and water in the ratios 30 : 25 : 45 and 40 : 50 : 10 with (OLSv = RP-loaded opaque liquid system and TLSv = RP-loaded transparent liquid system, respectively and without (OLS and TLS, respectively RP were studied. Samples were characterized using polarized light microscopy (PLM and rheology analysis. In vitro safety profile was evaluated using red cell hemolysis and in vitro cytotoxicity assays. In vitro antioxidant activity was performed by the DPPH method. PLM analysis showed the presence of lamellar LCS just to TLS. Regardless of the presence of RP, the rheological studies showed the pseudoplastic behavior of the formulations. The results showed that the incorporation of RP in LCS improved the safety profile of the drug. In vitro antioxidant activity suggests that LCS presented a higher capacity to maintain the antioxidant activity of RP. PFS-based systems may be a promising platform for RP topical application for the treatment of skin aging.

  16. Effect of Na2SO3 concentration to drug loading and drug release of ascorbic acid in chitosan edible film as drug delivery system membrane

    Directory of Open Access Journals (Sweden)

    Kistriyani Lilis

    2018-01-01

    Full Text Available Chitosan is a type of carbohydrate compounds produced from waste marine products, in particular the class of shrimp, crabs and clams. Chitosan is often process into edible films and utilized for food packaging also has potential as a membrane for drug delivery system. Drug loading and drug release can be controlled by improve the characteristics of the membrane by adding crosslinker. The purpose of this research is to study the effect of addition of crosslinker to the rate of loading and release of ascorbic acid in the chitosan edible film. Na2SO3 was used as crosslinker. Two grams of chitosan was dissolved into 100 ml of distilled water. Acetic acid and plasticizer were added in the solution then heated at 50°C. Na2SO3 solution with mass various of Na2SO3 dissolved, 01026 0.3; and 0.5 grams were added about 30 mL to make edible film. The analysis include of drug loading, drug release and tensile strength. The result showed that the loading of edible film with crosslinker 0.15 g; 0.3 g; and 0.5 g respectively were 60.98 ppm; 52.53 ppm; and 40.88 ppm, meanwhile for the release with crosslinker 0.15 g; 0.3 g; and 0.5 g respectively were 3.78 ppm; 5.72 ppm; and 5.97 ppm.

  17. Health care delivery systems.

    NARCIS (Netherlands)

    Stevens, F.; Zee, J. van der

    2007-01-01

    A health care delivery system is the organized response of a society to the health problems of its inhabitants. Societies choose from alternative health care delivery models and, in doing so, they organize and set goals and priorities in such a way that the actions of different actors are effective,

  18. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with Akebia saponin D–phospholipid complex

    Directory of Open Access Journals (Sweden)

    Shen J

    2016-09-01

    Full Text Available Jinyang Shen,1 Jianping Bi,2 Hongli Tian,1 Ye Jin,1 Yuan Wang,3 Xiaolin Yang,4 Zhonglin Yang,1 Junping Kou,5 Fei Li1 1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 2Shandong Provincial Traditional Chinese Medical Hospital & Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 3Traditional Chinese Medical Hospital of Pukou District, 4Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine, 5Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People’s Republic of China Background: Akebia saponin D (ASD exerts various pharmacological activities but with poor oral bioavailability. In this study, a self-nanoemulsifying drug delivery system (SNEDDS based on the drug–phospholipid complex technique was developed to improve the oral absorption of ASD.Methods: ASD–phospholipid complex (APC was prepared using a solvent-evaporation method and characterized by infrared spectroscopy, differential scanning calorimetry, morphology observation, and solubility test. Oil and cosurfactant were selected according to their ability to dissolve APC, while surfactant was chosen based on its emulsification efficiency in SNEDDS. Pseudoternary phase diagrams were constructed to determine the optimized APC-SNEDDS formulation, which was characterized by droplet size determination, zeta potential determination, and morphology observation. Robustness to dilution and thermodynamic stability of optimized formulation were also evaluated. Subsequently, pharmacokinetic parameters and oral bioavailability of ASD, APC, and APC-SNEDDS were investigated in rats.Results: The liposolubility significantly increased 11.4-fold after formation of APC, which was verified by the solubility test in n-octanol. Peceol (Glyceryl

  19. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with Akebia saponin D–phospholipid complex

    Science.gov (United States)

    Shen, Jinyang; Bi, Jianping; Tian, Hongli; Jin, Ye; Wang, Yuan; Yang, Xiaolin; Yang, Zhonglin; Kou, Junping; Li, Fei

    2016-01-01

    Background Akebia saponin D (ASD) exerts various pharmacological activities but with poor oral bioavailability. In this study, a self-nanoemulsifying drug delivery system (SNEDDS) based on the drug–phospholipid complex technique was developed to improve the oral absorption of ASD. Methods ASD–phospholipid complex (APC) was prepared using a solvent-evaporation method and characterized by infrared spectroscopy, differential scanning calorimetry, morphology observation, and solubility test. Oil and cosurfactant were selected according to their ability to dissolve APC, while surfactant was chosen based on its emulsification efficiency in SNEDDS. Pseudoternary phase diagrams were constructed to determine the optimized APC-SNEDDS formulation, which was characterized by droplet size determination, zeta potential determination, and morphology observation. Robustness to dilution and thermodynamic stability of optimized formulation were also evaluated. Subsequently, pharmacokinetic parameters and oral bioavailability of ASD, APC, and APC-SNEDDS were investigated in rats. Results The liposolubility significantly increased 11.4-fold after formation of APC, which was verified by the solubility test in n-octanol. Peceol (Glyceryl monooleate [type 40]), Cremophor® EL (Polyoxyl 35 castor oil), and Transcutol HP (Diethylene glycol monoethyl ether) were selected as oil, surfactant, and cosurfactant, respectively. The optimal formulation was composed of Glyceryl monooleate (type 40), Polyoxyl 35 castor oil, Diethylene glycol monoethyl ether, and APC (1:4.5:4.5:1.74, w/w/w/w), which showed a particle size of 148.0±2.7 nm and a zeta potential of −13.7±0.92 mV after dilution with distilled water at a ratio of 1:100 (w/w) and good colloidal stability. Pharmacokinetic studies showed that APC-SNEDDS exhibited a significantly greater Cmax1 (733.4±203.8 ng/mL) than ASD (437.2±174.2 ng/mL), and a greater Cmax2 (985.8±366.6 ng/mL) than ASD (180.5±75.1 ng/mL) and APC (549.7±113

  20. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer.

    Science.gov (United States)

    Zhu, Dunwan; Tao, Wei; Zhang, Hongling; Liu, Gan; Wang, Teng; Zhang, Linhua; Zeng, Xiaowei; Mei, Lin

    2016-01-01

    Polydopamine-based surface modification is a simple way to functionalize polymeric nanoparticle (NP) surfaces with ligands and/or additional polymeric layers. In this work, we developed DTX-loaded formulations using polydopamine-modified NPs synthesized using D-α-tocopherol polyethylene glycol 1000 succinate-poly(lactide) (pD-TPGS-PLA/NPs). To target liver cancer cells, galactosamine was conjugated on the prepared NPs (Gal-pD-TPGS-PLA/NPs) to enhance the delivery of DTX via ligand-mediated endocytosis. The size and morphology of pD-TPGS-PLA/NPs and Gal-pD-TPGS-PLA/NPs changed obviously compared with TPGS-PLA/NPs. In vitro studies showed that TPGS-PLA/NPs, pD-TPGS-PLA/NPs and Gal-pD-TPGS-PLA/NPs had similar release profiles of DTX. Both confocal laser scanning microscopy and flow cytometric results showed that coumarin 6-loaded Gal-pD-TPGS-PLA/NPs had the highest cellular uptake efficiency in liver cancer cell line HepG2. Moreover, DTX-loaded Gal-pD-TPGS-PLA/NPs inhibited the growth of HepG2 cells more potently than TPGS-PLA/NPs, pD-TPGS-PLA/NPs, and a clinically available DTX formulation (Taxotere®). The in vivo biodistribution experiments show that the Gal-pD-TPGS-PLA/NPs are specifically targeted to the tumor. Furthermore, the in vivo anti-tumor effects study showed that injecting DTX-loaded Gal-pD-TPGS-PLA/NPs reduced the tumor size most significantly on hepatoma-bearing nude mice. These results suggest that Gal-pD-TPGS-PLA/NPs prepared in the study specifically interacted with the hepatocellular carcinoma cells through ligand-receptor recognition and they may be used as a potentially eligible drug delivery system targeting liver cancers. Polydopamine-based surface modification is a simple way to functionalize polymeric nanoparticle surfaces with ligands and/or additional polymeric layers. In this work, we developed docetaxel (DTX)-loaded formulations using polydopamine-modified NPs synthesized from D-α-tocopherol polyethylene glycol 1000 succinate

  1. The Effect of Digestion and Drug Load on Halofantrine Absorption from Self-nanoemulsifying Drug Delivery System (SNEDDS)

    DEFF Research Database (Denmark)

    Michaelsen, Maria Hotoft; Wasan, Kishor M.; Sivak, Olena

    2016-01-01

    A super-saturated self-nanoemulsifying drug delivery system (super-SNEDDS), containing the poorly water-soluble drug halofantrine (Hf) at 150% of equilibrium solubility (Seq), was compared in vitro and in vivo with a conventional SNEDDS (75% of Seq) with respect to bioavailability and digestibility....... Further, the effect of digestion on oral absorption of Hf from SNEDDS and super-SNEDDS was assessed by incorporation of the lipase inhibitor tetrahydrolipstatin (orlistat) into the SNEDDS. The SNEDDS contained soybean oil/Maisine 34-I (1:1), Kolliphor RH40, and ethanol at a ratio of 55:35:10, w/w percent....... For the dynamic in vitro lipolysis, the precipitation of Hf at 60 min was significantly larger for the super-SNEDDS (66.8 ± 16.4%) than for the SNEDDS (18.5 ± 9.2%). The inhibition of the in vitro digestion by orlistat (1% (w/w)) lowered drug precipitation significantly for both the super-SNEDDS (36.8 ± 1...

  2. Design, formulation, in vitro, in vivo, and pharmacokinetic evaluation of nisoldipine-loaded self-nanoemulsifying drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Balakumar; Habibur Rahman, S. M.; Tamil selvan, N. [PSG College of Pharmacy, Department of Pharmaceutics (India); Hari prasad, R. [PSG College of Pharmacy, Department of Pharmaceutical Analysis (India); Rajkumar, M. [PSG College of Pharmacy, Department of Pharmaceutics (India); Siva selvakumar, M. [PSG College of Pharmacy, Department of Pharmaceutical Analysis (India); Vamshikrishna, K. [PSG College of Pharmacy, Department of Pharmaceutics (India); Gregory, Marslin [University of Minho, Department of Biology (Portugal); Vijayaraghavan, Chellan, E-mail: balakumar-27@yahoo.co.uk, E-mail: drvijayaragha@gmail.com [PSG College of Pharmacy, Department of Pharmaceutics (India)

    2015-01-15

    The aim of the present work was to prepare and optimize the self-nanoemulsifying drug delivery system (SNEDDS) of poor aqueous soluble and less bioavailable nisoldipine to improve its solubility and bioavailability. The solubility of nisoldipine was assessed in various vehicles and ternary phase diagram was constructed to identify the efficient self-emulsifying region. The selected formulations were evaluated for self-emulsification time, droplet size analysis, and in vitro drug release profile. The optimized formulation ACP 19 had reduced particle size (118.3 ± 1.53 nm), when compared to PCT 08 (740 ± 1.16 nm). In vitro drug release study revealed that 98.05 ± 0.95 and 93.71 ± 1.05 % of drug was, respectively, released from ACP 19 and PCT 08 formulations at 24 h, whereas only 47.42 ± 0.65 % was released from drug in suspension. ACT 19 and PCT 08, respectively, showed 2.5- and 2.22-folds greater bioavailability than drug in suspension. PK Solver 2.0 was used for analysis of data obtained from in vivo study and the results revealed that both ACP 19 SNEDDS and drug in suspension fit into one-compartment pharmacokinetic model.

  3. Design, formulation, in vitro, in vivo, and pharmacokinetic evaluation of nisoldipine-loaded self-nanoemulsifying drug delivery system

    International Nuclear Information System (INIS)

    Krishnamoorthy, Balakumar; Habibur Rahman, S. M.; Tamil selvan, N.; Hari prasad, R.; Rajkumar, M.; Siva selvakumar, M.; Vamshikrishna, K.; Gregory, Marslin; Vijayaraghavan, Chellan

    2015-01-01

    The aim of the present work was to prepare and optimize the self-nanoemulsifying drug delivery system (SNEDDS) of poor aqueous soluble and less bioavailable nisoldipine to improve its solubility and bioavailability. The solubility of nisoldipine was assessed in various vehicles and ternary phase diagram was constructed to identify the efficient self-emulsifying region. The selected formulations were evaluated for self-emulsification time, droplet size analysis, and in vitro drug release profile. The optimized formulation ACP 19 had reduced particle size (118.3 ± 1.53 nm), when compared to PCT 08 (740 ± 1.16 nm). In vitro drug release study revealed that 98.05 ± 0.95 and 93.71 ± 1.05 % of drug was, respectively, released from ACP 19 and PCT 08 formulations at 24 h, whereas only 47.42 ± 0.65 % was released from drug in suspension. ACT 19 and PCT 08, respectively, showed 2.5- and 2.22-folds greater bioavailability than drug in suspension. PK Solver 2.0 was used for analysis of data obtained from in vivo study and the results revealed that both ACP 19 SNEDDS and drug in suspension fit into one-compartment pharmacokinetic model

  4. Physicochemical characterization by AFM, FT-IR and DSC and biological assays of a promising antileishmania delivery system loaded with a natural Brazilian product.

    Science.gov (United States)

    Marquele-Oliveira, Franciane; Torres, Elina Cassia; Barud, Hernane da Silva; Zoccal, Karina Furlani; Faccioli, Lúcia Helena; Hori, Juliana I; Berretta, Andresa Aparecida

    2016-05-10

    The control and treatment of Leishmaniasis, a neglected and infectious disease affecting approximately 12 million people worldwide, are challenging. Leishmania parasites multiply intracellularly within macrophages located in deep skin and in visceral tissues, and the currently employed treatments for this disease are subject to significant drawbacks, such as resistance and toxicity. Thus, the search for new Leishmaniasis treatments is compulsory, and Ocotea duckei Vattimo, a plant-derived product from the biodiverse Brazilian flora, may be a promising new treatment for this disease. In this regard, the aim of this work was to develop and characterize a delivery system based on solid lipid nanoparticles (SLN) that contain the liposoluble lignan fraction (LF) of Ocotea duckei Vattimo, which targets the Leishmania phagolysosome of infected macrophages. LF-loaded SLNs were obtained via the hot microemulsion method, and their physical and chemical properties were comprehensively assessed using PCS, AFM, SEM, FT-IR, DSC, HPLC, kinetic drug release studies, and biological assays. The size of the developed delivery system was 218.85±14.2 nm, its zeta potential was -30 mV and its entrapment efficiency (EE%) was high (the EEs% of YAN [yangambin] and EPI-YAN [epi-yangambin] markers were 94.21±0.40% and 94.20±0.00%, respectively). Microscopy, FT-IR and DSC assays confirmed that the delivery system was nanosized and indicated a core-shell encapsulation model, which corroborated the measured kinetics of drug release. The total in vitro release rates of YAN and EPI-YAN in buffer (with sink conditions attained) were 29.6±8.3% and 34.3±8.9%, respectively, via diffusion through the cellulose acetate membrane of the SLN over a period of 4 h. After 24 h, the release rates of both markers reached approximately 45%, suggesting a sustained pattern of release. Mathematical modeling indicated that both markers, YAN and EPI-YAN, followed matrix diffusion-based release kinetics (Higuchi

  5. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery.

    Science.gov (United States)

    Tang, Wei-Lun; Tang, Wei-Hsin; Szeitz, Andras; Kulkarni, Jayesh; Cullis, Pieter; Li, Shyh-Dar

    2018-06-01

    The solvent-assisted active loading technology (SALT) was developed for encapsulating a water insoluble weak base into the liposomal core in the presence of 5% DMSO. In this study, we further examined the effect of various water miscible solvents in promoting active loading of other types of drugs into liposomes. To achieve complete drug loading, the amount of solvent required must result in complete drug solubilization and membrane permeability enhancement, but must be below the threshold that induces liposomal aggregation or causes bilayer disruption. We then used the SALT to load gambogic acid (GA, an insoluble model drug that shows promising anticancer effect) into liposomes, and optimized the loading gradient and lipid composition to prepare a stable formulation (Lipo-GA) that displayed >95% drug retention after incubation with serum for 3 days. Lipo-GA contained a high drug-to-lipid ratio of 1/5 (w/w) with a mean particle size of ∼75 nm. It also displayed a prolonged circulation half-life (1.5 h vs. 18.6 h) and enhanced antitumor activity in two syngeneic mice models compared to free GA. Particularly, complete tumor regression was observed in the EMT6 tumor model for 14 d with significant inhibition of multiple oncogenes including HIF-1α, VEGF-A, STAT3, BCL-2, and NF-κB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effect drug loading process on dissolution mechanism of encapsulated amoxicillin trihydrate in hydrogel semi-IPN chitosan methyl cellulose with pore forming agent KHCO3 as a floating drug delivery system

    Science.gov (United States)

    Fithawati, Garnis; Budianto, Emil

    2018-04-01

    Common treatment for Helicobacter pylori by repeated oral consumption of amoxicillin trihydrate is not effective. Amoxicillin trihydrate has a very short residence time in stomach which leads into its ineffectiveness. Residence time of amoxicillin trihydrate can be improved by encapsulating amoxicillin trihydrate into a floating drug delivery system. In this study, amoxicillin trihydrate is encapsulated into hydrogel semi-IPN chitosan methyl cellulose matrix as a floating drug delivery system and then treated with 20% KHCO3 as pore forming agent. Drug loading process used are in-situ loading and post loading. In-situ loading process has higher efficiency percentage and dissolution percentage than post loading process. In-situ loading process resulted 100% efficiency with 92,70% dissolution percentage. Post loading process resulted 98,7% efficiency with 90,42% dissolution percentage. Mechanism of drug dissolution study by kinetics approach showed both in-situ loading process and post loading process are diffusion and degradation process (n=0,4913) and (n=0,4602) respectively. These results are supported by characterization data from optical microscope and scanning electron microscopy (SEM). Data from optical microscope showed both loading process resulted in coarser hydrogel surface. Characterization using SEM showed elongated pores in both loading process after dissolution test.

  7. Preparation and in vitro characterization of SN-38-loaded, self-forming polymeric depots as an injectable drug delivery system.

    Science.gov (United States)

    Manaspon, Chawan; Hongeng, Suradej; Boongird, Atthaporn; Nasongkla, Norased

    2012-10-01

    This work describes the preparation and characterization of anticancer-loaded injectable polymeric depots that consisted of D,L-lactide (LA), ε-caprolactone (CL), and poly(ethylene glycol) (PEG) or [poly(ε-caprolactone)-random-poly(D,L-lactide)]-block-poly(ethylene glycol)-block-[poly(ε-caprolactone)-random-poly(D,L-lactide)] (PLEC) copolymers for malignant gliomas treatment. PLECs were polymerized with different percentages of LA to deliver 7-ethyl-10-hydroxycamptothecin (SN-38), a highly potent anticancer drug. SN-38-loaded depots could form directly in phosphate buffer saline with more than 98% encapsulation efficiency. The release rate of SN-38 from depots was found to depend on the amount of LA in PLECs, loading content of SN-38 in the depots, and depot weight. Encapsulation of SN-38 inside depots could enhance the stability of SN-38 where all of SN-38 released after 60 days was in an active form. Depots without SN-38 were evaluated as noncytotoxic against U-87MG, whereas SN-38-loaded depots showed cytotoxic effect as a function of concentration. Copyright © 2012 Wiley Periodicals, Inc.

  8. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  9. Inhibition of bcl-2 and cox-2 Protein Expression after Local Application of a New Carmustine-Loaded Clinoptilolite-Based Delivery System in a Chemically Induced Skin Cancer Model in Mice

    Directory of Open Access Journals (Sweden)

    Cristina Mihaela Ghiciuc

    2017-11-01

    Full Text Available Our research has focused on in vitro and in vivo evaluations of a new Carmustine (BCNU-loaded clinoptilolite-based delivery system. Two clinoptilolite ionic forms—hydrogen form (HCLI and sodium form (NaCLI—were prepared, allowing a loading degree of about 5–6 mg BCNU/g of zeolite matrix due to the dual porous feature of clinoptilolite. Clinoptilolite-based delivery systems released 35.23% of the load in 12 h for the BCNU@HCLI system and only 10.82% for the BCNU@NaCLI system. The BCNU@HCLI system was chosen to develop gel and cream semisolid dosage forms. The cream (C_BCNU@HCLI released 29.6% of the loaded BCNU after 12 h in the Nylon synthetic membrane test and 31.6% in the collagen membrane test, higher by comparison to the gel. The new cream was evaluated in vivo in a chemically induced model of skin cancer in mice. Quantitative immunohistochemistry analysis showed stronger inhibition of B-cell lymphoma-2 (bcl-2 and cyclooxygenase 2 (cox-2 protein expression, known markers for cancer survival and aggressiveness, after the treatment with C_BCNU@HCLI by comparison to all the control treatment types, including an off-label magistral formula commercially available Carmustine cream as reference, bringing evidence that a clinoptilolite-based delivery systems could be used as a cancer drug carriers and controlled release systems (skin-targeted topical delivery systems.

  10. A Near-Infrared Photothermal Effect-Responsive Drug Delivery System Based on Indocyanine Green and Doxorubicin-Loaded Polymeric Micelles Mediated by Reversible Diels-Alder Reaction.

    Science.gov (United States)

    Li, Hui; Li, Junjie; Ke, Wendong; Ge, Zhishen

    2015-10-01

    Near-infrared light (NIR) possesses great advantages for light-responsive controllable drug release, such as deep tissue penetration and low damage to healthy tissues. Herein, a NIR-responsive drug delivery system is developed based on a NIR dye, indocyanine green (ICG), and anticancer drug, doxorubicin (DOX)-loaded thermoresponsive block copolymer micelles, in which the drug release can be controlled via NIR irradiation. First, block copolymers, poly(oligo(ethylene glycol) methacrylate)-block-poly(furfuryl methacrylate) (POEGMA-b-PFMA), are synthesized by sequential reversible addition-fragmentation chain-transfer (RAFT) polymerization, followed by modification with N-octyl maleimide through Diels-Alder (DA) reaction to produce POEGMA-b-POMFMA. The self-assembly of POEGMA-b-POMFMA by nano-precipitation in aqueous solution affords the polymeric micelles which are used to simultaneously encapsulate ICG and DOX. Upon irradiation by NIR light (805 nm), the loaded DOX is released rapidly from the micelles due to partial retro DA reaction and local temperature increase-induced faster drug diffusion by the photothermal effect. Cytotoxicity evaluation and intracellular distribution observation demonstrate significant synergistic effects of NIR-triggered drug release, photothermal, and chemotherapy toward cancer cells under NIR irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles.

    Science.gov (United States)

    Giovino, Concetta; Ayensu, Isaac; Tetteh, John; Boateng, Joshua S

    2013-12-01

    Peptide (insulin) loaded nanoparticles (NPs) have been embedded into buccal chitosan films (Ch-films-NPs). These films were produced by solvent casting and involved incorporating in chitosan gel (1.25% w/v), NPs-Insulin suspensions at three different concentrations (1, 3, and 5mg of NPs per film) using glycerol as plasticiser. Film swelling and mucoadhesion were investigated using 0.01M PBS at 37°C and texture analyzer, respectively. Formulations containing 3mg of NPs per film produced optimised films with excellent mucoadhesion and swelling properties. Dynamic laser scattering measurements showed that the erosion of the chitosan backbone controlled the release of NPs from the films, preceding in vitro drug (insulin) release from Ch-films-NPs after 6h. Modulated release was observed with 70% of encapsulated insulin released after 360h. The use of chitosan films yielded a 1.8-fold enhancement of ex vivo insulin permeation via EpiOral™ buccal tissue construct relative to the pure drug. Flux and apparent permeation coefficient of 0.1μg/cm(2)/h and 4×10(-2)cm(2)/h were respectively obtained for insulin released from Ch-films-NPs-3. Circular dichroism and FTIR spectroscopy demonstrated that the conformational structure of the model peptide drug (insulin) released from Ch-films-NPs was preserved during the formulation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS).

    Science.gov (United States)

    Wang, Ning; Zhen, Yuanyuan; Jin, Yiguang; Wang, Xueting; Li, Ning; Jiang, Shaohong; Wang, Ting

    2017-01-28

    To develop effective mucosal vaccines, two types of multifunctional liposomes, the mannosylated lipid A-liposomes (MLLs) with a size of 200nm and the stealth lipid A-liposomes (SLLs) of 50nm, both loaded with a model antigen and NH 4 HCO 3 , were fabricated together into microneedles, forming the proSLL/MLL-constituted microneedle array (proSMMA), which upon rehydration dissolved rapidly recovering the initial MLLs and SLLs. Mice vaccinated with proSMMAs by vaginal mucosa patching other than conventional intradermal administration established robust antigen-specific humoral and cellular immunity at both systemic and mucosal levels, especially, in the reproductive and intestinal ducts. Further exploration demonstrated that the MLLs reconstituted from the administered proSMMAs were mostly taken up by vaginal mucosal dendritic cells, whereas the recovered SLLs trafficked directly to draining lymph nodes wherein to be picked up by macrophages. Moreover, the antigens delivered by either liposomes were also cross-presented for MHC-I displaying by APCs thanks to lysosome escape and ROS (reactive oxygen species) stimulation, both of which occurred when lysosomal acidifying the liposome-released NH 4 HCO 3 into CO 2 and NH 4 + /NH 3 to rupture lysosomes by gas expansion and to cause ROS production by excessive ammonia induction, resulting in a mixed Th1/Th2 type response which was also promoted by liposomal lipid A via activation of TLR4. In addition, vaginal vaccination of the engineered HSV2 antigen gD-loaded proSMMAs successfully protected mice from the virus challenge. Thus, the proSMMAs are in fact a vaccine adjuvant-dual delivery system capable of eliciting robust humoral and cellular immunity against the invading pathogens, especially, the sexually transmitted ones. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  14. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.

    Science.gov (United States)

    Zhu, Xiali; Xie, Yingxia; Zhang, Yingjie; Huang, Heqing; Huang, Shengnan; Hou, Lin; Zhang, Huijuan; Li, Zhi; Shi, Jinjin; Zhang, Zhenzhong

    2014-11-01

    This report focuses on the thermo-sensitive liposomes loaded with doxorubicin and lysine-modified single-walled carbon nanotube drug delivery system, which was designed to enhance the anti-tumor effect and reduce the side effects of doxorubicin. Doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes was prepared by reverse-phase evaporation method, the mean particle size was 232.0 ± 5.6 nm, and drug entrapment efficiency was 86.5 ± 3.7%. The drug release test showed that doxorubicin released more quickly at 42℃ than at 37℃. Compared with free doxorubicin, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes could efficiently cross the cell membranes and afford higher anti-tumor efficacy on the human hepatic carcinoma cell line (SMMC-7721) cells in vitro. For in vivo experiments, the relative tumor volumes of the sarcomaia 180-bearing mice in thermo-sensitive liposomes group and doxorubicin group were significantly smaller than those of N.S. group. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced the tumor growth inhibition both on SMMC-7721 cells and the sarcomaia 180-bearing mice. The quality of life such as body weight, mental state, food and water intake of sarcomaia 180 tumor-bearing mice treated with doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes were much higher than those treated with doxorubicin. In conclusion, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes combined with near-infrared laser irradiation at 808 nm may potentially provide viable clinical strategies for targeting delivery of anti-cancer drugs. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Mucoadhesive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Rahamatullah Shaikh

    2011-01-01

    Full Text Available Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal.

  16. Renewable energy delivery systems and methods

    Science.gov (United States)

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  17. Secondary fuel delivery system

    Science.gov (United States)

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  18. Mesenchymal Stromal Cells for Antineoplastic Drug Loading and Delivery.

    Science.gov (United States)

    Petrella, Francesco; Rimoldi, Isabella; Rizzo, Stefania; Spaggiari, Lorenzo

    2017-11-23

    Mesenchymal stromal cells are a population of undifferentiated multipotent adult cells possessing extensive self-renewal properties and the potential to differentiate into a variety of mesenchymal lineage cells. They express broad anti-inflammatory and immunomodulatory activity on the immune system and after transplantation can interact with the surrounding microenvironment, promoting tissue healing and regeneration. For this reason, mesenchymal stromal cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Another clinical application of mesenchymal stromal cells is the targeted delivery of chemotherapeutic agents to neoplastic cells, maximizing the cytotoxic activity against cancer cells and minimizing collateral damage to non-neoplastic tissues. Mesenchymal stem cells are home to the stroma of several primary and metastatic neoplasms and hence can be used as vectors for targeted delivery of antineoplastic drugs to the tumour microenvironment, thereby reducing systemic toxicity and maximizing antitumour effects. Paclitaxel and gemcitabine are the chemotherapeutic drugs best loaded by mesenchymal stromal cells and delivered to neoplastic cells, whereas other agents, like pemetrexed, are not internalized by mesenchymal stromal cells and therefore are not suitable for advanced antineoplastic therapy. This review focuses on the state of the art of advanced antineoplastic cell therapy and its future perspectives, emphasizing in vitro and in vivo preclinical results and future clinical applications.

  19. Folate attached, curcumin loaded Fe{sub 3}O{sub 4} nanoparticles: A novel multifunctional drug delivery system for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Thu Huong, Le Thi [Institute of Materials Science, Ha Noi 844 (Viet Nam); Vietnam National University of Agriculture, Ha Noi 844 (Viet Nam); Nam, Nguyen Hoai, E-mail: nhnam@ims.vast.ac.vn [Institute of Materials Science, Ha Noi 844 (Viet Nam); Doan, Do Hai [Institute of Materials Science, Ha Noi 844 (Viet Nam); My Nhung, Hoang Thi [Hanoi University of Science, Vietnam National University, Ha Noi 844 (Viet Nam); Quang, Bui Thuc [National Gegiatrics Hospital, Ha Noi 844 (Viet Nam); Nam, Pham Hong; Thong, Phan Quoc; Phuc, Nguyen Xuan [Institute of Materials Science, Ha Noi 844 (Viet Nam); Thu, Ha Phuong, E-mail: thuhp@ims.vast.ac.vn [Institute of Materials Science, Ha Noi 844 (Viet Nam)

    2016-04-01

    Study and development of drug delivery nanosystem for cancer treatment are attracting great attention in recent years. In this work, we studied the role of folic acid as a targeting factor on magnetic nanoparticle Fe{sub 3}O{sub 4} based curcumin loading nanosystem. Characteristics of the nanosystems were investigated by Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and vibrating sample magnetometer (VSM), while targeting role of folic was accessed in vivo on tumor bearing mice. The results showed that folate attached Fe{sub 3}O{sub 4} based curcumin loading nanosystem has very small size and exhibits better targeting effect compared to the counterpart without folate. In addition, magnetic induction heating of this nanosystem evidenced its potential for cancer hyperthermia. - Highlights: • Folate attached, curcumin loaded Fe3O4 nanoparticles were prepared and characterized. • The NPs have high curcumin loading capacity and good ability for hyperthermia. • Folate shows its bioactivity of effectively targeting the NPs to tumor tissues. • Chemotherapy, hyperthermia and targeting factor are all well combined in the NPs.

  20. Levodopa delivery systems: advancements in delivery of the gold standard.

    Science.gov (United States)

    Ngwuluka, Ndidi; Pillay, Viness; Du Toit, Lisa C; Ndesendo, Valence; Choonara, Yahya; Modi, Girish; Naidoo, Dinesh

    2010-02-01

    Despite the fact that Parkinson's disease (PD) was discovered almost 200 years ago, its treatment and management remain immense challenges because progressive loss of dopaminergic nigral neurons, motor complications experienced by the patients as the disease progresses and drawbacks of pharmacotherapeutic management still persist. Various therapeutic agents have been used in the management of PD, including levodopa (l-DOPA), selegiline, amantadine, bromocriptine, entacapone, pramipexole dihydrochloride and more recently istradefylline and rasagiline. Of all agents, l-DOPA although the oldest, remains the most effective. l-DOPA is easier to administer, better tolerated, less expensive and is required by almost all PD patients. However, l-DOPA's efficacy in advanced PD is significantly reduced due to metabolism, subsequent low bioavailability and irregular fluctuations in its plasma levels. Significant strides have been made to improve the delivery of l-DOPA in order to enhance its bioavailability and reduce plasma fluctuations as well as motor complications experienced by patients purportedly resulting from pulsatile stimulation of the striatal dopamine receptors. Drug delivery systems that have been instituted for the delivery of l-DOPA include immediate release formulations, liquid formulations, dispersible tablets, controlled release formulations, dual-release formulations, microspheres, infusion and transdermal delivery, among others. In this review, the l-DOPA-loaded drug delivery systems developed over the past three decades are elaborated. The ultimate aim was to assess critically the attempts made thus far directed at improving l-DOPA absorption, bioavailability and maintenance of constant plasma concentrations, including the drug delivery technologies implicated. This review highlights the fact that neuropharmaceutics is at a precipice, which is expected to spur investigators to take that leap to enable the generation of innovative delivery systems for the

  1. Electronic Nicotine Delivery Systems.

    Science.gov (United States)

    Walley, Susan C; Jenssen, Brian P

    2015-11-01

    Electronic nicotine delivery systems (ENDS) are rapidly growing in popularity among youth. ENDS are handheld devices that produce an aerosolized mixture from a solution typically containing concentrated nicotine, flavoring chemicals, and propylene glycol to be inhaled by the user. ENDS are marketed under a variety of names, most commonly electronic cigarettes and e-cigarettes. In 2014, more youth reported using ENDS than any other tobacco product. ENDS pose health risks to both users and nonusers. Nicotine, the major psychoactive ingredient in ENDS solutions, is both highly addictive and toxic. In addition to nicotine, other toxicants, carcinogens, and metal particles have been detected in solutions and aerosols of ENDS. Nonusers are involuntarily exposed to the emissions of these devices with secondhand and thirdhand aerosol. The concentrated and often flavored nicotine in ENDS solutions poses a poisoning risk for young children. Reports of acute nicotine toxicity from US poison control centers have been increasing, with at least 1 child death reported from unintentional exposure to a nicotine-containing ENDS solution. With flavors, design, and marketing that appeal to youth, ENDS threaten to renormalize and glamorize nicotine and tobacco product use. There is a critical need for ENDS regulation, legislative action, and counter promotion to protect youth. ENDS have the potential to addict a new generation of youth to nicotine and reverse more than 50 years of progress in tobacco control. Copyright © 2015 by the American Academy of Pediatrics.

  2. Fuel element loading system

    International Nuclear Information System (INIS)

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  3. Load Control System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Trudnowski, Daniel [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  4. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  5. Preparation and Evaluation of Enteric-Coated Chitosan Derivative-Based Microparticles Loaded with Salmon Calcitonin as an Oral Delivery System

    Directory of Open Access Journals (Sweden)

    Hiraku Onishi

    2016-09-01

    Full Text Available Background: The production of protein drugs has recently increased due to advances in biotechnology, but their clinical use is generally limited to parenteral administration due to low absorption in non-parenteral administration. Therefore, non-parenteral delivery systems allowing sufficient absorption draw much attention. Methods: Microparticles (MP were prepared using chitosan-4-thio-butylamidine conjugate (Ch-TBA, trimethyl-chitosan (TMC, and chitosan (Ch. Using salmon calcitonin (sCT as a model protein drug, Ch-TBA-, Ch-TBA/TMC (4/1-, and Ch-based MP were produced, and their Eudragit L100 (Eud-coated MP, named Ch-TBA-MP/Eud, Ch-TBA/TMC-MP/Eud, and Ch-MP/Eud, respectively, were prepared as oral delivery systems. These enteric-coated microparticles were examined in vitro and in vivo. Results: All microparticles before and after enteric coating had a submicron size (600–800 nm and micrometer size (1300–1500 nm, respectively. In vitro release patterns were similar among all microparticles; release occurred gradually, and the release rate was slower at pH 1.2 than at pH 6.8. In oral ingestion, Ch-TBA-MP/Eud suppressed plasma Ca levels most effectively among the microparticles tested. The relative effectiveness of Ch-TBA-MP/Eud to the intramuscular injection was 8.6%, while the sCT solution showed no effectiveness. Conclusion: The results suggest that Eud-coated Ch-TBA-based microparticles should have potential as an oral delivery system of protein drugs.

  6. Micelles As Delivery System for Cancer Treatment.

    Science.gov (United States)

    Keskin, Dilek; Tezcaner, Aysen

    2017-01-01

    Micelles are nanoparticles formed by the self-assembly of amphiphilic block copolymers in certain solvents above concentrations called critical micelle concentration (CMC). Micelles are used in different fields like food, cosmetics, medicine, etc. These nanosized delivery systems are under spotlight in the recent years with new achievements in terms of their in vivo stability, ability to protect entrapped drug, release kinetics, ease of cellular penetration and thereby increased therapeutic efficacy. Drug loaded micelles can be prepared by dialysis, oil-in-water method, solid dispersion, freezing, spray drying, etc. The aim of this review is to give an overview of the research on micelles (in vitro, in vivo and clinical) as delivery system for cancer treatment. Passive targeting is one route for accumulation of nanosized micellar drug formulations. Many research groups from both academia and industry focus on developing new strategies for improving the therapeutic efficacy of micellar systems (active targeting to the tumor site, designing multidrug delivery systems for overcoming multidrug resistance or micelles formed by prodrug conjugates, etc). There is only one micellar drug formulation in South Korea that has reached clinical practice. However, there are many untargeted anticancer drug loaded micellar formulations in clinical trials, which have potential for use in clinics. Many more products are expected to be on the market in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Effects of pore forming agents of potassium bicarbonate and drug loading method against dissolution mechanisms of amoxicillin drugs encapsulated in hydrogel full-Ipn chitosan-poly(N-vinylcaprolactam) as a floating drug delivery system

    Science.gov (United States)

    Aini, Nurul; Rahayu, Dyah Utami Cahyaning; Budianto, Emil

    2018-04-01

    The limitation of amoxicillin trihydrate in the treatment of H. pylori bacteria is relatively short retention time in the stomach. The FDDS (Floating Drug Delivery System) amoxicillin trihydrate into a chitosan-poly(N-vinylcaprolactam) full-Ipn hydrogel matrix using a pore-forming agent KHCO3 is expected to overcome these limitations. The pore-forming agent to be used is 15% KHCO3 compound. Chemical kinetics approach is performed to determine the dissolution mechanism of amoxicillin trihydrate from K-PNVCL hydrogel in vitro on gastric pH and characterization using SEM performed to confirm the dissolution mechanism. Hydrogels with the addition of pore-forming agents will be loading in situ loading and post loading. Fourier Transform Infra Red (FTIR) spectroscopy was used to characterize K-PNVCL and UV-Vis hydrogels used to calculate the efficiency of encapsulation and drug dissolution rate in K-PNVCL hydrogel. Hydrogel K-PNVCL / KHCO3 that encapsulated by in situ loading method resulted in an encapsulation efficiency of 93.5% and dissolution of 93.4%. While the Hydrogel K-PNVCL / KHCO3 which is drug encapsulation resulted in an encapsulation efficiency of 87.2% with dissolution of 81.5%. Chemical kinetics approach to in situ encapsulation of loading and post loading shows the dissolution mechanism occurring in the K-PNVCL / KHCO3 hydrogel matrix occurs by diffusion. Observation using optical microscope and SEM showed the mechanism of drug dissolution in Hydrogel K-PNVCL occurred by diffusion.

  8. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  9. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  10. Peptide and protein delivery using new drug delivery systems.

    Science.gov (United States)

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  11. Software Build and Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-10

    This presentation deals with the hierarchy of software build and delivery systems. One of the goals is to maximize the success rate of new users and developers when first trying your software. First impressions are important. Early successes are important. This also reduces critical documentation costs. This is a presentation focused on computer science and goes into detail about code documentation.

  12. MINI-SLAR delivery system

    International Nuclear Information System (INIS)

    Alstein, D.

    1996-01-01

    In the Spring of 1993, a need to complete Spacer Location and Repositioning (SLAR) on the Bruce 'A', Unit 1 Reactor was identified. An alternate SLAR delivery system was required due to conversion constraints that prevented the existing Bruce SLAR System from being used in Unit 1. A Portable SLAR Delivery System called MINI-SLAR Delivery System was developed, designed and fabricated in a 14 month period, then used to successfully SLAR 109 channels. The system is a portable remotely operated Nuclear Class 1 registered fitting that is independent of the Fuelling Machine, allowing the station to continue normal Fuelling and Maintenance activities. It is designed to a Level 'D' faulted condition of HPECI Pressure thus minimizing PHT Heat Sink configuration requirements and minimizing outage set-up times. The system is based on a modular design allowing for easy fabrication, assembly and repair. It consists of a Snout Assembly, a Closure Plug Assembly, Shield Plug Assembly, SLAR Ram assembly, Work Table Assembly and Control Panel. Controls are through a Programmable Logic Controller with software tested and certified to a Software Quality Assurance of Level Ill. (author). 2 refs., 2 figs

  13. MINI-SLAR delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Alstein, D [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A; Dalton, K [Spectrum Engineering, Peterborough, ON (Canada)

    1997-12-31

    In the Spring of 1993, a need to complete Spacer Location and Repositioning (SLAR) on the Bruce `A`, Unit 1 Reactor was identified. An alternate SLAR delivery system was required due to conversion constraints that prevented the existing Bruce SLAR System from being used in Unit 1. A Portable SLAR Delivery System called MINI-SLAR Delivery System was developed, designed and fabricated in a 14 month period, then used to successfully SLAR 109 channels. The system is a portable remotely operated Nuclear Class 1 registered fitting that is independent of the Fuelling Machine, allowing the station to continue normal Fuelling and Maintenance activities. It is designed to a Level `D` faulted condition of HPECI Pressure thus minimizing PHT Heat Sink configuration requirements and minimizing outage set-up times. The system is based on a modular design allowing for easy fabrication, assembly and repair. It consists of a Snout Assembly, a Closure Plug Assembly, Shield Plug Assembly, SLAR Ram assembly, Work Table Assembly and Control Panel. Controls are through a Programmable Logic Controller with software tested and certified to a Software Quality Assurance of Level Ill. (author). 2 refs., 2 figs.

  14. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  15. Sterile Product Packaging and Delivery Systems.

    Science.gov (United States)

    Akers, Michael J

    2015-01-01

    Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.

  16. A study on nanodiamond-based drug delivery system

    International Nuclear Information System (INIS)

    Li Jing; Zhang Xiaoyong; Zhu Ying; Li Wenxin; Huang Qing

    2010-01-01

    A multifunctional drug delivery system based on nanodiamonds (NDs) has been developed. FITC, HCPT and TF were absorbed on NDs successively to form the multifunctional complex. The NDs and ND complex samples were characterized by TEM, FR-IR and UV-V. The results indicated that this drug delivery system is a high loading system. Efficacy of the drug delivery system on Hela cell was evaluated with MTT assays and fluorescence microscopy. The results show that multifunction of the NDs complex include fluorescence, targeting and high efficacy. (authors)

  17. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    Science.gov (United States)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  18. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  19. An efficient targeted drug delivery through apotransferrin loaded nanoparticles.

    Directory of Open Access Journals (Sweden)

    Athuluri Divakar Sai Krishna

    Full Text Available BACKGROUND: Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. METHODOLOGY/PRINCIPAL FINDINGS: Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano have diameters of 25-50 etam, which increase to 60-80 etam upon direct loading of drug (direct-nano, and showed further increase in dimension (75-95 etam in conjugated nanoparticles (conj-nano. The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus (b pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in

  20. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  1. Preparing and evaluating delivery systems for proteins

    DEFF Research Database (Denmark)

    Jorgensen, L; Moeller, E H; van de Weert, M

    2006-01-01

    From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping...... and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge...... for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions....

  2. Silk Electrogel Based Gastroretentive Drug Delivery System

    Science.gov (United States)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  3. Spray-on transdermal drug delivery systems.

    Science.gov (United States)

    Ibrahim, Sarah A

    2015-02-01

    Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.

  4. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    Directory of Open Access Journals (Sweden)

    Bennet D

    2012-07-01

    Full Text Available Devasier Bennet,1 Mohana Marimuthu,1 Sanghyo Kim,1 Jeongho An21Department of Bionanotechnology, Gachon University, Gyeonggi, Republic of Korea; 2Department of Polymer Science and Engineering, SunKyunKwan University, Gyeonggi, Republic of KoreaAbstract: Antioxidant (quercetin and hypoglycemic (voglibose drug-loaded poly-D,L-lactide-co-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system.Keywords: quercetin, voglibose, biocompatible materials, encapsulation, transdermal

  5. Floating Microparticulate Oral Diltiazem Hydrochloride Delivery ...

    African Journals Online (AJOL)

    Delivery System for Improved Delivery to Heart ... Conclusion: Microparticulate floating (gastroretentive) oral drug delivery system of diltiazem prepared ..... treatment of cardiac disease. ... hydrochloride-loaded mucoadhesive microspheres.

  6. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    Science.gov (United States)

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery

    Science.gov (United States)

    Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi

    2011-01-01

    Background The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Methods Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Results Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Conclusion Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin. PMID:21904452

  8. Microemulsion-loaded hydrogel formulation of butenafine hydrochloride for improved topical delivery.

    Science.gov (United States)

    Pillai, Anilkumar B; Nair, Jyothilaksmi V; Gupta, Nishant Kumar; Gupta, Swati

    2015-09-01

    Topical microemulsion systems for the antifungal drug, butenafine hydrochloride (BTF) were designed and developed to overcome the problems associated with the cutaneous delivery due to poor water solubility. The solubility of BTF in oils, surfactants and co-surfactants was evaluated to screen the components of the microemulsion. Isopropyl palmitate was used as the oil phase, aerosol OT as the surfactant and sorbitan monooleate as co-surfactant. The pseudoternary diagrams were constructed to identify the area of microemulsion existence and optimum systems were designed. The systems were assessed for drug-loading efficiency and characterized for pH, robustness to dilution, globule size, drug content and stability. Viscosity analysis, spreadability, drug content assay, ex vivo skin permeation study and antifungal activity assay were performed for the optimized microemulsion-loaded hydrogel. The optimized BTF microemulsion had a small and uniform globule size. The incorporation of microemulsion system into Carbopol 940 gel was found to be better as compared to sodium alginate or hydroxyl propyl methyl cellulose (HPMC K4 M) gel. The developed gel has shown better ex vivo skin permeation and antifungal activity when compared to marketed BTF cream. Thus, the results provide a basis for the successful delivery of BTF from microemulsion-loaded hydrogel formulation, which resulted in improved penetration of drug and antifungal activity in comparison with commercial formulation of BTF.

  9. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-yan; Zhang, Yu [Nanchang University, College of Chemistry (China); Chen, Xiang-yu [Xiangya No.2 Hospital of Central South University, Department of Radiology (China); Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2017-04-15

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsO{sub x}) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  10. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Colloidal drug delivery system: amplify the ocular delivery.

    Science.gov (United States)

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  12. SPEAR 2 RF SYSTEM LOADS

    International Nuclear Information System (INIS)

    2002-01-01

    The design and performance of higher order mode (HOM) dampers for the SPEAR 2 RF system is presented. The SPEAR beam had experienced occasional periods of instability due to transverse oscillations which were driven by HOMs in the RF cavities. A substantial fraction of this RF energy was coupled out of the cavity into the waveguide connecting the cavity to the klystron. This waveguide was modified by adding a stub of smaller cross section, terminated by a ferrite tile load, to the system. Design considerations of the load, and its effect on HOMs and beam stability will be discussed

  13. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.

    Science.gov (United States)

    Chen, Z X; Li, B; Liu, T; Wang, X; Zhu, Y; Wang, L; Wang, X H; Niu, X; Xiao, Y; Sun, Q

    2017-03-01

    Paeonol shows effective anti-allergic, anti-inflammatory and analgesic activities. However, because of its poor solubility in water and high volatility at room temperature, the application of this drug is restricted in the clinic. The objective of this research was to develop a biocompatible paeonol formulation with improved stability, skin delivery and pharmacokinetic efficiency. In this paper, paeonol-loaded vesicles were prepared using an ethanol injection method. Nano-vesicles were characterized for their physical properties and encapsulation efficiency (EE). Drug permeation behavior in vitro and deposition quantity in porcine ear skin were measured with a Valia-Chien (V-C) diffusion device. Additionally, a validated and sensitive high performance liquid chromatography (HPLC) method was developed to analyze paeonol concentrations in rat plasma after transdermal administration. The results showed that the particle-size order of the nano-vesicles was the following: transethosomes (122.5±7.5nm)transethosomes had a higher EE (85.5±5.2%), and they showed a spherical morphology with a smooth surface when viewed under a transmission electron microscope (TEM). In an in vitro permeation study, the paeonol transethosomes showed an enhanced transdermal flux of 95.7±8.8μg/cm 2 /h and a higher deposition quantity in porcine ear skin compared to the transfersomes. A one-compartment first-order absorption model could be used to describe the pharmacokinetics of paeonol in rats after transdermal administration. The AUC of the paeonol transethosomes was approximately 1.57- and 3.52-fold higher than those of the transfersomes and a saturated solution of paeonol in 35% ethanol, respectively. The results demonstrated that the paeonol transethosomes had a narrow size distribution, high encapsulation efficiency, and long residence in the plasma. This formulation remarkably enhanced the bioavailability of paeonol. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Integrated delivery systems. Evolving oligopolies.

    Science.gov (United States)

    Malone, T A

    1998-01-01

    The proliferation of Integrated Delivery Systems (IDSs) in regional health care markets has resulted in the movement of these markets from a monopolistic competitive model of behavior to an oligopoly. An oligopoly is synonymous with competition among the few, as a small number of firms supply a dominant share of an industry's total output. The basic characteristics of a market with competition among the few are: (1) A mutual interdependence among the actions and behaviors of competing firms; (2) competition tends to rely on the differentiation of products; (3) significant barriers to entering the market exist; (4) the demand curve for services may be kinked; and (5) firms can benefit from economies of scale. An understanding of these characteristics is essential to the survival of IDSs as regional managed care markets mature.

  15. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  16. Development of Triamcinolone Acetonide-Loaded Nanostructured Lipid Carriers (NLCs) for Buccal Drug Delivery Using the Box-Behnken Design.

    Science.gov (United States)

    Kraisit, Pakorn; Sarisuta, Narong

    2018-04-23

    The aim of this present work was to prepare triamcinolone acetonide (TA)-loaded nanostructured lipid carriers (TA-loaded NLCs) for buccal drug delivery systems using the Box-Behnken design. A hot homogenization method was used to prepare the TA-loaded NLCs. Spermaceti (X₁), soybean oil (X₂), and Tween 80 (X₃) were used as solid lipid, liquid lipid, and stabilizer, respectively. The particle size of TA-loaded NLCs was lower than 200 nm and the zeta potential displayed the negative charge in all formulations. The percentage encapsulation efficiency (%EE) of the TA-loaded NLCs showed that it was higher than 80% for all formulations. Field emission scanning electron microscope (FESEM) confirmed that the size of TA-loaded NLCs was approximately 100 nm and energy-dispersive X-ray spectroscopy (EDS) confirmed that the TA could be incorporated in the NLC system. The Higuchi model gave the highest value of the R², indicating that this model was a fit for the TA release profiles of TA-loaded NLCs. Confocal laser scanning microscopy (CLSM) was used to observe the drug penetration within the porcine buccal mucosa and Nile red-loaded NLCs showed significantly higher penetration depth at 8 h than at 2 h. Therefore, TA-loaded NLCs could be an efficient carrier for drug delivery through the buccal mucosa.

  17. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    Science.gov (United States)

    Soni, Maheshkumar P.; Shelkar, Nilakash; Gaikwad, Rajiv V.; Vanage, Geeta R.; Samad, Abdul; Devarajan, Padma V.

    2014-01-01

    Background: Buparvaquone (BPQ), a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES) organs. The present study investigates development of solid lipid nanoparticles (SLN) of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C). Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8%) and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52%) uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed longer circulation and biodistrbution study confirmed high RES uptake (75%) in RES organs like liver lung spleen etc. Conclusion: The high RES uptake suggests BPQ SLN as a promising approach for targeted and improved delivery in theileriosis. PMID:24459400

  18. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.

    Science.gov (United States)

    Smitha, K T; Anitha, A; Furuike, T; Tamura, H; Nair, Shantikumar V; Jayakumar, R

    2013-04-01

    Chitin and its derivatives have been widely used in drug delivery applications due to its biocompatible, biodegradable and non-toxic nature. In this study, we have developed amorphous chitin nanoparticles (150±50 nm) and evaluated its potential as a drug delivery system. Paclitaxel (PTX), a major chemotherapeutic agent was loaded into amorphous chitin nanoparticles (AC NPs) through ionic cross-linking reaction using TPP. The prepared PTX loaded AC NPs had an average diameter of 200±50 nm. Physico-chemical characterization of the prepared nanoparticles was carried out. These nanoparticles were proven to be hemocompatible and in vitro drug release studies showed a sustained release of PTX. Cellular internalization of the NPs was confirmed by fluorescent microscopy as well as by flow cytometry. Anticancer activity studies proved the toxicity of PTX-AC NPs toward colon cancer cells. These preliminary results indicate the potential of PTX-AC NPs in colon cancer drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Demand Response Load Following of Source and Load Systems

    DEFF Research Database (Denmark)

    Hu, Jianqiang; Cao, Jinde; Yong, Taiyou

    2017-01-01

    This paper presents a demand response load following strategy for an interconnected source and load system, in which we utilize traditional units and population of cooling thermostatically controlled loads (TCLs) to follow the mismatched power caused by the load activities and the renewable power...... injection in real time. In the demand side of power systems, these TCLs are often affiliated to a bus load agent and can be aggregated to multiple TCL aggregators. Firstly, aggregate evaluation of the TCL aggregator is carried out based on a bilinear aggregate model so as to derive the available regulation...

  20. Pattern fuel assembly loading system

    International Nuclear Information System (INIS)

    Ahmed, H.J.; Gerkey, K.S.; Miller, T.W.; Wylie, M.E.

    1986-01-01

    This patent describes an interactive system for facilitating preloading of fuel rods into magazines, which comprises: an operator work station adapted for positioning between a supply of fuel rods of predetermined types, and the magazine defining grid locations for a predetermined fuel assembly; display means associated with the work station; scanner means associated with the work station and adapted for reading predetermined information accompanying the fuel rods; a rectangular frame adapted for attachment to one end of the fuel assembly loading magazine; prompter/detector means associated with the frame for detecting insertion of a fuel rod into the magazine; and processing means responsive to the scanner means and the sensing means for prompting the operator via the display means to pre-load the fuel rods into desired grid locations in the magazine. An apparatus is described for facilitating pre-loading of fuel rods in predetermined grid locations of a fuel assembly loading magazine, comprising: a rectangular frame adapted for attachment to one end of the fuel assembly loading magazine; and means associated with the frame for detecting insertion of fuel rods into the magazine

  1. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-10-23

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  2. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-10-17

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  3. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles.

    Science.gov (United States)

    Mousavikhamene, Zeynab; Abdekhodaie, Mohammad J; Ahmadieh, Hamid

    2017-10-01

    A unique method was used to facilitate ocular drug delivery from periocular route by drug loaded magnetic sensitive particles. Injection of particles in periocular space along the eye axis followed by application of magnetic field in front of the eye would trigger the magnetic polymeric particles to move along the direction of magnetic force and reside against the outer surface of the sclera. This technique prevents removal of drug in the periocular space, observed in conventional transscleral drug delivery systems and hence higher amount of drug can enter the eye in a longer period of time. The experiments were performed by fresh human sclera and an experimental setup. Experimental setup was designed by side by side diffusion cell and hydrodynamic and thermal simulation of the posterior segment of the eye were applied. Magnetic polymeric particles were synthesized by alginate as a model polymer, iron oxide nanoparticles as a magnetic agent and diclofenac sodium as a model drug and characterized by SEM, TEM, DLS and FT-IR techniques. According to the SEM images, the size range of particles is around 60 to 800nm. The results revealed that the cumulative drug transfer from magnetic sensitive particles across the sclera improves by 70% in the presence of magnetic field. The results of this research show promising method of drug delivery to use magnetic properties to facilitate drug delivery to the back of the eye. Copyright © 2017. Published by Elsevier B.V.

  4. Insulin delivery systems combined with microneedle technology.

    Science.gov (United States)

    Jin, Xuan; Zhu, Dan Dan; Chen, Bo Zhi; Ashfaq, Mohammad; Guo, Xin Dong

    2018-03-29

    Diabetes, a metabolic disorder of glucose, is a serious chronic disease and an important public health problem. Insulin is one of the hormones for modulating blood glucose level and the products of which is indispensable for most diabetes patients. Introducing microneedles (MNs) to insulin delivery is promising to pave the way for modulating glucose level noninvasively of diabetes patients, as which born to be painless, easy to handle and no need of any power supply. In this work, we review the process of insulin delivery systems (IDSs) based on MN technology in terms of two categories: drug free MNs and drug loaded MNs. Drug free MNs include solid MNs ("poke and patch"), hollow MNs ("poke and flow") and reservoir-based swelling MNs ("poke and swell R-type"), and drug loaded MNs include coated MNs ("coat and poke"), dissolving MNs ("poke and release") and insulin incorporated swelling MNs ("poke and swell I-type"). Majority researches of MN-based IDSs have been conducted by using hollow MNs or dissolving MNs, and almost all clinical trials for MN-based IDSs have employed hollow MNs. "Poke and patch" approach dramatically increase skin permeability compared to traditional transdermal patch, but MNs fabricated from silicon or metal may leave sharp waste in the skin and cause a safety issue. "Poke and flow" approach, similar to transitional subcutaneous (SC) injection, is capable of producing faster insulin absorption and action than SC injection but may associate with blockage, leakage and low flow rate. Coated MNs are able of retaining the activity of drug, which loaded in a solid phase, for a long time, however have been relatively less studied for insulin application as the low drug dosing. "Poke and release" approach leaves no biohazardous sharp medical waste and is capable of rapid drug release. "Poke and swell R-type" can be seen as a combination of "poke and flow" and "poke and patch" approach, while "poke and swell I-type" is an approach between "coat and

  5. loaded, colon-targeted drug delivery system

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. Available online at .... Extraction method was used to calculate entrapment ..... Calorimetery and Thermal Gravimetric analysis are very useful tools ...

  6. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    Directory of Open Access Journals (Sweden)

    Maheshkumar P Soni

    2014-01-01

    Full Text Available Background: Buparvaquone (BPQ, a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES organs. The present study investigates development of solid lipid nanoparticles (SLN of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C. Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size <1.3. Differential scanning calorimetry (DSC, powder X-ray diffraction (XRD and scanning electron microscope (SEM study was performed on optimized formulation. Formulation was investigated for in vitro serum stability, hemolysis and cell uptake study. Pharmacokinetic and biodistribution study was performed in Holtzman rat. Results: Based on solubility in lipid; glyceryl monostearate (GMS was selected for preparation of BPQ SLN. Batches of BPQ SLN were optimized for average particle size and entrapment efficiency at <100 mg solid content. A combination of Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8% and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52% uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed

  7. Fiber coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  8. Cell Based Drug Delivery: Micrococcus luteus Loaded Neutrophils as Chlorhexidine Delivery Vehicles in a Mouse Model of Liver Abscesses in Cattle.

    Science.gov (United States)

    Wendel, Sebastian O; Menon, Sailesh; Alshetaiwi, Hamad; Shrestha, Tej B; Chlebanowski, Lauren; Hsu, Wei-Wen; Bossmann, Stefan H; Narayanan, Sanjeev; Troyer, Deryl L

    2015-01-01

    The recent WHO report on antibiotic resistances shows a dramatic increase of microbial resistance against antibiotics. With only a few new antibiotics in the pipeline, a different drug delivery approach is urgently needed. We have obtained evidence demonstrating the effectiveness of a cell based drug delivery system that utilizes the innate immune system as targeting carrier for antibacterial drugs. In this study we show the efficient loading of neutrophil granulocytes with chlorhexidine and the complete killing of E. coli as well as Fusobacterium necrophorum in in-vitro studies. Fusobacterium necrophorum causes hepatic abscesses in cattle fed high grain diets. We also show in a mouse model that this delivery system targets infections of F. necrophorum in the liver and reduces the bacterial burden by an order of magnitude from approximately 2•106 to 1•105.

  9. A high-density lipoprotein-mediated drug delivery system.

    Science.gov (United States)

    Mo, Zhong-Cheng; Ren, Kun; Liu, Xing; Tang, Zhen-Li; Yi, Guang-Hui

    2016-11-15

    High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Biodistribution and pharmacokinetics of dapivirine-loaded nanoparticles after vaginal delivery in mice.

    Science.gov (United States)

    das Neves, José; Araújo, Francisca; Andrade, Fernanda; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2014-07-01

    To assess the potential of polymeric nanoparticles (NPs) to affect the genital distribution and local and systemic pharmacokinetics (PK) of the anti-HIV microbicide drug candidate dapivirine after vaginal delivery. Dapivirine-loaded, poly(ethylene oxide)-coated poly(epsilon-caprolactone) (PEO-PCL) NPs were prepared by a nanoprecipitation method. Genital distribution of NPs and their ability to modify the PK of dapivirine up to 24 h was assessed after vaginal instillation in a female mouse model. Also, the safety of NPs upon daily administration for 14 days was assessed by histological analysis and chemokine/cytokine content in vaginal lavages. PEO-PCL NPs (180-200 nm) were rapidly eliminated after administration but able to distribute throughout the vagina and lower uterus, and capable of tackling mucus and penetrate the epithelial lining. Nanocarriers modified the PK of dapivirine, with higher drug levels being recovered from vaginal lavages and vaginal/lower uterine tissues as compared to a drug suspension. Systemic drug exposure was reduced when NPs were used. Also, NPs were shown safe upon administration for 14 days. Dapivirine-loaded PEO-PCL NPs were able to provide likely favorable genital drug levels, thus attesting the potential value of using this vaginal drug delivery nanosystem in the context of HIV prophylaxis.

  11. Organoclays for drug delivery Systems

    OpenAIRE

    Canovas Creus, Alba

    2008-01-01

    Modified clays can be used as carriers of drugs due to their suitable properties and structure in order to achieve improvements in drug delivery. The study of this thesis starts with an introduction to mineral clays and its classification, properties and characterization, then deepens into modified clays (properties, comparison with mineral clays, applications and procedure of modification). Another chapter is focused in drug delivery: definition, its difficulties nowadays and the different w...

  12. Automated fuel pin loading system

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  13. Water-in-Oil Microemulsions for Protein Delivery: Loading Optimization and Stability.

    Science.gov (United States)

    Perinelli, Diego R; Cespi, Marco; Pucciarelli, Stefania; Vincenzetti, Silvia; Casettari, Luca; Lam, Jenny K W; Logrippo, Serena; Canala, Elisa; Soliman, Mahmoud E; Bonacucina, Giulia; Palmieri, Giovanni F

    2017-01-01

    Microemulsions are attractive delivery systems for therapeutic proteins and peptides due to their ability to enhance bioavailability. Although different proteins and peptides have been successfully delivered through such ternary systems, no information can be found about protein loading and the formulation stability when such microemulsions are prepared with pharmaceuticallyapproved oils and surfactants. The aim of this work was to optimise a ternary system consisting of water/ ethyl oleate/Span® 80-Tween® 80 and to determine its protein loading capacity and stability, using bovine serum albumin (BSA) as a model of biomolecule. The optimization was carried out using a Central Composite Design and all the prepared formulations were characterised through dynamic light scattering, rheology, optical and polarized microscopy. Subsequently, the maximum loading capacity was determined and the stability of the final microemulsion with the highest content of protein was followed over six months. To investigate the structural features of the protein, BSA was recovered from the microemulsion and analysed through fluorescence spectroscopy. After incorporation of the protein in the microemulsion, a decrease of its aqueous solubility was observed. However, the formulation remained stable over six months and the native-like state of the recovered protein was demonstrated by fluorescence spectroscopy Conclusion: This study demonstrated the feasibility of preparing microemulsions with the highest content of protein and their long-term stability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Engineering the system of healthcare delivery

    National Research Council Canada - National Science Library

    Rouse, William B; Cortese, Denis A

    2010-01-01

    "As the United States continues to debate reform of its healthcare system, this book argues that providing health insurance for all without improving the delivery system will not improve the current...

  15. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  16. Polymer hydrogels as optimized delivery systems

    International Nuclear Information System (INIS)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B.

    2013-01-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  17. New Delivery Systems and Propellants

    Directory of Open Access Journals (Sweden)

    Myrna Dolovich

    1999-01-01

    Full Text Available The removal of chlorofluorocarbon (CFC propellants from industrial and household products has been agreed to by over 165 countires of which more than 135 are developing countries. The timetable for this process is outlined in the Montreal Protocol on Substances that Deplete the Ozone Layer document and in several subsequent amendments. Pressured metered dose inhalers (pMDIs for medical use have been granted temporary exemptions until replacement formulations, providing the same medication via the same route, and with the same efficacy and safety profiles, are approved for human use. Hydrofluoroalkanes (HFAs are the alternative propellants for CFCs-12 and -114. Their potential for damage to the ozone layer is nonexistent, and while they are greenhouse gases, their global warming potential is a fraction (one-tenth of that of CFCs. Replacement formulations for almost all inhalant respiratory medications have been or are being produced and tested; in Canada, it is anticipated that the transition to these HFA or CFC-free pMDIs will be complete by the year 2005. Initially, an HFA pMDI was to be equivalent to the CFC pMDI being replaced, in terms of aerosol properties and effective clinical dose. However, this will not necessarily be the situation, particularly for some corticosteroid products. Currently, only one CFC-free formulation is available in Canada – Airomir, a HFA salbutamol pMDI. This paper discusses the in vitro aerosol characteristics, in vivo deposition and clinical data for several HFA pMDIs for which there are data available in the literature. Alternative delivery systems to the pMDI, namely, dry powder inhalers and nebulizers, are briefly reviewed.

  18. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Kayal, S.; Ramanujan, R.V.

    2010-01-01

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe 3 O 4 ), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  19. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2018-02-01

    The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.

  20. Distance Synchronous Information Systems Course Delivery

    Science.gov (United States)

    Peslak, Alan R.; Lewis, Griffith R.; Aebli, Fred

    2014-01-01

    Teaching computer information systems via distance education is a challenge for both student and faculty. Much research work has been performed on methods of teaching via distance education. Today we are faced with a variety of options for course delivery. Asynchronous delivery via online or lesson instruction still remains most common. But…

  1. Automated Loads Analysis System (ATLAS)

    Science.gov (United States)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  2. Future of Automated Insulin Delivery Systems.

    Science.gov (United States)

    Castle, Jessica R; DeVries, J Hans; Kovatchev, Boris

    2017-06-01

    Advances in continuous glucose monitoring (CGM) have brought on a paradigm shift in the management of type 1 diabetes. These advances have enabled the automation of insulin delivery, where an algorithm determines the insulin delivery rate in response to the CGM values. There are multiple automated insulin delivery (AID) systems in development. A system that automates basal insulin delivery has already received Food and Drug Administration approval, and more systems are likely to follow. As the field of AID matures, future systems may incorporate additional hormones and/or multiple inputs, such as activity level. All AID systems are impacted by CGM accuracy and future CGM devices must be shown to be sufficiently accurate to be safely incorporated into AID. In this article, we summarize recent achievements in AID development, with a special emphasis on CGM sensor performance, and discuss the future of AID systems from the point of view of their input-output characteristics, form factor, and adaptability.

  3. Fabrication and loading of microcontainers for oral drug delivery

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh

    is an important loop diuretic drug with low solubility and permeability is used as a model drug and embedded in a PCL matrix. The crystallinity of the drug is tailored by the process parameters of spin coating. Release profiles ranging from rapid burst release to sustained zero-order release are obtained......Oral drug delivery is considered as the most patient compliant delivery route. However, it faces many obstacles, especially due to the ever-increasing number of drugs that are poorly soluble and barely absorbed in the gastro-intestinal tract. Moreover, drugs can degrade in the harsh acidic...... in this project. This process utilizes a stamp in connection with the ability to apply heat and pressure to transfer the stamp pattern to a film. Processes have been optimized for fabrication of nickel stamps with two layered, high aspect ratio microstructures. Bosch deep reactive ion etching of Silicon producing...

  4. Macromolecular systems for vaccine delivery

    Czech Academy of Sciences Publication Activity Database

    Mužíková, Gabriela; Laga, Richard

    2016-01-01

    Roč. 65, Suppl. 2 (2016), S203-S216 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LQ1604 Institutional support: RVO:61389013 Keywords : vaccine delivery * cellular and humoral immunity * polymer immunostimulants Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65%20Suppl%202/65_S203.pdf

  5. Cyclodextrins in delivery systems: Applications

    Directory of Open Access Journals (Sweden)

    Gaurav Tiwari

    2010-01-01

    Full Text Available Cyclodextrins (CDs are a family of cyclic oligosaccharides with a hydrophilic outer surface and a lipophilic central cavity. CD molecules are relatively large with a number of hydrogen donors and acceptors and, thus in general, they do not permeate lipophilic membranes. In the pharmaceutical industry, CDs have mainly been used as complexing agents to increase aqueous solubility of poorly soluble drugs and to increase their bioavailability and stability. CDs are used in pharmaceutical applications for numerous purposes, including improving the bioavailability of drugs. Current CD-based therapeutics is described and possible future applications are discussed. CD-containing polymers are reviewed and their use in drug delivery is presented. Of specific interest is the use of CD-containing polymers to provide unique capabilities for the delivery of nucleic acids. Studies in both humans and animals have shown that CDs can be used to improve drug delivery from almost any type of drug formulation. Currently, there are approximately 30 different pharmaceutical products worldwide containing drug/CD complexes in the market.

  6. Nanoparticulate systems for nucleic acid delivery

    NARCIS (Netherlands)

    Varkouhi, A.K.

    2011-01-01

    Development of carrier systems with controllable physicochemical and delivery properties has opened up the possibility of nanomedicines containing nucleic acids. In the last decades, much effort has been dedicated to two exciting approaches in biomedicine, namely gene and RNA interference

  7. A Sample Delivery System for Planetary Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will develop, test and characterize the performance of a prototype /sample delivery system (SDS) implemented as an end effector on a robotic arm capable...

  8. Microemulsion Drug Delivery Systems for Radiopharmacy Studies

    Directory of Open Access Journals (Sweden)

    Emre Ozgenc

    2016-11-01

    Full Text Available Microemulsions have been used increasingly for last year’s because of ideal properties like favorable drug delivery, ease of preparation and physical stability. They have been improved the solubility and efficacy of the drug and reduce the side effects. Use of radiolabeled microemulsions plays an alternative role in drug delivery systems by investigating the formation, stability and application of microemulsions in radiopharmacy. Gama scintigraphic method is well recognized for developing and detecting the biodistribution of newly developed drugs or formulation. This review will focus on how radionuclides are able to play role with characterization studies of microemulsion drug delivery systems.

  9. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  10. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Hwang, Tae Heon; Kim, Jin Bum; Yang, Da Som; Ryu, WonHyoung; Park, Yong-il

    2013-01-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro. (paper)

  11. An emerging platform for drug delivery: aerogel based systems.

    Science.gov (United States)

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Simultaneous diagnosis and drug delivery by silymarin-loaded magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Maryam Khalkhali

    2015-07-01

    Full Text Available Objective(s: The aim of this work was to prepare and characterize magnetic nanoparticles (MNPs as theranostic system to act simultaneously as drug carrier and MRI contrast agent. Chitosan-coated MNPs (CMNPs were prepared and loaded with silymarin. Silymarin-loaded CMNPs were characterized with various techniques and their potential as MRI contrast agent was also evaluated. Materials and Methods:The chitosan-coated MNPs were prepared by coprecipitation method and were loaded with silymarin. The synthesized nanoparticles were characterized by various techniques including SEM, TEM, X‐ray diffraction (XRD, FTIR and vibrating sample magnetometer (VSM. In vitro drug release of silymarin was evaluated at 37 ˚C at pH 5.3 and 7.4. Then, their proton relaxivity was evaluated to study the potential of CMNPs as MRI contrast agent in terms of r1 and r2.Results:Silymarin-loaded CMNPs were successfully prepared and characterized by FTIR and XRD techniques. VSM analysis revealed superparamagnetic properties of CMNPs. The release study showed that the maximum drug release accessible for CMNPs in pH=5.3 was higher than pH=7.4. Finally, the r2/r1 value of CMNPs was found to be close to 20 indicating that CMNPs has a strong efficiency as T2 contrast agents for MRI imaging.  Conclusion:The findings demonstrated the potential of CMNPs as efficient MRI contrast agent as well as silymarin drug delivery.

  13. Application of nanohydrogels in drug delivery systems: recent patents review.

    Science.gov (United States)

    Dalwadi, Chintan; Patel, Gayatri

    2015-01-01

    Nanohydrogel combines the advantages of hydrogel and nano particulate systems. Similar to the hydrogel and macrogel, nanohydrogel can protect the drug and control drug release by stimuli responsive conformation or biodegradable bond into the polymer networks. Nanohydrogel has drawn huge interest due to their potential applications, such as carrier in target-specific controlled drug delivery, absorbents, chemical/biological sensors, and bio-mimetic materials. Similar to the nanoparticles, stimuli responsive nanohydrogel can easily be delivered in the liquid form for parenteral drug delivery application. This review highlights the methods to prepare nanohydrogel based on natural and synthetic polymers for diverse applications in drug delivery. It also encompasses the drug loading and drug release mechanism of the nanohydrogel formulation and patents related to the composition and chemical methods for preparation of nanohydrogel formulation with current status in clinical trials.

  14. Metal organic frameworks as a drug delivery system for flurbiprofen.

    Science.gov (United States)

    Al Haydar, Muder; Abid, Hussein Rasool; Sunderland, Bruce; Wang, Shaobin

    2017-01-01

    Metal organic frameworks (MOFs) have attracted more attention in the last decade because of a suitable pore size, large surface area, and high pore volume. Developing biocompatible MOFs such as the MIL family as a drug delivery system is possible. Flurbiprofen (FBP), a nonsteroidal anti-inflammatory agent, is practically insoluble in aqueous solution, and, therefore, needs suitable drug delivery systems. Different biocompatible MOFs such as Ca-MOF and Fe-MILs (53, 100, and 101) were synthesized and employed for FBP delivery. A sample of 50 mg of each MOF was mixed and stirred for 24 h with 10 mL of 5 mg FBP in acetonitrile (40%) in a sealed container. The supernatant of the mixture after centrifuging was analyzed by high-performance liquid chromatography to determine the loaded quantity of FBP on the MOF. The overnight-dried solid material after centrifuging the mixture was analyzed for loading percent using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, nuclear magnetic resonance, and FBP release profile. The loading values of FBP were achieved at 10.0%±1%, 20%±0.8%, 37%±2.3%, and 46%±3.1% on Ca-MOF, Fe-MIL-53, Fe-MIL-101, and Fe-MIL-100, respectively. The FBP release profiles were investigated in a phosphate buffer solution at pH 7.4. The total release of the FBP after 2 days was obtained at 72.9, 75.2, 78.3, and 90.3% for Ca-MOF, Fe-MIL-100, Fe-MIL-53, and Fe-MIL-101, respectively. The MOFs are shown to be a promising drug delivery option for FBP with a significant loading percent and relatively prolonged drug release.

  15. Alendronate-Loaded Modified Drug Delivery Lipid Particles Intended for Improved Oral and Topical Administration

    Directory of Open Access Journals (Sweden)

    Lacramioara Ochiuz

    2016-06-01

    Full Text Available The present paper focuses on solid lipid particles (SLPs, described in the literature as the most effective lipid drug delivery systems that have been introduced in the last decades, as they actually combine the advantages of polymeric particles, hydrophilic/lipophilic emulsions and liposomes. In the current study, we present our most recent advances in the preparation of alendronate (AL-loaded SLPs prepared by hot homogenization and ultrasonication using various ratios of a self-emulsifying lipidic mixture of Compritol 888, Gelucire 44/14, and Cremophor A 25. The prepared AL-loaded SLPs were investigated for their physicochemical, morphological and structural characteristics by dynamic light scattering, differential scanning calorimetry, thermogravimetric and powder X-ray diffraction analysis, infrared spectroscopy, optical and scanning electron microscopy. Entrapment efficacy and actual drug content were assessed by a validated HPLC method. In vitro dissolution tests performed in simulated gastro-intestinal fluids and phosphate buffer solution pH 7.4 revealed a prolonged release of AL of 70 h. Additionally, release kinetics analysis showed that both in simulated gastrointestinal fluids and in phosphate buffer solution, AL is released from SLPs based on equal ratios of lipid excipients following zero-order kinetics, which characterizes prolonged-release drug systems.

  16. STRATEGIES AND PROSPECTS OF NASAL DRUG DELIVERY SYSTEMS

    OpenAIRE

    Gannu Praveen Kumar

    2012-01-01

    The recent advancement of nasal drug delivery systems has increased enormously and is gaining significant importance. Intranasal therapy has been an accepted form of treatment in the Ayurvedic system of Indian Medicine. The non-invasive delivery of nasal drug delivery systems made to exploit for the development of successful treatment. The advantages, disadvantages, mechanism of action and application of nasal drug delivery system in local delivery, systematic delivery, nasal vaccines and CNS...

  17. Diclofenac Loaded Lipid Nanovesicles Prepared by Double Solvent Displacement for Skin Drug Delivery.

    Science.gov (United States)

    Sala, M; Locher, F; Bonvallet, M; Agusti, G; Elaissari, A; Fessi, H

    2017-09-01

    Herein, we detail a promising strategy of nanovesicle preparation based on control of phospholipid self-assembly: the Double Solvent Displacement. A systematic study was conducted and diclofenac as drug model encapsulated. In vitro skin studies were carried out to identify better formulation for dermal/transdermal delivery. This method consists in two solvent displacements. The first one, made in a free water environment, has allowed triggering a phospholipid pre-organization. The second one, based on the diffusion into an aqueous phase has led to liposome formation. Homogeneous liposomes were obtained with a size close to 100 nm and a negative zeta potential around -40 mV. After incorporation of acid diclofenac, we obtained nanoliposomes with a size between 101 ± 45 and 133 ± 66 nm, a zeta potential between 34 ± 2 and 49 ± 3 mV, and the encapsulation efficiency (EE%) was between 58 ± 3 and 87 ± 5%. In vitro permeation studies showed that formulation with higher EE% dispayed the higher transdermal passage (18,4% of the applied dose) especially targeting dermis and beyond. Our results suggest that our diclofenac loaded lipid vesicles have significant potential as transdermal skin drug delivery system. Here, we produced cost effective lipid nanovesicles in a merely manner according to a process easily transposable to industrial scale. Graphical Abstract ᅟ.

  18. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  19. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles.

    Science.gov (United States)

    Dai, Juan; Long, Wei; Liang, Zhongping; Wen, Lu; Yang, Fan; Chen, Gang

    2018-01-01

    Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.

  20. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Servir: an automated document delivery system

    International Nuclear Information System (INIS)

    Lima, E.C.; Azevedo Coutinho, O.C. de

    1986-01-01

    SERVIR, an automated document delivery system developed by CIN/CNEN, is described. Parametric procedures for reading bibliographic data bases and requesting documents from libraries through computer are specified. Statistical procedures, accounting system and the on-line fulfillment of requests are presented. (Author) [pt

  2. Protamine-based nanoparticles as new antigen delivery systems.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Nanotechnology-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Singh Baljit

    2007-12-01

    Full Text Available Abstract Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression.

  4. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Dolores Hernán Pérez de la Ossa

    Full Text Available Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9-Tetrahydrocannabinol (THC and Cannabidiol (CBD - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  5. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  7. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  8. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    JULYK, L.J.

    2000-01-01

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  9. Immunological Risk of Injectable Drug Delivery Systems

    NARCIS (Netherlands)

    Jiskoot, W.; van Schie, R.M.F.; Carstens, M.G.; Schellekens, H.

    2009-01-01

    Injectable drug delivery systems (DDS) such as particulate carriers and water-soluble polymers are being used and developed for a wide variety of therapeutic applications. However, a number of immunological risks with serious clinical implications are associated with administration of DDS. These

  10. Distance Learning Delivery Systems: Instructional Options.

    Science.gov (United States)

    Steele, Ray L.

    1993-01-01

    Discusses the availability of satellite and cable programing to provide distance education opportunities in school districts. Various delivery systems are described, including telephones with speakers, personal computers, and satellite dishes; and a sidebar provides a directory of distance learning opportunities, including telecommunications…

  11. Carboxymethyl cellulose (CMC)-loaded Co-Cu doped manganese ferrite nanorods as a new dual-modal simultaneous contrast agent for magnetic resonance imaging and nanocarrier for drug delivery system

    Science.gov (United States)

    Abbasi Pour, Sajjad; Shaterian, Hamid Reza; Afradi, Mojgan; Yazdani-Elah-Abadi, Afshin

    2017-09-01

    We synthesized Co0.25Cu0.25Mn0.5Fe2O4@CMC (CCMFe2O4@CMC) nanorods as a new dual-modal simultaneous for magnetic resonance imaging contrast agent and nanocarrier for drug delivery system. Impact of CCMFe2O4@CMC nanorods were investigated on the longitudinal (T1), transverse (T2) and transverse (T2∗) relaxation times for in vitro MRI contrast agent in water and also for drug delivery system, L-dopa was coated on CCMFe2O4@CMC nanorods and then in vitro drug release test was carried out at three PHs values and different temperatures. In vitro MR imaging demonstrated that r2 value of CCMFe2O4@CMC nanorods is 138.33 mM-1 s-1, CCMFe2O4@CMC is useful as T2 contrast agent relative to other T2 contrast agants. In vitro drug release test shows the amount of released L-dopa from CCMFe2O4@CMC nanorods at medium with pH = 1.2 is more than pH = 5.3 and 7.4.

  12. Auditing Information System : Delivery Product Service

    Directory of Open Access Journals (Sweden)

    Purwoko Purwoko

    2011-05-01

    Full Text Available Purpose of the research is to ensure the securities of information system asset and to ensure if informa-tion system support the operational and data collected was valid. Research method that used in this research were library studies and field studies. Field studies such an observation, questioner, and inter-view. the expected result are founding the weakness of security management control, operational man-agement control, input control, and output control of risk happened in the company. Conclusion of this research are the system on the company work good and there’s no potential risk happened and make an impact to the delivery process of information system.Index Terms - Auditing Information system, Delivery product process.

  13. Macromolecular systems for vaccine delivery.

    Science.gov (United States)

    MuŽíková, G; Laga, R

    2016-10-20

    Vaccines have helped considerably in eliminating some life-threatening infectious diseases in past two hundred years. Recently, human medicine has focused on vaccination against some of the world's most common infectious diseases (AIDS, malaria, tuberculosis, etc.), and vaccination is also gaining popularity in the treatment of cancer or autoimmune diseases. The major limitation of current vaccines lies in their poor ability to generate a sufficient level of protective antibodies and T cell responses against diseases such as HIV, malaria, tuberculosis and cancers. Among the promising vaccination systems that could improve the potency of weakly immunogenic vaccines belong macromolecular carriers (water soluble polymers, polymer particels, micelles, gels etc.) conjugated with antigens and immunistumulatory molecules. The size, architecture, and the composition of the high molecular-weight carrier can significantly improve the vaccine efficiency. This review includes the most recently developed (bio)polymer-based vaccines reported in the literature.

  14. Advances in research of targeting delivery and controlled release of drug-loaded nanoparticles

    International Nuclear Information System (INIS)

    Tan Zhonghua

    2003-01-01

    Biochemistry drug, at present, is still the main tool that human struggle to defeat the diseases. So, developing safe and efficacious technique of drug targeting delivery and controlled release is key to enhance curative effect, decrease drug dosage, and lessen its side effect. Drug-loaded nanoparticles, which is formed by conjugate between nanotechnology and modern pharmaceutics, is a new fashioned pharmic delivery carrier. Because of advantages in pharmic targeting transport and controlled or slow release and improving bioavailability, it has been one of developing trend of modern pharmaceutical dosage forms

  15. Using DNA nanotechnology to produce a drug delivery system

    International Nuclear Information System (INIS)

    La, Thi Huyen; Nguyen, Thi Thu Thuy; Pham, Van Phuc; Nguyen, Thi Minh Huyen; Le, Quang Huan

    2013-01-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. (paper)

  16. Using DNA nanotechnology to produce a drug delivery system

    Science.gov (United States)

    Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-03-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  17. A mucoadhesive in situ gel delivery system for paclitaxel.

    Science.gov (United States)

    Jauhari, Saurabh; Dash, Alekha K

    2006-06-02

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at drug loads of 0.18%, 0.30%, and 0.54% (wt/wt), in Sorensen's phosphate buffer (pH 7.4) at 37 degrees C. Different mucin-producing cell lines (Calu-3>Caco-2) were selected for PTX transport studies. Transport of PTX from solution and gel delivery system was performed in side by side diffusion chambers from apical to basal (A-B) and basal to apical (B-A) directions. In vitro release studies revealed that within 4 hours, only 7.61% +/- 0.19%, 12.0% +/- 0.98%, 31.7% +/- 0.40% of PTX were released from 0.18%, 0.30%, and 0.54% drug-loaded gel formulation, respectively, in absence of Tween 80. However, in presence of surfactant (0.05% wt/vol) in the dissolution medium, percentages of PTX released were 28.1% +/- 4.35%, 44.2% +/- 6.35%, and 97.1% +/- 1.22%, respectively. Paclitaxel has shown a polarized transport in all the cell monolayers with B-A transport 2 to 4 times higher than in the A-B direction. The highest mucin-producing cell line (Calu-3) has shown the lowest percentage of PTX transport from gels as compared with Caco-2 cells. Transport of PTX from mucoadhesive gels was shown to be influenced by the mucin-producing capability of cell.

  18. Metal organic frameworks as a drug delivery system for flurbiprofen

    Directory of Open Access Journals (Sweden)

    AL Haydar M

    2017-09-01

    Full Text Available Muder AL Haydar,1,2 Hussein Rasool Abid,3,4 Bruce Sunderland,2 Shaobin Wang5,6 1Pharmaceutics Department, College of the Pharmacy, University of Kerbala, Kerbala, Iraq; 2Pharmaceutics Department, School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; 3Department of Chemical Engineering, Curtin University, Perth, WA, Australia; 4College of Applied Medical Sciences, University of Kerbala, Kerbala, Iraq; 5School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; 6Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia Background: Metal organic frameworks (MOFs have attracted more attention in the last decade because of a suitable pore size, large surface area, and high pore volume. Developing biocompatible MOFs such as the MIL family as a drug delivery system is possible. Purpose: Flurbiprofen (FBP, a nonsteroidal anti-inflammatory agent, is practically insoluble in aqueous solution, and, therefore, needs suitable drug delivery systems. Different biocompatible MOFs such as Ca-MOF and Fe-MILs (53, 100, and 101 were synthesized and employed for FBP delivery. Patients and methods: A sample of 50 mg of each MOF was mixed and stirred for 24 h with 10 mL of 5 mg FBP in acetonitrile (40% in a sealed container. The supernatant of the mixture after centrifuging was analyzed by high-performance liquid chromatography to determine the loaded quantity of FBP on the MOF. The overnight-dried solid material after centrifuging the mixture was analyzed for loading percent using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, nuclear magnetic resonance, and FBP release profile. Results: The loading values of FBP were achieved at 10.0%±1%, 20%±0.8%, 37%±2.3%, and 46%±3.1% on Ca-MOF, Fe-MIL-53, Fe-MIL-101, and Fe-MIL-100, respectively. The FBP release

  19. A wireless actuating drug delivery system

    International Nuclear Information System (INIS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-01-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s −1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  20. Potential applications for halloysite nanotubes based drug delivery systems

    Science.gov (United States)

    Sun, Lin

    Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery. In this study, a drug delivery system was built based on halloysite via three different fabrication methods: physical adsorption, vacuum loading and layer-by-layer coating. Methotrexate was used as the model drug. Factors that may affect performance in both drug loading and release were tested. Results showed that methotrexate could be incorporated within the HNTs system and released in a sustained manner. Layer-by-layer coating showed a better potential than the other two methods in both MTX loading and release. Besides, lower pH could greatly improve MTX loading and release while the increased number of polyelectrolytes bilayers had a limited impact. Osteosarcoma is the most common primary bone malignancy in children and adolescents. Postoperative recurrence and metastasis has become one of the leading causes for patient death after surgical remove of the tumor mass. A strategy could be a sustained release of chemotherapeutics directly at the primary tumor sites where recurrence would mostly occur. Then, this HNTs based system was tested with osteosarcoma cells in vitro to show the potential of delivering chemotherapeutics in the treatment of osteosarcoma. Methotrexate was incorporated within HNTs with a layer-bylayer coating technique, and drug coated HNTs were filled into nylon-6 which is a common material for surgical sutures in industry. Results showed that (1) methotrexate

  1. Glucose-Responsive Insulin Delivery by Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles.

    Science.gov (United States)

    Yu, Jicheng; Zhang, Yuqi; Gu, Zhen

    2017-01-01

    In this chapter, we describe the preparation of glucose-responsive vesicles (GRVs) and the fabrication of GRV-loaded microneedle-array patches for insulin delivery. The GRVs were formed of hypoxia-sensitive hyaluronic acid (HS-HA), the synthesis of which is presented in detail. We also describe the procedure to evaluate the in vivo efficacy of this smart patch in a mouse model of chemically induced type 1 diabetes through transcutaneous administration.

  2. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation.

    Science.gov (United States)

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-12-01

    Therapeutic peptides are conventionally administered via subcutaneous injection. Chitosan-based nanoparticles are gaining increased attention for their ability to serve as a carrier for oral delivery of peptides and vaccination. They offered superior biocompatibiltiy, controlled drug release profile and facilitated gastrointestinal (GI) absorption. The encapsulated peptides can withstand enzymatic degradation and various pH. Chitosan-based nanoparticles can also be modified by ligand conjugation to the surface of nanoparticle for transcellular absorption and specific-targeted delivery of macromolecules to the tissue of interest. Current research suggests that chitosan-based nanoparticles can deliver therapeutic peptide for the treatment of several medical conditions such as diabetes, bacterial infection and cancer. This review summarises the role of chitosan in oral nanoparticle delivery and identifies the clinical application of peptide-loaded chitosan-based nanoparticles.

  3. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  4. Pneumatic load compensating or controlling system

    Science.gov (United States)

    Rogers, J. R. (Inventor)

    1975-01-01

    A pneumatic load compensating or controlling system for restraining a load with a predetermined force or applying a predetermined force to the load is described; it includes a source of pressurized air, a one-way pneumatic actuator operatively connected to a load, and a fluid conduit fluidically connecting the actuator with the source of pressurized air. The actuator is of the piston and cylinder type, and the end of the fluid conduit is connected to the upper or lower portion of the cylinder whereby the actuator alternatively and selectively restrains the load with a predetermined force or apply a predetermined force to the load. Pressure regulators are included within the system for variably selectively adjusting the pressurized fluid to predetermined values as desired or required; a pressure amplifier is included within the system for multiplying the pressurized values so as to achieve greater load forces. An accumulator is incorporated within the system as a failsafe operating mechanism, and visual and aural alarm devices, operatively associated with pressure detecting apparatus, readily indicate the proper or improper functioning of the system.

  5. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  6. Drug delivery system and radiation therapy

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2005-01-01

    This paper describes the review of radiation therapy, neutron capture therapy (NCT) and drug delivery system for the latter. In cancer radiation therapy, there are problems of body movement like breathing, needless irradiation of normal tissues, difficulty to decide the correct irradiation position and tumor morphology. NCT has advantages to overcome these, and since boron has a big cross section for thermal neutron, NPT uses the reaction 10 B(n, α) 7 Li in the target cancer which previously incorporated the boron-containing drug. During the period 1966-1996, 246 patients were treated with this in Japan and the treatment has been continued thereafter. The tasks for NCT are developments of drug delivery system efficient to deliver the drug into the tumor and of convenient neutron source like the accelerator. (S.I.)

  7. Chitosan magnetic nanoparticles for drug delivery systems.

    Science.gov (United States)

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  8. Recent Advances in Ocular Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Shinobu Fujii

    2011-01-01

    Full Text Available Transport of drugs applied by traditional dosage forms is restricted to the eye, and therapeutic drug concentrations in the target tissues are not maintained for a long duration since the eyes are protected by a unique anatomy and physiology. For the treatment of the anterior segment of the eye, various droppable products to prolong the retention time on the ocular surface have been introduced in the market. On the other hand, direct intravitreal implants, using biodegradable or non-biodegradable polymer technology, have been widely investigated for the treatment of chronic vitreoretinal diseases. There is urgent need to develop ocular drug delivery systems which provide controlled release for the treatment of chronic diseases, and increase patient’s and doctor’s convenience to reduce the dosing frequency and invasive treatment. In this article, progress of ocular drug delivery systems under clinical trials and in late experimental stage is reviewed.

  9. A Comprehensive Review on: Transdermal drug delivery systems.

    OpenAIRE

    Kharat, Rekha; Bathe, Ritesh Suresh

    2016-01-01

    Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical  administration  of  therap...

  10. Characterisation of zinc delivery from a nipple shield delivery system using a breastfeeding simulation apparatus.

    Directory of Open Access Journals (Sweden)

    Rebekah L Scheuerle

    Full Text Available Zinc delivery from a nipple shield delivery system (NSDS, a novel platform for administering medicines to infants during breastfeeding, was characterised using a breastfeeding simulation apparatus. In this study, human milk at flow rates and pressures physiologically representative of breastfeeding passed through the NSDS loaded with zinc-containing rapidly disintegrating tablets, resulting in release of zinc into the milk. Inductively coupled plasma optical emission spectrometry was used to detect the zinc released, using a method that does not require prior digestion of the samples and that could be applied in other zinc analysis studies in breast milk. Four different types of zinc-containing tablets with equal zinc load but varying excipient compositions were tested in the NSDS in vitro. Zinc release measured over 20 minutes ranged from 32-51% of the loaded dose. Total zinc release for sets tablets of the same composition but differing hardness were not significantly different from one another with P = 0.3598 and P = 0.1270 for two tested pairs using unpaired t tests with Welch's correction. By the same test total zinc release from two sets of tablets having similar hardness but differing composition were also not significantly significant with P = 0.2634. Future zinc tablet composition and formulation optimisation could lead to zinc supplements and therapeutics with faster drug release, which could be administered with the NSDS during breastfeeding. The use of the NSDS to deliver zinc could then lead to treatment and prevention of some of the leading causes of child mortality, including diarrheal disease and pneumonia.

  11. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  12. Regional Multiteam Systems in Cancer Care Delivery

    Science.gov (United States)

    Monson, John R.T.; Rizvi, Irfan; Savastano, Ann; Green, James S.A.; Sevdalis, Nick

    2016-01-01

    Teamwork is essential for addressing many of the challenges that arise in the coordination and delivery of cancer care, especially for the problems that are presented by patients who cross geographic boundaries and enter and exit multiple health care systems at various times during their cancer care journeys. The problem of coordinating the care of patients with cancer is further complicated by the growing number of treatment options and modalities, incompatibilities among the vast variety of technology platforms that have recently been adopted by the health care industry, and competing and misaligned incentives for providers and systems. Here we examine the issue of regional care coordination in cancer through the prism of a real patient journey. This article will synthesize and elaborate on existing knowledge about coordination approaches for complex systems, in particular, in general and cancer care multidisciplinary teams; define elements of coordination derived from organizational psychology and human factors research that are applicable to team-based cancer care delivery; and suggest approaches for improving multidisciplinary team coordination in regional cancer care delivery and avenues for future research. The phenomenon of the mobile, multisystem patient represents a growing challenge in cancer care. Paradoxically, development of high-quality, high-volume centers of excellence and the ease of virtual communication and data sharing by using electronic medical records have introduced significant barriers to effective team-based cancer care. These challenges urgently require solutions. PMID:27650833

  13. Modeling of Generic Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders

    2009-01-01

    This paper presents the result of the modelling and verification of a generic slung load system using a small-scale helicopter. The model is intended for use in simulation, pilot training, estimation, and control. The model is derived using a redundant coordinate formulation based on Gauss...... slackening and tightening as well as aerodynamic coupling between the helicopter and the load. Furthermore, it is shown how the model can be easily used for multi-lift systems either with multiple helicopters or multiple loads. A numerical stabilisation algorithm is introduced and finally the use...... of the model is illustrated through simulations and flight verifications.  ...

  14. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems.

    Science.gov (United States)

    Dalmoro, Annalisa; Bochicchio, Sabrina; Nasibullin, Shamil F; Bertoncin, Paolo; Lamberti, Gaetano; Barba, Anna Angela; Moustafine, Rouslan I

    2018-05-17

    Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity. Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods. The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin. Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable

  15. Advanced and controlled drug delivery systems in clinical disease management

    NARCIS (Netherlands)

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative

  16. Resistive-wall Wake Effect in the Beam Delivery System

    International Nuclear Information System (INIS)

    Delayen, J.R.; Jefferson Lab; Wu, Juhao; Raubenheimer, T.O.; SLAC; Wang, Jiunn-Ming; BNL, NSLS

    2005-01-01

    General formulae for resistive-wall induced beam dilution are presented and then applied to the final beam delivery system of linear colliders. Criteria for the design of final beam delivery systems are discussed

  17. Control system and method for a power delivery system having a continuously variable ratio transmission

    Science.gov (United States)

    Frank, Andrew A.

    1984-01-01

    A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.

  18. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

    Directory of Open Access Journals (Sweden)

    Li Su

    2008-05-01

    Full Text Available Abstract Background Hydroxycamptothecin (HCPT has been shown to have activity against a broad spectrum of cancers. In order to enhance its tissue-specific delivery and anticancer activity, we prepared HCPT-loaded nanoparticles made from poly(ethylene glycol-poly(γ-benzyl-L-glutamate (PEG-PBLG, and then studied their release characteristics, pharmacokinetic characteristics, and anticancer effects. PEG-PBLG nanoparticles incorporating HCPT were prepared by a dialysis method. Scanning electron microscopy (SEM was used to observe the shape and diameter of the nanoparticles. The HCPT release characteristics in vitro were evaluated by ultraviolet spectrophotometry. A high-performance liquid chromatography (HPLC detection method for determining HCPT in rabbit plasma was established. The pharmacokinetic parameters of HCPT/PEG-PBLG nanoparticles were compared with those of HCPT. Results The HCPT-loaded nanoparticles had a core-shell spherical structure, with a core diameter of 200 nm and a shell thickness of 30 nm. Drug-loading capacity and drug encapsulation were 7.5 and 56.8%, respectively. The HCPT release profile was biphasic, with an initial abrupt release, followed by sustained release. The terminal elimination half-lives (t 1/2 β of HCPT and HCPT-loaded nanoparticles were 4.5 and 10.1 h, respectively. Peak concentrations (Cmax of HCPT and HCPT-loaded nanoparticles were 2627.8 and 1513.5 μg/L, respectively. The apparent volumes of distribution of the HCPT and HCPT-loaded nanoparticles were 7.3 and 20.0 L, respectively. Compared with a blank control group, Lovo cell xenografts or Tca8113 cell xenografts in HCPT or HCPT-loaded nanoparticle treated groups grew more slowly and the tumor doubling times were increased. The tumor inhibition effect in the HCPT-loaded nanosphere-treated group was significantly higher than that of the HCPT-treated group (p 0.05. Conclusion Compared to the HCPT- and control-treated groups, the HCPT-loaded nanoparticle

  19. Integrating Autonomous Load Controllers in Power Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James

    , but they are characterized by variable generation that is only partly predictable. Managing loads is already used in limited circumstances to improve security and efficiency of the power system. In power systems with a large penetration of variable generation, load management has large role to play in adapting consumption......Electric energy systems stand on the brink of radical change as the urgent need to reduce greenhouse gas emissions pushes more efficient utilization of energy resources and the adoption of renewable energy sources. New renewable sources such as wind and solar have a large potential......-sensitive load controller has been designed, implemented, and tested in real-life settings. Its performance demonstrated a large potential resource, in some cases greater than the average power consumption. The accuracy of load models was validated by comparison with field data. A voltage-sensitive controller...

  20. Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Ananda M. Barbosa

    2016-12-01

    Full Text Available In this work, cellulose nanocrystals (CNCs were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus. The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity.

  1. Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery

    KAUST Repository

    Omar, Haneen; Croissant, Jonas G.; Alamoudi, Kholod; Alsaiari, Shahad K.; Alradwan, Ibrahim; Majrashi, Majed A.; Anjum, Dalaver H.; Martins, Patricia; Moosa, Basem; Almalik, Abdulaziz; Khashab, Niveen M.

    2016-01-01

    The delivery of large cargos of diameter above 15 nm for biomedical applications has proved challenging since it requires biocompatible, stably-loaded, and biodegradable nanomaterials. In this study, we describe the design of biodegradable silica

  2. Load compensation for single phase system using series active filter ...

    African Journals Online (AJOL)

    Load compensation for single phase system using series active filter. ... KK Mishra, R Gupta ... load varies from time to time, the non linear load ranging from voltage source type harmonic load (VSHL) dominant to current source type harmonic ...

  3. Communications data delivery system analysis task 2 report : high-level options for secure communications data delivery systems.

    Science.gov (United States)

    2012-05-16

    This Communications Data Delivery System Analysis Task 2 report describes and analyzes options for Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications data delivery systems using various communication media (Dedicated Short Ra...

  4. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  5. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  6. Integrated delivery systems: the cure for fragmentation.

    Science.gov (United States)

    Enthoven, Alain C

    2009-12-01

    Our healthcare system is fragmented, with a misalignment of incentives, or lack of coordination, that spawns inefficient allocation of resources. Fragmentation adversely impacts quality, cost, and outcomes. Eliminating waste from unnecessary, unsafe care is crucial for improving quality and reducing costs--and making the system financially sustainable. Many believe this can be achieved through greater integration of healthcare delivery, more specifically via integrated delivery systems (IDSs). An IDS is an organized, coordinated, and collaborative network that links various healthcare providers to provide a coordinated, vertical continuum of services to a particular patient population or community. It is also accountable, both clinically and fiscally, for the clinical outcomes and health status of the population or community served, and has systems in place to manage and improve them. The marketplace already contains numerous styles and degrees of integration, ranging from Kaiser Permanente-style full integration, to more loosely organized individual practice associations, to public-private partnerships. Evidence suggests that IDSs can improve healthcare quality, improve outcomes, and reduce costs--especially for patients with complex needs--if properly implemented and coordinated. No single approach or public policy will fix the fragmented healthcare system, but IDSs represent an important step in the right direction.

  7. Can a Biodegradable Implanted Bilayered Drug Delivery System Loaded with BMP-2/BMP-12 Take an Effective Role in the Biological Repair Process of Bone–Tendon Injuries? A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Baran Komur

    2017-01-01

    Full Text Available Background. Use of biodegradable and biocompatible materials in the orthopedic surgery is gaining popularity. In this research, the rate of controlled release of a bilayered prototype biomaterial designed to promote osteoblastic and tenoblastic activity was calculated using pharmacochemical methods. Methods. The first part of the design, composed of a sodium tetraborate, polyvinyl alcohol, and starch based hydrogel, was loaded with bone morphogenic protein-2. The second part which was composed of a sodium tetraborate, polyvinyl alcohol, and chitosan based hydrogel was loaded with bone morphogenic protein-12. Osteochondral and tendon tissue specimens were obtained from patients with a diagnosis of gonarthrosis and primary bone cells and tendon cells cultures were prepared following treatment with collagenase enzyme. Cell samples were collected from the groups by means of an invert light microscope and environmental scanning electron microscope underwent at the 1st and 21st days. The level of osteogenic differentiation was measured by the activity of alkaline phosphatase. For the statistical evaluation of the obtained data, groups were compared with post hoc Tukey test following analysis of variance. Level of significance was accepted to be <0,01. Results. Both osteogenic and tenogenic stimulation were observed in the cultured specimens. In comparison to the control groups, the rate of proliferation of healthy cells was found to be higher in the groups to which the design was added (p<0.01. Conclusions. Our research is a preliminary report that describes a study conducted in an in vitro experimental setting. We believe that such prototype systems may be pioneers in targeted drug therapies after reconstructional surgeries.

  8. Advanced drug delivery systems: Nanotechnology of health design A review

    Directory of Open Access Journals (Sweden)

    Javad Safari

    2014-04-01

    Full Text Available Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements for developing new nanotech-nology-based drug delivery systems.

  9. Do English Listening Outcome and Cognitive Load Change for Different Media Delivery Modes in U-Learning?

    Science.gov (United States)

    Chang, Chi-Cheng; Lei, Hao; Tseng, Ju-Shih

    2014-01-01

    Although ubiquitous learning enhances students' access to learning materials, it is crucial to find out which media delivery modes produce the best results for English listening comprehension. The present study examined the effect of media delivery mode (sound and text vs. sound) on English listening comprehension and cognitive load. Participants…

  10. Self-emulsifying drug delivery systems: Design of a novel vaginal delivery system for curcumin.

    Science.gov (United States)

    Köllner, S; Nardin, I; Markt, R; Griesser, J; Prüfert, F; Bernkop-Schnürch, A

    2017-06-01

    The aim of this study was to develop a vaginal self-emulsifying delivery system for curcumin being capable of spreading, of permeating the mucus gel layer and of protecting the drug being incorporated in oily nanodroplets towards mucus interactions and immobilization. The emulsifying properties of curcumin loaded SEDDS containing 30% Cremophor RH40, 20% Capmul PG-8, 30% Captex 300, 10% DMSO and 10% tetraglycol (SEDD formulation A) as well as 25% PEG 200, 35% Cremophor RH40, 20% Captex 355, 10% Caprylic acid and 10% Tween 80 (SEDD formulation B) after diluting 1+2 with artificial vaginal fluid were characterized regarding droplet size and zeta potential. Collagen swelling test was used to examine the irritation potential of SEDDS. Additionally to mucus binding studies, permeation studies in the mucus were performed. Furthermore, spreading potential of the novel developed formulations was compared with a commercial available o/w cream (non-ionic hydrophilic cream) on vaginal mucosa. SEDDS displayed a mean droplet size between 38 and 141nm and a zeta potential of -0.3 to -1.6mV. The collagen swelling test indicated no significant irritation potential of both formulations over 24h. An immediate interaction of unformulated curcumin with the mucus was determined, whereas both SEDDS facilitated drug permeation through the mucus layer. Formulation B showed a 2.2-fold improved transport ratio of curcumin compared to SEDD formulation A. In comparison to the vaginal cream, SEDD formulation A and B were able to spread over the vaginal mucosa and cover the tissue to a 17.8- and 14.8-fold higher extent, respectively. According to these results, SEDDS seems to be a promising tool for vaginal application. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Design and evaluate alginate nanoparticles as a protein delivery system

    Directory of Open Access Journals (Sweden)

    Saraei, F.

    2013-12-01

    Full Text Available In recent years, encapsulation of drugs and antigens in hydrogels, specifically in calcium alginate particles, is an interesting and practical technique that was developed widespread. It is well known that alginate solution, under proper conditions, can form suitable nanoparticles as a promising carrier system, for vaccine delivery. The aim of this study was to synthesis alginate nanoparticles as protein carrier and to evaluate the influence of various factors on nanoparticles properties. Alginate nanoparticles were prepared by ionic gelation method. Briefly, various concentrations of CaCl2 were added to different concentrations of sodium alginate dropwisly by homogenizing magnetically at 1300 rpm. The effects of homogenization time and (- rate were investigated on nanoparticle feature. Nanoparticles were characterized for their morphology and size distribution. Evaluation of loading capacity and loading efficiency of nanoparticles were performed by using various concentration of BSA. The concentration of 0.3%w/v sodium alginate and 0.1%w/v CaCl2 solution, homogenization time 45 min and homogenization rate 1300 rpm were observed as suitable condition - to prepare optimized nanoparticles. It can be concluded that the properties of nanoparticles are strongly dependent on the physicochemical conditions. The optimum concentrations of alginate and CaCl2and appropriate condition led to forming desirable nanoparticles that can be used as carrier for drug and vaccine delivery.

  12. Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Wang X

    2014-10-01

    Full Text Available Xiang Wang,1 Ping Liu,1 Weixiao Yang,1 Lu Li,1 Peijing Li,2 Zheng Liu,1 Zhongxiong Zhuo,1 Yunhua Gao1 1Department of Ultrasound, Xinqiao Hospital of the Third Military Medical University, Chongqing, 2Department of Ultrasound, General Hospital of the Jinan Military Area, Jinan, People’s Republic of China Abstract: Methotrexate (MTX is the single most effective agent for the treatment of primary central nervous system lymphoma. Currently, the delivery of MTX to the brain is achieved by high systemic doses, which cause severe long-term neurotoxicity, or intrathecal administration, which is highly invasive and may lead to infections or hemorrhagic complications. Acoustically active microbubbles have been developed as drug carriers for the noninvasive and brain-targeted delivery of therapeutics. However, their application is limited by their low drug-loading capacity. To overcome this limitation, we prepared microbubbles coupled to MTX-loaded liposomes using ZHIFUXIAN, a novel type of microbubbles with a superior safety profile and long circulation time. MTX-liposome-coupled microbubbles had a high drug-loading capacity of 8.91%±0.86%, and their size (2.64±0.93 µm in diameter was suitable for intravenous injection. When used with ultrasound, they showed more potent in vitro cytotoxicity against Walker-256 cancer cells than MTX alone or MTX-loaded liposomes. When Sprague-Dawley rats were exposed to sonication, administration of these MTX-liposome-coupled microbubbles via the tail vein led to targeted disruption of the blood–brain barrier without noticeable tissue or capillary damage. High-performance liquid chromatography analysis of the brain MTX concentration showed that MTX delivery to the brain followed the order of MTX-liposome-coupled microbubbles + ultrasound (25.3±2.4 µg/g > unmodified ZHIFUXIAN + MTX + ultrasound (18.6±2.2 µg/g > MTX alone (6.97±0.75 µg/g > MTX-liposome-coupled microbubbles (2.92±0.39 µg/g. Therefore

  13. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    Science.gov (United States)

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  14. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  15. An experimental design approach to the preparation of pegylated polylactide-co-glicolide gentamicin loaded microparticles for local antibiotic delivery

    Energy Technology Data Exchange (ETDEWEB)

    Dorati, Rossella; DeTrizio, Antonella; Genta, Ida; Grisoli, Pietro; Merelli, Alessia [Department of Drug Sciences, Viale Taramelli 12, University of Pavia, 27100, Pavia (Italy); Tomasi, Corrado [IENI CNR Lecco Unit, Via Promessi Sposi 29, 23900, Lecco (Italy); Conti, Bice, E-mail: bice.conti@unipv.it [Department of Drug Sciences, Viale Taramelli 12, University of Pavia, 27100, Pavia (Italy)

    2016-01-01

    The present paper takes into account the DOE application to the preparation process of biodegradable microspheres for osteomyelitis local therapy. With this goal gentamicin loaded polylactide-co-glycolide-co-polyethyleneglycol (PLGA-PEG) microspheres were prepared and investigated. Two preparation protocols (o/w and w/o/w) with different process conditions, and three PLGA-PEG block copolymers with different compositions of lactic and glycolic acids and PEG, were tested. A Design Of Experiment (DOE) screening design was applied as an approach to scale up manufacturing step. The results of DOE screening design confirmed that w/o/w technique, the presence of salt and the 15%w/v polymer concentration positively affected the EE% (72.1–97.5%), and span values of particle size distribution (1.03–1.23), while salt addition alone negatively affected the yield process. Process scale up resulted in a decrease of gentamicin EE% that can be attributed to the high volume of water used to remove PVA and NaCl residues. The results of in vitro gentamicin release study show prolonged gentamicin release up to three months from the microspheres prepared with salt addition in the dispersing phase; the behavior being consistent with their highly compact structure highlighted by scanning electron microscopy analysis. The prolonged release of gentamicin is maintained even after embedding the biodegradable microspheres into a thermosetting composite gel made of chitosan and acellular bovine bone matrix (Orthoss® granules), and the microbiologic evaluation demonstrated the efficacy of the gentamicin loaded microspheres on Escherichia coli. The collected results confirm the feasibility of the scale up of microsphere manufacturing process and the high potential of the microparticulate drug delivery system to be used for the local antibiotic delivery to bone. - Highlights: • To get a more effective therapy for the prevention and treatment of osteomyelitis. • To exploit the local

  16. A remotely operated drug delivery system with dose control

    KAUST Repository

    Yi, Ying

    2017-05-08

    “On demand” implantable drug delivery systems can provide optimized treatments, due to their ability to provide targeted, flexible and precise dose release. However, two important issues that need to be carefully considered in a mature device include an effective actuation stimulus and a controllable dose release mechanism. This work focuses on remotely powering an implantable drug delivery system and providing a high degree of control over the released dose. This is accomplished by integration of a resonance-based wireless power transfer system, a constant voltage control circuit and an electrolytic pump. Upon the activation of the wireless power transfer system, the electrolytic actuator is remotely powered by a constant voltage regardless of movements of the device within an effective range of translation and rotation. This in turn contributes to a predictable dose release rate and greater flexibility in the positioning of external powering source. We have conducted proof-of-concept drug delivery studies using the liquid drug in reservoir approach and the solid drug in reservoir approach, respectively. Our experimental results demonstrate that the range of flow rate is mainly determined by the voltage controlled with a Zener diode and the resistance of the implantable device. The latter can be adjusted by connecting different resistors, providing control over the flow rate to meet different clinical needs. The flow rate can be maintained at a constant level within the effective movement range. When using a solid drug substitute with a low solubility, solvent blue 38, the dose release can be kept at 2.36μg/cycle within the effective movement range by using an input voltage of 10Vpp and a load of 1.5 kΩ, which indicates the feasibility and controllability of our system without any complicated closed-loop sensor.

  17. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    International Nuclear Information System (INIS)

    JULYK, L.J.

    1999-01-01

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant

  18. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency.

    Science.gov (United States)

    Yu, Fei; Ao, Mingtao; Zheng, Xiao; Li, Nini; Xia, Junjie; Li, Yang; Li, Donghui; Hou, Zhenqing; Qi, Zhongquan; Chen, Xiao Dong

    2017-11-01

    The natural product berberine (BBR), present in various plants, arouses great interests because of its numerous pharmacological effects. However, the further development and application of BBR had been hampered by its poor oral bioavailability. In this work, we report on polymer-lipid hybrid nanoparticles (PEG-lipid-PLGA NPs) loaded with BBR phospholipid complex using a solvent evaporation method for enhancing the oral BBR efficiency. The advantage of this new drug delivery system is that the BBR-soybean phosphatidylcholine complex (BBR-SPC) could be used to enhance the liposolubility of BBR and improve the affinity with the biodegradable polymer to increase the drug-loading capacity and controlled/sustained release. The entrapment efficiency of the PEG-lipid-PLGA NPs/BBR-SPC was observed to approach approximately 89% which is more than 2.4 times compared with that of the PEG-lipid-PLGA NPs/BBR. To the best of our knowledge, this is the first report on using polymer material for effective encapsulation of BBR to improve its oral bioavailability. The prepared BBR delivery systems demonstrated a uniform spherical shape, a well-dispersed core-shell structure and a small particle size (149.6 ± 5.1 nm). The crystallographic and thermal analysis has indicated that the BBR dispersed in the PEG-lipid-PLGA NPs matrix is in an amorphous form. More importantly, the enhancement in the oral relative bioavailability of the PEG-lipid-PLGA NPs/BBR-SPC was ∼343% compared with that of BBR. These positive results demonstrated that PEG-lipid-PLGA NPs/BBR-SPC may have the potential for facilitating the oral drug delivery of BBR.

  19. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery.

    Science.gov (United States)

    Traore, Yannick L; Fumakia, Miral; Gu, Jijin; Ho, Emmanuel A

    2018-03-01

    In this study, we investigated the viscoelastic and mechanical behaviour of polyvinyl alcohol films formulated along with carrageenan, plasticizing agents (polyethylene glycol and glycerol), and when loaded with nanoparticles as a model for potential applications as microbicides. The storage modulus, loss modulus and glass transition temperature were determined using a dynamic mechanical analyzer. Films fabricated from 2% to 5% polyvinyl alcohol containing 3 mg or 5 mg of fluorescently labeled nanoparticles were evaluated. The storage modulus and loss modulus values of blank films were shown to be higher than the nanoparticle-loaded films. Glass transition temperature determined using the storage modulus, and loss modulus was between 40-50℃ and 35-40℃, respectively. The tensile properties evaluated showed that 2% polyvinyl alcohol films were more elastic but less resistant to breaking compared to 5% polyvinyl alcohol films (2% films break around 1 N load and 5% films break around 7 N load). To our knowledge, this is the first study to evaluate the influence of nanoparticle and film composition on the physico-mechanical properties of polymeric films for vaginal drug delivery.

  20. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics

    International Nuclear Information System (INIS)

    Ying Xiaoying; Du Yongzhong; Hong Linghong; Yuan Hong; Hu Fuqiang

    2011-01-01

    Tumor intracellular delivery is an effective route for targeting chemotherapy to enhance the curative effect and minimize the side effect of a drug. In this study, the magnetic lipid nanoparticles with an uptake ability by tumor cells were prepared dispersing ferroso-ferric oxide nanoparticles in aqueous phase using oleic acid (OA) as a dispersant, and following the solvent dispersion of lipid organic solution. The obtained nanoparticles with 200 nm volume average diameter and -30 mV surface zeta potential could be completely removed by external magnetic field from aqueous solution. Using doxorubicin (DOX) as a model drug, the drug-loaded magnetic lipid nanoparticles were investigated in detail, such as the effects of OA, drug and lipid content on volume average diameter, zeta potential, drug encapsulation efficiency, drug loading, and in vitro drug release. The drug loading capacity and encapsulation efficiency were enhanced with increasing drug or lipid content, reduced with increasing OA content. The in vitro drug release could be controlled by changing drug or lipid content. Cellular uptake by MCF-7 cells experiment presented the excellent internalization ability of the prepared magnetic lipid nanoparticles. These results evidenced that the present magnetic lipid nanoparticles have potential for targeting therapy of antitumor drugs. - Research highlights: → A simple solvent diffusion method was developed to prepare magnetic lipid nanoparticles. → The doxorubicin-loaded magnetic lipid nanoparticles could be controlled by preparation recipe. → Magnetic lipid nanoparticles had internalization ability into tumor cells.

  1. Optimalisatie Draagsysteem (Optimization of the Load Carriage System)

    National Research Council Canada - National Science Library

    Koerhuis, C. L; Rensink, P; Schijndel, J. van

    2008-01-01

    Besides positive effects of an earlier developed load carriage system in which the load was carried predominantly on the hips, mobility was increased and protection and load carriage was integrated into one system (ILCS...

  2. Effect of drug loading method against drug dissolution mechanism of encapsulated amoxicillin trihydrate in matrix of semi-IPN chitosan-poly(N-vinylpyrrolidone) hydrogel with KHCO3 as pore forming agent in floating drug delivery system

    Science.gov (United States)

    Fimantari, Khansa; Budianto, Emil

    2018-04-01

    Helicobacterpylori infection can be treated using trihydrate amoxicillin. However, this treatment is not effective enough, as the conventional dosage treatment has a relatively short retention time in the human stomach. In the present study, the amoxicillin trihydrate drug will be encapsulated into a semi-IPN K-PNVP hydrogel matrix with 7,5% KHCO3 as a pore-forming agent. The encapsulated drug is tested with in vitro method to see the efficiency of its encapsulation and dissolution. The hydrogel in situ loading produces an encapsulation efficiency value. The values of the encapsulation efficiency are 95% and 98%, while post loading hydrogel yields an encapsulation efficiency value is 77% and the dissolution is 84%. The study of drug dissolution mechanism was done by using mathematical equation model to know its kinetics and its mechanism of dissolution. The post loading hydrogel was done by using thefirst-order model, while hydrogel in situ loading used Higuchi model. The Korsmeyer-Peppas model shows that post loading hydrogel dissolution mechanism is a mixture of diffusion and erosion, and in situ loading hydrogel in the form of diffusion. It is supported by the results of hydrogel characterization, before and after dissolution test with an optical microscope. The results of the optical microscope show that the hydrogel surface before and after the dissolution tested for both methods shows the change becomes rougher.

  3. Nanostructured delivery systems with improved leishmanicidal activity: a critical review.

    Science.gov (United States)

    Bruni, Natascia; Stella, Barbara; Giraudo, Leonardo; Della Pepa, Carlo; Gastaldi, Daniela; Dosio, Franco

    2017-01-01

    Leishmaniasis is a vector-borne zoonotic disease caused by protozoan parasites of the genus Leishmania , which are responsible for numerous clinical manifestations, such as cutaneous, visceral, and mucocutaneous leishmaniasis, depending on the site of infection for particular species. These complexities threaten 350 million people in 98 countries worldwide. Amastigotes living within macrophage phagolysosomes are the principal target of antileishmanial treatment, but these are not an easy target as drugs must overcome major structural barriers. Furthermore, limitations on current therapy are related to efficacy, toxicity, and cost, as well as the length of treatment, which can increase parasitic resistance. Nanotechnology has emerged as an attractive alternative as conventional drugs delivered by nanosized carriers have improved bioavailability and reduced toxicity, together with other characteristics that help to relieve the burden of this disease. The significance of using colloidal carriers loaded with active agents derives from the physiological uptake route of intravenous administered nanosystems (the phagocyte system). Nanosystems are thus able to promote a high drug concentration in intracellular mononuclear phagocyte system (MPS)-infected cells. Moreover, the versatility of nanometric drug delivery systems for the deliberate transport of a range of molecules plays a pivotal role in the design of therapeutic strategies against leishmaniasis. This review discusses studies on nanocarriers that have greatly contributed to improving the efficacy of antileishmaniasis drugs, presenting a critical review and some suggestions for improving drug delivery.

  4. Nanoemulsion: A new concept of delivery system

    Directory of Open Access Journals (Sweden)

    Nitin Sharma

    2010-01-01

    Full Text Available Nanoemulsion has been identified as a promising delivery system for various drugs including biopharmaceuticals. Nanoemulsion is a heterogeneous system composed of one immiscible liquid dispersed as droplets within another liquid. The droplets size of nano emulsion is between 20 to 500 nm. Diameter and surface properties of droplets of nanoemulsion plays an important role in the biological behavior of the formulation. Small droplet sizes lead to transparent emulsions so that product appearance is not altered by the addition of an oil phase. In this paper various aspects of nanoemulsion have been discussed including advantages, disadvantages and methods of preparation. Furthermore new approaches of stability of formulation, effect of types and concentration of surfactant, process variables and method are also discussed to improve the stability of nanoemulsion formulation

  5. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery.

    Science.gov (United States)

    Jones, Jason J; Chu, Jeffrey; Graham, Jacob; Zaluski, Serge; Rocha, Guillermo

    2016-01-01

    The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL) delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%-12.0% (Psystem also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity.

  6. Fluid Delivery System For Capillary Electrophoretic Applications.

    Science.gov (United States)

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  7. Antiseptic cyclodextrin-functionalized hydrogels and gauzes for loading and delivery of benzalkonium chloride.

    Science.gov (United States)

    Garcia-Fernandez, Maria José; Brackman, Gilles; Coenye, Tom; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2013-01-01

    Prevention and management of wound infections receive a lot of attention, since the presence of micro-organisms interferes with the wound-healing process. The aim of this work was to use cyclodextrins (CDs) to endow hydrogels and gauzes with the ability to take up antiseptics and sustain their delivery for several hours. Benzalkonium chloride (BzCl) can form inclusion complexes with cross-linked CDs that regulate the release through an affinity-driven mechanism. Grafting of CDs to cotton gauzes using citric acid as the linker, at 190 °C and for 15 min, led to grafting yields of about 148%, much larger than those obtained at 180 °C or with shorter reaction times. Microbiological tests revealed that the BzCl-loaded networks can inhibit the growth of Staphylococcus epidermidis and Escherichia coli both on agar plates and in liquid medium. Furthermore, the antiseptic-loaded gauzes were able to inhibit biofilm formation by Staphylococcus aureus RN1HG pMV158GFP when applied in early stages of biofilm formation and could reduce the number of living cells in preformed biofilms grown in a chronic wound biofilm model. These findings highlight the role of CDs as main components of hydrogels and gauzes for the efficient delivery of antiseptics.

  8. Non-utility generation and demand management reliability of customer delivery systems

    International Nuclear Information System (INIS)

    Hamoud, G.A.; Wang, L.

    1995-01-01

    A probabilistic methodology for evaluating the impact of non-utility generation (NUG) and demand management programs (DMP) on supply reliability of customer delivery systems was presented. The proposed method was based on the criteria that the supply reliability to the customers on the delivery system should not be affected by the integration of either NUG or DMPs. The method considered station load profile, load forecast, and uncertainty in size and availability of the nuio. Impacts on system reliability were expressed in terms of possible delays of the in-service date for new facilities or in terms of an increase in the system load carrying capability. Examples to illustrate the proposed methodology were provided. 10 refs., 8 tabs., 2 figs

  9. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    Science.gov (United States)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  10. Electronic nicotine delivery systems: a research agenda.

    Science.gov (United States)

    Etter, Jean-François; Bullen, Chris; Flouris, Andreas D; Laugesen, Murray; Eissenberg, Thomas

    2011-05-01

    Electronic nicotine delivery systems (ENDS, also called electronic cigarettes or e-cigarettes) are marketed to deliver nicotine and sometimes other substances by inhalation. Some tobacco smokers report that they used ENDS as a smoking cessation aid. Whether sold as tobacco products or drug delivery devices, these products need to be regulated, and thus far, across countries and states, there has been a wide range of regulatory responses ranging from no regulation to complete bans. The empirical basis for these regulatory decisions is uncertain, and more research on ENDS must be conducted in order to ensure that the decisions of regulators, health care providers and consumers are based on science. However, there is a dearth of scientific research on these products, including safety, abuse liability and efficacy for smoking cessation. The authors, who cover a broad range of scientific expertise, from basic science to public health, suggest research priorities for non-clinical, clinical and public health studies. They conclude that the first priority is to characterize the safety profile of these products, including in long-term users. If these products are demonstrated to be safe, their efficacy as smoking cessation aids should then be tested in appropriately designed trials. Until these studies are conducted, continued marketing constitutes an uncontrolled experiment and the primary outcome measure, poorly assessed, is user health. Potentially, this research effort, contributing to the safety and efficacy of new smoking cessation devices and to the withdrawal of dangerous products, could save many lives.

  11. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery

    Directory of Open Access Journals (Sweden)

    Gui-Feng Tong

    2017-09-01

    Full Text Available Depression is a debilitating psychiatric condition that remains the second most common cause of disability worldwide. Currently, depression affects more than 4 per cent of the world’s population. Most of the drugs intended for clinical management of depression augment the availability of neurotransmitters at the synapse by inhibiting their neuronal reuptake. However, the therapeutic efficacy of antidepressants is often compromised as they are unable to reach brain by the conventional routes of administration. The purpose of the present study was to reconnoiter the potential of mucoadhesive PLGA-chitosan nanoparticles for the delivery of encapsulated Desvenlafaxine to the brain by nose to brain delivery route for superior pharmacokinetic and pharmacodynamic profile of Desvenlafaxine. Desvenlafaxine loaded PLGA-chitosan nanoparticles were prepared by solvent emulsion evaporation technique and optimized for various physiochemical characteristics. The antidepressant efficacy of optimized Desvenlafaxine was evaluated in various rodent depression models together with the biochemical estimation of monoamines in their brain. Further, the levels of Desvenlafaxine in brain and blood plasma were determined at various time intervals for calculation of different pharmacokinetic parameters. The optimized Desvenlafaxine loaded PLGA-chitosan nanoparticles (∼172 nm/+35 mV on intranasal administration significantly reduced the symptoms of depression and enhanced the level of monoamines in the brain in comparison with orally administered Desvenlafaxine. Nose to brain delivery of Desvenlafaxine PLGA-chitosan nanoparticles also enhanced the pharmacokinetic profile of Desvenlafaxine in brain together with their brain/blood ratio at different time points. Thus, intranasal mucoadhesive Desvenlafaxine PLGA-chitosan nanoparticles could be potentially used for the treatment of depression.

  12. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    Science.gov (United States)

    2015-09-01

    Systems in Systemic , Dermal, Transdermal , and Ocular Drug Delivery . Crit. Rev. Ther. Drug 2008, 25, 545–584. 14. Choy, Y. B.; Park, J.-H.; McCarey, B...AWARD NUMBER: W81XWH-13-1-0146 TITLE: Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries PRINCIPAL INVESTIGATOR: Dr...Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries” 5b. GRANT NUMBER W81XWH-13-1-0146 5c. PROGRAM ELEMENT NUMBER 6

  13. RaPToRS Sample Delivery System

    Science.gov (United States)

    Henchen, Robert; Shibata, Kye; Krieger, Michael; Pogozelski, Edward; Padalino, Stephen; Glebov, Vladimir; Sangster, Craig

    2010-11-01

    At various labs (NIF, LLE, NRL), activated material samples are used to measure reaction properties. The Rapid Pneumatic Transport of Radioactive Samples (RaPToRS) system quickly and safely moves these radioactive samples through a closed PVC tube via airflow. The carrier travels from the reaction chamber to the control and analysis station, pneumatically braking at the outlet. A reversible multiplexer routes samples from various locations near the shot chamber to the analysis station. Also, the multiplexer allows users to remotely load unactivated samples without manually approaching the reaction chamber. All elements of the system (pneumatic drivers, flow control valves, optical position sensors, multiplexers, Geiger counters, and release gates at the analysis station) can be controlled manually or automatically using a custom LabVIEW interface. A prototype is currently operating at NRL in Washington DC. Prospective facilities for Raptors systems include LLE and NIF.

  14. Pharmacokinetic characteristics of formulated alendronate transdermal delivery systems in rats and humans.

    Science.gov (United States)

    Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun

    2010-05-01

    The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.

  15. Load leveling on industrial refrigeration systems

    Science.gov (United States)

    Bierenbaum, H. S.; Kraus, A. D.

    1982-01-01

    A computer model was constructed of a brewery with a 2000 horsepower compressor/refrigeration system. The various conservation and load management options were simulated using the validated model. The savings available for implementing the most promising options were verified by trials in the brewery. Result show that an optimized methodology for implementing load leveling and energy conservation consisted of: (1) adjusting (or tuning) refrigeration systems controller variables to minimize unnecessary compressor starts, (2) The primary refrigeration system operating parameters, compressor suction pressure, and discharge pressure are carefully controlled (modulated) to satisfy product quality constraints (as well as in-process material cooling rates and temperature levels) and energy evaluating the energy cost savings associated with reject heat recovery, and (4) a decision is made to implement the reject heat recovery system based on a cost/benefits analysis.

  16. Polymers for Pharmaceutical Packaging and Delivery Systems

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel

    materials of interest for pharmaceutical packaging and delivery systems. Confocal fluorescence microscopy studies and stability studies with insulin aspart (AspB28 insulin) were conducted to evaluate the impact of modified PP compared to unmodified PP. In contrast to PEEK, PP did not contain any functional....... In order to decrease the amount of catalyst residual in the modified materials, activator regenerated by electron transfer (ARGET) SI-ATRP was applied in the second experimental round. Two poly(ethylene glycol)methyl ether methacrylate (MPEGMA) monomers with 4 and 23 ethylene oxide units in the side chain......Selection of polymer materials which will be exposed to protein drugs in either containers or medical devices is often very challenging due to the demands on the polymers. Suitable polymer materials should comply with requirements like compatibility with proteins, sterilisability, good barrier...

  17. Dynamic loads on the primary system

    International Nuclear Information System (INIS)

    Rohde, J.

    1980-01-01

    As a result of pipe breaks f.ex. in the primary system of a PWR-plant dynamic forces act on the components of the system as well as on their support-structures and internals. The design basis must guarantee that LOCA or system-transient generated loads cannot produce deformations or fractures that endanger the coolability of the reactor, the emergency feedwater supply to the core-region and a safe shut-down of the reactor. In this lecture the first part of a LOCA will be discussed, where the highest dynamic loads on the primary system are expected. In this connection comments are given on the main assumptions and boundary conditions, the related regulations and guide-lines, as well as the possible consequences of an accident. Next, a review is presented of the analytical methods being used for the determination of thermohydraulic generated loads. The stress-calculations on the basis of these load-functions are discussed in the following lectures. The application of the analytical methods, i.e. the different computer codes, and the verification on the basis of the experimental results are described together with a discussion of the theoretical results. In addition a survey will be given of the research work done in connection with the problems of the dynamic loads under accident conditions. Finally, the problems of the fluid-structure interaction will be explained and comments made on computer code development now under way regarding this problem. A short film will be presented to provide a better understanding of fast transient phenomena. (orig./RW)

  18. Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung.

    Science.gov (United States)

    Tewes, Frederic; Ehrhardt, Carsten; Healy, Anne Marie

    2014-01-01

    Targeted aerosol delivery to specific regions of the lung may improve therapeutic efficiency and minimise unwanted side effects. Targeted delivery could potentially be achieved with porous microparticles loaded with superparamagnetic iron oxide nanoparticles (SPIONs)-in combination with a target-directed magnetic gradient field. The aim of this study was to formulate and evaluate the aerodynamic properties of SPIONs-loaded Trojan microparticles after delivery from a dry powder inhaler. Microparticles made of SPIONs, PEG and hydroxypropyl-β-cyclodextrin (HPβCD) were formulated by spray drying and characterised by various physicochemical methods. Aerodynamic properties were evaluated using a next generation cascade impactor (NGI), with or without a magnet positioned at stage 2. Mixing appropriate proportions of SPIONs, PEG and HPβCD allowed Trojan microparticle to be formulated. These particles had a median geometric diameter of 2.8±0.3μm and were shown to be sensitive to the magnetic field induced by a magnet having a maximum energy product of 413.8kJ/m(3). However, these particles, characterised by a mass median aerodynamic diameter (MMAD) of 10.2±2.0μm, were considered to be not inhalable. The poor aerodynamic properties resulted from aggregation of the particles. The addition of (NH4)2CO3 and magnesium stearate (MgST) to the formulation improved the aerodynamic properties of the Trojan particles and resulted in a MMAD of 2.2±0.8μm. In the presence of a magnetic field on stage 2 of the NGI, the amount of particles deposited at this stage increased 4-fold from 4.8±0.7% to 19.5±3.3%. These Trojan particles appeared highly sensitive to the magnetic field and their deposition on most of the stages of the NGI was changed in the presence compared to the absence of the magnet. If loaded with a pharmaceutical active ingredient, these particles may be useful for treating localised lung disease such as cancer nodules or bacterial infectious foci. Copyright

  19. Load power device, system and method of load control and management employing load identification

    Science.gov (United States)

    Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.

    2018-01-09

    A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.

  20. Description and Documentation of the Dental School Dental Delivery System.

    Science.gov (United States)

    Chase, Rosen and Wallace, Inc., Alexandria, VA.

    A study was undertaken to describe and document the dental school dental delivery system using an integrated systems approach. In late 1976 and early 1977, a team of systems analysts and dental consultants visited three dental schools to observe the delivery of dental services and patient flow and to interview administrative staff and faculty.…

  1. Potential and problems in ultrasound-responsive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Zhao YZ

    2013-04-01

    Full Text Available Ying-Zheng Zhao,1,3 Li-Na Du,2 Cui-Tao Lu,1 Yi-Guang Jin,2 Shu-Ping Ge3 1Wenzhou Medical College, Wenzhou City, Zhejiang Province, 2Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China; 3St Christopher’s Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. Keywords: ultrasound, targeted therapy, clinical application

  2. Analysis of load monitoring system in hydraulic mobile cranes

    Science.gov (United States)

    Kalairassan, G.; Boopathi, M.; Mohan, Rijo Mathew

    2017-11-01

    Load moment limiters or safe load control systems or are very important in crane safety. The system detects the moment of lifting load and compares this actual moment with the rated moment. The system uses multiple sensors such as boom angle sensor, boom length sensor for telescopic booms, pressure transducers for measuring the load, anti-two block switch and roller switches. The system works both on rubber and on outriggers. The sensors measure the boom extension, boom angle and load to give as inputs to the central processing, which calculate the safe working load range for that particular configuration of the crane and compare it with the predetermined safe load. If the load exceeds the safe load, actions will be taken which will reduce the load moment, which is boom telescopic retraction and boom lifting. Anti-two block switch is used to prevent the two blocking condition. The system is calibrated and load tested for at most precision.

  3. Automated system for loading nuclear fuel pins

    International Nuclear Information System (INIS)

    Marshall, J.L.

    1983-10-01

    A completely automatic and remotely controlled fuel pin fabrication system is being designed by the Westinghouse Hanford Company. The Pin Operations System will produce fuel pins for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). The system will assemble fuel pin components into cladding tubes in a controlled environment. After fuel loading, the pins are filled with helium, the tag gas capsules are inserted, and the top end cap welded. Following welding, the pins are surveyed to assure they are free of contamination and then the pins are helium leak tested

  4. Future of Automated Insulin Delivery Systems

    NARCIS (Netherlands)

    Castle, Jessica R.; DeVries, J. Hans; Kovatchev, Boris

    2017-01-01

    Advances in continuous glucose monitoring (CGM) have brought on a paradigm shift in the management of type 1 diabetes. These advances have enabled the automation of insulin delivery, where an algorithm determines the insulin delivery rate in response to the CGM values. There are multiple automated

  5. A novel local anesthetic system: transcriptional transactivator peptide-decorated nanocarriers for skin delivery of ropivacaine

    Directory of Open Access Journals (Sweden)

    Chen CY

    2017-06-01

    Full Text Available Chuanyu Chen, Peijun You Department of Anesthesiology, Shandong Jining No 1 People’s Hospital, Jining, Shandong, People’s Republic of China Purpose: Barrier properties of the skin and physicochemical properties of drugs are the main factors for the delivery of local anesthetic molecules. The present work evaluates the anesthetic efficacy of drug-loaded nanocarrier (NC systems for the delivery of local anesthetic drug, ropivacaine (RVC. Methods: In this study, transcriptional transactivator peptide (TAT-decorated RVC-loaded NCs (TAT-RVC/NCs were successfully fabricated. Physicochemical properties of NCs were determined in terms of particle size, zeta potential, drug encapsulation efficiency, drug-loading capacity, stability, and in vitro drug release. The skin permeation of NCs was examined using a Franz diffusion cell mounted with depilated mouse skin in vitro, and in vivo anesthetic effect was evaluated in mice. Results: The results showed that TAT-RVC/NCs have a mean diameter of 133.2 nm and high drug-loading capacity of 81.7%. From the in vitro skin permeation results, it was observed that transdermal flux of TAT-RVC/NCs was higher than that of RVC-loaded NCs (RVC/NCs and RVC injection. The evaluation of in vivo anesthetic effect illustrated that TAT-RVC/NCs can enhance the transdermal delivery of RVC by reducing the pain threshold in mice. Conclusion: These results indicate that TAT-decorated NCs systems are useful for overcoming the barrier function of the skin, decreasing the dosage of RVC and enhancing the anesthetic effect. Therefore, TAT-decorated NCs can be used as an effective transdermal delivery system for local anesthesia. Keywords: local anesthetic system, ropivacaine, transcriptional transactivator peptide, nanocarriers, skin delivery

  6. Current trends in microsponge drug delivery system.

    Science.gov (United States)

    Gangadharappa, H V; Gupta, N Vishal; Prasad M, Sarat Chandra; Shivakumar, H G

    2013-08-01

    Microsponge is a microscopic sphere capable of absorbing skin secretions, therefore reducing the oiliness of the skin. Microsponge having particle size of 10-25 microns in diameter, have wide range of entrapment of various ingredients in a single microsponges system and release them at desired rates. Conventional topical preparations have various disadvantages due to irritancy, odour, greasiness and patient compliance. In many topical dosage forms fail to reach the systemic circulation in sufficient amounts in few cases. These problems overcome by the usage of formulation as microsponge in the areas of research. Drug release in microsponge is done by the external stimuli like pH, temperature and rubbing. It has several advantageous over the other topical preparations in being non-allergenic, non-toxic, non-irritant and non- mutagenic. These microsponges are used in the sun screens, creams, ointments, over-the-counter skin care preparations, recently nanosponge were reported in literature used in delivery of drug by the use of cyclodextrins to enhance the solubility of poorly water soluble drugs, which are meant for topical application.

  7. Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo.

    Science.gov (United States)

    Wang, Yi-Ran; Yang, Shi-Yan; Chen, Guang-Xia; Wei, Ping

    2018-04-30

    Gastric cancer is the third leading cause of cancer-associated death worldwide. Although a decrease in its incidence is observed, gastric cancer still poses a major clinical challenge due to poor prognosis and limited treatments. Barbaloin (BBL) is a main medicinal composition of the Chinese traditional medicine aloe vera. BBL has various bioactivities, including anti-oxidant, anti-inflammatory and anti-tumor properties. Polydopamine (pD)-based surface modification is easy to functionalize polymeric nanoparticles (NPs) surfaces with ligands and/or additional polymeric layers. In the present study, BBL-loaded formulations was developed with pD-modified NPs, which was synthesized by polylactide-TPGS (PLA-TPGS) (pD-PLA-TPGS/NPs). And galactosamine (Gal) was conjugated on the prepared NPs (Gal-pD-PLA-TPGS/NPs) for targeting the gastric cancer cells. Here, we found that BBL-loaded Gal-pD-PLA-TPGS/NPs showed the highest cellular uptake efficacy in gastric cancer cells. Gal-pD-PLA-TPGS/NPs more significantly reduced the gastric cancer cell viability. Further, greater apoptosis, autophagy and ROS generation was induced by Gal-pD-PLA-TPGS/NPs in gastric cancer cells. Additionally, compared to the other two NPs, Gal-pD-PLA-TPGS/NPs most markedly decreased ATP levels in gastric cancer cells. In vivo, Gal-pD-PLA-TPGS/NPs were specifically targeted to tumor site. Moreover, Gal-pD-PLA-TPGS/NPs exhibited the most anti-tumor effects, as evidenced by the lowest tumor volume and tumor weight. Of note, there was no significant difference was observed in body and liver weight, as well as the histological changes in major organs isolated from each group of mice. Together, the findings indicated that BBL-loaded Gal-pD-PLA-TPGS/NPs could be targeted to gastric cancer cells to suppress tumor progression without toxicity. Copyright © 2018. Published by Elsevier Inc.

  8. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  9. Enhanced load current delivery from the SHIVA Star vacuum inductive store/plasma flow switch

    International Nuclear Information System (INIS)

    Price, D.W.; Baker, W.L.; Beason, J.D.

    1987-01-01

    The experimental results reported here were obtained from passively integrated Rogowski coils mounted in the SHIVA Star device and B located in the load and transfer regions of the device. The integrator time constant was 100 μs. Current measurements accuracy is estimated to be 5% for the Rogowski coils and 10% for B probes. B probes indicated peak currents of 13.5 MA at the breech and 13.0 MA at the muzzle with 650 ns 10-90% rise time. B probes in the implosion region indicated a current greater than 9.4 MA inside 5.5 cm radius; at that time, the muzzle current was 10.3 MA. The 10-90% rise time was 170 ns. The innermost probe indicated 7.3 MA inside 3.2 cm; at that time, the muzzle current was 9.3 MA. The 10-90% rise time at 3.2 cm was 300 ns. Timing anomalies suggested some azimuthal current asymmetry in the implosion region. The data indicate greater than 90% current delivery from the gun muzzle to just outside the initial position implosion foil and 70-80% current delivery from the gun muzzle to the partially imploded foil

  10. Controlled delivery of pirfenidone through vitamin E-loaded contact lens ameliorates corneal inflammation.

    Science.gov (United States)

    Dixon, Phillip; Ghosh, Tanushri; Mondal, Kalyani; Konar, Aditya; Chauhan, Anuj; Hazra, Sarbani

    2018-06-01

    Chemical injury by alkali burn is a major cause of corneal blindness in the clinical setting. Current management advocates multiple therapies aimed to prevent inflammation, initiate quick re-epithelialization, arrest the fibrosis, and avoid dry eye and pain by using bandage contact lenses. We hypothesized sustained delivery of the anti-inflammatory, antifibrotic drug pirfenidone through vitamin E-loaded contact lenses as a logical single approach to counter the pathology involved. Vitamin E particles were created in situ in commercial silicon hydrogel contact lenses by soaking the lenses in a vitamin E-ethanol solution. The vitamin E-laden lenses were then placed into pirfenidone-saline solution to load the drug into the lens. The contact lenses were evaluated by both in vitro and in vivo means. For in vitro, lenses were placed into 3 mL of saline solution. The concentration of pirfenidone released was measured by UV-vis spectrophotometry. The contact lenses were implanted in rabbit eyes following the alkali burn; the drug availability in the aqueous humor was evaluated by HPLC at various time points 10 min, 30 min, 2 h, and 3 h; and gene expression of inflammatory cytokines IL-1β, TNF-α, and TGF-β1 was evaluated in the cornea at the end of the study period. In another group of rabbits inflicted with alkali injury, the corneas were graded after 7 days of contact lens implantation with and without pirfenidone. A mathematical model was developed for delivery of the drug to the cornea and aqueous humor after a contact lens is inserted in the eye. The model was validated with experimental data and used to determine the bioavailability both for contact lenses and eye drops. In vitro release of unmodified commercial contact lenses saw a release time of approximately 20 min, with a partition coefficient of 2.68 ± 0.06. The release of pirfenidone from 20% vitamin E-loaded lenses saw a release time of approximately 80 min, with a partition coefficient of 4

  11. How can innovative project delivery systems improve the overall efficiency of GDOT in transportation project delivery?

    Science.gov (United States)

    2013-04-01

    The USDOT and Federal Highway Administration (FHWA) recommend the smart use of innovative project : delivery systems, such as design-build, to improve efficiency and effectiveness of developing transportation : projects. Although design-build provide...

  12. In Vitro and Ex Vivo Evaluation of Novel Curcumin-Loaded Excipient for Buccal Delivery.

    Science.gov (United States)

    Laffleur, Flavia; Schmelzle, Franziska; Ganner, Ariane; Vanicek, Stefan

    2017-08-01

    This study aimed to develop a mucoadhesive polymeric excipient comprising curcumin for buccal delivery. Curcumin encompasses broad range of benefits such as antioxidant, anti-inflammatory, and chemotherapeutic activity. Hyaluronic acid (HA) as polymeric excipient was modified by immobilization of thiol bearing ligands. L-Cysteine (SH) ethyl ester was covalently attached via amide bond formation between cysteine and the carboxylic moiety of hyaluronic acid. Succeeded synthesis was proved by H-NMR and IR spectra. The obtained thiolated polymer hyaluronic acid ethyl ester (HA-SH) was evaluated in terms of stability, safety, mucoadhesiveness, drug release, and permeation-enhancing properties. HA-SH showed 2.75-fold higher swelling capacity over time in comparison to unmodified polymer. Furthermore, mucoadhesion increased 3.4-fold in case of HA-SH and drug release was increased 1.6-fold versus HA control, respectively. Curcumin-loaded HA-SH exhibits a 4.4-fold higher permeation compared with respective HA. Taking these outcomes in consideration, novel curcumin-loaded excipient, namely thiolated hyaluronic acid ethyl ester appears as promising tool for pharyngeal diseases.

  13. Marine Origin Polysaccharides in Drug Delivery Systems.

    Science.gov (United States)

    Cardoso, Matias J; Costa, Rui R; Mano, João F

    2016-02-05

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  14. Marine Origin Polysaccharides in Drug Delivery Systems

    Science.gov (United States)

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  15. Marine Origin Polysaccharides in Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Matias J. Cardoso

    2016-02-01

    Full Text Available Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  16. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery.

    Science.gov (United States)

    Adelli, Goutham R; Balguri, Sai Prachetan; Bhagav, Prakash; Raman, Vijayasankar; Majumdar, Soumyajit

    2017-11-01

    The goal of the present study is to develop polymeric matrix films loaded with a combination of free diclofenac sodium (DFS free ) and DFS:Ion exchange resin complexes (DFS:IR) for immediate and sustained release profiles, respectively. Effect of ratio of DFS and IR on the DFS:IR complexation efficiency was studied using batch processing. DFS:IR complex, DFS free , or a combination of DFS free  +   DFS:IR loaded matrix films were prepared by melt-cast technology. DFS content was 20% w/w in these matrix films. In vitro transcorneal permeability from the film formulations were compared against DFS solution, using a side-by-side diffusion apparatus, over a 6 h period. Ocular disposition of DFS from the solution, films and corresponding suspensions were evaluated in conscious New Zealand albino rabbits, 4 h and 8 h post-topical administration. All in vivo studies were carried out as per the University of Mississippi IACUC approved protocol. Complexation efficiency of DFS:IR was found to be 99% with a 1:1 ratio of DFS:IR. DFS release from DFS:IR suspension and the film were best-fit to a Higuchi model. In vitro transcorneal flux with the DFS free  +   DFS:IR (1:1) (1 + 1) was twice that of only DFS:IR (1:1) film. In vivo, DFS solution and DFS:IR (1:1) suspension formulations were not able to maintain therapeutic DFS levels in the aqueous humor (AH). Both DFS free and DFS free  +   DFS:IR (1:1) (3 + 1) loaded matrix films were able to achieve and maintain high DFS concentrations in the AH, but elimination of DFS from the ocular tissues was much faster with the DFS free formulation. DFS free  +   DFS:IR combination loaded matrix films were able to deliver and maintain therapeutic DFS concentrations in the anterior ocular chamber for up to 8 h. Thus, free drug/IR complex loaded matrix films could be a potential topical ocular delivery platform for achieving immediate and sustained release characteristics.

  17. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jing, E-mail: joemj1005@163.com, E-mail: miaojing@zju.edu.cn [Zhejiang University, Department of Pharmacy, the First Affiliated Hospital, College of Medicine (China); Du, Yongzhong; Yuan, Hong [Zhejiang University, College of Pharmaceutical Sciences (China); Zhang, Xingguo; Li, Qian; Rao, Yuefeng [Zhejiang University, Department of Pharmacy, the First Affiliated Hospital, College of Medicine (China); Zhao, Mengdan [Zhejiang University, Women’s Hospital, College of Medicine (China); Hu, Fuqiang, E-mail: hufq@zju.edu.cn [Zhejiang University, College of Pharmaceutical Sciences (China)

    2015-01-15

    Nanosized lipid carriers (NLC) can improve the limited drug-loading (DL) capacity and drug expulsion during storage, and adjust the drug release profile of solid lipid nanoparticles (SLN). In this study, Paclitaxel (PTX)-loaded NLC were prepared by solvent diffusion method using monostearin as solid lipid and oleic acid (OA) as liquid lipid matrix. The blank NLC with different OA content (the size range was from 89.5 ± 7.4 to 160.2 ± 34.6 nm) showed smaller size than the blank SLN (the size was 272.7 ± 43.6 nm), while the PTX-loaded NLC (the size range was from 481.3 ± 29.8 to 561.7 ± 38.3 nm) showed little bigger size, higher DL capacity, and faster drug in vitro release rate comparing with SLN (the size was 437.3 ± 68.2 nm). The 50 % cellular growth inhibitions (IC{sub 50}) of PTX-loaded NLC with 0, 5, 10, and 20 wt % OA were 0.92 ± 0.06, 0.69 ± 0.04, 0.25 ± 0.02, and 0.12 ± 0.02 µg mL{sup −1}, respectively, while the IC{sub 50} of Taxol{sup TM} was 1.72 ± 0.09 µg mL{sup −1}. For analyzing cellular drug effect, cellular uptakes of fluorescent NLC and intracellular drug concentration were investigated. As the incorporation of OA into solid lipid matrix could accelerate both the cellular uptake and the PTX delivery, loaded by NLC, the cytotoxicity of PTX could be enhanced, and further enhanced by increasing OA content in NLC.

  18. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery

    International Nuclear Information System (INIS)

    Miao, Jing; Du, Yongzhong; Yuan, Hong; Zhang, Xingguo; Li, Qian; Rao, Yuefeng; Zhao, Mengdan; Hu, Fuqiang

    2015-01-01

    Nanosized lipid carriers (NLC) can improve the limited drug-loading (DL) capacity and drug expulsion during storage, and adjust the drug release profile of solid lipid nanoparticles (SLN). In this study, Paclitaxel (PTX)-loaded NLC were prepared by solvent diffusion method using monostearin as solid lipid and oleic acid (OA) as liquid lipid matrix. The blank NLC with different OA content (the size range was from 89.5 ± 7.4 to 160.2 ± 34.6 nm) showed smaller size than the blank SLN (the size was 272.7 ± 43.6 nm), while the PTX-loaded NLC (the size range was from 481.3 ± 29.8 to 561.7 ± 38.3 nm) showed little bigger size, higher DL capacity, and faster drug in vitro release rate comparing with SLN (the size was 437.3 ± 68.2 nm). The 50 % cellular growth inhibitions (IC 50 ) of PTX-loaded NLC with 0, 5, 10, and 20 wt % OA were 0.92 ± 0.06, 0.69 ± 0.04, 0.25 ± 0.02, and 0.12 ± 0.02 µg mL −1 , respectively, while the IC 50 of Taxol TM was 1.72 ± 0.09 µg mL −1 . For analyzing cellular drug effect, cellular uptakes of fluorescent NLC and intracellular drug concentration were investigated. As the incorporation of OA into solid lipid matrix could accelerate both the cellular uptake and the PTX delivery, loaded by NLC, the cytotoxicity of PTX could be enhanced, and further enhanced by increasing OA content in NLC

  19. Guidelines for Psychological Practice in Health Care Delivery Systems

    Science.gov (United States)

    American Psychologist, 2013

    2013-01-01

    Psychologists practice in an increasingly diverse range of health care delivery systems. The following guidelines are intended to assist psychologists, other health care providers, administrators in health care delivery systems, and the public to conceptualize the roles and responsibilities of psychologists in these diverse contexts. These…

  20. Buccal Transmucosal Delivery System of Enalapril for Improved ...

    African Journals Online (AJOL)

    Purpose: To prepare and characterize buccal transmucosal delivery system of enalapril maleate for overcoming its low bioavailability, and hence provide improved therapeutic efficacy and patient compliance. Methods: Transmucosal drug delivery systems of enalapril maleate were formulated as buccal films by solvent ...

  1. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...

  2. Chitosan-coated liposome dry-powder formulations loaded with ghrelin for nose-to-brain delivery.

    Science.gov (United States)

    Salade, Laurent; Wauthoz, Nathalie; Vermeersch, Marjorie; Amighi, Karim; Goole, Jonathan

    2018-06-11

    The nose-to-brain delivery of ghrelin loaded in liposomes is a promising approach for the management of cachexia. It could limit the plasmatic degradation of ghrelin and provide direct access to the brain, where ghrelin's specific receptors are located. Anionic liposomes coated with chitosan in either a liquid or a dry-powder formulation were compared. The powder formulation showed stronger adhesion to mucins (89 ± 4% vs 61 ± 4%), higher ghrelin entrapment efficiency (64 ± 2% vs 55 ± 4%), higher enzymatic protection against trypsin (26 ± 2% vs 20 ± 3%) and lower ghrelin storage degradation at 25°C (2.67 ± 1.1% vs 95.64 ± 0.85% after 4 weeks). The powder formulation was also placed in unit-dose system devices that were able to generate an appropriate aerosol characterized by a Dv50 of 38 ± 6 µm, a limited percentage of particles smaller than 10 µm of 4 ± 1% and a reproducible mass delivery (CV: 1.49%). In addition, the device was able to deposit a large amount of powder (52.04% w/w) in the olfactory zone of a 3D-printed nasal cast. The evaluated combination of the powder formulation and the device could provide a promising treatment for cachexia. Copyright © 2018. Published by Elsevier B.V.

  3. Grizzli mobile systems and LPG delivery management; Grizzli mobile systems

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-07-01

    Complete text of publication follows: Grizzli Mobile Systems (and its sister companies) specialists in data communications and system solutions, offer their complete management solution for LPG deliveries, right through from remote reading of the gas level in the tank, through route management, management of the delivery itself and finally on-site invoicing and payment. The system permits a supplier to really differentiate itself from its competitors in terms of customer service and control of its operations. Domestic gas tanks are often difficult to access; visual reading of the gauge is not always easy and often leads to the customer re-ordering in panic mode. The supplier has also to react in panic mode to the customer. Grizzli Mobile Systems has developed a radio module that is fitted to the gas tank that calls, at regular set intervals with the tank level to a Call Rider gateway plug. The Call Rider is a small box plugged into the regular telephone socket (also supplying multiple operator telephony and other home automation services). As soon as the gas level reaches a predetermined minimum level, this radio information is relayed via the Internet to the LPG supplier. The supplier can then arrange (in non-panic mode) to deliver gas to the customer, via conventional means or by use of an interactive radio display (attached to a refrigerator or similar by magnets) that communicates with the Call Rider by radio. Once a delivery date has been set, a Grizzli Mobile Systems' dispatch system, installed at the supplier's headquarters creates and transfers routes via GSM communications to its fleet of delivery vehicles. A main-frame mapping software provides real-time follow-up and status checks of the vehicles using the GPS functionality and imports data back from the vehicles and updates databases. The driver is also assisted in localizing delivery sites. Inside the cabin of the vehicle the driver has available a Fujitsu PenCentra pen computer, a Microsoft

  4. Improvement of Transdermal Delivery of Exendin-4 Using Novel Tip-Loaded Microneedle Arrays Fabricated from Hyaluronic Acid.

    Science.gov (United States)

    Liu, Shu; Wu, Dan; Quan, Ying-Shu; Kamiyama, Fumio; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-01-04

    The purpose of this study was to evaluate the characteristics of exendin-4 tip-loaded microneedle arrays and to compare their acute efficacy with subcutaneous injections in type 2 diabetic GK/Slc rats. Fluorescein isothiocyanate labeled dextran with an average molecular weight of 4,000 (FD4) was selected as a model drug, and FD4 tip-loaded microneedle arrays were prepared in this study. In addition, intraperitoneal glucose tolerance tests after application of exendin-4 tip-loaded microneedle arrays were also compared with those after subcutaneous injection in type 2 diabetic GK/Slc rats. The release of FD4 from the tip-loaded microneedle arrays was very rapid, particularly in the initial 30 s, and most of the FD4 was released within 5 min. In addition, glucose tolerance was improved and the insulin secretion was enhanced after application of exendin-4 tip-loaded microneedle arrays, and these effects were comparable to those after subcutaneous injection of exendin-4. Similar plasma concentration profiles were seen after application of exendin-4 tip-loaded microneedle arrays, as was the case with subcutaneous injection in type 2 diabetic GK/Slc rats. These findings indicate that exendin-4 tip-loaded microneedle arrays can be used as an alternative to achieve sufficient delivery of exendin-4 for treatment of type 2 diabetes. To our knowledge, this is the first report of transdermal exendin-4 delivery using tip-loaded microneedle arrays.

  5. Energy efficiency analysis of reconfigured distribution system for practical loads

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    2016-09-01

    Full Text Available In deregulated rate structure, the performance evaluation of distribution system for energy efficiency includes; loss minimization, improved power quality, loadability limit, reliability and availability of supply. Energy efficiency changes with the variation in loading pattern and the load behaviour. Further, the nature of load at each node is not explicitly of any one type rather their characteristics depend upon the node voltages. In most cases, load is assumed to be constant power (real and reactive. In this paper voltage dependent practical loads are represented with composite load model and the energy efficiency performance of distribution system for practical loads is evaluated in different configurations of 33-node system.

  6. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.

    Science.gov (United States)

    Tahir, Nayab; Madni, Asadullah; Balasubramanian, Vimalkumar; Rehman, Mubashar; Correia, Alexandra; Kashif, Prince Muhammad; Mäkilä, Ermei; Salonen, Jarno; Santos, Hélder A

    2017-11-25

    Lipid-polymer hybrid nanoparticles (LPHNPs) are emerging platforms for drug delivery applications. In the present study, methotrexate loaded LPHNPs consisted of PLGA and Lipoid S100 were fabricated by employing a single-step modified nanoprecipitation method combined with self-assembly. A three factor, three level Box Behnken design using Design-Expert ® software was employed to access the influence of three independent variables on the particle size, drug entrapment and percent drug release. The optimized formulation was selected through numeric optimization approach. The results were supported with the ANOVA analysis, regression equations and response surface plots. Transmission electron microscope images indicated the nanosized and spherical shape of the LPHNPs with fair size distribution. The nanoparticles ranged from 176 to 308nm, which increased with increased polymer concentration. The increase in polymer and lipid concentration also increased the drug entrapment efficiency. The in vitro drug release was in range 70.34-91.95% and the release mechanism follow the Higuchi model (R 2 =0.9888) and Fickian diffusion (n<0.5). The in vitro cytotoxicity assay and confocal microscopy of the optimized formulation demonstrate the good safety and better internalization of the LPHNPs. The cell antiproliferation showed the spatial and controlled action of the nanoformulation as compared to the plain drug solution. The results suggest that LPHNPs can be a promising delivery system envisioned to safe, stable and potentially controlled delivery of methotrexate to the cancer cells to achieve better therapeutic outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The LITA Drill and Sample Delivery System

    Science.gov (United States)

    Paulsen, G.; Yoon, S.; Zacny, K.; Wettergreeng, D.; Cabrol, N. A.

    2013-12-01

    The Life in the Atacama (LITA) project has a goal of demonstrating autonomous roving, sample acquisition, delivery and analysis operations in Atacama, Chile. To enable the sample handling requirement, Honeybee Robotics developed a rover-deployed, rotary-percussive, autonomous drill, called the LITA Drill, capable of penetrating to ~80 cm in various formations, capturing and delivering subsurface samples to a 20 cup carousel. The carousel has a built-in capability to press the samples within each cup, and position target cups underneath instruments for analysis. The drill and sample delivery system had to have mass and power requirements consistent with a flight system. The drill weighs 12 kg and uses less than 100 watt of power to penetrate ~80 cm. The LITA Drill auger has been designed with two distinct stages. The lower part has deep and gently sloping flutes for retaining powdered sample, while the upper section has shallow and steep flutes for preventing borehole collapse and for efficient movement of cuttings and fall back material out of the hole. The drill uses the so called 'bite-sampling' approach that is samples are taken in short, 5-10 cm bites. To take the first bite, the drill is lowered onto the ground and upon drilling of the first bite it is then retracted into an auger tube. The auger with the auger tube are then lifted off the ground and positioned next to the carousel. To deposit the sample, the auger is rotated and retracted above the auger tube. The cuttings retained on the flutes are either gravity fed or are brushed off by a passive side brush into the cup. After the sample from the first bite has been deposited, the drill is lowered back into the same hole to take the next bite. This process is repeated until a target depth is reached. The bite sampling is analogous to peck drilling in the machining process where a bit is periodically retracted to clear chips. If there is some fall back into the hole once the auger has cleared the hole, this

  8. Controlled drug delivery systems towards new frontiers in patient care

    CERN Document Server

    Rossi, Filippo; Masi, Maurizio

    2016-01-01

    This book offers a state-of-the-art overview of controlled drug delivery systems, covering the most important innovative applications. The principles of controlled drug release and the mechanisms involved in controlled release are clearly explained. The various existing polymeric drug delivery systems are reviewed, and new frontiers in material design are examined in detail, covering a wide range of polymer modification techniques. The concluding chapter is a case study focusing on use of a drug-eluting stent. The book is designed to provide the reader with a complete understanding of the mechanisms and design of controlled drug delivery systems, and to this end includes numerous step-by-step tutorials. It illustrates how chemical engineers can advance medical care by designing polymeric delivery systems that achieve either temporal or spatial control of drug delivery and thus ensure more effective therapy that eliminates the potential for both under-and overdosing.

  9. 49 CFR 1242.76 - Administration; pickup and delivery, marine line haul, and rail substitute service; loading...

    Science.gov (United States)

    2010-10-01

    ... haul, and rail substitute service; loading, unloading and local marine; protective services; freight... SEPARATION OF COMMON OPERATING EXPENSES BETWEEN FREIGHT SERVICE AND PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.76 Administration; pickup and delivery, marine line haul, and rail...

  10. A new approach in gastroretentive drug delivery system using cholestyramine.

    Science.gov (United States)

    Umamaheshwari, R B; Jain, Subheet; Jain, N K

    2003-01-01

    We prepared cellulose acetate butyrate (CAB)-coated cholestyramine microcapsules as a intragastric floating drug delivery system endowed with floating ability due to the carbon dioxide generation when exposed to the gastric fluid. The microcapsules also have a mucoadhesive property. Ion-exchange resin particles can be loaded with bicarbonate followed by acetohydroxamic acid (AHA) and coated with CAB by emulsion solvent evaporation method. The drug concentration was monitored to maintain the floating property and minimum effective concentration. The effect of CAB: drug-resin ratio (2:1, 4:1, 6:1 w/w) on the particle size, floating time, and drug release was determined. Cholestyramine microcapsules were characterized for shape, surface characteristics, and size distribution; cholestyramine/acetohydroxamic acid interactions inside microcapsules were investigated by X-ray diffractometry. The buoyancy time of CAB-coated formulations was better than that of uncoated resin particles. Also, a longer floating time was observed with a higher polymer:drug resin complex ratio (6:1). With increasing coating thickness the particle size was increased but drug release rate was decreased. The drug release rate was higher in simulated gastric fluid (SGF) than in simulated intestinal fluid (SIF). The in vivo mucoadhesion studies were performed with rhodamine-isothiocyanate (RITC) by fluorescent probe method. The amount of CAB-coated cholestyramine microcapsules that remained in the stomach was slightly lower than that of uncoated resin particles. Cholestyramine microcapsules were distributed throughout the stomach and exhibited prolonged gastric residence via mucoadhesion. These results suggest that CAB-coated microcapsules could be a floating as well as a mucoadhesive drug delivery system. Thus, it has promise in the treatment of Helicobacter pylori.

  11. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Ji P

    2016-03-01

    size of 98 nm, a polydispersity index of 0.258, a zeta potential of -31.4 mV, a total drug content of 9.76 mg, an EE of 79.11%, and a cumulative drug release of 80% in 48 hours with a sustained profile. In addition, 5% mannitol (w/v was screened as a cryoprotectant. Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies confirmed that the drug was encapsulated into SLNs in an amorphous form. The lyophilized powder was stable at both refrigeration (4°C and ambient temperature (25°C for 3 months, and the MTT assay demonstrated that the SLNs were nontoxic. The cellular uptake of fluorescein isothiocyanate-labeled SLNs in A549 cells was highly time dependent over a period of 3 hours, while the pharmacokinetic study in Sprague Dawley rats showed that the relative bioavailability of NRG-SLNs was 2.53-fold greater than that of NRG suspension after pulmonary administration. This study shows that SLNs offer a promising pulmonary delivery system to increase the bioavailability of the poorly water-soluble drug NRG.Keywords: naringenin, solid lipid nanoparticles, group contribution method, sustained profile, instillation technology, MTT, cellular uptake, pulmonary pharmacokinetics

  12. Thiolated polymers as mucoadhesive drug delivery systems.

    Science.gov (United States)

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Reduction of treatment delivery variances with a computer-controlled treatment delivery system

    International Nuclear Information System (INIS)

    Fraass, B.A.; Lash, K.L.; Matrone, G.M.; Lichter, A.S.

    1997-01-01

    Purpose: To analyze treatment delivery variances for 3-D conformal therapy performed at various levels of treatment delivery automation, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system. Materials and Methods: All external beam treatments performed in our department during six months of 1996 were analyzed to study treatment delivery variances versus treatment complexity. Treatments for 505 patients (40,641 individual treatment ports) on four treatment machines were studied. All treatment variances noted by treatment therapists or quality assurance reviews (39 in all) were analyzed. Machines 'M1' (CLinac (6(100))) and 'M2' (CLinac 1800) were operated in a standard manual setup mode, with no record and verify system (R/V). Machines 'M3' (CLinac 2100CD/MLC) and ''M4'' (MM50 racetrack microtron system with MLC) treated patients under the control of a computer-controlled conformal radiotherapy system (CCRS) which 1) downloads the treatment delivery plan from the planning system, 2) performs some (or all) of the machine set-up and treatment delivery for each field, 3) monitors treatment delivery, 4) records all treatment parameters, and 5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3, so it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments (ports), non-axial and non-coplanar plans, multi-segment intensity modulation, and pseudo-isocentric treatments (and other plans with computer-controlled table motions). Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines, so this analysis

  14. Methods and metrics challenges of delivery-system research

    Directory of Open Access Journals (Sweden)

    Alexander Jeffrey A

    2012-03-01

    Full Text Available Abstract Background Many delivery-system interventions are fundamentally about change in social systems (both planned and unplanned. This systems perspective raises a number of methodological challenges for studying the effects of delivery-system change--particularly for answering questions related to whether the change will work under different conditions and how the change is integrated (or not into the operating context of the delivery system. Methods The purpose of this paper is to describe the methodological and measurement challenges posed by five key issues in delivery-system research: (1 modeling intervention context; (2 measuring readiness for change; (3 assessing intervention fidelity and sustainability; (4 assessing complex, multicomponent interventions; and (5 incorporating time in delivery-system models to discuss recommendations for addressing these issues. For each issue, we provide recommendations for how research may be designed and implemented to overcome these challenges. Results and conclusions We suggest that a more refined understanding of the mechanisms underlying delivery-system interventions (treatment theory and the ways in which outcomes for different classes of individuals change over time are fundamental starting points for capturing the heterogeneity in samples of individuals exposed to delivery-system interventions. To support the research recommendations outlined in this paper and to advance understanding of the "why" and "how" questions of delivery-system change and their effects, funding agencies should consider supporting studies with larger organizational sample sizes; longer duration; and nontraditional, mixed-methods designs. A version of this paper was prepared under contract with the Agency for Healthcare Research and Quality (AHRQ, US Department of Health and Human Services for presentation and discussion at a meeting on "The Challenge and Promise of Delivery System Research," held in Sterling, VA, on

  15. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery

    Directory of Open Access Journals (Sweden)

    Jones JJ

    2016-06-01

    Full Text Available Jason J Jones,1 Jeffrey Chu,2 Jacob Graham,2 Serge Zaluski,3 Guillermo Rocha4 1Jones Eye Clinic, Sioux City, IA, 2Quorum Consulting Inc., San Francisco, CA, USA; 3VISIS, Perpignan, France; 4Ocular Microsurgery & Laser Centre, Brandon, MB, Canada Purpose: The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Methods: Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. Results: The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%–12.0% (P<0.001 for data from Canada and the US and P<0.05 for data from France. Use of the preloaded delivery system also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Conclusion: Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity. Keywords: time and motion, provider impact, surgical throughput, IOL

  16. Microcontainers - an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo

    In oral delivery, it can sometimes be necessary to employ drug delivery systems to achieve targeted delivery to the intestine. Microcontainers are polymeric, cylindrical devices in the micrometer size range (Figure 1), and are suggested as a promising oral drug delivery system [1],[2]. The purpose...... of these studies was to fabricate microcontainers in either SU-8 or biodegradable poly-L-lactic acid (PLLA), and fill the microcontainers with poorly soluble drugs. Furthermore, the application of the microcontainers as an oral drug delivery system was investigated in terms of release, in situ intestinal perfusion...... medium at pH 6.5 was observed. In situ intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. At the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. The absorption rate...

  17. A facile doxorubicin-dichloroacetate conjugate nanomedicine with high drug loading for safe drug delivery.

    Science.gov (United States)

    Yang, Conglian; Wu, Tingting; Qin, Yuting; Qi, Yan; Sun, Yu; Kong, Miao; Jiang, Xue; Qin, Xianya; Shen, Yaqi; Zhang, Zhiping

    2018-01-01

    Doxorubicin (DOX) is an effective chemotherapeutic agent but severe side effects limit its clinical application. Nanoformulations can reduce the toxicity while still have various limitations, such as complexity, low drug loading capability and excipient related concerns. An amphiphilic conjugate, doxorubicin-dichloroacetate, was synthesized and the corresponding nanoparticles were prepared. The in vitro cytotoxicity and intracellular uptake, in vivo imaging, antitumor effects and systemic toxicities of nanoparticles were carried out to evaluate the therapeutic efficiency of tumor. Doxorubicin-dichloroacetate conjugate can self-assemble into nanoparticles with small amount of DSPE-PEG 2000 , leading to high drug loading (71.8%, w/w) and diminished excipient associated concerns. The nanoparticles exhibited invisible systemic toxicity and high maximum tolerated dose of 75 mg DOX equiv./kg, which was 15-fold higher than that of free DOX. It also showed good tumor targeting capability and enhanced antitumor efficacy in murine melanoma model. This work provides a promising strategy to simplify the drug preparation process, increase drug loading content, reduce systemic toxicity as well as enhance antitumor efficiency.

  18. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    Science.gov (United States)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  19. Mechanical valve assembly for xenon 133 gas delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Round, W.H. (Royal Brisbane Hospital, Herston (Australia))

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply /sup 133/Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced /sup 133/Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients.

  20. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  1. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  2. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    Science.gov (United States)

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  3. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Kwon, Taekhyun; Oh, Yu-Kyoung

    2018-01-19

    Gene therapy has been receiving widespread attention due to its unique advantage in regulating the expression of specific target genes. In the field of cancer gene therapy, modulation of gene expression has been shown to decrease oncogenic factors in cancer cells or increase immune responses against cancer. Due to the macromolecular size and highly negative physicochemical features of plasmid DNA, efficient delivery systems are an essential ingredient for successful gene therapy. To date, a variety of nanostructures and materials have been studied as nonviral gene delivery systems. In this review, we will cover nonviral delivery strategies for cancer gene therapy, with a focus on target cancer genes and delivery materials. Moreover, we will address current challenges and perspectives for nonviral delivery-based cancer gene therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Otic drug delivery systems: formulation principles and recent developments.

    Science.gov (United States)

    Liu, Xu; Li, Mingshuang; Smyth, Hugh; Zhang, Feng

    2018-04-25

    Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.

  5. The Research Progress of Targeted Drug Delivery Systems

    Science.gov (United States)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  6. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    Directory of Open Access Journals (Sweden)

    Li X

    2015-12-01

    Full Text Available Xiaoyu Li, Meiying Wu, Limin Pan, Jianlin Shi State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4 and a chemotherapeutic drug (doxorubicin and conjugate with targeting molecules (iRGD peptide for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. Keywords: mesoporous silica nanoparticles, drug delivery, tumor vasculatures targeting, antiangiogenic agent

  7. Lipid nanoparticles as drug/gene delivery systems to the retina.

    Science.gov (United States)

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  8. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    Science.gov (United States)

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  9. Manufacturing of a Secretoneurin Drug Delivery System with Self-Assembled Protamine Nanoparticles by Titration

    Science.gov (United States)

    Scheicher, Bernhard; Lorenzer, Cornelia; Gegenbauer, Katrin; Partlic, Julia; Andreae, Fritz; Kirsch, Alexander H.; Rosenkranz, Alexander R.; Werzer, Oliver

    2016-01-01

    Since therapeutic peptides and oligonucleotides are gathering interests as active pharmaceutical ingredients (APIs), nanoparticulate drug delivery systems are becoming of great importance. Thereby, the possibility to design drug delivery systems according to the therapeutic needs of APIs enhances clinical implementation. Over the last years, the focus of our group was laid on protamine-oligonucleotide-nanoparticles (so called proticles), however, the possibility to modify the size, zeta potential or loading efficiencies was limited. Therefore, at the present study we integrated a stepwise addition of protamine (titration) into the formation process of proticles loaded with the angiogenic neuropeptide secretoneurin (SN). A particle size around 130 nm was determined when proticles were assembled by the commonly used protamine addition at once. Through application of the protamine titration process it was possible to modify and adjust the particle size between approx. 120 and 1200 nm (dependent on mass ratio) without influencing the SN loading capacity. Dynamic light scattering pointed out that the difference in particle size was most probably the result of a secondary aggregation. Initially-formed particles of early stages in the titration process aggregated towards bigger assemblies. Atomic-force-microscopy images also revealed differences in morphology along with different particle size. In contrast, the SN loading was only influenced by the applied mass ratio, where a slight saturation effect was observable. Up to 65% of deployed SN could be imbedded into the proticle matrix. An in-vivo biodistribution study (i.m.) showed a retarded distribution of SN from the site of injection after the application of a SN-proticle formulation. Further, it was demonstrated that SN loaded proticles can be successfully freeze-dried and resuspended afterwards. To conclude, the integration of the protamine titration process offers new possibilities for the formulation of proticles in

  10. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    Science.gov (United States)

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  11. Hollow-duct radiation delivery system investigation

    Directory of Open Access Journals (Sweden)

    Kramer D.

    2013-05-01

    Full Text Available Investigation of hollow-duct structure for high-power laser-diode-array radiation delivery into the end-pumped large-aperture gain media is reported. A ray tracing method has been used to evaluate the performance of the structure designed for maximum transmission efficiency and output beam profile homogeneity. Variable hollow-duct lengths as well as emanating angles of laser-diode-array have been taken into account.

  12. A combined loading system integrated with portable winch and polyethylene chutes for loading of timber products

    Directory of Open Access Journals (Sweden)

    H. Hulusi Acar

    2016-01-01

    Full Text Available Truck loading operation is an important task during timber production operations in forestry. In Turkey, approximately 50 million timbers/logs are being produced per year, and then they are loaded into the logging trucks. The timber/logs are transported over the forest roads with an average of one million roundtrips. However, the traditional loading methods using manpower are mostly performed while some part is done by using loading machines which can be very costly and risky. This study aims developing a combined loading system in which heavy logs are loaded into logging trucks by pulling them by a log-line powered by a portable crane within the chute system. The slope of the log-line from ground to logging truck varied between 1% and 25%. Within the each work cycle of loading operation, only one log was loaded by pulling with portable crane. The average loading time was found as 161.8 seconds per cycle, in which 67% of the time was spent on pulling the log into the logging truck. The results indicated that the average pulling speed with crane power was 840.4 m/hr and productivity was calculated as 4.94 m3/hr. The result on system speed and productivity indicated close relations with results from previous studies. The hydraulic grapple loader or cranes are widely used and common loading machines, but they cannot be efficiently used in forestry operations, especially ones having a low timber productivity rate or having low economic value timber. In these conditions, loading methods that are cost efficient and do not require higher production rate should be employed. Therefore, a combined loading system introduced in this study can be a feasible solution for loading operations in those cases. Furthermore, it is believed that this loading system integrated with a portable crane can be cost efficient and time saving solution, as well as ergonomic and safe method in the field.

  13. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules.

    Science.gov (United States)

    Giovino, Concetta; Ayensu, Isaac; Tetteh, John; Boateng, Joshua S

    2012-05-30

    Mucoadhesive chitosan based films, incorporated with insulin loaded nanoparticles (NPs) made of poly(ethylene glycol)methyl ether-block-polylactide (PEG-b-PLA) have been developed and characterised. Blank-NPs were prepared by double emulsion solvent evaporation technique with varying concentrations of the copolymer (5 and 10%, w/v). The optimised formulation was loaded with insulin (model protein) at initial loadings of 2, 5 and 10% with respect to copolymer weight. The developed NPs were analysed for size, size distribution, surface charge, morphology, encapsulation efficiency and drug release. NPs showing negative (ζ)-potential ( 300 nm and a polydispersity index (P.I.) of ≈ 0.2, irrespective of formulation process, were achieved. Insulin encapsulation efficiencies of 70% and 30% for NPs-Insulin-2 and NPs-Insulin-5 were obtained, respectively. The in vitro release behaviour of both formulations showed a classic biphasic sustained release of protein over 5 weeks which was influenced by pH of the release medium. Optimised chitosan films embedded with 3mg of insulin loaded NPs were produced by solvent casting with homogeneous distribution of NPs in the mucoadhesive matrix, which displayed excellent physico-mechanical properties. The drug delivery system has been designed as a novel platform for potential buccal delivery of macromolecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Development of Bioadhesive Chitosan Superporous Hydrogel Composite Particles Based Intestinal Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Hitesh Chavda

    2013-01-01

    Full Text Available Bioadhesive superporous hydrogel composite (SPHC particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32 full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content, in vitro drug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.

  15. Police and Community-partnered Delivery System to Address ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Delivery System to Address Violence Against Women in the Punjab (India) ... Education, Scheduled Castes and Other Back Classes, and Land Rural Development. ... IWRA/IDRC webinar on climate change and adaptive water management.

  16. A remotely operated drug delivery system with dose control

    KAUST Repository

    Yi, Ying; Kosel, Jü rgen

    2017-01-01

    include an effective actuation stimulus and a controllable dose release mechanism. This work focuses on remotely powering an implantable drug delivery system and providing a high degree of control over the released dose. This is accomplished by integration

  17. Components of Maternal Healthcare Delivery System Contributing to ...

    African Journals Online (AJOL)

    Components of Maternal Healthcare Delivery System Contributing to Maternal Deaths ... transcripts were analyzed using a directed approach to content analysis. Excerpts were categorized according to three main components of the maternal ...

  18. Buccal Transmucosal Delivery System of Enalapril for Improved ...

    African Journals Online (AJOL)

    Methods: Transmucosal drug delivery systems of enalapril maleate were ... Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals. (DOAJ) ... investigated for various drugs including protein.

  19. A mucoadhesive in situ gel delivery system for paclitaxel

    OpenAIRE

    Jauhari, Saurabh; Dash, Alekha K.

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at d...

  20. Polysaccharides-based polyelectrolyte nanoparticles as protein drugs delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Shu Shujun; Sun Lei; Zhang Xinge, E-mail: zhangxinge@nankai.edu.cn [Nankai University, Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer Chemistry (China); Wu Zhongming [Tianjin Medical University, Metabolic Diseases Hospital (China); Wang Zhen; Li Chaoxing, E-mail: lcx@nankai.edu.cn [Nankai University, Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer Chemistry (China)

    2011-09-15

    Polysaccharides-based nanoparticles were prepared by synthesized quaternized chitosan and dextran sulfate through simple ionic-gelation self-assembled method. Introduction of quaternized groups was intended to increase water solubility of chitosan and make the nanoparticles have broader pH sensitive range which can remain more stable in physiological pH and decrease the loss of protein drugs caused by the gastric cavity. The load of BSA was affected by molecular parameter, i.e., degree of substitution, and average molecular weight of quaternized chitosan, as well as concentration of BSA. Fast release occurred in phosphate buffer solution (pH 7.4) while the release was slow in hydrochloric acid (pH 1.4). The drug release mechanism is Fickian diffusion through release kinetics analysis. Cell uptake demonstrated nanoparicles can internalize into Caco-2 cells, which suggested that nanoparticles had good biocompatibility. No significant conformation change was noted for the released BSA in comparison with native BSA using circular dichroism spectroscopy. This kind of novel composite nanoparticles may be a promising delivery system for oral protein and peptide drugs.

  1. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    OpenAIRE

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time interva...

  2. Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow

    Science.gov (United States)

    Gupta, Atma Ram; Kumar, Ashwani

    2017-12-01

    Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.

  3. Assessing Power System Stability Following Load Changes and Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    D. V. Ngo

    2018-04-01

    Full Text Available An increase in load capacity during the operation of a power system usually causes voltage drop and leads to system instability, so it is necessary to monitor the effect of load changes. This article presents a method of assessing the power system stability according to the load node capacity considering uncertainty factors in the system. The proposed approach can be applied to large-scale power systems for voltage stability assessment in real-time.

  4. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...... turbine structure. Results presented shows fatigue reductions of up to 40% and ultimate load reduction of up to 19%. The ultimate load reduction increases even more when the over load protection system in the hydraulic soft yaw system is introduced and results show how the exact extreme load cut off...... operates. Further it is analyzed how the soft yaw system influence the power production of the turbine. It is shown that the influence is minimal, but at larger yaw errors the effect is possitive. Due to the implemeted functions in the hydraulic soft yaw system such as even load distribution on the pinions...

  5. Model for determining and optimizing delivery performance in industrial systems

    Directory of Open Access Journals (Sweden)

    Fechete Flavia

    2017-01-01

    Full Text Available Performance means achieving organizational objectives regardless of their nature and variety, and even overcoming them. Improving performance is one of the major goals of any company. Achieving the global performance means not only obtaining the economic performance, it is a must to take into account other functions like: function of quality, delivery, costs and even the employees satisfaction. This paper aims to improve the delivery performance of an industrial system due to their very low results. The delivery performance took into account all categories of performance indicators, such as on time delivery, backlog efficiency or transport efficiency. The research was focused on optimizing the delivery performance of the industrial system, using linear programming. Modeling the delivery function using linear programming led to obtaining precise quantities to be produced and delivered each month by the industrial system in order to minimize their transport cost, satisfying their customers orders and to control their stock. The optimization led to a substantial improvement in all four performance indicators that concern deliveries.

  6. Extreme loads seismic testing of conduit systems

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Harrison, S.; Shi, Z.T.

    1991-01-01

    Rigid steel conduit (thin-wall tubes with threaded connections) containing electrical cabling are a common feature in nuclear power plants. Conduit systems are in many cases classified in U.S.A. practice as Seismic Category I structures. this paper summarizes results and others aspects of a dynamic test program conducted to investigate conduit systems seismic performance under three-axis excitation for designs representative at a nuclear power plant sited near Ft. Worth, Texas (a moderate seismic zone), with a Safe Shutdown Earthquake (SSE) of 0.12 g. Test specimens where subjected to postulated seismic events, including excitation well in excess of Safe Shutdown Earthquake events typical for U.S.A. nuclear power stations. A total of 18 conduit systems of 9-meter nominal lengths were shake table mounted and subjected to a variety of tests. None of the specimens suffered loss of load capacity when subjected to a site-enveloping Safe Shutdown Earthquake (SSE). Clamp/attachment hardware failures only began to occur when earthquake input motion was scaled upward to minimum values of 2.3-4.6 times site enveloping SSE response spectra. Tensile and/or shear failure of clamp attachment bolts or studs was the failure mode in all case in which failure was induced. (author)

  7. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems.

    Science.gov (United States)

    Shinkar, Dattatraya Manohar; Dhake, Avinash Sridhar; Setty, Chitral Mallikarjuna

    2012-01-01

    Since the early 1980s the concept of mucoadhesion has gained considerable interest in pharmaceutical technology. The various advantages associated with these systems made buccal drug delivery as a novel route of drug administration. It prolongs the residence time of the dosage form at the site of application. These systems remain in close contact with the absorption tissue, the mucous membrane, and thus contribute to improved and/or better therapeutic performance of the drug and of both local and systemic effects. This review highlights the anatomy and structure of oral mucosa, mechanism and theories of mucoadhesion, factors affecting mucoadhesion, characteristics and properties of desired mucoadhesive polymers, various types of dosage forms, and general considerations in design of mucoadhesive buccal dosage forms, permeation enhancers, and evaluation methods. Over the past few decades the mucoadhesive buccal drug delivery system has received a great deal of attention to develop mucoadhesive dosage forms to enable the prolonged retention at the site of action, providing a controlled release of drug for improved therapeutic outcome. Mucoadhesive drug delivery gives facility to include a permeation enhancer/enzyme inhibitor or pHmodifier in the formulation and versatility in designing as multidirectional or unidirectional release systems for local and systemic action. Local delivery to tissues of the oral cavity has a number of applications, including treatment of local conditions such as periodontal disease, bacterial and fungal infections, and aphthous stomatitis and vesiculo bullous diseases. For the treatment of chronic diseases, the mucoadhesive buccal drug delivery system allows easily accessibility and is generally well-accepted for administeringdrugs by systemic action.

  8. Microneedle-Assisted Percutaneous Delivery of a Tetramethylpyrazine-Loaded Microemulsion

    Directory of Open Access Journals (Sweden)

    Qiang Zu

    2017-11-01

    Full Text Available This study examined the efficacy of the percutaneous delivery of a tetramethylpyrazine-loaded microemulsion (TMP-ME on skin pretreated with microneedles (MN. The TMP-ME formulation was optimized in vitro with skin permeation experiments, using a uniform experimental design, guided by a pseudo-ternary phase diagram, in which the TMP skin permeation level and mean particle size were indices. The effects of MN pretreatment on skin permeation by TMP-ME were assessed using in vitro skin permeation, in vivo skin microdialysis, and pharmacokinetic studies in rats. The influence of MN pretreatment on the skin barrier function was evaluated by measuring the electrical resistance of rat skin before and after MN insertion. In the optimal formulation of TMP-ME, the weight percentages of Maisine® 35-1 (oil phase, Labrasol® (surfactant, and Transcutol® P (co-surfactant were 7%, 30% and 10%, respectively, with 1.5% TMP loading. In the in vitro skin permeation study, MN-assisted TMP-ME exhibited a two-fold increase in a 24-h cumulative TMP permeation compared with TMP-ME alone (p < 0.05. In the skin microdialysis study, TMP in MN-assisted TMP-ME exhibited a 1.25-fold increase in Cmax, a 0.93-fold decrease in Tmax, and a 0.88-fold increase in AUC0–t (p < 0.05. Similarly, in the pharmacokinetic study, TMP in MN-assisted TMP-ME exhibited a 2.11-fold increase in Cmax, a 0.67-fold decrease in Tmax, and a 1.07-fold increase in AUC0–t (p < 0.05. The percutaneous electrical resistance of rat skin before and after MN insertion was 850 ± 50 Ω/cm2 and 283 ± 104 Ω/cm2 respectively, indicating that MN dramatically compromises the skin barrier. These results suggest that MN assistance increases the skin permeation rate and the extent of percutaneous absorption of TMP-ME, and that the mechanism may involve the reversible barrier perturbation effect. The rate and extent of percutaneous absorption of TMP-ME can be significantly enhanced by MN assistance, possibly

  9. Microneedle-Assisted Percutaneous Delivery of a Tetramethylpyrazine-Loaded Microemulsion.

    Science.gov (United States)

    Zu, Qiang; Yu, Yanyan; Bi, Xiaolin; Zhang, Ren; Di, Liuqing

    2017-11-21

    This study examined the efficacy of the percutaneous delivery of a tetramethylpyrazine-loaded microemulsion (TMP-ME) on skin pretreated with microneedles (MN). The TMP-ME formulation was optimized in vitro with skin permeation experiments, using a uniform experimental design, guided by a pseudo-ternary phase diagram, in which the TMP skin permeation level and mean particle size were indices. The effects of MN pretreatment on skin permeation by TMP-ME were assessed using in vitro skin permeation, in vivo skin microdialysis, and pharmacokinetic studies in rats. The influence of MN pretreatment on the skin barrier function was evaluated by measuring the electrical resistance of rat skin before and after MN insertion. In the optimal formulation of TMP-ME, the weight percentages of Maisine ® 35-1 (oil phase), Labrasol ® (surfactant), and Transcutol ® P (co-surfactant) were 7%, 30% and 10%, respectively, with 1.5% TMP loading. In the in vitro skin permeation study, MN-assisted TMP-ME exhibited a two-fold increase in a 24-h cumulative TMP permeation compared with TMP-ME alone ( p < 0.05). In the skin microdialysis study, TMP in MN-assisted TMP-ME exhibited a 1.25-fold increase in C max , a 0.93-fold decrease in T max , and a 0.88-fold increase in AUC 0-t ( p < 0.05). Similarly, in the pharmacokinetic study, TMP in MN-assisted TMP-ME exhibited a 2.11-fold increase in C max , a 0.67-fold decrease in T max , and a 1.07-fold increase in AUC 0-t ( p < 0.05). The percutaneous electrical resistance of rat skin before and after MN insertion was 850 ± 50 Ω/cm² and 283 ± 104 Ω/cm² respectively, indicating that MN dramatically compromises the skin barrier. These results suggest that MN assistance increases the skin permeation rate and the extent of percutaneous absorption of TMP-ME, and that the mechanism may involve the reversible barrier perturbation effect. The rate and extent of percutaneous absorption of TMP-ME can be significantly enhanced by MN assistance, possibly

  10. Computational and experimental model of transdermal iontophorethic drug delivery system.

    Science.gov (United States)

    Filipovic, Nenad; Saveljic, Igor; Rac, Vladislav; Graells, Beatriz Olalde; Bijelic, Goran

    2017-11-30

    The concept of iontophoresis is often applied to increase the transdermal transport of drugs and other bioactive agents into the skin or other tissues. It is a non-invasive drug delivery method which involves electromigration and electroosmosis in addition to diffusion and is shown to be a viable alternative to conventional administration routs such as oral, hypodermic and intravenous injection. In this study we investigated, experimentally and numerically, in vitro drug delivery of dexamethasone sodium phosphate to porcine skin. Different current densities, delivery durations and drug loads were investigated experimentally and introduced as boundary conditions for numerical simulations. Nernst-Planck equation was used for calculation of active substance flux through equivalent model of homogeneous hydrogel and skin layers. The obtained numerical results were in good agreement with experimental observations. A comprehensive in-silico platform, which includes appropriate numerical tools for fitting, could contribute to iontophoretic drug-delivery devices design and correct dosage and drug clearance profiles as well as to perform much faster in-silico experiments to better determine parameters and performance criteria of iontophoretic drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Preparation and characterization of dutasteride-loaded nanostructured lipid carriers coated with stearic acid-chitosan oligomer for topical delivery.

    Science.gov (United States)

    Noor, Norhayati Mohamed; Sheikh, Khalid; Somavarapu, Satyanarayana; Taylor, Kevin M G

    2017-08-01

    Dutasteride, used for treating benign prostate hyperplasia (BPH), promotes hair growth. To enhance delivery to the hair follicles and reduce systemic effects, in this study dutasteride has been formulated for topical application, in a nanostructured lipid carrier (NLC) coated with chitosan oligomer-stearic acid (CSO-SA). CSO-SA has been successfully synthesized, as confirmed using 1 H NMR and FTIR. Formulation of dutasteride-loaded nanostructured lipid carriers (DST-NLCs) was optimized using a 2 3 full factorial design. This formulation was coated with different concentrations of stearic acid-chitosan solution. Coating DST-NLCs with 5% SA-CSO increased mean size from 187.6±7.0nm to 220.1±11.9nm, and modified surface charge, with zeta potentials being -18.3±0.9mV and +25.8±1.1mV for uncoated and coated DST-NLCs respectively. Transmission electron microscopy showed all formulations comprised approximately spherical particles. DST-NLCs, coated and uncoated with CSO-SA, exhibited particle size stability over 60days, when stored at 4-8°C. However, NLCs coated with CSO (without conjugation) showed aggregation when stored at 4-8°C after 30days. The measured particle size for all formulations stored at 25°C suggested aggregation, which was greatest for DST-NLCs coated with 10% CSO-SA and 5% CSO. All nanoparticle formulations exhibited rapid release in an in vitro release study, with uncoated NLCs exhibiting the fastest release rate. Using a Franz diffusion cell, no dutasteride permeated through pig ear skin after 48h, such that it was not detected in the receptor chamber for all samples. The amount of dutasteride in the skin was significantly different (pchitosan conjugate was successfully prepared, and modified the surface charge of DST-NLCs from negative to positive. These stable, less cytotoxic, positively-charged dutasteride-loaded nanostructured lipid carriers, with stearic acid-chitosan oligomer conjugate, are appropriate for topical delivery and have

  12. Novel local drug delivery system using thermoreversible gel in combination with polymeric microspheres or liposomes.

    Science.gov (United States)

    Arai, Takao; Benny, Ofra; Joki, Tatsuhiro; Menon, Lata G; Machluf, Marcelle; Abe, Toshiaki; Carroll, Rona S; Black, Peter M

    2010-04-01

    The purpose of our study was to evaluate the application of thermoreversible gelation polymer (TGP) as a local drug delivery system for malignant glioma. Polymeric microspheres or liposomes loaded with doxorubicin (sphere-dox or lipo-dox) were combined with TGP to provide continuous drug delivery of doxorubicin (dox) for kinetic release studies and cell viability assays on glioma cell lines in vitro. For in vivo studies, TGP loaded with dox alone (TGP-dox) was combined with sphere-dox or lipo-dox. Their antitumor effects on subcutaneous human glioma xenografts were evaluated in nude mice. In vitro, TGP combined with sphere-dox or lipo-dox released dox for up to 30 days. In vivo, TGP-dox combined with sphere-dox or lipo-dox inhibited subcutaneous glioma tumor growth until day 32 and day 38, respectively. TGP in combination with microspheres or liposomes successfully prolonged the release of dox and its antitumor effects.

  13. Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery

    KAUST Repository

    Omar, Haneen

    2016-11-29

    The delivery of large cargos of diameter above 15 nm for biomedical applications has proved challenging since it requires biocompatible, stably-loaded, and biodegradable nanomaterials. In this study, we describe the design of biodegradable silica-iron oxide hybrid nanovectors with large mesopores for large protein delivery in cancer cells. The mesopores of the nanomaterials spanned from 20 to 60 nm in diameter and post-functionalization allowed the electrostatic immobilization of large proteins (e.g. mTFP-Ferritin, ~ 534 kDa). Half of the content of the nanovectors was based with iron oxide nanophases which allowed the rapid biodegradation of the carrier in fetal bovine serum and a magnetic responsiveness. The nanovectors released large protein cargos in aqueous solution under acidic pH or magnetic stimuli. The delivery of large proteins was then autonomously achieved in cancer cells via the silica-iron oxide nanovectors, which is thus a promising for biomedical applications.

  14. Heavy Load Rollers in Logistic Systems

    Directory of Open Access Journals (Sweden)

    B. Künne

    2003-01-01

    Full Text Available Wheels with polyurethane bandages are in common use in logistic systems with friction gear actuation. Many research projects have studied the mechanical construction of these heavy load wheels. The studies have been theoretical as well as experimental. Research interests at the department of machine elements include the wear in the presence of intermediate material on the contact area between the bandage surface and the contact surface on which the wheel rolls off. This problem, which is observed when examining this tribochemical system, has not been studied before. Within this project both one-phase intermediate materials such as sand, water, cutting-cooling-emulsion, metal splinters and two-phase intermediate materials such as sand/water and combinations of the latter were taken into consideration. In addition, the exposure of the bandage hardness, the cross linking agent of the polyurethane, the mechanical stress, and the slip are observed. The analysis of the experimental results indicates that friction gear actuators can be constructed abrasion-optimised, taking into account special interfering effects in the form of intermediate materials in the contact area.

  15. Recent trends in challenges and opportunities of Transdermal drug delivery system

    OpenAIRE

    P.M.Patil; P.D.Chaudhari; Jalpa K.Patel; K.A.Kedar; P.P.Katolkar

    2012-01-01

    Drug delivery system relates to the production of a drug, its delivery medium, and the way of administration. Drug delivery systems are even used for administering nitroglycerin. Transdermal drug delivery system is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Various types of transdermal patches are used. There are various methods to enhance the transdermal drug delivery system. But using microfabricated microneedles drugs are delivered v...

  16. Svelte Integrated Delivery System Performance Examined Through Diagnostic Catheter Delivery : The SPEED Registry

    NARCIS (Netherlands)

    Khattab, Ahmed A.; Nijhoff, Freek; Schofer, Joachim; Berland, Jacques; Meier, Bernhard; Nietlispach, Fabian; Agostoni, Pierfrancesco; Brucks, Steffen; Stella, Pieter

    2015-01-01

    Aims: The multi-center SPEED registry evaluated the procedural success and in-hospital clinical outcomes of direct stenting with the Svelte 'all-in-one' coronary stent Integrated Delivery System (IDS) through diagnostic catheters to identify the clinical indications for which this approach is

  17. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application.

    Science.gov (United States)

    Aditya, N P; Espinosa, Yadira Gonzalez; Norton, Ian T

    2017-07-01

    Increased health risk associated with the sedentary life style is forcing the food manufacturers to look for food products with specific or general health benefits e.g. beverages enriched with nutraceuticals like catechin, curcumin rutin. Compounds like polyphenols, flavonoids, vitamins are the good choice of bioactive compounds that can be used to fortify the food products to enhance their functionality. However due to low stability and bioavailability of these bioactives (both hydrophobic and hydrophilic) within the heterogeneous food microstructure and in the Gastro Intestinal Tract (GIT), it becomes extremely difficult to pass on the real health benefits to the consumers. Recent developments in the application of nano-delivery systems for food product development is proving to be a game changer which has raised the expectations of the researchers, food manufacturers and consumers regarding possibility of enhancing the functionality of bioactives within the fortified food products. In this direction, nano/micro delivery systems using lipids, surfactants and other materials (carbohydrates, polymers, complexes, protein) have been fabricated to stabilize and enhance the biological activity of the bioactive compounds. In the present review, current status of the various delivery systems that are used for the delivery of hydrophilic bioactives and future prospects for using other delivery systems that have been not completely explored for the delivery of hydrophilic bioactives e.g. niosomes; bilosomes, cubosomes are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Elastin-Like Recombinamers As Smart Drug Delivery Systems.

    Science.gov (United States)

    Arias, F Javier; Santos, Mercedes; Ibanez-Fonseca, Arturo; Pina, Maria Jesus; Serrano, Sofía

    2018-02-19

    Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This review focuses on biomaterials suitable for this purpose and that include elastin-like recombinamers (ELRs), a class of proteinaceous polymers bioinspired by natural elastin, designed using recombinant technologies. The self-assembly and thermoresponsive behaviour of these systems, along with their biodegradability, biocompatibility and well-defined composition as a result of their tailormade design, make them particularly attractive for controlled drug delivery. ELR-based delivery systems that allow targeted delivery are reviewed, especially ELR-drug recombinant fusion constructs, ELR-drug systems chemically bioconjugated in their monomeric and soluble forms, and drug encapsulation by nanoparticle-forming ELRs. Subsequently, the review focuses on those drug carriers in which smart release is triggered by pH or temperature with a particular focus on cancer treatments. Systems for controlled drug release based on depots and hydrogels that act as both a support and reservoir in which drugs can be stored will be described, and their applications in drug delivery discussed. Finally, smart drug-delivery systems not based on ELRs, including those comprising proteins, synthetic polymers and non-polymeric systems, will also be briefly discussed. Several different constructions based on ELRs are potential candidates for controlled drug delivery to be applied in advanced biomedical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems

    Science.gov (United States)

    Peng, Jinrong; Qi, Tingting; Liao, Jinfeng; Fan, Min; Luo, Feng; Li, He; Qian, Zhiyong

    2012-03-01

    In this study, a temperature/pH dual-response nanogel based on NIPAm, MAA, and PEGMA was synthesized via emulsion polymerization and characterized by 1H-NMR, FT-IR, TEM and DLS. By introducing a novel initiator, through which PEG-AIBN-PEG was synthesized, it was revealed that the PEG segments from PEG-AIBN-PEG with a dosage of initiator had a significant influence over the macro-state and stability of the nanogels. In order to optimize the feeding prescription for better application as a drug delivery system, the effect of the co-monomer contents on the response to stimuli (temperature and pH value) and cytotoxicity of the nanogels has been studied in detail. The results demonstrated that the responsiveness, reversibility and volume phase transition critical value of the nanogels could be controlled by adjusting the feeding ratio of the co-monomers in the synthesis process. MTT assay results revealed that nanogels with appropriate compositions showed good biocompatibility and relatively low toxicity. Most importantly, by studying the drug loading behavior, it was found that the dimensions of the drug molecules had a considerable influence on the drug loading efficiency and loading capacity of the nanogels, and that the mechanism by which drug molecule sizes influence the drug loading behavior of nanogels needs further investigation. The results indicated that such PNMP nanogels might have potential applications in drug delivery and other medical applications, but that the drug loading mechanism must be further developed.

  20. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    Science.gov (United States)

    Hoffmeister, Cristiane RD; Durli, Taís L.; Schaffazick, Scheila R.; Raffin, Renata P.; Bender, Eduardo A.; Beck, Ruy CR; Pohlmann, Adriana R.; Guterres, Sílvia S.

    2012-05-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% ( w/ v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation.

  1. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    Directory of Open Access Journals (Sweden)

    J. O. Woo

    2014-01-01

    Full Text Available Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release.

  2. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    Science.gov (United States)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  3. Modeling, Estimation, and Control of Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten

    and simulating different slung load suspension types. It further includes detection and response to wire slacking and tightening, it models the aerodynamic coupling between the helicopter and the load, and can be used for multilift systems with any combination of multiple helicopters and multiple loads...

  4. Modelling of Generic Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; La Cour-Harbo, Anders

    2006-01-01

    of Least Constraint using the Udwadia-Kalaba equation and can be used to model all body to body slung load suspension types. The model gives an intuitive and easy-to-use way of modelling and simulating di erent slung load suspension types and it includes detection and response of wire slacking...

  5. Oral delivery of peptides and proteins using lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-01-01

    INTRODUCTION: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism...... by which intestinal absorption of peptides and proteins is promoted. AREAS COVERED: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two...... and proteins. EXPERT OPINION: Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve...

  6. Hydrocolloid-based nutraceutical delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Janaswamy, Srinivas; Youngren, Susanne R. (Purdue)

    2012-07-11

    Nutraceuticals are important due to their inherent health benefits. However, utilization and consumption are limited by their poor water solubility and instability at normal processing and storage conditions. Herein, we propose an elegant and novel approach for the delivery of nutraceuticals in their active form using hydrocolloid matrices that are inexpensive and non-toxic with generally recognized as safe (GRAS) status. Iota-carrageenan and curcumin have been chosen as models of hydrocolloid and nutraceutical compounds, respectively. The iota-carrageenan network maintains a stable organization after encapsulating curcumin molecules, protects them from melting and then releases them in a sustained manner. These findings lay a strong foundation for developing value-added functional and medicinal foods.

  7. Establishment of protein delivery systems targeting podocytes.

    Directory of Open Access Journals (Sweden)

    Wen Chih Chiang

    2010-07-01

    Full Text Available Podocytes are uniquely structured cells that are critical to the kidney filtration barrier. Their anatomic location on the outer side of the glomerular capillaries expose podocytes to large quantities of both plasma and urinary components and thus are reachable for drug delivery. Recent years have made clear that interference with podocyte-specific disease pathways can modulate glomerular function and influence severity and progression of glomerular disease.Here, we describe studies that show efficient transport of proteins into the mammalian cells mouse 3T3 fibroblasts and podocytes, utilizing an approach termed profection. We are using synthetic lipid structures that allow the safe packing of proteins or antibodies resulting in the subsequent delivery of protein into the cell. The uptake of lipid coated protein is facilitated by the intrinsic characteristic of cells such as podocytes to engulf particles that are physiologically retained in the extracellular matrix. Profection of the restriction enzyme MunI in 3T3 mouse fibroblasts caused an increase in DNA degradation. Moreover, purified proteins such as beta-galactosidase and the large GTPase dynamin could be profected into podocytes using two different profection reagents with the success rate of 95-100%. The delivered beta-galactosidase enzyme was properly folded and able to cleave its substrate X-gal in podocytes. Diseased podocytes are also potential recipients of protein cargo as we also delivered fluorophore labeled IgG into puromycin treated podocytes. We are currently optimizing our protocol for in vivo profection.Protein transfer is developing as an exciting tool to study and target highly differentiated cells such as podocytes.

  8. Adamantane in Drug Delivery Systems and Surface Recognition

    OpenAIRE

    Adela Štimac; Marina Šekutor; Kata Mlinarić-Majerski; Leo Frkanec; Ruža Frkanec

    2017-01-01

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based struc...

  9. Waste feed delivery program systems engineering implementation plan

    International Nuclear Information System (INIS)

    O'Toole, S.M.; Hendel, B.J.

    1998-01-01

    This document defines the systems engineering processes and products planned by the Waste Feed Delivery Program to develop the necessary and sufficient systems to provide waste feed to the Privatization Contractor for Phase 1. It defines roles and responsibilities for the performance of the systems engineering processes and generation of products

  10. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    OpenAIRE

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    This paper presents the design and verification of a swing reducing controller for helicopter slung load systems usingintentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integra...

  11. Candesartan cilexetil loaded nanodelivery systems for improved oral bioavailability.

    Science.gov (United States)

    Dudhipala, Narendar; Veerabrahma, Kishan

    2017-02-01

    Candesartan cilexetil (CC), an antihypertensive drug, has low oral bioavailability due to poor solubility and hepatic first-pass metabolism. These are major limitations in oral delivery of CC. Several approaches are known to reduce the problems of solubility and improve the bioavailability of CC. Among various approaches, nanotechnology-based delivery of CC has potential to overcome the challenges associated with the oral administration. This review focuses on various nano-based delivery systems available and tried for improving the aqueous solubility, dissolution and consequently bioavailability of CC upon oral administration. Of all, solid lipid nanoparticles appear to be promising delivery system, based on current reported results, for delivery of CC, as this system improved the oral bioavailability and possessed prolonged pharmacodynamic effect.

  12. Mechanochemical solvent-free in situ synthesis of drug-loaded {Cu2(1,4-bdc)2(dabco)}n MOFs for controlled drug delivery

    Science.gov (United States)

    Nadizadeh, Zahra; Naimi-Jamal, M. Reza; Panahi, Leila

    2018-03-01

    In the present study, ibuprofen-loaded nano metal-organic frameworks (NMOFs) {Cu2(1,4-bdc)2(dabco)}n and {Cu2(1,4-bdc-NH2)2(dabco)}n (bdc=benzenedicarboxylic acid, and dabco=diazabicyclooctane) were synthesized by ball-milling at room temperature in 2 h. The produced drug-loaded Cu-NMOFs were studied as ibuprofen drug delivery system and exhibited well-defined drug release behavior, exceptionally high drug loading capacities and the ability to entrap the model drug. The loading efficiency for ibuprofen was determined about 50.54% and 50.27%, respectively. The drug release of NMOFs was also monitored, and all of the loaded drug was released in 1 day. The NMOFs were characterized by FT-IR spectroscopy, X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), SEM (scanning electron microscopy), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma (ICP), UV-vis spectroscopy and N2 adsorption porosimetry (BET&BJH).

  13. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications

    Science.gov (United States)

    Spadaro, Salvatore; Santoro, Marco; Barreca, Francesco; Scala, Angela; Grimato, Simona; Neri, Fortunato; Fazio, Enza

    2018-02-01

    A PEGylated-PLGA random nanofibrous membrane loaded with gold and iron oxide nanoparticles and with silibinin was prepared by electrospinning deposition. The nanofibrous membrane can be remotely controlled and activated by a laser light or magnetic field to release biological agents on demand. The nanosystems were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analyses. The drug loading efficiency and drug content percentages were determined by UV-vis optical absorption spectroscopy. The nanofibrous membrane irradiated by a relatively low-intensity laser or stimulated by a magnetic field showed sustained silibinin release for at least 60 h, without the burst effect. The proposed low-cost electrospinning procedure is capable of assembling, via a one-step procedure, a stimuli-responsive drug-loaded nanosystem with metallic nanoparticles to be externally activated for controlled drug delivery.

  14. Adaptive Control System for Autonomous Helicopter Slung Load Operations

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2010-01-01

    system on the helicopter that measures the position of the slung load. The controller is a combined feedforward and feedback scheme for simultaneous avoidance of swing excitation and active swing damping. Simulations and laboratory flight tests show the effectiveness of the combined control system......This paper presents design and verification of an estimation and control system for a helicopter slung load system. The estimator provides position and velocity estimates of the slung load and is designed to augment existing navigation in autonomous helicopters. Sensor input is provided by a vision......, yielding significant load swing reduction compared to the baseline controller....

  15. Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Traore, Mahama A.; Behkam, Bahareh, E-mail: behkam@vt.edu [Mechanical Engineering Department, Virginia Tech, Blacksburg, Virginia 24061 (United States); School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061 (United States); Damico, Carmen M. [Mechanical Engineering Department, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-10-27

    Flagellated bacteria have superb self-propulsion capabilities and are able to effectively move through highly viscous fluid and semi-solid (porous) environments. This innate aptitude has been harvested for whole-cell actuation of bio-hybrid microrobotic systems with applications in directed transport and microassembly. In this work, we present the biomanufacturing of Nanoscale Bacteria-Enabled Autonomous Delivery Systems (NanoBEADS) by controlled self-assembly and investigate the role of nanoparticle load on the dynamics of their self-propulsion in aqueous environments. Each NanoBEADS agent is comprised of spherical polystyrene nanoparticles assembled onto the body of a flagellated Escherichia coli bacterium. We demonstrate that the NanoBEADS assembly configuration is strongly dependent upon the nanoparticles to bacteria ratio. Furthermore, we characterized the stochastic motion of the NanoBEADS as a function of the quantity and size of the nanoparticle load and computationally analyzed the effect of the nanoparticle load on the experienced drag force. We report that the average NanoBEADS swimming speed is reduced to 65% of the free-swimming bacteria speed (31 μm/s) at the highest possible load. NanoBEADS can be utilized as single agents or in a collaborative swarm in order to carry out specific tasks in a wide range of applications ranging from drug delivery to whole cell biosensing.

  16. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.

    Science.gov (United States)

    Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie

    2016-01-01

    Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.

  17. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  18. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; German, A. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Dakin, B. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  19. Cyclosporine Amicellar delivery system for dry eyes.

    Science.gov (United States)

    Kang, Han; Cha, Kwang-Ho; Cho, Wonkyung; Park, Junsung; Park, Hee Jun; Sun, Bo Kyung; Hyun, Sang-Min; Hwang, Sung-Joo

    2016-01-01

    The objectives of this study were to develop stable cyclosporine A (CsA) ophthalmic micelle solutions for dry-eye syndrome and evaluate their physicochemical properties and therapeutic efficacy. CsA-micelle solutions (MS-CsA) were created by a simple method with Cremophor EL, ethanol, and phosphate buffer. We investigated the particle size, pH, and osmolarity. In addition, long-term physical and chemical stability for MS-CsA was observed. To confirm the therapeutic efficacy, tear production in dry eye-induced rabbits was evaluated using the Schirmer tear test (STT). When compared to a commercial product, Restasis, MS-CsA demonstrated improvement in goblet-cell density and conjunctival epithelial morphology, as demonstrated in histological hematoxylin and eosin staining. MS-CsA had a smaller particle size (average diameter 14-18 nm) and a narrow size distribution. Physicochemical parameters, such as particle size, pH, osmolarity, and remaining CsA concentration were all within the expected range of 60 days. STT scores significantly improved in MS-CsA treated groups (Pdry eye-induced rabbits thinned with loss of goblet cells. However, after 5 days of treatment with drug formulations, rabbit conjunctivas recovered epithelia and showed a relative increase in the number of goblet cells. The results of this study indicate the potential use of a novel MS for the ophthalmic delivery of CsA in treating dry eyes.

  20. H2T liquid hydrogen delivery system

    International Nuclear Information System (INIS)

    Roy, S.

    2002-01-01

    This Power Point presentation provides a preliminary evaluation of the cost of delivering liquid hydrogen produced in Quebec to hydrogen fuelled cars in Germany. The presentation describes the chain of events regarding liquid hydrogen delivery, beginning with the production of hydrogen from an initial source of hydro power. Water passes through an electrolyzer where hydrogen is liquefied and then placed into a container which is transported to market via truck, rail or tanker. Once transported, the hydrogen fuel is made available for consumers at refueling stations. The paper lists the costs related to transportation with reference to safety rules, pure transportation costs, leasing fees for the containers, and permission of customs duties for the import of hydrogen and export of empty containers between Quebec and Germany. A graph depicting a typical refueling station in Germany and the refueling events per hour was presented. For safety reasons, refueling is performed by a refueling robot. A blueprint of safety and protection distances at a refueling station was also presented. tabs., figs

  1. Flexible power delivery system and its intelligent functions

    International Nuclear Information System (INIS)

    Glamochanin, Vlastimir; Andonov, Dragan

    1996-01-01

    This paper presents some of the features and capabilities of the novel energy distribution system called FRIENDS. The main FRIENDS objective is distribution system reliability, with flexible system structure reconfiguration, inclusion of dispersed energy generation systems. Altogether, it represents a new concept of reliable and economic electric power delivery to end users. The FRIENDS project is a challenge for future research and development, including new technology and devices for the implementation of such an integrated system. (author)

  2. Preparing and Characterizing Chitosan Nanoparticles Containing Hemiscorpius lepturus Scorpion Venom as an Antigen Delivery System

    Directory of Open Access Journals (Sweden)

    Mohammadpour Dounighi, N.

    2012-11-01

    Full Text Available In recent years, chitosan nanoparticles have been studied widely for protein delivery. In this study, Hemiscorpius lepturus (HL venom was encapsulated in chitosan nanoparticles. The aim of the present work was to carry out a systematic study for preparing biocompatible and biodegradable nanoparticles for loading HL scorpion venom and to evaluate their potential as an antigen delivery system. In this study, HL venom loaded chitosan nanoparticles fabricated by ionic gelation of chitosan and tripolyphosphate and the factors which may be influenced in the preparation of nanoparticles were analyzed. Also, their physicochemical properties and in vitro release behavior were studied. The optimum encapsulation efficiency and capacity were observed when the chitosan concentration and HL venom were 2mg/ml and 500µg/ml, respectively. The HL venom loaded nanoparticles were in the size range of 130-160nm (polydispersity index values of 0.423 and exhibited the positive zeta potential. Transmission electron microscope imaging showed spherical and smooth surface of nanoparticles. The profiles of the release exhibited a burst releases about 50% in the first 4 hr and then slowed down at a constant rate. The obtained results suggested that the chitosan nanoparticles prepared in this work had the potential for antigen delivery.

  3. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    Science.gov (United States)

    Thakkar, Hetal; Nangesh, Jitesh; Parmar, Mayur; Patel, Divyakant

    2011-01-01

    Background: Raloxifene, a second-generation selective estrogen receptor modulator (SERM) used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods: In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS) formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM) and in vitro intestinal permeability. Results: The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion: Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation. PMID:21966167

  4. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    Directory of Open Access Journals (Sweden)

    Hetal Thakkar

    2011-01-01

    Full Text Available Background : Raloxifene, a second-generation selective estrogen receptor modulator (SERM used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods : In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM and in vitro intestinal permeability. Results : The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion : Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation.

  5. Design review report for the MCO loading system

    Energy Technology Data Exchange (ETDEWEB)

    Brisbin, S.A.

    1997-06-23

    This design report presents the design of the MCO Loading System. The report includes final design drawings, a system description, failure modes and recovery plans, a system operational description, and stress analysis.

  6. Design review report for the MCO loading system

    International Nuclear Information System (INIS)

    Brisbin, S.A.

    1997-01-01

    This design report presents the design of the MCO Loading System. The report includes final design drawings, a system description, failure modes and recovery plans, a system operational description, and stress analysis

  7. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

    Science.gov (United States)

    Jiang, Bingbing; Barnett, John B; Li, Bingyun

    2009-01-01

    There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464

  8. High-Throughput Lipolysis in 96-Well Plates for Rapid Screening of Lipid-Based Drug Delivery Systems

    DEFF Research Database (Denmark)

    Mosgaard, Mette D; Sassene, Philip J; Mu, Huiling

    2017-01-01

    The high-throughput in vitro intestinal lipolysis model (HTP) applicable for rapid and low-scale screening of lipid-based drug delivery systems (LbDDSs) was optimized and adjusted as to be conducted in 96-well plates (HTP-96). Three different LbDDSs (I-III) loaded with danazol or cinnarizine were...

  9. Drug delivery systems and materials for wound healing applications.

    Science.gov (United States)

    Saghazadeh, Saghi; Rinoldi, Chiara; Schot, Maik; Kashaf, Sara Saheb; Sharifi, Fatemeh; Jalilian, Elmira; Nuutila, Kristo; Giatsidis, Giorgio; Mostafalu, Pooria; Derakhshandeh, Hossein; Yue, Kan; Swieszkowski, Wojciech; Memic, Adnan; Tamayol, Ali; Khademhosseini, Ali

    2018-04-05

    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Recent trends in drug delivery system using protein nanoparticles.

    Science.gov (United States)

    Sripriyalakshmi, S; Jose, Pinkybel; Ravindran, Aswathy; Anjali, C H

    2014-09-01

    Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.

  11. Cyclosporine Amicellar delivery system for dry eyes

    Science.gov (United States)

    Kang, Han; Cha, Kwang-Ho; Cho, Wonkyung; Park, Junsung; Park, Hee Jun; Sun, Bo Kyung; Hyun, Sang-Min; Hwang, Sung-Joo

    2016-01-01

    Background The objectives of this study were to develop stable cyclosporine A (CsA) ophthalmic micelle solutions for dry-eye syndrome and evaluate their physicochemical properties and therapeutic efficacy. Materials and methods CsA-micelle solutions (MS-CsA) were created by a simple method with Cremophor EL, ethanol, and phosphate buffer. We investigated the particle size, pH, and osmolarity. In addition, long-term physical and chemical stability for MS-CsA was observed. To confirm the therapeutic efficacy, tear production in dry eye-induced rabbits was evaluated using the Schirmer tear test (STT). When compared to a commercial product, Restasis, MS-CsA demonstrated improvement in goblet-cell density and conjunctival epithelial morphology, as demonstrated in histological hematoxylin and eosin staining. Results MS-CsA had a smaller particle size (average diameter 14–18 nm) and a narrow size distribution. Physicochemical parameters, such as particle size, pH, osmolarity, and remaining CsA concentration were all within the expected range of 60 days. STT scores significantly improved in MS-CsA treated groups (P<0.05) in comparison to those of the Restasis-treated group. The number of goblet cells for rabbit conjunctivas after the administration of MS-CsA was 94.83±8.38, a significantly higher result than the 65.17±11.51 seen with Restasis. The conjunctival epithelial morphology of dry eye-induced rabbits thinned with loss of goblet cells. However, after 5 days of treatment with drug formulations, rabbit conjunctivas recovered epithelia and showed a relative increase in the number of goblet cells. Conclusion The results of this study indicate the potential use of a novel MS for the ophthalmic delivery of CsA in treating dry eyes. PMID:27382280

  12. Carrier-Based Drug Delivery System for Treatment of Acne

    Science.gov (United States)

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  13. Engaging Faculty in Telecommunications-Based Instructional Delivery Systems.

    Science.gov (United States)

    Swalec, John J.

    In the design and development of telecommunications-based instructional delivery systems, attention to faculty involvement and training is often overlooked until the system is operational. The Waubonsee Telecommunications Instructional Consortium (TIC), in Illinois, is one network that benefited from early faculty input. Even before the first…

  14. Electrosprayed nanoparticle delivery system for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Megdi, E-mail: megdi.eltayeb@sustech.edu [Department of Biomedical Engineering, Sudan University of Science and Technology, PO Box 407, Khartoum (Sudan); Stride, Eleanor, E-mail: eleanor.stride@eng.ox.ac.uk [Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington OX3 7DQ (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Harker, Anthony, E-mail: a.harker@ucl.ac.uk [London Centre for Nanotechnology, Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70 nm at the rate of 1.37 × 10{sup 9} nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈ 21% and the encapsulation efficiency ≈ 70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. - Highlights: • Electrohydrodynamic spraying is used to produce lipid-coated nanoparticles. • A new model is proposed for the release rates of active components from nanoparticles. • The technique has potential applications in food science and medicine. • Electrohydrodynamic processing controlled release lipid nanoparticles.

  15. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    Science.gov (United States)

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time intervals from 0.5 to 96 hours in cornea, sclera, and conjunctiva and at six time intervals from 0.5 to 12 hours in aqueous. Two peak concentrations were noted at approximately one and eight hours, with measurable levels present at 96 hours. This study demonstrates the ability of this liposomal delivery system to prolong levels of 5-fluorouracial in normal pigmented rabbits. PMID:3179257

  16. A clinical perspective on mucoadhesive buccal drug delivery systems

    Science.gov (United States)

    Gilhotra, Ritu M; Ikram, Mohd; Srivastava, Sunny; Gilhotra, Neeraj

    2014-01-01

    Mucoadhesion can be defined as a state in which two components, of which one is of biological origin, are held together for extended periods of time by the help of interfacial forces. Among the various transmucosal routes, buccal mucosa has excellent accessibility and relatively immobile mucosa, hence suitable for administration of retentive dosage form. The objective of this paper is to review the works done so far in the field of mucoadhesive buccal drug delivery systems (MBDDS), with a clinical perspective. Starting with a brief introduction of the mucoadhesive drug delivery systems, oral mucosa, and the theories of mucoadhesion, this article then proceeds to cover the works done so far in the field of MBDDS, categorizing them on the basis of ailments they are meant to cure. Additionally, we focus on the various patents, recent advancements, and challenges as well as the future prospects for mucoadhesive buccal drug delivery systems. PMID:24683406

  17. Safety design integrated in the building delivery system

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2013-01-01

    . The purpose of this article is to demonstrate how safety and health can be integrated in the design phases integrated in the management delivery systems within construction, The method for the research was to go through the building delivery system step by step and create a normative description of what, when......In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...... and how to fully integrate safety in each part of the process. The result is a concept and guideline including control forms for how to integrate safety design in the Building Delivery System plus what to do and when. The concept has been tested in an educational context. The practical value...

  18. Safety design integrated in the Building Delivery System

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2012-01-01

    phases of the building delivery system by using the principle of the lean construction modelling. The method for the research was to go through the lean construction building delivery system step by step and create a normative description of what to do, when to do and how to do to fully integration...... of safety in each process. The group of participants who created the description had a high experience in a combination of research, safety and health in general and especial in construction and knowledge of the lean construction processes both from the clients perspective as well as from the designers...... and the consultants. The result is a concept and guideline including control schemes for how to integrate safety design in the lean construction building delivery system including what to do and when. The concept has been tested in an educational context and found useful by the designers. The practical value...

  19. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Qiu J

    2015-10-01

    Full Text Available Jichuan Qiu,1 Ruibin Zhang,2 Jianhua Li,1 Yuanhua Sang,1 Wei Tang,3 Pilar Rivera Gil,4 Hong Liu1,51Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, 2Blood Purification Center, Jinan Central Hospital, 3Department of Pathogenic Biology, Shandong University School of Medicine, Jinan, People’s Republic of China; 4Institute of Chemistry, Rovira i Virgili University, Tarragona, Spain; 5Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People’s Republic of ChinaAbstract: Graphene quantum dots (GQDs were rationally fabricated as a traceable drug delivery system for the targeted, pH-sensitive delivery of a chemotherapeutic drug into cancer cells. The GQDs served as fluorescent carriers for a well-known anticancer drug, doxorubicin (Dox. The whole system has the capacity for simultaneous tracking of the carrier and of drug release. Dox release is triggered upon acidification of the intracellular vesicles, where the carriers are located after their uptake by cancer cells. Further functionalization of the loaded carriers with targeting moieties such as arginine-glycine-aspartic acid (RGD peptides enhanced their uptake by cancer cells. DU-145 and PC-3 human prostate cancer cell lines were used to evaluate the anticancer ability of Dox-loaded RGD-modified GQDs (Dox-RGD-GQDs. The results demonstrated the feasibility of using GQDs as traceable drug delivery systems with the ability for the pH-triggered delivery of drugs into target cells.Keywords: graphene quantum dots, drug delivery, pH-sensitive, controlled release, traceable

  20. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  1. Load shedding scheme in the south/southeastern interconnected system

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Filho, Xisto; Couri, J J.G.; Gomes, P; Almeida, P C [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1988-12-31

    This paper presents some characteristics of the Brazilian interconnected system and discusses the load shedding scheme in its different stages considering the beginning of operation of the Itaipu power plant. The present situation of the South and Southeastern load shedding scheme combination is also commented. Finally, the interconnected system evolution and the effects on the load shedding schemes are discussed. 4 refs., 5 figs., 2 tabs.

  2. Oral delivery of peptides and proteins using lipid-based drug delivery systems.

    Science.gov (United States)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-10-01

    In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.

  3. Buccoadhesive drug delivery systems--extensive review on recent patents.

    Science.gov (United States)

    Pathan, Shadab A; Iqbal, Zeenat; Sahani, Jasjeet K; Talegaonkar, Sushma; Khar, Roop K; Ahmad, Farhan J

    2008-01-01

    Peroral administration of drugs, although most preferred by both clinicians and patients has several disadvantages such as hepatic first pass metabolism and enzymatic degradation within the GI tract, that prohibit oral administration of certain classes of drugs especially peptides and proteins. Consequently, other absorptive mucosae are considered as potential sites for administration of these drugs. Among the various transmucosal routes studied the buccal mucosa offers several advantages for controlled drug delivery for extended period of time. The mucosa is well supplied with both vascular and lymphatic drainage and first-pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract is avoided. The area is well suited for a retentive device and appears to be acceptable to the patient. With the right dosage form, design and formulation, the permeability and the local environment of the mucosa can be controlled and manipulated in order to accommodate drug permeation. Buccal drug delivery is thus a promising area for continued research with the aim of systemic and local delivery of orally inefficient drugs as well as feasible and attractive alternative for non-invasive delivery of potent protein and peptide drug molecules. Extensive review pertaining specifically to the patents relating to buccal drug delivery is currently available. However, many patents e.g. US patents 6, 585,997; US20030059376A1 etc. have been mentioned in few articles. It is the objective of this article to extensively review buccal drug delivery by discussing the recent patents available. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based delivery systems.

  4. Efficiency performance of China's health care delivery system.

    Science.gov (United States)

    Zhang, Luyu; Cheng, Gang; Song, Suhang; Yuan, Beibei; Zhu, Weiming; He, Li; Ma, Xiaochen; Meng, Qingyue

    2017-07-01

    Improving efficiency performance of the health care delivery system has been on the agenda for the health system reform that China initiated in 2009. This study examines the changes in efficiency performance and determinants of efficiency after the reform to provide evidence to assess the progress of the reform from the perspective of efficiency. Descriptive analysis, Data Envelopment Analysis, the Malmquist Index, and multilevel regressions are used with data from multiple sources, including the World Bank, the China Health Statistical Yearbook, and routine reports. The results indicate that over the last decade, health outcomes compared with health investment were relatively higher in China than in most other countries worldwide, and the trend was stable. The overall efficiency and total factor productivity increased after the reform, indicating that the reform was likely to have had a positive impact on the efficiency performance of the health care delivery system. However, the health care delivery structure showed low system efficiency, mainly attributed to the weakened primary health care system. Strengthening the primary health care system is central to enhancing the future performance of China's health care delivery system. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Science.gov (United States)

    Dubald, Marion; Bourgeois, Sandrine; Andrieu, Véronique; Fessi, Hatem

    2018-01-01

    The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites. PMID:29342879

  6. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Directory of Open Access Journals (Sweden)

    Marion Dubald

    2018-01-01

    Full Text Available The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites.

  7. NOVEL APROACHES ON BUCCAL MUCOADHESIVE DRUG DELIVERY SYSTEM

    OpenAIRE

    Dibyalochan Mohanty* , C. Gurulatha, Dr.Vasudha Bakshi, B. Mavya

    2018-01-01

    Among novel drug delivery system ,Buccal mucoadhesive systems have attracted great attention in recent years due to their ability to adhere and remain on the oral mucosa and to release their drug content gradually ,bioadhesion refers to any bond formed between two biological surface or a bond between a biological and a systemic surface. Buccal mucosa is preferred for both systemic and local drug action. The mucosa has a rich blood supply and it relatively permeable. Buccal mucoadhesive films ...

  8. A real-time virtual delivery system for photon radiotherapy delivery monitoring

    Directory of Open Access Journals (Sweden)

    Feng Shi

    2014-03-01

    Full Text Available Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC method.Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM is calculated based. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an in-house developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the dose calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes in color wash overlaid on the CT image. This process continues to monitor the 3D dose distribution in real-time.Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the IMRT and VMAT cases, respectively. The update frequency is >10Hz and the relative uncertainty level is 2%.Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.------------------------------Cite this article as: Shi F, Gu X, Graves YJ, Jiang S, Jia X. A real-time virtual delivery system for photon radiotherapy delivery

  9. Chemistry, manufacturing and controls in passive transdermal drug delivery systems.

    Science.gov (United States)

    Goswami, Tarun; Audett, Jay

    2015-01-01

    Transdermal drug delivery systems (TDDS) are used for the delivery of the drugs through the skin into the systemic circulation by applying them to the intact skin. The development of TDDS is a complex and multidisciplinary affair which involves identification of suitable drug, excipients and various other components. There have been numerous problems reported with respect to TDDS quality and performance. These problems can be reduced by appropriately addressing chemistry, manufacturing and controls requirements, which would thereby result in development of robust TDDS product and processes. This article provides recommendations on the chemistry, manufacturing and controls focusing on the unique technical aspects of TDDS.

  10. Adamantane in Drug Delivery Systems and Surface Recognition.

    Science.gov (United States)

    Štimac, Adela; Šekutor, Marina; Mlinarić-Majerski, Kata; Frkanec, Leo; Frkanec, Ruža

    2017-02-16

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  11. Adamantane in Drug Delivery Systems and Surface Recognition

    Directory of Open Access Journals (Sweden)

    Adela Štimac

    2017-02-01

    Full Text Available The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  12. Nanocomposites chitosan/montmorillonite for drug delivery system

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    In drugs delivery system the incorporation of an inorganic nanophase in polymer matrix, i.e. production of an inorganic-organic nanocomposite is an attractive alternative to obtain a constant release rate for a prolonged time. This study was performed to obtain films of nanocomposites Chitosan/montmorillonite intercalation by the technique of solution in the proportions of 1:1, 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for drugs delivery system. (author)

  13. Process development work plan for waste feed delivery system

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    This work plan defines the process used to develop project definition for Waste Feed Delivery (WFD). Project definition provides the direction for development of definitive design media required for the ultimate implementation of operational processing hardware and software. Outlines for the major deliverables are attached as appendices. The implementation of hardware and software will accommodate requirements for safe retrieval and delivery of waste currently stored in Hanford's underground storage tanks. Operations and maintenance ensure the availability of systems, structures, and components for current and future planned operations within the boundary of the Tank Waste Remediation System (TWRS) authorization basis

  14. An improved delivery system for bladder irrigation.

    Science.gov (United States)

    Moslemi, Mohammad K; Rajaei, Mojtaba

    2010-10-05

    Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse

  15. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Gui Bo

    2008-01-01

    Full Text Available Abstract We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  16. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Bo Gui

    2007-12-01

    Full Text Available We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  17. Mercury sorbent delivery system for flue gas

    Science.gov (United States)

    Klunder,; Edgar, B [Bethel Park, PA

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  18. Automated nuclear fuel rod pattern loading system

    International Nuclear Information System (INIS)

    Lambert, D.V.; Nyland, T.W.; Byers, J.W.; Haley, D.E. Jr.; Cioffi, J.V.

    1990-01-01

    This patent describes an apparatus for loading fuel rods in a desired pattern. It comprises: a carousel having a plurality of movable gondolas for stocking thereon fuel rods of known enrichments; an elongated magazine defining a matrix of elongated slots being open at their forward ends for receiving fuel rods; a workstation defining a fuel rod feed path; and a holder and indexing mechanism for movably supporting the magazine and being actuatable for moving the magazine along X-Y axes to successively align one at a time selected ones of the slots with the feed path for loading in the magazine the successive fuel rods in a desired enrichment pattern

  19. Oral heparin delivery: design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system.

    Science.gov (United States)

    Schmitz, Thierry; Leitner, Verena M; Bernkop-Schnürch, Andreas

    2005-05-01

    Low molecular weight heparin (LMWH) is an agent of choice in the anti-coagulant therapy and prophylaxis of thrombosis and coronary syndromes. However, the therapeutic use is partially limited due to a poor oral bioavailability. It was therefore the aim of this study to design and evaluate a highly efficient stomach-targeted oral delivery system for LMWH. In order to appraise the influence of the molecular weight on the oral bioavailability, mini-tablets comprising 3 kDa (279 IU) and 6 kDa (300 IU) LMWH, respectively, were generated and tested in vivo in rats. The potential of the test formulations based on thiolated polycarbophil, was evaluated in comparison to hydroxyethylcellulose (HEC) as control carrier matrix. The plasma levels of LMWH after oral versus subcutaneous administration were determined in order to calculate the relative bioavailability. With the delivery system containing 3 kDa LMWH (279 IU) a relative bioavailability of 19.1% was achieved, offering a significantly (p thiolated polymers are a promising tool for the non-invasive stomach-targeted systemic delivery of LMWH as model for a hydrophilic macromolecular polysaccharide. Copyright 2005 Wiley-Liss, Inc

  20. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity

    Directory of Open Access Journals (Sweden)

    Eiji Yuba

    2017-11-01

    Full Text Available (1 Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2 Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3 Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4 Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.

  1. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  2. Reliability Constrained Priority Load Shedding for Aerospace Power System Automation

    Science.gov (United States)

    Momoh, James A.; Zhu, Jizhong; Kaddah, Sahar S.; Dolce, James L. (Technical Monitor)

    2000-01-01

    The need for improving load shedding on board the space station is one of the goals of aerospace power system automation. To accelerate the optimum load-shedding functions, several constraints must be involved. These constraints include congestion margin determined by weighted probability contingency, component/system reliability index, generation rescheduling. The impact of different faults and indices for computing reliability were defined before optimization. The optimum load schedule is done based on priority, value and location of loads. An optimization strategy capable of handling discrete decision making, such as Everett optimization, is proposed. We extended Everett method to handle expected congestion margin and reliability index as constraints. To make it effective for real time load dispatch process, a rule-based scheme is presented in the optimization method. It assists in selecting which feeder load to be shed, the location of the load, the value, priority of the load and cost benefit analysis of the load profile is included in the scheme. The scheme is tested using a benchmark NASA system consisting of generators, loads and network.

  3. Loading of Drug-Polymer Matrices in Microreservoirs for Oral Drug Delivery

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh; Keller, Stephan Sylvest; Boisen, Anja

    2017-01-01

    loading in microfabricated DDS. The microfabricated DDS are microcontainers fabricated in photoresist SU-8 and biopolymer poly-L-lactic-acid (PLLA). Furosemide (F) drug is embedded in poly-ε-caprolactone (PCL) polymer matrix. This F-PCL drug polymer matrix is loaded in SU-8 and PLLA microcontainers using...

  4. Application of mathematical modeling in sustained release delivery systems.

    Science.gov (United States)

    Grassi, Mario; Grassi, Gabriele

    2014-08-01

    This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.

  5. Drug-in-cyclodextrin-in-liposomes: A novel drug delivery system for flurbiprofen.

    Science.gov (United States)

    Zhang, Lina; Zhang, Qi; Wang, Xin; Zhang, Wenji; Lin, Congcong; Chen, Fen; Yang, Xinggang; Pan, Weisan

    2015-08-15

    A novel delivery system based on drug-cyclodextrin (CD) complexation and liposomes has been developed to improve therapeutic effect. Three different means, i.e., co-evaporation (COE), co-ground (GR) and co-lyophilization (COL) and three different CDs (β-CD, HP-β-CD and SBE-β-CD) were contrasted to investigate the characteristics of the end products. FP/FP-CD loaded liposomes were obtained by thin layer evaporation technique. Size, zeta potential and encapsulation efficiency were investigated by light scattering analysis and minicolumn centrifugation. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) showed the amorphous form of complexes and spherical morphology of FP-HP-β-CD COE loaded liposomes. The pH 7.4 phosphate buffer solution (PBS) was selected as the medium for the in vitro release. Wistar rats were put into use to study the pharmacokinetic behavior in vivo. FP-HP-β-CD COE loaded liposomes showed the better physicochemical characters that followed the average particle size, polydispersity index, zeta potential and mean encapsulation efficiency 158±10 nm, 0.19±0.1, -12.4±0.1 mW and 56.1±0.5%, separately. The relative bioavailability of FP-HP-β-CD COE loaded liposomes was 420%, 201% and 402% compared with FP solution, FP-HP-β-CD and FP-liposomes, respectively. In conclusion, the novel delivery system improved the relative bioavailability of FP significantly and provided a perspective way for delivery of insoluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Review of Innovative Sediment Delivery Systems

    Science.gov (United States)

    2013-04-01

    Alternative conveyor belt systems appear to be available from the growing hydraulic fracturing ( fracking , shale gas recovery) industry, which use...tons of aggregate material (with diameters up to 2 in.) per hour. This equates to roughly 150 cu yd per hr, de- pending on sand density. As fracking

  7. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  8. Direct current power delivery system and method

    Science.gov (United States)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  9. Buccal Drug Delivery System: A Review

    OpenAIRE

    Parth S. Patel; Ashish M. Parmar; Nilang S. Doshi; Hardik V. Patel; Raxit R. Patel; Chetan Nayee

    2013-01-01

    Bioadhesion can be defined as a phenomenon of interfacial molecular attractive forces in the midst of the surfaces of the biological substrate and the natural or synthetic polymers, which allows the polymer to adhere to the biological surface for an extended period of time. Bioadhesive polymeric systems have been used since extent in the development of products for various biomedical applications which include denture adhesives and surgical glue.Considerable attention has been focused in rece...

  10. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein.

    Science.gov (United States)

    Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J

    1996-11-26

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.

  11. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery

    Science.gov (United States)

    Gonzalez-Mira, E.; Egea, M. A.; Souto, E. B.; Calpena, A. C.; García, M. L.

    2011-01-01

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol® 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween® 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (~90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  12. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mira, E; Egea, M A; Garcia, M L [Department of Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology, University of Barcelona, Avenida Joan XXIII s/n, E-08028 Barcelona (Spain); Souto, E B [Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, Nr. 296, Office S.1, P-4200-150 Porto (Portugal); Calpena, A C, E-mail: eligonzalezmi@ub.edu [Department of Biopharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avenida Joan XXIII s/n, E-08028 Barcelona (Spain)

    2011-01-28

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE ({approx}90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  13. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery

    International Nuclear Information System (INIS)

    Gonzalez-Mira, E; Egea, M A; Garcia, M L; Souto, E B; Calpena, A C

    2011-01-01

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (∼90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  14. Development, stability and in vitro delivery profile of new loratadine-loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    Jesus Rafael Rodriguez Amado

    2017-12-01

    Full Text Available Purpose: Loratadine is used as antihistaminic without side effects in nervous systems. This drug is a weak base and it is absorbed from the intestine. The nitrogen of the pyridine ring is protonated in the stomach affecting the oral bioavailability. The aim of this paper was obtaining, characterize and evaluate the release profiles and the stability of a gastroresistant loratadine nanosuspension. Methods: The nanosuspension was prepared by the solvent displacement evaporation method, using three different polymers (Eudragit® L 100 55, Kollicoat® MAE 100P and PEG 4000 and Polysorbate 80. Dynamic Light Scattering was used for evaluating the particle size (PS, zeta potential, and conductivity of the nanosuspension. Loratadine release profiles were evaluated in simulated gastrointestinal fluids. The shelf and accelerated stability were assessed during three months. Results: Nanosuspension particle size was 45.94 ± 0.50 nm, with a low polydispersion index (PdI, 0.300. Kollicoat® MAE 100P produced a hard and flexible coating layer. In simulated intestinal fluids, the 100 percent of loratadine was released in 40 min, while in simulated stomach fluids the release was lesser than 5%. Nanosuspension presented a good physicochemical stability showing a reduction in PS and PdI after three months (43.29 ± 0.16 and 0.250; respectively. Conclusions: A promissory loratadine nanosuspension for loratadine intestinal delivery was obtained, by using a low energy method, which is an advantage for a possible scale up for practical purpose.

  15. Development of Houttuynia cordata Extract-Loaded Solid Lipid Nanoparticles for Oral Delivery: High Drug Loading Efficiency and Controlled Release

    Directory of Open Access Journals (Sweden)

    Ju-Heon Kim

    2017-12-01

    Full Text Available Houttuynia cordata (H. cordata has been used for diuresis and detoxification in folk medicine as well as a herbal medicine with antiviral and antibacterial activities. H. cordata extract-loaded solid lipid nanoparticles (H-SLNs were prepared with various concentration of poloxamer 188 or poloxamer 407 by a hot homogenization and ultrasonication method. H-SLNs dispersion was freeze-dried with or without trehalose as a cryoprotectant. The physicochemical characteristics of H-SLNs were evaluated by dynamic laser scattering (DLS, differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FT-IR, and scanning electron microscopy (SEM. Additionally, the in vitro release and in vitro cytotoxicity of H-SLNs were measured. Encapsulation efficiencies of H-SLNs (as quercitrin were 92.9–95.9%. The SEM images of H-SLNs showed that H-SLNs have a spherical morphology. DSC and FT-IR showed that there were no interactions between ingredients. The increased extent of particle size of freeze-dried H-SLNs with trehalose was significantly lower than that of H-SLNs without trehalose. H-SLNs provided sustained release of quercitrin from H. cordata extracts. Cell viability of Caco-2 cells was over 70% according to the concentration of various formulation. Therefore, it was suggested that SLNs could be good carrier for administering H. cordata extracts.

  16. Pricing strategies for capitated delivery systems

    Science.gov (United States)

    Gruenberg, Leonard; Wallack, Stanley S.; Tompkins, Christopher P.

    1986-01-01

    This article discusses alternative methods for establishing a fairer pricing mechanism for Medicare recipients who enroll in health maintenance organizations and other competitive medical plans. The current method, based upon the adjusted average per capita cost, is inadequate because it fails to adjust premium levels for differences in health status; it establishes undesirable incentives that may lead to underservice, and it is tied to costs in the fee-for-service system. Alternative methods would incorporate health status, have Medicare share the risk with HMO's, and base payment on HMO experience. PMID:10311925

  17. Printing technologies in fabrication of drug delivery systems.

    Science.gov (United States)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri; Genina, Natalja; Peltonen, Jouko; Sandler, Niklas

    2013-12-01

    There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way for personalized dosing and tailor-made dosage forms. In this review, the most recent observations and advancements in fabrication of drug delivery systems by utilizing printing technologies are summarized. A general overview of 2D printing techniques is presented including a review of the most recent literature where printing techniques are used in fabrication of drug delivery systems. The future perspectives and possible impacts on formulation strategies, flexible dosing and personalized medication of using printing techniques for fabrication of drug delivery systems are discussed. It is evident that there is an urgent need to meet the challenges of rapidly growing trend of personalization of medicines through development of flexible drug-manufacturing approaches. In this context, various printing technologies, such as inkjet and flexography, can play an important role. Challenges on different levels exist and include: i) technological development of printers and production lines; ii) printable formulations and carrier substrates; iii) quality control and characterization; and iv) regulatory perspectives.

  18. Student Attitudes toward Information Systems Graduate Program Design and Delivery

    Science.gov (United States)

    Thouin, Mark F.; Hefley, William E.; Raghunathan, Srinivasan

    2018-01-01

    This study examines student preferences regarding graduate management information systems (MIS) education. One hundred and eighty four graduate students responded to a survey exploring student attitudes towards degree program content, delivery format, and peer group interaction. Study results indicate that students prefer a program with an even…

  19. Development of a Gastroretentive Drug Delivery System based on ...

    African Journals Online (AJOL)

    Erah

    Purpose: The aim of this work was to synthesize superporous hydrogels of rosiglitazone using chitosan and to study its swelling behaviour for application as a gastroretentive drug delivery system. Methods: Chitosan superporous hydrogels were synthesized using glyoxal as a crosslinking agent by gas blowing method.

  20. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  1. Targeted nanodrug delivery systems for the treatment of Tuberculosis

    CSIR Research Space (South Africa)

    Lemmer, Yolandy

    2010-06-01

    Full Text Available patient treatment compliance and drug resistance pose a great challenge to TB treatment programs worldwide. To improve the current inadequate therapeutic management of TB, a polymeric anti-TB nanodrug delivery system for anti-TB drugs was developed...

  2. Online Instruction: An Alternative Delivery System for Higher Education

    Science.gov (United States)

    Wronkovich, Michael

    2003-01-01

    In an increasingly technological society, delivery systems for professional development and higher education have greatly expanded. Video conferencing and web-based alternatives provide opportunities to extend the college campus far beyond the boundaries traditionally considered feasible. Adult learners have found the convenience of web-based…

  3. Printing technologies in fabrication of drug delivery systems

    DEFF Research Database (Denmark)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri

    2013-01-01

    INTRODUCTION: There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way...... for personalized dosing and tailor-made dosage forms.\

  4. Bioinspired silica as drug delivery systems and their biocompatibility

    DEFF Research Database (Denmark)

    Steven, Christopher R.; Busby, Grahame A.; Mather, Craig

    2014-01-01

    Silica nanoparticles have been shown to have great potential as drug delivery systems (DDS), however, their fabrication often involves harsh chemicals and energy intensive laborious methods. This work details the employment of a bioinspired "green" method for the controlled synthesis of silica, use...

  5. Quality of experience management in mobile content delivery systems

    NARCIS (Netherlands)

    Agboma, F.; Liotta, A.

    2012-01-01

    This study contributes towards the relatively new but growing discipline of QoE management in content delivery systems. The study focuses on the development of a QoE-based management framework for the construction of QoE models for different types of multimedia contents delivered onto three typical

  6. Polarimeters and energy spectrometers for the ILC beam delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Boogert, S. [London Univ. (United Kingdom). Royal Holloway; Hildreth, M. [Univ. of Notre Dame (United States); Kaefer, K. [DESY, Hamburg (Germany); DESY, Zeuthen (DE)] (and others)

    2009-02-15

    This article gives an overview of current plans and issues for polarimeters and energy spectrometers in the Beam Delivery System of the ILC. It is meant to serve as a useful reference for the Detector Letter of Intent documents currently being prepared. (orig.)

  7. Magnetic microspheres as magical novel drug delivery system: A review

    Directory of Open Access Journals (Sweden)

    Satinder Kakar

    2013-01-01

    Full Text Available Magnetic microspheres hold great promise for reaching the goal of controlled and site specific drug delivery. Magnetic microspheres as an alternative to traditional radiation methods which uses highly penetrating radiations that is absorbed throughout the body. Its use is limited by toxicity and side effects. Now days, several targeted treatment systems including magnetic field, electric field, ultrasound, temperature, UV light and mechanical force are being used in many disease treatments (e.g. cancer, nerve damage, heart and artery, anti-diabetic, eye and other medical treatments. Among them, the magnetic targeted drug delivery system is one of the most attractive and promising strategy for delivering the drug to the specified site. Magnetically controlled drug targeting is one of the various possible ways of drug targeting. This technology is based on binding establish anticancer drug with ferrofluid that concentrate the drug in the area of interest (tumor site by means of magnetic fields. There has been keen interest in the development of a magnetically target drug delivery system. These drug delivery systems aim to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the activity entity to the site of action. Magnetic microspheres were developed to overcome two major problems encountered in drug targeting namely: RES clearance and target site specificity.

  8. Short-term load forecasting of power system

    Science.gov (United States)

    Xu, Xiaobin

    2017-05-01

    In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.

  9. Polymer-filled microcontainers for oral delivery loaded using supercritical impregnation

    DEFF Research Database (Denmark)

    Marizza, Paolo; Keller, Stephan Sylvest; Müllertz, Anette

    2014-01-01

    with a quasi-no-waste performance. Then ketoprofen is impregnated in the polymer matrix by using supercritical carbon dioxide (scCO2) as loading medium. The amount of polymer is controlled by the volume and the number of droplets of dispensed polymer and drug loading is tuned by varying the impregnation...... procedures. This work proposes an effective loading technique for a poorly soluble model drug in microcontainers, by combining inkjet printing and supercritical fluid impregnation. Well defined quantities of poly(vinyl pyrrolidone) (PVP) solutions are dispensed into microcontainers by inkjet printing...

  10. Film forming systems for topical and transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Kashmira Kathe

    2017-11-01

    Full Text Available Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system's ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier. Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance. For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance. In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions along with their evaluation parameters have also been reviewed.

  11. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  12. Nature engineered diatom biosilica as drug delivery systems.

    Science.gov (United States)

    Uthappa, U T; Brahmkhatri, Varsha; Sriram, G; Jung, Ho-Young; Yu, Jingxian; Kurkuri, Nikita; Aminabhavi, Tejraj M; Altalhi, Tariq; Neelgund, Gururaj M; Kurkuri, Mahaveer D

    2018-05-14

    Diatoms, unicellular photosynthetic algae covered with siliceous cell wall, are also called frustule. These are the most potential naturally available materials for the development of cost-effective drug delivery systems because of their excellent biocompatibility, high surface area, low cost and ease of surface modification. Mesoporous silica materials such as MCM-41 and SBA-15 have been extensively used in drug delivery area. Their synthesis is challenging, time consuming, requires toxic chemicals and are energy intensive, making the entire process expensive and non-viable. Therefore, it is necessary to explore alternative materials. Surprisingly, nature has provided some exciting materials called diatoms; biosilica is one such a material that can be potentially used as a drug delivery vehicle. The present review focuses on different types of diatom species used in drug delivery with respect to their structural properties, morphology, purification process and surface functionalization. In this review, recent advances along with their limitations as well as the future scope to develop them as potential drug delivery vehicles are discussed. Copyright © 2018. Published by Elsevier B.V.

  13. A commentary on transdermal drug delivery systems in clinical trials.

    Science.gov (United States)

    Watkinson, Adam C

    2013-09-01

    The number of drugs available as marketed transdermal products is limited to those that exhibit the correct physicochemical and pharmacokinetic properties that enable their effective delivery across the skin. In this respect, there are less than 20 drugs that are currently marketed in the US and EU as products that deliver systemic levels of their active ingredients. An analysis of clinical trials conducted in the transdermal sector shows a similar picture with only nine drugs accounting for approximately 80% of all transdermal clinical trials listed on ClinicalTrials.gov. Those drugs for which there are very few transdermal trials listed consist mostly of molecules that are inherently unsuitable for transdermal delivery and serve as a clear warning to drug developers that the science that governs transdermal drug delivery is well reflected by the successes and failures of drugs in development as well as those that make it to the market. Copyright © 2013 Wiley Periodicals, Inc.

  14. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    Science.gov (United States)

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  15. Dendrimer advances for the central nervous system delivery of therapeutics.

    Science.gov (United States)

    Xu, Leyuan; Zhang, Hao; Wu, Yue

    2014-01-15

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.

  16. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  17. Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has been tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.

  18. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: Formulation, evaluation and vesicle-skin interaction.

    Science.gov (United States)

    Hu, Caibiao; Gu, Chengyu; Fang, Qiao; Wang, Qiang; Xia, Qiang

    2016-02-01

    The present study investigated a self-double-emulsifying drug delivery system loaded with epigallocatechin-3-gallate to improve epigallocatechin-3-gallate skin retention. The long chain solid lipids (cetostearyl alcohol) and macadamia oil were utilized as a carrier to deliver the bioactive ingredient. Response surface methodology was used to optimize the formulation, and the solid lipid to total lipid weight ratio, concentration of epigallocatechin-3-gallate and hydrophilic surfactant on skin retention were found to be the principal factors. The optimum formulation with high encapsulation efficiency (95.75%), self-double-emulsification performance (99.58%) and skin retention (87.24%) were derived from the fitted models and experimentally examined, demonstrating a reasonable agreement between experimental and predicted values. Epigallocatechin-3-gallate-self-double-emulsifying drug delivery system was found to be stable for 3 months. Transdermal studies could explain a higher skin diffusion of epigallocatechin-3-gallate from the self-double-emulsifying drug delivery system compared with EGCG aqueous solution. In vitro cytotoxicity showed that epigallocatechin-3-gallate-self-double-emulsifying drug delivery system did not exert hazardous effect on L929 cells up to 1:10. © The Author(s) 2015.

  19. Integrated delivery systems: mergers and acquisitions.

    Science.gov (United States)

    Pinkerton, S

    1999-01-01

    Mergers and acquisitions are usually the way an IDS is built. The CNO and/or CNOs/DONs have an integral role in the resolution of the M/A process. During this time of significant change, during which there may even be chaos, the CNOs work to maintain stability so there is as little impact as possible on patient outcomes, a core responsibility of the CNOs. The CNOs should focus on identifying and working with the highly skilled individuals in the organization to get to the recovery stage of the M/A process, at which time a high-performing organization is achieved. To build this new organization or IDS, the old organizations of the M/A must be changed (Moss Kanter, 1994). The successful CNOs will manage the trade-offs and will become experts in collaboration. The CNO's goals are to maximize the quality of patient care, the professional satisfaction of the nurse, and the goals of achieving cost effectiveness for the system (Clifford, 1998), and keeping this focus through the M/A process will yield success.

  20. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  1. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  2. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  3. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles.

    Science.gov (United States)

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.

  4. A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery.

    Science.gov (United States)

    Hou, Jie; Guo, Chunlei; Shi, Yuzhi; Liu, Ergang; Dong, Weibing; Yu, Bo; Liu, Shiyuan; Gong, Junbo

    2017-11-25

    A novel high drug loading pH-cleavable polymer hybrid nanoparticle was prepared via doxorubicin (DOX) grafted onto PEGylated, mussel-inspired polydopamine (PDA) and then coated onto hollow silica nanoparticles for drug delivery. A series of characterization shed light on the formation mechanisms of PDA coatings on hollow silica. We hypothesized that dopamine was first absorbed onto the surface of hollow silica and then began self-polymerization. A Dox-containing thiol moiety was fabricated with conjugation between doxorubicin hydrochloride and Mercaptopropionyalkali with a pH-cleavable hydrozone bond. Using a Michael addition reaction, several Dox-containing thiol moieties were grafted onto the surface of the PDA. The drug loading capacity can reach 35.43%. It can minimize the metabolic problem of silica. The released behavior of Dox can be significantly enhanced at endosomal pH compared to physiological pH. After folate modification, nanoparticles can lead to more cellular endocytosis. Meanwhile animal assays showed that more Dox accumulated in tumor tissue, which can enhanced the cytotoxicity to 4T1 cancer cells with a targeting group compared to free DOX and untargeted groups. Meanwhile, the tumor growth was significantly inhibited. This promising material shows a promising future as a drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Organic Nano vesicular Cargoes for Sustained Drug Delivery: Synthesis, Vesicle Formation, Controlling “Pearling” States, and Terfenadine Loading/Release Studies

    International Nuclear Information System (INIS)

    Botcha, A.K.; Chandrasekar, R.; Dulla, B.; Reddy, E.R.; Rajadurai, M.S.; Chennubhotla, K.S.; Kulkarni, P.; Kulkarni, P.

    2014-01-01

    “Sustained drug delivery systems” which are designed to accomplish long-lasting therapeutic effect are one of the challenging topics in the area of nano medicine. We developed an innovative strategy to prepare nontoxic and polymer stabilized organic nano vesicles (diameter: 200 nm) from a novel bolaamphiphile, where two hydrogen bonding acetyl cytosine molecules connected to 4,4′′-positions of the 2,6-bispyrazolylpyridine through two flexible octyne chains. The nano vesicles behave like biological membrane by spontaneously self-assembling into “pearl-like” chains and subsequently forming long nano tubes (diameter: 150 nm), which further develop into various types of network-junctions through self-organization. For drug loading and delivery applications, the nano vesicles were externally protected with biocompatible poly(ethyleneglycol)-2000 to prevent them from fusion and ensuing tube formation. Nontoxic nature of the nano vesicles was demonstrated by zebra fish teratogenicity assay. Biocompatible nano vesicles were loaded with “terfenadine” drug and successfully utilized to transport and release drug in sustained manner (up to 72 h) in zebra fish larvae, which is recognized as an emerging in vivo model system Synthetic nano

  6. Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary delivery

    NARCIS (Netherlands)

    Amidi, Maryam; Pellikaan, Hubert C.; de Boer, Anne H.; Crommelin, Daan J. A.; Hennink, Wim E.; Jiskoot, Wim

    In the search for non-invasive delivery options for the increasing number of therapeutic proteins, pulmonary administration is an attractive route. Supercritical fluid (SCF) drying processes offer the possibility to produce dry protein formulations suitable for inhalation. In this study,

  7. OPTIMIZATION OF THE CRITERION FOR ESTIMATING THE TECHNOLOGY EFFICIENCY OF PACKING-CASE-PIECE LOADS DELIVERY

    OpenAIRE

    O. Severyn; O. Shulika

    2017-01-01

    The results of optimization of gravimetric coefficients for indexes included in the integral criterion of estimation of the efficiency of transport-technological charts of cargo delivery are resulted. The values of gravimetric coefficients are determined on the basis of two methods of experimental researches: questioning of respondents among the specialists of motor transport production and imitation design.

  8. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting.

    Science.gov (United States)

    Singh, Indu; Swami, Rajan; Pooja, Deep; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2016-01-01

    Delivery of drugs to brain is a subtle task in the therapy of many severe neurological disorders. Solid lipid nanoparticles (SLN) easily diffuse the blood-brain barrier (BBB) due to their lipophilic nature. Furthermore, ligand conjugation on SLN surface enhances the targeting efficiency. Lactoferin (Lf) conjugated SLN system is first time attempted for effective brain targeting in this study. Preparation of Lf-modified docetaxel (DTX)-loaded SLN for proficient delivery of DTX to brain. DTX-loaded SLN were prepared using emulsification and solvent evaporation method and conjugation of Lf on SLN surface (C-SLN) was attained through carbodiimide chemistry. These lipidic nanoparticles were evaluated by DLS, AFM, FTIR, XRD techniques and in vitro release studies. Colloidal stability study was performed in biologically simulated environment (normal saline and serum). These lipidic nanoparticles were further evaluated for its targeting mechanism for uptake in brain tumour cells and brain via receptor saturation studies and distribution studies in brain, respectively. Particle size of lipidic nanoparticles was found to be optimum. Surface morphology (zeta potential, AFM) and surface chemistry (FTIR) confirmed conjugation of Lf on SLN surface. Cytotoxicity studies revealed augmented apoptotic activity of C-SLN than SLN and DTX. Enhanced cytotoxicity was demonstrated by receptor saturation and uptake studies. Brain concentration of DTX was elevated significantly with C-SLN than marketed formulation. It is evident from the cytotoxicity, uptake that SLN has potential to deliver drug to brain than marketed formulation but conjugating Lf on SLN surface (C-SLN) further increased the targeting potential for brain tumour. Moreover, brain distribution studies corroborated the use of C-SLN as a viable vehicle to target drug to brain. Hence, C-SLN was demonstrated to be a promising DTX delivery system to brain as it possessed remarkable biocompatibility, stability and efficacy than

  9. Wet microcontact printing (µCP) for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Lee, Hong-Pyo; Ryu, WonHyoung

    2013-01-01

    When micro-reservoir-type drug delivery systems are fabricated, loading solid drugs in drug reservoirs at microscale is often a non-trivial task. This paper presents a simple and effective solution to load a small amount of drug solution at microscale using ‘wet’ microcontact printing (µCP). In this wet µCP, a liquid solution containing drug molecules (methylene blue and tetracycline HCl) dissolved in a carrier solvent was transferred to a target surface (drug reservoir) by contact printing process. In particular, we have investigated the dependence of the quantity and morphology of transferred drug molecules on the stamp size, concentration, printing times, solvent types and surfactant concentration. It was also found that the repetition of printing using a non-volatile solvent such as polyethylene glycol (PEG) as a drug carrier material actually increased the transferred amount of drug molecules in proportion to the printing times based on asymmetric liquid bridge formation. Utilizing this wet µCP, drug delivery devices containing different quantity of drugs in micro-reservoirs were fabricated and their performance as controlled drug delivery devices was demonstrated. (paper)

  10. Study on load temperature control system of ground laser communication

    Science.gov (United States)

    Zhai, Xunhua; Zhang, Hongtao; Liu, Wangsheng; Zhang, Chijun; Zhou, Xun

    2007-12-01

    The ground laser communication terminal as the termination of a communication system, works at the temperature which varies from -40°C to 50°C. We design a temperature control system to keep optical and electronic components working properly in the load. The load is divided into two sections to control temperature respectively. Because the space is limited, we use heater film and thermoelectric cooler to clearify and refrigerate the load. We design a hardware and a software for the temperature control system, establish mathematic model, and emulate it with Matlab.

  11. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50......% of the maximum cooling load. It was concluded that all tested systems were able to provide an acceptable thermal environment even when the 50% of the maximum cooling load was used. From all the simulated systems the one that performed the best under both control principles was the ESCS ceiling system. Finally...... it was proved that ventilation systems should be sized based on the maximum cooling load....

  12. Use of radiopharmaceuticals in the development of drug delivery systems

    International Nuclear Information System (INIS)

    Frier, M.

    1997-01-01

    Full text. Nuclear medicine imaging techniques have great potential in the study of the behaviour of drug formulations and drug delivery systems in human subjects. No other technique can locate so precisely the site of disintegration of a tablet in the Gl tract, the depth of penetration of a nebulized solution into the lung, or the residence time of a drug on the cornea. By using the gamma camera to image the in vivo distribution of pharmaceutical formulations radio labelled with a suitable gamma emitting radionuclide, images may be used to quantify the biodistribution, release and kinetics of drug formulations and delivery from novel carrier systems and devices. Radionuclide tracer techniques allow correlation between the observed pharmacological effects and the precise site of delivery. The strength of the technique lies in the quantitative nature of radionuclide images. Example will be shown of studies which examine the rate of transit of orally-administered formulations through the GI tract, as well as describing the development of devices for specific targeting of drugs to the colon. Data will also demonstrate the effectiveness of devices such as spacers in pulmonary drug delivery, in both normal volunteers, and in asthmatic subjects. Such studies not only provide data on the nature and characteristics of a product, such as reliability and reproducibility but, may also be used in submission to Regulatory Authorities in product registration dossiers

  13. Dose error analysis for a scanned proton beam delivery system

    International Nuclear Information System (INIS)

    Coutrakon, G; Wang, N; Miller, D W; Yang, Y

    2010-01-01

    All particle beam scanning systems are subject to dose delivery errors due to errors in position, energy and intensity of the delivered beam. In addition, finite scan speeds, beam spill non-uniformities, and delays in detector, detector electronics and magnet responses will all contribute errors in delivery. In this paper, we present dose errors for an 8 x 10 x 8 cm 3 target of uniform water equivalent density with 8 cm spread out Bragg peak and a prescribed dose of 2 Gy. Lower doses are also analyzed and presented later in the paper. Beam energy errors and errors due to limitations of scanning system hardware have been included in the analysis. By using Gaussian shaped pencil beams derived from measurements in the research room of the James M Slater Proton Treatment and Research Center at Loma Linda, CA and executing treatment simulations multiple times, statistical dose errors have been calculated in each 2.5 mm cubic voxel in the target. These errors were calculated by delivering multiple treatments to the same volume and calculating the rms variation in delivered dose at each voxel in the target. The variations in dose were the result of random beam delivery errors such as proton energy, spot position and intensity fluctuations. The results show that with reasonable assumptions of random beam delivery errors, the spot scanning technique yielded an rms dose error in each voxel less than 2% or 3% of the 2 Gy prescribed dose. These calculated errors are within acceptable clinical limits for radiation therapy.

  14. Excimer laser beam delivery systems for medical applications

    Science.gov (United States)

    Kubo, Uichi; Hashishin, Yuichi; Okada, Kazuyuki; Tanaka, Hiroyuki

    1993-05-01

    We have been doing the basic experiments of UV laser beams and biotissue interaction with both KrF and XeCl lasers. However, the conventional optical fiber can not be available for power UV beams. So we have been investigating about UV power beam delivery systems. These experiments carry on with the same elements doped quartz fibers and the hollow tube. The doped elements are OH ion, chlorine and fluorine. In our latest work, we have tried ArF excimer laser and biotissue interactions, and the beam delivery experiments. From our experimental results, we found that the ArF laser beam has high incision ability for hard biotissue. For example, in the case of the cow's bone incision, the incision depth by ArF laser was ca.15 times of KrF laser. Therefore, ArF laser would be expected to harden biotissue therapy as non-thermal method. However, its beam delivery is difficult to work in this time. We will develop ArF laser beam delivery systems.

  15. Nursing Services Delivery Theory: an open system approach.

    Science.gov (United States)

    Meyer, Raquel M; O'Brien-Pallas, Linda L

    2010-12-01

    This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a 'black box' that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. A search of CINAHL and Business Source Premier for the years 1980-2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. THE Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. © 2010 Blackwell Publishing Ltd.

  16. Automated nuclear fuel rod pattern loading system

    International Nuclear Information System (INIS)

    Lambert, D.V.; Nylund, T.W.; Byers, J.W.; Haley, D.E. Jr.; Cioffi, J.V.

    1991-01-01

    This patent describes a method for loading fuel rods in a desired pattern. It comprises providing a supply of fuel rods of known enrichments; providing a magazine defining a matrix of elongated slots open at their forward ends for receiving fuel rods; defining a fuel rod feed path; receiving successively one at a time along the feed path fuel rods selected from the supply thereof; verifying successively one at a time along the feed path the identity of the selected fuel rods, the verifying including blocking passage of each selected fuel rod along the feed path until the identity of each selected fuel rod is confirmed as correct; feeding to the magazine successively one at a time along the feed path the selective and verified fuel rods; and supporting and moving the magazine along X-Y axes to successively align one at a time selected ones of the slots with the feed path for loading in the magazine the successive fuel rods in a desired enrichment pattern

  17. Profluorescent PPV-Based Micellar System as a Versatile Probe for Bioimaging and Drug Delivery.

    Science.gov (United States)

    Zaquen, Neomy; Lu, Hongxu; Chang, Teddy; Mamdooh, Russel; Lutsen, Laurence; Vanderzande, Dirk; Stenzel, Martina; Junkers, Thomas

    2016-12-12

    Although micelles are commonly used for drug delivery purposes, their long-term fate is often unknown due to photobleaching of the fluorescent labels or the use of toxic materials. Here, we present a metal-free, nontoxic, nonbleaching, fluorescent micelle that can address these shortcomings. A simple, yet versatile, profluorescent micellar system, built from amphiphilic poly(p-phenylenevinylene) (PPV) block copolymers, for use in drug delivery applications is introduced. Polymer micelles made from PPV show excellent stability for up to 1 year and are successfully loaded with anticancer drugs (curcumin or doxorubicin) without requiring introduction of physical or chemical cross-links. The micelles are taken up efficiently by the cells, which triggers disassembly, releasing the encapsulated material. Disassembly of the micelles and drug release is conveniently monitored as fluorescence of the single polymer chains appear, which enables not only to monitor the release of the payload, but in principle also the fate of the polymer over longer periods of time.

  18. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    International Nuclear Information System (INIS)

    Kushwaha, Swatantra Kumar Singh; Ghoshal, SauravI; Rai, Awani Kumar; Singh, Satyawan

    2013-01-01

    Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field. (author)

  19. Microcontainers as an oral delivery system for spray dried cubosomes containing ovalbumin

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Rades, Thomas; Boyd, Ben

    2017-01-01

    The purpose of this study was to prepare cubosomes encapsulating the model antigen ovalbumin (OVA) via spray drying, and to characterise such cubosomes with a view for their potential application in oral vaccine delivery. Furthermore the cubosome formulation was loaded into polymeric...... microcontainers intended as an oral drug delivery system. The cubosomes consisted of commercial glyceryl monooleate, Dimodan®, containing OVA and were surrounded with a dextran shell prepared by spray drying. Cryo-TEM was used to confirm that cubosomes were formed after hydration of the spray dried precursor...... the cubosomes and microcontainers occurred at pH 6.8, releasing 44.1±5.6% of the OVA in 96h. Small-angle X-ray scattering (SAXS) revealed that the 'dry' particles possessed an internal ordered lipid structure (lamellar and inverse micellar phase) by virtue of a small amount of residual water, and after...

  20. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    Directory of Open Access Journals (Sweden)

    Swatantra Kumar Singh Kushwaha

    2013-12-01

    Full Text Available Carbon nanotubes (CNTs were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field.

  1. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Swatantra Kumar Singh; Ghoshal, SauravI; Rai, Awani Kumar, E-mail: swatantrakushwaha@yahoo.co.in [Pranveer Singh Institute of Technology, Kanpur (India); Singh, Satyawan [Saroj Institute of Technology and Management, Lucknow (India)

    2013-10-15

    Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field. (author)

  2. Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery.

    Science.gov (United States)

    Antoniraj, M Gover; Ayyavu, Mahesh; Henry, Linda Jeeva Kumari; Nageshwar Rao, Goutham; Natesan, Subramanian; Sundar, D Sathish; Kandasamy, Ruckmani

    2018-03-01

    Biodegradable materials like chitosan (CH) and methoxy polyethylene glycol (mPEG) are widely being used as drug delivery carriers for various therapeutic applications. In this study, copolymer (CH-g-mPEG) of CH and carboxylic acid terminated mPEG was synthesized by carbodiimide-mediated acid amine reaction. The resultant hydrophilic copolymer was characterized by Fourier transform infrared spectroscopy and 1 H NMR studies, revealing its relevant functional bands and proton peaks, respectively. Blank polymeric nanoparticles (B-PNPs) and 5-fluorouracil loaded polymeric nanoparticles (5-FU-PNPs) were formulated by ionic gelation method. Furthermore, folic acid functionalized FA-PNPs and FA-5-FU-PNPs were prepared for folate receptor-targeted drug delivery. FA-5-FU-PNPs were characterized by particle size, zeta potential, and in vitro drug release studies, resulting in 197.7 nm, +29.9 mv, and sustained drug release of 88% in 24 h, respectively. Cytotoxicity studies were performed for FA-PNPs and FA-5-FU-PNPs in MCF-7 cell line, which exhibited a cell viability of 80 and 41%, respectively. In vitro internalization studies were carried out for 5-FU-PNPs and FA-5-FU-PNPs which demonstrated increased cellular uptake of FA-5-FU-PNPs by receptor-mediated transport. Significant (p drug delivery, thereby influencing better therapeutic effect.

  3. Nursing Services Delivery Theory: an open system approach

    Science.gov (United States)

    Meyer, Raquel M; O’Brien-Pallas, Linda L

    2010-01-01

    meyer r.m. & o’brien-pallas l.l. (2010)Nursing services delivery theory: an open system approach. Journal of Advanced Nursing66(12), 2828–2838. Aim This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. Background The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a ‘black box’ that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. Data sources A search of CINAHL and Business Source Premier for the years 1980–2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. Discussion The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. Implications for nursing The Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. Conclusion The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. PMID:20831573

  4. Targeted multidrug delivery system to overcome chemoresistance in breast cancer

    Directory of Open Access Journals (Sweden)

    Tang Y

    2017-01-01

    Full Text Available Yuan Tang,1 Fariborz Soroush,1 Zhaohui Tong,2 Mohammad F Kiani,1 Bin Wang1,3 1Department of Mechanical Engineering, Temple University, Philadelphia, PA, 2Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 3Department of Biomedical Engineering, Widener University, Chester, PA, USA Abstract: Chemotherapy has been widely used in breast cancer patients to reduce tumor size. However, most anticancer agents cannot differentiate between cancerous and normal cells, resulting in severe systemic toxicity. In addition, acquired drug resistance during the chemotherapy treatment further decreases treatment efficacy. With the proper treatment strategy, nanodrug carriers, such as liposomes/immunoliposomes, may be able to reduce undesired side effects of chemotherapy, to overcome the acquired multidrug resistance, and to further improve the treatment efficacy. In this study, a novel combinational targeted drug delivery system was developed by encapsulating antiangiogenesis drug bevacizumab into liposomes and encapsulating chemotherapy drug doxorubicin (DOX into immunoliposomes where the human epidermal growth factor receptor 2 (HER2 antibody was used as a targeting ligand. This novel combinational system was tested in vitro using a HER2 positive and multidrug resistant breast cancer cell line (BT-474/MDR, and in vivo using a xenograft mouse tumor model. In vitro cell culture experiments show that immunoliposome delivery led to a high cell nucleus accumulation of DOX, whereas free DOX was observed mostly near the cell membrane and in cytoplasm due to the action of P-gp. Combining liposomal bevacizumab with immunoliposomal DOX achieved the best tumor growth inhibition and the lowest toxicity. Tumor size decreased steadily within a 60-day observation period indicating a potential synergistic effect between DOX and bevacizumab through the targeted delivery. Our findings clearly indicate that tumor growth was significantly

  5. Monolithic Controlled Delivery Systems: Part I. Basic Characteristics and Mechanisms

    Directory of Open Access Journals (Sweden)

    Rumiana Blagoeva

    2006-04-01

    Full Text Available The article considers contemporary systems for controlled delivery of active agents, such as drugs, agricultural chemicals, pollutants and additives in the environment. A useful classification of the available controlled release systems (CRS is proposed according to the type of control (passive, active or self-preprogrammed and according to the main controlling mechanism (diffusion, swelling, dissolution or erosion. Special attention is given to some of the most used CRS - polymer monoliths. The structural and physical-chemical characteristics of CRS as well as the basic approaches to their production are examined. The basic mechanisms of controlled agent release are reviewed in detail and factors influencing the release kinetics are classified according to their importance. The present study can be helpful for understanding and applying the available mathematical models and for developing more comprehensive ones intended for design of new controlled delivery systems.

  6. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    International Nuclear Information System (INIS)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil

    2009-01-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610 0 C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  7. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil, E-mail: simina.dreve@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610{sup 0}C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  8. Design and mechanistic study of a novel gold nanocluster-based drug delivery system.

    Science.gov (United States)

    Li, Qinzhen; Pan, Yiting; Chen, Tiankai; Du, Yuanxin; Ge, Honghua; Zhang, Buchang; Xie, Jianping; Yu, Haizhu; Zhu, Manzhou

    2018-05-22

    Chemically-triggered drug delivery systems (DDSs) have been extensively studied as they do not require specialized equipment to deliver the drug and can deeply penetrate human tissue. However, their syntheses are complicated and they tend to be cytotoxic, which restricts their clinical utility. In this work, the self-regulated drug loading and release capabilities of peptide-protected gold nanoclusters (Pep-Au NCs) are investigated using vancomycin (Van) as the model drug. Gold nanoclusters (Au NCs) coated with a custom-designed pentapeptide are synthesized as drug delivery nanocarriers and loaded with Van - a spontaneous process reliant on the specific binding between Van and the custom-designed peptide. The Van-loaded Au NCs show comparable antimicrobial activity with Van on its own, and the number of Van released by the Pep-Au NCs is found to be proportional to the amount of bacteria present. The controlled nature of the Van release is very encouraging, and predominantly due to the stronger binding affinity of Van with bacteria than that with Au NCs. In addition, these fluorescent Au NCs could also be used to construct temperature sensors, which enable the in vitro and in vivo bioimaging.

  9. On prilled Nanotubes-in-Microgel Oral Systems for protein delivery.

    Science.gov (United States)

    de Kruif, Jan Kendall; Ledergerber, Gisela; Garofalo, Carla; Fasler-Kan, Elizaveta; Kuentz, Martin

    2016-04-01

    Newly discovered active macromolecules are highly promising for therapy, but poor bioavailability hinders their oral use. Microencapsulation approaches, such as protein prilling into microspheres, may enable protection from gastrointestinal (GI) enzymatic degradation. This would increase bioavailability mainly for local delivery to GI lumen or mucosa. This work's purpose was to design a novel architecture, namely a Nanotubes-in-Microgel Oral System, by prilling for protein delivery. Halloysite nanotubes (HNT) were selected as orally acceptable clay particles and their lumen was enlarged by alkaline etching. This chemical modification increased the luminal volume to a mean of 216.3 μL g(-1) (+40.8%). After loading albumin as model drug, the HNT were entrapped in microgels by prilling. The formation of Nanoparticles-in-Microsphere Oral System (NiMOS) yielded entrapment efficiencies up to 63.2%. NiMOS shape was spherical to toroidal, with a diameter smaller than 320 μm. Release profiles depended largely on the employed system and HNT type. Protein stability was determined throughout prilling and after in vitro enzymatic degradation. Prilling did not harm protein structure, and NiMOS demonstrated higher enzymatic protection than pure nanotubes or microgels, since up to 82% of BSA remained unscathed after in vitro digestion. Therefore, prilled NiMOS was shown to be a promising and flexible multi-compartment system for oral (local) macromolecular delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery

    Science.gov (United States)

    Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj

    2013-01-01

    Purpose The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. Methods The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. Results sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. Conclusion The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation. PMID:24039397

  11. Power quality load management for large spacecraft electrical power systems

    Science.gov (United States)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  12. Syngonanthus nitens Bong. (Rhul.-Loaded Nanostructured System for Vulvovaginal Candidiasis Treatment

    Directory of Open Access Journals (Sweden)

    Matheus Aparecido dos Santos Ramos

    2016-08-01

    Full Text Available Herbal-loaded drug delivery nanotechnological systems have been extensively studied recently. The antimicrobial activity of medicinal plants has shown better pharmacological action when such plants are loaded into a drug delivery system than when they are not loaded. Syngonanthus nitens Bong. (Rhul. belongs to the Eriocaulaceae family and presents antiulcerogenic, antioxidant, antibacterial, and antifungal activity. The aim of this study was to evaluate the antifungal activity of Syngonanthus nitens (S. nitens extract that was not loaded (E or loaded (SE into a liquid crystal precursor system (S for the treatment of vulvovaginal candidiasis (VVC with Candida albicans. The minimal inhibitory concentration (MIC was determined by the microdilution technique. Additionally, we performed hyphae inhibition and biofilm tests. Finally, experimental candidiasis was evaluated in in vivo models with Wistar female rats. The results showed effective antifungal activity after incorporation into S for all strains tested, with MICs ranging from 31.2 to 62.5 μg/mL. Microscopic observation of SE revealed an absence of filamentous cells 24 h of exposure to a concentration of 31.2 μg/mL. E demonstrated no effective action against biofilms, though SE showed inhibition against biofilms of all strains. In the in vivo experiment, SE was effective in the treatment of infection after only two days of treatment and was more effective than E and amphotericin B. The S. nitens is active against Candida albicans (C. albicans and the antifungal potential is being enhanced after incorporation into liquid crystal precursor systems (LCPS. These findings represent a promising application of SE in the treatment of VVC.

  13. Nebuliser systems for drug delivery in cystic fibrosis.

    Science.gov (United States)

    Daniels, Tracey; Mills, Nicola; Whitaker, Paul

    2013-04-30

    Nebuliser systems are used to deliver medications to control the symptoms and the progression of lung disease in people with cystic fibrosis. Many types of nebuliser systems are available for use with various medications; however, there has been no previous systematic review which has evaluated these systems. To evaluate effectiveness, safety, burden of treatment and adherence to nebulised therapy using different nebuliser systems for people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching of relevant journals and abstract books of conference proceedings. We searched the reference lists of each study for additional publications and approached the manufacturers of both nebuliser systems and nebulised medications for published and unpublished data. Date of the most recent search: 15 Oct 2012. Randomised controlled trials or quasi-randomised controlled trials comparing nebuliser systems including conventional nebulisers, vibrating mesh technology systems, adaptive aerosol delivery systems and ultrasonic nebuliser systems. Two authors independently assessed studies for inclusion. They also independently extracted data and assessed the risk of bias. A third author assessed studies where agreement could not be reached. The search identified 40 studies with 20 of these (1936 participants) included in the review. These studies compared the delivery of tobramycin, colistin, dornase alfa, hypertonic sodium chloride and other solutions through the different nebuliser systems. This review demonstrates variability in the delivery of medication depending on the nebuliser system used. Conventional nebuliser systems providing higher flows, higher respirable fractions and smaller particles decrease treatment time, increase deposition and may be preferred by people with CF, as compared to conventional nebuliser systems providing

  14. Nanoembedded Microparticles for Stabilization and Delivery of Drug-Loaded Nanoparticles

    DEFF Research Database (Denmark)

    Bohr, Adam; Water, Jorrit; Beck-Broichsitter, Moritz

    2015-01-01

    Nanoparticle-based pharmaceutical products are currently finding their way onto the market as a popular strategy to improve the therapeutic efficacy of numerous drugs, hereunder medications for a targeted treatment of severe diseases (e.g., cancer). Drug-loaded polymer and lipid nanoparticles...

  15. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells

    Science.gov (United States)

    Pramod, P. S.; Shah, Ruchira; Jayakannan, Manickam

    2015-04-01

    The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the administration of doxorubicin via physical loading and polymer-drug conjugation to breast cancer cells. Dextran was suitably modified with a renewable resource 3-pentadecyl phenol unit through imine and aliphatic ester chemical linkages that acted as pH and esterase enzyme stimuli, respectively. These dual responsive polysaccharide derivatives self-organized into 200 +/- 10 nm diameter nano-vesicles in water. The water soluble anticancer drug doxorubicin (DOX.HCl) was encapsulated in the hydrophilic pocket to produce core-loaded polysaccharide vesicles whereas chemical conjugation produced DOX anchored at the hydrophobic layer of the dextran nano-vesicles. In vitro studies revealed that about 70-80% of the drug was retained under circulatory conditions at pH = 7.4 and 37 °C. At a low pH of 6.0 to 5.0 and in the presence of esterase; both imine and ester linkages were cleaved instantaneously to release 100% of the loaded drugs. Cytotoxicity assays on Wild Type Mouse Embryonic Fibroblasts (WTMEFs) confirmed the non-toxicity of the newly developed dextran derivatives at up to 500 μg mL-1 in PBS. MTT assays on fibroblast cells revealed that DOX.HCl loaded nano-vesicles exhibited better killing abilities than DOX conjugated polymer nano-vesicles. Both DOX loaded and DOX conjugated nano-vesicles were found to show significant killing in breast cancer cells (MCF 7). Confocal microscopy images confirmed the uptake of DOX loaded (or conjugated) nano-vesicles by cells compared to free DOX. Thus, the newly developed pH and enzyme dual responsive polysaccharide vesicular assemblies are potential drug vectors for the administration of DOX in both loaded and chemically conjugated forms for the efficient killing of breast cancer cells.The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the

  16. Load shedding and emergency load sequencing system at Sizewell B power station

    International Nuclear Information System (INIS)

    Bowcock, S.; Miller, D.

    1992-01-01

    Sizewell B Nuclear Power Station has a main electrical system that connects together the main turbo-generators, generating at 23.5kV, the 400kV grid and the auxiliary equipment required to operate the station. A separate essential electrical system fed from the main electrical system, supplies all the auxiliaries required to shut-down the nuclear reactor and maintain it in a safe shut-down condition. For safety reasons four similar independent essential electrical systems are provided, each headed by a 3.3kV switchboard and a stand-by 8MW diesel generator. Feeds from the 3.3kV switchboards in turn supply the essential 3.3kV drives and transformer fed 415V essential switchboards. The function of the Load Shedding and Emergency Load Sequencing (LSELS) System is to monitor the condition of the 3.3kV incoming supply from the main electrical system to each essential 3.3kV switchboard and initiate its replacement, with the supply from the associated diesel generator, if it is outside set parameters. In order to achieve this transfer the essential electrical system load must be reduced to a level which the diesel can accommodate as a standing load and then allow the sequenced reconnection of required loads so as not to overload the diesel. The LSELS equipment is categorised as Safety Category 1E and has a significant importance to the safe operation of the power station. Therefore the design of the system must be highly reliable and the purpose of this paper is to detail the design approach used to ensure that a high system reliability is achieved. (Author)

  17. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    Directory of Open Access Journals (Sweden)

    Talaei F

    2011-09-01

    Full Text Available Fatemeh Talaei1, Ebrahim Azizi2, Rassoul Dinarvand3, Fatemeh Atyabi31Novel Drug Delivery Systems Lab, 2Molecular Research Lab, Department of Pharmacology and Toxicology, 3Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan and NAP-C (N-acetyl penicillamine-chitosan in anticancer drug delivery targeting epidermal growth factor receptor (EGFR. Doxorubicin (DOX and antisense oligonucleotide (ASOND-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo

  18. An expert system for pressurized water reactor load maneuvers

    International Nuclear Information System (INIS)

    Chaung Lin; Jungping Chen; Yihjiunn Lin; Lianshin Lin

    1993-01-01

    Restartup after reactor shutdown and load-follow operations are the important tasks in operating pressurized water reactors. Generally, the most efficient method is to apply constant axial offset control (CAOC) strategy during load maneuvers. An expert system using CAOC strategy, fuzzy reasoning, a two-node core model, and operational constraints has been developed. The computation time is so short that this system, which leads to an approximate closed-loop control, could be useful for on-site calculation

  19. Gamma- scintigraphy in the evaluation of drug delivery systems

    International Nuclear Information System (INIS)

    Shahhosseini, S.; Beiki, D.; Eftekhari, M.

    2003-01-01

    Gamma-scintigraphy is applied extensively in the development and evaluation of pharmaceutical delivery systems, particularly for monitoring formulations in the gastrointestinal and respiratory tracts. The radiolabelling is generally achieved by the incorporation of an appropriate radionuclide such as technetium-99m or indium-111 into the formulation or by addition of a non- radioactive isotope such as samarium-152 followed by neutron activation of the final product. Drug delivery systems can be tested in vitro using various techniques like dissolution rate. Since in vitro testing methods are not predictive of in vivo results, such systems should be evaluated in vivo using animal models, especially oral dosage forms. Altered gastrointestinal transit due to individual variation, physiologic factors, or the presence of food may influence bioavailability. Distribution or drug release may be premature or delayed in vivo. Similarly, altered deposition or clearance from other routes of administration such as nasal, ocular, or inhalation may explain drug absorption anomalies. Therefore, there is a growing tendency for new drug delivery systems to be tested, whenever possible, in human subjects in a so called phase 1 clinical evaluation. Gamma- scintigraphy combined with knowledge of physiological and dosage from design can help to identify some of these variables. the resulting insight can be used to accelerate the formulation development process and to ensure success in early clinical trials

  20. Quantitative dosimetric verification of an IMRT planning and delivery system

    International Nuclear Information System (INIS)

    Low, D.A.; Mutic, S.; Dempsey, J.F.; Gerber, R.L.; Bosch, W.R.; Perez, C.A.; Purdy, J.A.

    1998-01-01

    Background and purpose: The accuracy of dose calculation and delivery of a commercial serial tomotherapy treatment planning and delivery system (Peacock, NOMOS Corporation) was experimentally determined. Materials and methods: External beam fluence distributions were optimized and delivered to test treatment plan target volumes, including three with cylindrical targets with diameters ranging from 2.0 to 6.2 cm and lengths of 0.9 through 4.8 cm, one using three cylindrical targets and two using C-shaped targets surrounding a critical structure, each with different dose distribution optimization criteria. Computer overlays of film-measured and calculated planar dose distributions were used to assess the dose calculation and delivery spatial accuracy. A 0.125 cm 3 ionization chamber was used to conduct absolute point dosimetry verification. Thermoluminescent dosimetry chips, a small-volume ionization chamber and radiochromic film were used as independent checks of the ion chamber measurements. Results: Spatial localization accuracy was found to be better than ±2.0 mm in the transverse axes (with one exception of 3.0 mm) and ±1.5 mm in the longitudinal axis. Dosimetric verification using single slice delivery versions of the plans showed that the relative dose distribution was accurate to ±2% within and outside the target volumes (in high dose and low dose gradient regions) with a mean and standard deviation for all points of -0.05% and 1.1%, respectively. The absolute dose per monitor unit was found to vary by ±3.5% of the mean value due to the lack of consideration for leakage radiation and the limited scattered radiation integration in the dose calculation algorithm. To deliver the prescribed dose, adjustment of the monitor units by the measured ratio would be required. Conclusions: The treatment planning and delivery system offered suitably accurate spatial registration and dose delivery of serial tomotherapy generated dose distributions. The quantitative dose

  1. Preparation of Simvastatin Hydrogel through Arginine Addition for Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Rosyida Niswati Fathmah

    2018-01-01

    Full Text Available Simvastatin is a lipid lowering agent which has been used recently as drug delivery system for stimulating bone regeneration. Because of low therapeutic efficacy and bioavailability, it is necessary to deliver simvastatin by local administration e.g. by hydrogel system. However, simvastatin has very poor solubility which restricts to prepare hydrogel formulation. The aim of this study is to improve solubility of simvastatin with arginine as co-solvent for developing a controlled released drug delivery system by loading simvastatin into gelatin hydrogel. The solubility study was performed by addition of an excess mass of simvastatin into the specified molar solutions of the arginine. All conical flasks were placed in a mechanical water bath shaker at the temperature of 25, 40, and 50 °C and shaken for a maximum period of 72 hours. The drug concentration was analyzed by UV/Visible spectroscopy at 238 nm. The hydrogel was prepared by a dehydrothermal method. The results showed that simvastatin solubility increases with increasing arginine concentrations and temperature. Characterizations showed a successful preparation of simvastatin-loaded gelatin hydrogel. The arginine simvastatin hydrogel and the gelatin hydrogel (as a blank exhibited a comparable swelling index (ca. 6.5. Furthermore, microparticles of the material show a narrow particle size distribution in the range between 150-250 μm.

  2. Design of Drug Delivery Systems Containing Artemisinin and Its Derivatives

    Directory of Open Access Journals (Sweden)

    Blessing Atim Aderibigbe

    2017-02-01

    Full Text Available Artemisinin and its derivatives have been reported to be experimentally effective for the treatment of highly aggressive cancers without developing drug resistance, they are useful for the treatment of malaria, other protozoal infections and they exhibit antiviral activity. However, they are limited pharmacologically by their poor bioavailability, short half-life in vivo, poor water solubility and long term usage results in toxicity. They are also expensive for the treatment of malaria when compared to other antimalarials. In order to enhance their therapeutic efficacy, they are incorporated onto different drug delivery systems, thus yielding improved biological outcomes. This review article is focused on the currently synthesized derivatives of artemisinin and different delivery systems used for the incorporation of artemisinin and its derivatives.

  3. Blends of synthetic and natural polymers as drug delivery systems for growth hormone.

    Science.gov (United States)

    Cascone, M G; Sim, B; Downes, S

    1995-05-01

    In order to overcome the biological deficiencies of synthetic polymers and to enhance the mechanical characteristics of natural polymers, two synthetic polymers, poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were blended, in different ratios, with two biological polymers, collagen (C) and hyaluronic acid (HA). These blends were used to prepare films, sponges and hydrogels which were loaded with growth hormone (GH) to investigate their potential use as drug delivery systems. The GH release was monitored in vitro using a specific enzyme-linked immunosorbent assay. The results show that GH can be released from HA/PAA sponges and from HA/PVA and C/PVA hydrogels. The initial GH concentration used for sample loading affected the total quantity of GH released but not the pattern of release. The rate and quantity of GH released was significantly dependent on the HA or C content of the polymers.

  4. Design of a microemulsion-based drug delivery system for diclofenac sodium

    International Nuclear Information System (INIS)

    Kkizibash, N.A.; Asif, S.; Nazar, M.F.; Alenizi, D.; Shah, S.S.

    2011-01-01

    A microemulsion-based drug delivery system has been designed for Diclofenac Sodium(DS) comprising Span 60, 1-Propanol, Water, and Lemon Oil. The microemulsion system has been characterized by a pseudo-ternary phase diagram using the water titration method. The properties and structure of this system have been studied by the use of refractive index, electrical conductivity, viscosity and UV-Visible spectroscopy. The conductivity (s) and viscosity (k nu) measurements have provided evidence for percolation behavior with variation in F (weight fraction of aqueous phase). This phase transition corresponds to the structural change from water-in-oil to a bicontinuous microemulsion system. The percolation threshold (FC) obtained from conductivity measurements was in accordance with that obtained by viscosity measurements. Five microemulsion samples were selected and the changes in microstructure after incorporation of the drug, Diclofenac Sodium (DS) were examined by centrifugation, conductivity measurements, viscosity measurements and spectroscopic studies. The conductivity measurements showed that DS-loaded samples have higher conductivity values when compared to non-loaded samples. It was also found that DS is inter facially active. In addition, loading of DS had no negative effect on the stability of the system. (author)

  5. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  6. Zeolites: promising candidates for drug delivery systems (DDSs)

    OpenAIRE

    Vilaça, Natália; Amorim, Ricardo; Baltazar, Fátima; Fonseca, António Manuel; Neves, Isabel C.

    2012-01-01

    [Excerpt] The aim of controlled drug delivery systems (DDSs) is to administer the necessary amount of drug safely and effectively to specific sites in the human body and to regulate the temporal drug profile for maximum therapeutic benefits.[1] Zeolites are crystalline aluminosilicates solids with very regular microporous structures and they have been recently considered for medical use due to their biological properties and stability in biological environments.[1,2] The large variety in ...

  7. Load management for refrigeration systems: Potentials and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Grein, Arne, E-mail: a.grein@tu-berlin.de [University of Technology Berlin, Institute for Energy Technology, Department of Energy Systems, Einsteinufer 25 (TA8), 10587 Berlin (Germany); Pehnt, Martin [Institute for Energy and Environmental Research Heidelberg (ifeu), Wilckensstr. 3, 69120 Heidelberg (Germany)

    2011-09-15

    As a strategy to deal with the increasing intermittent input of renewable energy sources in Germany, the adaptation of power consumption is complementary to power-plant regulation, grid expansion and physical energy storage. One demand sector that promises strong returns for load management efforts is cooling and refrigeration. In these processes, thermal inertia provides a temporal buffer for shifting and adjusting the power consumption of cooling systems. We have conducted an empirical investigation to obtain a detailed and time-resolved bottom-up analysis of load management for refrigeration systems in the city of Mannheim, Germany. We have extrapolated our results to general conditions in Germany. Several barriers inhibit the rapid adoption of load management strategies for cooling systems, including informational barriers, strict compliance with legal cooling requirements, liability issues, lack of technical experience, an inadequate rate of return and organizational barriers. Small commercial applications of refrigeration in the food-retailing and cold storage in hotels and restaurants are particularly promising starting points for intelligent load management. When our results are applied to Germany, suitable sectors for load management have theoretical and achievable potential values of 4.2 and 2.8 GW, respectively, amounting to about 4-6% of the maximum power demand in Germany. - Highlights: > Potential and barriers for implementation of load shifting for refrigeration. > Empirical investigation for time-resolved bottom-up analysis in Mannheim, Germany. > Suitable sectors and further recommendations for introducing load management.> Extrapolation of results from local to national level.

  8. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  9. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2007-01-01

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  10. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    Science.gov (United States)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  11. Enhanced colonic delivery of ciclosporin A self-emulsifying drug delivery system encapsulated in coated minispheres.

    Science.gov (United States)

    Keohane, Kieran; Rosa, Mónica; Coulter, Ivan S; Griffin, Brendan T

    2016-01-01

    Investigate the potential of coated minispheres (SmPill®) to enhance localized Ciclosporin A (CsA) delivery to the colon. CsA self-emulsifying drug delivery systems (SEDDS) were encapsulated into SmPill® minispheres. Varying degrees of coating thickness (low, medium and high) were applied using ethylcellulose and pectin (E:P) polymers. In vitro CsA release was evaluated in simulated gastric and intestinal media. Bioavailability of CsA in vivo following oral administration to pigs of SmPill® minispheres was compared to Neoral® po and Sandimmun® iv in a pig model. CsA concentrations in blood and intestinal tissue were determined by HPLC-UV. In vitro CsA release from coated minispheres decreased with increasing coating thickness. A linear relationship was observed between in vitro CsA release and in vivo bioavailability (r(2) = 0.98). CsA concentrations in the proximal, transverse and distal colon were significantly higher following administration of SmPill®, compared to Neoral® po and Sandimmun® iv (p < 0.05). Analysis of transverse colon tissue subsections also revealed significantly higher CsA concentrations in the mucosa and submucosa using SmPill® minispheres (p < 0.05). Modulating E:P coating thickness controls release of CsA from SmPill® minispheres. Coated minispheres limited CsA release in the small intestine and enhanced delivery and uptake in the colon. These findings demonstrate clinical advantages of an oral coated minisphere-enabled CsA formulation in the treatment of inflammatory conditions of the large intestine.

  12. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.

    Science.gov (United States)

    Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már

    2014-08-01

    A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Novel delivery systems with nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Cvijić Sandra

    2016-01-01

    Full Text Available Chronic use of oral nonsteroidal anti-inflammatory drugs (NSAIDs is associated with increased risk of serious gastrointestinal side effects. Therefore, recent trends in the development of NSAIDs aim to reduce the incidence of side effects, and improve patient compliance. One of the strategies to improve efficacy and safety of oral NSAIDs is the development of combination products that contain gastroprotective agents. Several products containing NSAID in combination with proton pump inhibitors (ketoprofen/omeprazole, naproxen/esomeprazole, H2-receptor antagonists (ibuprofen/famotidine, and prostaglandin analogues (diclofenac/misoprostol are currently available on the market. Another approach refer to the special formulation design to allow dose reduction while preserving drug therapeutic efficacy. An example is SoluMatrix® technology, a manufacturing process that produce submicron-sized drug particles with enhanced dissolution and absorption properties. Patented SoluMatrix® technology has been successfully employed to develop low-dose diclofenac, meloxicam, indomethacin and naproxen products. Topical NSAID formulations enable drug delivery to target tissues, while reducing systemic exposure and concomitant side effects associated with oral NSAIDs. Dermal/transdermal NSAID delivery systems are subject of intensive investigation. So far, several 'advanced' drug delivery systems with diclofenac, ibuprofen and ketoprofen have been designed.

  14. Food Delivery System with the Utilization of Vehicle Using Geographical Information System (GIS) and A Star Algorithm

    Science.gov (United States)

    Siregar, B.; Gunawan, D.; Andayani, U.; Sari Lubis, Elita; Fahmi, F.

    2017-01-01

    Food delivery system is one kind of geographical information systems (GIS) that can be applied through digitation process. The main case in food delivery system is the way to determine the shortest path and food delivery vehicle movement tracking. Therefore, to make sure that the digitation process of food delivery system can be applied efficiently, it is needed to add shortest path determination facility and food delivery vehicle tracking. This research uses A Star (A*) algorithm for determining shortest path and location-based system (LBS) programming for moving food delivery vehicle object tracking. According to this research, it is generated the integrated system that can be used by food delivery driver, customer, and administrator in terms of simplifying the food delivery system. Through the application of shortest path and the tracking of moving vehicle, thus the application of food delivery system in the scope of geographical information system (GIS) can be executed.

  15. A Bone Graft Substitutes Hydroxyapatite Coated Gentamycin (Bonigent) As Drug Delivery System

    International Nuclear Information System (INIS)

    Rusnah Mustaffa; Fauziah Othman; Asmah Rahmat; Mohd Reusmaazran Yusof; Shaaban Kasim; Narimah Abu Baka; Nasani Nasrul

    2014-01-01

    Porous hydroxyapatite coated with antibiotic gentamycin for drug delivery system is namely Bonigent. In this product, antibiotic (gentamycin) is coated into the scaffolds HA porous and Would then be released slowly into the bone tissue upon implantation, this way would increase drug penetration, thus avoiding systemic infection, preventing the formation of biofilm and improved healing. When a foreign material (implants or scaffolds of bone graft substitutes) is introduced into the body, there would be normally formation of biofilm that can lead to systemic infection and cause device failure. Surgeon will use antibiotic such as gentamycin to avoid these effects. The purpose of this project is to investigate the feasibility of fabricating a drug delivery system (DDS) that serves dual functions, to combating biofilms and to enhance bone in growths. We also successfully producing a scaffold HA bone graft substitutes incorporated with antibiotic gentamycin to combating bio-film and prevent the failure medical device implant for healthy and human nation. Bone graft substitutes into porous scaffolds suitable for drug delivery; loading the scaffolds with gentamycin; and study release rate in vivo were studied. Porous bone grafts substitutes are coated with antibiotic gentamycin by immerse technique. In order to limit biofilm formation, biomaterials loaded with suitable antibiotics can be used as a preventative measure. The biomaterials hydroxyapatite (HA) is an osteoconductive space filler and is produced locally by Malaysian Nuclear Agency. Porous HA and HA/ TCP has the potential to be used as synthetic bone graft materials because it is bioactive and biocompatible with bone tissues. Development of a product as bone graft substitute (BGS) with special ability of delivering drug (gentamycin) to bone tissue for better and more effective healing process. Characterization of the physical analysis, porosity, surface morphology by Scanning Electron Microscopy Analysis (SEM) and

  16. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, Erica; Comes Franchini, Mauro, E-mail: mauro.comesfranchini@unibo.it [University of Bologna, Dipartimento di Chimica Industriale Toso Montanari (Italy)

    2012-12-15

    During the past decades many synthetic polymers have been studied for nanomedicine applications and in particular as drug delivery systems. For this purpose, polymers must be non-toxic, biodegradable, and biocompatible. Polylactic-co-glycolic acid (PLGA) is one of the most studied polymers due to its complete biodegradability and ability to self-assemble into nanometric micelles that are able to entrap small molecules like drugs and to release them into body in a time-dependent manner. Despite fine qualities, using PLGA polymeric nanoparticles for in vivo applications still remains an open challenge due to many factors such as poor stability in water, big diameter (150-200 nm), and the removal of these nanocarriers from the blood stream by the liver and spleen thus reducing the concentration of drugs drastically in tumor tissue. Polyethylene glycol (PEG) is the most used polymers for drug delivery applications and the first PEGylated product is already on the market for over 20 years. This is due to its stealth behavior that inhibits the fast recognition by the immune system (opsonization) and generally leads to a reduced blood clearance of nanocarriers increasing blood circulation time. Furthermore, PEG is hydrophilic and able to stabilize nanoparticles by steric and not ionic effects especially in water. PLGA-PEG block copolymer is an emergent system because it can be easily synthesized and it possesses all good qualities of PLGA and also PEG capability so in the last decade it arose as one of the most promising systems for nanoparticles formation, drug loading, and in vivo drug delivery applications. This review will discuss briefly on PLGA-b-PEG synthesis and physicochemical properties, together with its improved qualities with respect to the single PLGA and PEG polymers. Moreover, we will focus on but in particular will treat nanoparticles formation and uses as new drug delivery system for nanomedical applications.

  17. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.

    Science.gov (United States)

    Liu, Baoxia; Wang, Yan; Yang, Fei; Wang, Xing; Shen, Hong; Cui, Haixin; Wu, Decheng

    2016-08-01

    Conventional pesticides usually need to be used in more than recommended dosages due to their loss and degradation, which results in a large waste of resources and serious environmental pollution. Encapsulation of pesticides in biodegradable carriers is a feasible approach to develop environment-friendly and efficient controlled-release delivery system. In this work, we fabricated three kinds of polylactic acid (PLA) carriers including microspheres, microcapsules, and porous microcapsules for controlled delivery of Lambda-Cyhalothrin (LC) via premix membrane emulsification (PME). The microcapsule delivery system had better water dispersion than the other two systems. Various microcapsules with a high LC contents as much as 40% and tunable sizes from 0.68 to 4.6μm were constructed by manipulating the process parameters. Compared with LC technical and commercial microcapsule formulation, the microcapsule systems showed a significantly sustained release of LC for a longer period. The LC release triggered by LC diffusion and matrix degradation could be optimally regulated by tuning LC contents and particle sizes of the microcapsules. This multi-regulated release capability is of great significance to achieve the precisely controlled release of pesticides. A preliminary bioassay against plutella xylostella revealed that 0.68μm LC-loaded microcapsules with good UV and thermal stability exhibited an activity similar to a commercial microcapsule formulation. These results demonstrated such an aqueous microcapsule delivery system had a great potential to be further explored for developing an effective and environmentally friendly pesticide-release formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. AC distribution system for TFTR pulsed loads

    International Nuclear Information System (INIS)

    Carroll, R.F.; Ramakrishnan, S.; Lemmon, G.N.; Moo, W.I.

    1977-01-01

    This paper outlines the AC distribution system associated with the Tokamak Fusion Test Reactor and discusses the significant areas related to design, protection, and equipment selection, particularly where there is a departure from normal utility and industrial applications

  19. Liposomal drug delivery system from laboratory to clinic

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2005-01-01

    Full Text Available The main objective of drug delivery systems is to deliver a drug effectively, specifically to the site of action and to achieve greater efficacy and minimise the toxic effects compared to conventional drugs. Amongst various carrier systems, liposomes have generated a great interest because of their versatility. Liposomes are vesicular concentric bilayered structures, which are biocompatible, biodegradable and nonimmumnogenic. They can control the delivery of drugs by targeting the drug to the site of action or by site avoidance drug delivery or by prolonged circulation of drugs. Amphotericin B (Amp B remains the drug of choice in most systemic mycoses and also as a second line treatment for Kala azar. However, its toxic effects often limit its use. Although the liposome delivery system has been tried for several drugs, only a few have been used in patients due to the slow development of necessary large-scale pharmaceutical procedures. This paper reviews the development of the technique for liposomal Amphotericin B (L-Amp-LRC-1, FungisomeTM drug delivery system in our laboratory in collaboration with the department of Biochemistry, Delhi University in India and proving the safety and efficacy of this preparation in clinical practice. It also attempts to compare the efficacy and benefits of our product for Indian patients with those of similar products and it includes facts from the publications that flowed from our work. As compared to conventional Amp B, Fungisome is infused over a much shorter period requiring a smaller volume and no premedication. It was found to be safe in patients who had developed serious unacceptable toxicity with conventional Amp B. In renal transplant patients, Fungisome did not produce any nephrotoxicity. Fungisome is effective in fungal infections resistant to fluconazole, conventional Amp B and in virgin and resistant cases of visceral leishmaniasis. The cost of any drug is of great significance, especially in India

  20. Ex vivo investigation of magnetically targeted drug delivery system

    International Nuclear Information System (INIS)

    Yoshida, Y.; Fukui, S.; Fujimoto, S.; Mishima, F.; Takeda, S.; Izumi, Y.; Ohtani, S.; Fujitani, Y.; Nishijima, S.

    2007-01-01

    In conventional systemic drug delivery the drug is administered by intravenous injection; it then travels to the heart from where it is pumped to all regions of the body. When the drug is aimed at a small target region, this method is extremely inefficient and leads to require much larger doses than those being necessary. In order to overcome this problem a number of targeted drug delivery methods are developed. One of these, magnetically targeted drug delivery system (MT-DDS) will be a promising way, which involves binding a drug to small biocompatible magnetic particles, injecting these into the blood stream and using a high gradient magnetic field to pull them out of suspension in the target region. In the present paper, we describe an ex vivo experimental work. It is also reported that navigation and accumulation test of the magnetic particles in the Y-shaped glass tube was performed in order to examine the threshold of the magnetic force for accumulation. It is found that accumulation of the magnetic particles was succeeded in the blood vessel when a permanent magnet was placed at the vicinity of the blood vessel. This result indicates the feasibility of the magnetically drug targeting in the blood vessel

  1. An implantable thermoresponsive drug delivery system based on Peltier device.

    Science.gov (United States)

    Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury

    2013-04-15

    Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. An Effective Delivery System of Sitagliptin Using Optimized Mucoadhesive Nanoparticles

    Directory of Open Access Journals (Sweden)

    Afzal Haq Asif

    2018-05-01

    Full Text Available Sitagliptin (MK-0431, is a potent oral hypoglycemic drug that is used for treating type 2 diabetes mellitus. However, the short half-life of sitagliptin requires patients to take a high dose of 50 mg twice per day, and the fraction of sitagliptin reversibly bound to plasma proteins is as low as 38%. In addition, it was reported that approximately 79% of sitagliptin is excreted unchanged in the urine for elimination without metabolism. Thus, a better delivery system is needed to improve the benefits of sitagliptin in patients. The drug content and percentage yield were found to be 73 ± 2% and 92 ± 2%, respectively. The optimized sitagliptin nanoparticle sizes were between 350–950 nm, and the surfaces were smooth and nearly spherical in shape. In addition, the optimized sitagliptin nanoparticles have an indicated excellent bioadhesion property of (6.1 ± 0.5 h. The swelling of the nanoparticles is 168 ± 15%. The pattern of sitagliptin release from the mucoadhesive nanoparticles follows the Korsmeyer-Peppas model. More importantly, the extended sitagliptin retention time, of up to 12 h in the gastrointestinal tract, suggests that the optimized mucoadhesive nanoparticle formulation is more efficient, and has a greater potential to be used for oral delivery compared to the conventional sitagliptin administration in the drug solution. This is the first developed delivery system using the optimized mucoadhesive nanoparticles to enhance the effectiveness of sitagliptin.

  3. A strategy for load balancing in distributed storage systems

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Distributed storage systems are critical to the operation of the WLCG. These systems are not limited to fulfilling the long term storage requirements. They also serve data for computational analysis and other computational jobs. Distributed storage systems provide the ability to aggregate the storage and IO capacity of disks and tapes, but at the end of the day IO rate is still bound by the capabilities of the hardware, in particular the hard drives. Throughput of hard drives has increased dramatically over the decades, however for computational analysis IOPS is typically the limiting factor. To maximize return of investment, balancing IO load over available hardware is crucial. The task is made complicated by the common use of heterogeneous hardware and software environments that results from combining new and old hardware into a single storage system. This paper describes recent advances made in load balancing in the dCache distributed storage system. We describe a set of common requirements for load balan...

  4. Electronic Nicotine Delivery Systems (ENDS): What Nurses Need to Know.

    Science.gov (United States)

    Essenmacher, Carol; Naegle, Madeline; Baird, Carolyn; Vest, Bridgette; Spielmann, Rene; Smith-East, Marie; Powers, Leigh

    Efforts to decrease adverse effects of tobacco use are affected by emergence of new nicotine delivery products. Advertising, product promotion, and social media promote use of these products, yet a lack of evidence regarding safety leaves nurses unprepared to counsel patients. To critically evaluate current research, reviews of literature, expert opinion, and stakeholder policy proposals on use and safety of electronic nicotine delivery systems (ENDS). A targeted examination of literature generated by key stakeholders and subject matter experts was conducted using key words, modified by risk factors, and limited to the past 8 years. Current knowledge gaps in research literature and practice implications of the literature are discussed. The safety of ENDS is questionable and unclear. There are clear health risks of nicotine exposure to developing brains. Potential health risks of ENDS secondhand emissions exposure exist. Using ENDS to facilitate total tobacco cessation is not proven.

  5. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  6. Sustained Delivery of Chondroitinase ABC from Hydrogel System

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2012-03-01

    Full Text Available In the injured spinal cord, chondroitin sulfate proteoglycans (CSPGs are the principal responsible of axon growth inhibition and they contribute to regenerative failure, promoting glial scar formation. Chondroitinase ABC (chABC is known for being able to digest proteoglycans, thus degrading glial scar and favoring axonal regrowth. However, its classic administration is invasive, infection-prone and clinically problematic. An agarose-carbomer (AC1 hydrogel, already used in SCI repair strategies, was here investigated as a delivery system capable of an effective chABC administration: the material ability to include chABC within its pores and the possibility to be injected into the target tissue were firstly proved. Subsequently, release kinetic and the maintenance of enzymatic activity were positively assessed: AC1 hydrogel was thus confirmed to be a feasible tool for chABC delivery and a promising device for spinal cord injury topic repair strategies.

  7. Towards an Innovative Web-Based Lab Delivery System for a Management Information Systems Course

    Science.gov (United States)

    Breimer, Eric; Cotler, Jami; Yoder, Robert

    2011-01-01

    While online systems are an essential component of distance learning, they can also play a critical role in improving the delivery of activities in a traditional laboratory setting. The quality and effectiveness of online course delivery is often compared to equivalent face-to-face alternatives. In our approach, we have harnessed what we feel to…

  8. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant......This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integration with a feedforward control scheme based on input shaping for concurrent avoidance and dampening...

  9. Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Ping-Feng [Department of Information Management, National Chi Nan University, 1 University Road, Puli, Nantou 545, Taiwan (China)

    2006-09-15

    Because of the privatization of electricity in many countries, load forecasting has become one of the most crucial issues in the planning and operations of electric utilities. In addition, accurate regional load forecasting can provide the transmission and distribution operators with more information. The hybrid ellipsoidal fuzzy system was originally designed to solve control and pattern recognition problems. The main objective of this investigation is to develop a hybrid ellipsoidal fuzzy system for time series forecasting (HEFST) and apply the proposed model to forecast regional electricity loads in Taiwan. Additionally, a scaled conjugate gradient learning method is employed in the supervised learning phase of the HEFST model. Subsequently, numerical data taken from the existing literature is used to demonstrate the forecasting performance of the HEFST model. Simulation results reveal that the proposed model has better forecasting performance than the artificial neural network model and the regression model. Thus, the HEFST model is a valid and promising alternative for forecasting regional electricity loads. (author)

  10. [Recent technical advances in portable oxygen delivery systems].

    Science.gov (United States)

    Machida, K; Kawabe, Y; Mori, M; Haga, T

    1992-08-01

    According to a Japanese national survey (June 30, 1990), the number of patients receiving home oxygen therapy (HOT) has been greater than 18,000 since March 1985, when HOT was first covered by health insurance. The oxygen concentrator, especially the molecular sieve type, is the most common method of delivery (more than 90%). In April 1988, the portable oxygen cylinder was acknowledged by health insurance, and the liquid oxygen supply system in April 1990. Three types of portable oxygen delivery systems are available; oxygen cyclinder, liquid oxygen system, and oxygen concentrator (membrane type), of which the oxygen cylinder is most commonly used. In our hospital, portable oxygen supply systems were used in 80% of 168 HOT cases in 1990, and the use of 400 L aluminum oxygen cylinders at a flow rate of 1-2 L/min has been most popular. There is an strong desire from patients for lighter portable oxygen supply system of longer duration. In 19 patients with chronic respiratory failure, we evaluated a newly designed demand oxygen delivery system (DODS), which weighs 2.4 kg including the DOD device (TER-20 Teijin), 1.1 L oxygen cylinder made of ultressor, nasal cannula, and carrier. Arterial blood gases at rest (room air) were PaO2 61.9 +/- 6.3 torr, PaCO2 63.8 +/- 9.4 torr and pH 7.40 +/- 0.04. A crossover trial was performed under three conditions; breathing room air with no weight, and pulse oxygen flow and continuous oxygen flow each carrying 2.4 kg of weight. Both 6 minute walking (E1) and walking on a slow speed treadmill (E2) were studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Microfluidic platform for dynamic in vitro optimization of methotrexate-loaded lipid nanoparticle delivery for personalized osteosarcoma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Hernando, M.; Macias, P.; Abella, M.; Desco, M.; Sharpe, S.; Vaquero, J.J.; Muñoz-Barrutia, M.

    2016-07-01

    Cancer is a leading cause of mortality in the world, with osteosarcoma being one of the most common types among children between 1 and 14 years old. The use of lipid nanoparticles as biodegradable shells for controlled drug delivery shows promise as a more effective and targeted tumor treatment. However, current techniques for in vitro testing of these vehicles have shown little validity due to their static nature, in which nanoparticles sediment onto the bottom of the wells and kill the cells via asphyxiation, hiding the real effect achieved by the nanoparticles. In this work, a microfluidic platform capable of determining the optimum dose of methotrexate-loaded lipid nanoparticles in osteosarcoma treatment is presented as a promising alternative to current nanoparticle characterization assays. (Author)

  12. Healthcare delivery systems: designing quality into health information systems.

    Science.gov (United States)

    Joyce, Phil; Green, Rosamund; Winch, Graham

    2007-01-01

    To ensure that quality is 'engineered in' a holistic, integrated and quality approach is required, and Total Quality Management (TQM) principles are the obvious foundations for this. This paper describes a novel approach to viewing the operations of a healthcare provider where electronic means could be used to distribute information (including electronic fund settlements), building around the Full Service Provider core. Specifically, an approach called the "triple pair flow" model is used to provide a view of healthcare delivery that is integrated, yet detailed, and that combines the strategic enterprise view with a business process view.

  13. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box-Behnken design.

    Science.gov (United States)

    Wang, Fengzhen; Chen, Li; Jiang, Sunmin; He, Jun; Zhang, Xiumei; Peng, Jin; Xu, Qunwei; Li, Rui

    2014-09-01

    The purpose of the present study was to optimize methazolamide (MTZ)-loaded solid lipid nanoparticles (SLNs) which were used as topical eye drops by evaluating the relationship between design factors and experimental data. A three factor, three-level Box-Behnken design (BBD) was used for the optimization procedure, choosing the amount of GMS, the amount of phospholipid, the concentration of surfactant as the independent variables. The chosen dependent variables were entrapment efficiency, dosage loading, and particle size. The generated polynomial equations and response surface plots were used to relate the dependent and independent variables. The optimal nanoparticles were formulated with 100 mg GMS, 150 mg phospholipid, and 1% Tween80 and PEG 400 (1:1, w/v). A new formulation was prepared according to these levels. The observed responses were close to the predicted values of the optimized formulation. The particle size was 197.8 ± 4.9 nm. The polydispersity index of particle size was 0.239 ± 0.01 and the zeta potential was 32.7 ± 2.6 mV. The entrapment efficiency and dosage loading were about 68.39% and 2.49%, respectively. Fourier transform infrared spectroscopy (FT-IR) study indicated that the drug was entrapped in nanoparticles. The optimized formulation showed a sustained release followed the Peppas model. MTZ-SLNs showed significant prolonged decreasing intraocular pressure effect comparing with MTZ solution in vivo pharmacodynamics studies. The results of acute eye irritation study indicated that MTZ-SLNs and AZOPT both had no eye irritation. Furthermore, the MTZ-SLNs were suitable to be stored at low temperature (4 °C).

  14. Maximal load of the vitamin B12 transport system

    DEFF Research Database (Denmark)

    Lildballe, Dorte L; Mutti, Elena; Birn, Henrik

    2012-01-01

    Several studies suggest that the vitamin B12 (B12) transport system can be used for the cellular delivery of B12-conjugated drugs, also in long-term treatment Whether this strategy will affect the endogenous metabolism of B12 is not known. To study the effect of treatment with excess B12...

  15. Chitosan and glyceryl monooleate nanostructures containing gemcitabine: potential delivery system for pancreatic cancer treatment.

    Science.gov (United States)

    Trickler, William J; Khurana, Jatin; Nagvekar, Ankita A; Dash, Alekha K

    2010-03-01

    The objectives of this study are to enhance cellular accumulation of gemcitabine with chitosan/glyceryl monooleate (GMO) nanostructures, and to provide significant increase in cell death of human pancreatic cancer cells in vitro. The delivery system was prepared by a multiple emulsion solvent evaporation method. The nanostructure topography, size, and surface charge were determined by atomic force microscopy (AFM), and a zetameter. The cellular accumulation, cellular internalization and cytotoxicity of the nanostructures were evaluated by HPLC, confocal microscopy, or MTT assay in Mia PaCa-2 and BxPC-3 cells. The average particle diameter for 2% and 4% (w/w) drug loaded delivery system were 382.3 +/- 28.6 nm, and 385.2 +/- 16.1 nm, respectively with a surface charge of +21.94 +/- 4.37 and +21.23 +/- 1.46 mV. The MTT cytotoxicity dose-response studies revealed the placebo at/or below 1 mg/ml has no effect on MIA PaCa-2 or BxPC-3 cells. The delivery system demonstrated a significant decrease in the IC50 (3 to 4 log unit shift) in cell survival for gemcitabine nanostructures at 72 and 96 h post-treatment when compared with a solution of gemcitabine alone. The nanostructure reported here can be resuspended in an aqueous medium that demonstrate increased effective treatment compared with gemcitabine treatment alone in an in vitro model of human pancreatic cancer. The drug delivery system demonstrates capability to entrap both hydrophilic and hydrophobic compounds to potentially provide an effective treatment option in human pancreatic cancer.

  16. Ultrasound-enhanced delivery of doxorubicin/all-trans retinoic acid-loaded nanodiamonds into tumors.

    Science.gov (United States)

    Li, Huanan; Zeng, Deping; Wang, Zhenyu; Fang, Liaoqiong; Li, Faqi; Wang, Zhibiao

    2018-03-14

    To build up a combined therapy strategy to address limitations of the enhanced permeability and retention (EPR) effect and improve the efficiency of tumor therapy. A pH-sensitive nanocomplex for co-delivery of doxorubicin (DOX) and all-trans retinoic acid (ATRA) was developed based on nanodiamonds (DOX/ATRA-NDs) to enhance intracellular retention of drugs. Meanwhile, ultrasound was employed to enhance tumor vascular penetration of DOX-ATRA-NDs. The distribution of DOX/ATRA-NDs in the tumor tissues increased threefold when ultrasound was applied at 1 MHz and 0.6 W/cm 2 . Comparing with unmodified chemotherapeutics, the combined therapy induced more tumor cells apoptosis and greater tumor growth inhibition in both liver and breast tumor models. DOX-ATRA-NDs demonstrate great potential in clinical applications.

  17. Microfluidic Droplet-Facilitated Hierarchical Assembly for Dual Cargo Loading and Synergistic Delivery.

    Science.gov (United States)

    Yu, Ziyi; Zheng, Yu; Parker, Richard M; Lan, Yang; Wu, Yuchao; Coulston, Roger J; Zhang, Jing; Scherman, Oren A; Abell, Chris

    2016-04-06

    Bottom-up hierarchical assembly has emerged as an elaborate and energy-efficient strategy for the fabrication of smart materials. Herein, we present a hierarchical assembly process, whereby linear amphiphilic block copolymers are self-assembled into micelles, which in turn are accommodated at the interface of microfluidic droplets via cucurbit[8]uril-mediated host-guest chemistry to form supramolecular microcapsules. The monodisperse microcapsules can be used for simultaneous carriage of both organic (Nile Red) and aqueous-soluble (fluorescein isothiocyanate-dextran) cargo. Furthermore, the well-defined compartmentalized structure benefits from the dynamic nature of the supramolecular interaction and offers synergistic delivery of cargos with triggered release or through photocontrolled porosity. This demonstration of premeditated hierarchical assembly, where interactions from the molecular to microscale are designed, illustrates the power of this route toward accessing the next generation of functional materials and encapsulation strategies.

  18. Fabrication and loading of oral drug delivery microcontainers using hot punching

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh; Borre, Mads T.; Keller, Stephan Sylvest

    2015-01-01

    In this paper, poly-l-lactic acid (PLLA) solution is spin coated to achieve a PLLA layer of 55 μm thickness. Hot punching with a Ni stamp is optimized to fabricate microcontainers in PLLA. Process optimization of thermal bonding of the microcontainers to a poly acrylic acid (PAA) layer is perform...... by modifying sample preparation and varying temperature. The fabricated microcontainers are loaded by hot punching in a spin coated drug polymer film of furosemide and poly-e-caprolactone (PCL)....

  19. A clinician-driven home care delivery system.

    Science.gov (United States)

    August, D A; Faubion, W C; Ryan, M L; Haggerty, R H; Wesley, J R

    1993-12-01

    The financial, entrepreneurial, administrative, and legal forces acting within the home care arena make it difficult for clinicians to develop and operate home care initiatives within an academic setting. HomeMed is a clinician-initiated and -directed home care delivery system wholly owned by the University of Michigan. The advantages of a clinician-directed system include: Assurance that clinical and patient-based factors are the primary determinants of strategic and procedural decisions; Responsiveness of the system to clinician needs; Maintenance of an important role for the referring physician in home care; Economical clinical research by facilitation of protocol therapy in ambulatory and home settings; Reduction of lengths of hospital stays through clinician initiatives; Incorporation of outcome analysis and other research programs into the mission of the system; Clinician commitment to success of the system; and Clinician input on revenue use. Potential disadvantages of a clinician-based system include: Entrepreneurial, financial, and legal naivete; Disconnection from institutional administrative and data management resources; and Inadequate clinician interest and commitment. The University of Michigan HomeMed experience demonstrates a model of clinician-initiated and -directed home care delivery that has been innovative, profitable, and clinically excellent, has engendered broad physician, nurse, pharmacist, and social worker enthusiasm, and has supported individual investigator clinical protocols as well as broad outcomes research initiatives. It is concluded that a clinician-initiated and -directed home care program is feasible and effective, and in some settings may be optimal.

  20. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Science.gov (United States)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  1. Peptide and low molecular weight proteins based kidney targeted drug delivery systems.

    Science.gov (United States)

    Xu, Pengfei; Zhang, Hailiang; Dang, Ruili; Jiang, Pei

    2018-05-30

    Renal disease is a worldwide public health problem, and unfortunately, the therapeutic index of regular drugs is limited. Thus, it is a great need to develop effective treatment strategies. Among the reported strategies, kidney-targeted drug delivery system is a promising method to increase renal efficacy and reduce extra-renal toxicity. In recent years, working as vehicles for targeted drug delivery, low molecular weight proteins (LMWP) and peptide have received immense attention due to their many advantages, such as selective accumulation in kidney, high drug loading capability, control over routes of biodegradation, convenience in modification at the amino terminus, and good biocompatibility. In this review, we describe the current LMWP and peptide carriers for kidney targeted drug delivery systems. In addition, we discuss different linking strategies between carriers and drugs. Furthermore, we briefly outline the current status and attempt to give an outlook on the further study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles.

    Science.gov (United States)

    Mohapatra, Ankita; Harris, Michael A; LeVine, David; Ghimire, Madhav; Jennings, Jessica A; Morshed, Bashir I; Haggard, Warren O; Bumgardner, Joel D; Mishra, Sanjay R; Fujiwara, Tomoko

    2017-10-20

    Local antibiotic delivery can overcome some of the shortcomings of systemic therapy, such as low local concentrations and delivery to avascular sites. A localized drug delivery system (DDS), ideally, could also use external stimuli to modulate the normal drug release profile from the DDS to provide efficacious drug administration and flexibility to healthcare providers. To achieve this objective, chitosan microbeads embedded with magnetic nanoparticles were loaded with the antibiotic vancomycin and stimulated by a high frequency alternating magnetic field. Three such stimulation sessions separated by 1.5 h were applied to each test sample. The chromatographic analysis of the supernatant from these stimulated samples showed more than approximately 200% higher release of vancomycin from the DDS after the stimulation periods compared to nonstimulated samples. A 16-day long term elution study was also conducted where the DDS was allowed to elute drug through normal diffusion over a period of 11 days and stimulated on day 12 and day 15, when vancomycin level had dropped below therapeutic levels. Magnetic stimulation boosted elution of test groups above minimum inhibitory concentration (MIC), as compared to control groups (with no stimulation) which remained below MIC. The drug release from test groups in the intervals where no stimulation was given showed similar elution behavior to control groups. These results indicate promising possibilities of controlled drug release using magnetic excitation from a biopolymer-based DDS. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  3. Towards increased selectivity of drug delivery to cancer cells: development of a LDL-based nanodelivery system for hydrophobic photosensitizers

    Science.gov (United States)

    Buzova, Diana; Huntosova, Veronika; Kasak, Peter; Petrovajova, Dana; Joniova, Jaroslava; Dzurova, Lenka; Nadova, Zuzana; Sureau, Franck; Midkovsky, Pavol; Jancura, Daniel

    2012-10-01

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic photosensitizers (pts) to tumor cells in photodynamic therapy (PDT) of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by polyethylene glycol (PEG) and dextran. Fluorescence spectroscopy and confocal fluorescence imaging were used to characterize redistribution of hypericin (Hyp), a natural potent pts, loaded in LDL/PEG and LDL/dextran complexes to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It was shown than the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. On the other hand, PEG does not significantly influence this process. The modification of LDL molecules by the polymers does not inhibit their recognition by cellular LDL receptors. U-87 MG cellular uptake of Hyp loaded in LDL/PEG and LDL/dextran complexes appears to be similar to that one observed for Hyp transported by unmodified LDL particles. It is proposed that by polymers modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic drugs to cancer cells expressing high level of LDL receptors.

  4. Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells.

    Science.gov (United States)

    Huntosova, Veronika; Buzova, Diana; Petrovajova, Dana; Kasak, Peter; Nadova, Zuzana; Jancura, Daniel; Sureau, Franck; Miskovsky, Pavol

    2012-10-15

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic/amphiphilic photosensitizers to tumor cells in photodynamic therapy of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by dextran. Fluorescence spectroscopy, confocal fluorescence imaging, stopped-flow experiments and flow-cytometry were used to characterize redistribution of hypericin (Hyp), a natural occurring potent photosensitizer, loaded in LDL/dextran complex to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It is shown that the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. The modification of LDL molecules by dextran does not inhibit their recognition by cellular LDL receptors and U-87 MG cellular uptake of Hyp loaded in LDL/dextran complex appears to be similar to that one observed for Hyp transported by unmodified LDL particles. Thus, it is proposed that dextran modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic/amphiphilic drugs to cancer cells expressing high level of LDL receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  6. Characteristic of ascorbic acid in crosslinked chitosan edible film as drug delivery system membrane

    Directory of Open Access Journals (Sweden)

    Kistriyani Lilis

    2018-01-01

    Full Text Available Chitosan is a polysaccharide compound in the form of a linear polysaccharide consisting of N-acetyl glucosamine (GlcNAc and D-glucosamine (GlcN monomer, which is a derivative of deacetylization of chitin polymer. Chitin is one of common type of polysaccharide on earth after the excess cellulose from inveterbrata skeletons. Chitosan has anti-microbial properties. Based on this properties, chitosan is potentially used to be an edible film as drug delivery system membrane. Edible film was made by dissolving chitosan in 100 mL acetic acid 1%, then the plasticizer and crosslinker was added while heated at 60° C. It was molded and dried in oven at 50°C for 48 hours. Drug loading in the edible film could be controlled by remodeling membrane characteristics in the presence of crosslinker additions. The purpose of this study was to estimate the mass transfer coefficient (kCa of drug loading in various concentrations of ascorbic acid in the edible film. The characteristics of ascorbic acid in chitosan edible film could be seen from the number of drugs that could be loaded through the uv-vis spectrophotometric analysis. The higher concentration of ascorbic acid was added, the drug would be loaded more into edible film.

  7. Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor.

    Science.gov (United States)

    Kobes, Joseph E; Daryaei, Iman; Howison, Christine M; Bontrager, Jordan G; Sirianni, Rachael W; Meuillet, Emmanuelle J; Pagel, Mark D

    2016-09-01

    This research study sought to improve the treatment of pancreatic cancer by improving the drug delivery of a promising AKT/PDK1 inhibitor, PHT-427, in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. PHT-427 was encapsulated in single-emulsion and double-emulsion PLGA nanoparticles (SE-PLGA-427 and DE-PLGA-427). The drug release rate was evaluated to assess the effect of the second PLGA layer of DE-PLGA-427. Ex vivo cryo-imaging and drug extraction from ex vivo organs was used to assess the whole-body biodistribution in an orthotopic model of MIA PaCa-2 pancreatic cancer. Anatomical magnetic resonance imaging (MRI) was used to noninvasively assess the effects of 4 weeks of nanoparticle drug treatment on tumor size, and diffusion-weighted MRI longitudinally assessed changes in tumor cellularity. DE-PLGA-427 showed delayed drug release and longer drug retention in the pancreas relative to SE-PLGA-427. Diffusion-weighted MRI indicated a consistent decrease in cellularity during drug treatment with both types of drug-loaded nanoparticles. Both SE- and DE-PLGA-427 showed a 6-fold and 4-fold reduction in tumor volume relative to untreated tumors and an elimination of primary pancreatic tumor in 68% of the mice. These results indicated that the PLGA nanoparticles improved drug delivery of PHT-427 to pancreatic tumors, which improved the treatment of MIA PaCa-2 pancreatic cancer.

  8. Local load management system and intermittent power on the grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The project relates to the UK's obligations on renewable energy sources. The objectives were (i) to identify contractual requirements and commercial benefits of load management under the UK's Renewable Obligation and electric power trading arrangements (ii) through modelling, demonstrate the benefits of load management to major customers operating on-site wind generators; (iii) to develop a low-cost load management system incorporating communication technologies and switching devices and (iv) to identify the social and psychological aspects of load management. The demonstration of the load management system was conducted on the Findhorn Foundation's low voltage electric power distribution network and a 75kw wind turbine. The project demonstrated suitable technology for distributed load management on a grid-connected system in order to optimize the renewable energy generated on site, and the analyses identified several areas where grid-connected management can provide financial benefits. There is much scope for exploitation of commercial opportunities. The work was conducted by Econnect Ltd under contract to the DTI.

  9. Preparation, characterization and drug delivery study of a novel nanobiopolymeric multidrug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah Tehrani, Abbas, E-mail: A_dadkhahtehrani@yahoo.com; Parsamanesh, Masoumeh

    2017-04-01

    New nanocarrier for codelivery of curcumin and doxorubicin as the anticancer drugs was synthesized using biocompatible and biodegradable materials. Firstly, an inclusion complex of amylose (Am) and curcumin (CUR) was formed through entrapment of curcumin into the amylose helices. Then the surface of amylose-curcumin (Am-CUR) complex was modified by polycaprolactone (PCL) via esterification reaction between hydroxyl functional groups of amylose and carbonyl groups of PCL. Finally, poly citric acid (PCA) reacted with terminal hydroxyl groups of PCL by esterification reaction. Then, doxorubicin (DOX) reacted with the surface carboxylic acid functional groups of Am-CUR-PCL-PCA through noncovalent interactions to form Am-CUR-PCL-PCA-DOX as a multidrug delivery system. These new synthesized nanomaterials were characterized by spectroscopic measurement methods such as IR spectroscopy, UV–vis spectroscopy, NMR spectroscopy, and scanning electron microscopy. FE-SEM analyses and DLS measurements showed that the hydrodynamic dimensions of Am-Cur-PCL-PCA were about 50 nm. Due to the presence of ester bonds, the synthesized nanomaterials are pH sensitive. Furthermore, the resulting copolymer was completely water soluble because of the hydrophilic nature of poly citric acid part of copolymer and therefore successfully can be utilized in biomedical applications. - Highlights: • A drug delivery system based on amylose-graft-PCL-PCA developed for codelivery of curcumin and DOX. • The IR and NMR spectra confirmed successful preparation of the copolymer. • The drugs release were more favorable at acidic pH for both drugs. • DLS measurements showed that the hydrodynamic dimensions of Am-Cur-PCL-PCA was about 50 nm.

  10. Investigation on Physicochemical Characteristics of a Nanoliposome-Based System for Dual Drug Delivery

    Science.gov (United States)

    Nam, Jae Hyun; Kim, So-Yeon; Seong, Hasoo

    2018-04-01

    Synergistic effects of multiple drugs with different modes of action are utilized for combinatorial chemotherapy of intractable cancers. Translation of in vitro synergistic effects into the clinic can be realized using an efficient delivery system of the drugs. Despite a few studies on nano-sized liposomes containing erlotinib (ERL) and doxorubicin (DOX) in a single liposome vesicle, reliable and reproducible preparation methods as well as physicochemical characteristics of a non-PEGylated nanoliposome co-encapsulated with ERL and DOX have not been yet elucidated. In this study, ERL-encapsulated nanoliposomes were prepared using the lipid film-hydration method. By ultrasonication using a probe sonicator, the liposome diameter was reduced to less than 200 nm. DOX was loaded into the ERL-encapsulated nanoliposomes using ammonium sulfate (AS)-gradient or pH-gradient method. Effects of DOX-loading conditions on encapsulation efficiency (EE) of the DOX were investigated to determine an efficient drug-loading method. In the EE of DOX, AS-gradient method was more effective than pH gradient. The dual drug-encapsulated nanoliposomes had more than 90% EE of DOX and 30% EE of ERL, respectively. Transmission electron microscopy and selected area electron diffraction analyses of the dual drug-encapsulated nanoliposomes verified the highly oriented DOX-sulfate crystals inside the liposome as well as the less oriented small crystals of ERL in the outermost region of the nanoliposome. The nanoliposomes were stable at different temperatures without an increase of the nanoliposome diameter. The dual drug-encapsulated nanoliposomes showed a time-differential release of ERL and DOX, implying proper sequential releases for their synergism. The preparation methods and the physicochemical characteristics of the dual drug delivery system contribute to the development of the optimal process and more advanced systems for translational researches.

  11. Thiomers: potential excipients for non-invasive peptide delivery systems.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas; Krauland, Alexander H; Leitner, Verena M; Palmberger, Thomas

    2004-09-01

    In recent years thiolated polymers or so-called thiomers have appeared as a promising alternative in the arena of non-invasive peptide delivery. Thiomers are generated by the immobilisation of thiol-bearing ligands to mucoadhesive polymeric excipients. By formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of these polymers are improved up to 130-fold. Due to formation of inter- and intramolecular disulfide bonds within the thiomer itself, dosage forms such as tablets or microparticles display strong cohesive properties resulting in comparatively higher stability, prolonged disintegration times and a more controlled release of the embedded peptide drug. The permeation of peptide drugs through mucosa can be improved by the use of thiolated polymers. Additionally some thiomers exhibit improved inhibitory properties towards peptidases. The efficacy of thiomers in non-invasive peptide delivery could be demonstrated by various in vivo studies. Tablets comprising a thiomer and pegylated insulin, for instance, resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Furthermore, a pharmacological efficacy of 1.3% was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Human growth hormone in a thiomer-gel was applied nasally to rats and led to a bioavailability of 2.75%. In all these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. According to these results drug carrier systems based on thiomers seem to be a promising tool for non-invasive peptide drug delivery.

  12. New Delivery Systems for Local Anaesthetics—Part 2

    Directory of Open Access Journals (Sweden)

    Edward A. Shipton

    2012-01-01

    Full Text Available Part 2 of this paper deals with the techniques for drug delivery of topical and injectable local anaesthetics. The various routes of local anaesthetic delivery (epidural, peripheral, wound catheters, intra-nasal, intra-vesical, intra-articular, intra-osseous are explored. To enhance transdermal local anaesthetic permeation, additional methods to the use of an eutectic mixture of local anaesthetics and the use of controlled heat can be used. These methods include iontophoresis, electroporation, sonophoresis, and magnetophoresis. The potential clinical uses of topical local anaesthetics are elucidated. Iontophoresis, the active transportation of a drug into the skin using a constant low-voltage direct current is discussed. It is desirable to prolong local anaesthetic blockade by extending its sensory component only. The optimal release and safety of the encapsulated local anaesthetic agents still need to be determined. The use of different delivery systems should provide the clinician with both an extended range and choice in the degree of prolongation of action of each agent.

  13. Packaged Au-PPy valves for drug delivery systems

    Science.gov (United States)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  14. Variability in syringe components and its impact on functionality of delivery systems.

    Science.gov (United States)

    Rathore, Nitin; Pranay, Pratik; Eu, Bruce; Ji, Wenchang; Walls, Ed

    2011-01-01

    Prefilled syringes and autoinjectors are becoming increasingly common for parenteral drug administration primarily due to the convenience they offer to the patients. Successful commercialization of such delivery systems requires thorough characterization of individual components. Complete understanding of various sources of variability an