WorldWideScience

Sample records for delivery system based

  1. Nanotechnology-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Singh Baljit

    2007-12-01

    Full Text Available Abstract Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression.

  2. A study on nanodiamond-based drug delivery system

    International Nuclear Information System (INIS)

    Li Jing; Zhang Xiaoyong; Zhu Ying; Li Wenxin; Huang Qing

    2010-01-01

    A multifunctional drug delivery system based on nanodiamonds (NDs) has been developed. FITC, HCPT and TF were absorbed on NDs successively to form the multifunctional complex. The NDs and ND complex samples were characterized by TEM, FR-IR and UV-V. The results indicated that this drug delivery system is a high loading system. Efficacy of the drug delivery system on Hela cell was evaluated with MTT assays and fluorescence microscopy. The results show that multifunction of the NDs complex include fluorescence, targeting and high efficacy. (authors)

  3. Current and emerging lipid-based systems for transdermal drug delivery.

    Science.gov (United States)

    Singla, Sumeet K; Sachdeva, Vishal

    2015-01-01

    Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.

  4. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  5. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors

    International Nuclear Information System (INIS)

    Mohtaram, Nima Khadem; Montgomery, Amy; Willerth, Stephanie M

    2013-01-01

    This review highlights recent work on the use of biomaterial-based drug delivery systems to control the release of neurotrophic factors as a potential strategy for the treatment of neurological disorders. Examples of neurotrophic factors include the nerve growth factor, the glial cell line-derived neurotrophic factor, the brain-derived neurotrophic factor and neurotrophin-3. In particular, this review focuses on two methods of drug delivery: affinity-based and reservoir-based systems. We review the advantages and challenges associated with both types of drug delivery system and how these systems can be applied to neurological diseases and disorders. While a limited number of affinity-based delivery systems have been developed for the delivery of neurotrophic factors, we also examine the broad spectrum of reservoir-based delivery systems, including microspheres, electrospun nanofibers, hydrogels and combinations of these systems. Finally, conclusions are drawn about the current state of such drug delivery systems as applied to neural tissue engineering along with some thoughts on the future direction of the field. (topical review)

  6. Oral delivery of peptides and proteins using lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-01-01

    INTRODUCTION: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism...... by which intestinal absorption of peptides and proteins is promoted. AREAS COVERED: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two...... and proteins. EXPERT OPINION: Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve...

  7. Oral delivery of peptides and proteins using lipid-based drug delivery systems.

    Science.gov (United States)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-10-01

    In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.

  8. Multi-Course Comparison of Traditional versus Web-based Course Delivery Systems

    Directory of Open Access Journals (Sweden)

    J. Michael Weber, PhD.,

    2007-07-01

    Full Text Available The purpose of this paper is to measure and compare the effectiveness of a Web-based course delivery system to a traditional course delivery system. The results indicate that a web-based course is effective and equivalent to a traditional classroom environment. As with the implementation of all new technologies, there are some pros and cons that should be considered. The significant pro is the element of convenience which eliminates the constrictive boundaries of space and time. The most notable con involves the impersonal nature of the online environment. Overall, we found the web-based course delivery system to be very successful in terms of learning outcomes and student satisfaction.

  9. Multi-Course Comparison of Traditional versus Web-Based Course Delivery Systems

    Science.gov (United States)

    Weber, J. Michael; Lennon, Ron

    2007-01-01

    The purpose of this paper is to measure and compare the effectiveness of a Web-based course delivery system to a traditional course delivery system. The results indicate that a web-based course is effective and equivalent to a traditional classroom environment. As with the implementation of all new technologies, there are some pros and cons that…

  10. Exploring information systems outsourcing in U.S. hospital-based health care delivery systems.

    Science.gov (United States)

    Diana, Mark L

    2009-12-01

    The purpose of this study is to explore the factors associated with outsourcing of information systems (IS) in hospital-based health care delivery systems, and to determine if there is a difference in IS outsourcing activity based on the strategic value of the outsourced functions. IS sourcing behavior is conceptualized as a case of vertical integration. A synthesis of strategic management theory (SMT) and transaction cost economics (TCE) serves as the theoretical framework. The sample consists of 1,365 hospital-based health care delivery systems that own 3,452 hospitals operating in 2004. The findings indicate that neither TCE nor SMT predicted outsourcing better than the other did. The findings also suggest that health care delivery system managers may not be considering significant factors when making sourcing decisions, including the relative strategic value of the functions they are outsourcing. It is consistent with previous literature to suggest that the high cost of IS may be the main factor driving the outsourcing decision.

  11. Engaging Faculty in Telecommunications-Based Instructional Delivery Systems.

    Science.gov (United States)

    Swalec, John J.

    In the design and development of telecommunications-based instructional delivery systems, attention to faculty involvement and training is often overlooked until the system is operational. The Waubonsee Telecommunications Instructional Consortium (TIC), in Illinois, is one network that benefited from early faculty input. Even before the first…

  12. Carrier-Based Drug Delivery System for Treatment of Acne

    Science.gov (United States)

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  13. Protamine-based nanoparticles as new antigen delivery systems.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. UAV Delivery Monitoring System

    Directory of Open Access Journals (Sweden)

    San Khin Thida

    2018-01-01

    Full Text Available UAV-based delivery systems are increasingly being used in the logistics field, particularly to achieve faster last-mile delivery. This study develops a UAV delivery system that manages delivery order assignments, autonomous flight operation, real time control for UAV flights, and delivery status tracking. To manage the delivery item assignments, we apply the concurrent scheduler approach with a genetic algorithm. The present paper describes real time flight data based on a micro air vehicle communication protocol (MAVLink. It also presents the detailed hardware components used for the field tests. Finally, we provide UAV component analysis to choose the suitable components for delivery in terms of battery capacity, flight time, payload weight and motor thrust ratio.

  15. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  16. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  17. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components.

    Science.gov (United States)

    McClements, David Julian; Li, Yan

    2010-09-15

    There is a need for edible delivery systems to encapsulate, protect and release bioactive and functional lipophilic constituents within the food and pharmaceutical industries. These delivery systems could be used for a number of purposes: controlling lipid bioavailability; targeting the delivery of bioactive components within the gastrointestinal tract; and designing food matrices that delay lipid digestion and induce satiety. Emulsion technology is particularly suited for the design and fabrication of delivery systems for lipids. In this article we provide an overview of a number of emulsion-based technologies that can be used as edible delivery systems by the food and other industries, including conventional emulsions, nanoemulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. Each of these delivery systems can be produced from food-grade (GRAS) ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals) using relatively simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, preparation, and utilization of each type of delivery system for controlling lipid digestion are discussed. This knowledge can be used to select the most appropriate emulsion-based delivery system for specific applications, such as encapsulation, controlled digestion, and targeted release. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil, E-mail: simina.dreve@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610{sup 0}C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  19. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    International Nuclear Information System (INIS)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil

    2009-01-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610 0 C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  20. Texosome-based drug delivery system for cancer therapy: from past to present

    International Nuclear Information System (INIS)

    Mahmoodzadeh Hosseini, Hamideh; Halabian, Raheleh; Amin, Mohsen; Imani Fooladi, Abbas Ali

    2015-01-01

    Rising worldwide cancer incidence and resistance to current anti-cancer drugs necessitate the need for new pharmaceutical compounds and drug delivery system. Malfunction of the immune system, particularly in the tumor microenvironment, causes tumor growth and enhances tumor progression. Thus, cancer immunotherapy can be an appropriate approach to provoke the systemic immune system to combat tumor expansion. Texosomes, which are endogenous nanovesicles released by all tumor cells, contribute to cell-cell communication and modify the phenotypic features of recipient cells due to the texosomes’ ability to transport biological components. For this reason, texosome-based delivery system can be a valuable strategy for therapeutic purposes. To improve the pharmaceutical behavior of this system and to facilitate its use in medical applications, biotechnology approaches and mimetic techniques have been utilized. In this review, we present the development history of texosome-based delivery systems and discuss the advantages and disadvantages of each system

  1. Potential applications for halloysite nanotubes based drug delivery systems

    Science.gov (United States)

    Sun, Lin

    Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery. In this study, a drug delivery system was built based on halloysite via three different fabrication methods: physical adsorption, vacuum loading and layer-by-layer coating. Methotrexate was used as the model drug. Factors that may affect performance in both drug loading and release were tested. Results showed that methotrexate could be incorporated within the HNTs system and released in a sustained manner. Layer-by-layer coating showed a better potential than the other two methods in both MTX loading and release. Besides, lower pH could greatly improve MTX loading and release while the increased number of polyelectrolytes bilayers had a limited impact. Osteosarcoma is the most common primary bone malignancy in children and adolescents. Postoperative recurrence and metastasis has become one of the leading causes for patient death after surgical remove of the tumor mass. A strategy could be a sustained release of chemotherapeutics directly at the primary tumor sites where recurrence would mostly occur. Then, this HNTs based system was tested with osteosarcoma cells in vitro to show the potential of delivering chemotherapeutics in the treatment of osteosarcoma. Methotrexate was incorporated within HNTs with a layer-bylayer coating technique, and drug coated HNTs were filled into nylon-6 which is a common material for surgical sutures in industry. Results showed that (1) methotrexate

  2. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.

    Science.gov (United States)

    Calixto, Giovana Maria Fioramonti; Bernegossi, Jéssica; de Freitas, Laura Marise; Fontana, Carla Raquel; Chorilli, Marlus

    2016-03-11

    Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), gold nanoparticles (AuNPs), hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  3. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review

    Directory of Open Access Journals (Sweden)

    Giovana Maria Fioramonti Calixto

    2016-03-01

    Full Text Available Photodynamic therapy (PDT is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs, solid lipid nanoparticles (SLNs, nanostructured lipid carriers (NLCs, gold nanoparticles (AuNPs, hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  4. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.

    Science.gov (United States)

    Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B

    2013-09-01

    To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  5. A sight on protein-based nanoparticles as drug/gene delivery systems.

    Science.gov (United States)

    Salatin, Sara; Jelvehgari, Mitra; Maleki-Dizaj, Solmaz; Adibkia, Khosro

    2015-01-01

    Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.

  6. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia); Woodruff, Henry C.; O’Connor, Daryl J. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia); Uytven, Eric van; McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Kuncic, Zdenka [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

    2013-09-15

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  7. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    International Nuclear Information System (INIS)

    Fuangrod, Todsaporn; Woodruff, Henry C.; O’Connor, Daryl J.; Uytven, Eric van; McCurdy, Boyd M. C.; Kuncic, Zdenka; Greer, Peter B.

    2013-01-01

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy

  8. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Cantwell, Cara T; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P

    2014-01-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management. (technical note)

  9. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    Science.gov (United States)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  10. An emerging platform for drug delivery: aerogel based systems.

    Science.gov (United States)

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Polymer based drug delivery systems for mycobacterial infections.

    Science.gov (United States)

    Pandey, Rajesh; Khuller, G K

    2004-07-01

    In the last decade, polymer based technologies have found wide biomedical applications. Polymers, whether synthetic (e.g. polylactide-co-glycolide or PLG) or natural (e.g. alginate, chitosan etc.), have the property of encapsulating a diverse range of molecules of biological interest and bear distinct therapeutic advantages such as controlled release of drugs, protection against the premature degradation of drugs and reduction in drug toxicity. These are important considerations in the long-duration treatment of chronic infectious diseases such as tuberculosis in which patient non-compliance is the major obstacle to successful chemotherapy. Antitubercular drugs, singly or in combination, have been encapsulated in polymers to provide controlled drug release and the system also offers the flexibility of selecting various routes of administration such as oral, subcutaneous and aerosol. The present review highlights the approaches towards the preparation of polymeric antitubercular drug delivery systems, emphasizing how the route of administration may influence drug bioavailability as well as the chemotherapeutic efficacy. In addition, the pros and cons of the various delivery systems are also discussed.

  12. [Matrix transdermal systems for caffeine delivery based on polymer and emulsion compounds].

    Science.gov (United States)

    Kuznetsova, E G; Kuryleva, O M; Salomatina, L A; Sevast'ianov, V I

    2008-01-01

    The goal of this work was to develop and test transdermal therapeutic systems for caffeine delivery. In vitro experiments showed that the rate of caffeine diffusion through untreated rabbit skin from a transdermal therapeutic systems based on polymer compound containing 50 mg medicine was 67.2 (9.1 microg/cm2h; for a system based on emulsion compound it was 173 (19 microg/cm2h. Methods for studying the caffeine release rate and quantitative measurement of caffeine content in the emulsion-based transdermal therapeutic system were developed. These methods are required to obtain data for standard drug documentation. The results of in vivo experiments in rabbits showed the absence of irritating effect of the emulsion-based transdermal therapeutic system. The obtained data on the specific efficiency of the transdermal therapeutic systems for caffeine delivery (50 mg) in healthy volunteers showed that this medicine could be used as a nonnarcotic psychoactivator for improving mental and physical activities and attention concentration.

  13. Silk Electrogel Based Gastroretentive Drug Delivery System

    Science.gov (United States)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  14. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-10-23

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  15. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-10-17

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  16. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    Directory of Open Access Journals (Sweden)

    Hetal Thakkar

    2011-01-01

    Full Text Available Background : Raloxifene, a second-generation selective estrogen receptor modulator (SERM used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods : In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM and in vitro intestinal permeability. Results : The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion : Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation.

  17. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    Science.gov (United States)

    Thakkar, Hetal; Nangesh, Jitesh; Parmar, Mayur; Patel, Divyakant

    2011-01-01

    Background: Raloxifene, a second-generation selective estrogen receptor modulator (SERM) used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods: In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS) formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM) and in vitro intestinal permeability. Results: The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion: Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation. PMID:21966167

  18. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.

    Science.gov (United States)

    Li, Ling; Hu, Shuo; Chen, Xiaoyuan

    2018-07-01

    In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome editing systems have become one of the most robust platforms in basic biomedical research and therapeutic applications. To date, efficient in vivo delivery of the CRISPR/Cas9 system to the targeted cells remains a challenge. Although viral vectors have been widely used in the delivery of the CRISPR/Cas9 system in vitro and in vivo, their fundamental shortcomings, such as the risk of carcinogenesis, limited insertion size, immune responses and difficulty in large-scale production, severely limit their further applications. Alternative non-viral delivery systems for CRISPR/Cas9 are urgently needed. With the rapid development of non-viral vectors, lipid- or polymer-based nanocarriers have shown great potential for CRISPR/Cas9 delivery. In this review, we analyze the pros and cons of delivering CRISPR/Cas9 systems in the form of plasmid, mRNA, or protein and then discuss the limitations and challenges of CRISPR/Cas9-based genome editing. Furthermore, current non-viral vectors that have been applied for CRISPR/Cas9 delivery in vitro and in vivo are outlined in details. Finally, critical obstacles for non-viral delivery of CRISPR/Cas9 system are highlighted and promising strategies to overcome these barriers are proposed. Published by Elsevier Ltd.

  19. siRNA delivery with lipid-based systems

    DEFF Research Database (Denmark)

    Foged, Camilla

    2012-01-01

    A key hurdle for the further development of RNA interference (RNAi) therapeutics like small interfering RNA (siRNA) is their safe and effective delivery. Lipids are promising and versatile carriers because they are based on Nature's own building blocks and can be provided with properties which......RNA into more hydrophobic lipoplexes, which promote passage of the siRNA across cellular membrane barriers, especially when lipids are added that facilitate membrane fusion. Despite these attractive features, siRNA delivery vehicles are facing a number of challenges such as the limited delivery efficiency...

  20. Peptide and protein delivery using new drug delivery systems.

    Science.gov (United States)

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  1. Geographic information system-coupling sediment delivery distributed modeling based on observed data.

    Science.gov (United States)

    Lee, S E; Kang, S H

    2014-01-01

    Spatially distributed sediment delivery (SEDD) models are of great interest in estimating the expected effect of changes on soil erosion and sediment yield. However, they can only be applied if the model can be calibrated using observed data. This paper presents a geographic information system (GIS)-based method to calculate the sediment discharge from basins to coastal areas. For this, an SEDD model, with a sediment rating curve method based on observed data, is proposed and validated. The model proposed here has been developed using the combined application of the revised universal soil loss equation (RUSLE) and a spatially distributed sediment delivery ratio, within Model Builder of ArcGIS's software. The model focuses on spatial variability and is useful for estimating the spatial patterns of soil loss and sediment discharge. The model consists of two modules, a soil erosion prediction component and a sediment delivery model. The integrated approach allows for relatively practical and cost-effective estimation of spatially distributed soil erosion and sediment delivery, for gauged or ungauged basins. This paper provides the first attempt at estimating sediment delivery ratio based on observed data in the monsoon region of Korea.

  2. An implantable thermoresponsive drug delivery system based on Peltier device.

    Science.gov (United States)

    Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury

    2013-04-15

    Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    Science.gov (United States)

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. A community-based event delivery protocol in publish/subscribe systems for delay tolerant sensor networks.

    Science.gov (United States)

    Liu, Nianbo; Liu, Ming; Zhu, Jinqi; Gong, Haigang

    2009-01-01

    The basic operation of a Delay Tolerant Sensor Network (DTSN) is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short) paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  5. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    Science.gov (United States)

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  6. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review.

    Science.gov (United States)

    Rigon, Roberta Balansin; Oyafuso, Márcia Helena; Fujimura, Andressa Terumi; Gonçalez, Maíra Lima; do Prado, Alice Haddad; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    2015-01-01

    Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy.

  7. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  8. A Community-Based Event Delivery Protocol in Publish/Subscribe Systems for Delay Tolerant Sensor Networks

    Directory of Open Access Journals (Sweden)

    Haigang Gong

    2009-09-01

    Full Text Available The basic operation of a Delay Tolerant Sensor Network (DTSN is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  9. Elastin-Like Recombinamers As Smart Drug Delivery Systems.

    Science.gov (United States)

    Arias, F Javier; Santos, Mercedes; Ibanez-Fonseca, Arturo; Pina, Maria Jesus; Serrano, Sofía

    2018-02-19

    Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This review focuses on biomaterials suitable for this purpose and that include elastin-like recombinamers (ELRs), a class of proteinaceous polymers bioinspired by natural elastin, designed using recombinant technologies. The self-assembly and thermoresponsive behaviour of these systems, along with their biodegradability, biocompatibility and well-defined composition as a result of their tailormade design, make them particularly attractive for controlled drug delivery. ELR-based delivery systems that allow targeted delivery are reviewed, especially ELR-drug recombinant fusion constructs, ELR-drug systems chemically bioconjugated in their monomeric and soluble forms, and drug encapsulation by nanoparticle-forming ELRs. Subsequently, the review focuses on those drug carriers in which smart release is triggered by pH or temperature with a particular focus on cancer treatments. Systems for controlled drug release based on depots and hydrogels that act as both a support and reservoir in which drugs can be stored will be described, and their applications in drug delivery discussed. Finally, smart drug-delivery systems not based on ELRs, including those comprising proteins, synthetic polymers and non-polymeric systems, will also be briefly discussed. Several different constructions based on ELRs are potential candidates for controlled drug delivery to be applied in advanced biomedical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Nanotechnology-Based Drug Delivery Systems for Treatment of Tuberculosis--A Review.

    Science.gov (United States)

    da Silva, Patricia Bento; de Freitas, Eduardo Sinésio; Bernegossi, Jessica; Gonçalez, Maíra Lima; Sato, Mariana Rillo; Leite, Clarice Queico Fujimura; Pavan, Fernando Rogério; Chorilli, Marlus

    2016-02-01

    Tuberculosis (TB) is an infectious and transmissible disease that is caused by Mycobacterium tuberculosis and primarily affects the lungs, although it can affect other organs and systems. The pulmonary presentation of TB, in addition to being more frequent, is also the most relevant to public health because it is primarily responsible for the transmission of the disease. The to their low World Health Organization (WHO) recommends a combined therapeutic regimen of several drugs, such as rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA) and ethambutol (ETB). These drugs have low plasma levels after oral administration, due to their low water solubility, poor permeability and ability to be rapidly metabolized by the liver and at high concentrations. Furthermore, they have short t₁/₂ (only 1-4 hours) indicating a short residence in the plasma and the need for multiple high doses, which can result in neurotoxicity and hepatotoxicity. Nanotechnology drug delivery systems have considerable potential for the treatment of TB. The systems can also be designed to allow for the sustained release of drugs from the matrix and drug delivery to a specific target. These properties of the systems enable the improvement of the bioavailability of drugs, can reduce the dosage and frequency of administration, and may solve the problem of non-adherence to prescribed therapy, which is a major obstacle to the control of TB. The purpose of this study was to systematically review nanotechnology-based drug delivery systems for the treatment of TB.

  11. Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets

    Science.gov (United States)

    Kaishan, Liu; Huimin, Li

    2017-12-01

    The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.

  12. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Yaozhong Hu

    2017-11-01

    Full Text Available The development of innovative targeted therapeutic approaches are expected to surpass the efficacy of current forms of treatments and cause less damage to healthy cells surrounding the tumor site. Since the first development of targeting agents from hybridoma’s, monoclonal antibodies (mAbs have been employed to inhibit tumor growth and proliferation directly or to deliver effector molecules to tumor cells. However, the full potential of such a delivery strategy is hampered by the size of mAbs, which will obstruct the targeted delivery system to access the tumor tissue. By serendipity, a new kind of functional homodimeric antibody format was discovered in camelidae, known as heavy-chain antibodies (HCAbs. The cloning of the variable domain of HCAbs produces an attractive minimal-sized alternative for mAbs, referred to as VHH or nanobodies (Nbs. Apart from their dimensions in the single digit nanometer range, the unique characteristics of Nbs combine a high stability and solubility, low immunogenicity and excellent affinity and specificity against all possible targets including tumor markers. This stimulated the development of tumor-targeted therapeutic strategies. Some autonomous Nbs have been shown to act as antagonistic drugs, but more importantly, the targeting capacity of Nbs has been exploited to create drug delivery systems. Obviously, Nb-based targeted cancer therapy is mainly focused toward extracellular tumor markers, since the membrane barrier prevents antibodies to reach the most promising intracellular tumor markers. Potential strategies, such as lentiviral vectors and bacterial type 3 secretion system, are proposed to deliver target-specific Nbs into tumor cells and to block tumor markers intracellularly. Simultaneously, Nbs have also been employed for in vivo molecular imaging to diagnose diseased tissues and to monitor the treatment effects. Here, we review the state of the art and focus on recent developments with Nbs as

  13. MINI-SLAR delivery system

    International Nuclear Information System (INIS)

    Alstein, D.

    1996-01-01

    In the Spring of 1993, a need to complete Spacer Location and Repositioning (SLAR) on the Bruce 'A', Unit 1 Reactor was identified. An alternate SLAR delivery system was required due to conversion constraints that prevented the existing Bruce SLAR System from being used in Unit 1. A Portable SLAR Delivery System called MINI-SLAR Delivery System was developed, designed and fabricated in a 14 month period, then used to successfully SLAR 109 channels. The system is a portable remotely operated Nuclear Class 1 registered fitting that is independent of the Fuelling Machine, allowing the station to continue normal Fuelling and Maintenance activities. It is designed to a Level 'D' faulted condition of HPECI Pressure thus minimizing PHT Heat Sink configuration requirements and minimizing outage set-up times. The system is based on a modular design allowing for easy fabrication, assembly and repair. It consists of a Snout Assembly, a Closure Plug Assembly, Shield Plug Assembly, SLAR Ram assembly, Work Table Assembly and Control Panel. Controls are through a Programmable Logic Controller with software tested and certified to a Software Quality Assurance of Level Ill. (author). 2 refs., 2 figs

  14. MINI-SLAR delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Alstein, D [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A; Dalton, K [Spectrum Engineering, Peterborough, ON (Canada)

    1997-12-31

    In the Spring of 1993, a need to complete Spacer Location and Repositioning (SLAR) on the Bruce `A`, Unit 1 Reactor was identified. An alternate SLAR delivery system was required due to conversion constraints that prevented the existing Bruce SLAR System from being used in Unit 1. A Portable SLAR Delivery System called MINI-SLAR Delivery System was developed, designed and fabricated in a 14 month period, then used to successfully SLAR 109 channels. The system is a portable remotely operated Nuclear Class 1 registered fitting that is independent of the Fuelling Machine, allowing the station to continue normal Fuelling and Maintenance activities. It is designed to a Level `D` faulted condition of HPECI Pressure thus minimizing PHT Heat Sink configuration requirements and minimizing outage set-up times. The system is based on a modular design allowing for easy fabrication, assembly and repair. It consists of a Snout Assembly, a Closure Plug Assembly, Shield Plug Assembly, SLAR Ram assembly, Work Table Assembly and Control Panel. Controls are through a Programmable Logic Controller with software tested and certified to a Software Quality Assurance of Level Ill. (author). 2 refs., 2 figs.

  15. Structuring polymers for delivery of DNA-based therapeutics: updated insights.

    Science.gov (United States)

    Gupta, Madhu; Tiwari, Shailja; Vyas, Suresh

    2012-01-01

    Gene therapy offers greater opportunities for treating numerous incurable diseases from genetic disorders, infections, and cancer. However, development of appropriate delivery systems could be one of the most important factors to overcome numerous biological barriers for delivery of various therapeutic molecules. A number of nonviral polymer-mediated vectors have been developed for DNA delivery and offer the potential to surmount the associated problems of their viral counterpart. To address the concerns associated with safety issues, a wide range of polymeric vectors are available and have been utilized successfully to deliver their therapeutics in vivo. Today's research is mainly focused on the various natural or synthetic polymer-based delivery carriers that protect the DNA molecule from degradation, which offer specific targeting to the desired cells after systemic administration, have transfection efficiencies equivalent to virus-mediated gene delivery, and have long-term gene expression through sustained-release mechanisms. This review explores an updated overview of different nonviral polymeric delivery system for delivery of DNA-based therapeutics. These polymeric carriers have been evaluated in vitro and in vivo and are being utilized in various stages of clinical evaluation. Continued research and understanding of the principles of polymer-based gene delivery systems will enable us to develop new and efficient delivery systems for the delivery of DNA-based therapeutics to achieve the goal of efficacious and specific gene therapy for a vast array of clinical disorders as the therapeutic solutions of tomorrow.

  16. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine.

    Science.gov (United States)

    Jahangirian, Hossein; Lemraski, Ensieh Ghasemian; Webster, Thomas J; Rafiee-Moghaddam, Roshanak; Abdollahi, Yadollah

    2017-01-01

    This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed "green nanomedicine". Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow.

  17. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  18. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    Science.gov (United States)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  19. A Transdermal Drug Delivery System Based on LIGA Technology and Soft Lithography

    Science.gov (United States)

    Matteucci, Marco; Perennes, Frederic; Marmiroli, Benedetta; Di Fabrizio, Enzo

    2007-01-01

    This report presents a transdermal drug delivery system based on LIGA fabricated microparts. It is a portable device combining a magnetically actuated micro gear pump with a microneedle array. The fluidic behaviour of the system is analyzed in order to predict its performance according to the dimension of the microparts and then compared to experimental data. The manufacturing process of both micropump and microneedle array are described.

  20. Advanced drug delivery systems: Nanotechnology of health design A review

    Directory of Open Access Journals (Sweden)

    Javad Safari

    2014-04-01

    Full Text Available Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements for developing new nanotech-nology-based drug delivery systems.

  1. Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics.

    Science.gov (United States)

    du Plessis, Lissinda H; Marais, Etienne B; Mohammed, Faruq; Kotzé, Awie F

    2014-01-01

    In the last decades several new biotechnologically-based therapeutics have been developed due to progress in genetic engineering. A growing challenge facing pharmaceutical scientists is formulating these compounds into oral dosage forms with adequate bioavailability. An increasingly popular approach to formulate biotechnology-based therapeutics is the use of lipid based formulation technologies. This review highlights the importance of lipid based drug delivery systems in the formulation of oral biotechnology based therapeutics including peptides, proteins, DNA, siRNA and vaccines. The different production procedures used to achieve high encapsulation efficiencies of the bioactives are discussed, as well as the factors influencing the choice of excipient. Lipid based colloidal drug delivery systems including liposomes and solid lipid nanoparticles are reviewed with a focus on recent advances and updates. We further describe microemulsions and self-emulsifying drug delivery systems and recent findings on bioactive delivery. We conclude the review with a few examples on novel lipid based formulation technologies.

  2. Micro- and nano bio-based delivery systems for food applications: In vitro behavior.

    Science.gov (United States)

    de Souza Simões, Lívia; Madalena, Daniel A; Pinheiro, Ana C; Teixeira, José A; Vicente, António A; Ramos, Óscar L

    2017-05-01

    Micro- and nanoencapsulation is an emerging technology in the food field that potentially allows the improvement of food quality and human health. Bio-based delivery systems of bioactive compounds have a wide variety of morphologies that influence their stability and functional performance. The incorporation of bioactive compounds in food products using micro- and nano-delivery systems may offer extra health benefits, beyond basic nutrition, once their encapsulation may provide protection against undesired environmental conditions (e.g., heat, light and oxygen) along the food chain (including processing and storage), thus improving their bioavailability, while enabling their controlled release and target delivery. This review provides an overview of the bio-based materials currently used for encapsulation of bioactive compounds intended for food applications, as well as the main production techniques employed in the development of micro- and nanosystems. The behavior of such systems and of bioactive compounds entrapped into, throughout in vitro gastrointestinal systems, is also tracked in a critical manner. Comparisons between various in vitro digestion systems (including the main advantages and disadvantages) currently in use, as well as correlations between the behavior of micro- and nanosystems studied through in vitro and in vivo systems were highlighted and discussed here for the first time. Finally, examples of bioactive micro- and nanosystems added to food simulants or to real food matrices are provided, together with a revision of the main challenges for their safe commercialization, the regulatory issues involved and the main legislation aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Physician practice management companies: implications for hospital-based integrated delivery systems.

    Science.gov (United States)

    Burns, L R; Robinson, J C

    1997-01-01

    Physician practice management companies (PPMCs) are one of the most visible entrants into the industry of managing physician practices, and anywhere from 100-150 are already in operation. Although PPMCs and hospital-based integrated delivery systems (IDSs) differ from each other in many ways, they share a number of common features, including the pursuit of capitation contracts from payors. As a result, PPMCs pose a growing, direct threat to hospital systems in competing for managed care contracts that cover physician service. PPMCs also provide an alternative to hospital-based IDSs at the local market level for physician group consolidation. This article looks at the structure, operation, and strategy of PPMCs and examines what implications their growth will have for hospital-based IDSs.

  4. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  5. A real-time virtual delivery system for photon radiotherapy delivery monitoring

    Directory of Open Access Journals (Sweden)

    Feng Shi

    2014-03-01

    Full Text Available Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC method.Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM is calculated based. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an in-house developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the dose calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes in color wash overlaid on the CT image. This process continues to monitor the 3D dose distribution in real-time.Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the IMRT and VMAT cases, respectively. The update frequency is >10Hz and the relative uncertainty level is 2%.Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.------------------------------Cite this article as: Shi F, Gu X, Graves YJ, Jiang S, Jia X. A real-time virtual delivery system for photon radiotherapy delivery

  6. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  7. Examining fiscal federalism, regionalization and community-based initiatives in Canada's health care delivery system.

    Science.gov (United States)

    Forest, Pierre-Gerlier; Palley, Howard A

    2008-01-01

    This study focuses on the ability of Canadian provinces to shape in different ways the development of various provincial health delivery systems within the constraints of the mandates of the federal Canada Health Act of 1984 and the fiscal revenues that the provinces receive if they comply with these mandates. In so doing, it will examine the operation of Canadian federalism with respect to various provincial health systems. This study applies a comparative analysis framework developed by Heisler and Peters to facilitate an understanding of the dimensionality of provincial health delivery systems as applied to the case of provincial regionalization and community-based initiatives. The three sets of relationships touched upon are: first, the levels of government and the nature of their involvement in public policy concerning the provincial health care delivery systems; and secondly, understanding of the factors influencing provincial governments' political dispositions to act in various directions. A third dimension that is taken are the factors influencing the "timing" of particular decisions. A fourth area noted by Heisler and Peters and other comparative analysts is the nature and characteristics of public and private sector activities in health care and other social policy areas. While the evolving nature of public and private sector health care delivery activities within Canada's provincial and territorial systems is a significant policy matter in the Canadian context, due to the space limitations of this article, they are not discussed herein.

  8. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned. © 2016 by the Wound Healing Society.

  9. Inulin based glutathione-responsive delivery system for colon cancer treatment.

    Science.gov (United States)

    Wang, Dongdong; Sun, Feifei; Lu, Chunbo; Chen, Peng; Wang, Zhaojie; Qiu, Yuanhao; Mu, Haibo; Miao, Zehong; Duan, Jinyou

    2018-05-01

    Colorectal cancer is one of the most common types of tumor in the world. Here we developed a lipoic acid esterified polysaccharide (inulin) delivery system for tanshinone IIA to treat colorectal cancer in vitro. The release of tanshinone IIA in the system was highly responsive to glutathione, which is commonly abundant in cancer cells. In addition, this drug delivery system was proliferative to Bifidobacterium longum, the common inhabitant of human intestine. Thus, this strategy might be useful to improve colon cancer therapy efficacy of anticancer drugs and meanwhile promote the growth of beneficial commensal flora in the gut. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Reduction of treatment delivery variances with a computer-controlled treatment delivery system

    International Nuclear Information System (INIS)

    Fraass, B.A.; Lash, K.L.; Matrone, G.M.; Lichter, A.S.

    1997-01-01

    Purpose: To analyze treatment delivery variances for 3-D conformal therapy performed at various levels of treatment delivery automation, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system. Materials and Methods: All external beam treatments performed in our department during six months of 1996 were analyzed to study treatment delivery variances versus treatment complexity. Treatments for 505 patients (40,641 individual treatment ports) on four treatment machines were studied. All treatment variances noted by treatment therapists or quality assurance reviews (39 in all) were analyzed. Machines 'M1' (CLinac (6(100))) and 'M2' (CLinac 1800) were operated in a standard manual setup mode, with no record and verify system (R/V). Machines 'M3' (CLinac 2100CD/MLC) and ''M4'' (MM50 racetrack microtron system with MLC) treated patients under the control of a computer-controlled conformal radiotherapy system (CCRS) which 1) downloads the treatment delivery plan from the planning system, 2) performs some (or all) of the machine set-up and treatment delivery for each field, 3) monitors treatment delivery, 4) records all treatment parameters, and 5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3, so it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments (ports), non-axial and non-coplanar plans, multi-segment intensity modulation, and pseudo-isocentric treatments (and other plans with computer-controlled table motions). Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines, so this analysis

  11. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...

  12. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus

    OpenAIRE

    Park, Joo Youn; Moon, Bo Youn; Park, Juw Won; Thornton, Justin A.; Park, Yong Ho; Seo, Keun Seok

    2017-01-01

    Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of viru...

  13. Servir: an automated document delivery system

    International Nuclear Information System (INIS)

    Lima, E.C.; Azevedo Coutinho, O.C. de

    1986-01-01

    SERVIR, an automated document delivery system developed by CIN/CNEN, is described. Parametric procedures for reading bibliographic data bases and requesting documents from libraries through computer are specified. Statistical procedures, accounting system and the on-line fulfillment of requests are presented. (Author) [pt

  14. Supramolecular Drug Delivery Systems Based on Water-Soluble Pillar[n]arenes.

    Science.gov (United States)

    Wu, Xuan; Gao, Lei; Hu, Xiao-Yu; Wang, Leyong

    2016-06-01

    Supramolecular drug delivery systems (SDDSs), including various kinds of nanostructures that are assembled by reversible noncovalent interactions, have attracted considerable attention as ideal drug carriers owing to their fascinating ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, which provides a flexible and robust platform for designing and developing functional and smart supramolecular nano-drug carriers. Pillar[n]arenes represent a new generation of macrocyclic hosts, which have unique structures and excellent properties in host-guest chemistry. This account describes recent progress in our group to develop pillararene-based stimuli-responsive supramolecular nanostructures constructed by reversible host-guest interactions for controllable anticancer drug delivery. The potential applications of these supramolecular drug carriers in cancer treatment and the fundamental questions facing SDDSs are also discussed. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Exploring the role of peptides in polymer-based gene delivery.

    Science.gov (United States)

    Sun, Yanping; Yang, Zhen; Wang, Chunxi; Yang, Tianzhi; Cai, Cuifang; Zhao, Xiaoyun; Yang, Li; Ding, Pingtian

    2017-09-15

    Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review.

    Science.gov (United States)

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.

  17. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  18. Project delivery system (PDS)

    CERN Document Server

    2001-01-01

    As business environments become increasingly competitive, companies seek more comprehensive solutions to the delivery of their projects. "Project Delivery System: Fourth Edition" describes the process-driven project delivery systems which incorporates the best practices from Total Quality and is aligned with the Project Management Institute and ISO Quality Standards is the means by which projects are consistently and efficiently planned, executed and completed to the satisfaction of clients and customers.

  19. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  20. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine

    Directory of Open Access Journals (Sweden)

    Jahangirian H

    2017-04-01

    Full Text Available Hossein Jahangirian,1 Ensieh Ghasemian Lemraski,2 Thomas J Webster,1 Roshanak Rafiee-Moghaddam,3 Yadollah Abdollahi4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran; 3School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, 4Department of Electrical Engineering, Faculty of Engineering, University of Malaysia, Kuala Lumpur, Malaysia Abstract: This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed “green nanomedicine”. Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow. Keywords: green chemistry, cancer, drug delivery, nanoparticle

  1. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  2. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    Science.gov (United States)

    Zhu, Yu

    Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo

  3. Recent trends in drug delivery system using protein nanoparticles.

    Science.gov (United States)

    Sripriyalakshmi, S; Jose, Pinkybel; Ravindran, Aswathy; Anjali, C H

    2014-09-01

    Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.

  4. Colloidal drug delivery system: amplify the ocular delivery.

    Science.gov (United States)

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  5. Towards an Innovative Web-Based Lab Delivery System for a Management Information Systems Course

    Science.gov (United States)

    Breimer, Eric; Cotler, Jami; Yoder, Robert

    2011-01-01

    While online systems are an essential component of distance learning, they can also play a critical role in improving the delivery of activities in a traditional laboratory setting. The quality and effectiveness of online course delivery is often compared to equivalent face-to-face alternatives. In our approach, we have harnessed what we feel to…

  6. Adamantane in Drug Delivery Systems and Surface Recognition.

    Science.gov (United States)

    Štimac, Adela; Šekutor, Marina; Mlinarić-Majerski, Kata; Frkanec, Leo; Frkanec, Ruža

    2017-02-16

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  7. Adamantane in Drug Delivery Systems and Surface Recognition

    Directory of Open Access Journals (Sweden)

    Adela Štimac

    2017-02-01

    Full Text Available The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  8. A wireless actuating drug delivery system

    International Nuclear Information System (INIS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-01-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s −1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  9. Development of buccal drug delivery systems based on a thiolated polymer.

    Science.gov (United States)

    Langoth, Nina; Kalbe, Jochen; Bernkop-Schnürch, Andreas

    2003-02-18

    The purpose of the present study was to investigate the benefit of thiolated polymers (thiomers) for the development of buccal drug delivery systems. L-Cysteine was thereby covalently attached to polycarbophil (PCP) mediated by a carbodiimide. The resulting conjugate displayed 140.5+/-8.4 microM thiol groups per gram polymer. Disintegration studies were carried out with tablets based on unmodified polymer and conjugated polymer, respectively. Due to the formation of disulfide bonds within the thiolated polymer, the stability of matrix-tablets based on this polymer was strongly improved. Additionally tensile studies were carried out, which were in good correlation with further results obtained by mucoadhesion studies, using the rotating cylinder method. These results showed that tablets based on thiolated PCP remained attached on freshly excised porcine mucosa 1.8 times longer than the corresponding control. Moreover, the enzyme inhibitory properties of polymers were evaluated as well. Thiolated PCP increased the stability of the synthetic substrate for aminopeptidase N-leu-p-nitroanilide (N-leu-pNA) and the model drug leucin-enkephalin (leu-enkephalin) against enzymatic degradation on buccal mucosa. Due to the use of thiolated polymers also a controlled drug release for leu-enkephalin was guaranteed over a time period for more than 24 h. Results of the present studies suggest that thiolated polymers represent a very useful tool for buccal delivery of peptide drugs.

  10. Effect of co-administration of probiotics with polysaccharide based colon targeted delivery systems to optimize site specific drug release.

    Science.gov (United States)

    Prudhviraj, G; Vaidya, Yogyata; Singh, Sachin Kumar; Yadav, Ankit Kumar; Kaur, Puneet; Gulati, Monica; Gowthamarajan, K

    2015-11-01

    Significant clinical success of colon targeted dosage forms has been limited by their inappropriate release profile at the target site. Their failure to release the drug completely in the colon may be attributed to changes in the colonic milieu because of pathological state, drug effect and psychological stress accompanying the diseased state or, a combination of these. Alteration in normal colonic pH and bacterial picture leads to incomplete release of drug from the designed delivery system. We report the effectiveness of a targeted delivery system wherein the constant replenishment of the colonic microbiota is achieved by concomitant administration of probiotics along with the polysaccharide based drug delivery system. Guar gum coated spheroids of sulfasalazine were prepared. In the dissolution studies, these spheroids showed markedly higher release in the simulated colonic fluid. In vivo experiments conducted in rats clearly demonstrated the therapeutic advantage of co-administration of probiotics with guar gum coated spheroids. Our results suggest that concomitant use of probiotics along with the polysaccharide based delivery systems can be a simple strategy to achieve satisfactory colon targeting of drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Development of a Gastroretentive Drug Delivery System based on ...

    African Journals Online (AJOL)

    Erah

    Purpose: The aim of this work was to synthesize superporous hydrogels of rosiglitazone using chitosan and to study its swelling behaviour for application as a gastroretentive drug delivery system. Methods: Chitosan superporous hydrogels were synthesized using glyoxal as a crosslinking agent by gas blowing method.

  12. Self-nanoemulsifying drug delivery systems for oral insulin delivery

    DEFF Research Database (Denmark)

    Li, Ping; Tan, Angel; Prestidge, Clive A

    2014-01-01

    This study aims at evaluating the combination of self-nanoemulsifying drug delivery systems (SNEDDS) and enteric-coated capsules as a potential delivery strategy for oral delivery of insulin. The SNEDDS preconcentrates, loaded with insulin-phospholipid complex at different levels (0, 2.5 and 10% w...

  13. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    Science.gov (United States)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  14. Food Delivery System with the Utilization of Vehicle Using Geographical Information System (GIS) and A Star Algorithm

    Science.gov (United States)

    Siregar, B.; Gunawan, D.; Andayani, U.; Sari Lubis, Elita; Fahmi, F.

    2017-01-01

    Food delivery system is one kind of geographical information systems (GIS) that can be applied through digitation process. The main case in food delivery system is the way to determine the shortest path and food delivery vehicle movement tracking. Therefore, to make sure that the digitation process of food delivery system can be applied efficiently, it is needed to add shortest path determination facility and food delivery vehicle tracking. This research uses A Star (A*) algorithm for determining shortest path and location-based system (LBS) programming for moving food delivery vehicle object tracking. According to this research, it is generated the integrated system that can be used by food delivery driver, customer, and administrator in terms of simplifying the food delivery system. Through the application of shortest path and the tracking of moving vehicle, thus the application of food delivery system in the scope of geographical information system (GIS) can be executed.

  15. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  16. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Hsin-I Tong

    Full Text Available The ability of monocytes and monocyte-derived macrophages (MDM to travel towards chemotactic gradient, traverse tissue barriers, and accumulate precisely at diseased sites makes them attractive candidates as drug carriers and therapeutic gene delivery vehicles targeting the brain, where treatments are often hampered by the blockade of the blood brain barrier (BBB. This study was designed to fully establish an optimized cell-based delivery system using monocytes and MDM, by evaluating their homing efficiency, engraftment potential, as well as carriage and delivery ability to transport nano-scaled particles and exogenous genes into the brain, following the non-invasive intravenous (IV cell adoptive transfer in an acute neuroinflammation mouse model induced by intracranial injection of Escherichia coli lipopolysaccharides. We demonstrated that freshly isolated monocytes had superior inflamed-brain homing ability over MDM cultured in the presence of macrophage colony stimulating factor. In addition, brain trafficking of IV infused monocytes was positively correlated with the number of adoptive transferred cells, and could be further enhanced by transient disruption of the BBB with IV administration of Mannitol, Bradykinin or Serotonin right before cell infusion. A small portion of transmigrated cells was detected to differentiate into IBA-1 positive cells with microglia morphology in the brain. Finally, with the use of superparamagnetic iron oxide nanoparticles SHP30, the ability of nanoscale agent-carriage monocytes to enter the inflamed brain region was validated. In addition, lentiviral vector DHIV-101 was used to introduce green fluorescent protein (GFP gene into monocytes, and the exogenous GFP gene was detected in the brain at 48 hours following IV infusion of the transduced monocytes. All together, our study has set up the optimized conditions for the more-in-depth tests and development of monocyte-mediated delivery, and our data supported

  17. DNA nanostructure-based drug delivery nanosystems in cancer therapy.

    Science.gov (United States)

    Wu, Dandan; Wang, Lei; Li, Wei; Xu, Xiaowen; Jiang, Wei

    2017-11-25

    DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Adamantane in Drug Delivery Systems and Surface Recognition

    OpenAIRE

    Adela Štimac; Marina Šekutor; Kata Mlinarić-Majerski; Leo Frkanec; Ruža Frkanec

    2017-01-01

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based struc...

  19. Recent developments in oral lipid-based drug delivery

    DEFF Research Database (Denmark)

    Thomas, N.; Rades, T.; Müllertz, A.

    2013-01-01

    The increasing number of poorly water-soluble drugs in development in the pharmaceutical industry has sparked interest in novel drug delivery options such as lipid-based drug delivery systems (LbDDS). Several LbDDS have been marketed successfully and have shown superior and more reliable...... bioavailability compared to conventional formulations. However, some reluctance in the broader application of LbDDS still appears, despite the growing commercial interest in lipids as a drug delivery platform. This reluctance might at least in part be related to the complexity associated with the development...... and characterization of LbDDS. In particular, the lack of standardized test protocols can be identified as the major obstacles for the broader application of LbDDS. This review seeks to summarize recent approaches in the field of lipid-based drug delivery that try to elucidate some critical steps in their development...

  20. An Overview of Clinical and Commercial Impact of Drug Delivery Systems

    Science.gov (United States)

    Anselmo, Aaron C.; Mitragotri, Samir

    2014-01-01

    Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems. PMID:24747160

  1. Polysaccharide-Based Micelles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  2. Understanding the organization of public health delivery systems: an empirical typology.

    Science.gov (United States)

    Mays, Glen P; Scutchfield, F Douglas; Bhandari, Michelyn W; Smith, Sharla A

    2010-03-01

    Policy discussions about improving the U.S. health care system increasingly recognize the need to strengthen its capacities for delivering public health services. A better understanding of how public health delivery systems are organized across the United States is critical to improvement. To facilitate the development of such evidence, this article presents an empirical method of classifying and comparing public health delivery systems based on key elements of their organizational structure. This analysis uses data collected through a national longitudinal survey of local public health agencies serving communities with at least 100,000 residents. The survey measured the availability of twenty core public health activities in local communities and the types of organizations contributing to each activity. Cluster analysis differentiated local delivery systems based on the scope of activities delivered, the range of organizations contributing, and the distribution of effort within the system. Public health delivery systems varied widely in organizational structure, but the observed patterns of variation suggested that systems adhere to one of seven distinct configurations. Systems frequently migrated from one configuration to another over time, with an overall trend toward offering a broader scope of services and engaging a wider range of organizations. Public health delivery systems exhibit important structural differences that may influence their operations and outcomes. The typology developed through this analysis can facilitate comparative studies to identify which delivery system configurations perform best in which contexts.

  3. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review.

    Science.gov (United States)

    Singh, Jagdeep; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-06-01

    From the early sixteenth and seventeenth centuries to the present day of life, tuberculosis (TB) still is a global health threat with some new emergence of resistance. This type of emergence poses a vital challenge to control TB cases across the world. Mortality and morbidity rates are high due to this new face of TB. The newer nanotechnology-based drug-delivery approaches involving micro-metric and nano-metric carriers are much needed at this stage. These delivery systems would provide more advantages over conventional systems of treatment by producing enhanced therapeutic efficacy, uniform distribution of drug molecule to the target site, sustained and controlled release of drug molecules and lesser side effects. The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. This article reviews and elaborates the new concepts and drug-delivery approaches for the treatment of TB involving solid-lipid particulate drug-delivery systems (solid-lipid micro- and nanoparticles, nanostructured lipid carriers), vesicular drug-delivery systems (liposomes, niosomes and liposphere), emulsion-based drug-delivery systems (micro and nanoemulsion) and some other novel drug-delivery systems for the effective treatment of tuberculosis and role of immunomodulators as an adjuvant therapy for management of MDR-TB and XDR-TB.

  4. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2015-10-01

    Full Text Available Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX, are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  5. Preparing and evaluating delivery systems for proteins

    DEFF Research Database (Denmark)

    Jorgensen, L; Moeller, E H; van de Weert, M

    2006-01-01

    From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping...... and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge...... for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions....

  6. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    Science.gov (United States)

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  7. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    Directory of Open Access Journals (Sweden)

    Rajabalaya R

    2017-02-01

    Full Text Available Rajan Rajabalaya, Muhammad Nuh Musa, Nurolaini Kifli, Sheba R David PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam Abstract: Liquid crystal (LC dosage forms, particularly those using lipid-based lyotropic LCs (LLCs, have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. Keywords: liquid crystal, drug delivery, controlled release, lyotropic, surfactants, drug localization

  8. Pectin-based colon-specific drug delivery

    OpenAIRE

    Shailendra Shukla; Deepak Jain; Kavita Verma; Shiddarth Verma

    2011-01-01

    Colon-specific drug delivery have a great importance in the delivery of drugs for the treatment of local colonic, as well as systemic diseases like Crohn′s disease, ulcerative colitis, colorectal cancer, amoebiasis, asthma, arthritis and inflammation which can be achieved by targeted delivery of drug to colon. Specific systemic absorption in the colon gave interesting possibilities for the delivery of protein and peptides. It contains relatively less proteolytic enzyme activities in the colon...

  9. A Novel Nonviral Gene Delivery System: Multifunctional Envelope-Type Nano Device

    Science.gov (United States)

    Hatakeyama, Hiroto; Akita, Hidetaka; Kogure, Kentaro; Harashima, Hideyoshi

    In this review we introduce a new concept for developing a nonviral gene delivery system which we call "Programmed Packaging." Based on this concept, we succeeded in developing a multifunctional envelope-type nano device (MEND), which exerts high transfection activities equivalent to those of an adenovirus in a dividing cell. The use of MEND has been extended to in vivo applications. PEG/peptide/DOPE ternary conjugate (PPD)-MEND, a new in vivo gene delivery system for the targeting of tumor cells that dissociates surface-modified PEG in tumor tissue by matrix metalloproteinase (MMP) and exerts significant transfection activities, was developed. In parallel with the development of MEND, a quantitative gene delivery system, Confocal Image-assisted 3-dimensionally integrated quantification (CIDIQ), also was developed. This method identified the rate-limiting step of the nonviral gene delivery system by comparing it with adenoviral-mediated gene delivery. The results of this analysis provide a new direction for the development of rational nonviral gene delivery systems.

  10. Development of nanotechnology-based drug delivery systems with olive vegetable oil for cutaneous application

    Directory of Open Access Journals (Sweden)

    Silas Arandas Monteiro e Silva

    Full Text Available ABSTRACT Liquid-Crystalline Systems represent active compounds delivery systems that may be able to overcome the physical barrier of the skin, especially represented by the stratum corneum. To obtain these systems, aqueous and oily components are used with surfactants. Of the different association structures in such systems, the liquid-crystalline offer numerous advantages to a topical product. This manuscript presents the development of liquid-crystalline systems consisting, in which the oil component is olive oil, its rheological characterizations, and the location of liquid crystals in its phase map. Cytotoxic effects were evaluated using J-774 mouse macrophages as the cellular model. A phase diagram to mix three components with different proportions was constructed. Two liquid crystalline areas were found with olive oil in different regions in the ternary diagram with two nonionic surfactants, called SLC1 (S1 and SLC2 (S2. These systems showed lamellar liquid crystals that remained stable during the entire analysis time. The systems were also characterized rheologically with pseudoplastic behavior without thixotropy. The texture and bioadhesion assays showed that formulations were similar statistically (p < 0.05, indicating that the increased amount of water in S2 did not interfere with the bioadhesive properties of the systems. In vitro cytotoxic assays showed that formulations did not present cytotoxicity. Olive oil-based systems may be a promising platform for skin delivery of drugs.

  11. Simulation of a Schema Theory-Based Knowledge Delivery System for Scientists.

    Science.gov (United States)

    Vaughan, W. S., Jr.; Mavor, Anne S.

    A future, automated, interactive, knowledge delivery system for use by researchers was tested using a manual cognitive model. Conceptualized from schema/frame/script theories in cognitive psychology and artificial intelligence, this hypothetical system was simulated by two psychologists who interacted with four researchers in microbiology to…

  12. STRATEGIES AND PROSPECTS OF NASAL DRUG DELIVERY SYSTEMS

    OpenAIRE

    Gannu Praveen Kumar

    2012-01-01

    The recent advancement of nasal drug delivery systems has increased enormously and is gaining significant importance. Intranasal therapy has been an accepted form of treatment in the Ayurvedic system of Indian Medicine. The non-invasive delivery of nasal drug delivery systems made to exploit for the development of successful treatment. The advantages, disadvantages, mechanism of action and application of nasal drug delivery system in local delivery, systematic delivery, nasal vaccines and CNS...

  13. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    Science.gov (United States)

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  14. Polymer-Based Novel Lung Targeted Delivery Systems.

    Science.gov (United States)

    Elmowafy, Enas; Osman, Rihab; Ishak, Rania A H

    2017-01-01

    Due to its unique features, the respiratory tract had received great attention as a promising non-invasive route for drug administration to achieve both local and systemic effects. Efforts spent to tailor systems able to overcome the lung defence mechanisms and biological barriers are followed in this review. Aerodynamic diameter, morphology, lung deposition and drug release profiles are the main criteria describing the selected new smart lung targeted delivery systems. Novel systems such as nanoparticles, nano-embedded-in microparticles (NEM), small microparticles (MP), large porous particles (LPP), PulmospheresTM and polymeric micelles are used to passively target different areas in the respiratory tract. The most common preparation methods are outlined in the article. Special emphasis was given to the characteristics of the polymers used to fabricate the developed systems. Efforts made to prepare systems using chitosan (CS), alginate (alg), hyaluronic acid (HA), gelatin and albumin as examples of natural polymers and poly lactic-co-glycolic acid (PLGA) and poly(Ɛ-caprolactone) (PCL) as synthetic polymers were compiled. The continuous development and work in the area of lung targeting resulted in the development of engineered smart platforms with the capability to carry small drug molecules, proteins and genes to treat a variety of local and systemic diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Fiber coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  16. Sterile Product Packaging and Delivery Systems.

    Science.gov (United States)

    Akers, Michael J

    2015-01-01

    Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.

  17. Zein-alginate based oral drug delivery systems: Protection and release of therapeutic proteins.

    Science.gov (United States)

    Lee, Sungmun; Kim, Yeu-Chun; Park, Ji-Ho

    2016-12-30

    Reactive oxygen species (ROS) play an important role in the development of inflammatory bowel diseases. Superoxide dismutase (SOD) has a great therapeutic potential by scavenging superoxide that is one of ROS; however, in vivo application is limited especially when it is orally administered. SOD is easily degraded in vivo by the harsh conditions of gastrointestinal tract. Here, we design a zein-alginate based oral drug delivery system that protects SOD from the harsh conditions of gastrointestinal tract and releases it in the environment of the small intestine. SOD is encapsulated in zein-alginate nanoparticles (ZAN) via a phase separation method. We demonstrate that ZAN protect SOD from the harsh conditions of the stomach or small intestine condition. ZAN (200:40) at the weight ratio of 200mg zein to 40mg of alginate releases SOD in a pH dependent manner, and it releases 90.8±1.2% of encapsulated SOD at pH 7.4 in 2h, while only 11.4±0.4% of SOD was released at pH 1.3. The encapsulation efficiency of SOD in ZAN (200:40) was 62.1±2.0%. SOD in ZAN (200:40) reduced the intracellular ROS level and it saved 88.9±7.5% of Caco-2 cells from the toxic superoxide in 4 hours. Based on the results, zein-alginate based oral drug delivery systems will have numerous applications to drugs that are easily degradable in the harsh conditions of gastrointestinal tract. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Buccal mucosa as a route for systemic drug delivery: a review.

    Science.gov (United States)

    Shojaei, A H

    1998-01-01

    Within the oral mucosal cavity, the buccal region offers an attractive route of administration for systemic drug delivery. The mucosa has a rich blood supply and it is relatively permeable. It is the objective of this article to review buccal drug delivery by discussing the structure and environment of the oral mucosa and the experimental methods used in assessing buccal drug permeation/absorption. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based delivery systems

  19. High-Throughput Lipolysis in 96-Well Plates for Rapid Screening of Lipid-Based Drug Delivery Systems

    DEFF Research Database (Denmark)

    Mosgaard, Mette D; Sassene, Philip J; Mu, Huiling

    2017-01-01

    The high-throughput in vitro intestinal lipolysis model (HTP) applicable for rapid and low-scale screening of lipid-based drug delivery systems (LbDDSs) was optimized and adjusted as to be conducted in 96-well plates (HTP-96). Three different LbDDSs (I-III) loaded with danazol or cinnarizine were...

  20. Health care delivery systems.

    NARCIS (Netherlands)

    Stevens, F.; Zee, J. van der

    2007-01-01

    A health care delivery system is the organized response of a society to the health problems of its inhabitants. Societies choose from alternative health care delivery models and, in doing so, they organize and set goals and priorities in such a way that the actions of different actors are effective,

  1. Peptide and low molecular weight proteins based kidney targeted drug delivery systems.

    Science.gov (United States)

    Xu, Pengfei; Zhang, Hailiang; Dang, Ruili; Jiang, Pei

    2018-05-30

    Renal disease is a worldwide public health problem, and unfortunately, the therapeutic index of regular drugs is limited. Thus, it is a great need to develop effective treatment strategies. Among the reported strategies, kidney-targeted drug delivery system is a promising method to increase renal efficacy and reduce extra-renal toxicity. In recent years, working as vehicles for targeted drug delivery, low molecular weight proteins (LMWP) and peptide have received immense attention due to their many advantages, such as selective accumulation in kidney, high drug loading capability, control over routes of biodegradation, convenience in modification at the amino terminus, and good biocompatibility. In this review, we describe the current LMWP and peptide carriers for kidney targeted drug delivery systems. In addition, we discuss different linking strategies between carriers and drugs. Furthermore, we briefly outline the current status and attempt to give an outlook on the further study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Protein-Based Drug-Delivery Materials

    Directory of Open Access Journals (Sweden)

    Dave Jao

    2017-05-01

    Full Text Available There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review.

  3. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    Science.gov (United States)

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  4. Design of a microemulsion-based drug delivery system for diclofenac sodium

    International Nuclear Information System (INIS)

    Kkizibash, N.A.; Asif, S.; Nazar, M.F.; Alenizi, D.; Shah, S.S.

    2011-01-01

    A microemulsion-based drug delivery system has been designed for Diclofenac Sodium(DS) comprising Span 60, 1-Propanol, Water, and Lemon Oil. The microemulsion system has been characterized by a pseudo-ternary phase diagram using the water titration method. The properties and structure of this system have been studied by the use of refractive index, electrical conductivity, viscosity and UV-Visible spectroscopy. The conductivity (s) and viscosity (k nu) measurements have provided evidence for percolation behavior with variation in F (weight fraction of aqueous phase). This phase transition corresponds to the structural change from water-in-oil to a bicontinuous microemulsion system. The percolation threshold (FC) obtained from conductivity measurements was in accordance with that obtained by viscosity measurements. Five microemulsion samples were selected and the changes in microstructure after incorporation of the drug, Diclofenac Sodium (DS) were examined by centrifugation, conductivity measurements, viscosity measurements and spectroscopic studies. The conductivity measurements showed that DS-loaded samples have higher conductivity values when compared to non-loaded samples. It was also found that DS is inter facially active. In addition, loading of DS had no negative effect on the stability of the system. (author)

  5. Multidisciplinary perspectives for Alzheimer's and Parkinson's diseases: hydrogels for protein delivery and cell-based drug delivery as therapeutic strategies.

    Science.gov (United States)

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Batelli, Sara; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2009-12-01

    This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.

  6. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  7. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Kwon, Taekhyun; Oh, Yu-Kyoung

    2018-01-19

    Gene therapy has been receiving widespread attention due to its unique advantage in regulating the expression of specific target genes. In the field of cancer gene therapy, modulation of gene expression has been shown to decrease oncogenic factors in cancer cells or increase immune responses against cancer. Due to the macromolecular size and highly negative physicochemical features of plasmid DNA, efficient delivery systems are an essential ingredient for successful gene therapy. To date, a variety of nanostructures and materials have been studied as nonviral gene delivery systems. In this review, we will cover nonviral delivery strategies for cancer gene therapy, with a focus on target cancer genes and delivery materials. Moreover, we will address current challenges and perspectives for nonviral delivery-based cancer gene therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  9. Future of Automated Insulin Delivery Systems.

    Science.gov (United States)

    Castle, Jessica R; DeVries, J Hans; Kovatchev, Boris

    2017-06-01

    Advances in continuous glucose monitoring (CGM) have brought on a paradigm shift in the management of type 1 diabetes. These advances have enabled the automation of insulin delivery, where an algorithm determines the insulin delivery rate in response to the CGM values. There are multiple automated insulin delivery (AID) systems in development. A system that automates basal insulin delivery has already received Food and Drug Administration approval, and more systems are likely to follow. As the field of AID matures, future systems may incorporate additional hormones and/or multiple inputs, such as activity level. All AID systems are impacted by CGM accuracy and future CGM devices must be shown to be sufficiently accurate to be safely incorporated into AID. In this article, we summarize recent achievements in AID development, with a special emphasis on CGM sensor performance, and discuss the future of AID systems from the point of view of their input-output characteristics, form factor, and adaptability.

  10. A computer-controlled conformal radiotherapy system. III: graphical simulation and monitoring of treatment delivery

    International Nuclear Information System (INIS)

    Kessler, Marc L.; McShan, Daniel L.; Fraass, Benedick A.

    1995-01-01

    Purpose: Safe and efficient delivery of radiotherapy using computer-controlled machines requires new procedures to design and verify the actual delivery of these treatments. Graphical simulation and monitoring techniques for treatment delivery have been developed for this purpose. Methods and Materials: A graphics-based simulator of the treatment machine and a set of procedures for creating and manipulating treatment delivery scripts are used to simulate machine motions, detect collisions, and monitor machine positions during treatment. The treatment delivery simulator is composed of four components: a three-dimensional dynamic model of the treatment machine; a motion simulation and collision detection algorithm, user-interface widgets that mimic the treatment machine's control and readout devices; and an icon-based interface for creating and manipulating treatment delivery scripts. These components are used in a stand-alone fashion for interactive treatment delivery planning and integrated with a machine control system for treatment implementation and monitoring. Results: A graphics-based treatment delivery simulator and a set of procedures for planning and monitoring computer-controlled treatment delivery have been developed and implemented as part of a comprehensive computer-controlled conformal radiotherapy system. To date, these techniques have been used to design and help monitor computer-controlled treatments on a radiotherapy machine for more than 200 patients. Examples using these techniques for treatment delivery planning and on-line monitoring of machine motions during therapy are described. Conclusion: A system that provides interactive graphics-based tools for defining the sequence of machine motions, simulating treatment delivery including collision detection, and presenting the therapists with continual visual feedback from the treatment machine has been successfully implemented for routine clinical use as part of an overall system for computer

  11. A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy.

    LENUS (Irish Health Repository)

    van Pijkeren, Jan Peter

    2012-01-31

    Bacteria-mediated transfer of plasmid DNA to mammalian cells (bactofection) has been shown to have significant potential as an approach to express heterologous proteins in various cell types. This is achieved through entry of the entire bacterium into cells, followed by release of plasmid DNA. In a murine model, we show that Listeria monocytogenes can invade and spread in tumors, and establish the use of Listeria to deliver genes to tumors in vivo. A novel approach to vector lysis and release of plasmid DNA through antibiotic administration was developed. Ampicillin administration facilitated both plasmid transfer and safety control of vector. To further improve on the gene delivery system, we selected a Listeria monocytogenes derivative that is more sensitive to ampicillin, and less pathogenic than the wild-type strain. Incorporation of a eukaryotic-transcribed lysin cassette in the plasmid further increased bacterial lysis. Successful gene delivery of firefly luciferase to growing tumors in murine models and to patient breast tumor samples ex vivo was achieved. The model described encompasses a three-phase treatment regimen, involving (1) intratumoral administration of vector followed by a period of vector spread, (2) systemic ampicillin administration to induce vector lysis and plasmid transfer, and (3) systemic administration of combined moxifloxacin and ampicillin to eliminate systemic vector. For the first time, our results reveal the potential of Listeria monocytogenes for in vivo gene delivery.

  12. Polysaccharides-based polyelectrolyte nanoparticles as protein drugs delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Shu Shujun; Sun Lei; Zhang Xinge, E-mail: zhangxinge@nankai.edu.cn [Nankai University, Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer Chemistry (China); Wu Zhongming [Tianjin Medical University, Metabolic Diseases Hospital (China); Wang Zhen; Li Chaoxing, E-mail: lcx@nankai.edu.cn [Nankai University, Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer Chemistry (China)

    2011-09-15

    Polysaccharides-based nanoparticles were prepared by synthesized quaternized chitosan and dextran sulfate through simple ionic-gelation self-assembled method. Introduction of quaternized groups was intended to increase water solubility of chitosan and make the nanoparticles have broader pH sensitive range which can remain more stable in physiological pH and decrease the loss of protein drugs caused by the gastric cavity. The load of BSA was affected by molecular parameter, i.e., degree of substitution, and average molecular weight of quaternized chitosan, as well as concentration of BSA. Fast release occurred in phosphate buffer solution (pH 7.4) while the release was slow in hydrochloric acid (pH 1.4). The drug release mechanism is Fickian diffusion through release kinetics analysis. Cell uptake demonstrated nanoparicles can internalize into Caco-2 cells, which suggested that nanoparticles had good biocompatibility. No significant conformation change was noted for the released BSA in comparison with native BSA using circular dichroism spectroscopy. This kind of novel composite nanoparticles may be a promising delivery system for oral protein and peptide drugs.

  13. Regional Multiteam Systems in Cancer Care Delivery

    Science.gov (United States)

    Monson, John R.T.; Rizvi, Irfan; Savastano, Ann; Green, James S.A.; Sevdalis, Nick

    2016-01-01

    Teamwork is essential for addressing many of the challenges that arise in the coordination and delivery of cancer care, especially for the problems that are presented by patients who cross geographic boundaries and enter and exit multiple health care systems at various times during their cancer care journeys. The problem of coordinating the care of patients with cancer is further complicated by the growing number of treatment options and modalities, incompatibilities among the vast variety of technology platforms that have recently been adopted by the health care industry, and competing and misaligned incentives for providers and systems. Here we examine the issue of regional care coordination in cancer through the prism of a real patient journey. This article will synthesize and elaborate on existing knowledge about coordination approaches for complex systems, in particular, in general and cancer care multidisciplinary teams; define elements of coordination derived from organizational psychology and human factors research that are applicable to team-based cancer care delivery; and suggest approaches for improving multidisciplinary team coordination in regional cancer care delivery and avenues for future research. The phenomenon of the mobile, multisystem patient represents a growing challenge in cancer care. Paradoxically, development of high-quality, high-volume centers of excellence and the ease of virtual communication and data sharing by using electronic medical records have introduced significant barriers to effective team-based cancer care. These challenges urgently require solutions. PMID:27650833

  14. Communications data delivery system analysis task 2 report : high-level options for secure communications data delivery systems.

    Science.gov (United States)

    2012-05-16

    This Communications Data Delivery System Analysis Task 2 report describes and analyzes options for Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications data delivery systems using various communication media (Dedicated Short Ra...

  15. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  16. Functionalization of protein-based nanocages for drug delivery applications.

    Science.gov (United States)

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  17. Levodopa delivery systems: advancements in delivery of the gold standard.

    Science.gov (United States)

    Ngwuluka, Ndidi; Pillay, Viness; Du Toit, Lisa C; Ndesendo, Valence; Choonara, Yahya; Modi, Girish; Naidoo, Dinesh

    2010-02-01

    Despite the fact that Parkinson's disease (PD) was discovered almost 200 years ago, its treatment and management remain immense challenges because progressive loss of dopaminergic nigral neurons, motor complications experienced by the patients as the disease progresses and drawbacks of pharmacotherapeutic management still persist. Various therapeutic agents have been used in the management of PD, including levodopa (l-DOPA), selegiline, amantadine, bromocriptine, entacapone, pramipexole dihydrochloride and more recently istradefylline and rasagiline. Of all agents, l-DOPA although the oldest, remains the most effective. l-DOPA is easier to administer, better tolerated, less expensive and is required by almost all PD patients. However, l-DOPA's efficacy in advanced PD is significantly reduced due to metabolism, subsequent low bioavailability and irregular fluctuations in its plasma levels. Significant strides have been made to improve the delivery of l-DOPA in order to enhance its bioavailability and reduce plasma fluctuations as well as motor complications experienced by patients purportedly resulting from pulsatile stimulation of the striatal dopamine receptors. Drug delivery systems that have been instituted for the delivery of l-DOPA include immediate release formulations, liquid formulations, dispersible tablets, controlled release formulations, dual-release formulations, microspheres, infusion and transdermal delivery, among others. In this review, the l-DOPA-loaded drug delivery systems developed over the past three decades are elaborated. The ultimate aim was to assess critically the attempts made thus far directed at improving l-DOPA absorption, bioavailability and maintenance of constant plasma concentrations, including the drug delivery technologies implicated. This review highlights the fact that neuropharmaceutics is at a precipice, which is expected to spur investigators to take that leap to enable the generation of innovative delivery systems for the

  18. Nanochemistry of protein-based delivery agents

    Science.gov (United States)

    Rajendran, Subin; Udenigwe, Chibuike; Yada, Rickey

    2016-07-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.

  19. Microneedle-based drug delivery systems for transdermal route.

    Science.gov (United States)

    Pierre, Maria Bernadete Riemma; Rossetti, Fabia Cristina

    2014-03-01

    Transdermal delivery offers an attractive, noninvasive administration route but it is limited by the skin's barrier to penetration. Minimally invasive techniques, such as the use of microneedles (MNs), bypass the stratum corneum (SC) barrier to permit the drug's direct access to the viable epidermis. These novel micro devices have been developed to puncture the skin for the transdermal delivery of hydrophilic drugs and macromolecules, including peptides, DNA and other molecules, that would otherwise have difficulty passing the outermost layer of the skin, the SC. Using the tools of the microelectronics industry, MNs have been fabricated with a range of sizes, shapes and materials. MNs have been shown to be robust enough to penetrate the skin and dramatically increase the skin permeability of several drugs. Moreover, MNs have reduced needle insertion pain and tissue trauma and provided controlled delivery across the skin. This review focuses on the current state of the art in the transdermal delivery of drugs using various types of MNs and developments in the field of microscale devices, as well as examples of their uses and clinical safety.

  20. Nanotechnology-based drug delivery systems and herbal medicines: a review.

    Science.gov (United States)

    Bonifácio, Bruna Vidal; Silva, Patricia Bento da; Ramos, Matheus Aparecido Dos Santos; Negri, Kamila Maria Silveira; Bauab, Taís Maria; Chorilli, Marlus

    2014-01-01

    Herbal medicines have been widely used around the world since ancient times. The advancement of phytochemical and phytopharmacological sciences has enabled elucidation of the composition and biological activities of several medicinal plant products. The effectiveness of many species of medicinal plants depends on the supply of active compounds. Most of the biologically active constituents of extracts, such as flavonoids, tannins, and terpenoids, are highly soluble in water, but have low absorption, because they are unable to cross the lipid membranes of the cells, have excessively high molecular size, or are poorly absorbed, resulting in loss of bioavailability and efficacy. Some extracts are not used clinically because of these obstacles. It has been widely proposed to combine herbal medicine with nanotechnology, because nanostructured systems might be able to potentiate the action of plant extracts, reducing the required dose and side effects, and improving activity. Nanosystems can deliver the active constituent at a sufficient concentration during the entire treatment period, directing it to the desired site of action. Conventional treatments do not meet these requirements. The purpose of this study is to review nanotechnology-based drug delivery systems and herbal medicines.

  1. Buccoadhesive drug delivery systems--extensive review on recent patents.

    Science.gov (United States)

    Pathan, Shadab A; Iqbal, Zeenat; Sahani, Jasjeet K; Talegaonkar, Sushma; Khar, Roop K; Ahmad, Farhan J

    2008-01-01

    Peroral administration of drugs, although most preferred by both clinicians and patients has several disadvantages such as hepatic first pass metabolism and enzymatic degradation within the GI tract, that prohibit oral administration of certain classes of drugs especially peptides and proteins. Consequently, other absorptive mucosae are considered as potential sites for administration of these drugs. Among the various transmucosal routes studied the buccal mucosa offers several advantages for controlled drug delivery for extended period of time. The mucosa is well supplied with both vascular and lymphatic drainage and first-pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract is avoided. The area is well suited for a retentive device and appears to be acceptable to the patient. With the right dosage form, design and formulation, the permeability and the local environment of the mucosa can be controlled and manipulated in order to accommodate drug permeation. Buccal drug delivery is thus a promising area for continued research with the aim of systemic and local delivery of orally inefficient drugs as well as feasible and attractive alternative for non-invasive delivery of potent protein and peptide drug molecules. Extensive review pertaining specifically to the patents relating to buccal drug delivery is currently available. However, many patents e.g. US patents 6, 585,997; US20030059376A1 etc. have been mentioned in few articles. It is the objective of this article to extensively review buccal drug delivery by discussing the recent patents available. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based delivery systems.

  2. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Zhang, Xingming; Le, Tuan-Anh; Yoon, Jungwon

    2017-01-01

    Targeted drug delivery using magnetic nanoparticles is an efficient technique as molecules can be directed toward specific tissues inside a human body. For the first time, we implemented a real-time imaging-based guidance system of nanoparticles using untethered electro-magnetic devices for simultaneous guiding and tracking. In this paper a low-amplitude-excitation-field magnetic particle imaging (MPI) is introduced. Based on this imaging technology, a hybrid system comprised of an electromagnetic actuator and MPI was used to navigate nanoparticles in a non-invasive way. The real-time low-amplitude-excitation-field MPI and electromagnetic actuator of this navigation system are achieved by applying a time-division multiplexing scheme to the coil topology. A one dimensional nanoparticle navigation system was built to demonstrate the feasibility of the proposed approach and it could achieve a 2 Hz navigation update rate with the field gradient of 3.5 T/m during the imaging mode and 8.75 T/m during the actuation mode. Particles with both 90 nm and 5 nm diameters could be successfully manipulated and monitored in a tube through the proposed system, which can significantly enhance targeting efficiency and allow precise analysis in a real drug delivery. - Highlights: • A real-time system comprised of an electromagnetic actuator and a low-amplitude-excitation-field MPI can navigate magnetic nanoparticles. • The imaging scheme is feasible to enlarge field of view size. • The proposed navigation system can be cost efficient, compact, and optimized for targeting of the nanoparticles.

  4. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xingming [School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology at Weihai, Weihai, Shandong (China); School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Le, Tuan-Anh [School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Yoon, Jungwon, E-mail: jwyoon@gnu.ac.kr [School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2017-04-01

    Targeted drug delivery using magnetic nanoparticles is an efficient technique as molecules can be directed toward specific tissues inside a human body. For the first time, we implemented a real-time imaging-based guidance system of nanoparticles using untethered electro-magnetic devices for simultaneous guiding and tracking. In this paper a low-amplitude-excitation-field magnetic particle imaging (MPI) is introduced. Based on this imaging technology, a hybrid system comprised of an electromagnetic actuator and MPI was used to navigate nanoparticles in a non-invasive way. The real-time low-amplitude-excitation-field MPI and electromagnetic actuator of this navigation system are achieved by applying a time-division multiplexing scheme to the coil topology. A one dimensional nanoparticle navigation system was built to demonstrate the feasibility of the proposed approach and it could achieve a 2 Hz navigation update rate with the field gradient of 3.5 T/m during the imaging mode and 8.75 T/m during the actuation mode. Particles with both 90 nm and 5 nm diameters could be successfully manipulated and monitored in a tube through the proposed system, which can significantly enhance targeting efficiency and allow precise analysis in a real drug delivery. - Highlights: • A real-time system comprised of an electromagnetic actuator and a low-amplitude-excitation-field MPI can navigate magnetic nanoparticles. • The imaging scheme is feasible to enlarge field of view size. • The proposed navigation system can be cost efficient, compact, and optimized for targeting of the nanoparticles.

  5. Development, characterization & invivo evaluation of proniosomal based transdermal delivery system of Atenolol

    Directory of Open Access Journals (Sweden)

    S. Ramkanth

    2018-06-01

    Full Text Available The potential of proniosomes as a transdermal drug delivery system for Atenolol was investigated by encapsulating the drug in various formulations of proniosomal gel composed of various ratios of sorbitan fatty acid esters, cholesterol, lecithin prepared by Coacervation-phase separation method. The objectives of the present study were to define effects on the antihypertension activity and pharmacokinetics of a novel transdermal Proniosomal gel incorporating Atenolol. The formulated systems were characterized in vitro for size, drug entrapment, In vitro and in vivo drug permeation profiles and vesicular stability at different storage conditions. The optimized Atenolol proniosomes (AT8 showed nanometric vesicle size, high entrapment efficiency and marked enhancement in transdermal permeation. The prepared Proniosomal gel showed the relative bioavailability of 365.38 fold increased for AT8 than oral. The maximal concentrations (Cmax, of drug were significantly reduced while the areas under the plasma concentration–time curve (AUC, and mean residence times (MRT, t1/2 were evidently increased and extended, respectively. The results suggest that proniosomes can act as promising carrier which offers an alternative approach for transdermal delivery of Atenolol. Keywords: Proniosomes, Atenolol, Niosomes, Pharmacokinetic study, Transdermal delivery

  6. A Comprehensive Review on: Transdermal drug delivery systems.

    OpenAIRE

    Kharat, Rekha; Bathe, Ritesh Suresh

    2016-01-01

    Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical  administration  of  therap...

  7. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  8. Development of Bioadhesive Chitosan Superporous Hydrogel Composite Particles Based Intestinal Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Hitesh Chavda

    2013-01-01

    Full Text Available Bioadhesive superporous hydrogel composite (SPHC particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32 full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content, in vitro drug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.

  9. Protein-Based Drug-Delivery Materials

    OpenAIRE

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-01-01

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based pol...

  10. Conceptualizing the use of system products and system deliveries in the building industry

    DEFF Research Database (Denmark)

    Hvam, Lars; Mortensen, Niels Henrik; Thuesen, Christian

    2013-01-01

    on the product architecture and partly of the setup of the business processes by using e.g. Configure to Order processes and Engineer to Order processes. Furthermore the potential impacts from using system products and system deliveries are discussed based on the examples included....

  11. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.

    Science.gov (United States)

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June

    2013-01-01

    A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage.

  12. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration.

    Science.gov (United States)

    Wood, Matthew D; MacEwan, Matthew R; French, Alexander R; Moore, Amy M; Hunter, Daniel A; Mackinnon, Susan E; Moran, Daniel W; Borschel, Gregory H; Sakiyama-Elbert, Shelly E

    2010-08-15

    Glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity-based delivery of GDNF or NGF from fibrin-filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity-based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury.

  13. Nanochemistry of protein-based delivery agents

    Directory of Open Access Journals (Sweden)

    Subin R.C.K. Rajendran

    2016-07-01

    Full Text Available The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.

  14. Application of three-dimensional printing for colon targeted drug delivery systems.

    Science.gov (United States)

    Charbe, Nitin B; McCarron, Paul A; Lane, Majella E; Tambuwala, Murtaza M

    2017-01-01

    Orally administered solid dosage forms currently dominate over all other dosage forms and routes of administrations. However, human gastrointestinal tract (GIT) poses a number of obstacles to delivery of the drugs to the site of interest and absorption in the GIT. Pharmaceutical scientists worldwide have been interested in colon drug delivery for several decades, not only for the delivery of the drugs for the treatment of colonic diseases such as ulcerative colitis and colon cancer but also for delivery of therapeutic proteins and peptides for systemic absorption. Despite extensive research in the area of colon targeted drug delivery, we have not been able to come up with an effective way of delivering drugs to the colon. The current tablets designed for colon drug release depend on either pH-dependent or time-delayed release formulations. During ulcerative colitis the gastric transit time and colon pH-levels is constantly changing depending on whether the patient is having a relapse or under remission. Hence, the current drug delivery system to the colon is based on one-size-fits-all. Fails to effectively deliver the drugs locally to the colon for colonic diseases and delivery of therapeutic proteins and peptides for systemic absorption from the colon. Hence, to overcome the current issues associated with colon drug delivery, we need to provide the patients with personalized tablets which are specifically designed to match the individual's gastric transit time depending on the disease state. Three-dimensional (3D) printing (3DP) technology is getting cheaper by the day and bespoke manufacturing of 3D-printed tablets could provide the solutions in the form of personalized colon drug delivery system. This review provides a bird's eye view of applications and current advances in pharmaceutical 3DP with emphasis on the development of colon targeted drug delivery systems.

  15. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system

    Directory of Open Access Journals (Sweden)

    Gomes MJ

    2014-04-01

    Full Text Available Maria João Gomes,1 José das Neves,1,2 Bruno Sarmento1,2 1Instituto de Engenharia Biomédica (INEB, Porto, Portugal; 2Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS, Instituto Superior de Ciências da Saúde-Norte, CESPU, Gandra, Portugal Abstract: Antiretroviral drug therapy plays a cornerstone role in the treatment of human immunodeficiency virus (HIV/acquired immunodeficiency syndrome patients. Despite obvious advances over the past 3 decades, new approaches toward improved management of infected individuals are still required. Drug distribution to the central nervous system (CNS is required in order to limit and control viral infection, but the presence of natural barrier structures, in particular the blood–brain barrier, strongly limits the perfusion of anti-HIV compounds into this anatomical site. Nanotechnology-based approaches may help providing solutions for antiretroviral drug delivery to the CNS by potentially prolonging systemic drug circulation, increasing the crossing and reducing the efflux of active compounds at the blood–brain barrier, and providing cell/tissue-targeting and intracellular drug delivery. After an initial overview on the basic features of HIV infection of the CNS and barriers to active compound delivery to this anatomical site, this review focuses on recent strategies based on antiretroviral drug-loaded solid nanoparticles and drug nanosuspensions for the potential management of HIV infection of the CNS. Keywords: HIV/AIDS, blood–brain barrier, protease inhibitors, efflux transporters, drug targeting

  17. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    Science.gov (United States)

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  18. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    Science.gov (United States)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  19. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading

    Science.gov (United States)

    Streck, Letícia; Sarmento, Víctor H. V.; Machado, Paula R. L.; Farias, Kleber J. S.; Fernandes-Pedrosa, Matheus F.; da Silva-Júnior, Arnóbio Antônio

    2016-01-01

    Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment. PMID:27376278

  20. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading

    Directory of Open Access Journals (Sweden)

    Letícia Streck

    2016-06-01

    Full Text Available Previous studies reported low benznidazole (BNZ loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR and oil-to-water ratio w/w (OWR change the phase behavior of different lipid-based drug delivery systems (LBDDS produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16 stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4 were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment.

  1. [Efficacy of a new fenbendazole formulation produced by nanotechnology-based drug delivery system against nematodosis].

    Science.gov (United States)

    Varlamova, A I; Arkhipov, I A; Odoevskaia, I M; Danilevskaia, N V; Khalikov, S S; Chistiachenko, Iu S; Dushkin, A V

    2014-01-01

    The efficacy of a new fenbendazile formulation produced by nanotechnology-based drug delivery system was investigated in45 sheep naturally infected with gastrointestinal nematodes. The formulation showed 95.6% efficacy against Nematodes spp. at a dose of 1.0 mg/kg dw of its active ingredient and 100% efficacy against other species of gastrointestinal nematodes. Given at a dose of 10 mg/kg dw, the basic drug--fenbendazole (substance) displayed 96.39 and 100% efficacy, respectively.

  2. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.

    Science.gov (United States)

    Liu, Baoxia; Wang, Yan; Yang, Fei; Wang, Xing; Shen, Hong; Cui, Haixin; Wu, Decheng

    2016-08-01

    Conventional pesticides usually need to be used in more than recommended dosages due to their loss and degradation, which results in a large waste of resources and serious environmental pollution. Encapsulation of pesticides in biodegradable carriers is a feasible approach to develop environment-friendly and efficient controlled-release delivery system. In this work, we fabricated three kinds of polylactic acid (PLA) carriers including microspheres, microcapsules, and porous microcapsules for controlled delivery of Lambda-Cyhalothrin (LC) via premix membrane emulsification (PME). The microcapsule delivery system had better water dispersion than the other two systems. Various microcapsules with a high LC contents as much as 40% and tunable sizes from 0.68 to 4.6μm were constructed by manipulating the process parameters. Compared with LC technical and commercial microcapsule formulation, the microcapsule systems showed a significantly sustained release of LC for a longer period. The LC release triggered by LC diffusion and matrix degradation could be optimally regulated by tuning LC contents and particle sizes of the microcapsules. This multi-regulated release capability is of great significance to achieve the precisely controlled release of pesticides. A preliminary bioassay against plutella xylostella revealed that 0.68μm LC-loaded microcapsules with good UV and thermal stability exhibited an activity similar to a commercial microcapsule formulation. These results demonstrated such an aqueous microcapsule delivery system had a great potential to be further explored for developing an effective and environmentally friendly pesticide-release formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  4. In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan.

    Science.gov (United States)

    Föger, Florian; Schmitz, Thierry; Bernkop-Schnürch, Andreas

    2006-08-01

    Recently, thiolated polymers, so called thiomers, have been reported to modulate drug absorption by inhibition of intestinal P-glycoprotein (P-gp). The aim of the present study was to provide a proof-of-principle for a delivery system based on thiolated chitosan in vivo in rats, using rhodamine-123 (Rho-123) as representative P-gp substrate. In vitro, the permeation enhancing effect of unmodified chitosan, chitosan-4 thiobutylamidine (Ch-TBA) and the combination of Ch-TBA with reduced glutathione (GSH) was evaluated by using freshly excised rat intestinal mucosa mounted in Ussing-type chambers. In comparison to buffer only, Rho-123 transport in presence of 0.5% (w/v) chitosan, 0.5% (w/v) Ch-TBA and the combination of 0.5% (w/v) Ch-TBA/0.5% (w/v) GSH, was 1.8-fold, 2.6-fold, 3.8-fold improved, respectively. Furthermore, enteric-coated tablets based on unmodified chitosan or Ch-TBA/GSH, were investigated in vivo. In rats, the Ch-TBA/GSH tablets increased the area under the plasma concentration time curve (AUC0-12) of Rho-123 by 217% in comparison to buffer control and by 58% in comparison to unmodified chitosan. This in vivo study showed that a delivery system based on thiolated chitosan significantly increased the oral bioavailability of P-gp substrate Rho-123.

  5. Oral heparin delivery: design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system.

    Science.gov (United States)

    Schmitz, Thierry; Leitner, Verena M; Bernkop-Schnürch, Andreas

    2005-05-01

    Low molecular weight heparin (LMWH) is an agent of choice in the anti-coagulant therapy and prophylaxis of thrombosis and coronary syndromes. However, the therapeutic use is partially limited due to a poor oral bioavailability. It was therefore the aim of this study to design and evaluate a highly efficient stomach-targeted oral delivery system for LMWH. In order to appraise the influence of the molecular weight on the oral bioavailability, mini-tablets comprising 3 kDa (279 IU) and 6 kDa (300 IU) LMWH, respectively, were generated and tested in vivo in rats. The potential of the test formulations based on thiolated polycarbophil, was evaluated in comparison to hydroxyethylcellulose (HEC) as control carrier matrix. The plasma levels of LMWH after oral versus subcutaneous administration were determined in order to calculate the relative bioavailability. With the delivery system containing 3 kDa LMWH (279 IU) a relative bioavailability of 19.1% was achieved, offering a significantly (p thiolated polymers are a promising tool for the non-invasive stomach-targeted systemic delivery of LMWH as model for a hydrophilic macromolecular polysaccharide. Copyright 2005 Wiley-Liss, Inc

  6. Methods and metrics challenges of delivery-system research

    Directory of Open Access Journals (Sweden)

    Alexander Jeffrey A

    2012-03-01

    Full Text Available Abstract Background Many delivery-system interventions are fundamentally about change in social systems (both planned and unplanned. This systems perspective raises a number of methodological challenges for studying the effects of delivery-system change--particularly for answering questions related to whether the change will work under different conditions and how the change is integrated (or not into the operating context of the delivery system. Methods The purpose of this paper is to describe the methodological and measurement challenges posed by five key issues in delivery-system research: (1 modeling intervention context; (2 measuring readiness for change; (3 assessing intervention fidelity and sustainability; (4 assessing complex, multicomponent interventions; and (5 incorporating time in delivery-system models to discuss recommendations for addressing these issues. For each issue, we provide recommendations for how research may be designed and implemented to overcome these challenges. Results and conclusions We suggest that a more refined understanding of the mechanisms underlying delivery-system interventions (treatment theory and the ways in which outcomes for different classes of individuals change over time are fundamental starting points for capturing the heterogeneity in samples of individuals exposed to delivery-system interventions. To support the research recommendations outlined in this paper and to advance understanding of the "why" and "how" questions of delivery-system change and their effects, funding agencies should consider supporting studies with larger organizational sample sizes; longer duration; and nontraditional, mixed-methods designs. A version of this paper was prepared under contract with the Agency for Healthcare Research and Quality (AHRQ, US Department of Health and Human Services for presentation and discussion at a meeting on "The Challenge and Promise of Delivery System Research," held in Sterling, VA, on

  7. Using grey literature to prepare pharmacy students for an evolving healthcare delivery system.

    Science.gov (United States)

    Happe, Laura E; Walker, Desiree'

    2013-05-13

    To assess the impact of using "grey literature" (information internally produced in print or electronic format by agencies such as hospitals, government, businesses, etc) rather than a textbook in a course on healthcare delivery systems on students' perception of the relevance of healthcare delivery system topics and their ability to identify credible sources of this information. A reading from the grey literature was identified and assigned to the students for each topic in the course. Pre- and post-course survey instruments were used for the assessment. Students reported healthcare delivery systems topics to be moderately relevant to the profession of pharmacy on both the pre- and post-course survey instruments. Students' knowledge of current and credible sources of information on healthcare delivery system topics significantly improved based on self-reports and scores on objective assessments (pgrey literature in a course on healthcare delivery systems can be used to ensure that information in the pharmacy school curriculum is the most current and credible information available.

  8. The magnetic graphene-based nanocomposite: An efficient anticancer delivery system

    Science.gov (United States)

    Jafarizad, Abbas; Jaymand, Mehdi; Taghizadehghalehjougi, Ali; Mohammadi-Nasr, Saeed; Jabbari, Amir Mohammad

    2018-01-01

    The aim of this study is the development of an efficient anticancer drug delivery nanosystem using PEGylated graphene oxide/magnetite nanoparticles (PEG-GO/Fe3O4). The nanosystem was loaded with mitoxantrone (MTX) as a universal anticancer drug. The cytotoxicity effect of the MTX-loaded GO-PEG/Fe3O4 nanocomposite was studied against U87 MG cell line using MTT cell viablity assay. The mechanism of action, the genes contributed in apoptosis (Casp 9, and Casp 3) and survival (BcL-2, BAX) have been investigated using quantitative real time-PCR. As the results of biological assays, controlled drug release behavior of the developed nanosystem as well as the inherent physicochemical and biological characteristics of both magnetit nanoparticles and graphene nanomaterials, we envision that the GO-PEG/Fe3O4 nanocomposite may be applied as enhanced drug delivery system for various cancer therapies (e.g., brain cancer) using both chemo- and photothermal therapy methods.

  9. A clinician-driven home care delivery system.

    Science.gov (United States)

    August, D A; Faubion, W C; Ryan, M L; Haggerty, R H; Wesley, J R

    1993-12-01

    The financial, entrepreneurial, administrative, and legal forces acting within the home care arena make it difficult for clinicians to develop and operate home care initiatives within an academic setting. HomeMed is a clinician-initiated and -directed home care delivery system wholly owned by the University of Michigan. The advantages of a clinician-directed system include: Assurance that clinical and patient-based factors are the primary determinants of strategic and procedural decisions; Responsiveness of the system to clinician needs; Maintenance of an important role for the referring physician in home care; Economical clinical research by facilitation of protocol therapy in ambulatory and home settings; Reduction of lengths of hospital stays through clinician initiatives; Incorporation of outcome analysis and other research programs into the mission of the system; Clinician commitment to success of the system; and Clinician input on revenue use. Potential disadvantages of a clinician-based system include: Entrepreneurial, financial, and legal naivete; Disconnection from institutional administrative and data management resources; and Inadequate clinician interest and commitment. The University of Michigan HomeMed experience demonstrates a model of clinician-initiated and -directed home care delivery that has been innovative, profitable, and clinically excellent, has engendered broad physician, nurse, pharmacist, and social worker enthusiasm, and has supported individual investigator clinical protocols as well as broad outcomes research initiatives. It is concluded that a clinician-initiated and -directed home care program is feasible and effective, and in some settings may be optimal.

  10. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  11. Liposome-Based Delivery Systems in Plant Polysaccharides

    International Nuclear Information System (INIS)

    Meiwan, C.; Yitao, W.; Yanfang, Z.; Xinsheng, P.; Jingjing, H.; Ping, Z.

    2012-01-01

    Plant polysaccharides consist of many monosaccharide by α or β glycosidic bond which can be extracted by the water, alcohol, lipophile liquid from a variety of plants including Cordyceps sinensis, astragalus, and mushrooms. Recently, many evidences illustrate that natural plant polysaccharides possess various biological activities including strengthening immunity, lowering blood sugar, regulating lipid metabolism, anti oxidation, anti aging, and antitumour. Plant polysaccharides have been widely used in the medical field due to their special features and low toxicity. As an important drug delivery system, liposomes can not only encapsulate small-molecule compound but also big-molecule drug; therefore, they present great promise for the application of plant polysaccharides with unique physical and chemical properties and make remarkable successes. This paper summarized the current progress in plant polysaccharides liposomes, gave an overview on their experiment design method, preparation, and formulation, characterization and quality control, as well as in vivo and in vitro studies. Moreover, the potential application of plant polysaccharides liposomes was prospected as well.

  12. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review.

    Science.gov (United States)

    Hani, Umme; Shivakumar, H G

    2014-01-01

    Curcumin diferuloylmethane is a main yellow bioactive component of turmeric, possess wide spectrum of biological actions. It was found to have anti-inflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant, antifertility, antidiabetic, antibacterial, antifungal, antiprotozoal, antiviral, antifibrotic, antivenom, antiulcer, hypotensive and hypocholesteremic activities. However, the benefits are curtailed by its extremely poor aqueous solubility, which subsequently limits the bioavailability and therapeutic effects of curcumin. Nanotechnology is the available approach in solving these issues. Therapeutic efficacy of curcumin can be utilized effectively by doing improvement in formulation properties or delivery systems. Numerous attempts have been made to design a delivery system of curcumin. Currently, nanosuspensions, micelles, nanoparticles, nano-emulsions, etc. are used to improve the in vitro dissolution velocity and in vivo efficiency of curcumin. This review focuses on the methods to increase solubility of curcumin and various nanotechnologies based delivery systems and other delivery systems of curcumin.

  13. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    Science.gov (United States)

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Fabrication and Analysis of Tapered Tip Silicon Microneedles for MEMS based Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Muhammad Waseem Ashraf

    2010-11-01

    Full Text Available In this paper, a novel design of transdermal drug delivery (TDD system is presented. The proposed system consists of controlled electronic circuit and microelectromechanical system (MEMS based devices like microneedles, micropump, flow sensor, and blood pressure sensor. The aim of this project is to develop a system that can eliminate the limitations associated with oral therapy. In this phase tapered tip silicon microneedles have been fabricated using inductively coupled plasma (ICP etching technology. Using ANSYS, simulation of microneedles has been conducted before the fabrication process to test the design suitability for TDD. More over multifield analysis of reservoir integrated with microneedle array using piezoelectric actuator has also been performed. The effects of frequency and voltage on actuator and fluid flow rate through 6×6 microneedle array have been investigated. This work provides envisage data to design suitable devices for TDD.

  15. Albumin-based drug delivery

    DEFF Research Database (Denmark)

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand...... binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent...... conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform....

  16. In vivo evaluation of a nasal insulin delivery system based on thiolated chitosan.

    Science.gov (United States)

    Krauland, Alexander H; Leitner, Verena M; Grabovac, Vjera; Bernkop-Schnürch, Andreas

    2006-11-01

    The aim of this study was the preparation and in vivo evaluation of a nasal insulin delivery system based on thiolated chitosan. 2-Iminothiolane was covalently attached to chitosan. The resulting conjugate (chitosan-TBA) exhibited 304.9 +/- 63.5 micromol thiol groups per gram polymer. Microparticles were prepared via a new precipitation-micronization technique. The microparticulate delivery system comprised insulin, reduced glutathione and chitosan-TBA (Chito-TBA/Ins) or unmodified chitosan (Chito/Ins) and control microparticles were composed of insulin and mannitol (Mannitol/Ins). Due to a hydration process the size of Chito-TBA/Ins and Chito/Ins microparticles increased in phosphate buffer pH 6.8 2.6- and 2.2-fold, respectively. Fluorescent-labeled insulin-loaded chitosan-TBA microparticles showed a controlled release over 4 h. Chito-TBA/Ins administered nasally to rats led to an absolute bioavailability of 6.9 +/- 1.5%. The blood glucose level decreased for more than 2 h and the calculated absolute pharmacological efficacy was 4.9 +/- 1.4%. Chito/Ins, in comparison, displayed a bioavailability of 4.2 +/- 1.8% and a pharmacological efficacy of 0.7 +/- 0.6%. Mannitol/Ins showed a bioavailability of 1.6 +/- 0.4% and no reduction of the blood glucose level at all. According to these findings microparticles comprising chitosan-TBA seem to have substantial higher potential for nasal insulin administration than unmodified chitosan. Copyright 2006 Wiley-Liss, Inc. and the American Pharmacists Association

  17. Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system.

    Science.gov (United States)

    Gao, Qihe; Liang, Qing; Yu, Fei; Xu, Jian; Zhao, Qihua; Sun, Baiwang

    2011-12-01

    Pluronic, F127, amphiphilic block copolymers, are used for several applications, including drug delivery systems. The critical micelle concentration (CMC) of F127 is about 0.26-0.8 wt% so that the utility of F127 in nano-technology based drug delivery system is limited since the nano-sized micelles could dissociate upon dilution. Herein, stearic acid (SA) was simply coupled to F127 between the carboxyl group of SA and the hydroxyl group of F127, which formed a novel copolymer named as SA-coupled F127, with significantly lower CMC. Above the CMC 6.9 × 10(-5)wt%, SA-coupled F127 self-assembled stable nanoparticles with Zeta potential -36 mV. Doxorubicin (DOX)-loaded nanoparticles were made, with drug loading (DL) 5.7 wt% and Zeta potential -36 to -39 mV, and the nanoparticles exhibited distinct shape with the size distribution from 20 to 50 nm. DOX-loaded nanoparticles were relatively stable and exhibited DOX dependant cytotoxicity toward MCF-7 cells in vitro. These results suggest that SA-coupled F127 potentially could be applied as a nano-technology based drug delivery method. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus.

    Science.gov (United States)

    Park, Joo Youn; Moon, Bo Youn; Park, Juw Won; Thornton, Justin A; Park, Yong Ho; Seo, Keun Seok

    2017-03-21

    Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus.

  19. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    Science.gov (United States)

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  20. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles.

    Science.gov (United States)

    Mohapatra, Ankita; Harris, Michael A; LeVine, David; Ghimire, Madhav; Jennings, Jessica A; Morshed, Bashir I; Haggard, Warren O; Bumgardner, Joel D; Mishra, Sanjay R; Fujiwara, Tomoko

    2017-10-20

    Local antibiotic delivery can overcome some of the shortcomings of systemic therapy, such as low local concentrations and delivery to avascular sites. A localized drug delivery system (DDS), ideally, could also use external stimuli to modulate the normal drug release profile from the DDS to provide efficacious drug administration and flexibility to healthcare providers. To achieve this objective, chitosan microbeads embedded with magnetic nanoparticles were loaded with the antibiotic vancomycin and stimulated by a high frequency alternating magnetic field. Three such stimulation sessions separated by 1.5 h were applied to each test sample. The chromatographic analysis of the supernatant from these stimulated samples showed more than approximately 200% higher release of vancomycin from the DDS after the stimulation periods compared to nonstimulated samples. A 16-day long term elution study was also conducted where the DDS was allowed to elute drug through normal diffusion over a period of 11 days and stimulated on day 12 and day 15, when vancomycin level had dropped below therapeutic levels. Magnetic stimulation boosted elution of test groups above minimum inhibitory concentration (MIC), as compared to control groups (with no stimulation) which remained below MIC. The drug release from test groups in the intervals where no stimulation was given showed similar elution behavior to control groups. These results indicate promising possibilities of controlled drug release using magnetic excitation from a biopolymer-based DDS. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  1. The Relationship between Facility-Based Delivery and Infant Immunization in sub-Saharan Africa.

    Science.gov (United States)

    Moyer, Cheryl A; Benyas, Dana; Rominski, Sarah

    2016-06-01

    This study explored the relationship between facility-based delivery and infant immunizations in sub-Saharan Africa, controlling for economic development indicators. Publically available data were collected and imported into Stata 11.0 for descriptive, correlation, and regression analyses. Facility delivery was significantly associated with full vaccination and BCG immunization in children aged 12-23 months. Facility delivery was associated with full vaccination (phealthcare system.

  2. Preparation and Evaluation of Enteric-Coated Chitosan Derivative-Based Microparticles Loaded with Salmon Calcitonin as an Oral Delivery System

    Directory of Open Access Journals (Sweden)

    Hiraku Onishi

    2016-09-01

    Full Text Available Background: The production of protein drugs has recently increased due to advances in biotechnology, but their clinical use is generally limited to parenteral administration due to low absorption in non-parenteral administration. Therefore, non-parenteral delivery systems allowing sufficient absorption draw much attention. Methods: Microparticles (MP were prepared using chitosan-4-thio-butylamidine conjugate (Ch-TBA, trimethyl-chitosan (TMC, and chitosan (Ch. Using salmon calcitonin (sCT as a model protein drug, Ch-TBA-, Ch-TBA/TMC (4/1-, and Ch-based MP were produced, and their Eudragit L100 (Eud-coated MP, named Ch-TBA-MP/Eud, Ch-TBA/TMC-MP/Eud, and Ch-MP/Eud, respectively, were prepared as oral delivery systems. These enteric-coated microparticles were examined in vitro and in vivo. Results: All microparticles before and after enteric coating had a submicron size (600–800 nm and micrometer size (1300–1500 nm, respectively. In vitro release patterns were similar among all microparticles; release occurred gradually, and the release rate was slower at pH 1.2 than at pH 6.8. In oral ingestion, Ch-TBA-MP/Eud suppressed plasma Ca levels most effectively among the microparticles tested. The relative effectiveness of Ch-TBA-MP/Eud to the intramuscular injection was 8.6%, while the sCT solution showed no effectiveness. Conclusion: The results suggest that Eud-coated Ch-TBA-based microparticles should have potential as an oral delivery system of protein drugs.

  3. [Development of an Analgesia Therapy System for Delivery Based on Bio-feedback Transcuataneous Electrical Nerve Stimulation].

    Science.gov (United States)

    Deng Songbo; Lu Yaosheng; Fang, Kun; Qin, Ruyi; Lin, Zhan

    2015-06-01

    Transcuataneous electrical nerve stimulation (TENS) analgesia as a non-drug method has received people's more and more attention recently. Considering problems of existing products, such as unstable performance and unsatisfied effectiveness, we developed a new analgesia therapy system for delivery based on bio-feedback TENS in our laboratory. We proposed a new idea for stimulation signal design, that is, we modulated a middle frequency signal by a traditional low frequency TENS wave in the new system. We designed different prescription waves for pain relief during a uterine contraction or massage between contractions. In the end, a bio-feedback TENS method was proposed, in which the waveforms of stimulation signals were selected and their parameters were modified automatically based on feedback from uterine pressure, etc. It was proved through quality tests and clinical trials that the system had good performance and satisfied analgesia effectiveness.

  4. Hydrocolloid-based nutraceutical delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Janaswamy, Srinivas; Youngren, Susanne R. (Purdue)

    2012-07-11

    Nutraceuticals are important due to their inherent health benefits. However, utilization and consumption are limited by their poor water solubility and instability at normal processing and storage conditions. Herein, we propose an elegant and novel approach for the delivery of nutraceuticals in their active form using hydrocolloid matrices that are inexpensive and non-toxic with generally recognized as safe (GRAS) status. Iota-carrageenan and curcumin have been chosen as models of hydrocolloid and nutraceutical compounds, respectively. The iota-carrageenan network maintains a stable organization after encapsulating curcumin molecules, protects them from melting and then releases them in a sustained manner. These findings lay a strong foundation for developing value-added functional and medicinal foods.

  5. The Research Progress of Targeted Drug Delivery Systems

    Science.gov (United States)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  6. Efficiency of respiratory-gated delivery of synchrotron-based pulsed proton irradiation

    International Nuclear Information System (INIS)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong, Lei; Bues, Martin; Balter, Peter; Smith, Alfred; Mohan, Radhe; Umezawa, Masumi; Sakae, Takeji

    2008-01-01

    Significant differences exist in respiratory-gated proton beam delivery with a synchrotron-based accelerator system when compared to photon therapy with a conventional linear accelerator. Delivery of protons with a synchrotron accelerator is governed by a magnet excitation cycle pattern. Optimal synchronization of the magnet excitation cycle pattern with the respiratory motion pattern is critical to the efficiency of respiratory-gated proton delivery. There has been little systematic analysis to optimize the accelerator's operational parameters to improve gated treatment efficiency. The goal of this study was to estimate the overall efficiency of respiratory-gated synchrotron-based proton irradiation through realistic simulation. Using 62 respiratory motion traces from 38 patients, we simulated respiratory gating for duty cycles of 30%, 20% and 10% around peak exhalation for various fixed and variable magnet excitation patterns. In each case, the time required to deliver 100 monitor units in both non-gated and gated irradiation scenarios was determined. Based on results from this study, the minimum time required to deliver 100 MU was 1.1 min for non-gated irradiation. For respiratory-gated delivery at a 30% duty cycle around peak exhalation, corresponding average delivery times were typically three times longer with a fixed magnet excitation cycle pattern. However, when a variable excitation cycle was allowed in synchrony with the patient's respiratory cycle, the treatment time only doubled. Thus, respiratory-gated delivery of synchrotron-based pulsed proton irradiation is feasible and more efficient when a variable magnet excitation cycle pattern is used

  7. Liposome-based Formulation for Intracellular Delivery of Functional Proteins

    Directory of Open Access Journals (Sweden)

    Benoît Chatin

    2015-01-01

    Full Text Available The intracellular delivery of biologically active protein represents an important emerging strategy for both fundamental and therapeutic applications. Here, we optimized in vitro delivery of two functional proteins, the β-galactosidase (β-gal enzyme and the anti-cytokeratin8 (K8 antibody, using liposome-based formulation. The guanidinium-cholesterol cationic lipid bis (guanidinium-tren-cholesterol (BGTC (bis (guanidinium-tren-cholesterol combined to the colipid dioleoyl phosphatidylethanolamine (DOPE (dioleoyl phosphatidylethanolamine was shown to efficiently deliver the β-gal intracellularly without compromising its activity. The lipid/protein molar ratio, protein amount, and culture medium were demonstrated to be key parameters affecting delivery efficiency. The protein itself is an essential factor requiring selection of the appropriate cationic lipid as illustrated by low K8 binding activity of the anti-K8 antibody using guanidinium-based liposome. Optimization of various lipids led to the identification of the aminoglycoside lipid dioleyl succinyl paromomycin (DOSP associated with the imidazole-based helper lipid MM27 as a potent delivery system for K8 antibody, achieving delivery in 67% of HeLa cells. Cryo-transmission electron microscopy showed that the structure of supramolecular assemblies BGTC:DOPE/β-gal and DOSP:MM27/K8 were different depending on liposome types and lipid/protein molar ratio. Finally, we observed that K8 treatment with DOSP:MM27/K8 rescues the cyclic adenosine monophosphate (cAMP-dependent chloride efflux in F508del-CFTR expressing cells, providing a new tool for the study of channelopathies.

  8. Biodegradable polymeric microsphere-based drug delivery for inductive browning of fat

    Directory of Open Access Journals (Sweden)

    Chunhui eJiang

    2015-11-01

    Full Text Available Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide (PLGA, a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue (WAT depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.

  9. The Design and Implementation of Multiterminal Based Proactive Information Delivery System

    Directory of Open Access Journals (Sweden)

    Shixiong Xia

    2013-01-01

    Full Text Available Currently, the development of various communication terminal devices has greatly promoted people’s daily life, while information using efficiency with these devices decreases rapidly due to the information overload. To solve this problem, a multiterminal based proactive information delivery system (MPIDS is designed and implemented in this paper. Firstly, users’ interests are computed comprehensively from the historical data, taking full consideration of users’ behaviors when visiting web pages. Secondly, a proactive information monitor service is introduced to monitor users’ data requirements and their interest changes, with which, user data are pushed to their online device automatically according to the strategies. Finally, a data self-adapter is given to encode and transform the data according to users’ online parameters and a series of data self-adaptive strategies. The experimental results show that MPIDS provides richly featured, secure, and robust personalized functions, reduces the running cost, and promotes the end-user experience and business efficiency.

  10. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters.

    Science.gov (United States)

    Katti, Dhirendra S; Robinson, Kyle W; Ko, Frank K; Laurencin, Cato T

    2004-08-15

    Wound healing is a complex process that often requires treatment with antibiotics. This article reports the initial development of a biodegradable polymeric nanofiber-based antibiotic delivery system. The functions of such a system would be (a) to serve as a biodegradable gauze, and (b) to serve as an antibiotic delivery system. The polymer used in this study was poly(lactide-co-glycolide) (PLAGA), and nanofibers of PLAGA were fabricated with the use of the electrospinning process. The objective of this study was to determine the effect of fabrication parameters: orifice diameter (needle gauge), polymer solution concentration, and voltage per unit length, on the morphology and diameter of electrospun nanofibers. The needle gauges studied were 16 (1.19 mm), 18 (0.84 mm), and 20 (0.58 mm), and the range of polymer solution concentration studied was from 0.10 g/mL to 0.30 g/mL. The effect of voltage was determined by varying the voltage per unit electrospinning distance, and the range studied was from 0.375 kV/cm to 1.5 kV/cm. In addition, the mass per unit area of the electrospun nanofibers as a function of time was determined and the feasibility of antibiotic (cefazolin) loading into the nanofibers was also studied. The results indicate that the diameter of nanofibers decreased with an increase in needle gauge (decrease in orifice diameter), and increased with an increase in the concentration of the polymer solution. The voltage study demonstrated that the average diameter of the nanofibers decreased with an increase in voltage. However, the effect of voltage on fiber diameter was less pronounced as compared to polymer solution concentration. The results of the areal density study indicated that the mass per unit area of the electrospun nanofibers increased linearly with time. Feasibility of drug incorporation into the nanofibers was demonstrated with the use of cefazolin, a broad-spectrum antibiotic. Overall, these studies demonstrated that PLAGA nanofibers can be

  11. Recent trends in challenges and opportunities of Transdermal drug delivery system

    OpenAIRE

    P.M.Patil; P.D.Chaudhari; Jalpa K.Patel; K.A.Kedar; P.P.Katolkar

    2012-01-01

    Drug delivery system relates to the production of a drug, its delivery medium, and the way of administration. Drug delivery systems are even used for administering nitroglycerin. Transdermal drug delivery system is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Various types of transdermal patches are used. There are various methods to enhance the transdermal drug delivery system. But using microfabricated microneedles drugs are delivered v...

  12. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    Directory of Open Access Journals (Sweden)

    Li X

    2015-12-01

    Full Text Available Xiaoyu Li, Meiying Wu, Limin Pan, Jianlin Shi State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4 and a chemotherapeutic drug (doxorubicin and conjugate with targeting molecules (iRGD peptide for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. Keywords: mesoporous silica nanoparticles, drug delivery, tumor vasculatures targeting, antiangiogenic agent

  13. Online Instruction: An Alternative Delivery System for Higher Education

    Science.gov (United States)

    Wronkovich, Michael

    2003-01-01

    In an increasingly technological society, delivery systems for professional development and higher education have greatly expanded. Video conferencing and web-based alternatives provide opportunities to extend the college campus far beyond the boundaries traditionally considered feasible. Adult learners have found the convenience of web-based…

  14. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity

    Directory of Open Access Journals (Sweden)

    Eiji Yuba

    2017-11-01

    Full Text Available (1 Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2 Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3 Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4 Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.

  15. A Review of Analytical Methods for the Identification and Characterization of Nano Delivery Systems in Food

    NARCIS (Netherlands)

    Luykx, D.M.A.M.; Peters, R.J.B.; Ruth, van S.M.; Bouwmeester, H.

    2008-01-01

    Detection and characterization of nano delivery systems is an essential part of understanding the benefits as well as the potential toxicity of these systems in food. This review gives a detailed description of food nano delivery systems based on lipids, proteins, and/or polysaccharides and

  16. Three-Stream, Bicarbonate-Based Hemodialysis Solution Delivery System Revisited: With an Emphasis on Some Aspects of Acid-Base Principles.

    Science.gov (United States)

    Lew, Susie Q; Kohn, Orly F; Cheng, Yuk-Lun; Kjellstrand, Carl M; Ing, Todd S

    2017-06-01

    Hemodialysis patients can acquire buffer base (i.e., bicarbonate and buffer base equivalents of certain organic anions) from the acid and base concentrates of a three-stream, dual-concentrate, bicarbonate-based, dialysis solution delivery machine. The differences between dialysis fluid concentrate systems containing acetic acid versus sodium diacetate in the amount of potential buffering power were reviewed. Any organic anion such as acetate, citrate, or lactate (unless when combined with hydrogen) delivered to the body has the potential of being converted to bicarbonate. The prescribing physician aware of the role that organic anions in the concentrates can play in providing buffering power to the final dialysis fluid, will have a better knowledge of the amount of bicarbonate and bicarbonate precursors delivered to the patient. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells.

    Science.gov (United States)

    Huntosova, Veronika; Buzova, Diana; Petrovajova, Dana; Kasak, Peter; Nadova, Zuzana; Jancura, Daniel; Sureau, Franck; Miskovsky, Pavol

    2012-10-15

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic/amphiphilic photosensitizers to tumor cells in photodynamic therapy of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by dextran. Fluorescence spectroscopy, confocal fluorescence imaging, stopped-flow experiments and flow-cytometry were used to characterize redistribution of hypericin (Hyp), a natural occurring potent photosensitizer, loaded in LDL/dextran complex to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It is shown that the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. The modification of LDL molecules by dextran does not inhibit their recognition by cellular LDL receptors and U-87 MG cellular uptake of Hyp loaded in LDL/dextran complex appears to be similar to that one observed for Hyp transported by unmodified LDL particles. Thus, it is proposed that dextran modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic/amphiphilic drugs to cancer cells expressing high level of LDL receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Auditing Information System : Delivery Product Service

    Directory of Open Access Journals (Sweden)

    Purwoko Purwoko

    2011-05-01

    Full Text Available Purpose of the research is to ensure the securities of information system asset and to ensure if informa-tion system support the operational and data collected was valid. Research method that used in this research were library studies and field studies. Field studies such an observation, questioner, and inter-view. the expected result are founding the weakness of security management control, operational man-agement control, input control, and output control of risk happened in the company. Conclusion of this research are the system on the company work good and there’s no potential risk happened and make an impact to the delivery process of information system.Index Terms - Auditing Information system, Delivery product process.

  19. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants.

    Science.gov (United States)

    Ramrakhyani, A K; Mirabbasi, S; Mu Chiao

    2011-02-01

    Resonance-based wireless power delivery is an efficient technique to transfer power over a relatively long distance. This technique typically uses four coils as opposed to two coils used in conventional inductive links. In the four-coil system, the adverse effects of a low coupling coefficient between primary and secondary coils are compensated by using high-quality (Q) factor coils, and the efficiency of the system is improved. Unlike its two-coil counterpart, the efficiency profile of the power transfer is not a monotonically decreasing function of the operating distance and is less sensitive to changes in the distance between the primary and secondary coils. A four-coil energy transfer system can be optimized to provide maximum efficiency at a given operating distance. We have analyzed the four-coil energy transfer systems and outlined the effect of design parameters on power-transfer efficiency. Design steps to obtain the efficient power-transfer system are presented and a design example is provided. A proof-of-concept prototype system is implemented and confirms the validity of the proposed analysis and design techniques. In the prototype system, for a power-link frequency of 700 kHz and a coil distance range of 10 to 20 mm, using a 22-mm diameter implantable coil resonance-based system shows a power-transfer efficiency of more than 80% with an enhanced operating range compared to ~40% efficiency achieved by a conventional two-coil system.

  20. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems.

    Science.gov (United States)

    Shinkar, Dattatraya Manohar; Dhake, Avinash Sridhar; Setty, Chitral Mallikarjuna

    2012-01-01

    Since the early 1980s the concept of mucoadhesion has gained considerable interest in pharmaceutical technology. The various advantages associated with these systems made buccal drug delivery as a novel route of drug administration. It prolongs the residence time of the dosage form at the site of application. These systems remain in close contact with the absorption tissue, the mucous membrane, and thus contribute to improved and/or better therapeutic performance of the drug and of both local and systemic effects. This review highlights the anatomy and structure of oral mucosa, mechanism and theories of mucoadhesion, factors affecting mucoadhesion, characteristics and properties of desired mucoadhesive polymers, various types of dosage forms, and general considerations in design of mucoadhesive buccal dosage forms, permeation enhancers, and evaluation methods. Over the past few decades the mucoadhesive buccal drug delivery system has received a great deal of attention to develop mucoadhesive dosage forms to enable the prolonged retention at the site of action, providing a controlled release of drug for improved therapeutic outcome. Mucoadhesive drug delivery gives facility to include a permeation enhancer/enzyme inhibitor or pHmodifier in the formulation and versatility in designing as multidirectional or unidirectional release systems for local and systemic action. Local delivery to tissues of the oral cavity has a number of applications, including treatment of local conditions such as periodontal disease, bacterial and fungal infections, and aphthous stomatitis and vesiculo bullous diseases. For the treatment of chronic diseases, the mucoadhesive buccal drug delivery system allows easily accessibility and is generally well-accepted for administeringdrugs by systemic action.

  1. Non-utility generation and demand management reliability of customer delivery systems

    International Nuclear Information System (INIS)

    Hamoud, G.A.; Wang, L.

    1995-01-01

    A probabilistic methodology for evaluating the impact of non-utility generation (NUG) and demand management programs (DMP) on supply reliability of customer delivery systems was presented. The proposed method was based on the criteria that the supply reliability to the customers on the delivery system should not be affected by the integration of either NUG or DMPs. The method considered station load profile, load forecast, and uncertainty in size and availability of the nuio. Impacts on system reliability were expressed in terms of possible delays of the in-service date for new facilities or in terms of an increase in the system load carrying capability. Examples to illustrate the proposed methodology were provided. 10 refs., 8 tabs., 2 figs

  2. Mannosylated Chitosan Nanoparticles Based Macrophage-Targeting Gene Delivery System Enhanced Cellular Uptake and Improved Transfection Efficiency.

    Science.gov (United States)

    Peng, Yixing; Yao, Wenjun; Wang, Bo; Zong, Li

    2015-04-01

    Gene transfer mediated by mannosylated chitosan (MCS) is a safe and promising approach for gene and vaccine delivery. MCS nanoparticles based gene delivery system showed high in vivo delivery efficiency and elicited strong immune responses in mice. However, little knowledge about the cell binding, transfection efficiency and intracellular trafficking of MCS nanoparticles had been acquired. In this study, using gastrin-releasing peptide as a model plasmid (pGRP), the binding of MCS/pGRP nanoparticles to macrophages and the intracellular trafficking of MCS/pGRP nanoparticles in macrophages were investigated. MCS-mediated transfection efficiency in macrophages was also evaluated using pGL-3 as a reporter gene. The results showed that the binding and transfection efficiency of MCS nanoparticles in macrophages was higher than that of CS, which was attributed to the interaction between mannose ligands in MCS and mannose receptors on the surface of macrophages. Observation with a confocal laser scanning microscope indicated the cellular uptake of MCS/pGRP nanoparticles were more than that of CS/pGRP nanoparticles in macrophages. MCS/pGRP nanoparticles were taken up by macrophages and most of them were entrapped in endosomal/lysosomal compartments. After the nanoparticles escaping from endosomal/lysosomal compartments, naked pGRP entered the nucleus, and a few MCS might enter the nucleus in terms of nanoparticles. Overall, MCS has the potential to be an excellent macrophage-targeting gene delivery carrier.

  3. Cesarean Delivery in the United States 2005 - 2014: A Population-Based Analysis Using the Robson Ten Group Classification System.

    Science.gov (United States)

    Hehir, Mark P; Ananth, Cande V; Siddiq, Zainab; Flood, Karen; Friedman, Alexander M; D'Alton, Mary E

    2018-04-12

    Cesarean delivery has increased steadily in the United States over recent decades with significant downstream health consequences. The World Health Organization has endorsed the Robson Ten Group Classification System (TGCS) as a global standard to facilitate analysis and comparison of cesarean delivery rates. Our objective was to apply the TGCS to a nationwide cohort in the United States over a 10-year period. This population-based analysis applied the TGCS to all births in the United States from 2005-2014, recorded in the 2003-revised birth certificate format. Over the study 10-year period 27,044,217 deliveries met inclusion criteria. Five parameters (parity including previous cesarean, gestational age, labor onset, fetal presentation and plurality), identifiable on presentation for delivery, were used to classify all women included into one of ten groups. The overall cesarean rate was 31.6%. Group 3 births (singleton, term, cephalic multiparas in spontaneous labor) were most common, while Group 5 births (those with a previous cesarean) accounted for the most cesarean deliveries increasing from 27% of all cesareans in 2005-06 to over 34% in 2013-14. Breech pregnancies (Groups 6 and 7) had cesarean rates above 90%. Primiparous and multiparous women who had a prelabor cesarean [Groups 2(b) and 4(b)] accounted for over one quarter of all cesarean deliveries. Women with a previous cesarean delivery represent an increasing proportion of cesarean deliveries. Use of the Robson criteria allows standardised comparisons of data and identifies clinical scenarios driving changes in cesarean rates. Hospitals and health organisations can use the TGCS to evaluate quality and processes associated with cesarean delivery. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Magnetic microspheres as magical novel drug delivery system: A review

    Directory of Open Access Journals (Sweden)

    Satinder Kakar

    2013-01-01

    Full Text Available Magnetic microspheres hold great promise for reaching the goal of controlled and site specific drug delivery. Magnetic microspheres as an alternative to traditional radiation methods which uses highly penetrating radiations that is absorbed throughout the body. Its use is limited by toxicity and side effects. Now days, several targeted treatment systems including magnetic field, electric field, ultrasound, temperature, UV light and mechanical force are being used in many disease treatments (e.g. cancer, nerve damage, heart and artery, anti-diabetic, eye and other medical treatments. Among them, the magnetic targeted drug delivery system is one of the most attractive and promising strategy for delivering the drug to the specified site. Magnetically controlled drug targeting is one of the various possible ways of drug targeting. This technology is based on binding establish anticancer drug with ferrofluid that concentrate the drug in the area of interest (tumor site by means of magnetic fields. There has been keen interest in the development of a magnetically target drug delivery system. These drug delivery systems aim to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the activity entity to the site of action. Magnetic microspheres were developed to overcome two major problems encountered in drug targeting namely: RES clearance and target site specificity.

  5. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  6. Cell Based Drug Delivery: Micrococcus luteus Loaded Neutrophils as Chlorhexidine Delivery Vehicles in a Mouse Model of Liver Abscesses in Cattle.

    Science.gov (United States)

    Wendel, Sebastian O; Menon, Sailesh; Alshetaiwi, Hamad; Shrestha, Tej B; Chlebanowski, Lauren; Hsu, Wei-Wen; Bossmann, Stefan H; Narayanan, Sanjeev; Troyer, Deryl L

    2015-01-01

    The recent WHO report on antibiotic resistances shows a dramatic increase of microbial resistance against antibiotics. With only a few new antibiotics in the pipeline, a different drug delivery approach is urgently needed. We have obtained evidence demonstrating the effectiveness of a cell based drug delivery system that utilizes the innate immune system as targeting carrier for antibacterial drugs. In this study we show the efficient loading of neutrophil granulocytes with chlorhexidine and the complete killing of E. coli as well as Fusobacterium necrophorum in in-vitro studies. Fusobacterium necrophorum causes hepatic abscesses in cattle fed high grain diets. We also show in a mouse model that this delivery system targets infections of F. necrophorum in the liver and reduces the bacterial burden by an order of magnitude from approximately 2•106 to 1•105.

  7. Distance Synchronous Information Systems Course Delivery

    Science.gov (United States)

    Peslak, Alan R.; Lewis, Griffith R.; Aebli, Fred

    2014-01-01

    Teaching computer information systems via distance education is a challenge for both student and faculty. Much research work has been performed on methods of teaching via distance education. Today we are faced with a variety of options for course delivery. Asynchronous delivery via online or lesson instruction still remains most common. But…

  8. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jiandi Wan

    2012-04-01

    Full Text Available Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.

  9. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers

    NARCIS (Netherlands)

    Chen, Wei; Meng, Fenghua; Cheng, R.; Deng, C.; Feijen, Jan; Zhong, Zhiyuan

    2014-01-01

    Biodegradable polymeric nanocarriers are one of the most promising systems for targeted and controlled drug and gene delivery. They have shown several unique advantages such as excellent biocompatibility, prolonged circulation time, passive tumor targeting via the enhanced permeability and retention

  10. Microemulsion Drug Delivery Systems for Radiopharmacy Studies

    Directory of Open Access Journals (Sweden)

    Emre Ozgenc

    2016-11-01

    Full Text Available Microemulsions have been used increasingly for last year’s because of ideal properties like favorable drug delivery, ease of preparation and physical stability. They have been improved the solubility and efficacy of the drug and reduce the side effects. Use of radiolabeled microemulsions plays an alternative role in drug delivery systems by investigating the formation, stability and application of microemulsions in radiopharmacy. Gama scintigraphic method is well recognized for developing and detecting the biodistribution of newly developed drugs or formulation. This review will focus on how radionuclides are able to play role with characterization studies of microemulsion drug delivery systems.

  11. Quality of experience management in mobile content delivery systems

    NARCIS (Netherlands)

    Agboma, F.; Liotta, A.

    2012-01-01

    This study contributes towards the relatively new but growing discipline of QoE management in content delivery systems. The study focuses on the development of a QoE-based management framework for the construction of QoE models for different types of multimedia contents delivered onto three typical

  12. Porous silicon-cyclodextrin based polymer composites for drug delivery applications.

    Science.gov (United States)

    Hernandez-Montelongo, J; Naveas, N; Degoutin, S; Tabary, N; Chai, F; Spampinato, V; Ceccone, G; Rossi, F; Torres-Costa, V; Manso-Silvan, M; Martel, B

    2014-09-22

    One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work β-cyclodextrin-citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and prednisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/β-cyclodextrin-citric acid polymer composites, nano- and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Nanotechnology-based polymeric bio(muco)adhesive platforms for controlling drug delivery - properties, methodologies and applications

    International Nuclear Information System (INIS)

    Carvalho, Flavia Chiva; Chorilli, Marlus; Gremiao, Maria Palmira Daflon

    2014-01-01

    Studies using bio(muco)adhesive drug delivery systems have recently gained great interest, which can promote drug targeting and more specific contact of the drug delivery system with the various absorptive membranes of the body. This technological platform associated with nanotechnology offers potential for controlling drug delivery; therefore, they are excellent strategies to increase the bioavailability of drugs. The objective of this work was to study nanotechnology-based polymeric bio(muco)adhesive platforms for controlling drug delivery, highlighting their properties, how the bio(muco)adhesion can be measured and their potential applications for different routes of administration. (author)

  14. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  15. Facility-based delivery and maternal and early neonatal mortality in ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    One of the most important ways to address some of the key factors ... services, facility-based delivery, facility delivery, institutional delivery ..... Percent of women reporting delivering in a health facility. Quintile* ranking of facility- based delivery. Maternal. Mortality. Ration. (MMR) per. 1000 Live. Births. African. MMR quintile*.

  16. Buccal Transmucosal Delivery System of Enalapril for Improved ...

    African Journals Online (AJOL)

    Purpose: To prepare and characterize buccal transmucosal delivery system of enalapril maleate for overcoming its low bioavailability, and hence provide improved therapeutic efficacy and patient compliance. Methods: Transmucosal drug delivery systems of enalapril maleate were formulated as buccal films by solvent ...

  17. Poly lactic acid based injectable delivery systems for controlled release of a model protein, lysozyme.

    Science.gov (United States)

    Al-Tahami, Khaled; Meyer, Amanda; Singh, Jagdish

    2006-02-01

    The objective of this study was to evaluate the critical formulation parameters (i.e., polymer concentration, polymer molecular weight, and solvent nature) affecting the controlled delivery of a model protein, lysozyme, from injectable polymeric implants. The conformational stability and biological activity of the released lysozyme were also investigated. Three formulations containing 10%, 20%, and 30% (w/v) poly lactic acid (PLA) in triacetin were investigated. It was found that increasing polymer concentration in the formulations led to a lower burst effect and a slower release rate. Formulation with a high molecular weight polymer showed a greater burst effect as compared to those containing low molecular weight. Conformational stability and biological activity of released samples were studied by differential scanning calorimeter and enzyme activity assay, respectively. The released samples had significantly (P solution kept at same conditions). Increasing polymer concentration increased both the conformational stability and the biological activity of released lysozyme. In conclusion, phase sensitive polymer-based delivery systems were able to deliver a model protein, lysozyme, in a conformationally stable and biologically active form at a controlled rate over an extended period.

  18. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion.

    Science.gov (United States)

    Yamada, Yuma; Akita, Hidetaka; Kamiya, Hiroyuki; Kogure, Kentaro; Yamamoto, Takenori; Shinohara, Yasuo; Yamashita, Kikuji; Kobayashi, Hideo; Kikuchi, Hiroshi; Harashima, Hideyoshi

    2008-02-01

    Mitochondria are the principal producers of energy in higher cells. Mitochondrial dysfunction is implicated in a variety of human diseases, including cancer and neurodegenerative disorders. Effective medical therapies for such diseases will ultimately require targeted delivery of therapeutic proteins or nucleic acids to the mitochondria, which will be achieved through innovations in the nanotechnology of intracellular trafficking. Here we describe a liposome-based carrier that delivers its macromolecular cargo to the mitochondrial interior via membrane fusion. These liposome particles, which we call MITO-Porters, carry octaarginine surface modifications to stimulate their entry into cells as intact vesicles (via macropinocytosis). We identified lipid compositions for the MITO-Porter which promote both its fusion with the mitochondrial membrane and the release of its cargo to the intra-mitochondrial compartment in living cells. Thus, the MITO-Porter holds promise as an efficacious system for the delivery of both large and small therapeutic molecules into mitochondria.

  19. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  20. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ji Young Yhee

    2016-09-01

    Full Text Available Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD, cystic fibrosis (CF, idiopathic pulmonary fibrosis (IPF, and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed.

  1. Characterization of Nanodiamond-based anti-HIV drug Delivery to the Brain.

    Science.gov (United States)

    Roy, Upal; Drozd, Vadym; Durygin, Andriy; Rodriguez, Jesse; Barber, Paul; Atluri, Venkata; Liu, Xiaohua; Voss, Thomas G; Saxena, Surendra; Nair, Madhavan

    2018-01-25

    Human Immunodeficiency Virus Type 1 (HIV-1) remains one of the leading causes of death worldwide. Present combination antiretroviral therapy has substantially improved HIV-1 related pathology. However, delivery of therapeutic agents to the HIV reservoir organ like Central nervous system (CNS) remains a major challenge primarily due to the ineffective transmigration of drugs through Blood Brain Barrier (BBB). The recent advent of nanomedicine-based drug delivery has stimulated the development of innovative systems for drug delivery. In this regard, particular focus has been given to nanodiamond due to its natural biocompatibility and non-toxic nature-making it a more efficient drug carrier than other carbon-based materials. Considering its potential and importance, we have characterized unmodified and surface-modified (-COOH and -NH 2 ) nanodiamond for its capacity to load the anti-HIV-1 drug efavirenz and cytotoxicity, in vitro. Overall, our study has established that unmodified nanodiamond conjugated drug formulation has significantly higher drug loading capacity than surface-modified nanodiamond with minimum toxicity. Further, this nanodrug formulation was characterized by its drug dissolution profile, transmigration through the BBB, and its therapeutic efficacy. The present biological characterizations provide a foundation for further study of in-vivo pharmacokinetics and pharmacodynamics of nanodiamond-based anti-HIV drugs.

  2. Efficiency performance of China's health care delivery system.

    Science.gov (United States)

    Zhang, Luyu; Cheng, Gang; Song, Suhang; Yuan, Beibei; Zhu, Weiming; He, Li; Ma, Xiaochen; Meng, Qingyue

    2017-07-01

    Improving efficiency performance of the health care delivery system has been on the agenda for the health system reform that China initiated in 2009. This study examines the changes in efficiency performance and determinants of efficiency after the reform to provide evidence to assess the progress of the reform from the perspective of efficiency. Descriptive analysis, Data Envelopment Analysis, the Malmquist Index, and multilevel regressions are used with data from multiple sources, including the World Bank, the China Health Statistical Yearbook, and routine reports. The results indicate that over the last decade, health outcomes compared with health investment were relatively higher in China than in most other countries worldwide, and the trend was stable. The overall efficiency and total factor productivity increased after the reform, indicating that the reform was likely to have had a positive impact on the efficiency performance of the health care delivery system. However, the health care delivery structure showed low system efficiency, mainly attributed to the weakened primary health care system. Strengthening the primary health care system is central to enhancing the future performance of China's health care delivery system. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Design and in vivo evaluation of a patch delivery system for insulin based on thiolated polymers.

    Science.gov (United States)

    Grabovac, Vjera; Föger, Florian; Bernkop-Schnürch, Andreas

    2008-02-04

    The aim of this study was to develop and evaluate a novel three-layered oral delivery system for insulin in vivo. The patch system consisted of a mucoadhesive layer, a water insoluble backing layer made of ethylcellulose and an enteric coating made of Eudragit. Drug release studies were performed in media mimicking stomach and intestinal fluids. For in vivo studies patch systems were administered orally to conscious non-diabetic rats. Orally administered insulin in aqueous solution was used as control. After the oral administration of the patch systems a decrease of glucose and increase of insulin blood levels were measured. The mucoadhesive layer, exhibiting a diameter of 2.5mm and a weight of 5mg, comprised polycarbophil-cysteine conjugate (49%), bovine insulin (26%), gluthatione (5%) and mannitol (20%). 74.8+/-4.8% of insulin was released from the delivery system over 6h. Six hours after administration of the patch system mean maximum decrease of blood glucose level of 31.6% of the initial value could be observed. Maximum insulin concentration in blood was 11.3+/-6.2ng/ml and was reached 6h after administration. The relative bioavailability of orally administered patch system versus subcutaneous injection was 2.2%. The results indicate that the patch system provides enhancement of intestinal absorption and thereby offers a promising strategy for peroral peptide delivery.

  4. Buccal Mucosa as A Route for Systemic Drug Delivery: A Review

    OpenAIRE

    Dhaval A. Pate; M. R. Pate; K. R. Pate; N. M. Pate

    2012-01-01

    Within the oral mucosal cavity, the buccal region offers an attractive route of administration for systemic drug delivery. The mucosa has a rich blood supply and it is relatively permeable. It is the objective of this article to review buccal drug delivery by discussing the structure and environment of the oral mucosa and the experimental methods used in assessing buccal drug permeation/absorption. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based deliv...

  5. Engineering the system of healthcare delivery

    National Research Council Canada - National Science Library

    Rouse, William B; Cortese, Denis A

    2010-01-01

    "As the United States continues to debate reform of its healthcare system, this book argues that providing health insurance for all without improving the delivery system will not improve the current...

  6. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  7. In Vitro Lipolysis Data Does Not Adequately Predict the In Vivo Performance of Lipid-Based Drug Delivery Systems Containing Fenofibrate

    DEFF Research Database (Denmark)

    Thomas, Nicky; Richter, Katharina; Pedersen, Thomas B

    2014-01-01

    on identical self-nanoemulsifying drug delivery systems (SNEDDS) containing 200 mg of fenofibrate, either dissolved or suspended, were subjected to combined gastric (pH 2) and intestinal (pH 6.5) in vitro lipolysis. Based on the solubilization profiles and SRM the rank-order SNEDDS (75% drug load) > super...

  8. Noninvasive delivery systems for peptides and proteins in osteoporosis therapy: a retroperspective.

    Science.gov (United States)

    Hoyer, Herbert; Perera, Glen; Bernkop-Schnürch, Andreas

    2010-01-01

    The aim of this review is to provide the reader general and inspiring prospects in various attempts to make noninvasive delivery systems of calcitonin and teriparatide feasible and as convenient as possible. Calcitonin and teriparatide play an important role in both calcium homeostasis and bone remodelling. Currently calcitonin is available as a subcutaneous injection and as a nasal spray whereas teriparatide is administered subcutaneously. In the past few years, an increasing number of articles about drug delivery systems for calcitonin and teriparatide have been published. These delivery systems have been developed to overcome the inherent barriers for the uptake across the diverse membranes on the various routes for protein and peptide delivery. Co-administration of permeation enhancers, mucoadhesive agents, viscosity modifying agents, multifunctional polymers, protease inhibitors as well as encapsulation and chemical modification are utilized in order to improve calcitonin and teriparatide absorption after oral, nasal, pulmonal, or buccal administration. The majority of research groups have been working on the development of formulations based on the encapsulation of molecules in biodegradable and biocompatible polymeric nanoparticles. However these observations are based on data obtained under different experimental conditions. Hence, it is difficult to compare the obtained results in order to draw general conclusions about the most promising characteristics required for oral and nasal formulations for these peptides.

  9. Optimization of conditions for gene delivery system based on PEI

    Directory of Open Access Journals (Sweden)

    Roya Cheraghi

    2017-01-01

    Full Text Available Objective(s: PEI based nanoparticle (NP due to dual capabilities of proton sponge and DNA binding is known as powerful tool for nucleic acid delivery to cells. However, serious cytotoxicity and complicated conditions, which govern NPs properties and its interactions with cells practically, hindered achievement to high transfection efficiency. Here, we have tried to optimize the properties of PEI/ firefly luciferase plasmid complexes and cellular condition to improve transfection efficiency. Materials and Methods: For this purpose, firefly luciferase, as a robust gene reporter, was complexed with PEI to prepare NPs with different size and charge. The physicochemical properties of nanoparticles were evaluated using agarose gel retardation and dynamic light scattering.  MCF7 and BT474 cells at different confluency were also transfected with prepared nanoparticles at various concentrations for short and long times. Results: The branched PEI can instantaneously bind to DNA and form cationic NPs. The results demonstrated the production of nanoparticles with size about 100-500 nm dependent on N/P ratio. Moreover, increase of nanoparticles concentration on the cell surface drastically improved the transfection rate, so at a concentration of 30 ng/ìl, the highest transfection efficiency was achieved. On the other side, at confluency between 40-60%, the maximum efficiency was obtained. The result demonstrated that N/P ratio of 12 could establish an optimized ratio between transfection efficiency and cytotoxicity of PEI/plasmid nanoparticles. The increase of NPs N/P ratio led to significant cytotoxicity. Conclusion: Obtained results verified the optimum conditions for PEI based gene delivery in different cell lines.

  10. Design optimization of a novel pMDI actuator for systemic drug delivery.

    Science.gov (United States)

    Kakade, Prashant P; Versteeg, Henk K; Hargrave, Graham K; Genova, Perry; Williams Iii, Robert C; Deaton, Daniel

    2007-01-01

    Pressurized metered dose inhalers (pMDIs) are the most widely prescribed and economical respiratory drug delivery systems. Conventional pMDI actuators-those based on "two-orifice-and-sump" designs-produce an aerosol with a reasonable respirable fraction, but with high aerosol velocity. The latter is responsible for high oropharyngeal deposition, and consequently low drug delivery efficiency. Kos' pMDI technology is based on a proprietary vortex nozzle actuator (VNA), an innovative actuator configuration that seeks to reduce aerosol plume velocity, thereby promoting deep lung deposition. Using VNA development as a case study, this paper presents a systematic design optimization process to improve the actuator performance through use of advanced optical characterization tools. The optimization effort mainly relied on laser-based optical diagnostics to provide an improved understanding of the fundamentals of aerosol formation and interplay of various geometrical factors. The performance of the optimized VNA design thus evolved was characterized using phase Doppler anemometry and cascade impaction. The aerosol velocities for both standard and optimized VNA designs were found to be comparable, with both notably less than conventional actuators. The optimized VNA design also significantly reduces drug deposition in the actuator as well as USP throat adapter, which in turn, leads to a significantly higher fine particle fraction than the standard design (78 +/- 3% vs. 63 +/- 2% on an ex valve basis). This improved drug delivery efficiency makes VNA technology a practical proposition as a systemic drug delivery platform. Thus, this paper demonstrates how advanced optical diagnostic and characterization tools can be used in the development of high efficiency aerosol drug delivery devices.

  11. Conceptual design report for the University of Rochester cryogenic target delivery system

    International Nuclear Information System (INIS)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D 2 or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility

  12. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. (General Atomics, San Diego, CA (United States)); Bittner, D.N.; Hendricks, C.D. (W.J. Schafer Associates, Livermore, CA (United States))

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  13. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. [General Atomics, San Diego, CA (United States); Bittner, D.N.; Hendricks, C.D. [W.J. Schafer Associates, Livermore, CA (US)

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  14. Resistive-wall Wake Effect in the Beam Delivery System

    International Nuclear Information System (INIS)

    Delayen, J.R.; Jefferson Lab; Wu, Juhao; Raubenheimer, T.O.; SLAC; Wang, Jiunn-Ming; BNL, NSLS

    2005-01-01

    General formulae for resistive-wall induced beam dilution are presented and then applied to the final beam delivery system of linear colliders. Criteria for the design of final beam delivery systems are discussed

  15. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications.

    Science.gov (United States)

    Elnaggar, Yosra S R; El-Refaie, Wessam M; El-Massik, Magda A; Abdallah, Ossama Y

    2014-04-28

    Conventional carriers for skin delivery encounter obstacles of drug leakage, scanty permeation and low entrapment efficiency. Phospholipid nanogels have recently been recognized as prominent delivery systems to circumvent such obstacles and impart easier application. The current review provides an overview on different types of lecithin nanostructured gels, with particular emphasis on liposomal versus microemulsion gelled systems. Liposomal gels investigated encompassed classic liposomal hydrogel, modified liposomal gels (e.g. Transferosomal, Ethosomal, Pro-liposomal and Phytosomal gels), Microgel in liposomes (M-i-L) and Vesicular phospholipid gel (VPG). Microemulsion gelled systems encompassed Lecithin microemulsion-based organogels (LMBGs), Pluronic lecithin organogels (PLOs) and Lecithin-stabilized microemulsion-based hydrogels. All systems were reviewed regarding matrix composition, state of art, characterization and updated applications. Different classes of lecithin nanogels exhibited crucial impact on transdermal delivery regarding drug permeation, drug loading and stability aspects. Future perspectives of this theme issue are discussed based on current laboratory studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy.

    Science.gov (United States)

    Ailincai, Daniela; Tartau Mititelu, Liliana; Marin, Luminita

    2018-11-01

    A series of drug delivery systems were prepared by chitosan hydrogelation with citral in the presence of an antineoplastic drug: 5-fluorouracil. The dynamic covalent chemistry of the imine linkage allowed the obtaining of supramolecular tridimensional architectures in which the drug has been homogenously dispersed. Fourier-transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WXRD) and polarized light microscopy (POM) measurements were used in order to follow the hydrogelation and drug encapsulation processes. The ability of the prepared systems to release the drug has been investigated by UV-Vis spectroscopy using a calibration curve and by fitting the results with different mathematic models. To mimic the behavior of the hydrogel matrix in bio-environmental conditions in view of applications, their enzymatic degradability was monitored in the presence of lysozyme. The in vivo side effects of the systems, in terms of their influence on the blood elements, biochemical and immune parameters were monitored on white Swiss mice by intraperitoneal administration of the injectable obtained hydrogels. All the characteristics of the obtained systems, such as micro-porous morphology, uniform drug encapsulation, enzymatic degradability, lack of side effects, other than the one of the drug itself, along with their ability to release the drug in a sustained manner proved that these material meet the requirements for the development of drug delivery systems, making them suitable for being applied in intraperitoneal chemotherapy.

  17. Hydrogel based occlusion systems

    NARCIS (Netherlands)

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a

  18. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Liposome-based drug delivery in breast cancer treatment

    International Nuclear Information System (INIS)

    Park, John W

    2002-01-01

    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

  20. MO-FG-202-07: Real-Time EPID-Based Detection Metric For VMAT Delivery Errors

    International Nuclear Information System (INIS)

    Passarge, M; Fix, M K; Manser, P; Stampanoni, M F M; Siebers, J V

    2016-01-01

    Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling and translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error

  1. MO-FG-202-07: Real-Time EPID-Based Detection Metric For VMAT Delivery Errors

    Energy Technology Data Exchange (ETDEWEB)

    Passarge, M; Fix, M K; Manser, P [Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern (Switzerland); Stampanoni, M F M [Institute for Biomedical Engineering, ETH Zurich, and PSI, Villigen (Switzerland); Siebers, J V [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)

    2016-06-15

    Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling and translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error

  2. Photo-synthesis of protein-based nanoparticles and the application in drug delivery

    International Nuclear Information System (INIS)

    Xie, Jinbing; Wang, Hongyang; Cao, Yi; Qin, Meng; Wang, Wei

    2015-01-01

    Recently, protein-based nanoparticles as drug delivery systems have attracted great interests due to the excellent behavior of high biocompatibility and biodegradability, and low toxicity. However, the synthesis techniques are generally costly, chemical reagents introduced, and especially present difficulties in producing homogeneous monodispersed nanoparticles. Here, we introduce a novel physical method to synthesize protein nanoparticles which can be accomplished under physiological condition only through ultraviolet (UV) illumination. By accurately adjusting the intensity and illumination time of UV light, disulfide bonds in proteins can be selectively reduced and the subsequent self-assembly process can be well controlled. Importantly, the co-assembly can also be dominated when the proteins mixed with either anti-cancer drugs, siRNA, or active targeting molecules. Both in vitro and in vivo experiments indicate that our synthesized protein–drug nanoparticles (drug-loading content and encapsulation efficiency being ca. 8.2% and 70%, respectively) not only possess the capability of traditional drug delivery systems (DDS), but also have a greater drug delivery efficiency to the tumor sites and a better inhibition of tumor growth (only 35% of volume comparing to the natural growing state), indicating it being a novel drug delivery system in tumor therapy

  3. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    Science.gov (United States)

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  4. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems.

    Science.gov (United States)

    Dalmoro, Annalisa; Bochicchio, Sabrina; Nasibullin, Shamil F; Bertoncin, Paolo; Lamberti, Gaetano; Barba, Anna Angela; Moustafine, Rouslan I

    2018-05-17

    Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity. Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods. The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin. Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable

  5. [Formulation aspects and ex-vivo examination of buccal drug delivery systems].

    Science.gov (United States)

    Szabó, Barnabás; Hetényi, Gergely; Majoros, Klaudia; Miszori, Veronika; Kállai, Nikolett; Zelkó, Romána

    2011-01-01

    Application of buccal dosage forms has several advantages. Buccal route can be used for systemic delivery because the mucosa has a rich blood supply and it is relatively permeable. This route of drug delivery is of special advantages, including the bypass of first pass effect and the avoidance of presystemic elimination within the GIT. Buccal delivery systems enable the systemic delivery of peptides and proteins. In our previous study the physiological background of this application and the excipients of the possible formulations were reviewed. In the present work the formulation and ex vivo examination aspects of buccal drug delivery systems are summarized.

  6. Dry Eye Treatment Based on Contact Lens Drug Delivery: A Review.

    Science.gov (United States)

    Guzman-Aranguez, Ana; Fonseca, Begoña; Carracedo, Gonzalo; Martin-Gil, Alba; Martinez-Aguila, Alejandro; Pintor, Jesús

    2016-09-01

    Dry eye disease affects a substantial segment of the word population with increasing frequency. It is a multifactorial disease of the ocular surface and tear film, which causes ocular discomfort, visual disturbances, and tear instability with potential damage to the cornea and conjunctiva. Because of its multifactorial etiology, the use of different pharmacological treatment for dry eye treatment has been proposed, which include anti-inflammatory molecules, lubricants or comfort agents, and secretagogues. However, in some cases these pharmacological approaches only relieve symptoms temporarily, and consequently, eye care professionals continue to have difficulties managing dry eye. To improve pharmacological therapy that allows a more efficient and long-term action, effective ocular drug delivery of the currently available drugs for dry eye treatment is required. Contact lenses are emerging as alternative ophthalmic drugs delivery systems that provide an increased residence time of the drug at the eye, thus leading to enhanced bioavailability and more convenient and efficacious therapy. In this article, we reviewed the different techniques used to prepare contact lens-based drug delivery systems and focused on articles that describe the delivery of compounds for dry eye treatment through contact lenses.

  7. Drug delivery systems and materials for wound healing applications.

    Science.gov (United States)

    Saghazadeh, Saghi; Rinoldi, Chiara; Schot, Maik; Kashaf, Sara Saheb; Sharifi, Fatemeh; Jalilian, Elmira; Nuutila, Kristo; Giatsidis, Giorgio; Mostafalu, Pooria; Derakhshandeh, Hossein; Yue, Kan; Swieszkowski, Wojciech; Memic, Adnan; Tamayol, Ali; Khademhosseini, Ali

    2018-04-05

    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  9. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin.

    Science.gov (United States)

    Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung

    2017-11-17

    With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.

  10. Permeation enhancer strategies in transdermal drug delivery.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  11. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2016-01-01

    Full Text Available Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes diffusion controlled drug delivery systems; dissolution controlled drug delivery systems, osmotically controlled drug delivery systems, ion-exchange controlled drug delivery systems, hydrodynamically balanced systems, multi-Particulate drug delivery systems and microencapsulated drug delivery system. The systems are formulated using different natural, semi-synthetic and synthetic polymers. The purpose of the review is to provide information about the orally controlled drug delivery system, polymers which are used to formulate these systems and characterizations of one of the most convenient dosage form which is the tablets. 

  12. Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering.

    Science.gov (United States)

    Labib, Gihan

    2018-01-01

    Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.

  13. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    Science.gov (United States)

    2015-09-01

    Systems in Systemic , Dermal, Transdermal , and Ocular Drug Delivery . Crit. Rev. Ther. Drug 2008, 25, 545–584. 14. Choy, Y. B.; Park, J.-H.; McCarey, B...AWARD NUMBER: W81XWH-13-1-0146 TITLE: Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries PRINCIPAL INVESTIGATOR: Dr...Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries” 5b. GRANT NUMBER W81XWH-13-1-0146 5c. PROGRAM ELEMENT NUMBER 6

  14. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  15. Renewable energy delivery systems and methods

    Science.gov (United States)

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  16. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  17. Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent

    Science.gov (United States)

    1993-11-01

    was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further

  18. Nanotechnology based approaches for anti-diabetic drugs delivery.

    Science.gov (United States)

    Kesharwani, Prashant; Gorain, Bapi; Low, Siew Yeng; Tan, Siew Ann; Ling, Emily Chai Siaw; Lim, Yin Khai; Chin, Chuan Ming; Lee, Pei Yee; Lee, Chun Mey; Ooi, Chun Haw; Choudhury, Hira; Pandey, Manisha

    2018-02-01

    Nanotechnology science has been diverged its application in several fields with the advantages to operate with nanometric range of objects. Emerging field of nanotechnology has been also being approached and applied in medical biology for improved efficacy and safety. Increased success in therapeutic field has focused several approaches in the treatment of the common metabolic disorder, diabetes. The development of nanocarriers for improved delivery of different oral hypoglycemic agents compared to conventional therapies includes nanoparticles (NPs), liposomes, dendrimer, niosomes and micelles, which produces great control over the increased blood glucose level and thus becoming an eye catching and most promising technology now-a-days. Besides, embellishment of nanocarriers with several ligands makes it more targeted delivery with the protection of entrapped hypoglycaemic agents against degradation, thereby optimizing prolonged blood glucose lowering effect. Thus, nanocarriers of hypoglycemic agents provide the aim towards improved diabetes management with minimized risk of acute and chronic complications. In this review, we provide an overview on distinctive features of each nano-based drug delivery system for diabetic treatment and current NPs applications in diabetes management. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    Science.gov (United States)

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  20. Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery.

    Science.gov (United States)

    Iqbal, Hafiz M N; Rodriguez, Angel M V; Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep

    2017-01-01

    In the recent past, a wider spectrum of nanotechnologybased drugs or drug-loaded devices and systems has been engineered and investigated with high interests. The key objective is to help for an enhanced/better quality of patient life in a secure way by avoiding/limiting drug abuse, or severe adverse effects of some in practice traditional therapies. Various methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, nanoparticles-based therapeutic agents are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable therapeutic drug delivery system (DDS) for multipurpose applications is essential and a core demand to tackle many human health related diseases. In this context, nanotechnology-based several advanced DDS have been engineered with novel characteristics for biomedical, pharmaceutical and cosmeceutical applications that include but not limited to the enhanced/improved bioactivity, bioavailability, drug efficacy, targeted delivery, and therapeutically safer with an extra advantage of overcoming demerits of traditional drug formulations/designs. This review work is focused on recent trends/advances in nanotechnology-based drugs and formulations designed for targeted therapeutic delivery. Moreover, information is also reviewed and given from recent patents and summarized or illustrated diagrammatically to depict a better understanding. Recent patents covering various nanotechnology-based approaches for several applications have also been reviewed. The drug-loaded nanoparticles are among versatile candidates with multifunctional characteristics for potential applications in biomedical, and tissue engineering sector. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Application of nanohydrogels in drug delivery systems: recent patents review.

    Science.gov (United States)

    Dalwadi, Chintan; Patel, Gayatri

    2015-01-01

    Nanohydrogel combines the advantages of hydrogel and nano particulate systems. Similar to the hydrogel and macrogel, nanohydrogel can protect the drug and control drug release by stimuli responsive conformation or biodegradable bond into the polymer networks. Nanohydrogel has drawn huge interest due to their potential applications, such as carrier in target-specific controlled drug delivery, absorbents, chemical/biological sensors, and bio-mimetic materials. Similar to the nanoparticles, stimuli responsive nanohydrogel can easily be delivered in the liquid form for parenteral drug delivery application. This review highlights the methods to prepare nanohydrogel based on natural and synthetic polymers for diverse applications in drug delivery. It also encompasses the drug loading and drug release mechanism of the nanohydrogel formulation and patents related to the composition and chemical methods for preparation of nanohydrogel formulation with current status in clinical trials.

  2. Controlled drug delivery systems towards new frontiers in patient care

    CERN Document Server

    Rossi, Filippo; Masi, Maurizio

    2016-01-01

    This book offers a state-of-the-art overview of controlled drug delivery systems, covering the most important innovative applications. The principles of controlled drug release and the mechanisms involved in controlled release are clearly explained. The various existing polymeric drug delivery systems are reviewed, and new frontiers in material design are examined in detail, covering a wide range of polymer modification techniques. The concluding chapter is a case study focusing on use of a drug-eluting stent. The book is designed to provide the reader with a complete understanding of the mechanisms and design of controlled drug delivery systems, and to this end includes numerous step-by-step tutorials. It illustrates how chemical engineers can advance medical care by designing polymeric delivery systems that achieve either temporal or spatial control of drug delivery and thus ensure more effective therapy that eliminates the potential for both under-and overdosing.

  3. Printing technologies in fabrication of drug delivery systems.

    Science.gov (United States)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri; Genina, Natalja; Peltonen, Jouko; Sandler, Niklas

    2013-12-01

    There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way for personalized dosing and tailor-made dosage forms. In this review, the most recent observations and advancements in fabrication of drug delivery systems by utilizing printing technologies are summarized. A general overview of 2D printing techniques is presented including a review of the most recent literature where printing techniques are used in fabrication of drug delivery systems. The future perspectives and possible impacts on formulation strategies, flexible dosing and personalized medication of using printing techniques for fabrication of drug delivery systems are discussed. It is evident that there is an urgent need to meet the challenges of rapidly growing trend of personalization of medicines through development of flexible drug-manufacturing approaches. In this context, various printing technologies, such as inkjet and flexography, can play an important role. Challenges on different levels exist and include: i) technological development of printers and production lines; ii) printable formulations and carrier substrates; iii) quality control and characterization; and iv) regulatory perspectives.

  4. Model for determining and optimizing delivery performance in industrial systems

    Directory of Open Access Journals (Sweden)

    Fechete Flavia

    2017-01-01

    Full Text Available Performance means achieving organizational objectives regardless of their nature and variety, and even overcoming them. Improving performance is one of the major goals of any company. Achieving the global performance means not only obtaining the economic performance, it is a must to take into account other functions like: function of quality, delivery, costs and even the employees satisfaction. This paper aims to improve the delivery performance of an industrial system due to their very low results. The delivery performance took into account all categories of performance indicators, such as on time delivery, backlog efficiency or transport efficiency. The research was focused on optimizing the delivery performance of the industrial system, using linear programming. Modeling the delivery function using linear programming led to obtaining precise quantities to be produced and delivered each month by the industrial system in order to minimize their transport cost, satisfying their customers orders and to control their stock. The optimization led to a substantial improvement in all four performance indicators that concern deliveries.

  5. Smart Inulin-Based Polycationic Nanodevices for siRNA Delivery.

    Science.gov (United States)

    Cavallaro, G; Sardo, C; Scialabba, C; Licciardi, M; Giammona, G

    2017-01-01

    The advances of short interfering RNA (siRNA) mediated therapy provide a powerful option for the treatment of many diseases by silencing the expression of targeted genes including cancer development and progression. Inulin is a very simple and biocompatible polysaccharide proposed by our groups to produce interesting delivery systems for Nucleic Acid Based Drugs (NABDs), such as siRNA, either as polycations able to give polyplexes and polymeric coatings for nanosystems having a metallic core. In this research field, different functionalizing groups were linked to the inulin backbone with specific aims including oligoamine such as Ethylendiammine (EDA), Diethylediamine (DETA), Spermine, (SPM) etc. In this contribution the main Inulin-based nanodevices for the delivery of siRNA have been reported, analysed and compared with particular reference to their chemical design and structure, biocompatibility, siRNA complexing ability, silencing ability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Grizzli mobile systems and LPG delivery management; Grizzli mobile systems

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-07-01

    Complete text of publication follows: Grizzli Mobile Systems (and its sister companies) specialists in data communications and system solutions, offer their complete management solution for LPG deliveries, right through from remote reading of the gas level in the tank, through route management, management of the delivery itself and finally on-site invoicing and payment. The system permits a supplier to really differentiate itself from its competitors in terms of customer service and control of its operations. Domestic gas tanks are often difficult to access; visual reading of the gauge is not always easy and often leads to the customer re-ordering in panic mode. The supplier has also to react in panic mode to the customer. Grizzli Mobile Systems has developed a radio module that is fitted to the gas tank that calls, at regular set intervals with the tank level to a Call Rider gateway plug. The Call Rider is a small box plugged into the regular telephone socket (also supplying multiple operator telephony and other home automation services). As soon as the gas level reaches a predetermined minimum level, this radio information is relayed via the Internet to the LPG supplier. The supplier can then arrange (in non-panic mode) to deliver gas to the customer, via conventional means or by use of an interactive radio display (attached to a refrigerator or similar by magnets) that communicates with the Call Rider by radio. Once a delivery date has been set, a Grizzli Mobile Systems' dispatch system, installed at the supplier's headquarters creates and transfers routes via GSM communications to its fleet of delivery vehicles. A main-frame mapping software provides real-time follow-up and status checks of the vehicles using the GPS functionality and imports data back from the vehicles and updates databases. The driver is also assisted in localizing delivery sites. Inside the cabin of the vehicle the driver has available a Fujitsu PenCentra pen computer, a Microsoft

  7. Guidelines for Psychological Practice in Health Care Delivery Systems

    Science.gov (United States)

    American Psychologist, 2013

    2013-01-01

    Psychologists practice in an increasingly diverse range of health care delivery systems. The following guidelines are intended to assist psychologists, other health care providers, administrators in health care delivery systems, and the public to conceptualize the roles and responsibilities of psychologists in these diverse contexts. These…

  8. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system.

    Science.gov (United States)

    Zhang, Jinjie; Li, Jianbo; Ju, Yuan; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2015-02-02

    Phospholipid complex (PLC) based self-nanoemulsifying drug delivery system (PLC-SNEDDS) has been developed for efficient delivery of drugs with poor solubility and low permeability. In the present study, a BCS class IV drug and a P-glycoprotein (P-gp) substrate, morin, was selected as the model drug to elucidate the oral absorption mechanism of PLC-SNEDDS. PLC-SNEDDS was superior to PLC in protecting morin from degradation by intestinal enzymes in vitro. In situ perfusion study showed increased intestinal permeability by PLC was duodenum-specific. In contrast, PLC-SNEDDS increased morin permeability in all intestinal segments and induced a change in the main absorption site of morin from colon to ileum. Moreover, ileum conducted the lymphatic transport of PLC-SNEDDS, which was proven by microscopic intestinal visualization of Nile red labeled PLC-SNEDDS and lymph fluids in vivo. Low cytotoxicity and increased Caco-2 cell uptake suggested a safe and efficient delivery of PLC-SNEDDS. The increased membrane fluidity and disrupted actin filaments were closely associated with the increased cell uptake of PLC-SNEDDS. PLC-SNEDDS could be internalized into enterocytes as an intact form in a cholesterol-dependent manner via clathrin-mediated endocytosis and macropinocytosis. The enhanced oral absorption of morin was attributed to the P-gp inhibition by Cremophor RH and the intact internalization of M-PLC-SNEDDS into Caco-2 cells bypassing P-gp recognition. Our findings thus provide new insights into the development of novel nanoemulsions for poorly absorbed drugs.

  9. Design and construction of a DNA origami drug delivery system based on MPT64 antibody aptamer for tuberculosis treatment.

    Science.gov (United States)

    Ranjbar, Reza; Hafezi-Moghadam, Mohammad Sadegh

    2016-02-01

    With all of the developments on infectious diseases, tuberculosis (TB) remains a cause of death among people. One of the most promising assembly techniques in nano-technology is "scaffolded DNA origami" to design and construct a nano-scale drug delivery system. Because of the global health problems of tuberculosis, the development of potent new anti-tuberculosis drug delivery system without cross-resistance with known anti-mycobacterial agents is urgently needed. The aim of this study was to design a nano-scale drug delivery system for TB treatment using the DNA origami method. In this study, we presented an experimental research on a DNA drug delivery system for treating Tuberculosis. TEM images were visualized with an FEI Tecnai T12 BioTWIN at 120 kV. The model was designed by caDNAno software and computational prediction of the 3D solution shape and its flexibility was calculated with a CanDo server. Synthesizing the product was imaged using transmission electron microscopy after negative-staining by uranyl formate. We constructed a multilayer 3D DNA nanostructure system by designing square lattice geometry with the scaffolded-DNA-origami method. With changes in the lock and key sequences, we recommend that this system be used for other infectious diseases to target the pathogenic bacteria.

  10. A mucoadhesive in situ gel delivery system for paclitaxel

    OpenAIRE

    Jauhari, Saurabh; Dash, Alekha K.

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at d...

  11. Inhibition of bcl-2 and cox-2 Protein Expression after Local Application of a New Carmustine-Loaded Clinoptilolite-Based Delivery System in a Chemically Induced Skin Cancer Model in Mice

    Directory of Open Access Journals (Sweden)

    Cristina Mihaela Ghiciuc

    2017-11-01

    Full Text Available Our research has focused on in vitro and in vivo evaluations of a new Carmustine (BCNU-loaded clinoptilolite-based delivery system. Two clinoptilolite ionic forms—hydrogen form (HCLI and sodium form (NaCLI—were prepared, allowing a loading degree of about 5–6 mg BCNU/g of zeolite matrix due to the dual porous feature of clinoptilolite. Clinoptilolite-based delivery systems released 35.23% of the load in 12 h for the BCNU@HCLI system and only 10.82% for the BCNU@NaCLI system. The BCNU@HCLI system was chosen to develop gel and cream semisolid dosage forms. The cream (C_BCNU@HCLI released 29.6% of the loaded BCNU after 12 h in the Nylon synthetic membrane test and 31.6% in the collagen membrane test, higher by comparison to the gel. The new cream was evaluated in vivo in a chemically induced model of skin cancer in mice. Quantitative immunohistochemistry analysis showed stronger inhibition of B-cell lymphoma-2 (bcl-2 and cyclooxygenase 2 (cox-2 protein expression, known markers for cancer survival and aggressiveness, after the treatment with C_BCNU@HCLI by comparison to all the control treatment types, including an off-label magistral formula commercially available Carmustine cream as reference, bringing evidence that a clinoptilolite-based delivery systems could be used as a cancer drug carriers and controlled release systems (skin-targeted topical delivery systems.

  12. Polymer hydrogels as optimized delivery systems

    International Nuclear Information System (INIS)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B.

    2013-01-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  13. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  14. Well-defined polypeptide-based systems as non-viral vectors for cytosolic delivery

    OpenAIRE

    Niño Pariente, Amaya

    2017-01-01

    A convenient cytosolic drug delivery constitutes a very powerful tool for the treatment and/or prevention of several relevant human diseases. Along with recent advances in therapeutic technologies based on biomacromolecules (e.g. oligonucleotides or proteins), we also require the development of technologies which improve the transport of therapeutic molecules to the cell of choice. This has led to the emergence of a variety of promising methods over the last 20 years. Despite significant prog...

  15. Polymersome-based drug-delivery strategies for cancer therapeutics.

    Science.gov (United States)

    Anajafi, Tayebeh; Mallik, Sanku

    2015-01-01

    Polymersomes are stable vesicles prepared from amphiphilic polymers and are more stable compared with liposomes. Although these nanovesicles have many attractive properties for in vitro/in vivo applications, liposome-based drug delivery systems are still prevalent in the market. In order to expedite the translational potential and to provide medically valuable formulations, the polymersomes need to be biocompatible and biodegradable. In this review, recent developments for biocompatible and biodegradable polymersomes, including the design of intelligent, targeted, and stimuli-responsive vesicles are summarized.

  16. Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine

    Directory of Open Access Journals (Sweden)

    Farahnaz Barahuie

    2014-05-01

    Full Text Available Layered hydroxides (LHs have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.

  17. Water-based preparation of spider silk films as drug delivery matrices.

    Science.gov (United States)

    Agostini, Elisa; Winter, Gerhard; Engert, Julia

    2015-09-10

    The main focus of this work was to obtain a drug delivery matrix characterized by biocompatibility, water insolubility and good mechanical properties. Moreover the preparation process has to be compatible with protein encapsulation and the obtained matrix should be able to sustain release a model protein. Spider silk proteins represent exceptional natural polymers due to their mechanical properties in combination with biocompatibility. As both hydrophobic and slowly biodegrading biopolymers, recombinant spider silk proteins fulfill the required properties for a drug delivery system. In this work, we present the preparation of eADF4(C16) films as drug delivery matrices without the use of any organic solvent. Water-based spider silk films were characterized in terms of protein secondary structure, thermal stability, zeta-potential, solubility, mechanical properties, and water absorption and desorption. Additionally, this study includes an evaluation of their application as a drug delivery system for both small molecular weight drugs and high molecular weight molecules such as proteins. Our investigation focused on possible improvements in the film's mechanical properties including plasticizers in the film matrix. Furthermore, different film designs were prepared, such as: monolayer, coated monolayer, multilayer (sandwich), and coated multilayer. The release of the model protein BSA from these new systems was studied. Results indicated that spider silk films are a promising protein drug delivery matrix, capable of releasing the model protein over 90 days with a release profile close to zero order kinetic. Such films could be used for several pharmaceutical and medical purposes, especially when mechanical strength of a drug eluting matrix is of high importance. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  19. Lipid nanoparticles as drug/gene delivery systems to the retina.

    Science.gov (United States)

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  20. A Touch-Communication Framework for Drug Delivery Based on a Transient Microbot System.

    Science.gov (United States)

    Yifan Chen; Kosmas, Panagiotis; Anwar, Putri Santi; Limin Huang

    2015-06-01

    Recent progress in bioresorbable radio frequency electronics and engineered bacteria has promised the prospect of realizing a transient microbot (TM) system for therapeutic applications. The inorganic or organic miniature robots will dissolve into the human body after completing the required tasks and cause no side-effect. In this paper, we propose a potential architecture of a TM system for transporting pharmaceutical compounds inside the body, and analyze the system using a micro-to-macro cross-scale communication model. The remote controllability and tangibility of a TM essentially lead to a touch-communication (TouchCom) paradigm. Externally maneuverable and trackable TMs are responsible for the delivery of drug particles (information molecules in the TouchCom context). The loading/injection and unloading of the drug correspond to the transmitting and receiving processes in the TouchCom framework. Subsequently, we investigate simulation tools for the propagation and transient characteristics of TMs in the blood vessels. We also define the propagation delay, path loss, as well as angular and delay spectra of targeting intensity, which are parallel to their counterpart concepts in the conventional wireless channel. Finally, our approach is illustrated with comprehensive simulation studies of targeted drug delivery by using the proposed analytical framework integrating robotics and communications at crossover length scales. The proposed methodology may find important applications in the design and analysis of TM-assisted administration of pharmaceutical compounds.

  1. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix.

    Science.gov (United States)

    Guggi, Davide; Kast, Constantia E; Bernkop-Schnürch, Andreas

    2003-12-01

    To develop and evaluate an oral delivery system for salmon calcitonin. 2-Iminothiolane was covalently bound to chitosan in order to improve the mucoadhesive and cohesive properties of the polymer. The resulting chitosan-TBA conjugate (chitosan-4-thiobutylamidine conjugate) was homogenized with salmon calcitonin. mannitol, and a chitosan-Bowman-Birk inhibitor conjugate and a chitosan-elastatinal conjugate (6.75 + 0.25 + 1 + 1 + 1). Optionally 0.5% (m/m) reduced glutathione. used as permeation mediator, was added. Each mixture was compressed to 2 mg microtablets and enteric coated with a polymethacrylate. Biofeedback studies were performed in rats by oral administration of the delivery system and determination of the decrease in plasma calcium level as a function of time. Test formulations led to a significant (p thiolated chitosan, chitosan-enzyme-inhibitor conjugates and the permeation mediator glutathione seems to represent a promising strategy for the oral delivery of salmon calcitonin.

  2. Microcontainers - an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo

    In oral delivery, it can sometimes be necessary to employ drug delivery systems to achieve targeted delivery to the intestine. Microcontainers are polymeric, cylindrical devices in the micrometer size range (Figure 1), and are suggested as a promising oral drug delivery system [1],[2]. The purpose...... of these studies was to fabricate microcontainers in either SU-8 or biodegradable poly-L-lactic acid (PLLA), and fill the microcontainers with poorly soluble drugs. Furthermore, the application of the microcontainers as an oral drug delivery system was investigated in terms of release, in situ intestinal perfusion...... medium at pH 6.5 was observed. In situ intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. At the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. The absorption rate...

  3. Chewing gum and lozenges as delivery systems for noscapine

    DEFF Research Database (Denmark)

    Norgaard Jensen, L.; Christrup, Lona Louring; Menger, N.

    1991-01-01

    Chewing gum and lozenges were evaluated as delivery systems for noscapine with the aim of developing improved antitussive preparations. The formulations studied were prepared with both the water-soluble hydrochloride salt of noscapine and with the poorly soluble embonate salt and noscapine free...... base. The release characteristics of the preparations were evaluated both in vitro and in vivo, and their taste properties examined. Only the formulations containing noscapine base were without any appreciable taste. Chewing gum containing this compound showed, however, a low level of drug release both...

  4. Advanced and controlled drug delivery systems in clinical disease management

    NARCIS (Netherlands)

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative

  5. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  6. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  7. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.

    Science.gov (United States)

    Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor

    2013-12-28

    Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the

  8. From PACS to Web-based ePR system with image distribution for enterprise-level filmless healthcare delivery.

    Science.gov (United States)

    Huang, H K

    2011-07-01

    The concept of PACS (picture archiving and communication system) was initiated in 1982 during the SPIE medical imaging conference in New Port Beach, CA. Since then PACS has been matured to become an everyday clinical tool for image archiving, communication, display, and review. This paper follows the continuous development of PACS technology including Web-based PACS, PACS and ePR (electronic patient record), enterprise PACS to ePR with image distribution (ID). The concept of large-scale Web-based enterprise PACS and ePR with image distribution is presented along with its implementation, clinical deployment, and operation. The Hong Kong Hospital Authority's (HKHA) integration of its home-grown clinical management system (CMS) with PACS and ePR with image distribution is used as a case study. The current concept and design criteria of the HKHA enterprise integration of the CMS, PACS, and ePR-ID for filmless healthcare delivery are discussed, followed by its work-in-progress and current status.

  9. Nebuliser systems for drug delivery in cystic fibrosis.

    Science.gov (United States)

    Daniels, Tracey; Mills, Nicola; Whitaker, Paul

    2013-04-30

    Nebuliser systems are used to deliver medications to control the symptoms and the progression of lung disease in people with cystic fibrosis. Many types of nebuliser systems are available for use with various medications; however, there has been no previous systematic review which has evaluated these systems. To evaluate effectiveness, safety, burden of treatment and adherence to nebulised therapy using different nebuliser systems for people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching of relevant journals and abstract books of conference proceedings. We searched the reference lists of each study for additional publications and approached the manufacturers of both nebuliser systems and nebulised medications for published and unpublished data. Date of the most recent search: 15 Oct 2012. Randomised controlled trials or quasi-randomised controlled trials comparing nebuliser systems including conventional nebulisers, vibrating mesh technology systems, adaptive aerosol delivery systems and ultrasonic nebuliser systems. Two authors independently assessed studies for inclusion. They also independently extracted data and assessed the risk of bias. A third author assessed studies where agreement could not be reached. The search identified 40 studies with 20 of these (1936 participants) included in the review. These studies compared the delivery of tobramycin, colistin, dornase alfa, hypertonic sodium chloride and other solutions through the different nebuliser systems. This review demonstrates variability in the delivery of medication depending on the nebuliser system used. Conventional nebuliser systems providing higher flows, higher respirable fractions and smaller particles decrease treatment time, increase deposition and may be preferred by people with CF, as compared to conventional nebuliser systems providing

  10. Delivery systems and local administration routes for therapeutic siRNA.

    Science.gov (United States)

    Vicentini, Fabiana Testa Moura de Carvalho; Borgheti-Cardoso, Lívia Neves; Depieri, Lívia Vieira; de Macedo Mano, Danielle; Abelha, Thais Fedatto; Petrilli, Raquel; Bentley, Maria Vitória Lopes Badra

    2013-04-01

    With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.

  11. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays

    OpenAIRE

    Maaden, van der, Koen; Lüttge, R Regina; Vos, PJW; Bouwstra, Joke A; Kersten, Gideon FA; Ploemen, IHJ Ingmar

    2015-01-01

    In the literature, several types of microneedles have been extensively described. However, porous microneedle arrays only received minimal attention. Hence, only little is known about drug delivery via these microneedles. However, porous microneedle arrays may have potential for future microneedle-based drug and vaccine delivery and could be a valuable addition to the other microneedle-based drug delivery approaches. To gain more insight into porous microneedle technologies, the scientific an...

  12. Radiolabelling of potential colonic delivery systems by neutron activation. An evaluation based on physiochemical properties of excipients and formulations

    International Nuclear Information System (INIS)

    Ahrabi, Sayeh

    1999-01-01

    The effects of neutron irradiation on the physicochemical properties of some potential release-controlling excipients for oral delivery to colon (based on microbially degradable polysaccharide or a combination of pH- and time-dependent mechanisms) were initially investigated. The aim was to choose the most irradiation-resistant ones for the development of a colonic delivery system to be radiolabelled by the neutron activation procedure. However, no correlation between the extent of irradiation-induced changes of the release-controlling polymers and the in vitro properties of the final formulation was observed. Incorporation of samarium oxide (Sm 2 O 3 ) resulted in retardation of the drug release through the diffusion layer. The influence of neutron activation factors on the properties of some suppository combinations was also studied. The effect of the admixture of Sm 2 O 3 on the dissolution and disintegration of the suppositories was more profound than the effect of neutron irradiation. In hydrophilic suppositories, the effect of Sm 2 O 3 was dependent on the type, amount and the physicochemical characteristics of the incorporated drug. In lipophilic suppositories, the release-controlling effect of Sm 2 O 3 was hypothesised to be due to its insoluble micronised particles blocking the drug diffusion layer. The neutron activation procedure could be utilised for radiolabelling potential oral and rectal colonic drug delivery systems. However, to avoid alteration in the crucial in vitro characteristics of the formulations, the amount, the particle size and the aggregated particle characteristics of the lanthanide salt (e.g. Sm 2 O 3 or samarium stearate) together with the neutron irradiation dose should be controlled precisely for each dosage system. For the systems investigated in this work the release-controlling mechanism of the dosage form seems to be a key parameter to predict the extent of the influence of neutron activation factors on the in vitro properties

  13. Spray-on transdermal drug delivery systems.

    Science.gov (United States)

    Ibrahim, Sarah A

    2015-02-01

    Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.

  14. Otic drug delivery systems: formulation principles and recent developments.

    Science.gov (United States)

    Liu, Xu; Li, Mingshuang; Smyth, Hugh; Zhang, Feng

    2018-04-25

    Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.

  15. Safety design integrated in the building delivery system

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2013-01-01

    . The purpose of this article is to demonstrate how safety and health can be integrated in the design phases integrated in the management delivery systems within construction, The method for the research was to go through the building delivery system step by step and create a normative description of what, when......In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...... and how to fully integrate safety in each part of the process. The result is a concept and guideline including control forms for how to integrate safety design in the Building Delivery System plus what to do and when. The concept has been tested in an educational context. The practical value...

  16. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    Science.gov (United States)

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time intervals from 0.5 to 96 hours in cornea, sclera, and conjunctiva and at six time intervals from 0.5 to 12 hours in aqueous. Two peak concentrations were noted at approximately one and eight hours, with measurable levels present at 96 hours. This study demonstrates the ability of this liposomal delivery system to prolong levels of 5-fluorouracial in normal pigmented rabbits. PMID:3179257

  17. Safety design integrated in the Building Delivery System

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2012-01-01

    phases of the building delivery system by using the principle of the lean construction modelling. The method for the research was to go through the lean construction building delivery system step by step and create a normative description of what to do, when to do and how to do to fully integration...... of safety in each process. The group of participants who created the description had a high experience in a combination of research, safety and health in general and especial in construction and knowledge of the lean construction processes both from the clients perspective as well as from the designers...... and the consultants. The result is a concept and guideline including control schemes for how to integrate safety design in the lean construction building delivery system including what to do and when. The concept has been tested in an educational context and found useful by the designers. The practical value...

  18. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  19. Mechanical valve assembly for xenon 133 gas delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Round, W.H. (Royal Brisbane Hospital, Herston (Australia))

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply /sup 133/Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced /sup 133/Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients.

  20. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    Science.gov (United States)

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A remotely operated drug delivery system with dose control

    KAUST Repository

    Yi, Ying

    2017-05-08

    “On demand” implantable drug delivery systems can provide optimized treatments, due to their ability to provide targeted, flexible and precise dose release. However, two important issues that need to be carefully considered in a mature device include an effective actuation stimulus and a controllable dose release mechanism. This work focuses on remotely powering an implantable drug delivery system and providing a high degree of control over the released dose. This is accomplished by integration of a resonance-based wireless power transfer system, a constant voltage control circuit and an electrolytic pump. Upon the activation of the wireless power transfer system, the electrolytic actuator is remotely powered by a constant voltage regardless of movements of the device within an effective range of translation and rotation. This in turn contributes to a predictable dose release rate and greater flexibility in the positioning of external powering source. We have conducted proof-of-concept drug delivery studies using the liquid drug in reservoir approach and the solid drug in reservoir approach, respectively. Our experimental results demonstrate that the range of flow rate is mainly determined by the voltage controlled with a Zener diode and the resistance of the implantable device. The latter can be adjusted by connecting different resistors, providing control over the flow rate to meet different clinical needs. The flow rate can be maintained at a constant level within the effective movement range. When using a solid drug substitute with a low solubility, solvent blue 38, the dose release can be kept at 2.36μg/cycle within the effective movement range by using an input voltage of 10Vpp and a load of 1.5 kΩ, which indicates the feasibility and controllability of our system without any complicated closed-loop sensor.

  2. Drug delivery system and radiation therapy

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2005-01-01

    This paper describes the review of radiation therapy, neutron capture therapy (NCT) and drug delivery system for the latter. In cancer radiation therapy, there are problems of body movement like breathing, needless irradiation of normal tissues, difficulty to decide the correct irradiation position and tumor morphology. NCT has advantages to overcome these, and since boron has a big cross section for thermal neutron, NPT uses the reaction 10 B(n, α) 7 Li in the target cancer which previously incorporated the boron-containing drug. During the period 1966-1996, 246 patients were treated with this in Japan and the treatment has been continued thereafter. The tasks for NCT are developments of drug delivery system efficient to deliver the drug into the tumor and of convenient neutron source like the accelerator. (S.I.)

  3. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng, E-mail: cpufengc@163.com [China Pharmaceutical University, Department of Pharmaceutics, School of Pharmacy (China)

    2015-12-15

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC{sub 0–6h} values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes.

  4. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    International Nuclear Information System (INIS)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng

    2015-01-01

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC 0–6h values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes

  5. Delivery Systems for Birch-Bark Triterpenoids and Their Derivatives in Anticancer Research.

    Science.gov (United States)

    Mierina, Inese; Vilskersts, Reinis; Turks, Maris

    2018-05-29

    Birch-bark triterpenoids and their semi-synthetic derivatives possess a wide range of biological activities including cytotoxic effects on various tumour cell lines. However, due to the low solubility and bioavailability, their medicinal applications are rather limited. The use of various nanotechnology-based drug delivery systems is rapidly developing approach to the solubilisation of insufficiently bioavailable pharmaceuticals. Herein, the drug delivery systems deemed to be applicable for birch-bark triterpenoid structures are reviewed. The aforementioned disadvantages of birch-bark triterpenoids and their semi-synthetic derivatives can be overcome through their incorporation into organic nanoparticles, which include various dendrimeric systems, as well as embedding the active compounds into polymer matrices or complexation with carbohydrate nanoparticles without covalent bonding. Some of the known triterpenoid delivery systems consist of nanoparticles featuring inorganic cores covered with carbohydrates or other polymers. Methods for delivering the title compounds through encapsulation and emulsification into lipophilic media are also suitable. Besides, the birch-bark triterpenoids can form self-assembling systems with increased bio-availability. Even more, the self-assembling systems are used as carriers for delivering other chemotherapeutic agents. Another advantage besides increased bioavailability and anticancer activity is the reduced overall systemic toxicity in most of the cases, when triterpenoids are delivered with any of the carriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Description and Documentation of the Dental School Dental Delivery System.

    Science.gov (United States)

    Chase, Rosen and Wallace, Inc., Alexandria, VA.

    A study was undertaken to describe and document the dental school dental delivery system using an integrated systems approach. In late 1976 and early 1977, a team of systems analysts and dental consultants visited three dental schools to observe the delivery of dental services and patient flow and to interview administrative staff and faculty.…

  7. Pharmacokinetic characteristics of formulated alendronate transdermal delivery systems in rats and humans.

    Science.gov (United States)

    Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun

    2010-05-01

    The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.

  8. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    OpenAIRE

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time interva...

  9. Cyclodextrins in delivery systems: Applications

    Directory of Open Access Journals (Sweden)

    Gaurav Tiwari

    2010-01-01

    Full Text Available Cyclodextrins (CDs are a family of cyclic oligosaccharides with a hydrophilic outer surface and a lipophilic central cavity. CD molecules are relatively large with a number of hydrogen donors and acceptors and, thus in general, they do not permeate lipophilic membranes. In the pharmaceutical industry, CDs have mainly been used as complexing agents to increase aqueous solubility of poorly soluble drugs and to increase their bioavailability and stability. CDs are used in pharmaceutical applications for numerous purposes, including improving the bioavailability of drugs. Current CD-based therapeutics is described and possible future applications are discussed. CD-containing polymers are reviewed and their use in drug delivery is presented. Of specific interest is the use of CD-containing polymers to provide unique capabilities for the delivery of nucleic acids. Studies in both humans and animals have shown that CDs can be used to improve drug delivery from almost any type of drug formulation. Currently, there are approximately 30 different pharmaceutical products worldwide containing drug/CD complexes in the market.

  10. Harnessing the capacity of cell-penetrating peptides for drug delivery to the central nervous system.

    Science.gov (United States)

    Kang, Ting; Gao, Xiaoling; Chen, Jun

    2014-01-01

    The existence of blood-brain barrier (BBB) represents the most formidable challenge for drug delivery to the central nervous system (CNS). Modern breakthrough in biology offers multiple choices for overcoming this barrier but yields modest outcomes for clinical application due to various problems such as safety concerns, insufficient delivery efficiency and poor penetration. Cell penetrating peptides (CPPs) possessing powerful transmembrane capacity have been shown to be effective transport vectors for bioactive molecules and an attractive alternative to traditional active targeting approaches. However, the non-specificity of CPPs has hindered them from targeting a desired site of action. Promisingly, design of novel CPP-mediated nanoparticulate delivery systems with specific targeting property may extricate CPPs from the dilemma. In this review, both the traditional and novel applications of CPPs-based strategies for CNS drug delivery will be discussed.

  11. Design challenges in nanoparticle-based platforms: Implications for targeted drug delivery systems

    Science.gov (United States)

    Mullen, Douglas Gurnett

    Characterization and control of heterogeneous distributions of nanoparticle-ligand components are major design challenges for nanoparticle-based platforms. This dissertation begins with an examination of poly(amidoamine) (PAMAM) dendrimer-based targeted delivery platform. A folic acid targeted modular platform was developed to target human epithelial cancer cells. Although active targeting was observed in vitro, active targeting was not found in vivo using a mouse tumor model. A major flaw of this platform design was that it did not provide for characterization or control of the component distribution. Motivated by the problems experienced with the modular design, the actual composition of nanoparticle-ligand distributions were examined using a model dendrimer-ligand system. High Pressure Liquid Chromatography (HPLC) resolved the distribution of components in samples with mean ligand/dendrimer ratios ranging from 0.4 to 13. A peak fitting analysis enabled the quantification of the component distribution. Quantified distributions were found to be significantly more heterogeneous than commonly expected and standard analytical parameters, namely the mean ligand/nanoparticle ratio, failed to adequately represent the component heterogeneity. The distribution of components was also found to be sensitive to particle modifications that preceded the ligand conjugation. With the knowledge gained from this detailed distribution analysis, a new platform design was developed to provide a system with dramatically improved control over the number of components and with improved batch reproducibility. Using semi-preparative HPLC, individual dendrimer-ligand components were isolated. The isolated dendrimer with precise numbers of ligands were characterized by NMR and analytical HPLC. In total, nine different dendrimer-ligand components were obtained with degrees of purity ≥80%. This system has the potential to serve as a platform to which a precise number of functional molecules

  12. Mucoadhesive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Rahamatullah Shaikh

    2011-01-01

    Full Text Available Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal.

  13. Nanocomposites chitosan/montmorillonite for drug delivery system

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    In drugs delivery system the incorporation of an inorganic nanophase in polymer matrix, i.e. production of an inorganic-organic nanocomposite is an attractive alternative to obtain a constant release rate for a prolonged time. This study was performed to obtain films of nanocomposites Chitosan/montmorillonite intercalation by the technique of solution in the proportions of 1:1, 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for drugs delivery system. (author)

  14. Production Functions for Water Delivery Systems: Analysis and Estimation Using Dual Cost Function and Implicit Price Specifications

    Science.gov (United States)

    Teeples, Ronald; Glyer, David

    1987-05-01

    Both policy and technical analysis of water delivery systems have been based on cost functions that are inconsistent with or are incomplete representations of the neoclassical production functions of economics. We present a full-featured production function model of water delivery which can be estimated from a multiproduct, dual cost function. The model features implicit prices for own-water inputs and is implemented as a jointly estimated system of input share equations and a translog cost function. Likelihood ratio tests are performed showing that a minimally constrained, full-featured production function is a necessary specification of the water delivery operations in our sample. This, plus the model's highly efficient and economically correct parameter estimates, confirms the usefulness of a production function approach to modeling the economic activities of water delivery systems.

  15. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.

    Science.gov (United States)

    Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P

    2017-12-01

    The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles

    Directory of Open Access Journals (Sweden)

    Dhanasooraj D

    2013-02-01

    Full Text Available Dhananjayan Dhanasooraj, R Ajay Kumar, Sathish MundayoorMycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Kerala, IndiaAbstract: Nano-sized hepatitis B virus core virus-like particles (HBc-VLP are suitable for uptake by antigen-presenting cells. Mycobacterium tuberculosis antigen culture filtrate protein 10 (CFP-10 is an important vaccine candidate against tuberculosis. The purified antigen shows low immune response without adjuvant and tends to have low protective efficacy. The present study is based on the assumption that expression of these proteins on HBc nanoparticles would provide higher protection when compared to the native antigen alone. The cfp-10 gene was expressed as a fusion on the major immunodominant region of HBc-VLP, and the immune response in Balb/c mice was studied and compared to pure proteins, a mixture of antigens, and fusion protein-VLP, all without using any adjuvant. The humoral, cytokine, and splenocyte cell proliferation responses suggested that the HBc-VLP bearing CFP-10 generated an antigen-specific immune response in a Th1-dependent manner. By virtue of its self-adjuvant nature and ability to form nano-sized particles, HBc-VLPs are an excellent vaccine delivery system for use with subunit protein antigens identified in the course of recent vaccine research.Keywords: Mycobacterium tuberculosis, VLP, hepatitis B virus core particle, CFP-10, self-adjuvant, vaccine delivery

  17. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays.

    Science.gov (United States)

    van der Maaden, Koen; Luttge, Regina; Vos, Pieter Jan; Bouwstra, Joke; Kersten, Gideon; Ploemen, Ivo

    2015-08-01

    In the literature, several types of microneedles have been extensively described. However, porous microneedle arrays only received minimal attention. Hence, only little is known about drug delivery via these microneedles. However, porous microneedle arrays may have potential for future microneedle-based drug and vaccine delivery and could be a valuable addition to the other microneedle-based drug delivery approaches. To gain more insight into porous microneedle technologies, the scientific and patent literature is reviewed, and we focus on the possibilities and constraints of porous microneedle technologies for dermal drug delivery. Furthermore, we show preliminary data with commercially available porous microneedles and describe future directions in this field of research.

  18. Communication Between Devices in the Viola Document Delivery System

    Directory of Open Access Journals (Sweden)

    Theodor Tolstoy

    2015-01-01

    Full Text Available Viola is a newly developed document delivery system that handles incoming and outgoing requests for printed books, articles, sharing electronic resources, and other document delivery services on the local level in a library organisation. An important part of Viola is the stack fetching Android application that enables librarians to collect books in the open and closed stacks in an efficient manner using a smartphone and a Bluetooth connected portable printer. The aim of this article is to show how information is transferred between systems and devices in Viola. The article presents code examples from Viola that use current .NET technologies. The examples span from the creation of high-level REST-based JSON APIs to byte array communication with a Bluetooth connected printer and the reading of RFID tags. Please note that code examples in this article are for illustration purposes only. Null checking and other exception handling has been removed for clarity. Code that is separated in Viola for testability and other reasons has been brought together to make it more readable.

  19. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application.

    Science.gov (United States)

    Aditya, N P; Espinosa, Yadira Gonzalez; Norton, Ian T

    2017-07-01

    Increased health risk associated with the sedentary life style is forcing the food manufacturers to look for food products with specific or general health benefits e.g. beverages enriched with nutraceuticals like catechin, curcumin rutin. Compounds like polyphenols, flavonoids, vitamins are the good choice of bioactive compounds that can be used to fortify the food products to enhance their functionality. However due to low stability and bioavailability of these bioactives (both hydrophobic and hydrophilic) within the heterogeneous food microstructure and in the Gastro Intestinal Tract (GIT), it becomes extremely difficult to pass on the real health benefits to the consumers. Recent developments in the application of nano-delivery systems for food product development is proving to be a game changer which has raised the expectations of the researchers, food manufacturers and consumers regarding possibility of enhancing the functionality of bioactives within the fortified food products. In this direction, nano/micro delivery systems using lipids, surfactants and other materials (carbohydrates, polymers, complexes, protein) have been fabricated to stabilize and enhance the biological activity of the bioactive compounds. In the present review, current status of the various delivery systems that are used for the delivery of hydrophilic bioactives and future prospects for using other delivery systems that have been not completely explored for the delivery of hydrophilic bioactives e.g. niosomes; bilosomes, cubosomes are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Recent advances in mechanism-based chemotherapy drug-siRNA pairs in co-delivery systems for cancer: A review.

    Science.gov (United States)

    Wang, Mingfang; Wang, Jinyu; Li, Bingcheng; Meng, Lingxin; Tian, Zhaoxing

    2017-09-01

    Co-delivery of chemotherapy drugs and siRNA for cancer therapy has achieved remarkable results according to synergistic/combined antitumor effects, and is recognized as a promising therapeutic modality. However, little attention has been paid to the extremely complex mechanisms of chemotherapy drug-siRNA pairs during co-delivery process. Proper selection of chemotherapy drug-siRNA pairs is beneficial for achieving desirable cancer therapeutic effects. Exploring the inherent principles during chemotherapy drug-siRNA pair selection for co-delivery would greatly enhanced therapeutic efficiency. To achieve ideal results, this article will systematically review current different mechanism-based chemotherapy drug-siRNA pairs for co-delivery in cancer treatment. Large-scale library screening of recent different chemotherapy drug-siRNA pairs for co-delivery would help to establish the chemotherapy drug-siRNA pair selection principle, which could pave the way for co-delivery of chemotherapy drugs and siRNA for cancer treatment in clinic. Following the inherent principle of chemotherapy drug-siRNA pair, more effective co-delivery vectors can be designed in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Excimer laser beam delivery systems for medical applications

    Science.gov (United States)

    Kubo, Uichi; Hashishin, Yuichi; Okada, Kazuyuki; Tanaka, Hiroyuki

    1993-05-01

    We have been doing the basic experiments of UV laser beams and biotissue interaction with both KrF and XeCl lasers. However, the conventional optical fiber can not be available for power UV beams. So we have been investigating about UV power beam delivery systems. These experiments carry on with the same elements doped quartz fibers and the hollow tube. The doped elements are OH ion, chlorine and fluorine. In our latest work, we have tried ArF excimer laser and biotissue interactions, and the beam delivery experiments. From our experimental results, we found that the ArF laser beam has high incision ability for hard biotissue. For example, in the case of the cow's bone incision, the incision depth by ArF laser was ca.15 times of KrF laser. Therefore, ArF laser would be expected to harden biotissue therapy as non-thermal method. However, its beam delivery is difficult to work in this time. We will develop ArF laser beam delivery systems.

  2. Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has been tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.

  3. Chrono pharmacotherapy: A pulsatile Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huma Hameed

    2015-01-01

    Full Text Available Chronopharmacotherapy refers to a treatment in which controlled drug delivery is achieved according to circadian rhythms of disease by enhancing therapeutic outcomes and minimizing side effects. Colon targeting has gained great importance not only for the treatment of local diseases such as Crohn’s disease, inflammatory bowel disease and ulcerative colitis but also very important in systemic delivery of proteins/peptides, antiasthmatic drugs, antidiabetic agents and antihypertensive drugs, which mostly show their efficacy based on circadian rhythms of the body.Colon drug delivery is one of the difficult approaches to achieve the targeted and desired outcomes through pulsatile drug delivery by avoiding dose dumping.The main reasonbehind the use of pulsatile delivery is provision ofconstant drug release where a zero-order release is notpreferred. Chronopharmacotherapy in colon targeting play its role bymany systems such ascapsular systems, pulsatile system and osmotic systems, which are based on use of rupturable membranes and biodegradable polymers.The objective of this review article is to provide latest knowledge about drugs with chrono-pharmacological behavior entails night time dosing specially to the colon.

  4. Applications of nanoparticle systems in drug delivery technology

    Directory of Open Access Journals (Sweden)

    Syed A.A. Rizvi

    2018-01-01

    Full Text Available The development of nanoparticle-based drug formulations has yielded the opportunities to address and treat challenging diseases. Nanoparticles vary in size but are generally ranging from 100 to 500 nm. Through the manipulation of size, surface characteristics and material used, the nanoparticles can be developed into smart systems, encasing therapeutic and imaging agents as well as bearing stealth property. Further, these systems can deliver drug to specific tissues and provide controlled release therapy. This targeted and sustained drug delivery decreases the drug related toxicity and increase patient’s compliance with less frequent dosing. Nanotechnology has proven beneficial in the treatment of cancer, AIDS and many other disease, also providing advancement in diagnostic testing.

  5. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles.

    Science.gov (United States)

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.

  6. Self-regulating insulin delivery systems I. Synthesis and characterization of glycosylated insulin

    NARCIS (Netherlands)

    Jeong, Seo Young; Kim, Sung Wan; Eenink, Martinus J.D.; Feijen, Jan

    1984-01-01

    A design for a self-regulating insulin delivery system based on the competitive binding of glucose and glycosylated insulin to the lectin Concanavalin A is proposed. A differnt approach to diabetes therapy is the attempt to effect a permanent cure of the disease by supplementing the patient's

  7. Gene delivery systems by the combination of lipid bubbles and ultrasound.

    Science.gov (United States)

    Negishi, Yoichi; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2016-11-28

    Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.

  8. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications

    Directory of Open Access Journals (Sweden)

    Ranganathan R

    2012-02-01

    Full Text Available Ramya Ranganathan1,*, Shruthilaya Madanmohan1,*, Akila Kesavan1, Ganga Baskar1, Yoganathan Ramia Krishnamoorthy2, Roy Santosham3, D Ponraju4, Suresh Kumar Rayala2, Ganesh Venkatraman1 1Department of Human Genetics, Sri Ramachandra University, Porur, 2Department of Biotechnology, Indian Institute of Technology, Madras, 3Department of Radiology and Imaging Sciences, Sri Ramachandra University, Porur, Chennai, 4Safety Engineering Division, Nuclear and Engineering Safety Group, Indira Gandhi Center for Atomic Research, Kalpakkam, India*Authors contributed equally to this workAbstract: The focus on nanotechnology in cancer treatment and diagnosis has intensified due to the serious side effects caused by anticancer agents as a result of their cytotoxic actions on normal cells. This nonspecific action of chemotherapy has awakened a need for formulations capable of definitive targeting with enhanced tumor-killing. Nanooncology, the application of nanobiotechnology to the management of cancer, is currently the most important area of nanomedicine. Currently several nanomaterial-based drug-delivery systems are in vogue and several others are in various stages of development. Tumor-targeted drug-delivery systems are envisioned as magic bullets for cancer therapy and several groups are working globally for development of robust systems.Keywords: patient-friendly, drug-delivery systems, cancer, nanomedicine

  9. Towards increased selectivity of drug delivery to cancer cells: development of a LDL-based nanodelivery system for hydrophobic photosensitizers

    Science.gov (United States)

    Buzova, Diana; Huntosova, Veronika; Kasak, Peter; Petrovajova, Dana; Joniova, Jaroslava; Dzurova, Lenka; Nadova, Zuzana; Sureau, Franck; Midkovsky, Pavol; Jancura, Daniel

    2012-10-01

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic photosensitizers (pts) to tumor cells in photodynamic therapy (PDT) of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by polyethylene glycol (PEG) and dextran. Fluorescence spectroscopy and confocal fluorescence imaging were used to characterize redistribution of hypericin (Hyp), a natural potent pts, loaded in LDL/PEG and LDL/dextran complexes to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It was shown than the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. On the other hand, PEG does not significantly influence this process. The modification of LDL molecules by the polymers does not inhibit their recognition by cellular LDL receptors. U-87 MG cellular uptake of Hyp loaded in LDL/PEG and LDL/dextran complexes appears to be similar to that one observed for Hyp transported by unmodified LDL particles. It is proposed that by polymers modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic drugs to cancer cells expressing high level of LDL receptors.

  10. Nanoparticulate systems for nucleic acid delivery

    NARCIS (Netherlands)

    Varkouhi, A.K.

    2011-01-01

    Development of carrier systems with controllable physicochemical and delivery properties has opened up the possibility of nanomedicines containing nucleic acids. In the last decades, much effort has been dedicated to two exciting approaches in biomedicine, namely gene and RNA interference

  11. Economic and Environmental Evaluation of a Brick Delivery System Based on Multi-Trip Vehicle Loader Routing Problem for Small Construction Sites

    Directory of Open Access Journals (Sweden)

    Heungjo An

    2018-05-01

    Full Text Available While large construction sites have on-site loaders to handle heavy and large packages of bricks, small brick manufacturers employ a truck-mounted loader or sometimes deploy a loader truck to accompany normal brick delivery trucks to small construction sites lacking on-site loaders. It may be very challenging for small contractors to manage a sustainable delivery system that is both cost-effective and environmentally friendly. To address this issue, this paper proposes to solve a multi-trip vehicle loader routing problem by uniquely planning routes and schedules of several types of vehicles considering their synchronized operations at customer sites and multi trips. This paper also evaluates the sustainability of the developed model from both economic and environmental perspectives. Case studies based on small construction sites in the Middle East demonstrate applications of the proposed model to make the most economical plans for delivering bricks. Compared to the single-trip vehicle loader routing problem, the proposed model reduces, on average, 18.7% of the total delivery cost while increasing CO2 emission negligibly. The economic benefit is mainly achieved by reducing the required number of vehicles. Brick plant managers can use the proposed mathematical model to plan the most cost-effective delivery schedules sustainably while minimizing negative environmental effects.

  12. Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide: Syntheses, Structural Characterizations and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yue Zheng

    2016-05-01

    Full Text Available Cyclodextrins (CDs have been extensively studied as drug delivery carriers through host–guest interactions. CD-based poly(pseudorotaxanes, which are composed of one or more CD rings threading on the polymer chain with or without bulky groups (or stoppers, have attracted great interest in the development of supramolecular biomaterials. Poly(ethylene oxide (PEO is a water-soluble, biocompatible polymer. Depending on the molecular weight, PEO can be used as a plasticizer or as a toughening agent. Moreover, the hydrogels of PEO are also extensively studied because of their outstanding characteristics in biological drug delivery systems. These biomaterials based on CD and PEO for controlled drug delivery have received increasing attention in recent years. In this review, we summarize the recent progress in supramolecular architectures, focusing on poly(pseudorotaxanes, vesicles and supramolecular hydrogels based on CDs and PEO for drug delivery. Particular focus will be devoted to the structures and properties of supramolecular copolymers based on these materials as well as their use for the design and synthesis of supramolecular hydrogels. Moreover, the various applications of drug delivery techniques such as drug absorption, controlled release and drug targeting based CD/PEO supramolecular complexes, are also discussed.

  13. Patient-centredness in integrated healthcare delivery systems - needs, expectations and priorities for organised healthcare systems.

    Science.gov (United States)

    Juhnke, Christin; Mühlbacher, Axel C

    2013-01-01

    Patient-centred healthcare is becoming a more significant success factor in the design of integrated healthcare systems. The objective of this study is to structure a patient-relevant hierarchy of needs and expectations for the design of organised healthcare delivery systems. A questionnaire with 84 items was conducted with N = 254 healthcare experts and N = 670 patients. Factor analyses were performed using SPSS©18. The number of factors retained was controlled by Kaiser's criterion, validation of screeplots and interpretability of the items. Cronbach's α was used to assess the internal consistency of the subscales. Exploratory factor analysis led to 24 factors in the expert sample and 20 in the patient sample. After analysing the screeplots, confirmatory factor analyses were computed for 7-factor solutions accounting for 42.963% of the total variance and Kaiser-Meyer-Olkin of 0.914 for the patients (experts: 38.427%, Kaiser-Meyer-Olkin = 0.797). Cronbach's α ranged between 0.899 and 0.756. Based on the analysis, coordinated care could be differentiated into seven dimensions: access, data and information, service and infrastructure, professional care, interpersonal care, individualised care, continuity and coordination. The study provides insight into patient and experts expectations towards the organisation of integrated healthcare delivery systems. If providers and payers can take into account patient needs and expectations while implementing innovative healthcare delivery systems, greater acceptance and satisfaction will be achieved. In the best case, this will lead to better adherence resulting in better clinical outcomes.

  14. Delivery arrangements for health systems in low-income countries: an overview of systematic reviews

    Science.gov (United States)

    Ciapponi, Agustín; Lewin, Simon; Herrera, Cristian A; Opiyo, Newton; Pantoja, Tomas; Paulsen, Elizabeth; Rada, Gabriel; Wiysonge, Charles S; Bastías, Gabriel; Dudley, Lilian; Flottorp, Signe; Gagnon, Marie-Pierre; Garcia Marti, Sebastian; Glenton, Claire; Okwundu, Charles I; Peñaloza, Blanca; Suleman, Fatima; Oxman, Andrew D

    2017-01-01

    . Information and communication technology: mobile phone messaging for patients with long-term illnesses, mobile phone messaging reminders for attendance at healthcare appointments, mobile phone messaging to promote adherence to antiretroviral therapy, women carrying their own case notes in pregnancy, interventions to improve childhood vaccination. Quality and safety systems: decision support with clinical information systems for people living with HIV/AIDS. Complex interventions (cutting across delivery categories and other health system arrangements): emergency obstetric referral interventions. Authors' conclusions A wide range of strategies have been evaluated for improving delivery arrangements in low-income countries, using sound systematic review methods in both Cochrane and non-Cochrane reviews. These reviews have assessed a range of outcomes. Most of the available evidence focuses on who provides care, where care is provided and coordination of care. For all the main categories of delivery arrangements, we identified gaps in primary research related to uncertainty about the applicability of the evidence to low-income countries, low- or very low-certainty evidence or a lack of studies. Effects of delivery arrangements for health systems in low-income countries What is the aim of this overview? The aim of this Cochrane Overview is to provide a broad summary of what is known about the effects of delivery arrangements for health systems in low-income countries. This overview is based on 51 systematic reviews. These systematic reviews searched for studies that evaluated different types of delivery arrangements. The reviews included a total of 850 studies. This overview is one of a series of four Cochrane Overviews that evaluate health system arrangements. What was studied in the overview? Delivery arrangements include changes in who receives care and when, who provides care, the working conditions of those who provide care, coordination of care amongst different health care

  15. A framework for the organization and delivery of systemic treatment.

    Science.gov (United States)

    Vandenberg, T; Coakley, N; Nayler, J; Degrasse, C; Green, E; Mackay, J A; McLennan, C; Smith, A; Wilcock, L; Trudeau, M E

    2009-01-01

    Increasing systemic treatment and shortages of oncology professionals in Canada require innovative approaches to the safe and effective delivery of intravenous (IV) cancer treatment. We conducted a systematic review of the clinical and scientific literature, and an environmental scan of models in Canada, the United Kingdom, Australia, and New Zealand. We then developed a framework for the organization and delivery of IV systemic treatment. The systematic review covered the medline, embase, cinahl, and HealthStar databases. The environmental scan retrieved published and unpublished sources, coupled with a free key word search using the Google search engine. The Systemic Treatment Working Group reviewed the evidence and developed a draft framework using evidence-based analysis, existing recommendations from various jurisdictions, and expert opinion based on experience and consensus. The draft was assessed by Ontario stakeholders and reviewed and approved by Cancer Care Ontario. The poor quantity and quality of the evidence necessitated a consensus-derived model. That model comprises four levels of care determined by a regional systemic treatment program and three integrated structures (integrated cancer programs, affiliate institutions, and satellite institutions), each with a defined scope of practice and a specific organizational framework. New models of care are urgently required beyond large centres, particularly in geographically remote or rural areas. Despite limited applicable evidence, the development and successful implementation of this framework is intended to create sustainable, accessible, quality care and to measurably improve patient outcomes.

  16. LOGISTIC SYSTEM OF LOAD DELIVERY AND QUALITY OF ITS OPERATION

    Directory of Open Access Journals (Sweden)

    O. G. Drozdovskaya

    2006-01-01

    Full Text Available The paper considers an opportunity for obtaining a competitive advantage by a transport and dispatch service company in the market of transport services while establishing a logistic system of load delivery. A model of delivery system, an universal scheme of system designing for every specific case are presented and also indices for evaluation of its operational quality are proposed in the paper.

  17. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Anupama Shrivastav

    2013-01-01

    Full Text Available Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system.

  18. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system.

    Science.gov (United States)

    Gagliardi, Agnese; Paolino, Donatella; Iannone, Michelangelo; Palma, Ernesto; Fresta, Massimo; Cosco, Donato

    2018-01-01

    The use of biopolymers is increasing in drug delivery, thanks to the peculiar properties of these compounds such as their biodegradability, availability, and the possibility of modulating their physico-chemical characteristics. In particular, protein-based systems such as albumin are able to interact with many active compounds, modulating their biopharmaceutical properties. Zein is a protein of 20-40 kDa made up of many hydrophobic amino acids, generally regarded as safe (GRAS) and used as a coating material. In this investigation, zein was combined with various surfactants in order to obtain stable nanosystems by means of the nanoprecipitation technique. Specific parameters, eg, temperature, pH value, Turbiscan Stability Index, serum stability, in vitro cytotoxicity and entrapment efficiency of various model compounds were investigated, in order to identify the nanoformulation most useful for a systemic drug delivery application. The use of non-ionic and ionic surfactants such as Tween 80, poloxamer 188, and sodium deoxycholate allowed us to obtain nanoparticles characterized by a mean diameter of 100-200 nm when a protein concentration of 2 mg/mL was used. The surface charge was modulated by means of the protein concentration and the nature of the stabilizer. The most suitable nanoparticle formulation to be proposed as a colloidal drug delivery system was obtained using sodium deoxycholate (1.25% w/v) because it was characterized by a narrow size distribution, a good storage stability after freeze-drying and significant feature of retaining lipophilic and hydrophilic compounds. The sodium deoxycholate-coated zein nanoparticles are stable biocompatible colloidal carriers to be used as useful drug delivery systems.

  19. TH-C-BRC-03: Emerging Linac Based SRS/SBRT Technologies with Modulated Arc Delivery

    International Nuclear Information System (INIS)

    Ren, L.

    2016-01-01

    The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioning capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to

  20. TH-C-BRC-03: Emerging Linac Based SRS/SBRT Technologies with Modulated Arc Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ren, L. [Duke University Medical Center (United States)

    2016-06-15

    The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioning capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to

  1. Distance Learning Delivery Systems: Instructional Options.

    Science.gov (United States)

    Steele, Ray L.

    1993-01-01

    Discusses the availability of satellite and cable programing to provide distance education opportunities in school districts. Various delivery systems are described, including telephones with speakers, personal computers, and satellite dishes; and a sidebar provides a directory of distance learning opportunities, including telecommunications…

  2. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    KAUST Repository

    Deng, Lin

    2012-01-01

    Tumor targetability and stimuli responsivity of drug delivery systems (DDS) are key factors in cancer therapy. Implementation of multifunctional DDS can afford targetability and responsivity at the same time. Herein, cholesterol molecules (Ch) were coupled to hyaluronic acid (HA) backbones to afford amphiphilic conjugates that can self-assemble into stable micelles. Doxorubicin (DOX), an anticancer drug, and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), magnetic resonance imaging (MRI) contrast agents, were encapsulated by Ch-HA micelles and were selectively released in the presence of hyaluronidase (Hyals) enzyme. Cytotoxicity and cell uptake studies were done using three cancer cell lines (HeLa, HepG2 and MCF7) and one normal cell line (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  3. Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, Mona [Department of Biomedical Engineering, Amirkabir University of Technology, P.O. Box: 15875/4413, Tehran 159163/4311 (Iran, Islamic Republic of); Nazarpak, Masoumeh Haghbin, E-mail: haghbin@aut.ac.ir [New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Solouk, Atefeh [Department of Biomedical Engineering, Amirkabir University of Technology, P.O. Box: 15875/4413, Tehran 159163/4311 (Iran, Islamic Republic of); Akbari, Somaye [Department of Textile Engineering, Amirkabir University of Technology, P.O. Box: 15875/4413, Tehran 15916/34311 (Iran, Islamic Republic of); Hasani-Sadrabadi, Mohammad Mahdi [Parker H. Petit Institute for Bioengineering and Bioscience, G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0295 (United States)

    2017-01-01

    Concerns over cancer treatment have largely focused on chemotherapy and its consequent side effects. Utilizing nanocarriers is thought to be a panacea for mitigating the limitations of chemotherapy, and increasing its safety and efficacy. Magnetically driven Paclitaxel delivery systems are among the commonly investigated types of nanocarriers over the last two decades. In this context, we tried to highlight the application of an AC magnetic field and validate its consequential effects on drug delivery pattern and cell death in such nanodevices. So the aim of this study is to develop an appropriate matrix (Palmitoyl chitosan) co-encapsulated with superparamagnetic iron oxide nanoparticles (SPIONs) and anticancer drug, Paclitaxel (PTX) via the nanoprecipitation process. Synthesized nanoparticles were characterized by Dynamic Light Scattering (DLS) and their magnetic properties were investigated by Vibrating Sample Magnetometer (VSM). At initial loading of 10 wt% Paclitaxel, the maximum loading efficiency of nanoparticles with and without SPIONs was in the range of 69% and 72.3%, respectively. In addition, in vitro release data revealed that by the application of a magnetic field, release kinetic changed to the magnetic responsive pattern. Encapsulating anticancer drug in a synthesized nanosystem not only increased the amount of drug in cancer cells but also enhanced cell death (MCF-7) due to hyperthermic effects of SPIONs in the presence of an external magnetic field. In summary, these findings indicate that the resultant nanoparticles may serve as a biocompatible and biodegradable carrier for the precise delivery of powerful cytotoxic anticancer agents such as PTX. - Highlights: ●This paper focuses on using an AC magnetic field to enhance the drug entry and to increase its concentration in the cell. ●The rate of drug release is highly dependent on the amount of available pores for transporting molecules.

  4. Non-viral Nucleic Acid Delivery Strategies to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    James-Kevin Tan

    2016-11-01

    Full Text Available With an increased prevalence and understanding of central nervous system injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the central nervous system and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection, and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the central nervous system are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for central nervous system applications and will ultimately bring non-viral vectors closer to clinical application.

  5. Development and in vivo evaluation of an oral delivery system for low molecular weight heparin based on thiolated polycarbophil.

    Science.gov (United States)

    Kast, Constantia E; Guggi, Davide; Langoth, Nina; Bernkop-Schnürch, Andreas

    2003-06-01

    It was the purpose of this study to develop a new oral drug delivery system for low molecular weight heparin (LMWH) providing an improved bioavailability and a prolonged therapeutic effect. The permeation enhancing polycarbophil-cysteine conjugate (PCP-Cys) used in this study displayed 111.4 +/- 6.4 microM thiol groups per gram polymer. Permeation studies on freshly excised intestinal mucosa were performed in Ussing chambers demonstrating a 2-fold improved uptake of heparin as a result of the addition of 0.5% (w/v) PCP-Cys and the permeation mediator glutathione (GSH). Tablets containing PCP-Cys, GSH, and 279 IU of LMWH showed a sustained drug release over 4 h. To guarantee the swelling of the polymeric carrier matrix in the small intestine tablets were enteric coated. They were orally given to rats. For tablets being based on the thiomer/GSH system an absolute bioavailability of 19.9 +/- 9.3% (means +/- SD; n = 5) vs. intravenous injection could be achieved. whereas tablets comprising unmodified PCP did not lead to a significant (p < 0.01) heparin concentration in plasma. The permeation enhancing effect and subsequently a therapeutic heparin level was maintained for 24 h after a single dose. Because of the strong and prolonged lasting permeation enhancing effect of the thiomer/GSH system, the oral bioavailability of LMWH could be significantly improved. This new delivery system represents therefore a promising tool for the oral administration of heparin.

  6. Expression of monellin in a food-grade delivery system in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Jun; Yan, Da-zhong; Zhao, Sheng-jun

    2015-10-01

    Genetically modified (GM) foods have caused much controversy. Construction of a food-grade delivery system is a desirable technique with presumptive impact on industrial applications from the perspective of bio-safety. The aim of this study was to construct a food-grade delivery system for Saccharomyces cerevisiae and to study the expression of monellin from the berries of the West African forest plant Dioscoreophyllum cumminsii in this system. A food-grade system for S. cerevisiae was constructed based on ribosomal DNA (rDNA)-mediated homologous recombination to enable high-copy-number integration of the expression cassette inserted into the rDNA locus. A copper resistance gene (CUP1) was used as the selection marker for yeast transformation. Because variants of transformants containing different copy numbers at the CUP1 locus can be readily selected after growth in the presence of elevated copper levels, we suggest that this system would prove useful in the generation of tandemly iterated gene clusters. Using this food-grade system, a single-chain monellin gene was heterologously expressed. The yield of monellin reached a maximum of 675 mg L(-1) . This system harbors exclusively S. cerevisiae DNA with no antibiotic resistance genes, and it should therefore be appropriate for safe use in the food industry. Monellin was shown to be expressed in this food-grade delivery system. To our knowledge, this is the first report so far on expression of monellin in a food-grade expression system in S. cerevisiae. © 2014 Society of Chemical Industry.

  7. Software Build and Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-10

    This presentation deals with the hierarchy of software build and delivery systems. One of the goals is to maximize the success rate of new users and developers when first trying your software. First impressions are important. Early successes are important. This also reduces critical documentation costs. This is a presentation focused on computer science and goes into detail about code documentation.

  8. A new smoothing procedure to reduce delivery segments for static MLC-based IMRT planning

    International Nuclear Information System (INIS)

    Sun Xuepeng; Xia Ping

    2004-01-01

    In the application of pixel-based intensity-modulated radiation therapy (IMRT) using the step-and-shoot delivery method, one major difficulty is the prolonged delivery time. In this study, we present an integrated IMRT planning system that involves a simple smoothing method to reduce the complexity of the beam profiles. The system consists of three main steps: (a) an inverse planning process based on a least-square dose-based cost function; (b) smoothing of the intensity maps; (c) reoptimization of the segment weights. Step (a) obtains the best plan with the lowest cost value using a simulated annealing optimization algorithm with discrete intensity levels. Step (b) takes the intensity maps obtained from (a) and reduces the complexity of the maps by smoothing the adjacent beamlet intensities. During this process each beamlet is assigned a structure index based on anatomical information. A smoothing update is applied to average adjacent beamlets with the same index. To control the quality of the plan, a predefined clinical protocol is used as an acceptance criterion. The smoothing updates that violate the criterion are rejected. After the smoothing process, the segment weights are reoptimized in step (c) to further improve the plan quality. Three clinical cases were studied using this system: a medulloblastoma, a prostate cancer, and an oropharyngeal carcinoma. While the final plans demonstrate a degradation of the original plan quality, they still meet the plan acceptance criterion. On the other hand, the segment numbers or delivery times are reduced by 40%, 20%, and 20% for the three cases, respectively

  9. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media.

    Science.gov (United States)

    Kotla, Niranjan G; Singh, Sima; Maddiboyina, Balaji; Sunnapu, Omprakash; Webster, Thomas J

    2016-01-01

    The aim of this study was to develop a novel microbially triggered and animal-sparing dissolution method for testing of nanorough polysaccharide-based micron granules for colonic drug delivery. In this method, probiotic cultures of bacteria present in the colonic region were prepared and added to the dissolution media and compared with the performance of conventional dissolution methodologies (such as media with rat cecal and human fecal media). In this study, the predominant species (such as Bacteroides, Bifidobacterium, Lactobacillus species, Eubacterium and Streptococcus) were cultured in 12% w/v skimmed milk powder and 5% w/v grade "A" honey. Approximately 10(10)-10(11) colony forming units m/L of probiotic culture was added to the dissolution media to test the drug release of polysaccharide-based formulations. A USP dissolution apparatus I/II using a gradient pH dissolution method was used to evaluate drug release from formulations meant for colonic drug delivery. Drug release of guar gum/Eudragit FS30D coated 5-fluorouracil granules was assessed under gastric and small intestine conditions within a simulated colonic environment involving fermentation testing with the probiotic culture. The results with the probiotic system were comparable to those obtained from the rat cecal and human fecal-based fermentation model, thereby suggesting that a probiotic dissolution method can be successfully applied for drug release testing of any polysaccharide-based oral formulation meant for colonic delivery. As such, this study significantly adds to the nanostructured biomaterials' community by elucidating an easier assay for colonic drug delivery.

  10. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release.

    Science.gov (United States)

    Zhang, Min; Liu, Jia; Kuang, Ying; Li, Qilin; Zheng, Di-Wei; Song, Qiongfang; Chen, Hui; Chen, Xueqin; Xu, Yanglin; Li, Cao; Jiang, Bingbing

    2017-05-01

    In this work, dextran, a polysaccharide with excellent biocompatibility, is applied as the "gatekeeper" to fabricate the pH-sensitive dextran/mesoporous silica nanoparticles (MSNs) based drug delivery systems for controlled intracellular drug release. Dextran encapsulating on the surface of MSNs is oxidized by NaIO 4 to obtain three kinds of dextran dialdehydes (PADs), which are then coupled with MSNs via pH-sensitive hydrazone bond to fabricate three kinds of drug carriers. At pH 7.4, PADs block the pores to prevent premature release of anti-cancer drug doxorubicin hydrochloride (DOX). However, in the weakly acidic intracellular environment (pH∼5.5) the hydrazone can be ruptured; and the drug can be released from the carriers. The drug loading capacity, entrapment efficiency and release rates of the drug carriers can be adjusted by the amount of NaIO 4 applied in the oxidation reaction. And from which DOX@MSN-NH-N=C-PAD 10 is chosen as the most satisfactory one for the further in vitro cytotoxicity studies and cellular uptake studies. The results demonstrate that DOX@MSN-NH-N=C-PAD 10 with an excellent pH-sensitivity can enter HeLa cells to release DOX intracellular due to the weakly acidic pH intracellular and kill the cells. In our opinion, the ingenious pH-sensitive drug delivery systems have application potentials for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Efficient systemic DNA delivery to the tumor by self-assembled nanoparticle

    Science.gov (United States)

    Tang, Hailin; Xie, Xinhua; Guo, Jiaoli; Wei, Weidong; Wu, Minqing; Liu, Peng; Kong, Yanan; Yang, Lu; Hung, Mien-Chie; Xie, Xiaoming

    2014-01-01

    There are few delivery agents that could deliver gene with high efficiency and low toxicity, especially for animal experiments. Therefore, creating vectors with good delivery efficiency and safety profile is a meaningful work. We have developed a self-assembled gene delivery system (XM001), which can more efficiently deliver DNA to multiple cell lines and breast tumor, as compared to commercial delivery agents. In addition, systemically administrated XM001-BikDD (BikDD is a mutant form of proapoptotic gene Bik) significantly inhibited the growth of human breast cancer cells and prolonged the life span in implanted nude mice. This study demonstrates that XM001 is an efficient and widespread transfection agent, which could be a promising tumor delivery vector for cancer targeted therapy.

  12. Radiolabelling of potential colonic delivery systems by neutron activation. An evaluation based on physiochemical properties of excipients and formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ahrabi, Sayeh

    1999-07-01

    The effects of neutron irradiation on the physicochemical properties of some potential release-controlling excipients for oral delivery to colon (based on microbially degradable polysaccharide or a combination of pH- and time-dependent mechanisms) were initially investigated. The aim was to choose the most irradiation-resistant ones for the development of a colonic delivery system to be radiolabelled by the neutron activation procedure. However, no correlation between the extent of irradiation-induced changes of the release-controlling polymers and the in vitro properties of the final formulation was observed. Incorporation of samarium oxide (Sm{sub 2}O{sub 3}) resulted in retardation of the drug release through the diffusion layer. The influence of neutron activation factors on the properties of some suppository combinations was also studied. The effect of the admixture of Sm{sub 2}O{sub 3} on the dissolution and disintegration of the suppositories was more profound than the effect of neutron irradiation. In hydrophilic suppositories, the effect of Sm{sub 2}O{sub 3} was dependent on the type, amount and the physicochemical characteristics of the incorporated drug. In lipophilic suppositories, the release-controlling effect of Sm{sub 2}O{sub 3} was hypothesised to be due to its insoluble micronised particles blocking the drug diffusion layer. The neutron activation procedure could be utilised for radiolabelling potential oral and rectal colonic drug delivery systems. However, to avoid alteration in the crucial in vitro characteristics of the formulations, the amount, the particle size and the aggregated particle characteristics of the lanthanide salt (e.g. Sm{sub 2}O{sub 3} or samarium stearate) together with the neutron irradiation dose should be controlled precisely for each dosage system. For the systems investigated in this work the release-controlling mechanism of the dosage form seems to be a key parameter to predict the extent of the influence of neutron

  13. Micelles As Delivery System for Cancer Treatment.

    Science.gov (United States)

    Keskin, Dilek; Tezcaner, Aysen

    2017-01-01

    Micelles are nanoparticles formed by the self-assembly of amphiphilic block copolymers in certain solvents above concentrations called critical micelle concentration (CMC). Micelles are used in different fields like food, cosmetics, medicine, etc. These nanosized delivery systems are under spotlight in the recent years with new achievements in terms of their in vivo stability, ability to protect entrapped drug, release kinetics, ease of cellular penetration and thereby increased therapeutic efficacy. Drug loaded micelles can be prepared by dialysis, oil-in-water method, solid dispersion, freezing, spray drying, etc. The aim of this review is to give an overview of the research on micelles (in vitro, in vivo and clinical) as delivery system for cancer treatment. Passive targeting is one route for accumulation of nanosized micellar drug formulations. Many research groups from both academia and industry focus on developing new strategies for improving the therapeutic efficacy of micellar systems (active targeting to the tumor site, designing multidrug delivery systems for overcoming multidrug resistance or micelles formed by prodrug conjugates, etc). There is only one micellar drug formulation in South Korea that has reached clinical practice. However, there are many untargeted anticancer drug loaded micellar formulations in clinical trials, which have potential for use in clinics. Many more products are expected to be on the market in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.

    Science.gov (United States)

    Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie

    2016-01-01

    Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.

  15. Influence of lipid composition and drug load on the in vitro performance of self-nanoemulsifying drug delivery systems

    DEFF Research Database (Denmark)

    Thomas, Nicky; Müllertz, Anette; Graf, Anja

    2012-01-01

    The influence of lipid composition and drug load on the in vitro performance of lipid-based drug delivery systems was investigated during dispersion and in vitro lipolysis of two self-nanoemulsifying drug delivery systems (SNEDDS). SNEDDS preconcentrates consisted of the same mass ratios of lipid...... of SNEDDS. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:1721–1731, 2012...

  16. Candidate Mission from Planet Earth control and data delivery system architecture

    Science.gov (United States)

    Shapiro, Phillip; Weinstein, Frank C.; Hei, Donald J., Jr.; Todd, Jacqueline

    1992-01-01

    Using a structured, experienced-based approach, Goddard Space Flight Center (GSFC) has assessed the generic functional requirements for a lunar mission control and data delivery (CDD) system. This analysis was based on lunar mission requirements outlined in GSFC-developed user traffic models. The CDD system will facilitate data transportation among user elements, element operations, and user teams by providing functions such as data management, fault isolation, fault correction, and link acquisition. The CDD system for the lunar missions must not only satisfy lunar requirements but also facilitate and provide early development of data system technologies for Mars. Reuse and evolution of existing data systems can help to maximize system reliability and minimize cost. This paper presents a set of existing and currently planned NASA data systems that provide the basic functionality. Reuse of such systems can have an impact on mission design and significantly reduce CDD and other system development costs.

  17. Short peptide based nanotubes capable of effective curcumin delivery for treating drug resistant malaria.

    Science.gov (United States)

    Alam, Shadab; Panda, Jiban Jyoti; Mukherjee, Tapan Kumar; Chauhan, Virander Singh

    2016-04-05

    Curcumin (Ccm) has shown immense potential as an antimalarial agent; however its low solubility and less bioavailability attenuate the in vivo efficacy of this potent compound. In order to increase Ccm's bioavailability, a number of organic/inorganic polymer based nanoparticles have been investigated. However, most of the present day nano based delivery systems pose a conundrum with respect to their complex synthesis procedures, poor in vivo stability and toxicity issues. Peptides due to their high biocompatibility could act as excellent materials for the synthesis of nanoparticulate drug delivery systems. Here, we have investigated dehydrophenylalanine (ΔPhe) di-peptide based self-assembled nanoparticles for the efficient delivery of Ccm as an antimalarial agent. The self-assembly and curcumin loading capacity of different ΔPhe dipeptides, phenylalanine-α,β-dehydrophenylalanine (FΔF), arginine-α,β-dehydrophenylalanine (RΔF), valine-α,β-dehydrophenylalanine (VΔF) and methonine-α,β-dehydrophenylalanine (MΔF) were investigated for achieving enhanced and effective delivery of the compound for potential anti-malarial therapy. FΔF, RΔF, VΔF and MΔF peptides formed different types of nanoparticles like nanotubes and nanovesicles under similar assembling conditions. Out of these, F∆F nanotubes showed maximum curcumin loading capacity of almost 68 % W/W. Ccm loaded F∆F nanotubes (Ccm-F∆F) showed comparatively higher (IC50, 3.0 µM) inhibition of Plasmodium falciparum (Indo strain) as compared to free Ccm (IC50, 13 µM). Ccm-F∆F nano formulation further demonstrated higher inhibition of parasite growth in malaria infected mice as compared to free Ccm. The dipeptide nanoparticles were highly biocompatible and didn't show any toxic effect on mammalian cell lines and normal blood cells. This work provides a proof of principle of using highly biocompatible short peptide based nanoparticles for entrapment and in vivo delivery of Ccm leading to an

  18. Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly(2-oxazoline)s

    Science.gov (United States)

    2015-01-01

    Defined aggregates of polymers such as polymeric micelles are of great importance in the development of pharmaceutical formulations. The amount of drug that can be formulated by a drug delivery system is an important issue, and most drug delivery systems suffer from their relatively low drug-loading capacity. However, as the loading capacities increase, i.e., promoted by good drug–polymer interactions, the drug may affect the morphology and stability of the micellar system. We investigated this effect in a prominent system with very high capacity for hydrophobic drugs and found extraordinary stability as well as a profound morphology change upon incorporation of paclitaxel into micelles of amphiphilic ABA poly(2-oxazoline) triblock copolymers. The hydrophilic blocks A comprised poly(2-methyl-2-oxazoline), while the middle blocks B were either just barely hydrophobic poly(2-n-butyl-2-oxazoline) or highly hydrophobic poly(2-n-nonyl-2-oxazoline). The aggregation behavior of both polymers and their formulations with varying paclitaxel contents were investigated by means of dynamic light scattering, atomic force microscopy, (cryogenic) transmission electron microscopy, and small-angle neutron scattering. While without drug, wormlike micelles were present, after incorporation of small amounts of drugs only spherical morphologies remained. Furthermore, the much more hydrophobic poly(2-n-nonyl-2-oxazoline)-containing triblock copolymer exhibited only half the capacity for paclitaxel than the poly(2-n-butyl-2-oxazoline)-containing copolymer along with a lower stability. In the latter, contents of paclitaxel of 8 wt % or higher resulted in a raspberry-like micellar core. PMID:24548260

  19. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin

    Science.gov (United States)

    Chen, Ling-Chun; Chen, Yin-Chen; Su, Chia-Yu; Wong, Wan-Ping; Sheu, Ming-Thau; Ho, Hsiu-O.

    2016-11-01

    Self-assembling mixed polymeric micelles (saMPMs) were developed for overcoming major obstacles of poor bioavailability (BA) associated with curcumin delivery. Lecithin added was functioned to enlarge the hydrophobic core of MPMs providing greater solubilization capacity. Amphiphilic polymers (sodium deoxycholate [NaDOC], TPGS, CREMOPHOR, or a PLURONIC series) were examined for potentially self-assembling to form MPMs (saMPMs) with the addition of lecithin. Particle size, size distribution, encapsulation efficacy (E.E.), and drug loading (D.L.) of the mixed micelles were optimally studied for their influences on the physical stability and release of encapsulated drugs. Overall, curcumin:lecithin:NaDOC and curcumin:lecithin:PLURONIC P123 in ratios of 2:1:5 and 5:2:20, respectively, were optimally obtained with a particle size of 80%, and a D.L. of >10%. The formulated system efficiently stabilized curcumin in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C and delayed the in vitro curcumin release. In vivo results further demonstrated that the slow release of curcumin from micelles and prolonged duration increased the curcumin BA followed oral and intravenous administrations in rats. Thus, lecithin-based saMPMs represent an effective curcumin delivery system, and enhancing BA of curcumin can enable its wide applications for treating human disorders.

  20. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance.

    Science.gov (United States)

    Tan, Angel; Rao, Shasha; Prestidge, Clive A

    2013-12-01

    The diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications.

  1. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  2. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    JULYK, L.J.

    2000-01-01

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  3. Additive Construction with Mobile Emplacement (ACME) / Automated Construction of Expeditionary Structures (ACES) Materials Delivery System (MDS)

    Science.gov (United States)

    Mueller, R. P.; Townsend, I. I.; Tamasy, G. J.; Evers, C. J.; Sibille, L. J.; Edmunson, J. E.; Fiske, M. R.; Fikes, J. C.; Case, M.

    2018-01-01

    The purpose of the Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) project is to incorporate the Liquid Goods Delivery System (LGDS) into the Dry Goods Delivery System (DGDS) structure to create an integrated and automated Materials Delivery System (MDS) for 3D printing structures with ordinary Portland cement (OPC) concrete. ACES 3 is a prototype for 3-D printing barracks for soldiers in forward bases, here on Earth. The LGDS supports ACES 3 by storing liquid materials, mixing recipe batches of liquid materials, and working with the Dry Goods Feed System (DGFS) previously developed for ACES 2, combining the materials that are eventually extruded out of the print nozzle. Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) is a project led by the US Army Corps of Engineers (USACE) and supported by NASA. The equivalent 3D printing system for construction in space is designated Additive Construction with Mobile Emplacement (ACME) by NASA.

  4. Nanoscale Nutrient Delivery Systems for Food Applications: Improving Bioactive Dispersibility, Stability, and Bioavailability.

    Science.gov (United States)

    McClements, David Julian

    2015-07-01

    There has been a surge of interest in the development of nanoscale systems for the encapsulation, protection, and delivery of lipophilic nutrients, vitamins, and nutraceuticals. This review article highlights the challenges associated with incorporating these lipophilic bioactive components into foods, and then discusses potential nanoscale delivery systems that can be used to overcome these challenges. In particular, the desirable characteristics required for any nanoscale delivery system are presented, as well as methods of fabricating them and of characterizing them. An overview of different delivery systems is given, such as microemulsions, nanoemulsions, emulsions, microgels, and biopolymer nanoparticles, and their potential applications are discussed. Nanoscale delivery systems have considerable potential within the food industry, but they must be carefully formulated to ensure that they are safe, economically viable, and effective. Nanoscale delivery systems have numerous potential applications in the food industry for encapsulating, protecting, and releasing bioactive agents, such as nutraceuticals and vitamins. This review article highlights methods for designing, fabricating, characterizing, and utilizing edible nanoparticles from a variety of different food-grade ingredients. © 2015 Institute of Food Technologists®

  5. A Sample Delivery System for Planetary Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will develop, test and characterize the performance of a prototype /sample delivery system (SDS) implemented as an end effector on a robotic arm capable...

  6. The Chemistry of Bioconjugation in Nanoparticles-Based Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Karolina Werengowska-Ciećwierz

    2015-01-01

    Full Text Available Nanomedicine is, generally, the application of nanotechnology to medicine. The term nanomedicine includes monitoring, construction of novel drug delivery systems, and any possible future applications of nanotechnology and nanovaccinology. In this review, the most important ligand-nanocarrier and drug-nanocarrier bioconjugations are described. The detailed characterizations of covalently formed bonds between targeted ligand and nanocarrier, including amide, thioether, disulfide, acetyl-hydrazone and polycyclic groups, are described. Also, the coupling of small elements and heteroatoms in the form of R-X-R the “click chemistry” groups is shown. Physical adsorption and chemical bonding of drug to nanocarrier surface involving drug on the internal or external surfaces of nanocarriers are described throughout possibility of the formation of the above-mentioned functionalities. Moreover, the most popular nanostructures (liposomes, micelles, polymeric nanoparticles, dendrimers, carbon nanotubes, and nanohorns are characterized as nanocarriers. Building of modern drug carrier is a new method which could be effectively applied in targeted anticancer therapy.

  7. Strategies in Development and Delivery of Nanotechnology Based Cosmetic Products.

    Science.gov (United States)

    Ahmad, Usama; Ahmad, Zeeshan; Khan, Ahmed Abdullah; Akhtar, Juber; Singh, Satya Prakash; Ahmad, Farhan Jalees

    2018-03-26

    The science of formulation involving cosmetic ingredients has always been a challenge since the release of active components greatly depends upon the carrier system involved and the selectivity of skin barrier. The principle obstacle of the skin resides in the epidermis and it's hard for many active components to cross it. The formulation related factors like size of particles, viscosity and lipophilicity of the components also play an important role in permeation of the dermal composition. Though widely used; conventional creams and gels still struggle in terms of success. This work focuses on nano based formulation strategies for successful delivery of cosmetic agents. Novel strategies like nanoemulsion, nanogels, liposomes, aquasomes, niosomes, dendrimers and fullerenes have paved way for successful delivery of dermal formulations to desire depths in the skin. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

    Science.gov (United States)

    Rao, Shasha; Richter, Katharina; Nguyen, Tri-Hung; Boyd, Ben J; Porter, Christopher J H; Tan, Angel; Prestidge, Clive A

    2015-12-07

    A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.

  9. Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer.

    Science.gov (United States)

    Guo, Chunjing; Yin, Jungang; Chen, Daquan

    2018-02-01

    In this work, in order to enhance the stability, bioavailability and antioxidant activity of insoluble antioxidants used into juice, yoghourt and nutritional supplements, the oligo-hyalurosomes nano-delivery system (CRHs) based on oligo-hyaluronic acid -curcumin (oHC) polymer loaded curcumin(Cur) and resveratrol (Res) was fabricated with new nanotechnolgy. The rosy biodegradable amphiphilic oHC polymer was successfully synthesized and used to fabricate the hyalurosomes containing both Cur and Res, called CRHs. The CRHs can spontaneously self-assemble into nano-sized spherical shape of average particle size 134.5±5.1nm and Zeta potential -29.4±1.2 at pH 7.4 PBS conditions. In vitro gastrointestinal release test showed a perfect stability and outstanding sustained release character. Moreover, compared to the single formulations and liposomes, CRHs showed a dose-dependent manner with a higher radical scavenging activity. Therefore, the novel CRHs nano-food manifested the hopeful properties for the new effective gastrointestinal formulation and promising new nano-food delivery system in the use of juice, yoghourt and nutritional supplements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Patient-centeredness in Integrated healthcare delivery systems - Needs, expectations and priorities for organized healthcare systems

    Directory of Open Access Journals (Sweden)

    Christin Juhnke

    2013-11-01

    Full Text Available Introduction: Patient-centred healthcare is becoming a more significant success factor in the design of integrated healthcare systems. The objective of this study is to structure a patient-relevant hierarchy of needs and expectations for the design of organised healthcare delivery systems. Methods: A questionnaire with 84 items was conducted with N = 254 healthcare experts and N = 670 patients. Factor analyses were performed using SPSS©18. The number of factors retained was controlled by Kaiser's criterion, validation of screeplots and interpretability of the items. Cronbach's α was used to assess the internal consistency of the subscales. Results: Exploratory factor analysis led to 24 factors in the expert sample and 20 in the patient sample. After analysing the screeplots, confirmatory factor analyses were computed for 7-factor solutions accounting for 42.963% of the total variance and Kaiser–Meyer–Olkinof 0.914 for the patients (experts: 38.427%, Kaiser–Meyer–Olkin = 0.797. Cronbach's α ranged between 0.899 and 0.756. Based on the analysis, coordinated care could be differentiated into seven dimensions: access, data and information, service and infrastructure, professional care, interpersonal care, individualised care, continuity and coordination. Conclusion and Discussion: The study provides insight into patient and experts expectations towards the organisation of integrated healthcare delivery systems. If providers and payers can take into account patient needs and expectations while implementing innovative healthcare delivery systems, greater acceptance and satisfaction will be achieved. In the best case, this will lead to better adherence resulting in better clinical outcomes.

  11. Patient-centeredness in Integrated healthcare delivery systems - Needs, expectations and priorities for organized healthcare systems

    Directory of Open Access Journals (Sweden)

    Christin Juhnke

    2013-11-01

    Full Text Available Introduction: Patient-centred healthcare is becoming a more significant success factor in the design of integrated healthcare systems. The objective of this study is to structure a patient-relevant hierarchy of needs and expectations for the design of organised healthcare delivery systems.Methods: A questionnaire with 84 items was conducted with N = 254 healthcare experts and N = 670 patients. Factor analyses were performed using SPSS©18. The number of factors retained was controlled by Kaiser's criterion, validation of screeplots and interpretability of the items. Cronbach's α was used to assess the internal consistency of the subscales.Results: Exploratory factor analysis led to 24 factors in the expert sample and 20 in the patient sample. After analysing the screeplots, confirmatory factor analyses were computed for 7-factor solutions accounting for 42.963% of the total variance and Kaiser–Meyer–Olkinof 0.914 for the patients (experts: 38.427%, Kaiser–Meyer–Olkin = 0.797. Cronbach's α ranged between 0.899 and 0.756. Based on the analysis, coordinated care could be differentiated into seven dimensions: access, data and information, service and infrastructure, professional care, interpersonal care, individualised care, continuity and coordination.Conclusion and Discussion: The study provides insight into patient and experts expectations towards the organisation of integrated healthcare delivery systems. If providers and payers can take into account patient needs and expectations while implementing innovative healthcare delivery systems, greater acceptance and satisfaction will be achieved. In the best case, this will lead to better adherence resulting in better clinical outcomes.

  12. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sundarraj, Shenbagamoorthy, E-mail: sundarrajbu09@gmail.com [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Thangam, Ramar [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Department of Virology, King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, TN (India); Sujitha, Mohanan V.; Vimala, Karuppaiya [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Kannan, Soundarapandian, E-mail: skperiyaruniv@gmail.com [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Department of Zoology, Periyar University, Salem 636 011, TN (India)

    2014-03-15

    Epidermal growth factor receptor antibody (EGFRAb) conjugated silica nanorattles (SNs) were synthesized and used to develop receptor mediated endocytosis for targeted drug delivery strategies for cancer therapy. The present study determined that the rate of internalization of silica nanorattles was found to be high in lung cancer cells when compared with the normal lung cells. EGFRAb can specifically bind to EGFR, a receptor that is highly expressed in lung cancer cells, but is expressed at low levels in other normal cells. Furthermore, in vitro studies clearly substantiated that the cPLA{sub 2}α activity, arachidonic acid release and cell proliferation were considerably reduced by pyrrolidine-2 loaded EGFRAb-SN in H460 cells. The cytotoxicity, cell cycle arrest and apoptosis were significantly induced by the treatment of pyrrolidine-2 loaded EGFRAb-SN when compared with free pyrrolidine-2 and pyrrolidine-2 loaded SNs in human non-small cell lung cancer cells. An in vivo toxicity assessment showed that silica nanorattles and EGFRAb-SN-pyrrolidine-2 exhibited low systemic toxicity in healthy Balb/c mice. The EGFRAb-SN-pyrrolidine-2 showed a much better antitumor activity (38%) with enhanced tumor inhibition rate than the pyrrolidine-2 on the non-small cell lung carcinoma subcutaneous model. Thus, the present findings validated the low toxicity and high therapeutic potentials of EGFRAb-SN-pyrrolidine-2, which may provide a convincing evidence of the silica nanorattles as new potential carriers for targeted drug delivery systems. - Highlights: • EGFRAb-SN developed for receptor-mediated Drug delivery system (DDS). • EGFRAb-SN-pyrrolidine-2 targeted DDS for cPLA2α inhibition in NSLC. • Study indicates EGFRAb-SN-pyrrolidine-2 as an efficient in target dug delivery carrier. • Study explains entire efficiency of EGFRAb-SN-pyrrolidine-2 in vitro and in vivo models.

  13. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy

    International Nuclear Information System (INIS)

    Sundarraj, Shenbagamoorthy; Thangam, Ramar; Sujitha, Mohanan V.; Vimala, Karuppaiya; Kannan, Soundarapandian

    2014-01-01

    Epidermal growth factor receptor antibody (EGFRAb) conjugated silica nanorattles (SNs) were synthesized and used to develop receptor mediated endocytosis for targeted drug delivery strategies for cancer therapy. The present study determined that the rate of internalization of silica nanorattles was found to be high in lung cancer cells when compared with the normal lung cells. EGFRAb can specifically bind to EGFR, a receptor that is highly expressed in lung cancer cells, but is expressed at low levels in other normal cells. Furthermore, in vitro studies clearly substantiated that the cPLA 2 α activity, arachidonic acid release and cell proliferation were considerably reduced by pyrrolidine-2 loaded EGFRAb-SN in H460 cells. The cytotoxicity, cell cycle arrest and apoptosis were significantly induced by the treatment of pyrrolidine-2 loaded EGFRAb-SN when compared with free pyrrolidine-2 and pyrrolidine-2 loaded SNs in human non-small cell lung cancer cells. An in vivo toxicity assessment showed that silica nanorattles and EGFRAb-SN-pyrrolidine-2 exhibited low systemic toxicity in healthy Balb/c mice. The EGFRAb-SN-pyrrolidine-2 showed a much better antitumor activity (38%) with enhanced tumor inhibition rate than the pyrrolidine-2 on the non-small cell lung carcinoma subcutaneous model. Thus, the present findings validated the low toxicity and high therapeutic potentials of EGFRAb-SN-pyrrolidine-2, which may provide a convincing evidence of the silica nanorattles as new potential carriers for targeted drug delivery systems. - Highlights: • EGFRAb-SN developed for receptor-mediated Drug delivery system (DDS). • EGFRAb-SN-pyrrolidine-2 targeted DDS for cPLA2α inhibition in NSLC. • Study indicates EGFRAb-SN-pyrrolidine-2 as an efficient in target dug delivery carrier. • Study explains entire efficiency of EGFRAb-SN-pyrrolidine-2 in vitro and in vivo models

  14. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  15. Nursing Services Delivery Theory: an open system approach

    Science.gov (United States)

    Meyer, Raquel M; O’Brien-Pallas, Linda L

    2010-01-01

    meyer r.m. & o’brien-pallas l.l. (2010)Nursing services delivery theory: an open system approach. Journal of Advanced Nursing66(12), 2828–2838. Aim This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. Background The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a ‘black box’ that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. Data sources A search of CINAHL and Business Source Premier for the years 1980–2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. Discussion The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. Implications for nursing The Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. Conclusion The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. PMID:20831573

  16. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  17. Delivery Systems for In Vivo use of Nucleic Acid Drugs

    Directory of Open Access Journals (Sweden)

    Resende R.R

    2007-01-01

    Full Text Available The notorious biotechnological advance of the last few decades has allowed the development of experimental methods for understanding molecular mechanisms of genes and new therapeutic approaches. Gene therapy is maturing into a viable, practical method with the potential to cure a variety of human illnesses. Some nucleic-acid-based drugs are now available for controlling the progression of genetic diseases by inhibiting gene expression or the activity of their gene products. New therapeutic strategies employ a wide range of molecular tools such as bacterial plasmids containing transgenic inserts, RNA interference aptamers. A nucleic-acid based constitution confers a lower immunogenic potential and as result of the high stringency selection of large molecular variety, these drugs have high affi nity and selectivity for their targets. However, nucleic acids have poor biostability thus requiring chemical modifications and delivery systems to maintain their activity and ease their cellular internalization. This review discusses some of the mechanisms of action and the application of therapies based on nucleic acids such as aptamers and RNA interference as well as platforms for cellular uptake and intracellular delivery of therapeutic oligonucleotides and their trade-offs.

  18. Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Anish Babu

    2013-01-01

    Full Text Available The last decade has witnessed enormous advances in the development and application of nanotechnology in cancer detection, diagnosis, and therapy culminating in the development of the nascent field of “cancer nanomedicine.” A nanoparticle as per the National Institutes of Health (NIH guidelines is any material that is used in the formulation of a drug resulting in a final product smaller than 1 micron in size. Nanoparticle-based therapeutic systems have gained immense popularity due to their ability to overcome biological barriers, effectively deliver hydrophobic therapies, and preferentially target disease sites. Currently, many formulations of nanocarriers are utilized including lipid-based, polymeric and branched polymeric, metal-based, magnetic, and mesoporous silica. Innovative strategies have been employed to exploit the multicomponent, three-dimensional constructs imparting multifunctional capabilities. Engineering such designs allows simultaneous drug delivery of chemotherapeutics and anticancer gene therapies to site-specific targets. In lung cancer, nanoparticle-based therapeutics is paving the way in the diagnosis, imaging, screening, and treatment of primary and metastatic tumors. However, translating such advances from the bench to the bedside has been severely hampered by challenges encountered in the areas of pharmacology, toxicology, immunology, large-scale manufacturing, and regulatory issues. This review summarizes current progress and challenges in nanoparticle-based drug delivery systems, citing recent examples targeted at lung cancer treatment.

  19. Preparation, characterization and drug delivery study of a novel nanobiopolymeric multidrug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah Tehrani, Abbas, E-mail: A_dadkhahtehrani@yahoo.com; Parsamanesh, Masoumeh

    2017-04-01

    New nanocarrier for codelivery of curcumin and doxorubicin as the anticancer drugs was synthesized using biocompatible and biodegradable materials. Firstly, an inclusion complex of amylose (Am) and curcumin (CUR) was formed through entrapment of curcumin into the amylose helices. Then the surface of amylose-curcumin (Am-CUR) complex was modified by polycaprolactone (PCL) via esterification reaction between hydroxyl functional groups of amylose and carbonyl groups of PCL. Finally, poly citric acid (PCA) reacted with terminal hydroxyl groups of PCL by esterification reaction. Then, doxorubicin (DOX) reacted with the surface carboxylic acid functional groups of Am-CUR-PCL-PCA through noncovalent interactions to form Am-CUR-PCL-PCA-DOX as a multidrug delivery system. These new synthesized nanomaterials were characterized by spectroscopic measurement methods such as IR spectroscopy, UV–vis spectroscopy, NMR spectroscopy, and scanning electron microscopy. FE-SEM analyses and DLS measurements showed that the hydrodynamic dimensions of Am-Cur-PCL-PCA were about 50 nm. Due to the presence of ester bonds, the synthesized nanomaterials are pH sensitive. Furthermore, the resulting copolymer was completely water soluble because of the hydrophilic nature of poly citric acid part of copolymer and therefore successfully can be utilized in biomedical applications. - Highlights: • A drug delivery system based on amylose-graft-PCL-PCA developed for codelivery of curcumin and DOX. • The IR and NMR spectra confirmed successful preparation of the copolymer. • The drugs release were more favorable at acidic pH for both drugs. • DLS measurements showed that the hydrodynamic dimensions of Am-Cur-PCL-PCA was about 50 nm.

  20. An oral oligonucleotide delivery system based on a thiolated polymer: Development and in vitro evaluation.

    Science.gov (United States)

    Martien, Ronny; Hoyer, Herbert; Perera, Glen; Schnürch, Andreas Bernkop

    2011-08-01

    The purpose of this study was to develop and evaluate an oral oligonucleotide delivery system based on a thiolated polymer/reduced glutathione (GSH) system providing a protective effect toward nucleases and permeation enhancement. A polycarbophil-cysteine conjugate (PCP-Cys) was synthesized. Enzymatic degradation of a model oligonucleotide by DNase I and within freshly collected intestinal fluid was investigated in the absence and presence of PCP-Cys. Permeation studies with PCP-Cys/GSH versus control were performed in vitro on Caco-2 cell monolayers and ex vivo on rat intestinal mucosa. PCP-Cys displayed 223 ± 13.8 μmol thiol groups per gram polymer. After 4h, 61% of the free oligonucleotides were degraded by DNase I and 80% within intestinal fluid. In contrast, less than 41% (DNase I) and 60% (intestinal fluid) were degraded in the presence of 0.02% (m/v) PCP-Cys. Permeation studies revealed an 8-fold (Caco-2) and 10-fold (intestinal mucosa) increase in apparent permeability compared to buffer control. Hence, this PCP-Cys/GSH system might be a promising tool for the oral administration of oligonucleotides as it allows a significant protection toward degrading enzymes and facilitates their transport across intestinal membranes. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    Science.gov (United States)

    Zhang, Zubin; Song, Lina; Dong, Jinlai; Guo, Dawei; Du, Xiaolin; Cao, Biyin; Zhang, Yu; Gu, Ning; Mao, Xinliang

    2013-05-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  2. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    International Nuclear Information System (INIS)

    Zhang Zubin; Song Lina; Dong Jinlai; Guo Dawei; Du Xiaolin; Cao Biyin; Zhang Yu; Gu Ning; Mao Xinliang

    2013-01-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  3. Nature engineered diatom biosilica as drug delivery systems.

    Science.gov (United States)

    Uthappa, U T; Brahmkhatri, Varsha; Sriram, G; Jung, Ho-Young; Yu, Jingxian; Kurkuri, Nikita; Aminabhavi, Tejraj M; Altalhi, Tariq; Neelgund, Gururaj M; Kurkuri, Mahaveer D

    2018-05-14

    Diatoms, unicellular photosynthetic algae covered with siliceous cell wall, are also called frustule. These are the most potential naturally available materials for the development of cost-effective drug delivery systems because of their excellent biocompatibility, high surface area, low cost and ease of surface modification. Mesoporous silica materials such as MCM-41 and SBA-15 have been extensively used in drug delivery area. Their synthesis is challenging, time consuming, requires toxic chemicals and are energy intensive, making the entire process expensive and non-viable. Therefore, it is necessary to explore alternative materials. Surprisingly, nature has provided some exciting materials called diatoms; biosilica is one such a material that can be potentially used as a drug delivery vehicle. The present review focuses on different types of diatom species used in drug delivery with respect to their structural properties, morphology, purification process and surface functionalization. In this review, recent advances along with their limitations as well as the future scope to develop them as potential drug delivery vehicles are discussed. Copyright © 2018. Published by Elsevier B.V.

  4. Analysis and Design Information System Logistics Delivery Service in Pt Repex Wahana

    Directory of Open Access Journals (Sweden)

    Stephanie Surja

    2015-12-01

    Full Text Available Analysis and Design of Logistic Delivery System in PT Repex Wahana aims to analyze company’s need in existing business process of logistic delivery service. This will then be used in the development of an integrated system that can address the problems in the running process of sending and tracking the whereaboutsor status of the delivered goods which are the core business processes in the enterprise. The result then will be used as basis in the development of integrated information system in pursuit of corporate solution for process business automation, delivery process, inventory, and logistic delivery tracking, which is the core of the company business process, and it will be documented using Unified Modeling Language. The information system is meant to simplify the delivery and tracking process in the company, besides will minimize lost and error of data which is often happened because of the manual and unorganized transaction data processing.

  5. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.

    Science.gov (United States)

    Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang

    2016-02-01

    Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Kær, Søren Knudsen; Andreasen, Søren Juhl

    2011-01-01

    , impurities in the reformate gas produced from methanol steam reforming can affect the performance and durability of fuel cells. In this paper different vapor delivery systems, intended to assist in the study of the effects of some of the impurities, are described and compared with each other. A system based...... on a pump and electrically heated evaporator was found to be more suitable for the typical flow rates involved in the anode feed of an H3PO4/PBI based HT-PEMFC unit cell assembly. Test stations composed of vapor delivery systems and mass flow controllers for testing the effects of methanol slip, water vapor...

  7. Approaches and Challenges of Engineering Implantable Microelectromechanical Systems (MEMS Drug Delivery Systems for in Vitro and in Vivo Applications

    Directory of Open Access Journals (Sweden)

    Ken-Tye Yong

    2012-11-01

    Full Text Available Despite the advancements made in drug delivery systems over the years, many challenges remain in drug delivery systems for treating chronic diseases at the personalized medicine level. The current urgent need is to develop novel strategies for targeted therapy of chronic diseases. Due to their unique properties, microelectromechanical systems (MEMS technology has been recently engineered as implantable drug delivery systems for disease therapy. This review examines the challenges faced in implementing implantable MEMS drug delivery systems in vivo and the solutions available to overcome these challenges.

  8. Microfabrication for Drug Delivery

    Science.gov (United States)

    Koch, Brendan; Rubino, Ilaria; Quan, Fu-Shi; Yoo, Bongyoung; Choi, Hyo-Jick

    2016-01-01

    This review is devoted to discussing the application of microfabrication technologies to target challenges encountered in life processes by the development of drug delivery systems. Recently, microfabrication has been largely applied to solve health and pharmaceutical science issues. In particular, fabrication methods along with compatible materials have been successfully designed to produce multifunctional, highly effective drug delivery systems. Microfabrication offers unique tools that can tackle problems in this field, such as ease of mass production with high quality control and low cost, complexity of architecture design and a broad range of materials. Presented is an overview of silicon- and polymer-based fabrication methods that are key in the production of microfabricated drug delivery systems. Moreover, the efforts focused on studying the biocompatibility of materials used in microfabrication are analyzed. Finally, this review discusses representative ways microfabrication has been employed to develop systems delivering drugs through the transdermal and oral route, and to improve drug eluting implants. Additionally, microfabricated vaccine delivery systems are presented due to the great impact they can have in obtaining a cold chain-free vaccine, with long-term stability. Microfabrication will continue to offer new, alternative solutions for the development of smart, advanced drug delivery systems. PMID:28773770

  9. Proposing a Hybrid Model Based on Robson's Classification for Better Impact on Trends of Cesarean Deliveries.

    Science.gov (United States)

    Hans, Punit; Rohatgi, Renu

    2017-06-01

    To construct a hybrid model classification for cesarean section (CS) deliveries based on the woman-characteristics (Robson's classification with additional layers of indications for CS, keeping in view low-resource settings available in India). This is a cross-sectional study conducted at Nalanda Medical College, Patna. All the women delivered from January 2016 to May 2016 in the labor ward were included. Results obtained were compared with the values obtained for India, from secondary analysis of WHO multi-country survey (2010-2011) by Joshua Vogel and colleagues' study published in "The Lancet Global Health." The three classifications (indication-based, Robson's and hybrid model) applied for categorization of the cesarean deliveries from the same sample of data and a semiqualitative evaluations done, considering the main characteristics, strengths and weaknesses of each classification system. The total number of women delivered during study period was 1462, out of which CS deliveries were 471. Overall, CS rate calculated for NMCH, hospital in this specified period, was 32.21% ( p  = 0.001). Hybrid model scored 23/23, and scores of Robson classification and indication-based classification were 21/23 and 10/23, respectively. Single-study centre and referral bias are the limitations of the study. Given the flexibility of the classifications, we constructed a hybrid model based on the woman-characteristics system with additional layers of other classification. Indication-based classification answers why, Robson classification answers on whom, while through our hybrid model we get to know why and on whom cesarean deliveries are being performed.

  10. Profluorescent PPV-Based Micellar System as a Versatile Probe for Bioimaging and Drug Delivery.

    Science.gov (United States)

    Zaquen, Neomy; Lu, Hongxu; Chang, Teddy; Mamdooh, Russel; Lutsen, Laurence; Vanderzande, Dirk; Stenzel, Martina; Junkers, Thomas

    2016-12-12

    Although micelles are commonly used for drug delivery purposes, their long-term fate is often unknown due to photobleaching of the fluorescent labels or the use of toxic materials. Here, we present a metal-free, nontoxic, nonbleaching, fluorescent micelle that can address these shortcomings. A simple, yet versatile, profluorescent micellar system, built from amphiphilic poly(p-phenylenevinylene) (PPV) block copolymers, for use in drug delivery applications is introduced. Polymer micelles made from PPV show excellent stability for up to 1 year and are successfully loaded with anticancer drugs (curcumin or doxorubicin) without requiring introduction of physical or chemical cross-links. The micelles are taken up efficiently by the cells, which triggers disassembly, releasing the encapsulated material. Disassembly of the micelles and drug release is conveniently monitored as fluorescence of the single polymer chains appear, which enables not only to monitor the release of the payload, but in principle also the fate of the polymer over longer periods of time.

  11. Colon-targeted oral drug delivery systems: design trends and approaches.

    Science.gov (United States)

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.

  12. Leadership Perspectives on Operationalizing the Learning Health Care System in an Integrated Delivery System.

    Science.gov (United States)

    Psek, Wayne; Davis, F Daniel; Gerrity, Gloria; Stametz, Rebecca; Bailey-Davis, Lisa; Henninger, Debra; Sellers, Dorothy; Darer, Jonathan

    2016-01-01

    Healthcare leaders need operational strategies that support organizational learning for continued improvement and value generation. The learning health system (LHS) model may provide leaders with such strategies; however, little is known about leaders' perspectives on the value and application of system-wide operationalization of the LHS model. The objective of this project was to solicit and analyze senior health system leaders' perspectives on the LHS and learning activities in an integrated delivery system. A series of interviews were conducted with 41 system leaders from a broad range of clinical and administrative areas across an integrated delivery system. Leaders' responses were categorized into themes. Ten major themes emerged from our conversations with leaders. While leaders generally expressed support for the concept of the LHS and enhanced system-wide learning, their concerns and suggestions for operationalization where strongly aligned with their functional area and strategic goals. Our findings suggests that leaders tend to adopt a very pragmatic approach to learning. Leaders expressed a dichotomy between the operational imperative to execute operational objectives efficiently and the need for rigorous evaluation. Alignment of learning activities with system-wide strategic and operational priorities is important to gain leadership support and resources. Practical approaches to addressing opportunities and challenges identified in the themes are discussed. Continuous learning is an ongoing, multi-disciplinary function of a health care delivery system. Findings from this and other research may be used to inform and prioritize system-wide learning objectives and strategies which support reliable, high value care delivery.

  13. Novel delivery systems with nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Cvijić Sandra

    2016-01-01

    Full Text Available Chronic use of oral nonsteroidal anti-inflammatory drugs (NSAIDs is associated with increased risk of serious gastrointestinal side effects. Therefore, recent trends in the development of NSAIDs aim to reduce the incidence of side effects, and improve patient compliance. One of the strategies to improve efficacy and safety of oral NSAIDs is the development of combination products that contain gastroprotective agents. Several products containing NSAID in combination with proton pump inhibitors (ketoprofen/omeprazole, naproxen/esomeprazole, H2-receptor antagonists (ibuprofen/famotidine, and prostaglandin analogues (diclofenac/misoprostol are currently available on the market. Another approach refer to the special formulation design to allow dose reduction while preserving drug therapeutic efficacy. An example is SoluMatrix® technology, a manufacturing process that produce submicron-sized drug particles with enhanced dissolution and absorption properties. Patented SoluMatrix® technology has been successfully employed to develop low-dose diclofenac, meloxicam, indomethacin and naproxen products. Topical NSAID formulations enable drug delivery to target tissues, while reducing systemic exposure and concomitant side effects associated with oral NSAIDs. Dermal/transdermal NSAID delivery systems are subject of intensive investigation. So far, several 'advanced' drug delivery systems with diclofenac, ibuprofen and ketoprofen have been designed.

  14. A clinical perspective on mucoadhesive buccal drug delivery systems

    Science.gov (United States)

    Gilhotra, Ritu M; Ikram, Mohd; Srivastava, Sunny; Gilhotra, Neeraj

    2014-01-01

    Mucoadhesion can be defined as a state in which two components, of which one is of biological origin, are held together for extended periods of time by the help of interfacial forces. Among the various transmucosal routes, buccal mucosa has excellent accessibility and relatively immobile mucosa, hence suitable for administration of retentive dosage form. The objective of this paper is to review the works done so far in the field of mucoadhesive buccal drug delivery systems (MBDDS), with a clinical perspective. Starting with a brief introduction of the mucoadhesive drug delivery systems, oral mucosa, and the theories of mucoadhesion, this article then proceeds to cover the works done so far in the field of MBDDS, categorizing them on the basis of ailments they are meant to cure. Additionally, we focus on the various patents, recent advancements, and challenges as well as the future prospects for mucoadhesive buccal drug delivery systems. PMID:24683406

  15. Secondary fuel delivery system

    Science.gov (United States)

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  16. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.

    Science.gov (United States)

    Morçöl, T; Nagappan, P; Nerenbaum, L; Mitchell, A; Bell, S J D

    2004-06-11

    An oral delivery system for insulin was developed and functional activity was tested in a non-obese diabetic (NOD) mice model. Calcium phosphate particles containing insulin was synthesized in the presence of PEG-3350 and modified by aggregating the particles with caseins to obtain the calcium phosphate-PEG-insulin-casein (CAPIC) oral insulin delivery system. Single doses of CAPIC formulation were tested in NOD mice under fasting or fed conditions to evaluate the glycemic activity. The blood glucose levels were monitored every 1-2h for 12h following the treatments using an ACCU CHECK blood glucose monitoring system. Orally administered and subcutaneously injected free insulin solution served as controls in the study. Based on the results obtained we propose that: (1). the biological activity of insulin is preserved in CAPIC formulation; (2). insulin in CAPIC formulations, but not the free insulin, displays a prolonged hypoglycemic effect after oral administration to diabetic mice; (3). CAPIC formulation protects insulin from degradation while passing through the acidic environment of the GI track until it is released in the less acidic environment of the intestines where it can be absorbed in its biologically active form; (4). CAPIC formulation represents a new and unique oral delivery system for insulin and other macromolecules.

  17. Biological-based optimization and volumetric modulated arc therapy delivery for stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Diot, Quentin; Kavanagh, Brian; Timmerman, Robert; Miften, Moyed

    2012-01-01

    Purpose: To describe biological-based optimization and Monte Carlo (MC) dose calculation-based treatment planning for volumetric modulated arc therapy (VMAT) delivery of stereotactic body radiation therapy (SBRT) in lung, liver, and prostate patients. Methods: Optimization strategies and VMAT planning parameters using a biological-based optimization MC planning system were analyzed for 24 SBRT patients. Patients received a median dose of 45 Gy [range, 34-54 Gy] for lung tumors in 1-5 fxs and a median dose of 52 Gy [range, 48-60 Gy] for liver tumors in 3-6 fxs. Prostate patients received a fractional dose of 10 Gy in 5 fxs. Biological-cost functions were used for plan optimization, and its dosimetric quality was evaluated using the conformity index (CI), the conformation number (CN), the ratio of the volume receiving 50% of the prescription dose over the planning target volume (Rx/PTV50). The quality and efficiency of the delivery were assessed according to measured quality assurance (QA) passing rates and delivery times. For each disease site, one patient was replanned using physical cost function and compared to the corresponding biological plan. Results: Median CI, CN, and Rx/PTV50 for all 24 patients were 1.13 (1.02-1.28), 0.79 (0.70-0.88), and 5.3 (3.1-10.8), respectively. The median delivery rate for all patients was 410 MU/min with a maximum possible rate of 480 MU/min (85%). Median QA passing rate was 96.7%, and it did not significantly vary with the tumor site. Conclusions: VMAT delivery of SBRT plans optimized using biological-motivated cost-functions result in highly conformal dose distributions. Plans offer shorter treatment-time benefits and provide efficient dose delivery without compromising the plan conformity for tumors in the prostate, lung, and liver, thereby improving patient comfort and clinical throughput. The short delivery times minimize the risk of patient setup and intrafraction motion errors often associated with long SBRT treatment

  18. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Science.gov (United States)

    Dubald, Marion; Bourgeois, Sandrine; Andrieu, Véronique; Fessi, Hatem

    2018-01-01

    The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites. PMID:29342879

  19. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Directory of Open Access Journals (Sweden)

    Marion Dubald

    2018-01-01

    Full Text Available The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites.

  20. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs

    Directory of Open Access Journals (Sweden)

    Jafar Ezzati Nazhad Dolatabadi

    2015-06-01

    Full Text Available In recent years, nanomaterials have been widely applied as advanced drug and gene delivery nanosystems. Among them, solid lipid nanoparticles (SLNs have attracted great attention as colloidal drug delivery systems for incorporating hydrophilic or lipophilic drugs and various macromolecules as well as proteins and nucleic acids. Therefore, SLNs offer great promise for controlled and site specific drug and gene delivery. This article includes general information about SLN structures and properties, production procedures, characterization. In addition, recent progress on development of drug and gene delivery systems using SLNs was reviewed.

  1. Nucleoside-Lipid-Based Nanocarriers for Sorafenib Delivery

    Science.gov (United States)

    Benizri, Sebastien; Ferey, Ludivine; Alies, Bruno; Mebarek, Naila; Vacher, Gaelle; Appavoo, Ananda; Staedel, Cathy; Gaudin, Karen; Barthélémy, Philippe

    2018-01-01

    Although the application of sorafenib, a small inhibitor of tyrosine protein kinases, to cancer treatments remains a worldwide option in chemotherapy, novel strategies are needed to address the low water solubility (drug. In this context, the use of nanocarriers is currently investigated in order to overcome these drawbacks. In this contribution, we report a new type of sorafenib-based nanoparticles stabilized by hybrid nucleoside-lipids. The solid lipid nanoparticles (SLNs) showed negative or positive zeta potential values depending on the nucleoside-lipid charge. Transmission electron microscopy of sorafenib-loaded SLNs revealed parallelepiped nanoparticles of about 200 nm. Biological studies achieved on four different cell lines, including liver and breast cancers, revealed enhanced anticancer activities of Sorafenib-based SLNs compared to the free drug. Importantly, contrast phase microscopy images recorded after incubation of cancer cells in the presence of SLNs at high concentration in sorafenib (> 80 μM) revealed a total cancer cell death in all cases. These results highlight the potential of nucleoside-lipid-based SLNs as drug delivery systems.

  2. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media

    Directory of Open Access Journals (Sweden)

    Kotla NG

    2016-03-01

    Full Text Available Niranjan G Kotla,1,2 Sima Singh,1,3 Balaji Maddiboyina,4 Omprakash Sunnapu,2 Thomas J Webster5,6 1School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India; 2Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India; 3Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; 4Department of Pharmaceutics, Vishwabharathi College of Pharmaceutical Sciences, Guntur, Andhra Pradesh, India; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The aim of this study was to develop a novel microbially triggered and animal-sparing dissolution method for testing of nanorough polysaccharide-based micron granules for colonic drug delivery. In this method, probiotic cultures of bacteria present in the colonic region were prepared and added to the dissolution media and compared with the performance of conventional dissolution methodologies (such as media with rat cecal and human fecal media. In this study, the predominant species (such as Bacteroides, Bifidobacterium, Lactobacillus species, Eubacterium and Streptococcus were cultured in 12% w/v skimmed milk powder and 5% w/v grade “A” honey. Approximately 1010–1011 colony forming units m/L of probiotic culture was added to the dissolution media to test the drug release of polysaccharide-based formulations. A USP dissolution apparatus I/II using a gradient pH dissolution method was used to evaluate drug release from formulations meant for colonic drug delivery. Drug release of guar gum/Eudragit FS30D coated 5-fluorouracil granules was assessed under gastric and small intestine conditions within a simulated colonic environment involving fermentation testing with the probiotic culture. The results with the probiotic system were

  3. Implementation of wireless power transfer and communications for an implantable ocular drug delivery system.

    Science.gov (United States)

    Tang, T B; Smith, S; Flynn, B W; Stevenson, J T M; Gundlach, A M; Reekie, H M; Murray, A F; Renshaw, D; Dhillon, B; Ohtori, A; Inoue, Y; Terry, J G; Walton, A J

    2008-09-01

    A wireless power transfer and communication system based on near-field inductive coupling has been designed and implemented. The feasibility of using such a system to remotely control drug release from an implantable drug delivery system is addressed. The architecture of the wireless system is described and the signal attenuation over distance in both water and phosphate buffered saline is studied. Additionally, the health risk due to exposure to radio frequency (RF) radiation is examined using a biological model. The experimental results demonstrate that the system can trigger the release of drug within 5 s, and that such short exposure to RF radiation does not produce any significant (system could replace a chemical battery in an implantable system, eliminating the risks associated with battery failure and leakage and also allowing more compact designs for applications such as drug delivery.

  4. Design and mechanistic study of a novel gold nanocluster-based drug delivery system.

    Science.gov (United States)

    Li, Qinzhen; Pan, Yiting; Chen, Tiankai; Du, Yuanxin; Ge, Honghua; Zhang, Buchang; Xie, Jianping; Yu, Haizhu; Zhu, Manzhou

    2018-05-22

    Chemically-triggered drug delivery systems (DDSs) have been extensively studied as they do not require specialized equipment to deliver the drug and can deeply penetrate human tissue. However, their syntheses are complicated and they tend to be cytotoxic, which restricts their clinical utility. In this work, the self-regulated drug loading and release capabilities of peptide-protected gold nanoclusters (Pep-Au NCs) are investigated using vancomycin (Van) as the model drug. Gold nanoclusters (Au NCs) coated with a custom-designed pentapeptide are synthesized as drug delivery nanocarriers and loaded with Van - a spontaneous process reliant on the specific binding between Van and the custom-designed peptide. The Van-loaded Au NCs show comparable antimicrobial activity with Van on its own, and the number of Van released by the Pep-Au NCs is found to be proportional to the amount of bacteria present. The controlled nature of the Van release is very encouraging, and predominantly due to the stronger binding affinity of Van with bacteria than that with Au NCs. In addition, these fluorescent Au NCs could also be used to construct temperature sensors, which enable the in vitro and in vivo bioimaging.

  5. Bioengineered protein-based nanocage for drug delivery.

    Science.gov (United States)

    Lee, Eun Jung; Lee, Na Kyeong; Kim, In-San

    2016-11-15

    Nature, in its wonders, presents and assembles the most intricate and delicate protein structures and this remarkable phenomenon occurs in all kingdom and phyla of life. Of these proteins, cage-like multimeric proteins provide spatial control to biological processes and also compartmentalizes compounds that may be toxic or unstable and avoids their contact with the environment. Protein-based nanocages are of particular interest because of their potential applicability as drug delivery carriers and their perfect and complex symmetry and ideal physical properties, which have stimulated researchers to engineer, modify or mimic these qualities. This article reviews various existing types of protein-based nanocages that are used for therapeutic purposes, and outlines their drug-loading mechanisms and bioengineering strategies via genetic and chemical functionalization. Through a critical evaluation of recent advances in protein nanocage-based drug delivery in vitro and in vivo, an outlook for de novo and in silico nanocage design, and also protein-based nanocage preclinical and future clinical applications will be presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Waste feed delivery program systems engineering implementation plan

    International Nuclear Information System (INIS)

    O'Toole, S.M.; Hendel, B.J.

    1998-01-01

    This document defines the systems engineering processes and products planned by the Waste Feed Delivery Program to develop the necessary and sufficient systems to provide waste feed to the Privatization Contractor for Phase 1. It defines roles and responsibilities for the performance of the systems engineering processes and generation of products

  7. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system

    Directory of Open Access Journals (Sweden)

    Wang S

    2018-01-01

    Full Text Available Shaowei Wang,1 Xiaochun Wei,1 Xiaojuan Sun,1 Chongwei Chen,1 Jingming Zhou,2 Ge Zhang,3 Heng Wu,3 Baosheng Guo,3 Lei Wei1,2 1Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; 2Department of Orthopaedics, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA; 3Integrated Traditional Chinese and Western Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Background: Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. Purpose: The objective of this study was to develop and validate a novel lipid nanoparticle (LNP-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. Methods: LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog (Ihh has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA. Results: In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative

  8. A Biomimic Reconstituted High-Density-Lipoprotein-Based Drug and p53 Gene Co-delivery System for Effective Antiangiogenesis Therapy of Bladder Cancer

    Science.gov (United States)

    Ouyang, Qiaohong; Duan, Zhongxiang; Jiao, Guangli; Lei, Jixiao

    2015-07-01

    A biomimic reconstituted high-density-lipoprotein-based drug and p53 gene co-delivery system (rHDL/CD-PEI/p53 complexes) was fabricated as a targeted co-delivery nanovector of drug and gene for potential bladder cancer therapy. Here, CD-PEI was utilized to effectively condense the p53 plasmid, to incorporate the plasmid into rHDL, and to act as an antitumor drug to suppress tumor angiogenesis. The rHDL/CD-PEI/p53 complexes exhibited desirable and homogenous particle size, neutral surface charge, and low cytotoxicity in vitro. The results of confocal laser scanning microscopy and flow cytometry confirmed that SR-BI-targeted function induced specific cytoplasmic delivery and high gene transfection efficiency in MBT-2 murine bladder cells. In addition, rHDL/CD-PEI/p53 complexes co-delivering CD and p53 gene achieved synergistic angiogenesis suppression by more effectively downregulating the expression of vascular endothelial growth factor (VEGF) messenger RNA (mRNA) and protein via different pathways in vitro. In vivo investigation on C3H/He mice bearing MBT-2 tumor xenografts revealed that rHDL/CD-PEI/p53 complexes possessed strong antitumor activity. These findings suggested that rHDL/CD-PEI/p53 complexes could be an ideal tumor-targeting system for simultaneous transfer of drug and gene, which might be a new promising strategy for effective bladder cancer therapy.

  9. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  10. Investigation on Physicochemical Characteristics of a Nanoliposome-Based System for Dual Drug Delivery

    Science.gov (United States)

    Nam, Jae Hyun; Kim, So-Yeon; Seong, Hasoo

    2018-04-01

    Synergistic effects of multiple drugs with different modes of action are utilized for combinatorial chemotherapy of intractable cancers. Translation of in vitro synergistic effects into the clinic can be realized using an efficient delivery system of the drugs. Despite a few studies on nano-sized liposomes containing erlotinib (ERL) and doxorubicin (DOX) in a single liposome vesicle, reliable and reproducible preparation methods as well as physicochemical characteristics of a non-PEGylated nanoliposome co-encapsulated with ERL and DOX have not been yet elucidated. In this study, ERL-encapsulated nanoliposomes were prepared using the lipid film-hydration method. By ultrasonication using a probe sonicator, the liposome diameter was reduced to less than 200 nm. DOX was loaded into the ERL-encapsulated nanoliposomes using ammonium sulfate (AS)-gradient or pH-gradient method. Effects of DOX-loading conditions on encapsulation efficiency (EE) of the DOX were investigated to determine an efficient drug-loading method. In the EE of DOX, AS-gradient method was more effective than pH gradient. The dual drug-encapsulated nanoliposomes had more than 90% EE of DOX and 30% EE of ERL, respectively. Transmission electron microscopy and selected area electron diffraction analyses of the dual drug-encapsulated nanoliposomes verified the highly oriented DOX-sulfate crystals inside the liposome as well as the less oriented small crystals of ERL in the outermost region of the nanoliposome. The nanoliposomes were stable at different temperatures without an increase of the nanoliposome diameter. The dual drug-encapsulated nanoliposomes showed a time-differential release of ERL and DOX, implying proper sequential releases for their synergism. The preparation methods and the physicochemical characteristics of the dual drug delivery system contribute to the development of the optimal process and more advanced systems for translational researches.

  11. Intranasal delivery of nanoparticle-based vaccine increases protection against S. pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Mott, Brittney [University of North Texas Health Science Center, Department of Molecular Biology and Immunology (United States); Thamake, Sanjay [Radio-Isotope Therapy of America Foundation (United States); Vishwanatha, Jamboor; Jones, Harlan P., E-mail: harlan.jones@unthsc.edu [University of North Texas Health Science Center, Department of Molecular Biology and Immunology (United States)

    2013-05-15

    Nanoparticle (NP) technologies are becoming commonplace in the development of vaccine delivery systems to protect against various diseases. The current study determined the efficacy of intranasal delivery of a 234 {+-} 87.5 nm poly lactic-co-glycolic acid nanoparticle vaccine construct in establishing protection against experimental respiratory pneumococcal infection. Nanoparticles encapsulating heat-killed Streptococcus pneumoniae (NP-HKSP) were retained in the lungs 11 days following nasal administration compared to empty NP. Immunization with NP-HKSP produced significant resistance against S. pneumoniae infection compared to administration of HKSP alone. Increased protection correlated with a significant increase in antigen-specific Th1-associated IFN-{gamma} cytokine response by pulmonary lymphocytes. This study establishes the efficacy of NP-based technology as a non-invasive and targeted approach for nasal-pulmonary immunization against pulmonary infections.

  12. Intranasal delivery of nanoparticle-based vaccine increases protection against S. pneumoniae

    International Nuclear Information System (INIS)

    Mott, Brittney; Thamake, Sanjay; Vishwanatha, Jamboor; Jones, Harlan P.

    2013-01-01

    Nanoparticle (NP) technologies are becoming commonplace in the development of vaccine delivery systems to protect against various diseases. The current study determined the efficacy of intranasal delivery of a 234 ± 87.5 nm poly lactic-co-glycolic acid nanoparticle vaccine construct in establishing protection against experimental respiratory pneumococcal infection. Nanoparticles encapsulating heat-killed Streptococcus pneumoniae (NP-HKSP) were retained in the lungs 11 days following nasal administration compared to empty NP. Immunization with NP-HKSP produced significant resistance against S. pneumoniae infection compared to administration of HKSP alone. Increased protection correlated with a significant increase in antigen-specific Th1-associated IFN-γ cytokine response by pulmonary lymphocytes. This study establishes the efficacy of NP-based technology as a non-invasive and targeted approach for nasal-pulmonary immunization against pulmonary infections.

  13. Intranasal delivery of nanoparticle-based vaccine increases protection against S. pneumoniae

    Science.gov (United States)

    Mott, Brittney; Thamake, Sanjay; Vishwanatha, Jamboor; Jones, Harlan P.

    2013-05-01

    Nanoparticle (NP) technologies are becoming commonplace in the development of vaccine delivery systems to protect against various diseases. The current study determined the efficacy of intranasal delivery of a 234 ± 87.5 nm poly lactic-co-glycolic acid nanoparticle vaccine construct in establishing protection against experimental respiratory pneumococcal infection. Nanoparticles encapsulating heat-killed Streptococcus pneumoniae (NP-HKSP) were retained in the lungs 11 days following nasal administration compared to empty NP. Immunization with NP-HKSP produced significant resistance against S. pneumoniae infection compared to administration of HKSP alone. Increased protection correlated with a significant increase in antigen-specific Th1-associated IFN-γ cytokine response by pulmonary lymphocytes. This study establishes the efficacy of NP-based technology as a non-invasive and targeted approach for nasal-pulmonary immunization against pulmonary infections.

  14. Svelte Integrated Delivery System Performance Examined Through Diagnostic Catheter Delivery : The SPEED Registry

    NARCIS (Netherlands)

    Khattab, Ahmed A.; Nijhoff, Freek; Schofer, Joachim; Berland, Jacques; Meier, Bernhard; Nietlispach, Fabian; Agostoni, Pierfrancesco; Brucks, Steffen; Stella, Pieter

    2015-01-01

    Aims: The multi-center SPEED registry evaluated the procedural success and in-hospital clinical outcomes of direct stenting with the Svelte 'all-in-one' coronary stent Integrated Delivery System (IDS) through diagnostic catheters to identify the clinical indications for which this approach is

  15. Delivery arrangements for health systems in low-income countries: an overview of systematic reviews.

    Science.gov (United States)

    Ciapponi, Agustín; Lewin, Simon; Herrera, Cristian A; Opiyo, Newton; Pantoja, Tomas; Paulsen, Elizabeth; Rada, Gabriel; Wiysonge, Charles S; Bastías, Gabriel; Dudley, Lilian; Flottorp, Signe; Gagnon, Marie-Pierre; Garcia Marti, Sebastian; Glenton, Claire; Okwundu, Charles I; Peñaloza, Blanca; Suleman, Fatima; Oxman, Andrew D

    2017-09-13

    Delivery arrangements include changes in who receives care and when, who provides care, the working conditions of those who provide care, coordination of care amongst different providers, where care is provided, the use of information and communication technology to deliver care, and quality and safety systems. How services are delivered can have impacts on the effectiveness, efficiency and equity of health systems. This broad overview of the findings of systematic reviews can help policymakers and other stakeholders identify strategies for addressing problems and improve the delivery of services. To provide an overview of the available evidence from up-to-date systematic reviews about the effects of delivery arrangements for health systems in low-income countries. Secondary objectives include identifying needs and priorities for future evaluations and systematic reviews on delivery arrangements and informing refinements of the framework for delivery arrangements outlined in the review. We searched Health Systems Evidence in November 2010 and PDQ-Evidence up to 17 December 2016 for systematic reviews. We did not apply any date, language or publication status limitations in the searches. We included well-conducted systematic reviews of studies that assessed the effects of delivery arrangements on patient outcomes (health and health behaviours), the quality or utilisation of healthcare services, resource use, healthcare provider outcomes (such as sick leave), or social outcomes (such as poverty or employment) and that were published after April 2005. We excluded reviews with limitations important enough to compromise the reliability of the findings. Two overview authors independently screened reviews, extracted data, and assessed the certainty of evidence using GRADE. We prepared SUPPORT Summaries for eligible reviews, including key messages, 'Summary of findings' tables (using GRADE to assess the certainty of the evidence), and assessments of the relevance of

  16. Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.

    Science.gov (United States)

    Yoshikawa, Tomoaki; Okada, Naoki; Oda, Atsushi; Matsuo, Kazuhiko; Matsuo, Keisuke; Mukai, Yohei; Yoshioka, Yasuo; Akagi, Takami; Akashi, Mitsuru; Nakagawa, Shinsaku

    2008-02-08

    Nanoscopic therapeutic systems that incorporate biomacromolecules, such as protein and peptides, are emerging as the next generation of nanomedicine aimed at improving the therapeutic efficacy of biomacromolecular drugs. In this study, we report that poly(gamma-glutamic acid)-based nanoparticles (gamma-PGA NPs) are excellent protein delivery carriers for tumor vaccines that delivered antigenic proteins to antigen-presenting cells and elicited potent immune responses. Importantly, gamma-PGA NPs efficiently delivered entrapped antigenic proteins through cytosolic translocation from the endosomes, which is a key process of gamma-PGA NP-mediated anti-tumor immune responses. Our findings suggest that the gamma-PGA NP system is suitable for the intracellular delivery of protein-based drugs as well as tumor vaccines.

  17. Wet microcontact printing (µCP) for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Lee, Hong-Pyo; Ryu, WonHyoung

    2013-01-01

    When micro-reservoir-type drug delivery systems are fabricated, loading solid drugs in drug reservoirs at microscale is often a non-trivial task. This paper presents a simple and effective solution to load a small amount of drug solution at microscale using ‘wet’ microcontact printing (µCP). In this wet µCP, a liquid solution containing drug molecules (methylene blue and tetracycline HCl) dissolved in a carrier solvent was transferred to a target surface (drug reservoir) by contact printing process. In particular, we have investigated the dependence of the quantity and morphology of transferred drug molecules on the stamp size, concentration, printing times, solvent types and surfactant concentration. It was also found that the repetition of printing using a non-volatile solvent such as polyethylene glycol (PEG) as a drug carrier material actually increased the transferred amount of drug molecules in proportion to the printing times based on asymmetric liquid bridge formation. Utilizing this wet µCP, drug delivery devices containing different quantity of drugs in micro-reservoirs were fabricated and their performance as controlled drug delivery devices was demonstrated. (paper)

  18. AAV vectors as gene delivery vehicles in the central nervous system

    NARCIS (Netherlands)

    Broekman, M.L.D.

    2006-01-01

    Recombinant gene delivery vehicles based on the replication-defective AAV have gained a preeminent position in the field of gene delivery to the brain. Efficient global gene delivery to the CNS is beneficial for the study of gene products is the entire CNS as well as for introducing and expressing

  19. Application of mathematical modeling in sustained release delivery systems.

    Science.gov (United States)

    Grassi, Mario; Grassi, Gabriele

    2014-08-01

    This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.

  20. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery

    Science.gov (United States)

    Wang, Huaimin; Yang, Zhimou

    2012-08-01

    Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.

  1. Making the Invisible Visible: A Model for Delivery Systems in Adult Education

    Science.gov (United States)

    Alex, Jennifer L.; Miller, Elizabeth A.; Platt, R. Eric; Rachal, John R.; Gammill, Deidra M.

    2007-01-01

    Delivery systems are not well defined in adult education. Therefore, this article reviews the multiple components that overlap to affect the adult learner and uses them to create a model for a comprehensive delivery system in adult education with these individual components as sub-systems that are interrelated and inter-locked. These components…

  2. A Prototype Educational Delivery System Using Water Quality Monitoring as a Model.

    Science.gov (United States)

    Glazer, Richard B.

    This report describes the model educational delivery system used by Ulster County Community College in its water quality monitoring program. The educational delivery system described in the report encompasses the use of behavioral objectives as its foundation and builds upon this foundation to form a complete system whose outcomes can be measured,…

  3. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

    Science.gov (United States)

    Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

    2017-08-01

    This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

  4. Liposomal drug delivery system from laboratory to clinic

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2005-01-01

    Full Text Available The main objective of drug delivery systems is to deliver a drug effectively, specifically to the site of action and to achieve greater efficacy and minimise the toxic effects compared to conventional drugs. Amongst various carrier systems, liposomes have generated a great interest because of their versatility. Liposomes are vesicular concentric bilayered structures, which are biocompatible, biodegradable and nonimmumnogenic. They can control the delivery of drugs by targeting the drug to the site of action or by site avoidance drug delivery or by prolonged circulation of drugs. Amphotericin B (Amp B remains the drug of choice in most systemic mycoses and also as a second line treatment for Kala azar. However, its toxic effects often limit its use. Although the liposome delivery system has been tried for several drugs, only a few have been used in patients due to the slow development of necessary large-scale pharmaceutical procedures. This paper reviews the development of the technique for liposomal Amphotericin B (L-Amp-LRC-1, FungisomeTM drug delivery system in our laboratory in collaboration with the department of Biochemistry, Delhi University in India and proving the safety and efficacy of this preparation in clinical practice. It also attempts to compare the efficacy and benefits of our product for Indian patients with those of similar products and it includes facts from the publications that flowed from our work. As compared to conventional Amp B, Fungisome is infused over a much shorter period requiring a smaller volume and no premedication. It was found to be safe in patients who had developed serious unacceptable toxicity with conventional Amp B. In renal transplant patients, Fungisome did not produce any nephrotoxicity. Fungisome is effective in fungal infections resistant to fluconazole, conventional Amp B and in virgin and resistant cases of visceral leishmaniasis. The cost of any drug is of great significance, especially in India

  5. Using DNA nanotechnology to produce a drug delivery system

    International Nuclear Information System (INIS)

    La, Thi Huyen; Nguyen, Thi Thu Thuy; Pham, Van Phuc; Nguyen, Thi Minh Huyen; Le, Quang Huan

    2013-01-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. (paper)

  6. Film forming systems for topical and transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Kashmira Kathe

    2017-11-01

    Full Text Available Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system's ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier. Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance. For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance. In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions along with their evaluation parameters have also been reviewed.

  7. A sight on the current nanoparticle-based gene delivery vectors

    Science.gov (United States)

    Dizaj, Solmaz Maleki; Jafari, Samira; Khosroushahi, Ahmad Yari

    2014-05-01

    Nowadays, gene delivery for therapeutic objects is considered one of the most promising strategies to cure both the genetic and acquired diseases of human. The design of efficient gene delivery vectors possessing the high transfection efficiencies and low cytotoxicity is considered the major challenge for delivering a target gene to specific tissues or cells. On this base, the investigations on non-viral gene vectors with the ability to overcome physiological barriers are increasing. Among the non-viral vectors, nanoparticles showed remarkable properties regarding gene delivery such as the ability to target the specific tissue or cells, protect target gene against nuclease degradation, improve DNA stability, and increase the transformation efficiency or safety. This review attempts to represent a current nanoparticle based on its lipid, polymer, hybrid, and inorganic properties. Among them, hybrids, as efficient vectors, are utilized in gene delivery in terms of materials (synthetic or natural), design, and in vitro/ in vivo transformation efficiency.

  8. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  9. Implications of formulation design on lipid-based nanostructured carrier system for drug delivery to brain.

    Science.gov (United States)

    Salunkhe, Sachin S; Bhatia, Neela M; Bhatia, Manish S

    2016-05-01

    The aim of present investigation was to formulate and develop lipid-based nanostructured carriers (NLCs) containing Idebenone (IDE) for delivery to brain. Attempts have been made to evaluate IDE NLCs for its pharmacokinetic and pharmacodynamic profile through the objective of enhancement in bioavailability and effectivity of drug. Nanoprecipitation technique was used for development of drug loaded NLCs. The components solid lipid Precirol ATO 5, oil Miglyol 840, surfactants Tween 80 and Labrasol have been screened out for formulation development by consideration of preformulation parameters including solubility, Required Hydrophilic lipophilic balance (HLB) of lipids and stability study. Developed IDE NLCs were subjected for particle size, zeta potential, entrapment efficiency (%EE), crystallographic investigation, transmission electron microscopy, in vitro drug release, pharmacokinetics, in vivo and stability study. Formulation under investigation has particle size 174.1 ± 2.6 nm, zeta potential -18.65 ± 1.13 mV and% EE 90.68 ± 2.90. Crystallographic studies exemplified for partial amorphization of IDE by molecularly dispersion within lipid crust. IDE NLCs showed drug release 93.56 ± 0.39% at end of 24 h by following Higuchi model which necessitates for appropriate drug delivery with enhancement in bioavailability of drug by 4.6-fold in plasma and 2.8-fold in brain over plain drug loaded aqueous dispersions. In vivo studies revealed that effect of drug was enhanced by prepared lipid nanocarriers. IDE lipid-based nanostructured carriers could have potential for efficient drug delivery to brain with enhancement in bioavailability of drug over the conventional formulations.

  10. In vivo evaluation of an oral drug delivery system for peptides based on S-protected thiolated chitosan.

    Science.gov (United States)

    Dünnhaupt, Sarah; Barthelmes, Jan; Iqbal, Javed; Perera, Glen; Thurner, Clemens C; Friedl, Heike; Bernkop-Schnürch, Andreas

    2012-06-28

    The aim of the present study was the development and evaluation in vitro as well as in vivo of an oral delivery system based on a novel type of thiolated chitosan, so-called S-protected thiolated chitosan, for the peptide drug antide. The sulfhydryl ligand thioglycolic acid (TGA) was covalently attached to chitosan (CS) in the first step of modification. In the second step, these thiol groups of thiolated chitosan were protected by disulfide bond formation with the thiolated aromatic residue 6-mercaptonicotinamide (6-MNA). Absorptive transport studies of antide were evaluated ex vivo using rat intestinal mucosa. Matrix tablets of each polymer sample were prepared and their effect on the absorption of antide evaluated in vivo in male Sprague-Dawley rats. In addition, tablets were examined in terms of their disintegration, swelling and drug release behavior. The resulting S-protected thiomer (TGA-MNA) exhibited 840μmol of covalently linked 6-MNA per gram thiomer. Based on the implementation of this hydrophobic ligand on the thiolated backbone, the disintegration behavior was reduced greatly and a controlled release of the peptide could be achieved. Furthermore, permeation studies with TGA-MNA on rat intestine revealed a 4.5-fold enhanced absorptive transport of the peptide in comparison to antide in solution. Additional in vivo studies confirmed the potential of this novel conjugate. Oral administration of antide in solution led to only very small detectable quantities in plasma with an absolute and relative bioavailability (BA) of 0.003 and 0.03%, only. In contrast, with antide incorporated in TGA-MNA matrix tablets an absolute and relative BA of 1.4 and 10.9% could be reached, resulting in a 421-fold increased area under the plasma concentration time curve (AUC) compared to the antide solution. According to these results, S-protected thiolated chitosan as oral drug delivery system might be a valuable tool for improving the bioavailability of peptides. Copyright

  11. Immunological Risk of Injectable Drug Delivery Systems

    NARCIS (Netherlands)

    Jiskoot, W.; van Schie, R.M.F.; Carstens, M.G.; Schellekens, H.

    2009-01-01

    Injectable drug delivery systems (DDS) such as particulate carriers and water-soluble polymers are being used and developed for a wide variety of therapeutic applications. However, a number of immunological risks with serious clinical implications are associated with administration of DDS. These

  12. A novel thermal and pH responsive drug delivery system based on ZnO@PNIPAM hybrid nanoparticles

    International Nuclear Information System (INIS)

    Tan, Licheng; Liu, Jian; Zhou, Weihua; Wei, Junchao; Peng, Zhiping

    2014-01-01

    A smart ZnO@PNIPAM hybrid was prepared by grafting thermal responsive poly(N-isopropylacrylamide) (PNIPAM) on zinc oxide (ZnO) nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). The thermal gravimetric analysis (TGA) shows that the grafting amount of PNIPAM was about 38%, and the SEM images show that the PNIPAM chains can prevent the aggregation of ZnO nanoparticles. The responsive properties of ZnO@PNIPAM were measured by photoluminescence spectra, and the results demonstrate that the PNIPAM chains grafted on ZnO surfaces can realize reversible thermal responsive and photoluminescence properties. An anticancer drug, doxorubicin (Dox), was used as a model drug and loaded into the hybrid nanoparticles, and an in vitro drug release test implied that ZnO@PNIPAM could work as a thermal responsive drug delivery system. Furthermore, pH sensitive drug releases were carried out in acetate buffer at pH 5.0 and pH 6.0 and in water at pH 7.0, and the results showed evident pH dependency, showing its pH responsive properties. - Graphical abstract: In this manuscript, thermal responsive poly(N-isopropylacrylamide) (PNIPAM) was grafted on the surface of ZnO nanoparticles. The obtained ZnO@PNIPAM hybrid showed reversible thermal responsive photoluminescent properties, and can also work as a thermal and pH responsive drug delivery system. - Highlights: • The ZnO@PNIPAM hybrid was prepared via ATRP. • The ZnO@PNIPAM hybrid showed thermal responsive properties. • The ZnO@PNIPAM hybrid can work as a thermal and pH responsive drug delivery system

  13. Recent Advances in Ocular Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Shinobu Fujii

    2011-01-01

    Full Text Available Transport of drugs applied by traditional dosage forms is restricted to the eye, and therapeutic drug concentrations in the target tissues are not maintained for a long duration since the eyes are protected by a unique anatomy and physiology. For the treatment of the anterior segment of the eye, various droppable products to prolong the retention time on the ocular surface have been introduced in the market. On the other hand, direct intravitreal implants, using biodegradable or non-biodegradable polymer technology, have been widely investigated for the treatment of chronic vitreoretinal diseases. There is urgent need to develop ocular drug delivery systems which provide controlled release for the treatment of chronic diseases, and increase patient’s and doctor’s convenience to reduce the dosing frequency and invasive treatment. In this article, progress of ocular drug delivery systems under clinical trials and in late experimental stage is reviewed.

  14. [Advances of tumor targeting peptides drug delivery system with pH-sensitive activities].

    Science.gov (United States)

    Ma, Yin-yun; Li, Li; Huang, Hai-feng; Gou, San-hu; Ni, Jing-man

    2016-05-01

    The pH-sensitive peptides drug delivery systems, which target to acidic extracellular environment of tumor tissue, have many advantages in drug delivery. They exhibit a high specificity to tumor and low cytotoxicity, which significantly increase the efficacy of traditional anti-cancer drugs. In recent years the systems have received a great attention. The pH-sensitive peptides drug delivery systems can be divided into five types according to the difference in pH-responsive mechanism,type of peptides and carrier materials. This paper summarizes the recent progresses in the field with a focus on the five types of pH-sensitive peptides in drug delivery systems. This may provide a guideline to design and application of tumor targeting drugs.

  15. Breech at term--mode of delivery? A register-based study

    DEFF Research Database (Denmark)

    Krebs, L; Langhoff-Roos, J; Weber, Tom

    1995-01-01

    ) when compared to those delivered by elective cesarean section. In vaginal deliveries, parity was not correlated with outcome, but infants with a birth weight above 4000 grams had significantly higher rates of low Apgar scores. CONCLUSIONS. Register data on singleton term breech deliveries imply......BACKGROUND. The present study was designed to determine neonatal mortality and morbidity in non-malformed singleton term infants delivered in breech presentation and identify a possible correlation between outcome on the one hand and mode of delivery, parity and birth weight on the other. METHODS....... Register-based cohort study of all (n = 15718) singleton term breech deliveries of non-malformed infants in Denmark 1982-1990. Process and outcome measures: mode of delivery, gestational age, birth weight, congenital malformations, intrapartum death, Apgar scores and early neonatal death. RESULTS. A total...

  16. Role of Nanodiamonds in Drug Delivery and Stem Cell Therapy.

    Science.gov (United States)

    Ansari, Shakeel Ahmed; Satar, Rukhsana; Jafri, Mohammad Alam; Rasool, Mahmood; Ahmad, Waseem; Kashif Zaidi, Syed

    2016-09-01

    The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Nanodiamonds (NDs) have contributed significantly in the development of highly efficient and successful drug delivery systems, and in stem cell therapy. Drug delivery through NDs is an intricate and complex process that deserves special attention to unravel underlying molecular mechanisms in order to overcome certain bottlenecks associated with it. It has already been established that NDs based drug delivery systems have excellent biocompatibility, nontoxicity, photostability and facile surface functionalization properties. There is mounting evidence that suggests that such conjugated delivery systems well retain the properties of nanoparticles like small size, large surface area to volume ratio that provide greater biocatalytic activity to the attached drug in terms of selectivity, loading and stability. NDs based drug delivery systems may form the basis for the development of effective novel drug delivery vehicles with salient features that may facilitate their utility in fluorescence imaging, target specificity and sustainedrelease.

  17. Process development work plan for waste feed delivery system

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    This work plan defines the process used to develop project definition for Waste Feed Delivery (WFD). Project definition provides the direction for development of definitive design media required for the ultimate implementation of operational processing hardware and software. Outlines for the major deliverables are attached as appendices. The implementation of hardware and software will accommodate requirements for safe retrieval and delivery of waste currently stored in Hanford's underground storage tanks. Operations and maintenance ensure the availability of systems, structures, and components for current and future planned operations within the boundary of the Tank Waste Remediation System (TWRS) authorization basis

  18. Integrated delivery systems: the cure for fragmentation.

    Science.gov (United States)

    Enthoven, Alain C

    2009-12-01

    Our healthcare system is fragmented, with a misalignment of incentives, or lack of coordination, that spawns inefficient allocation of resources. Fragmentation adversely impacts quality, cost, and outcomes. Eliminating waste from unnecessary, unsafe care is crucial for improving quality and reducing costs--and making the system financially sustainable. Many believe this can be achieved through greater integration of healthcare delivery, more specifically via integrated delivery systems (IDSs). An IDS is an organized, coordinated, and collaborative network that links various healthcare providers to provide a coordinated, vertical continuum of services to a particular patient population or community. It is also accountable, both clinically and fiscally, for the clinical outcomes and health status of the population or community served, and has systems in place to manage and improve them. The marketplace already contains numerous styles and degrees of integration, ranging from Kaiser Permanente-style full integration, to more loosely organized individual practice associations, to public-private partnerships. Evidence suggests that IDSs can improve healthcare quality, improve outcomes, and reduce costs--especially for patients with complex needs--if properly implemented and coordinated. No single approach or public policy will fix the fragmented healthcare system, but IDSs represent an important step in the right direction.

  19. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    Science.gov (United States)

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  20. Microsphere-Based Rapamycin Delivery, Systemic Versus Local Administration in a Rat Model of Renal Ischemia/Reperfusion Injury

    NARCIS (Netherlands)

    Zandstra, Jurjen; van Beuge, Marike M.; Zuidema, Johan; Petersen, Arjen H.; Staal, Mark; Duque, Luisa F.; Rodriguez, Sergio; Lathuile, Audrey A. R.; Veldhuis, Gert J.; Steendam, Rob; Bank, Ruud A.; Popa, Eliane R.

    2015-01-01

    The increasing prevalence and treatment costs of kidney diseases call for innovative therapeutic strategies that prevent disease progression at an early stage. We studied a novel method of subcapsular injection of monodisperse microspheres, to use as a local delivery system of drugs to the kidney.

  1. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy.

    Science.gov (United States)

    Parhi, Priyambada; Mohanty, Chandana; Sahoo, Sanjeeb Kumar

    2012-09-01

    Combination therapy for the treatment of cancer is becoming more popular because it generates synergistic anticancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. In recent years, nanotechnology-based combination drug delivery to tumor tissues has emerged as an effective strategy by overcoming many biological, biophysical and biomedical barriers that the body stages against successful delivery of anticancer drugs. The sustained, controlled and targeted delivery of chemotherapeutic drugs in a combination approach enhanced therapeutic anticancer effects with reduced drug-associated side effects. In this article, we have reviewed the scope of various nanotechnology-based combination drug delivery approaches and also summarized the current perspective and challenges facing the successful treatment of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer

    International Nuclear Information System (INIS)

    Cho, Youngnam; Shi, Riyi; Ben Borgens, Richard; Ivanisevic, Albena

    2009-01-01

    In this study, a mesoporous silica nanoparticle (MSN)-based nerve growth factor (NGF) delivery system has been successfully embedded within an electroactive polypyrrol (Ppy). The spherical particles with ∼100 nm diameter possess a large surface-to-volume ratio for the entrapment of NGF into the pores of MSNs while retaining their bioactivity. Direct incorporation of MSN-NGF within Ppy was achieved during electrochemical polymerization. The loading amount and release profile of NGF from the composite was investigated by sandwich ELISA. The NGF incorporation can be controllable by varying particle concentration or by extending electrodeposition time. The morphology and chemical composition of the Ppy/MSN-NGF composite was evaluated by atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS). Optical and electron microscopy revealed a characteristic attachment of PC 12 cells and the outgrowth of their neurites when grown on the Ppy/MSN-NGF composite as a result of a sustained and controlled release of NGF. In order to observe the effectiveness of electrical stimulation, neurite extension of cells cultured on unstimulated and stimulated Ppy/MSN-NGF was compared. The NGF release in the presence of electrical stimulation promoted significantly greater neurite extension.

  3. Buccal Transmucosal Delivery System of Enalapril for Improved ...

    African Journals Online (AJOL)

    Methods: Transmucosal drug delivery systems of enalapril maleate were ... Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals. (DOAJ) ... investigated for various drugs including protein.

  4. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.

    Science.gov (United States)

    Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2014-12-01

    Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

  5. Variability in syringe components and its impact on functionality of delivery systems.

    Science.gov (United States)

    Rathore, Nitin; Pranay, Pratik; Eu, Bruce; Ji, Wenchang; Walls, Ed

    2011-01-01

    Prefilled syringes and autoinjectors are becoming increasingly common for parenteral drug administration primarily due to the convenience they offer to the patients. Successful commercialization of such delivery systems requires thorough characterization of individual components. Complete understanding of various sources of variability and their ranking is essential for robust device design. In this work, we studied the impact of variability in various primary container and device components on the delivery forces associated with syringe injection. More specifically, the effects of barrel size, needle size, autoinjector spring force, and frictional forces have been evaluated. An analytical model based on underlying physics is developed that can be used to fully characterize the design space for a product delivery system. Use of prefilled syringes (syringes prefilled with active drug) is becoming increasingly common for injectable drugs. Compared to vials, prefilled syringes offer higher dose accuracy and ease of use due to fewer steps required for dosage. Convenience to end users can be further enhanced through the use of prefilled syringes in combination with delivery devices such as autoinjectors. These devices allow patients to self-administer the drug by following simple steps such as pressing a button. These autoinjectors are often spring-loaded and are designed to keep the needle tip shielded prior to injection. Because the needle is not visible to the user, such autoinjectors are perceived to be less invasive than syringes and help the patient overcome the hesitation associated with self-administration. In order to successfully develop and market such delivery devices, we need to perform an in-depth analysis of the components that come into play during the activation of the device and dose delivery. Typically, an autoinjector is activated by the press of a button that releases a compressed spring; the spring relaxes and provides the driving force to push the

  6. Nano-microdelivery systems for oral delivery of an active ingredient

    DEFF Research Database (Denmark)

    2014-01-01

    A composition for oral delivery of one or more active ingredients in the form of a lipid nano-micro-delivery system comprising a lipid nano-micro-structure comprising at least one lipid and at least one active ingredient, said at least one active ingredient being immobilized in said lipid nano...

  7. Community feedback on the JustMilk Nipple Shield Delivery System ...

    African Journals Online (AJOL)

    Background. Infant medication administration is a major public-health challenge, especially in rural or low-resource areas. The JustMilk Nipple Shield Delivery System (NSDS) is a novel method of infant medication delivery designed to address some of these challenges. Objective. To explore the acceptability of the JustMilk ...

  8. NIR and MR imaging supported hydrogel based delivery system for anti-TNF alpha probiotic therapy of IBD

    Science.gov (United States)

    Janjic, Jelena M.; Berlec, Ales; Bagia, Christina; Liu, Lu S.; Jeric, Irenej; Gach, Michael; Janjic, Bratislav M.; Strukelj, Borut

    2016-03-01

    Current treatment of inflammatory bowel disease (IBD) is largely symptomatic and consists of anti-inflammatory agents, immune-suppressives or antibiotics, whereby local luminal action is preferred to minimize systemic side-effects. Recently, anti-TNFα therapy has shown considerable success and is now being routinely used. Here we present a novel approach of using perfluorocarbon (PFC) nanoemulsion containing hydrogels (nanoemulgels) as imaging supported delivery systems for anti-TNF alpha probiotic delivery in IBD. To further facilitate image-guided therapy a food-grade lactic acid bacterium Lactococcus lactis capable of TNFα-binding was engineered to incorporate infrared fluorescent protein (IRFP). This modified bacteria was then incorporated into novel PFC nanoemulgels. The nanoemulgels presented here are designed to deliver locally anti-TNFα probiotic in the lower colon and rectum and provide dual imaging signature of gel delivery (MRI) across the rectum and lower colon and bacteria release (NIR). NIR imaging data in vitro demonstrates high IRFP expressing and TNFα-binding bacteria loading in the hydrogel and complete release in 3 hours. Stability tests indicate that gels remain stable for at least 14 days showing no significant change in droplet size, zeta potential and pH. Flow cytometry analyses demonstrate the NIRF expressing bacteria L. lactis binds TNFα in vitro upon release from the gels. Magnetic resonance and near-infrared imaging in vitro demonstrates homogeneity of hydrogels and the imaging capacity of the overall formulation.

  9. An Overview On Various Approaches And Recent Patents On Gastroretentive Drug Delivery Systems.

    Science.gov (United States)

    Kumar, Manoj; Kaushik, Deepak

    2018-03-08

    Drugs having absorption window in the stomach or upper small intestine has restricted bioavailability with conventional dosage forms. The gastric residence time of these dosage forms is usually short and they do not show drug release for prolonged period of time. To avoid these problems and to enhance the bioavailability and gastric retention time of these drugs, controlled drug delivery systems with prolonged gastric retention time are currently being developed. This review highlights the various pharmaceutical approaches for gastroretention such as floating drug delivery systems, mucoadhesive systems, high density systems, expandable and swelling systems, superporous hydrogels systems, magnetic systems, ion exchange resin system and recent patents filed or granted for these approaches. Recently some patents are also reported where a combination of various approaches are being employed to achieve very effective gastroretention. The various patent search sites were used to collect and analyze the information on gastroretentive drug delivery systems. The present study provides valuable information, advantages, limitations and future outlook of various gastroretentive drug delivery systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Self-Micro Emulsifying Drug Delivery Systems: a Strategy to Improve Oral Bioavailability

    Directory of Open Access Journals (Sweden)

    Vijay K. Sharma

    Full Text Available Aim: Oral route has always been the favorite route of drug administration in many diseases and till today it is the first way investigated in the development of new dosage forms. The major problem in oral drug formulations is low and erratic bioavailability, which mainly results from poor aqueous solubility, thereby pose problems in their formulation. For the therapeutic delivery of lipophilic active moieties (BCS class II drugs, lipid based formulations are inviting increasing attention. Methods: To that aim, from the web sites of PubMed, HCAplus, Thomson, and Registry were used as the main sources to perform the search for the most significant research articles published on the subject. The information was then carefully analyzed, highlighting the most important results in the formulation and development of self-micro emulsifying drug delivery systems as well as its therapeutic activity. Results: Self-emulsifying drug delivery system (SMEDDS has gained more attention due to enhanced oral bio-availability enabling reduction in dose, more consistent temporal profiles of drug absorption, selective targeting of drug(s toward specific absorption window in GIT, and protection of drug(s from the unreceptive environment in gut. Conclusions: This article gives a complete overview of SMEDDS as a promising approach to effectively deal with the problem of poorly soluble molecules.

  11. Thiolated polymers as mucoadhesive drug delivery systems.

    Science.gov (United States)

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of ca2+ to salicylic acid release in pectin based controlled drug delivery system

    Science.gov (United States)

    Kistriyani, L.; Wirawan, S. K.; Sediawan, W. B.

    2016-01-01

    Wastes from orange peel are potentially be utilized to produce pectin, which are currently an import commodity. Pectin can be used in making edible film. Edible films are potentially used as a drug delivery system membrane after a tooth extraction. Drug which is used in the drug delivery system is salicylic acid. It is an antiseptic. In order to control the drug release rate, crosslinking process is added in the manufacturing of membrane with CaCl2.2H2O as crosslinker. Pectin was diluted in water and mixed with a plasticizer and CaCl2.2H2O solution at 66°C to make edible film. Then the mixture was dried in an oven at 50 °C. After edible film was formed, it was coated using plasticizer and CaCl2.2H2O solution with various concentration 0, 0.015, 0.03 and 0.05g/mL. This study showed that the more concentration of crosslinker added, the slower release of salicylic acid would be. This was indicated by the value of diffusivites were getting smaller respectively. The addition of crosslinker also caused smaller gels swelling value,which made the membrane is mechanically stronger

  13. Peptide-based soft materials as potential drug delivery vehicles.

    Science.gov (United States)

    Verma, Sandeep; Joshi, K B; Ghosh, Surajit

    2007-11-01

    Emerging concepts in the construction of nanostructures hold immense potential in the areas of drug delivery and targeting. Such nanoscopic assemblies/structures, similar to natural proteins and self-associating systems, may lead to the formation of programmable soft structures with expanded drug delivery options and the capability to circumvent first-pass metabolism. This article aims to illustrate key recent developments and innovative bioinspired design paradigms pertaining to peptide-containing self-assembled tubular and vesicular soft structures. Soft structures are composed of components that self-assemble to reveal diverse morphologies stabilized by weak, noncovalent interactions. Morphological properties of such structures and their ability to encapsulate drugs, biologicals and bioactive small molecules, with the promise of targeted delivery, are discussed.

  14. Solar lighting system delivery models for rural areas in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Koirala, Binod Prasad; Ortiz, Brisa [Freiburg Univ. (DE). Center for Renewable Energy (ZEE); Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Modi, Anish [KTH Royal Inst. of Technology, Stockholm (Sweden); Mathur, Jyotirmay [Malaviya National Institute of Technology, Jaipur (India); Kafle, Nashib [Alternative Energy Promotion Center (AEPC), Kathmandu (Nepal)

    2011-07-01

    Many rural areas in developing countries will not have electricity access from the central grid for several years to come. Autonomous Solar Lighting Systems (SLS) are attractive and enviromentally friendly options for replacing kerosene lamps and providing basic lighting services to such areas. In order to highlight the benefits of these technologies, analysis of reduction in indoor air pollution due to replacement of kerosene lamp by SLS has been carried out. Use of SLS in place of kerosene lamps saves an equivalent of 1341 kg CO{sub 2} emissions per annum from each household. If a suitable mechanism is created, this amount of GHG emissions saving could alone be sufficient to finance solar lighting system for rural households. However, these technologies have not reached most of the poor population. In order to guarantee the access of solar lighting to the people at the Base of the Pyramid (BOP), strengths of different organizations working in the rural areas should be combined together to form successful business models. This paper will discuss business models to disseminate such services to needy people. A comparative study of SLS delivery models based on cash, credit, leasing, subsidy and service is performed. In addition, SWOT analysis for each model is employed. Further, Case studies of few projects to elaborate different models are also presented. If suitable business models for its delivery to rural people are considered, solar lighting systems are viable for providing basic lighting needs of rural areas in developing countries. (orig.)

  15. Rationalising polymer selection for supersaturated film forming systems produced by an aerosol spray for the transdermal delivery of methylphenidate.

    Science.gov (United States)

    Edwards, A; Qi, S; Liu, F; Brown, M B; McAuley, W J

    2017-05-01

    Film forming systems offer a number of advantages for topical and transdermal drug delivery, in particular enabling production of a supersaturated state which can greatly improve drug absorption and bioavailability. However the suitability of individual film forming polymers to stabilise the supersaturated state and optimise delivery of drugs is not well understood. This study reports the use of differential scanning calorimetry (DSC) to measure the solubility of methylphenidate both as the free base and as the hydrochloride salt in two polymethacrylate copolymers, Eudragit RS (EuRS) and Eudragit E (EuE) and relates this to the ability of films formed using these polymers to deliver methylphenidate across a model membrane. EuRS provided greater methylphenidate delivery when the drug was formulated as the free base in comparison EuE because the lower solubility of the drug in EuRS provided a higher degree of drug saturation in the polymeric film. In contrast EuE provided greater delivery of methylphenidate hydrochloride as EuRS could not prevent its crystallisation from a supersaturated state. Methylphenidate flux across the membrane could be directly related to degree of saturation of the drug in the film formulation as estimated by the drug solubility in the individual polymers demonstrating the importance of drug solubility in the polymer included in film forming systems for topical/transdermal drug delivery. In addition DSC has been demonstrated to be a useful tool for determining the solubility of drugs in polymers used in film forming systems and the approaches outlined here are likely to be useful for predicting the suitability of polymers for particular drugs in film forming transdermal drug delivery systems. Copyright © 2017. Published by Elsevier B.V.

  16. Formulation and Evaluation of Two-Pulse Drug Delivery System of ...

    African Journals Online (AJOL)

    Purpose: To develop a pH-controlled two-pulse drug delivery system of amoxicillin in order to overcome ... delivery have lately been applied in developing a .... Note: Each tablet contained 2 mg each of magnesium stearate and colloidal silicon dioxide; total weight of each ..... and Manufacture of Medicines, 3rd edn, Elsevier,.

  17. SU-D-201-03: During-Treatment Delivery Monitoring System for TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q; Read, P [University of Virginia, Charlottesville, VA (United States)

    2016-06-15

    Purpose: Multiple error pathways can lead to delivery errors during the treatment course that cannot be caught with pre-treatment QA. While in vivo solutions are being developed for linacs, no such solution exists for tomotherapy. The purpose of this study is to develop a near real-time system for tomotherapy that can monitor the delivery and dose accumulation process during the treatment-delivery, which enable the user to assess the impact of delivery variations and/or errors and to interrupt the treatment if necessary. Methods: A program running on a tomotherapy planning station fetches the raw DAS data during treatment. Exit detector data is extracted as well as output, gantry angle, and other machine parameters. For each sample, the MLC open-close state is determined. The delivered plan is compared with the original plan via a Monte Carlo dose engine which transports fluence deviations from a pre-treatment Monte Carlo run. A report containing the difference in fluence, dose and DVH statistics is created in html format. This process is repeated until the treatment is completed. Results: Since we only need to compute the dose for the difference in fluence for a few projections each time, dose with 2% statistical uncertainty can be computed in less than 1 second on a 4-core cpu. However, the current bottleneck in this near real-time system is the repeated fetching and processing the growing DAS data file throughout the delivery. The frame rate drops from 10Hz at the beginning of treatment to 5Hz after 3 minutes and to 2Hz after 10 minutes. Conclusion: A during-treatment delivery monitor system has been built to monitor tomotherapy treatments. The system improves patient safety by allowing operators to assess the delivery variations and errors during treatment delivery and adopt appropriate actions.

  18. SU-D-201-03: During-Treatment Delivery Monitoring System for TomoTherapy

    International Nuclear Information System (INIS)

    Chen, Q; Read, P

    2016-01-01

    Purpose: Multiple error pathways can lead to delivery errors during the treatment course that cannot be caught with pre-treatment QA. While in vivo solutions are being developed for linacs, no such solution exists for tomotherapy. The purpose of this study is to develop a near real-time system for tomotherapy that can monitor the delivery and dose accumulation process during the treatment-delivery, which enable the user to assess the impact of delivery variations and/or errors and to interrupt the treatment if necessary. Methods: A program running on a tomotherapy planning station fetches the raw DAS data during treatment. Exit detector data is extracted as well as output, gantry angle, and other machine parameters. For each sample, the MLC open-close state is determined. The delivered plan is compared with the original plan via a Monte Carlo dose engine which transports fluence deviations from a pre-treatment Monte Carlo run. A report containing the difference in fluence, dose and DVH statistics is created in html format. This process is repeated until the treatment is completed. Results: Since we only need to compute the dose for the difference in fluence for a few projections each time, dose with 2% statistical uncertainty can be computed in less than 1 second on a 4-core cpu. However, the current bottleneck in this near real-time system is the repeated fetching and processing the growing DAS data file throughout the delivery. The frame rate drops from 10Hz at the beginning of treatment to 5Hz after 3 minutes and to 2Hz after 10 minutes. Conclusion: A during-treatment delivery monitor system has been built to monitor tomotherapy treatments. The system improves patient safety by allowing operators to assess the delivery variations and errors during treatment delivery and adopt appropriate actions.

  19. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  20. Police and Community-partnered Delivery System to Address ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Delivery System to Address Violence Against Women in the Punjab (India) ... Education, Scheduled Castes and Other Back Classes, and Land Rural Development. ... IWRA/IDRC webinar on climate change and adaptive water management.

  1. Components of Maternal Healthcare Delivery System Contributing to ...

    African Journals Online (AJOL)

    Components of Maternal Healthcare Delivery System Contributing to Maternal Deaths ... transcripts were analyzed using a directed approach to content analysis. Excerpts were categorized according to three main components of the maternal ...

  2. MicroRNA delivery for regenerative medicine.

    Science.gov (United States)

    Peng, Bo; Chen, Yongming; Leong, Kam W

    2015-07-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Potential of Cationic Liposomes as Adjuvants/Delivery Systems for Tuberculosis Subunit Vaccines.

    Science.gov (United States)

    Khademi, Farzad; Taheri, Ramezan Ali; Momtazi-Borojeni, Amir Abbas; Farnoosh, Gholamreza; Johnston, Thomas P; Sahebkar, Amirhossein

    2018-04-27

    The weakness of the BCG vaccine and its highly variable protective efficacy in controlling tuberculosis (TB) in different age groups as well as in different geographic areas has led to intense efforts towards the development and design of novel vaccines. Currently, there are several strategies to develop novel TB vaccines. Each strategy has its advantages and disadvantages. However, the most important of these strategies is the development of subunit vaccines. In recent years, the use of cationic liposome-based vaccines has been considered due to their capacity to elicit strong humoral and cellular immune responses against TB infections. In this review, we aim to evaluate the potential for cationic liposomes to be used as adjuvants/delivery systems for eliciting immune responses against TB subunit vaccines. The present review shows that cationic liposomes have extensive applications either as adjuvants or delivery systems, to promote immune responses against Mycobacterium tuberculosis (Mtb) subunit vaccines. To overcome several limitations of these particles, they were used in combination with other immunostimulatory factors such as TDB, MPL, TDM, and Poly I:C. Cationic liposomes can provide long-term storage of subunit TB vaccines at the injection site, confer strong electrostatic interactions with APCs, potentiate both humoral and cellular (CD4 and CD8) immune responses, and induce a strong memory response by the immune system. Therefore, cationic liposomes can increase the potential of different TB subunit vaccines by serving as adjuvants/delivery systems. These properties suggest the use of cationic liposomes to produce an efficient vaccine against TB infections.

  4. In vitro characterization of microcontainers as an oral drug delivery system

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Keller, Stephan Sylvest; Jacobsen, J.

    We here present in vitro studies showing the promise of microcontainers (fabricated in either SU-8 or Poly(lactic acid) (PLLA)) as an oral drug delivery system for the poorly watersoluble drug, furosemide.......We here present in vitro studies showing the promise of microcontainers (fabricated in either SU-8 or Poly(lactic acid) (PLLA)) as an oral drug delivery system for the poorly watersoluble drug, furosemide....

  5. Hidden Costs of Hospital Based Delivery from Two Tertiary Hospitals in Western Nepal.

    Directory of Open Access Journals (Sweden)

    Jeevan Acharya

    Full Text Available Hospital based delivery has been an expensive experience for poor households because of hidden costs which are usually unaccounted in hospital costs. The main aim of this study was to estimate the hidden costs of hospital based delivery and determine the factors associated with the hidden costs.A hospital based cross-sectional study was conducted among 384 post-partum mothers with their husbands/house heads during the discharge time in Manipal Teaching Hospital and Western Regional Hospital, Pokhara, Nepal. A face to face interview with each respondent was conducted using a structured questionnaire. Hidden costs were calculated based on the price rate of the market during the time of the study.The total hidden costs for normal delivery and C-section delivery were 243.4 USD (US Dollar and 321.6 USD respectively. Of the total maternity care expenditures; higher mean expenditures were found for food & drinking (53.07%, clothes (9.8% and transport (7.3%. For postpartum women with their husband or house head, the total mean opportunity cost of "days of work loss" were 84.1 USD and 81.9 USD for normal delivery and C-section respectively. Factors such as literate mother (p = 0.007, employed house head (p = 0.011, monthly family income more than 25,000 NRs (Nepalese Rupees (p = 0.014, private hospital as a place of delivery (p = 0.0001, C-section as a mode of delivery (p = 0.0001, longer duration (>5days of stay in hospital (p = 0.0001, longer distance (>15km from house to hospital (p = 0.0001 and longer travel time (>240 minutes from house to hospital (p = 0.007 showed a significant association with the higher hidden costs (>25000 NRs.Experiences of hidden costs on hospital based delivery and opportunity costs of days of work loss were found high. Several socio-demographic factors, delivery related factors (place and mode of delivery, length of stay, distance from hospital and travel time were associated with hidden costs. Hidden costs can be a

  6. Hidden Costs of Hospital Based Delivery from Two Tertiary Hospitals in Western Nepal.

    Science.gov (United States)

    Acharya, Jeevan; Kaehler, Nils; Marahatta, Sujan Babu; Mishra, Shiva Raj; Subedi, Sudarshan; Adhikari, Bipin

    2016-01-01

    Hospital based delivery has been an expensive experience for poor households because of hidden costs which are usually unaccounted in hospital costs. The main aim of this study was to estimate the hidden costs of hospital based delivery and determine the factors associated with the hidden costs. A hospital based cross-sectional study was conducted among 384 post-partum mothers with their husbands/house heads during the discharge time in Manipal Teaching Hospital and Western Regional Hospital, Pokhara, Nepal. A face to face interview with each respondent was conducted using a structured questionnaire. Hidden costs were calculated based on the price rate of the market during the time of the study. The total hidden costs for normal delivery and C-section delivery were 243.4 USD (US Dollar) and 321.6 USD respectively. Of the total maternity care expenditures; higher mean expenditures were found for food & drinking (53.07%), clothes (9.8%) and transport (7.3%). For postpartum women with their husband or house head, the total mean opportunity cost of "days of work loss" were 84.1 USD and 81.9 USD for normal delivery and C-section respectively. Factors such as literate mother (p = 0.007), employed house head (p = 0.011), monthly family income more than 25,000 NRs (Nepalese Rupees) (p = 0.014), private hospital as a place of delivery (p = 0.0001), C-section as a mode of delivery (p = 0.0001), longer duration (>5days) of stay in hospital (p = 0.0001), longer distance (>15km) from house to hospital (p = 0.0001) and longer travel time (>240 minutes) from house to hospital (p = 0.007) showed a significant association with the higher hidden costs (>25000 NRs). Experiences of hidden costs on hospital based delivery and opportunity costs of days of work loss were found high. Several socio-demographic factors, delivery related factors (place and mode of delivery, length of stay, distance from hospital and travel time) were associated with hidden costs. Hidden costs can be a

  7. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  8. Chitosan magnetic nanoparticles for drug delivery systems.

    Science.gov (United States)

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  9. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis

    International Nuclear Information System (INIS)

    DYKES, A.A.

    2000-01-01

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O and M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis

  10. Delivery systems for biopharmaceuticals. Part II: Liposomes, Micelles, Microemulsions and Dendrimers.

    Science.gov (United States)

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Biopharmaceuticals are a generation of drugs that include peptides, proteins, nucleic acids and cell products. According to their particular molecular characteristics (e.g. high molecular size, susceptibility to enzymatic activity), these products present some limitations for administration and usually parenteral routes are the only option. To avoid these limitations, different colloidal carriers (e.g. liposomes, micelles, microemulsions and dendrimers) have been proposed to improve biopharmaceuticals delivery. Liposomes are promising drug delivery systems, despite some limitations have been reported (e.g. in vivo failure, poor long-term stability and low transfection efficiency), and only a limited number of formulations have reached the market. Micelles and microemulsions require more studies to exclude some of the observed drawbacks and guarantee their potential for use in clinic. According to their peculiar structures, dendrimers have been showing good results for nucleic acids delivery and a great development of these systems during next years is expected. This is the Part II of two review articles, which provides the state of the art of biopharmaceuticals delivery systems. Part II deals with liposomes, micelles, microemulsions and dendrimers.

  11. Role of pressure-sensitive adhesives in transdermal drug delivery systems.

    Science.gov (United States)

    Lobo, Shabbir; Sachdeva, Sameer; Goswami, Tarun

    2016-01-01

    Transdermal drug delivery systems (TDDS) are employed for the delivery of drugs across skin into the systemic circulation. Pressure-sensitive adhesive (PSA) is one of the most critical components used in a TDDS. The primary function of PSA is to help in adhesion of patch to skin, but more importantly it acts as a matrix for the drug and other excipients. Hence, apart from adhesion of the patch, PSA also affects other critical quality attributes of the TDDS such as drug delivery, flux through skin and physical and chemical stability of the finished product. This review article provides a summary of the adhesives used in various types of TDDS. In particular, this review will cover the design types of TDDS, categories of PSAs and their evaluation and regulatory aspects.

  12. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  13. The primipara respons based on individual personality type to the intensity of delivery pain

    Directory of Open Access Journals (Sweden)

    Gita N Sari

    2016-01-01

    Full Text Available Delivery period is one of periods that can cause stress to the mother and the fetus. This period is the natural common phenomenon that for some women subjectively can be considered as pain process that can cause simultaneous anxiety and pain. Psychology research has shown that pain is not only connected to physical respond, the culture that teaches and nurtures us also play important role in coping the pain. These two factors shape different personality for each individual. The objective of this study is to find out the primipara respons based on individual personality type to the intensity of delivery pain. The method of this study was analytical method with survey cross sectional approach. The data was collected prospectively from interview and questionnaire in the same time to find out the correlation between individual personality type and the intensity of delivery pain based on inclusive and exclusive period February 1st 2009 to April 30th 2009. The result with chi-square test and spearman rank test showed significant correlation between individual personality type and the intensity of delivery pain (X2= 8,571 ; p = 0,014. There is the negative correlation between extrovert individual personality and intensity of delivery pain (rs= -0,730; p <0,001, and there is the positive correlation between introvert individual personality type and intensity of delivery pain (rs = 0,726; p <0,001. Based on mann whitney, showed significant difference between extrovert personality type and introverts personality type to intensity of delivery pain (Z M-W: 3,050, p: 0,002. Based on chi-square test showed significant correlation between knowledge based on individual personality type to the intensity of delivery pain (X2= 4,418; p = 0,036 The conclusion of these study are the more extrovert individual personality type the less intense the delivery pain would be, the more introvert individual personality type then the more intense delivery pain would be. The

  14. Drug Delivery and Cosmeceutical Applications of Poly- Lactic Acid Based Novel Constructs - A Review.

    Science.gov (United States)

    Ruiz-Ruiz, Federico; Mancera-Andrade, Elena Ivonne; Parra-Saldivar, Roberto; Keshavarz, Tajalli; Iqbal, Hafiz M N

    2017-01-01

    Poly (lactic acid) (PLA) based novel constructs have been engineered for targeted applications in various biomedical sectors of the modern world. In this context, a special focus has been given to pharmaceutical and cosmeceutical industries. In this review, we extensively reviewed, analyzed and compiled salient information from the authentic bibliographic sources including PubMed, Scopus, Elsevier, Springer, Bentham Science and other scientific databases. A focused review question and inclusion/exclusion criterion were adopted to appraise the quality of retrieved peer-reviewed research literature. Recently, bio-based constructs are being engineered for target applications in different bio- and non-bio sectors of the modern world to address the growing human health-related serious concerns. The utilization of properly designed and structured materials thus allows the creation of a well-defined environment that induces a series of directed measures, and so on. Over the last few years, PLA-based novel constructs have received exceptional attention as potential candidates for various biotechnological and biomedical applications at large and drug delivery in particular. Owing to their unique characteristics including biocompatibility, together with the adjustable thermomechanical and tunable control drug release, PLA has raised interesting applications in many sectors of the medical world. So far, many of such PLA-based bio-constructs have been exploited in drug delivery systems, cosmeceutical products, and therapeutic uses. In recent years, many new applications have been reported for PLA-based materials at the micro- and nano- level, resulting in novel requests for specific drug delivery and cosmeceutical sectors. In summary, this review summarizes recent research on different aspects of PLA and PLA-based novel constructs and their potential biomedical applications. Moreover, with the aid of nanotechnology, PLA has made a positive impact in emerging sectors such as

  15. Using DNA nanotechnology to produce a drug delivery system

    Science.gov (United States)

    Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-03-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  16. Emulsion design for the delivery of β-carotene in complex food systems.

    Science.gov (United States)

    Mao, Like; Wang, Di; Liu, Fuguo; Gao, Yanxiang

    2018-03-24

    β-Carotene has been widely investigated both in the industry and academia, due to its unique bioactive attributes as an antioxidant and pro-vitamin A. Many attempts were made to design delivery systems for β-carotene to improve its dispersant state and chemical stability, and finally to enhance the functionality. Different types of oil-in-water emulsions were proved to be effective delivery systems for lipophilic bioactive ingredients, and intensive studies were performed on β-carotene emulsions in the last decade. Emulsions are thermodynamically unstable, and emulsions with intact structures are preferable in delivering β-carotene during processing and storage. β-Carotene in emulsions with smaller particle size has poor stability, and protein-type emulsifiers and additional antioxidants are effective in protecting β-carotene from degradation. Recent development in the design of protein-polyphenol conjugates has provided a novel approach to improve the stability of β-carotene emulsions. When β-carotene is consumed, its bioaccessibility is highly influenced by the digestion of lipids, and β-carotene in smaller oil droplets containing long-chain fatty acids has a higher bioaccessibility. In order to better deliver β-carotene in complex food products, some novel emulsions with tailor-made structures have been developed, e.g., multilayer emulsions, solid lipid particles, Pickering emulsions. This review summarizes the updated understanding of emulsion-based delivery systems for β-carotene, and how emulsions can be better designed to fulfill the benefits of β-carotene in functional foods.

  17. NIR fluorescent chitosan-based nanoparticles for tracking and delivery of cancer therapeutic molecule in living systems

    Science.gov (United States)

    Suarato, Giulia; Chin, Amanda; Meng, Yizhi

    2013-03-01

    Tumor metastasis is associated with the epithelial-to-mesenchymal transition (EMT), in which cells lose their polarized phenotype to acquire the asymmetry and motility of mesenchymal cells. Among the many molecular determinants for EMT is bone morphogenetic protein-7 (BMP-7), a critical regulator of skeletal tissue formation and kidney development. Current treatments for metastatic cancer primarily involve surgery and chemotherapy, both with considerable side effects. Therefore the goal of our research is to evaluate the ability of BMP-7 to reverse EMT using a delivery system based on glycol chitosan nanoparticles (GCNP), naturally biodegradable. The GCNP are labeled with Cy5.5, a near infrared (NIR) excitable dye that enables non-invasive imaging in living systems. The chitosan shell provides affinity for the cell surface and protection from intracellular enzymes during transport. Preliminary data show that Cy5.5-GCNP vehicles were successfully delivered to murine preosteoblast (MC3T3-E1), rat osteosarcoma (ROS) 17/2.8 and human embryonic kidney (HEK293) cells. Release kinetics using a model protein (BSA) and BMP-7, and the stability of the protein nano-cargo are currently being evaluated. Cell morphology will be examined with immunofluorescence microscopy.

  18. Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol

    Science.gov (United States)

    Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu

    2016-01-01

    The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery.

  19. Use of quality measurement across US dental delivery systems: a qualitative analysis.

    Science.gov (United States)

    Alrqiq, Hosam M; Edelstein, Burton L

    2016-03-01

    Dentistry is increasingly challenged by payers and the public to demonstrate quality measurement (QM) activities that substantiate value. Unknown is how various components of the US oral health-care financing and delivery systems have adopted QM. The objective of this study is to explore QM activities by US dental delivery, management, financing, and related organizations. Using a structured interview guide based on a novel conceptual framework that incorporates factors influencing QM intention, adoption, and implementation, 19 key informant interviews were conducted. Informants represented safety net delivery programs (health center, nonprofit mobile, hospital-based, Veterans Administration, and tribal dental programs), private delivery organizations (private practice, closed panel HMO, and for-profit mobile dental programs), training programs that deliver care (dental and dental therapy programs), management organizations (private and Medicaid group practice management companies), care financing organizations (Medicaid managed care plan, state Medicaid program, dental benefits companies), and dental quality organizations (institute and dental professional organization). Interviews were transcribed and analyzed qualitatively. Informants report wide variation in the intensity of QM efforts with organizational leadership cited as most influential. Motivation to adopt QM efforts is more often internal than imposed. Data management and information technology both facilitate and limit QM activities. QM activities are associated with operational improvements including use of guidelines and refinements of mission. Organizational type and size appear to influence QM programs. The current status of QM is highly variable across dental organizations because organizational leadership, needs, and requirements vary according to mission and structure. © 2015 American Association of Public Health Dentistry.

  20. A New Concept of a Drug Delivery System with Improved Precision and Patient Safety Features

    Directory of Open Access Journals (Sweden)

    Florian Thoma

    2014-12-01

    Full Text Available This paper presents a novel dosing concept for drug delivery based on a peristaltic piezo-electrically actuated micro membrane pump. The design of the silicon micropump itself is straight-forward, using two piezoelectrically actuated membrane valves as inlet and outlet, and a pump chamber with a piezoelectrically actuated pump membrane in-between. To achieve a precise dosing, this micropump is used to fill a metering unit placed at its outlet. In the final design this metering unit will be made from a piezoelectrically actuated inlet valve, a storage chamber with an elastic cover membrane and a piezoelectrically actuated outlet valve, which are connected in series. During a dosing cycle the metering unit is used to adjust the drug volume to be dispensed before delivery and to control the actually dispensed volume. To simulate the new drug delivery concept, a lumped parameter model has been developed to find the decisive design parameters. With the knowledge taken from the model a drug delivery system is designed that includes a silicon micro pump and, in a first step, a silicon chip with the storage chamber and two commercial microvalves as a metering unit. The lumped parameter model is capable to simulate the maximum flow, the frequency response created by the micropump, and also the delivered volume of the drug delivery system.

  1. Updates on smart polymeric carrier systems for protein delivery.

    Science.gov (United States)

    El-Sherbiny, Ibrahim; Khalil, Islam; Ali, Isra; Yacoub, Magdi

    2017-10-01

    Smart materials are those materials that are responsive to chemical (organic molecules, chemical agents or specific agents), biochemical (protein, enzymes, growth factors, substrates or ligands), physical (electric field, magnetic field, temperature, pH, ionic strength or radiation) or mechanical (pressure or mechanical stress) signals. These responsive materials interact with the stimuli by changing their properties or conformational structures in a predictable manner. Recently, smart polymers have been utilized in various biomedical applications. Particularly, they have been used as a platform to synthesize stimuli-responsive systems that could deliver therapeutics to a specific site for a specific period with minimal adverse effects. For instance, stimuli-responsive polymers-based systems have been recently reported to deliver different bioactive molecules such as carbohydrates (heparin), chemotherapeutic agents (doxorubicin), small organic molecules (anti-coagulants), nucleic acids (siRNA), and proteins (growth factors and hormones). Protein therapeutics played a fundamental role in treatment of various chronic and some autoimmune diseases. For instance insulin has been used in treatment of diabetes. However, being a protein in nature, insulin delivery is limited by its instability, short half-life, and easy denaturation when administered orally. To overcome these challenges, and as highlighted in this review article, much research efforts have been recently devoted to design and develop convenient smart controlled nanosystems for protein therapeutics delivery.

  2. Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo.

    Science.gov (United States)

    Ma, Da; Tian, Shaomin; Baryza, Jeremy; Luft, J Christopher; DeSimone, Joseph M

    2015-10-05

    To achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly uniform size and shape for systemic siRNA delivery in vivo. "Blank" hydrogel nanoparticles with high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle replication in nonwetting templates). Subsequently, siRNA was conjugated to "blank" nanoparticles via a disulfide linker with a high loading ratio of up to 18 wt %, followed by surface modification to enhance transfection. This fabrication process could be easily scaled up to prepare large quantity of hydrogel nanoparticles. By controlling hydrogel composition, surface modification, and siRNA loading ratio, siRNA conjugated nanoparticles were highly tunable to achieve high transfection efficiency in vitro. FVII-siRNA conjugated nanoparticles were further stabilized with surface coating for in vivo siRNA delivery to liver hepatocytes, and successful gene silencing was demonstrated at both mRNA and protein levels.

  3. Flexible power delivery system and its intelligent functions

    International Nuclear Information System (INIS)

    Glamochanin, Vlastimir; Andonov, Dragan

    1996-01-01

    This paper presents some of the features and capabilities of the novel energy distribution system called FRIENDS. The main FRIENDS objective is distribution system reliability, with flexible system structure reconfiguration, inclusion of dispersed energy generation systems. Altogether, it represents a new concept of reliable and economic electric power delivery to end users. The FRIENDS project is a challenge for future research and development, including new technology and devices for the implementation of such an integrated system. (author)

  4. [Recent technical advances in portable oxygen delivery systems].

    Science.gov (United States)

    Machida, K; Kawabe, Y; Mori, M; Haga, T

    1992-08-01

    According to a Japanese national survey (June 30, 1990), the number of patients receiving home oxygen therapy (HOT) has been greater than 18,000 since March 1985, when HOT was first covered by health insurance. The oxygen concentrator, especially the molecular sieve type, is the most common method of delivery (more than 90%). In April 1988, the portable oxygen cylinder was acknowledged by health insurance, and the liquid oxygen supply system in April 1990. Three types of portable oxygen delivery systems are available; oxygen cyclinder, liquid oxygen system, and oxygen concentrator (membrane type), of which the oxygen cylinder is most commonly used. In our hospital, portable oxygen supply systems were used in 80% of 168 HOT cases in 1990, and the use of 400 L aluminum oxygen cylinders at a flow rate of 1-2 L/min has been most popular. There is an strong desire from patients for lighter portable oxygen supply system of longer duration. In 19 patients with chronic respiratory failure, we evaluated a newly designed demand oxygen delivery system (DODS), which weighs 2.4 kg including the DOD device (TER-20 Teijin), 1.1 L oxygen cylinder made of ultressor, nasal cannula, and carrier. Arterial blood gases at rest (room air) were PaO2 61.9 +/- 6.3 torr, PaCO2 63.8 +/- 9.4 torr and pH 7.40 +/- 0.04. A crossover trial was performed under three conditions; breathing room air with no weight, and pulse oxygen flow and continuous oxygen flow each carrying 2.4 kg of weight. Both 6 minute walking (E1) and walking on a slow speed treadmill (E2) were studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Nanoparticle-Based Delivery System for Biomedical Applications of RNAi

    DEFF Research Database (Denmark)

    Yang, Chuanxu

    RNA interference (RNAi) is a post-transcriptional gene silencing process triggered by double-strand RNA, including synthetic short interfering RNA (siRNA) and endogenous microRNA (miRNA). RNAi has attracted great attention for developing a new class of therapeutics, due to its capability to speci......RNA/miRNA and transport them to the action site in the target cells. This thesis describes the development of various nanocarriers for siRNA/miRNA delivery and investigate their potential biomedical applications including: anti-inflammation, tissue engineering and cancer...

  6. Thiomers: potential excipients for non-invasive peptide delivery systems.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas; Krauland, Alexander H; Leitner, Verena M; Palmberger, Thomas

    2004-09-01

    In recent years thiolated polymers or so-called thiomers have appeared as a promising alternative in the arena of non-invasive peptide delivery. Thiomers are generated by the immobilisation of thiol-bearing ligands to mucoadhesive polymeric excipients. By formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of these polymers are improved up to 130-fold. Due to formation of inter- and intramolecular disulfide bonds within the thiomer itself, dosage forms such as tablets or microparticles display strong cohesive properties resulting in comparatively higher stability, prolonged disintegration times and a more controlled release of the embedded peptide drug. The permeation of peptide drugs through mucosa can be improved by the use of thiolated polymers. Additionally some thiomers exhibit improved inhibitory properties towards peptidases. The efficacy of thiomers in non-invasive peptide delivery could be demonstrated by various in vivo studies. Tablets comprising a thiomer and pegylated insulin, for instance, resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Furthermore, a pharmacological efficacy of 1.3% was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Human growth hormone in a thiomer-gel was applied nasally to rats and led to a bioavailability of 2.75%. In all these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. According to these results drug carrier systems based on thiomers seem to be a promising tool for non-invasive peptide drug delivery.

  7. Technical Evaluation Report 5: Classification of DE Delivery Systems

    Directory of Open Access Journals (Sweden)

    Diane Belyk

    2002-01-01

    Full Text Available For their optimal use in distance education (DE, online educational applications need to be integrated within a comprehensive course management system (CMS. Such systems are server-based software that supports the development, delivery, administration, and evaluation of online learning environments. The selection of an appropriate CMS should be considered from the multiple perspectives of the student, the course developer, the course instructor/ tutor, the technical support staff, and the DE institution’s administration. The current evaluation of CMS packages was conducted by a team of individuals with experience and contacts in relation to each of these DE user types. The report compares a series of CMS packages in terms of their range of features, and in relation to their satisfaction of international online education standards.

  8. Preparation and evaluation of nattokinase-loaded self-double-emulsifying drug delivery system

    OpenAIRE

    Wang, Xiaona; Jiang, Sifan; Wang, Xinyue; Liao, Jie; Yin, Zongning

    2015-01-01

    In the present study, we prepared nattokinase-loaded self-double-emulsifying drug delivery system (SDEDDS) and investigated its preliminary pharmacodynamics. The type and concentration of oil phase, inner aqueous phase and emulsifier were screened to prepare optimum nattokinase-loaded SDEDDS. Next, the optimum formulations were characterized based on microstructure, volume-weighted mean droplet size, self-emulsifying rate, yield, storage stability, in vitro release and in vivo pharmacodynamic...

  9. Nursing Services Delivery Theory: an open system approach.

    Science.gov (United States)

    Meyer, Raquel M; O'Brien-Pallas, Linda L

    2010-12-01

    This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a 'black box' that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. A search of CINAHL and Business Source Premier for the years 1980-2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. THE Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. © 2010 Blackwell Publishing Ltd.

  10. Synthesis and characterization of modified starch/polybutadiene as novel transdermal drug delivery system.

    Science.gov (United States)

    Saboktakin, Mohammad Reza; Akhyari, Shahab; Nasirov, Fizuli A

    2014-08-01

    Transdermal drug delivery systems are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. Polymer matrix, drug, permeation enhancers are the main components of transdermal drug delivery systems. The objective of the present study was to develop the modified starch and 1,4-cis polybutadiene nanoparticles as novel polymer matrix system. We have been studied the properties of a novel transdermal drug delivery system with clonidine as drug model. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Photoacoustic microscopy imaging for microneedle drug delivery

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2018-02-01

    The recent development of novel transdermal drug delivery systems (TDDS) using microneedle technology allows micron-sized conduits to be formed within the outermost skin layers attracting keen interest in skin as an interface for localized and systemic delivery of therapeutics. In light of this, researchers are using microneedles as tools to deliver nanoparticle formulations to targeted sites for effective therapy. However, in such studies the use of traditional histological methods are employed for characterization and do not allow for the in vivo visualization of drug delivery mechanism. Hence, this study presents a novel imaging technology to characterize microneedle based nanoparticle delivery systems using optical resolution-photoacoustic microscopy (OR-PAM). In this study in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and the spatial distribution of the nanoparticles in the tissue was successfully illustrated. Characterization of parameters that are relevant in drug delivery studies such as penetration depth, efficiency of delivered gold nanoparticles were monitored using the system. Photoacoustic microscopy proves an ideal tool for the characterization studies of microneedle properties and the studies shows microneedles as an ideal tool for precise and controlled drug delivery.

  12. Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Rishab Shyam

    2015-01-01

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease currently lacking effective treatment. Efficient delivery of siRNA via nanoparticles may emerge as a viable therapeutic approach to treat AD and other central nervous system disorders. We report here the use of a linear polyethyleneimine (LPEI-g-polyethylene glycol (PEG copolymer-based micellar nanoparticle system to deliver siRNA targeting BACE1 and APP, two therapeutic targets of AD. Using LPEI-siRNA nanoparticles against either BACE1 or APP in cultured mouse neuroblastoma (N2a cells, we observe selective knockdown, respectively, of BACE1 or APP. The encapsulation of siRNA by LPEI-g-PEG carriers, with different grafting degrees of PEG, leads to the formation of micellar nanoparticles with distinct morphologies, including worm-like, rod-like, or spherical nanoparticles. By infusing these shaped nanoparticles into mouse lateral ventricles, we show that rod-shaped nanoparticles achieved the most efficient knockdown of BACE1 in the brain. Furthermore, such knockdown is evident in spinal cords of these treated mice. Taken together, our findings indicate that the shape of siRNA-encapsulated nanoparticles is an important determinant for their delivery and gene knockdown efficiency in the central nervous system.

  13. Novel electric power-driven hydrodynamic injection system for gene delivery: safety and efficacy of human factor IX delivery in rats.

    Science.gov (United States)

    Yokoo, T; Kamimura, K; Suda, T; Kanefuji, T; Oda, M; Zhang, G; Liu, D; Aoyagi, Y

    2013-08-01

    The development of a safe and reproducible gene delivery system is an essential step toward the clinical application of the hydrodynamic gene delivery (HGD) method. For this purpose, we have developed a novel electric power-driven injection system called the HydroJector-EM, which can replicate various time-pressure curves preloaded into the computer program before injection. The assessment of the reproducibility and safety of gene delivery system in vitro and in vivo demonstrated the precise replication of intravascular time-pressure curves and the reproducibility of gene delivery efficiency. The highest level of luciferase expression (272 pg luciferase per mg of proteins) was achieved safely using the time-pressure curve, which reaches 30 mm Hg in 10 s among various curves tested. Using this curve, the sustained expression of a therapeutic level of human factor IX protein (>500 ng ml(-1)) was maintained for 2 months after the HGD of the pBS-HCRHP-FIXIA plasmid. Other than a transient increase in liver enzymes that recovered in a few days, no adverse events were seen in rats. These results confirm the effectiveness of the HydroJector-EM for reproducible gene delivery and demonstrate that long-term therapeutic gene expression can be achieved by automatic computer-controlled hydrodynamic injection that can be performed by anyone.

  14. Gamma- scintigraphy in the evaluation of drug delivery systems

    International Nuclear Information System (INIS)

    Shahhosseini, S.; Beiki, D.; Eftekhari, M.

    2003-01-01

    Gamma-scintigraphy is applied extensively in the development and evaluation of pharmaceutical delivery systems, particularly for monitoring formulations in the gastrointestinal and respiratory tracts. The radiolabelling is generally achieved by the incorporation of an appropriate radionuclide such as technetium-99m or indium-111 into the formulation or by addition of a non- radioactive isotope such as samarium-152 followed by neutron activation of the final product. Drug delivery systems can be tested in vitro using various techniques like dissolution rate. Since in vitro testing methods are not predictive of in vivo results, such systems should be evaluated in vivo using animal models, especially oral dosage forms. Altered gastrointestinal transit due to individual variation, physiologic factors, or the presence of food may influence bioavailability. Distribution or drug release may be premature or delayed in vivo. Similarly, altered deposition or clearance from other routes of administration such as nasal, ocular, or inhalation may explain drug absorption anomalies. Therefore, there is a growing tendency for new drug delivery systems to be tested, whenever possible, in human subjects in a so called phase 1 clinical evaluation. Gamma- scintigraphy combined with knowledge of physiological and dosage from design can help to identify some of these variables. the resulting insight can be used to accelerate the formulation development process and to ensure success in early clinical trials

  15. SU-G-BRB-11: On the Sensitivity of An EPID-Based 3D Dose Verification System to Detect Delivery Errors in VMAT Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P; Olaciregui-Ruiz, I; Mijnheer, B; Mans, A; Rozendaal, R [Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Noord-Holland (Netherlands)

    2016-06-15

    Purpose: To investigate the sensitivity of an EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. Methods: For this study 41 EPID-reconstructed 3D in vivo dose distributions of 15 different VMAT plans (H&N, lung, prostate and rectum) were selected. To simulate the effect of delivery errors, their TPS plans were modified by: 1) scaling of the monitor units by ±3% and ±6% and 2) systematic shifting of leaf bank positions by ±1mm, ±2mm and ±5mm. The 3D in vivo dose distributions where then compared to the unmodified and modified treatment plans. To determine the detectability of the various delivery errors, we made use of a receiver operator characteristic (ROC) methodology. True positive and false positive rates were calculated as a function of the γ-parameters γmean, γ1% (near-maximum γ) and the PTV dose parameter ΔD{sub 50} (i.e. D{sub 50}(EPID)-D{sub 50}(TPS)). The ROC curve is constructed by plotting the true positive rate vs. the false positive rate. The area under the ROC curve (AUC) then serves as a measure of the performance of the EPID dosimetry system in detecting a particular error; an ideal system has AUC=1. Results: The AUC ranges for the machine output errors and systematic leaf position errors were [0.64 – 0.93] and [0.48 – 0.92] respectively using γmean, [0.57 – 0.79] and [0.46 – 0.85] using γ1% and [0.61 – 0.77] and [ 0.48 – 0.62] using ΔD{sub 50}. Conclusion: For the verification of VMAT deliveries, the parameter γmean is the best discriminator for the detection of systematic leaf position errors and monitor unit scaling errors. Compared to γmean and γ1%, the parameter ΔD{sub 50} performs worse as a discriminator in all cases.

  16. NOVEL APROACHES ON BUCCAL MUCOADHESIVE DRUG DELIVERY SYSTEM

    OpenAIRE

    Dibyalochan Mohanty* , C. Gurulatha, Dr.Vasudha Bakshi, B. Mavya

    2018-01-01

    Among novel drug delivery system ,Buccal mucoadhesive systems have attracted great attention in recent years due to their ability to adhere and remain on the oral mucosa and to release their drug content gradually ,bioadhesion refers to any bond formed between two biological surface or a bond between a biological and a systemic surface. Buccal mucosa is preferred for both systemic and local drug action. The mucosa has a rich blood supply and it relatively permeable. Buccal mucoadhesive films ...

  17. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  18. Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Ananda M. Barbosa

    2016-12-01

    Full Text Available In this work, cellulose nanocrystals (CNCs were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus. The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity.

  19. Electronic nicotine delivery systems: a research agenda.

    Science.gov (United States)

    Etter, Jean-François; Bullen, Chris; Flouris, Andreas D; Laugesen, Murray; Eissenberg, Thomas

    2011-05-01

    Electronic nicotine delivery systems (ENDS, also called electronic cigarettes or e-cigarettes) are marketed to deliver nicotine and sometimes other substances by inhalation. Some tobacco smokers report that they used ENDS as a smoking cessation aid. Whether sold as tobacco products or drug delivery devices, these products need to be regulated, and thus far, across countries and states, there has been a wide range of regulatory responses ranging from no regulation to complete bans. The empirical basis for these regulatory decisions is uncertain, and more research on ENDS must be conducted in order to ensure that the decisions of regulators, health care providers and consumers are based on science. However, there is a dearth of scientific research on these products, including safety, abuse liability and efficacy for smoking cessation. The authors, who cover a broad range of scientific expertise, from basic science to public health, suggest research priorities for non-clinical, clinical and public health studies. They conclude that the first priority is to characterize the safety profile of these products, including in long-term users. If these products are demonstrated to be safe, their efficacy as smoking cessation aids should then be tested in appropriately designed trials. Until these studies are conducted, continued marketing constitutes an uncontrolled experiment and the primary outcome measure, poorly assessed, is user health. Potentially, this research effort, contributing to the safety and efficacy of new smoking cessation devices and to the withdrawal of dangerous products, could save many lives.

  20. Drug delivery matrices based on scleroglucan/alginate/borax gels.

    Science.gov (United States)

    Matricardi, Pietro; Onorati, Ilenia; Coviello, Tommasina; Alhaique, Franco

    2006-06-19

    The aim of this work is to obtain a new drug delivery matrix, especially designed for protein delivery, based on biodegradable and biocompatible polymers, and to describe its main physico-chemical properties. A polysaccharide based semi-interpenetrating polymer network (semi-IPN) was built up, composed by sodium alginate chains interspersed into a scleroglucan/borax hydrogel network. Tablets were obtained by compression of the resulting freeze-dried hydrogel. The different release and physico-chemical properties possessed by the two starting polymers in various aqueous media were combined in the new matrix. In this work, description is given of the in vitro ability of the matrix to deliver in a controlled manner a protein, Myoglobin, in distilled water, simulated gastric fluid and simulated intestinal fluid; the release, simulating a gastric passage, followed by an enteric delivery, was also carried out. Water uptake data, colorimetric experiments and scanning electron microscopy images are given for the characterization of this new solid dosage form; the importance of the borax presence is also discussed.