WorldWideScience

Sample records for delivering therapeutic genes

  1. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules

    Science.gov (United States)

    El-Fiqi, Ahmed; Kim, Tae-Hyun; Kim, Meeju; Eltohamy, Mohamed; Won, Jong-Eun; Lee, Eun-Jung; Kim, Hae-Won

    2012-11-01

    Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration.Inorganic bioactive nanomaterials are attractive for hard tissue regeneration

  2. Therapeutic Silencing of KRAS using Systemically Delivered siRNAs

    Science.gov (United States)

    Pecot, Chad V.; Wu, Sherry Y.; Bellister, Seth; Filant, Justyna; Rupaimoole, Rajesha; Hisamatsu, Takeshi; Bhattacharya, Rajat; Maharaj, Anshumaan; Azam, Salma; Rodriguez-Aguayo, Cristian; Nagaraja, Archana S.; Morelli, Maria Pia; Gharpure, Kshipra M.; Waugh, Trent A.; Gonzalez-Villasana, Vianey; Zand, Behrouz; Dalton, Heather J.; Kopetz, Scott; Lopez-Berestein, Gabriel; Ellis, Lee M.; Sood, Anil K.

    2015-01-01

    Despite being amongst the most common oncogenes in human cancer, to date there are no effective clinical options for inhibiting KRAS activity. We investigated whether systemically delivered KRAS siRNAs have therapeutic potential in KRAS mutated cancer models. We identified KRAS siRNA sequences with notable potency in knocking-down KRAS expression. Using lung and colon adenocarcinoma cell lines, we assessed anti-proliferative effects of KRAS silencing in vitro. For in vivo experiments, we used a nano-liposomal delivery platform, DOPC, for systemic delivery of siRNAs. Various lung and colon cancer models were utilized to determine efficacy of systemic KRAS siRNA based on tumor growth, development of metastasis and down-stream signaling. KRAS siRNA sequences induced >90% knock-down of KRAS expression, significantly reducing viability in mutant cell lines. In the lung cancer model, KRAS siRNA treatment demonstrated significant reductions in primary tumor growth and distant metastatic disease, while the addition of CDDP was not additive. Significant reductions in Ki-67 indices were seen in all treatment groups, while significant increases in caspase-3 activity was only seen in the CDDP treatment groups. In the colon cancer model, KRAS siRNA reduced tumor KRAS and pERK expression. KRAS siRNAs significantly reduced HCP1 subcutaneous tumor growth, as well as outgrowth of liver metastases. Our studies demonstrate a proof-of-concept approach to therapeutic KRAS targeting using nanoparticle delivery of siRNA. This study highlights the potential translational impact of therapeutic RNA interference, which may have broad applications in oncology, especially for traditional “undruggable” targets. PMID:25281617

  3. FedExosomes: Engineering Therapeutic Biological Nanoparticles that Truly Deliver

    Directory of Open Access Journals (Sweden)

    Michelle E. Marcus

    2013-04-01

    Full Text Available Many aspects of intercellular communication are mediated through “sending” and “receiving” packets of information via the secretion and subsequent receptor-mediated detection of biomolecular species including cytokines, chemokines, and even metabolites. Recent evidence has now established a new modality of intercellular communication through which biomolecular species are exchanged between cells via extracellular lipid vesicles. A particularly important class of extracellular vesicles is exosomes, which is a term generally applied to biological nanovesicles ~30–200 nm in diameter. Exosomes form through invagination of endosomes to encapsulate cytoplasmic contents, and upon fusion of these multivesicular endosomes to the cell surface, exosomes are released to the extracellular space and transport mRNA, microRNA (miRNA and proteins between cells. Importantly, exosome-mediated delivery of such cargo molecules results in functional modulation of the recipient cell, and such modulation is sufficiently potent to modulate disease processes in vivo. It is possible that such functional delivery of biomolecules indicates that exosomes utilize native mechanisms (e.g., for internalization and trafficking that may be harnessed by using exosomes to deliver exogenous RNA for therapeutic applications. A complementary perspective is that understanding the mechanisms of exosome-mediated transport may provide opportunities for “reverse engineering” such mechanisms to improve the performance of synthetic delivery vehicles. In this review, we summarize recent progress in harnessing exosomes for therapeutic RNA delivery, discuss the potential for engineering exosomes to overcome delivery challenges and establish robust technology platforms, and describe both potential challenges and advantages of utilizing exosomes as RNA delivery vehicles.

  4. Nano Delivers Big: Designing Molecular Missiles for Cancer Therapeutics

    Directory of Open Access Journals (Sweden)

    J. Silvio Gutkind

    2011-01-01

    Full Text Available Current first-line treatments for most cancers feature a short-list of highly potent and often target-blind interventions, including chemotherapy, radiation, and surgical excision. These treatments wreak considerable havoc upon non-cancerous tissue and organs, resulting in deleterious and sometimes fatal side effects for the patient. In response, this past decade has witnessed the robust emergence of nanoparticles and, more relevantly, nanoparticle drug delivery systems (DDS, widely touted as the panacea of cancer therapeutics. While not a cure, nanoparticle DDS can successfully negotiate the clinical payoff between drug dosage and side effects by encompassing target-specific drug delivery strategies. The expanding library of nanoparticles includes lipoproteins, liposomes, dendrimers, polymers, metal and metal oxide nano-spheres and -rods, and carbon nanotubes, so do the modes of delivery. Importantly, however, the pharmaco-dynamics and –kinetics of these nano-complexes remain an urgent issue and a serious bottleneck in the transition from bench to bedside. This review addresses the rise of nanoparticle DDS platforms for cancer and explores concepts of gene/drug delivery and cytotoxicity in pre-clinical and clinical contexts.

  5. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Science.gov (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  6. Combination of nanoparticle-delivered siRNA for Astrocyte elevated gene-1 (AEG-1) and all-trans retinoic acid (ATRA): an effective therapeutic strategy for hepatocellular carcinoma (HCC)

    Science.gov (United States)

    Rajasekaran, Devaraja; Srivastava, Jyoti; Ebeid, Kareem; Gredler, Rachel; Akiel, Maaged; Jariwala, Nidhi; Robertson, Chadia L.; Shen, Xue-Ning; Siddiq, Ayesha; Fisher, Paul B.; Salem, Aliasger K.; Sarkar, Devanand

    2016-01-01

    Hepatocellular carcinoma (HCC) is a fatal cancer with no effective therapy. Astrocyte elevated gene-1 (AEG-1) plays a pivotal role in hepatocarcinogenesis and inhibits retinoic acid-induced gene expression and cell death. Combination of a lentivirus expressing AEG-1 shRNA and all-trans retinoic acid (ATRA) profoundly and synergistically inhibited subcutaneous human HCC xenografts in nude mice. We now have developed liver-targeted nanoplexes by conjugating poly(amidoamine) (PAMAM) dendrimers with polyethylene glycol (PEG) and lactobionic acid (Gal) (PAMAM-PEG-Gal) which were complexed with AEG-1 siRNA (PAMAM-AEG-1si). The polymer conjugate was characterized by 1H-NMR, MALDI and mass spectrometry, and optimal nanoplex formulations were characterized for surface charge, size and morphology. Orthotopic xenografts of human HCC cell QGY-7703 expressing luciferase (QGY-luc) were established in the livers of athymic nude mice and tumor development was monitored by bioluminescence imaging (BLI). Tumor-bearing mice were treated with PAMAM-siCon, PAMAM-siCon+ATRA, PAMAM-AEG-1si and PAMAM-AEG-1si+ATRA. In the control group the tumor developed aggressively. ATRA showed little effect due to high AEG-1 levels in QGY-luc cells. PAMAM-AEG-1si showed significant reduction in tumor growth and the combination of PAMAM-AEG-1si+ATRA showed profound and synergistic inhibition so that the tumors were almost undetectable by BLI. A marked decrease in AEG-1 level was observed in tumor samples treated with PAMAM-AEG-1si. The group treated with PAMAM-AEG-1si+ATRA nanoplexes showed increased necrosis, inhibition of proliferation and increased apoptosis when compared to other groups. Liver is an ideal organ for RNAi therapy and ATRA is an approved anti-cancer agent. Our exciting observations suggest that the combinatorial approach might be an effective way to combat HCC. PMID:26079152

  7. Promising and delivering gene therapies for vision loss.

    Science.gov (United States)

    Carvalho, Livia S; Vandenberghe, Luk H

    2015-06-01

    The maturity in our understanding of the genetics and the pathogenesis of disease in degenerative retinal disorders has intersected in past years with a novel treatment paradigm in which a genetic intervention may lead to sustained therapeutic benefit, and in some cases even restoration of vision. Here, we review this prospect of retinal gene therapy, discuss the enabling technologies that have led to first-in-human demonstrations of efficacy and safety, and the road that led to this exciting point in time. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Helping oxytocin deliver: considerations in the development of oxytocin-based therapeutics for brain disorders.

    Science.gov (United States)

    Macdonald, K; Feifel, D

    2013-01-01

    Concerns regarding a drought in psychopharmacology have risen from many quarters. From one perspective, the wellspring of bedrock medications for anxiety disorders, depression, and schizophrenia was serendipitously discovered over 30 year ago, the swell of pharmaceutical investment in drug discovery has receded, and the pipeline's flow of medications with unique mechanisms of action (i.e., glutamatergic agents, CRF antagonists) has slowed to a trickle. Might oxytocin (OT)-based therapeutics be an oasis? Though a large basic science literature and a slowly increasing number of studies in human diseases support this hope, the bulk of extant OT studies in humans are single-dose studies on normals, and do not directly relate to improvements in human brain-based diseases. Instead, these studies have left us with a field pregnant with therapeutic possibilities, but barren of definitive treatments. In this clinically oriented review, we discuss the extant OT literature with an eye toward helping OT deliver on its promise as a therapeutic agent. To this end, we identify 10 key questions that we believe future OT research should address. From this overview, several conclusions are clear: (1) the OT system represents an extremely promising target for novel CNS drug development; (2) there is a pressing need for rigorous, randomized controlled clinical trials targeting actual patients; and (3) in order to inform the design and execution of these vital trials, we need further translational studies addressing the questions posed in this review. Looking forward, we extend a cautious hope that the next decade of OT research will birth OT-targeted treatments that can truly deliver on this system's therapeutic potential.

  9. Physician assessments of the value of therapeutic information delivered via e-mail.

    Science.gov (United States)

    Grad, Roland; Pluye, Pierre; Repchinsky, Carol; Jovaisas, Barbara; Marlow, Bernard; Marques Ricarte, Ivan L; Galvão, Maria Cristiane Barbosa; Shulha, Michael; de Gaspé Bonar, James; Moscovici, Jonathan L

    2014-05-01

    Although e-learning programs are popular and access to electronic knowledge resources has improved, raising awareness about updated therapeutic recommendations in practice continues to be a challenge. To raise awareness about and document the use of therapeutic recommendations. In 2010, family physicians evaluated e-Therapeutics (e-T) Highlights with a Web-based tool called the Information Assessment Method (IAM). The e-T Highlights consisted of information found in the primary care reference e-Therapeutics+. Each week, family physicians received an e-mail containing a link to 1 Highlight from a different chapter of e-Therapeutics+. Family physicians received continuing medical education credits for each Highlight they rated with the IAM. Of the 5346 participants, 85% of them were full-time or part-time practitioners. A total of 31 429 Highlights ratings were received in 2010 (median of 2 ratings per participant, range 1 to 49). Among participants who rated more than 2 Highlights, the median number of ratings was 7 (mean 11.9). The relevance of the information from individual Highlights varied widely; however, for 90% of the rated Highlights participants indicated total or partial relevance of the information for at least 1 patient. For 41% of rated Highlights, participants expected patient health benefits to result from implementing the recommendation, such as avoiding an unnecessary or inappropriate treatment, or a preventive intervention. This continuing medical education program stimulated family physicians to rate therapeutic recommendations that were delivered weekly via e-mail. The process of rating e-T Highlights with the IAM raised awareness about treatment recommendations and documented self-reported use of this information in practice. Copyright© the College of Family Physicians of Canada.

  10. Functional characterisation of the WW minimal domain for delivering therapeutic proteins by adenovirus dodecahedron.

    Directory of Open Access Journals (Sweden)

    Ana Villegas-Méndez

    Full Text Available Protein transduction offers a great therapeutic potential by efficient delivery of biologically active cargo into cells. The Adenovirus Dd (Dodecahedron has recently been shown to deliver proteins fused to the tandem WW(2-3-4 structural domains from the E3 ubiquitin ligase Nedd4. In this study, we conclusively show that Dd is able to efficiently deliver cargo inside living cells, which mainly localize in fast moving endocytic vesicles, supporting active transport along the cytoskeleton. We further improve this delivery system by expressing a panel of 13 WW-GFP mutant forms to characterize their binding properties towards Dd. We identified the domain WW(3 and its mutant form WW(3_10_13 to be sufficient for optimal binding to Dd. We greatly minimise the interacting WW modules from 20 to 6 kDa without compromising its efficient delivery by Dd. Using these minimal WW domains fused to the tumor suppressor p53 protein, we show efficient cellular uptake and distribution into cancer cells, leading to specific induction of apoptosis in these cells. Taken together, these findings represent a step further towards the development of a Dd-based delivery system for future therapeutic application.

  11. Gene therapeutic approaches to inhibit hepatitis B virusreplication

    Institute of Scientific and Technical Information of China (English)

    Maren Gebbing; Thorsten Bergmann; Eric Schulz; Anja Ehrhardt

    2015-01-01

    Acute and chronic hepatitis B virus (HBV) infectionsremain to present a major global health problem. Theinfection can be associated with acute symptomaticor asymptomatic hepatitis which can cause chronicinflammation of the liver and over years this can leadto cirrhosis and the development of hepatocellularcarcinomas. Currently available therapeutics forchronically infected individuals aim at reducing viralreplication and to slow down or stop the progressionof the disease. Therefore, novel treatment options areneeded to efficiently combat and eradicate this disease.Here we provide a state of the art overview of genetherapeutic approaches to inhibit HBV replication. Wediscuss non-viral and viral approaches which wereexplored to deliver therapeutic nucleic acids aiming atreducing HBV replication. Types of delivered therapeuticnucleic acids which were studied since many yearsinclude antisense oligodeoxynucleotides and antisenseRNA, ribozymes and DNAzymes, RNA interference,and external guide sequences. More recently designernucleases gained increased attention and wereexploited to destroy the HBV genome. In addition wemention other strategies to reduce HBV replicationbased on delivery of DNA encoding dominant negativemutants and DNA vaccination. In combination withavailable cell culture and animal models for HBVinfection, in vitro and in vivo studies can be performedto test efficacy of gene therapeutic approaches. Recentprogress but also challenges will be specified andfuture perspectives will be discussed. This is an excitingtime to explore such approaches because recentsuccesses of gene therapeutic strategies in the clinicto treat genetic diseases raise hope to find alternativetreatment options for patients chronically infected withHBV.

  12. Gene therapy as a therapeutic approach for the treatment of rheumatoid arthritis: innovative vectors and therapeutic genes.

    Science.gov (United States)

    Adriaansen, J; Vervoordeldonk, M J B M; Tak, P P

    2006-06-01

    In recent years, significant progress has been made in the treatment of rheumatoid arthritis (RA). In addition to conventional therapy, novel biologicals targeting tumour necrosis factor-alpha have successfully entered the clinic. However, the majority of the patients still has some actively inflamed joints and some patients suffer from side-effects associated with the high systemic dosages needed to achieve therapeutic levels in the joints. In addition, due to of the short half-life of these proteins there is a need for continuous, multiple injections of the recombinant protein. An alternative approach might be the use of gene transfer to deliver therapeutic genes locally at the site of inflammation. Several viral and non-viral vectors are being used in animal models of RA. The first gene therapy trials for RA have already entered the clinic. New vectors inducing long-term and regulated gene expression in specific tissue are under development, resulting in more efficient gene transfer, for example by using distinct serotypes of viral vectors such as adeno-associated virus. This review gives an overview of some promising vectors used in RA research. Furthermore, several therapeutic genes are discussed that could be used for gene therapy in RA patients.

  13. Therapeutic globin gene delivery using lentiviral vectors.

    Science.gov (United States)

    Rivella, Stefano; Sadelain, Michel

    2002-10-01

    The severe hemoglobinopathies, including beta-thalassemia major and sickle cell anemia, are candidate diseases for a genetic treatment based on the transfer of a regulated globin gene in autologous hematopoietic stem cells. Two years ago, May et al reported that an optimized beta-globin transcription unit containing multiple proximal and distal regulatory elements harbored by a recombinant lentiviral vector could efficiently integrate into murine hematopoietic stem cells and express therapeutic levels of the human beta-globin gene. Here, we review the advantages afforded by lentivirus-mediated globin gene transfer and recent studies based on this strategy.

  14. Cell- and gene- based therapeutics for periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Keshava Abbayya

    2015-01-01

    Full Text Available Periodontitis is a disease of the periodontium, characterized by loss of connective tissue attachment and supporting the alveolar bone. Therefore, to regenerate these lost tissues of the periodontium researchers have included a variety of surgical procedures including grafting materials growth factors and the use of barrier membranes, ultimately resulting into regeneration that is biologically possible but clinically unpredictable. Recently a newer approach of delivering DNA plasmids as therapeutic agents is gaining special attention and is called gene delivery method. Gene therapy being considered a novel approach have a potential to channel their signals in a very systematic and controlled manner thereby providing encoded proteins at all stages of tissue regeneration. The aim of this review was to enlighten a view on the application involving gene delivery and tissue engineering in periodontal regeneration.

  15. Rett syndrome: genes, synapses, circuits and therapeutics

    Directory of Open Access Journals (Sweden)

    Abhishek eBanerjee

    2012-05-01

    Full Text Available Development of the nervous system proceeds through a set of complex checkpoints which arise from a combination of sequential gene expression and early neural activity sculpted by the environment. Genetic and environmental insults lead to neurodevelopmental disorders which encompass a large group of diseases that result from anatomical and physiological abnormalities during maturation and development of brain circuits. Rett syndrome (RTT is a postnatal neurological disorder of genetic origin, caused by mutations in the X-linked gene MECP2. It features neuropsychiatric abnormalities like motor dysfunctions and mild to severe cognitive impairment. This review discusses several key questions and attempts to evaluate recently developed animal models, cell-type specific function of MeCP2, defects in neural circuit plasticity and possible therapeutic strategies. Finally, we also discuss how genes, proteins and overlapping signaling pathways affect the molecular etiology of apparently unrelated neuropsychiatric disorders, an understanding of which can offer novel therapeutic strategies.

  16. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  17. Gene therapy in glaucoma-3: Therapeutic approaches

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Monem Soliman Mahdy

    2010-01-01

    Recently, several promising genetic therapeutic approaches had been investigated. Some are either used to stop apoptosis and halt further glaucomatous damage, wound healing modulating effect or long lasting intraocular pressure lowering effects than the conventional commercially available antiglaucoma medications. Method of Literature Search The literature was searched on the Medline database using the PubMed interface. The key words for search were glaucoma, gene therapy, and genetic diagnosis of glaucoma.

  18. Gene therapy in glaucoma-3: Therapeutic approaches

    OpenAIRE

    Mohamed Abdel-Monem Soliman Mahdy

    2010-01-01

    Despite new and improving diagnostic and therapeutic options for glaucoma, blindness from glaucoma is increasing and glaucoma remains a major public health problem. The role of heredity in ocular disease including glaucoma is attracting greater attention as the knowledge and recent advances of Human Genome Project and the HapMap Project have made genetic analysis of many human disorders possible. Glaucoma offers a variety of potential targets for gene therapy. All risk factors for glaucom...

  19. Gene therapy in glaucoma-3: Therapeutic approaches.

    Science.gov (United States)

    Mahdy, Mohamed Abdel-Monem Soliman

    2010-09-01

    Despite new and improving diagnostic and therapeutic options for glaucoma, blindness from glaucoma is increasing and glaucoma remains a major public health problem. The role of heredity in ocular disease including glaucoma is attracting greater attention as the knowledge and recent advances of Human Genome Project and the HapMap Project have made genetic analysis of many human disorders possible.Glaucoma offers a variety of potential targets for gene therapy. All risk factors for glaucoma and their underlying causes are potentially susceptible to modulation by gene transfer. As genetic defects responsible for glaucoma are identified and the biochemical mechanisms underlying the disease are recognized, new methods of therapy can be developed. Genetic tests are indicated for treatment, diagnosis, prognosis, counseling, and research purposes; however, there is significant overlap among them. One of the important genetic tests for glaucoma is OcuGene. Therefore, it is of utmost importance for the glaucoma specialists to be familiar with and understand the basic molecular mechanisms, genes responsible for glaucoma, and the ways of genetic treatment.Recently, several promising genetic therapeutic approaches had been investigated. Some are either used to stop apoptosis and halt further glaucomatous damage, wound healing modulating effect or long lasting intraocular pressure lowering effects than the conventional commercially available antiglaucoma medications. METHOD OF LITERATURE SEARCH: The literature was searched on the Medline database using the PubMed interface. The key words for search were glaucoma, gene therapy, and genetic diagnosis of glaucoma.

  20. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Science.gov (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  1. FGF-4 gene therapy GENERX--Collateral Therapeutics.

    Science.gov (United States)

    2002-01-01

    for the treatment of patients with heart failure. In a blinded placebo-controlled study in a pig model of pacing-induced heart failure, intracoronary delivery of human FGF-4 expressed in an adenovirus vector showed significant improvement in regional cardiac function and a reduction in the size of the heart over a 3-week study period. If these results translated favourably to humans, FGF-4 gene therapy may be a therapeutic option for patients with dilated heart failure. Collateral Therapeutics has also announced a research collaboration with Targeted Genetics on the use of viral vectors to deliver therapeutic genes in cardiovascular disease. Under the terms of the agreement, Targeted Genetics and Collateral Therapeutics each have the option to collaborate further to use Targeted Genetics' recombinant adeno-associated viral vector to treat congestive heart failure. In such an event, Targeted Genetics would be responsible for constructing and manufacturing the vector, and Collateral Therapeutics will fund the costs of future collaboration. Either party may terminate this agreement at any time upon 30 days prior written notice.

  2. Viral vectors for gene transfer: current status of gene therapeutics.

    Science.gov (United States)

    Heilbronn, Regine; Weger, Stefan

    2010-01-01

    Gene therapy for the correction of inherited or acquired disease has gained increasing importance in recent years. Successful treatment of children suffering from severe combined immunodeficiency (SCID) was achieved using retrovirus vectors for gene transfer. Encouraging improvements of vision were reported in a genetic eye disorder (LCA) leading to early childhood blindness. Adeno-associated virus (AAV) vectors were used for gene transfer in these trials. This chapter gives an overview of the design and delivery of viral vectors for the transport of a therapeutic gene into a target cell or tissue. The construction and production of retrovirus, lentivirus, and AAV vectors are covered. The focus is on production methods suitable for biopharmaceutical upscaling and for downstream processing. Quality control measures and biological safety considerations for the use of vectors in clinical trials are discussed.

  3. Intrapleural 'outside-in' gene therapy: therapeutics for organs of the chest via gene transfer to the pleura.

    Science.gov (United States)

    Heguy, Adriana; Crystal, Ronald G

    2005-10-01

    The pleural space is an attractive site for using viral vectors to deliver gene products to the lung parenchyma, other thoracic structures and the systemic circulation. The advantages of intrapleural gene transfer using viral vectors include: (i) easy accessibility; (ii) large surface area; (iii) ability to provide high concentrations of secreted gene products to chest structures; (iv) low risk of detrimental effects of possible vector-induced inflammation compared with intravascular delivery; and (v) because it is local, lower vector doses can be used to deliver therapeutic genes to thoracic structures than less efficient systemic routes. Examples of pleural gene transfer include the use of adenovirus vectors to treat mesothelioma by transiently expressing genes that encode toxic proteins, immunomodulatory molecules or anti-angiogenesis factors. Intrapleural delivery of adeno-associated viral vectors represents an efficient strategy to treat alpha1-antitrypsin (alpha1AT) deficiency, achieving high lung and systemic therapeutic levels of alpha1AT. Intrapleural delivery of gene transfer vectors holds promise for the treatment of diseases requiring transient, localized gene expression, as well as sustained expression of genes to correct hereditary disorders requiring localized or systemic expression of the therapeutic protein.

  4. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology

    Science.gov (United States)

    Wang, Xiaoyan; Li, Dong; Ghali, Lucy; Xia, Ruidong; Munoz, Leonardo P.; Garelick, Hemda; Bell, Celia; Wen, Xuesong

    2016-02-01

    Arsenic trioxide (ATO) has been used successfully to treat acute promyelocytic leukaemia, and since this discovery, it has also been researched as a possible treatment for other haematological and solid cancers. Even though many positive results have been found in the laboratory, wider clinical use of ATO has been compromised by its toxicity at higher concentrations. The aim of this study was to explore an improved method for delivering ATO using liposomal nanotechnology to evaluate whether this could reduce drug toxicity and improve the efficacy of ATO in treating human papillomavirus (HPV)-associated cancers. HeLa, C33a, and human keratinocytes were exposed to 5 μm of ATO in both free and liposomal forms for 48 h. The stability of the prepared samples was tested using inductively coupled plasma optical emission spectrometer (ICP-OES) to measure the intracellular arsenic concentrations after treatment. Fluorescent double-immunocytochemical staining was carried out to evaluate the protein expression levels of HPV-E6 oncogene and caspase-3. Cell apoptosis was analysed by flow cytometry. Results showed that liposomal ATO was more effective than free ATO in reducing protein levels of HPV-E6 and inducing cell apoptosis in HeLa cells. Moreover, lower toxicity was observed when liposomal-delivered ATO was used. This could be explained by lower intracellular concentrations of arsenic. The slowly accumulated intracellular ATO through liposomal delivery might act as a reservoir which releases ATO gradually to maintain its anti-HPV effects. To conclude, liposome-delivered ATO could protect cells from the direct toxic effects induced by higher concentrations of intracellular ATO. Different pathways may be involved in this process, depending on local architecture of the tissues and HPV status.

  5. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Directory of Open Access Journals (Sweden)

    Umberto Tosi

    2017-02-01

    Full Text Available Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.

  6. How should teaching of undergraduates in clinical pharmacology and therapeutics be delivered and assessed?

    Science.gov (United States)

    Maxwell, Simon R J

    2012-06-01

    Clinical pharmacology and therapeutics is the academic discipline that informs rational prescribing of medicines. There is accumulating evidence that a significant minority of prescriptions in the UK National Health Service contain errors. This comes at a time when the approach to and success of undergraduate education in this area has been called into question. Various stakeholders are now in agreement that this challenging area of undergraduate education needs to be strengthened. The principles that should form the basis of future educational strategy include greater visibility of clinical pharmacology and therapeutics in the curriculum, clear learning outcomes that are consistent with national guidance, strong and enthusiastic leadership, a student formulary, opportunities to practice prescribing, a robust assessment of prescribing competencies and external quality control. Important new developments in the UK are Prescribe, a repository of e-learning materials to support education in clinical pharmacology and prescribing, and the Prescribing Skills Assessment, a national online assessment designed to allow medical students to demonstrate that they have achieved the core competencies required to begin postgraduate training.

  7. How should training of graduates in clinical pharmacology and therapeutics be delivered and assessed?

    Science.gov (United States)

    Jackson, Peter

    2012-06-01

    The UK postgraduate curriculum in clinical pharmacology and therapeutics (CPT) incorporates the common competencies required of all physicians and shows how trainees from other specialties, including primary care, can train in CPT. Various models of training and assessment are possible. Evolution of the current system to meet new challenges would maintain an established tradition, with a ready source of training funds. However, this would require greater input from all consultants in CPT, including the training and assessment of trainees. A joint venture with the Faculty of Pharmaceutical Medicine would have the advantage, if the Faculty agreed, of introducing ready-made curriculum modules and assessment tools that have been accepted by the General Medical Council. However, extra modules relevant to CPT would have to be constructed to complement the common areas already in the pharmaceutical medicine curriculum, and there would be a perceived loss of the independence that clinical pharmacologists currently enjoy when making decisions about manufacturers' products. Abandoning externally approved training in CPT would allow the specialty to devise its own training and assessment in the necessary skills. Critically, however, this would impair the status of the specialty and would incur loss of financial support from postgraduate Deaneries. To attract high-calibre trainees, we must completely define CPT training and assessment structures. Most clinical pharmacologists seem to prefer to allow the current structures to evolve under external guidance. However, this will not succeed unless all trained clinical pharmacologists contribute to development of both the curriculum and specific assessment tools, and open their teaching and assessment skills to scrutiny.

  8. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines

    Science.gov (United States)

    Wilson, D. Scott; Dalmasso, Guillaume; Wang, Lixin; Sitaraman, Shanthi V.; Merlin, Didier; Murthy, Niren

    2010-11-01

    Small interfering RNAs (siRNAs) directed against proinflammatory cytokines have the potential to treat numerous diseases associated with intestinal inflammation; however, the side-effects caused by the systemic depletion of cytokines demands that the delivery of cytokine-targeted siRNAs be localized to diseased intestinal tissues. Although various delivery vehicles have been developed to orally deliver therapeutics to intestinal tissue, none of these strategies has demonstrated the ability to protect siRNA from the harsh environment of the gastrointestinal tract and target its delivery to inflamed intestinal tissue. Here, we present a delivery vehicle for siRNA, termed thioketal nanoparticles (TKNs), that can localize orally delivered siRNA to sites of intestinal inflammation, and thus inhibit gene expression in inflamed intestinal tissue. TKNs are formulated from a polymer, poly-(1,4-phenyleneacetone dimethylene thioketal), that degrades selectively in response to reactive oxygen species (ROS). Therefore, when delivered orally, TKNs release siRNA in response to the abnormally high levels of ROS specific to sites of intestinal inflammation. Using a murine model of ulcerative colitis, we demonstrate that orally administered TKNs loaded with siRNA against the proinflammatory cytokine tumour necrosis factor-alpha (TNF-α) diminish TNF-α messenger RNA levels in the colon and protect mice from ulcerative colitis.

  9. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease.

    Science.gov (United States)

    Danielyan, Lusine; Schäfer, Richard; von Ameln-Mayerhofer, Andreas; Bernhard, Felix; Verleysdonk, Stephan; Buadze, Marine; Lourhmati, Ali; Klopfer, Tim; Schaumann, Felix; Schmid, Barbara; Koehle, Christoph; Proksch, Barbara; Weissert, Robert; Reichardt, Holger M; van den Brandt, Jens; Buniatian, Gayane H; Schwab, Matthias; Gleiter, Christoph H; Frey, William H

    2011-02-01

    Safe and effective cell delivery remains one of the main challenges in cell-based therapy of neurodegenerative disorders. Graft survival, sufficient enrichment of therapeutic cells in the brain, and avoidance of their distribution throughout the peripheral organs are greatly influenced by the method of delivery. Here we demonstrate for the first time noninvasive intranasal (IN) delivery of mesenchymal stem cells (MSCs) to the brains of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. IN application (INA) of MSCs resulted in the appearance of cells in the olfactory bulb, cortex, hippocampus, striatum, cerebellum, brainstem, and spinal cord. Out of 1 × 10⁶ MSCs applied intranasally, 24% survived for at least 4.5 months in the brains of 6-OHDA rats as assessed by quantification of enhanced green fluorescent protein (EGFP) DNA. Quantification of proliferating cell nuclear antigen-positive EGFP-MSCs showed that 3% of applied MSCs were proliferative 4.5 months after application. INA of MSCs increased the tyrosine hydroxylase level in the lesioned ipsilateral striatum and substantia nigra, and completely eliminated the 6-OHDA-induced increase in terminal deoxynucleotidyl transferase (TdT)-mediated 2'-deoxyuridine, 5'-triphosphate (dUTP)-biotin nick end labeling (TUNEL) staining of these areas. INA of EGFP-labeled MSCs prevented any decrease in the dopamine level in the lesioned hemisphere, whereas the lesioned side of the control animals revealed significantly lower levels of dopamine 4.5 months after 6-OHDA treatment. Behavioral analyses revealed significant and substantial improvement of motor function of the Parkinsonian forepaw to up to 68% of the normal value 40-110 days after INA of 1 × 10⁶ cells. MSC-INA decreased the concentrations of inflammatory cytokines-interleukin-1β (IL-1β), IL-2, -6, -12, tumor necrosis factor (TNF), interferon-γ (IFN-γ, and granulocyte-macrophage colony-stimulating factor (GM-CSF)-in the lesioned side to their

  10. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications

    NARCIS (Netherlands)

    Ji, W.; Sun, Y.; Yang, F.; Beucken, J.J.J.P van den; Fan, M.; Chen, Z.; Jansen, J.A.

    2011-01-01

    A biomaterial scaffold is one of the key factors for successful tissue engineering. In recent years, an increasing tendency has been observed toward the combination of scaffolds and biomolecules, e.g. growth factors and therapeutic genes, to achieve bioactive scaffolds, which not only provide physic

  11. Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors.

    Science.gov (United States)

    Kang, Min Sil; Kim, Joong-Hyun; Singh, Rajendra K; Jang, Jun-Hyeog; Kim, Hae-Won

    2015-04-01

    A novel therapeutic design of nanofibrous scaffolds, holding a capacity to load and deliver dual growth factors, that targets bone regeneration is proposed. Mesoporous bioactive glass nanospheres (MBNs) were used as bioactive nanocarriers for long-term delivery of the osteogenic enhancer fibroblast growth factor 18 (FGF18). Furthermore, a core-shell structure of a biopolymer fiber made of polyethylene oxide/polycaprolactone was introduced to load FGF2, another type of cell proliferative and angiogenic growth factor, safely within the core while releasing it more rapidly than FGF18. The prepared MBNs showed enlarged mesopores of about 7 nm, with a large surface area and pore volume. The protein-loading capacity of MBNs was as high as 13% when tested using cytochrome C, a model protein. The protein-loaded MBNs were smoothly incorporated within the core of the fiber by electrospinning, while preserving a fibrous morphology. The incorporation of MBNs significantly increased the apatite-forming ability and mechanical properties of the core-shell fibers. The possibility of sequential delivery of two experimental growth factors, FGF2 and FGF18, incorporated either within the core-shell fiber (FGF2) or within MBNs (FGF18), was demonstrated by the use of cytochrome C. In vitro studies using rat mesenchymal stem cells demonstrated the effects of the FGF2-FGF18 loadings: significant stimulation of cell proliferation as well as the induction of alkaline phosphate activity and cellular mineralization. An in vivo study performed on rat calvarium defects for 6 weeks demonstrated that FGF2-FGF18-loaded fiber scaffolds had significantly higher bone-forming ability, in terms of bone volume and density. The current design utilizing novel MBN nanocarriers with a core-shell structure aims to release two types of growth factors, FGF2 and FGF18, in a sequential manner, and is considered to provide a promising therapeutic scaffold platform that is effective for bone regeneration.

  12. Connexin 43 Gene Therapy Delivered by Polymer-Modified Salmonella in Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Wei-Kuang Wang

    2014-04-01

    Full Text Available The use of preferentially tumor-targeting bacteria as vectors is one of the most innovative approaches for the treatment of cancer. This method is based on the observation that some obligate or facultative anaerobic bacteria are capable of selectively multiplying in tumors and inhibiting their growth. Previously, we found that the tumor-targeting efficiency of Salmonella could be modulated by modifying the immune response to these bacteria by coating them with poly(allylamine hydrochloride (PAH, and these organisms are designated PAH-S.C. (S. choleraesuis. PAH can provide a useful platform for the chemical modification of Salmonella, perhaps by allowing a therapeutic gene to bind to tumor-targeting Salmonella. This study aimed to investigate the benefits of the use of PAH-S.C. for gene delivery. To evaluate this modulation, the invasion activity and gene transfer of DNA-PAH-S.C. were measured in vitro and in vivo. Treatment with PAH-S.C. carrying a tumor suppressor gene (connexin 43 resulted in inhibition of tumor growth, which suggested that tumor-targeted gene therapy using PAH-S.C. carrying a therapeutic gene could exert antitumor activities. This technique represents a promising strategy for the treatment of tumors.

  13. Therapeutic Efficacy of Orally Delivered Doxorubicin Nanoparticles in Rat Tongue Cancer Induced by 4-Nitroquinoline 1-Oxide

    Directory of Open Access Journals (Sweden)

    Monir Moradzadeh Khiavi

    2015-06-01

    Full Text Available Purpose: Oral cancer is one of the most significant cancers in the world, and squamous cell carcinoma makes up about 94% of oral malignancies. The aim of the present study was to compare the efficacy of doxorubicin plus methotrexate - loaded nanoparticles on tongue squamous cell carcinoma induced by 4NQO and compare it with the commercial doxorubicin and methotrexate delivered orally on seventy SD male rats. Methods: 70 rats were divided into five groups. During the study, the animals were weighed by a digital scale once a week. Number of mortalities was recorded in the data collection forms. At the end of the treatment, biopsy samples were taken from rat tongues in order to evaluate the severity of dysplasia and the extent of cell proliferation. The results were analyzed using ANOVA, descriptive statistics and chi-square test. Results: No statistically significant difference was found in the mean weight of five groups (p>0.05. No significant relationship was found between groups and mortality rate (P = 0. 39. In addition, there was a significant relationship between groups and the degree of dysplasia (P <0.001. The statistical analysis showed a significant relationship between groups and the rate of cell proliferation (p <0.001. Conclusion: The results of the present study showed that the use of doxorubicin plus methotrexate - loaded nanoparticles orally had more therapeutic effects than commercial doxorubicin plus methotrexate.

  14. Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor VIII expression in liver sinusoidal endothelial cells of hemophilia A mice.

    Science.gov (United States)

    Kren, Betsy T; Unger, Gretchen M; Sjeklocha, Lucas; Trossen, Alycia A; Korman, Vicci; Diethelm-Okita, Brenda M; Reding, Mark T; Steer, Clifford J

    2009-07-01

    Liver sinusoidal endothelial cells are a major endogenous source of Factor VIII (FVIII), lack of which causes the human congenital bleeding disorder hemophilia A. Despite extensive efforts, gene therapy using viral vectors has shown little success in clinical hemophilia trials. Here we achieved cell type-specific gene targeting using hyaluronan- and asialoorosomucoid-coated nanocapsules, generated using dispersion atomization, to direct genes to liver sinusoidal endothelial cells and hepatocytes, respectively. To highlight the therapeutic potential of this approach, we encapsulated Sleeping Beauty transposon expressing the B domain-deleted canine FVIII in cis with Sleeping Beauty transposase in hyaluronan nanocapsules and injected them intravenously into hemophilia A mice. The treated mice exhibited activated partial thromboplastin times that were comparable to those of wild-type mice at 5 and 50 weeks and substantially shorter than those of untreated controls at the same time points. Further, plasma FVIII activity in the treated hemophilia A mice was nearly identical to that in wild-type mice through 50 weeks, while untreated hemophilia A mice exhibited no detectable FVIII activity. Thus, Sleeping Beauty transposon targeted to liver sinusoidal endothelial cells provided long-term expression of FVIII, without apparent antibody formation, and improved the phenotype of hemophilia A mice.

  15. Stacking up CRISPR against RNAi for therapeutic gene inhibition.

    Science.gov (United States)

    Haussecker, Dirk

    2016-09-01

    Both RNA interference (RNAi) and clustered regularly-interspaced short palindromic repeats (CRISPR) technologies allow for the sequence-specific inhibition of gene function and therefore have the potential to be used as therapeutic modalities. By judging the current public and scientific journal interest, it would seem that CRISPR, by enabling clean, durable knockouts, will dominate therapeutic gene inhibition, also at the expense of RNAi. This review aims to look behind prevailing sentiments and to more clearly define the likely scope of the therapeutic applications of the more recently developed CRISPR technology and its relative strengths and weaknesses with regards to RNAi. It is found that largely because of their broadly overlapping delivery constraints, while CRISPR presents formidable competition for DNA-directed RNAi strategies, its impact on RNAi therapeutics triggered by synthetic oligonucleotides will likely be more moderate. Instead, RNAi and genome editing, and in particular CRISPR, are poised to jointly promote a further shift toward sequence-targeted precision medicines.

  16. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    Directory of Open Access Journals (Sweden)

    Tomotsugu Ichikawa

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1 ETR is a sensitive MR marker gene; 2 several transgenes can be efficiently expressed from a single amplicon; 3 expression of each transgene results in functional gene product; and 4 ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression.

  17. Current Progress in Therapeutic Gene Editing for Monogenic Diseases.

    Science.gov (United States)

    Prakash, Versha; Moore, Marc; Yáñez-Muñoz, Rafael J

    2016-03-01

    Programmable nucleases allow defined alterations in the genome with ease-of-use, efficiency, and specificity. Their availability has led to accurate and widespread genome engineering, with multiple applications in basic research, biotechnology, and therapy. With regard to human gene therapy, nuclease-based gene editing has facilitated development of a broad range of therapeutic strategies based on both nonhomologous end joining and homology-dependent repair. This review discusses current progress in nuclease-based therapeutic applications for a subset of inherited monogenic diseases including cystic fibrosis, Duchenne muscular dystrophy, diseases of the bone marrow, and hemophilia and highlights associated challenges and future prospects.

  18. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes.

    Science.gov (United States)

    Fairbairn, David J; Cavallaro, Antonino S; Bernard, Margaret; Mahalinga-Iyer, Janani; Graham, Michael W; Botella, José R

    2007-11-01

    Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.

  19. Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung.

    Science.gov (United States)

    Chandrashekhar, Voshavar; Srujan, Marepally; Prabhakar, Rairala; Reddy, Rakesh C; Sreedhar, Bojja; Rentam, Kiran K R; Kanjilal, Sanjit; Chaudhuri, Arabinda

    2011-03-16

    Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.

  20. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics.

    Science.gov (United States)

    Curtin, James F; Candolfi, Marianela; Xiong, Weidong; Lowenstein, Pedro R; Castro, Maria G

    2008-03-01

    Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer.

  1. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing.

    Science.gov (United States)

    Rabbani, Piul S; Zhou, Anna; Borab, Zachary M; Frezzo, Joseph A; Srivastava, Nikita; More, Haresh T; Rifkin, William J; David, Joshua A; Berens, Samuel J; Chen, Raymond; Hameedi, Sophia; Junejo, Muhammad H; Kim, Camille; Sartor, Rita A; Liu, Che F; Saadeh, Pierre B; Montclare, Jin K; Ceradini, Daniel J

    2017-04-03

    Therapeutics utilizing siRNA are currently limited by the availability of safe and effective delivery systems. Cutaneous diseases, specifically ones with significant genetic components are ideal candidates for topical siRNA based therapy but the anatomical structure of skin presents a considerable hurdle. Here, we optimized a novel liposome and protein hybrid nanoparticle delivery system for the topical treatment of diabetic wounds with severe oxidative stress. We utilized a cationic lipid nanoparticle (CLN) composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the edge activator sodium cholate (NaChol), in a 6:1 ratio of DOTAP:NaChol (DNC). Addition of a cationic engineered supercharged coiled-coil protein (CSP) in a 10:1:1 ratio of DNC:CSP:siRNA produced a stable lipoproteoplex (LPP) nanoparticle, with optimal siRNA complexation, minimal cytotoxicity, and increased transfection efficacy. In a humanized murine diabetic wound healing model, our optimized LPP formulation successfully delivered siRNA targeted against Keap1, key repressor of Nrf2 which is a central regulator of redox mechanisms. Application of LPP complexing siKeap1 restored Nrf2 antioxidant function, accelerated diabetic tissue regeneration, and augmented reduction-oxidation homeostasis in the wound environment. Our topical LPP delivery system can readily be translated into clinical use for the treatment of diabetic wounds and can be extended to other cutaneous diseases with genetic components.

  2. Immunogenicity of transmissible gastroenteritis virus (TGEV) M gene delivered by attenuated Salmonella typhimurium in mice.

    Science.gov (United States)

    Qing, Ying; Liu, Jiawen; Huang, Xiaobo; Li, Yaqing; Zhang, Yudi; Chen, Jie; Wen, Xintian; Cao, Sanjie; Wen, Yiping; Wu, Rui; Yan, Qigui; Ma, Xiaoping

    2016-04-01

    Attenuated Salmonella typhimurium (S. typhimurium) was selected as a transgenic vehicle for the development of live mucosal vaccines against transmissible gastroenteritis virus (TGEV) based on the M gene. An approximate 1.0 kb DNA fragment, encoding for glycoprotein M, was amplified by RT-PCR and cloned into eukaryotic expression vector pVAX1. The recombinant plasmid pVAX-M was transformed by electroporation into attenuated S. typhimurium SL7207, and the expression and translation of the pVAX-M delivered by recombinant S. typhimurium SL7207 (pVAX-M) was detected both in vitro and in vivo. BALB/c mice were inoculated orally with SL7207 (pVAX-M) at different dosages to evaluate safety of the vaccines. The bacterium was safe to mice at a dosage of 2 × 10(9) CFU, almost eliminated from the spleen and liver at week 4 post-immunization and eventually cleared at week 6. Mice immunized with 1 × 10(9) CFU of SL7207 (pVAX-M) elicited specific anti-TGEV local mucosal and humoral responses including levels of IgA, IgG, IL-4, and IFN-γ as measured by indirect ELISA assay. Moreover, the control groups (pVAX group, PBS group) maintained at a normal level during week 4-8 post-immunization. The results indicated that attenuated S. typhimurium could be used as a delivery vector for oral immunization of TGEV M gene vaccine.

  3. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    Science.gov (United States)

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based

  4. Gene silencing: a therapeutic approach to combat influenza virus infections.

    Science.gov (United States)

    Khanna, Madhu; Saxena, Latika; Rajput, Roopali; Kumar, Binod; Prasad, Rajendra

    2015-01-01

    Selective gene silencing technologies such as RNA interference (RNAi) and nucleic acid enzymes have shown therapeutic potential for treating viral infections. Influenza virus is one of the major public health concerns around the world and its management is challenging due to a rapid increase in antiviral resistance. Influenza vaccine also has its limitations due to the emergence of new strains that may escape the immunity developed by the previous year's vaccine. Antiviral drugs are the primary mode of prevention and control against a pandemic and there is an urgency to develop novel antiviral strategies against influenza virus. In this review, we discuss the potential utility of several gene silencing mechanisms and their prophylactic and therapeutic potential against the influenza virus.

  5. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall.

    Science.gov (United States)

    Ye, Y W; Landau, C; Willard, J E; Rajasubramanian, G; Moskowitz, A; Aziz, S; Meidell, R S; Eberhart, R C

    1998-01-01

    The use of intravascular stents as an adjunct for percutaneous transluminal revascularization is limited by two principal factors, acute thrombosis and neointimal proliferation, resulting in restenosis. To overcome these limitations, we have investigated the potential of microporous bioresorbable polymer stents formed from poly(L-lactic acid) (PLLA)/poly(epsilon-caprolactone) (PCL) blends to function both to provide mechanical support and as reservoirs for local delivery of therapeutic molecules and particles to the vessel wall. Tubular PLLA/PCL stents were fabricated by the flotation-precipitation method, and helical stents were produced by a casting/winding technique. Hybrid structures in which a tubular sheath is deposited on a helical skeleton were also generated. Using a two-stage solvent swelling technique, polyethylene oxide has been incorporated into these stents to improve hydrophilicity and water uptake, and to facilitate the ability of these devices to function as drug carriers. Stents modified in this manner retain axial and radial mechanical strength sufficient to stabilize the vessel wall against elastic recoil caused by vasoconstrictive and mechanical forces. Because of the potential of direct gene transfer into the vessel wall to ameliorate thrombosis and neointimal proliferation, we have investigated the capacity of these polymer stents to function in the delivery of recombinant adenovirus vectors to the vessel wall. In vitro, virus stock was observed to readily absorb into, and elute from these devices in an infectious form, with suitable kinetics. Successful gene transfer and expression has been demonstrated following implantation of polymer stents impregnated with a recombinant adenovirus carrying a nuclear-localizing betaGal reporter gene into rabbit carotid arteries. These studies suggest that surface-modified polymer stents may ultimately be useful adjunctive devices for both mechanical support and gene transfer during percutaneous

  6. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    Science.gov (United States)

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  7. Enhanced gene disruption by programmable nucleases delivered by a minicircle vector.

    Science.gov (United States)

    Dad, A-B K; Ramakrishna, S; Song, M; Kim, H

    2014-11-01

    Targeted genetic modification using programmable nucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) is of great value in biomedical research, medicine and biotechnology. Minicircle vectors, which lack extraneous bacterial sequences, have several advantages over conventional plasmids for transgene delivery. Here, for the first time, we delivered programmable nucleases into human cells using transient transfection of a minicircle vector and compared the results with those obtained using a conventional plasmid. Surrogate reporter assays and T7 endonuclease analyses revealed that cells in the minicircle vector group displayed significantly higher mutation frequencies at the target sites than those in the conventional plasmid group. Quantitative PCR and reverse transcription-PCR showed higher vector copy number and programmable nuclease transcript levels, respectively, in 293T cells after minicircle versus conventional plasmid vector transfection. In addition, tryphan blue staining and flow cytometry after annexin V and propidium iodide staining showed that cell viability was also significantly higher in the minicircle group than in the conventional plasmid group. Taken together, our results show that gene disruption using minicircle vector-mediated delivery of ZFNs and TALENs is a more efficient, safer and less toxic method than using a conventional plasmid, and indicate that the minicircle vector could serve as an advanced delivery method for programmable nucleases.

  8. [Therapeutic effect of focal adhesion kinase gene silence on leukemia].

    Science.gov (United States)

    Xu, Lü-Hong; Fang, Jian-Pei; Weng, Wen-Jun; Xu, Hong-Gui; Zhang, Ya-Ting

    2011-06-01

    This study was aimed to investigate the effects of focal adhesion kinase (FAK) gene silence on leukemia cell growth, leukemogenesis and efficacy of chemotherapy drug. Vector containing lentiviral-FAK-shRNA was constructed and transfected into BCR/ABL-BaF3 leukemic cells, the cell growth and apoptosis were detected in vitro. The effect of FAK shRNA on leukemogenesis was studied in a murine model with leukemia. The apoptosis of leukemia cells and survival of leukemic mice treated by FAK shRNA combined with drug STI571 were monitored. The results showed that FAK gene expression was knocked down by lentiviral-FAK-shRNA. FAK gene silencing inhibited leukemia cell growth in vitro. The apoptosis test results showed that the percentages of Annexin V(+) cells in vector control group and FAK shRNA group were (3.46 ± 0.56)% and (7.3 ± 0.79)%, respectively, and the difference was statistically significant (p silence combined with drug STI571 could enhance the apoptosis of leukemia cells and prolong survival time of leukemic mice. It is concluded that FAK gene silence inhibits leukemogenesis and promotes efficacy of chemotherapy drug on leukemia cells, indicating FAK gene silence may be considered as a new therapeutic strategy for leukemia.

  9. Cancer therapeutic target genes identified on chromosome 20q

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2016-08-01

    , Snijders and Mao described that and “when the selection pressure is removed, amplifications are not maintained and eventually disappear. Thus, amplifications focus on those genes that are important for tumor development,” they said. Their analysis showed that, as tumorous cells progress toward malignancy, the DNA copy number plays a major role in the mechanism of increased expression levels for the 18-gene signature on chromosome 20q. “Strong associations between the DNA copy number and gene expression were observed in the majority of tumor types,” the researchers said. “For example, the RAE1 expression was found to be significantly associated with DNA copy number in 20 tumor types,” the study reported. “Elevated DNA copy numbers of MMP9 and SULF2 were associated with increased gene expressions in only two and seven tumor types, respectively,” it added. With their integrated multi-omics analysis of genes on chromosome 20q, Snijders and Mao believed that the 18-gene signature could become new molecular targets for cancer therapy. “Gene ontology analysis revealed significant enrichment of cell cycle and mitosis-related biological processes in our 18-gene, suggesting that a cluster of functionally related genes localize to chromosome 20q,” they said. The identification of good targets such as theirs is a critical step for the development of targeted therapies for cancer treatment, according to the researchers. Microarray and next generation sequencing technologies have become invaluable tools in cataloging genomic abnormalities in human cancers and identifying new potential therapeutic targets, in addition to the availability of large cancer genomic data sets which allows for unbiased approaches to identify genes that are important in tumor progression, the research study noted. “Here, we aggregated available cancer databases to identify cancer driver genes across tumor types by combining gene transcript and DNA copy number across chromosome 20q to

  10. A Potential Therapeutic Strategy for Malignant Mesothelioma with Gene Medicine

    Directory of Open Access Journals (Sweden)

    Yuji Tada

    2013-01-01

    Full Text Available Malignant mesothelioma, closely linked with occupational asbestos exposure, is relatively rare in the frequency, but the patient numbers are going to increase in the next few decades all over the world. The current treatment modalities are not effective in terms of the overall survival and the quality of life. Mesothelioma mainly develops in the thoracic cavity and infrequently metastasizes to extrapleural organs. A local treatment can thereby be beneficial to the patients, and gene therapy with an intrapleural administration of vectors is one of the potential therapeutics. Preclinical studies demonstrated the efficacy of gene medicine for mesothelioma, and clinical trials with adenovirus vectors showed the safety of an intrapleural injection and a possible involvement of antitumor immune responses. Nevertheless, low transduction efficiency remains the main hurdle that hinders further clinical applications. Moreover, rapid generation of antivector antibody also inhibits transgene expressions. In this paper, we review the current status of preclinical and clinical gene therapy for malignant mesothelioma and discuss potential clinical directions of gene medicine in terms of a combinatory use with anticancer agents and with immunotherapy.

  11. A novel plasmid for delivering genes into mammalian cells with noninvasive food and commensal lactic acid bacteria.

    Science.gov (United States)

    Tao, Lin; Pavlova, Sylvia I; Ji, Xin; Jin, Ling; Spear, Gregory

    2011-01-01

    Using food and commensal lactic acid bacteria (LAB) as vehicles for DNA delivery into epithelial cells is a new strategy for vaccine delivery or gene therapy. However, present methods for DNA delivery with LAB have suffered low efficiency. Our goal was to develop a new system to deliver DNA into epithelial cells with high efficiency using food and commensal LAB. An Escherichia coli-LAB shuttle plasmid, pLKV1, for DNA delivery into eukaryotic cells was constructed. Two reporter plasmids with green and red fluorescent protein genes were also constructed to monitor the uptake of protein and DNA, respectively. Bacteria delivering these reporter plasmids into Caco-2 cells were monitored by fluorescence microscopy. Several methods that weaken the bacterial cell wall prior to co-culture with Caco-2 cells were evaluated for their role in the improvement of gene transfer efficiency. Treating Streptococcus gordonii with penicillin and lysozyme greatly increased its rate of gene delivery to mammalian cells compared to untreated control bacteria, while glycine pretreatment promoted the highest gene transfer rate for Lactococcus lactis. Uptake of green fluorescent bacteria by Caco-2 cells showed that the cell wall-weakening treatment promoted the internalization of the noninvasive bacteria into Caco-2 cells. In conclusion, we have developed a noninvasive system using LAB as a vehicle for vaccine delivery or gene therapy, and tested this system in vitro with Caco-2 cells.

  12. Cell-Specific Promoters Enable Lipid-Based Nanoparticles to Deliver Genes to Specific Cells of the Retina In Vivo.

    Science.gov (United States)

    Wang, Yuhong; Rajala, Ammaji; Cao, Binrui; Ranjo-Bishop, Michelle; Agbaga, Martin-Paul; Mao, Chuanbin; Rajala, Raju V S

    2016-01-01

    Non-viral vectors, such as lipid-based nanoparticles (liposome-protamine-DNA complex [LPD]), could be used to deliver a functional gene to the retina to correct visual function and treat blindness. However, one of the limitations of LPD is the lack of cell specificity, as the retina is composed of seven types of cells. If the same gene is expressed in multiple cell types or is absent from one desired cell type, LPD-mediated gene delivery to every cell may have off-target effects. To circumvent this problem, we have tested LPD-mediated gene delivery using various generalized, modified, and retinal cell-specific promoters. We achieved retinal pigment epithelium cell specificity with vitelliform macular dystrophy (VMD2), rod cell specificity with mouse rhodopsin, cone cell specificity with red/green opsin, and ganglion cell specificity with thymocyte antigen promoters. Here we show for the first time that cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. This work will inspire investigators in the field of lipid nanotechnology to couple cell-specific promoters to drive expression in a cell- and tissue-specific manner.

  13. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.

    Science.gov (United States)

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-09-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. © 2014 Wiley Periodicals, Inc.

  14. Neuromuscular disorders: genes, genetic counseling and therapeutic trials

    Directory of Open Access Journals (Sweden)

    Mayana Zatz

    Full Text Available Abstract Neuromuscular disorders (NMD are a heterogeneous group of genetic conditions, with autosomal dominant, recessive, or X-linked inheritance. They are characterized by progressive muscle degeneration and weakness. Here, we are presenting our major contributions to the field during the past 30 years. We have mapped and identified several novel genes responsible for NMD. Genotype-phenotype correlations studies enhanced our comprehension on the effect of gene mutations on related proteins and their impact on clinical findings. The search for modifier factors allowed the identification of a novel "protective"; variant which may have important implication on therapeutic developments. Molecular diagnosis was introduced in the 1980s and new technologies have been incorporated since then. Next generation sequencing greatly improved our capacity to identify disease-causing mutations with important benefits for research and prevention through genetic counseling of patients' families. Stem cells researches, from and for patients, have been used as tools to study human genetic diseases mechanisms and for therapies development. The clinical effect of preclinical trials in mice and canine models for muscular dystrophies are under investigation. Finally, the integration of our researches and genetic services with our post-graduation program resulted in a significant output of new geneticists, spreading out this expertise to our large country.

  15. The enhanced healing of a high-risk, clean, sutured surgical incision by prophylactic negative pressure wound therapy as delivered by Prevena™ Customizable™: cosmetic and therapeutic results.

    Science.gov (United States)

    Scalise, Alessandro; Tartaglione, Caterina; Bolletta, Elisa; Calamita, Roberto; Nicoletti, Giovanni; Pierangeli, Marina; Grassetti, Luca; Di Benedetto, Giovanni

    2015-04-01

    According to the literature, incisional closure complications may range from postoperative surgical site infections, representing 17-22% of health care-associated infections, surgical wound dehiscence and formation of haematomas or seromas, and can lead to delayed or impaired incision healing. These kinds of situations are more common when wounds are closed under tension or in specific patient morbidities. Obesity, in particular, is associated with an impaired blood flow to tissues, predisposing the patient to increased risk of wound complications by various mechanisms. Incisional complications can become relevant economic burdens for health care systems because of an increase in the average length of hospital stay and readmissions, and additional medical and surgical procedures. Thus, a preventive therapy may have a critical role in the management of healing. Negative pressure wound therapy (NPWT) technology as delivered by Prevena™ Customizable™ (Kinetic Concepts Inc., San Antonio, TX) has recently been the focus of a new investigation, as a prophylactic measure to prevent complications via immediate postoperative application in high-risk, clean, closed surgical incisions. The authors present a 62-year-old class II obese female, who underwent bilateral inguinal dermolipectomy. Prophylactic NPWT as delivered by Prevena™ was performed successfully over surgical incisions. Cosmetic and therapeutic results are shown.

  16. In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Che-Ming Liu

    Full Text Available Cancer cells respond to stress by activating a variety of survival signaling pathways. A disintegrin and metalloproteinase (ADAM 9 is upregulated during cancer progression and hormone therapy, functioning in part through an increase in reactive oxygen species. Here, we present in vitro and in vivo evidence that therapeutic targeting of ADAM9 gene expression by lentivirus-delivered small hairpin RNA (shRNA significantly inhibited proliferation of human prostate cancer cell lines and blocked tumor growth in a murine model of prostate cancer bone metastasis. Cell cycle studies confirmed an increase in the G1-phase and decrease in the S-phase population of cancer cells under starvation stress conditions, which correlated with elevated intracellular superoxide levels. Microarray data showed significantly decreased levels of regenerating islet-derived family member 4 (REG4 expression in prostate cancer cells with knockdown of ADAM9 gene expression. This REG4 downregulation also resulted in induction of expression of p21(Cip1/WAF1, which negatively regulates cyclin D1 and blocks the G1/S transition. Our data reveal a novel molecular mechanism of ADAM9 in the regulation of prostate cancer cell proliferation, and suggests a combined modality of ADAM9 shRNA gene therapy and cytotoxic agents for hormone refractory and bone metastatic prostate cancer.

  17. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    Science.gov (United States)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  18. Therapeutic levels of erythropoietin (EPO) achieved after gene electrotransfer to skin in mice

    DEFF Research Database (Denmark)

    Gothelf, A; Hojman, P; Gehl, Julie

    2010-01-01

    Gene electrotransfer refers to gene transfection by electroporation and is an effective non-viral method for delivering naked DNA into cells and tissues. This study presents data from gene electrotransfer with erythropoietin (EPO) to mouse skin. Nine-week-old female NMRI mice received one, two...

  19. Therapeutic brain cancer targeting by gene therapy and immunomodulation : a translational study

    NARCIS (Netherlands)

    Stathopoulos, A.

    2012-01-01

    The hypothesis pertinent to this thesis is that glioma tumours can be therapeutically targeted by gene and/or immunotherapy in order to eliminate or delay tumour recurrence leading to significant morbidity and mortality. In our gene therapeutic approach, described in Chapter 2, we observed that chro

  20. Targeting the Nrf2 Signaling Pathway in the Retina With a Gene-Delivered Secretable and Cell-Penetrating Peptide.

    Science.gov (United States)

    Ildefonso, Cristhian J; Jaime, Henrique; Brown, Emily E; Iwata, Ryo L; Ahmed, Chulbul M; Massengill, Michael T; Biswal, Manas R; Boye, Shannon E; Hauswirth, William W; Ash, John D; Li, Qiuhong; Lewin, Alfred S

    2016-02-01

    Oxidative stress has been linked to several ocular diseases, initiating an inflammatory response that increases tissue injury. The Nrf2 transcription factor regulates expression of antioxidant genes and is tightly regulated by Kelch-Like ECH-Associated Protein 1 (Keap-1). We evaluate the antioxidant and anti-inflammatory properties of an adeno-associated virus (AAV) vector delivering an Nrf2-derived peptide that binds Keap-1. The sequence of the Nrf2 peptide was fused to a cell-penetrating peptide (Tat-peptide) sequence (TatNrf2mer). The effects of lentiviral-delivered TatNrf2mer were studied in vitro. Transcript (quantitative [q] RT-PCR) and protein levels (ELISA and immunofluorescence) were quantified. Cell viability was measured by MTT and Cell Titer assays. The AAV vectors were packaged with the TatNrf2mer fused to secretable green fluorescent protein (GFP) under the control of the small chicken β actin promoter. The protective effects of this vector were evaluated in a model of RPE oxidative injury and in a mouse model of uveitis after intravitreal injection. Expression of TatNrf2mer peptide induced antioxidant gene expression, blocked IL-1β secretion, and protected cells from oxidative injury. In mice, TatNrf2mer expression partially protected photoreceptor function based on ERG responses and optical coherence tomography measurements in the sodium iodate (NaIO3) model. Furthermore, sGFP-TatNrf2mer expression decreased IL-1β and IL-6 in the NaIO3-treated mice, and resulted in a 54% decrease in the number of inflammatory cells in the vitreous body of the endotoxin-induced uveitis mouse model. The intravitreally delivered AAV-TatNrf2mer has antioxidant and anti-inflammatory effects in widely-used models of ocular injury, suggesting it also could be useful in ocular diseases associated with oxidative stress and inflammasome activation.

  1. Systemic Administration of CpG Oligodeoxynucleotide and Levamisole as Adjuvants for Gene-Gun-Delivered Antitumor DNA Vaccines

    Science.gov (United States)

    Šmahel, Michal; Poláková, Ingrid; Sobotková, Eva; Vajdová, Eva

    2011-01-01

    DNA vaccines showed great promise in preclinical models of infectious and malignant diseases, but their potency was insufficient in clinical trials and is needed to be improved. In this study, we tested systemic administration of two conventional adjuvants, synthetic oligodeoxynucleotide carrying immunostimulatory CpG motifs (CpG-ODN) and levamisole (LMS), and evaluated their effect on immune reactions induced by DNA vaccines delivered by a gene gun. DNA vaccination was directed either against the E7 oncoprotein of human papillomavirus type 16 or against the BCR-ABL1 oncoprotein characteristic for chronic myeloid leukemia. High doses of both adjuvants reduced activation of mouse splenic CD8+ T lymphocytes, but the overall antitumor effect was enhanced in both tumor models. High-dose CpG-ODN exhibited a superior adjuvant effect in comparison with any combination of CpG-ODN with LMS. In summary, our results demonstrate the benefit of combined therapy with gene-gun-delivered antitumor DNA vaccines and systemic administration of CpG-ODN or LMS. PMID:22028727

  2. Systemic Administration of CpG Oligodeoxynucleotide and Levamisole as Adjuvants for Gene-Gun-Delivered Antitumor DNA Vaccines

    Directory of Open Access Journals (Sweden)

    Michal Šmahel

    2011-01-01

    Full Text Available DNA vaccines showed great promise in preclinical models of infectious and malignant diseases, but their potency was insufficient in clinical trials and is needed to be improved. In this study, we tested systemic administration of two conventional adjuvants, synthetic oligodeoxynucleotide carrying immunostimulatory CpG motifs (CpG-ODN and levamisole (LMS, and evaluated their effect on immune reactions induced by DNA vaccines delivered by a gene gun. DNA vaccination was directed either against the E7 oncoprotein of human papillomavirus type 16 or against the BCR-ABL1 oncoprotein characteristic for chronic myeloid leukemia. High doses of both adjuvants reduced activation of mouse splenic CD8+ T lymphocytes, but the overall antitumor effect was enhanced in both tumor models. High-dose CpG-ODN exhibited a superior adjuvant effect in comparison with any combination of CpG-ODN with LMS. In summary, our results demonstrate the benefit of combined therapy with gene-gun-delivered antitumor DNA vaccines and systemic administration of CpG-ODN or LMS.

  3. Biomedical Applications of Magnetic Nanoparticles: Delivering Genes and Remote Control of Cells

    Science.gov (United States)

    Dobson, Jon

    2013-03-01

    The use of magnetic micro- and nanoparticles for biomedical applications was first proposed in the 1920s as a way to measure the rehological properties of the cell's cytoplasm. Since that time, magnetic micro- and nanoparticle synthesis, coating and bio-functionalization have advanced significantly, as have the applications for these particles. Magnetic micro- and nanoparticles are now used in a variety of biomedical techniques such as targeted drug delivery, MRI contrast enhancement, gene transfection, immno-assay and cell sorting. More recently, magnetic micro- and nanoparticles have been used to investigate and manipulate cellular processes both in vitro and in vivo. This talk will focus on magnetic nanoparticle targeting to and actuation of cell surface receptors to control cell signaling cascades to control cell behavior. This technology has applications in disease therapy, cell engineering and regenerative medicine. The use of magnetic nanoparticles and oscillating magnet arrays for enhanced gene delivery will also be discussed.

  4. Therapeutic levels of human factor VIII in mice implanted with encapsulated cells: potential for gene therapy of haemophilia A.

    Science.gov (United States)

    García-Martín, Carmen; Chuah, Marinee K L; Van Damme, An; Robinson, Kelly E; Vanzieleghem, Beatrijs; Saint-Remy, Jean-Marie; Gallardo, Dominique; Ofosu, Frederick A; Vandendriessche, Thierry; Hortelano, Gonzalo

    2002-01-01

    A gene therapy delivery system based on microcapsules enclosing recombinant cells engineered to secrete a therapeutic protein has been evaluated. The microcapsules are implanted intraperitoneally. In order to prevent cell immune rejection, cells are enclosed in non-antigenic biocompatible alginate microcapsules prior to their implantation into mice. It has been shown that encapsulated myoblasts can deliver therapeutic levels of Factor IX (FIX) in mice. The delivery of human Factor VIII (hFVIII) in mice using microcapsules was evaluated in this study. Mouse C2C12 myoblasts and canine MDCK epithelial kidney cells were transduced with MFG-FVIII (B-domain deleted) vector. Selected recombinant clones were enclosed in alginate microcapsules. Encapsulated recombinant clones were subsequently implanted intraperitoneally into C57BL/6 and immunodeficient SCID mice. Plasma of mice receiving C2C12 and encapsulated MDCK cells had transient therapeutic levels of FVIII in immunocompetent C57BL/6 mice (up to 20% and 7% of physiological levels, respectively). In addition, FVIII delivery in SCID mice was also transient, suggesting that a non-immune mechanism must have contributed to the decline of hFVIII in plasma. Quantitative RT-PCR analysis confirmed directly that the decline of hFVIII is due to a reduction in steady-state hFVIII mRNA, consistent with transcriptional repression. Furthermore, encapsulated cells retrieved from implanted mice were viable, but secreted FVIII ex vivo at three-fold lower levels than the pre-implantation levels. In addition, antibodies to hFVIII were detected in immunocompetent C57BL/6 mice. Implantable microcapsules can deliver therapeutic levels of FVIII in mice, suggesting the potential of this gene therapy approach for haemophilia A. The findings suggest vector down-regulation in vivo. Copyright 2002 John Wiley & Sons, Ltd.

  5. Knock down of Whitefly Gut Gene Expression and Mortality by Orally Delivered Gut Gene-Specific dsRNAs.

    Science.gov (United States)

    Vyas, Meenal; Raza, Amir; Ali, Muhammad Yousaf; Ashraf, Muhammad Aleem; Mansoor, Shahid; Shahid, Ahmad Ali; Brown, Judith K

    2017-01-01

    Control of the whitefly Bemisia tabaci (Genn.) agricultural pest and plant virus vector relies on the use of chemical insecticides. RNA-interference (RNAi) is a homology-dependent innate immune response in eukaryotes, including insects, which results in degradation of the corresponding transcript following its recognition by a double-stranded RNA (dsRNA) that shares 100% sequence homology. In this study, six whitefly 'gut' genes were selected from an in silico-annotated transcriptome library constructed from the whitefly alimentary canal or 'gut' of the B biotype of B. tabaci, and tested for knock down efficacy, post-ingestion of dsRNAs that share 100% sequence homology to each respective gene target. Candidate genes were: Acetylcholine receptor subunit α, Alpha glucosidase 1, Aquaporin 1, Heat shock protein 70, Trehalase1, and Trehalose transporter1. The efficacy of RNAi knock down was further tested in a gene-specific functional bioassay, and mortality was recorded in 24 hr intervals, six days, post-treatment. Based on qPCR analysis, all six genes tested showed significantly reduced gene expression. Moderate-to-high whitefly mortality was associated with the down-regulation of osmoregulation, sugar metabolism and sugar transport-associated genes, demonstrating that whitefly survivability was linked with RNAi results. Silenced Acetylcholine receptor subunit α and Heat shock protein 70 genes showed an initial low whitefly mortality, however, following insecticide or high temperature treatments, respectively, significantly increased knockdown efficacy and death was observed, indicating enhanced post-knockdown sensitivity perhaps related to systemic silencing. The oral delivery of gut-specific dsRNAs, when combined with qPCR analysis of gene expression and a corresponding gene-specific bioassay that relates knockdown and mortality, offers a viable approach for functional genomics analysis and the discovery of prospective dsRNA biopesticide targets. The approach can

  6. Elements of style: consent form language and the therapeutic misconception in phase 1 gene transfer trials.

    Science.gov (United States)

    Kimmelman, Jonathan; Levenstadt, Aaron

    2005-04-01

    The therapeutic misconception arises wherever human subjects misinterpret the primary purpose of a clinical trial as therapeutic. Such misconceptions are particularly prevalent in trials involving severely ill subjects or novel and well-publicized investigational agents. In order to identify possible sources of the therapeutic misconception in gene transfer trials, 286 phase 1 human gene transfer consent documents were analyzed for their description of purpose, alternatives, and their use of the term gene transfer. We report that 20% of trials fail to explain their purpose as safety and dosage, only 41% of oncology trials identify comfort care as an alternative to participation, and that the term gene therapy is used with twice the frequency of the term gene transfer. Trends and coherence in consent form language were analyzed as well. Our results indicate that consent forms used in gene transfer phase 1 trials often contain language that promotes, or does little to deter, therapeutic misconceptions.

  7. Knock down of Whitefly Gut Gene Expression and Mortality by Orally Delivered Gut Gene-Specific dsRNAs

    Science.gov (United States)

    Ali, Muhammad Yousaf; Ashraf, Muhammad Aleem; Mansoor, Shahid; Shahid, Ahmad Ali; Brown, Judith K.

    2017-01-01

    Control of the whitefly Bemisia tabaci (Genn.) agricultural pest and plant virus vector relies on the use of chemical insecticides. RNA-interference (RNAi) is a homology-dependent innate immune response in eukaryotes, including insects, which results in degradation of the corresponding transcript following its recognition by a double-stranded RNA (dsRNA) that shares 100% sequence homology. In this study, six whitefly ‘gut’ genes were selected from an in silico-annotated transcriptome library constructed from the whitefly alimentary canal or ‘gut’ of the B biotype of B. tabaci, and tested for knock down efficacy, post-ingestion of dsRNAs that share 100% sequence homology to each respective gene target. Candidate genes were: Acetylcholine receptor subunit α, Alpha glucosidase 1, Aquaporin 1, Heat shock protein 70, Trehalase1, and Trehalose transporter1. The efficacy of RNAi knock down was further tested in a gene-specific functional bioassay, and mortality was recorded in 24 hr intervals, six days, post-treatment. Based on qPCR analysis, all six genes tested showed significantly reduced gene expression. Moderate-to-high whitefly mortality was associated with the down-regulation of osmoregulation, sugar metabolism and sugar transport-associated genes, demonstrating that whitefly survivability was linked with RNAi results. Silenced Acetylcholine receptor subunit α and Heat shock protein 70 genes showed an initial low whitefly mortality, however, following insecticide or high temperature treatments, respectively, significantly increased knockdown efficacy and death was observed, indicating enhanced post-knockdown sensitivity perhaps related to systemic silencing. The oral delivery of gut-specific dsRNAs, when combined with qPCR analysis of gene expression and a corresponding gene-specific bioassay that relates knockdown and mortality, offers a viable approach for functional genomics analysis and the discovery of prospective dsRNA biopesticide targets. The

  8. A folate receptor-targeted lipoplex delivering interleukin-15 gene for colon cancer immunotherapy.

    Science.gov (United States)

    Liang, Xiao; Luo, Min; Wei, Xia-Wei; Ma, Cui-Cui; Yang, Yu-Han; Shao, Bin; Liu, Yan-Tong; Liu, Ting; Ren, Jun; Liu, Li; He, Zhi-Yao; Wei, Yu-Quan

    2016-08-09

    Interleukin-15 has been implicated as a promising cytokine for cancer immunotherapy, while folate receptor α (FRα) has been shown to be a potentially useful target for colon cancer therapy. Herein, we developed F-PLP/pIL15, a FRα-targeted lipoplex loading recombinant interleukin-15 plasmid (pIL15) and studied its antitumor effects in vivo using a CT26 colon cancer mouse model. Compared with control (normal saline) treatment, F-PLP/pIL15 significantly suppressed tumor growth in regard to tumor weight (P targeted delivery of IL15 gene might be associated with its in vivo antitumor effects, which include inducing tumor cell apoptosis, inhibiting tumor proliferation and promoting the activation of immune cells such as T cells and natural killer cells. Furthermore, hematoxylin and eosin staining of vital organs following F-PLP/pIL15 treatment showed no detectable toxicity, thus indicating that intraperitoneal administration may be a viable route of delivery. Overall, these results suggest that F-PLP/pIL15 may serve as a potential targeting preparation for colon cancer therapy.

  9. VEGF therapeutic gene delivery using dendrimer type bio-reducible polymer into human mesenchymal stem cells (hMSCs).

    Science.gov (United States)

    Kim, Hyojung; Nam, Kihoon; Nam, Joung-Pyo; Kim, Hyun Soo; Kim, Yong Man; Joo, Wan Seok; Kim, Sung Wan

    2015-12-28

    The therapeutic potential of mesenchymal stem cells (MSCs) has garnered great attention in the expansive diversity of biomedical research. Despite this broad interest in stem cells, limited incorporation and poor viability are major disadvantages for accomplishing therapeutic success in the field of hMSC-based cell therapy, and an optimal approach for hMSC-based cell therapy using non-viral vectors has not been established. Hence, we examined the possibility of performing gene therapy using the biodegradable polymeric non-viral vector Arginine-grafted poly (cystaminebisacrylamide-diaminohexane) (ABP)-conjugated poly (amidoamine) (PAMAM) dendrimer (PAM-ABP) in hMSCs. PAM-ABP formed compact nanosized polyplexes and showed low cytotoxicity compared to bPEI 25k and Lipofectamine® 2000 in hMSCs. Although the cellular uptake was similar, the transfection efficiency and VEGF expression of PAM-ABP using gWiz-Luc and pβ-VEGF were higher than those of the control groups. Although hMSCs were transfected, their stem cell characteristics were retained. Our results suggest that PAM-ABP has the ability to deliver a therapeutic gene in hMSCs.

  10. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy.

    Science.gov (United States)

    Chen, Lili; Ji, Fangling; Bao, Yongming; Xia, Jing; Guo, Lianying; Wang, Jingyun; Li, Yachen

    2017-01-01

    The greatest crux in the combination of chemotherapy and gene therapy is the construction of a feasible and biocompatible carrier for loading the therapeutic drug and gene simultaneously. Here, a new amphiphilic bifunctional pullulan derivative (named as PDP) synthesized by grafting lipophilic desoxycholic acid and low-molecular weight (1kDa) branched polyethylenimine onto the backbone of pullulan was evaluated as a nano-carrier for the co-delivery of drug and gene for potential cancer therapy. PDP exhibited good blood compatibility and low cytotoxicity in the hemolysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. By self-assembly process, the amphiphilic PDP polymer formed cationic core-shell nanomicelles in aqueous solution with an average diameter of 160.8nm and a zeta potential of approximate 28mV. The PDP micelles had relative higher drug encapsulation efficiency (84.05%) and loading capacity (7.64%) for doxorubicin (DOX), an effective anti-tumor drug, demonstrating sustained drug release profile and good DNA-binding ability. The flow cytometry and confocal laser scanning microscopy showed that PDP/DOX micelles could be successfully internalized by MCF-7 cells, and presenting higher cytotoxicity against MCF-7 cells than that of free DOX. Furthermore, PDP micelles could efficiently transport tumor suppressor gene p53 into MCF-7 cells, and the expressed exogenous p53 protein induced MCF-7 cells to die. More excitedly, in comparison with single DOX or p53 delivery, the co-delivery of DOX and gene p53 using PDP micelles displayed higher cytotoxicity, induced higher apoptosis rate of tumor cells and blocked more effectively the migration of cancer cells in vitro. In tumor-bearing mice, co-delivery of DOX and p53 also exhibited enhanced antitumor efficacy as compared with single delivery of DOX or p53 alone. In summary, these results demonstrated that it is highly promising to use cationic PDP micelles for effectively

  11. Therapeutic levels of erythropoietin (EPO) achieved after gene electrotransfer to skin in mice

    DEFF Research Database (Denmark)

    Gothelf, A; Hojman, P; Gehl, Julie

    2010-01-01

    Gene electrotransfer refers to gene transfection by electroporation and is an effective non-viral method for delivering naked DNA into cells and tissues. This study presents data from gene electrotransfer with erythropoietin (EPO) to mouse skin. Nine-week-old female NMRI mice received one, two...... or three intradermal injections of 50 microg EPO plasmid and were subsequently electroporated. With plate electrodes and 100 microg of EPO, a significant increase in hemoglobin (P...

  12. Different Effects of Therapeutic Ultrasound Parameters and Culture Conditions on Gene Transfection Efficiency

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-yi; XIE Ming-xing; WANG Xin-fang; LU Qing

    2008-01-01

    Objective:To investigate the effect of different therapeutic ultrasound(TUS)parameters and culture conditions on the cell viability and transfection efficiency of human cervical cancer cells(HeLa). Methods:HeLa cells were cultured using two different protocols(in suspension or in monolayer).Subsequently,cells were exposed to different TUS intensity(0.4 W/cm2,1.0 W/cm2,1.6 W/cm2,2.2 W/cm2),duty cycle(DC)(10%,20%,50%),exposure time(1 min or 3 min).Cell viability was analyzed by flow cytometry.Gene transfection of red fluorescent protein(DsRED)was detected. Results:TUS intensity and duty cycle had a great impact on the overall results(P<0.01).Cell injury were found to increase progressively with intensity (1.6 W/cm2,2.2 W/cm2)and duty cycle(50%)and cell detachment was accompanied by ultrasound exposure in adherent cells.Results of factorial design showed that the fashion of cell culture and the TUS parameters had interaction(P<0.0 1).The ideal conditions that cell viability above 80% producing maximum efficiency were noted to be at 1.0 W/cm2 irradiated 3 min with a duty cycle of 20% in cell suspension. Conclusion:TUS parameters and transfection conditions have a great impact on the gene transfection and cell viability.Optimal parameters could enhance cell membrane permeability,which facilitate to delivering the macromolecules into cells.

  13. Efficient inhibition of C-26 colon carcinoma by VSVMP gene delivered by biodegradable cationic nanogel derived from polyethyleneimine.

    Science.gov (United States)

    Gou, MaLing; Men, Ke; Zhang, Juan; Li, YuHua; Song, Jia; Luo, Shan; Shi, HuaShan; Wen, YanJun; Guo, Gang; Huang, MeiJuan; Zhao, Xia; Qian, ZhiYong; Wei, YuQuan

    2010-10-26

    Biodegradable cationic nanoparticles have promising application as a gene delivery system. In this article, heparin-polyethyleneimine (HPEI) nanogels were prepared, and these nanogels were developed as a nonviral gene vector. The transfection efficiency of HPEI nanogels was comparable with that of PEI25K, while the cytotoxicity was lower than that of PEI2K and much lower than that of PEI25K in vitro. These HPEI nanogels also had better blood compatibility than PEI25K. After intravenous administration, HPEI nanogels degraded, and the degradation products were excreted through urine. The plasmid expressing vesicular stomatitis virus matrix protein (pVSVMP) could be efficiently transfected into C-26 colon carcinoma cells by HPEI nanogels in vitro, inhibiting the cell proliferation through apoptosis induction. Intraperitoneal injection of pVSVMP/HPEI complexes efficiently inhibited the abdominal metastases of C-26 colon carcinoma through apoptosis induction (mean tumor weight in mice treated with pVSVMP/HPEI complex = 0.93 g and in control mice = 3.28 g, difference = 2.35 g, 95% confidence interval [CI] = 1.75-2.95 g, P < 0.001) and prolonged the survival of treated mice. Moreover, intravenous application of pVSVMP/HPEI complexes also inhibited the growth of pulmonary metastases of C-26 colon carcinoma through apoptosis induction. The HPEI nanogels delivering pVSVMP have promising application in treating colon carcinoma.

  14. Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging.

    Science.gov (United States)

    Sekar, T V; Foygel, K; Willmann, J K; Paulmurugan, R

    2013-05-01

    Two of the successful gene-directed enzyme prodrug therapies include herpes simplex virus-thymidine kinase (HSV1-TK) enzyme-ganciclovir prodrug and the Escherichia coli nitroreductase (NTR) enzyme-CB1954 prodrug strategies; these enzyme-prodrug combinations produce activated cytotoxic metabolites of the prodrugs capable of tumor cell death by inhibiting DNA synthesis and killing quiescent cells, respectively. Both these strategies also affect significant bystander cell killing of neighboring tumor cells that do not express these enzymes. We have developed a dual-combination gene strategy, where we identified HSV1-TK and NTR fused in a particular orientation can effectively kill tumor cells when the tumor cells are treated with a fusion HSV1-TK-NTR gene- along with a prodrug combination of GCV and CB1954. In order to determine whether the dual-system demonstrate superior therapeutic efficacy than either HSV1-TK or NTR systems alone, we conducted both in vitro and in vivo tumor xenograft studies using triple negative SUM159 breast cancer cells, by evaluating the efficacy of cell death by apoptosis and necrosis upon treatment with the dual HSV1-TK genes-GCV-CB1954 prodrugs system, and compared the efficiency to HSV1-TK-GCV and NTR-CB1954. Our cell-based studies, tumor regression studies in xenograft mice, histological analyses of treated tumors and bystander studies indicate that the dual HSV1-TK-NTR-prodrug system is two times more efficient even with half the doses of both prodrugs than the respective single gene-prodrug system, as evidenced by enhanced apoptosis and necrosis of tumor cells in vitro in culture and xenograft of tumor tissues in animals.

  15. Tumor Microenvironment Gene Signature as a Prognostic Classifier and Therapeutic Target

    Science.gov (United States)

    2016-06-01

    AWARD NUMBER: W81XWH-14-1-0107 TITLE: Tumor Microenvironment Gene Signature as a Prognostic Classifier and Therapeutic Target PRINCIPAL...AND SUBTITLE Tumor Microenvironment Gene Signature as a 5a. CONTRACT NUMBER W81XWH-14-1-0107 Prognostic Classifier and Therapeutic Target 5b...Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We identified a tumor microenvironment -based activated fibroblast

  16. Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS

    Science.gov (United States)

    2015-08-01

    AWARD NUMBER: W81XWH-14-1-0189 TITLE: Muscle -Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS PRINCIPAL...NUMBER W81XWH-14-1-0189 Muscle -Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS 5b. GRANT NUMBER 5c. PROGRAM...ALS) is characterized by the progressive degeneration of motor neurons leading to skeletal muscle atrophy, paralysis, and the death of patients

  17. Therapeutic efficacy of improved α-fetoprotein promoter-mediated tBid delivered by folate-PEI600-cyclodextrin nanopolymer vector in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bao-guang [Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR (Hong Kong); Department of Gastrointestinal Surgery, the Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong (China); Liu, Li-ping [Department of Hepatobiliary and Pancreas Department of Hepatobiliary Surgery, the Second Clinical Medical College of Jinan University (Shenzhen People' s Hospital), Shenzhen, Guangdong Province (China); Chen, George G., E-mail: gchen@cuhk.edu.hk [Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR (Hong Kong); Ye, Cai Guo; Leung, Kevin K.C.; Ho, Rocky L.K.; Lin, Marie C.; Lai, Paul B.S. [Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR (Hong Kong)

    2014-06-10

    SNPs in human AFP promoter are associated with serum AFP levels in hepatocellular carcinoma (HCC), suggesting that AFP promoter variants may generate better transcriptional activities while retaining high specificity to AFP-producing cells. We sequenced human AFP promoters, cloned 15 different genotype promoters and tested their reporter activities in AFP-producing and non-producing cells. Among various AFP variant fragments tested, EA4D exhibited the highest reporter activity and thus was selected for the further study. EA4D was fused with tBid and coupled with nano-particle vector (H1) to form pGL3-EA4D-tBid/H1. pGL3-EA4D-tBid/H1 could express a high level of tBid while retain the specificity to AFP-producing cells. In a HCC tumor model, application of pGL3-EA4D-tBid/H1 significantly inhibited the growth of AFP-producing-implanted tumors with minimal side-effects, but had no effect on non-AFP-producing tumors. Furthermore, pGL3-EA4D-tBid/H1 could significantly sensitize HCC cells to sorafenib, an approved anti-HCC agent. Collectively, pGL3-EA4D-tBid/H1, a construct with the AFP promoter EA4D and the novel H1 delivery system, can specifically target and effectively suppress the AFP-producing HCC. This new therapeutic tool shows little toxicity in vitro and in vivo and it should thus be safe for further clinical tests. - Highlights: • The nano-particle vector H1 has advantages in mediating gene therapy construct pGL3-EA4D-tBid for HCC treatment. • pGL3-EA4D-tBid/H1, a construct with the AFP promoter EA4D, can specifically target the AFP-producing HCC. • pGL3-EA4D-tBid/H1effectively suppresses the proliferation and growth of AFP-producing HCC. • This novel pGL3-EA4D-tBid/H1 therapeutic tool shows little toxicity in vitro and in vivo.

  18. Gene therapy takes a cue from HAART: combinatorial antiviral therapeutics reach the clinic.

    Science.gov (United States)

    Shah, Priya S; Schaffer, David V

    2010-06-16

    For the first time, scientists have tested a combination of three RNA-based gene therapies, delivered via a lentiviral vector, to target HIV in patients. This study not only demonstrates the safety and long-term viability of this approach, but also highlights areas in which focused improvements in gene therapy strategies may provide the most impact in increasingly translating promise in the laboratory to efficacy in the clinic.

  19. Expanding the therapeutic index of radiation therapy by combining in situ gene therapy in the treatment of prostate cancer.

    Science.gov (United States)

    Tetzlaff, Michael T; Teh, Bin S; Timme, Terry L; Fujita, Tetsuo; Satoh, Takefumi; Tabata, Ken-Ichi; Mai, Wei-Yuan; Vlachaki, Maria T; Amato, Robert J; Kadmon, Dov; Miles, Brian J; Ayala, Gustavo; Wheeler, Thomas M; Aguilar-Cordova, Estuardo; Thompson, Timothy C; Butler, E Brian

    2006-02-01

    The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity.

  20. Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach.

    Directory of Open Access Journals (Sweden)

    Joshua T Schiffer

    Full Text Available Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA, the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs, TAL effector nucleases (TALENs, and CRISPR-associated system 9 (Cas9 proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which

  1. An oral Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus delivered by Escherichia coli elicits immune responses in dogs.

    Science.gov (United States)

    Dahiya, S S; Saini, M; Kumar, P; Gupta, P K

    2011-01-01

    A Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus (CPV) was delivered by Escherichia coli to elicit immune responses. The orally immunized dogs developed CPV-specific serum IgG and virus neutralizing antibody responses. The cellular immune responses analyzed using lymphocyte proliferation test and flow cytometry indicated CPV-specific sensitization of both CD3+CD4+ and CD3+CD8+ lymphocytes. This study demonstrated that the oral CPV DNA vaccine delivered by E. coli can be considered as a promising approach for vaccination of dogs against CPV.

  2. [Melanoma: surface markers as the first point of targeted delivery of therapeutic genes in multilevel gene therapy].

    Science.gov (United States)

    Pleshkan, V V; Zinov'eva, M V; Sverdlov, E D

    2011-01-01

    Melanoma is one of the most malignant tumors, aggressively metastasizing by lymphatic and hematogenous routes. Due to the resistance of melanoma cells to many types of chemotherapy, this disease causes high mortality rate. High hopes are pinned on gene therapeutic approaches to melanoma treatment. At present, one of the main problems of the efficient use of the post-genomic generation therapeutic means is the lack of optimal techniques of delivery of foreign genetic material to the patient's target cells. Surface specific markers of melanoma cells can be considered as promising therapeutic targets. This review describes currently known melanoma specific receptors and its stem cells, as well as contains data on melanoma antigens presented on the cell surface by major histocompatibility complex proteins. The ability of surface proteins to internalize might be successfully used for the development of methods of targeted delivery of gene therapeutic constructs. In conclusion, a concept of multilevel gene therapy and the possible role therein of surface determinants as targets of gene systems delivery to the tumor are discussed.

  3. Optimization of Intracellular Transportation of Gene Therapeutic DNA in Small Cell Lung Cancer (Ph.d.)

    DEFF Research Database (Denmark)

    Cramer, Frederik

    2013-01-01

    -viral delivery system, to the nuclei of the SCLC cells. As a result, the gene therapy expression obtained is too low to have any clinical relevance. We have at the Department of Radiation Biology developed a transcriptionally targeting suicide gene therapy system which is built on a double stranded DNA plasmid...... framework. One of the most significant barriers for efficient plasmid transport however, is the nuclear envelope that compartmentalizes the transcriptional machinery from the translational in a human cell. As only a small fraction of plasmids is able to breach the nuclear envelope and gain access...... to the transcriptional machinery many attempts have been made to improve nuclear translocation of therapeutic plasmids in order to gain a better gene therapy outcome. The aim of this PhD project was to investigate if the intracellular translocation of our gene therapeutic system could be optimized in SCLC cells...

  4. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer's disease mice.

    Science.gov (United States)

    Liu, Yang; An, Sai; Li, Jianfeng; Kuang, Yuyang; He, Xi; Guo, Yubo; Ma, Haojun; Zhang, Yu; Ji, Bin; Jiang, Chen

    2016-02-01

    Multifunctional nanocarriers are increasingly promising for disease treatment aimed to regulate multiple pathological dysfunctions and overcome barriers in drug delivery. Here we develop a multifunctional nanocarrier for Alzheimer's disease (AD) treatment by achieving therapeutic gene and peptide co-delivery to brain based on PEGylated dendrigraft poly-l-lysines (DGLs) via systemic administration. The dendritic amine-rich structure of DGLs provides plenty reaction sites and positive charge for drug loading. Successful co-delivery of drugs overcoming the blood-brain barrier by brain-targeted ligand modification was demonstrated both in vitro and in vivo. The pharmacodynamics study of the system following multiple-dosing treatment was verified in transgenic AD mice. Down-regulation of the key enzyme in amyloid-β formation was achieved by delivering non-coding RNA plasmid. Simultaneous delivery of the therapeutic peptide into brain leads to reduction of neurofibrillary tangles. Meanwhile, memory loss rescue in AD mice was also observed. Taken together, the multifunctional nanocarrier provides an excellent drug co-delivery platform for brain diseases.

  5. The emerging pathogenic and therapeutic importance of the anaplastic lymphoma kinase gene.

    LENUS (Irish Health Repository)

    Kelleher, Fergal C

    2012-02-01

    The anaplastic lymphoma kinase gene (ALK) is a gene on chromosome 2p23 that has expression restricted to the brain, testis and small intestine but is not expressed in normal lymphoid tissue. It has similarity to the insulin receptor subfamily of kinases and is emerging as having increased pathologic and potential therapeutic importance in malignant disease. This gene was originally established as being implicated in the pathogenesis of rare diseases including inflammatory myofibroblastic tumour (IMT) and ALK-positive anaplastic large cell lymphoma, which is a subtype of non-Hodgkin\\'s lymphoma. Recently the number of diseases in which ALK is implicated in their pathogenesis has increased. In 2007, an inversion of chromosome 2 involving ALK and a fusion partner gene in a subset of non-small cell lung cancer was discovered. In 2008, publications emerged implicating ALK in familial and sporadic cases of neuroblastoma, a childhood cancer of the sympatho-adrenal system. Chromosomal abnormalities involving ALK are translocations, amplifications or mutations. Chromosomal translocations are the longest recognised ALK genetic abnormality. When translocations occur a fusion gene is created between ALK and a gene partner. This has been described in ALK-positive anaplastic large cell lymphoma in which ALK is fused to NPM (nucleolar protein gene) and in non-small cell lung cancer where ALK is fused to EML4 (Echinoderm microtubule-associated protein 4). The most frequently described partner genes in inflammatory myofibroblastic tumour are tropomyosin 3\\/4 (TMP3\\/4), however in IMTs a diversity of ALK fusion partners have been found, with the ability to homodimerise a common characteristic. Point mutations and amplification of the ALK gene occur in the childhood cancer neuroblastoma. Therapeutic targeting of ALK fusion genes using tyrosine kinase inhibition, vaccination using an ALK specific antigen and treatment using viral vectors for RNAi are emerging potential therapeutic

  6. Enhanced gene expression of systemically administered plasmid DNA inthe liver with therapeutic ultrasound and microbubbles

    NARCIS (Netherlands)

    Raju, B.I.; Leyvi, E.; Seip, R.; Sethuraman, S.; Luo, X.; Bird, A.; Li, S.; Koeberl, D.

    2012-01-01

    Ultrasound mediated delivery (USMD) of novel therapeutic agents in the presence of microbubbles is a potentially safe and effective method for gene therapy offering many desired characteristics such as low toxicity, potential for repeated treatment, and organ specificity.In this study we tested the

  7. Transgenic gene knock-outs: functional genomics and therapeutic target selection.

    Science.gov (United States)

    Harris, S; Foord, S M

    2000-11-01

    The completion of the first draft of the human genome presents both a tremendous opportunity and enormous challenge to the pharmaceutical industry since the whole community, with few exceptions, will soon have access to the same pool of candidate gene sequences from which to select future therapeutic targets. The commercial imperative to select and pursue therapeutically relevant genes from within the overall content of the genome will be particularly intense for those gene families that currently represent the chemically tractable or 'drugable' gene targets. As a consequence the emphasis within exploratory research has shifted towards the evaluation and adoption of technology platforms that can add additional value to the gene selection process, either through functional studies or direct/indirect measures of disease alignment e.g., genetics, differential gene expression, proteomics, tissue distribution, comparative species data etc. The selection of biological targets for the development of potential new medicines relies, in part, on the quality of the in vivo biological data that correlates a particular molecular target with the underlying pathophysiology of a disease. Within the pharmaceutical industry, studies employing transgenic animals and, in particular, animals with specific gene deletions are playing an increasingly important role in the therapeutic target gene selection, drug candidate selection and product development phases of the overall drug discovery process. The potential of phenotypic information from gene knock-outs to contribute to a high-throughput target selection/validation strategy has hitherto been limited by the resources required to rapidly generate and characterise a large number of knock-out transgenics in a timely fashion. The offerings of several companies that provide an opportunity to overcome these hurdles, albeit at a cost, are assessed with respect to the strategic business needs of the pharmaceutical industry.

  8. [Problems and prospects of gene therapeutics and DNA vaccines development and application].

    Science.gov (United States)

    Kibirev, Ia A; Drobkov, B I; Marakulin, I V

    2010-01-01

    The review is summarized foreign publications devoted to different aspects of DNA vaccines and gene therapeutics' biological safety. In spite of incomprehension in their action, numerous prototype DNA-based biopharmaceuticals are in advanced stages of human clinical trials. This review is focused on some safety concerns of gene formulations vaccines relate to toxic effects, vertical transmission possibility, genome integration complications, immunologic and immunopathologic effects and environmental spread. It is noted that necessity of national regulatory documents development related to gene therapy medicinal products is significant condition of their application to medical practice.

  9. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing.

    Science.gov (United States)

    Liu, Jia; Shui, Sai-Lan

    2016-12-28

    The advent of site-specific nucleases, particularly CRISPR/Cas9, provides researchers with the unprecedented ability to manipulate genomic sequences. These nucleases are used to create model cell lines, engineer metabolic pathways, produce transgenic animals and plants, perform genome-wide functional screen and, most importantly, treat human diseases that are difficult to tackle by traditional medications. Considerable efforts have been devoted to improving the efficiency and specificity of nucleases for clinical applications. However, safe and efficient delivery methods remain the major obstacle for therapeutic gene editing. In this review, we summarize the recent progress on nuclease delivery methods, highlight their impact on the outcomes of gene editing and discuss the potential of different delivery approaches for therapeutic gene editing.

  10. Clinical and therapeutic implications of presymptomatic gene testing for familial amyloidotic polyneuropathy (FAP).

    Science.gov (United States)

    Sales-Luís, Maria de Lourdes; Conceição, Isabel; de Carvalho, Mamede

    2003-08-01

    Presymptomatic gene testing for familial amyloidotic polyneuropathies (FAP) is integrated in genetic counseling protocols common to other "Later onset, hereditary, autosomal dominant, no cure diseases" namely Huntington's Disease (HD) and Machado-Joseph disease (MJD). However, presymptomatic gene testing has specific clinical and therapeutic implications for FAP. Moreover, at least in Portugal, FAP ATTR Val30Met is a serious health problem. The most important implications are: the possibility of family planning including prenatal and preimplantation diagnosis; treatment with liver transplantation (TX); clinical follow-up according to protocols for early diagnosis which will allow patients to access therapy in useful time. This concept of useful time in FAP treatment is discussed. The growing possibilities of different therapeutic approaches are considered. In conclusion, presymptomatic gene testing for FAP may have a positive impact on candidate quality and prolongation of life, and on the future of disease studies.

  11. Gef gene therapy enhances the therapeutic efficacy of cytotoxics in colon cancer cells.

    Science.gov (United States)

    Ortiz, Raúl; Prados, Jose; Melguizo, Consolación; Rama, Ana R; Alvarez, Pablo J; Rodríguez-Serrano, Fernando; Caba, Octavio; Boulaiz, Houria; Aranega, Antonia

    2012-10-01

    The potential use of gene therapy to improve the response of patients with advanced cancer is being intensively analyzed. We evaluated the cytotoxic impact of the gef gene, a suicide gene, which has a demonstrated antiproliferative activity in tumor cells, in colon carcinoma cells in order to improve the antitumour effect of chemotherapeutic drugs used as first line treatment in the management of advanced colon cancer. We found that the gef gene induced a marked decrease in cell viability (50% in 24h) in T-84 cells through cell death by apoptosis. Interestingly, when gef gene expression was combined with drugs of choice in the clinical treatment of colon cancer (5-fluorouracil, oxaliplatin and irinotecan), a strong synergistic effect was observed with approximately a 15-20% enhancement of the antiproliferative effect. Our data demonstrate, for the first time, that gef gene expression induces significant growth arrest in colon cancer cells and that it is able to enhance the effect of some cytotoxic drugs compared with a single therapeutic approach. These results indicate the potential therapeutic value of the gef gene in colon cancer combination therapy. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Biomaterial constructs for delivery of multiple therapeutic genes: a spatiotemporal evaluation of efficacy using molecular beacons.

    Directory of Open Access Journals (Sweden)

    Jennifer C Alexander

    Full Text Available Gene therapy is emerging as a potential therapeutic approach for cardiovascular pathogenesis. An appropriate therapy may require multiple genes to enhance therapeutic outcome by modulating inflammatory response and angiogenesis in a controlled and time-dependent manner. Thus, the aim of this research was to assess the spatiotemporal efficacy of a dual-gene therapy model based on 3D collagen scaffolds loaded with the therapeutic genes interleukin 10 (IL-10, a potent anti-inflammatory cytokine, and endothelial nitric oxide synthase (eNOS, a promoter of angiogenesis. A collagen-based scaffold loaded with plasmid IL-10 polyplexes and plasmid eNOS polyplexes encapsulated into microspheres was used to transfect HUVECs and HMSCs cells.The therapeutic efficacy of the system was monitored at 2, 7 and 14 days for eNOS and IL-10 mRNA expression using RT-PCR and live cell imaging molecular beacon technology. The dual gene releasing collagen-based scaffold provided both sustained and delayed release of functional polyplexes in vitro over a 14 day period which was corroborated with variation in expression levels seen using RT-PCR and MB imaging. Maximum fold increases in IL-10 mRNA and eNOS mRNA expression levels occurred at day 7 in HMSCs and HUVECs. However, IL-10 mRNA expression levels seemed dependent on frequency of media changes and/or ease of transfection of the cell type. It was demonstrated that molecular beacons are able to monitor changes in mRNA levels at various time points, in the presence of a 3D scaffolding gene carrier system and the results complemented those of RT-PCR.

  13. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter.

    Science.gov (United States)

    Bacchi, Niccolò; Casarosa, Simona; Denti, Michela A

    2014-05-27

    Splicing is an important and highly regulated step in gene expression. The ability to modulate it can offer a therapeutic option for many genetic disorders. Antisense-mediated splicing-correction approaches have recently been successfully exploited for some genetic diseases, and are currently demonstrating safety and efficacy in different clinical trials. Their application for the treatment of retinal dystrophies could potentially solve a vast panel of cases, as illustrated by the abundance of mutations that could be targeted and the versatility of the technique. In this review, we will give an insight of the different therapeutic strategies, focusing on the current status of their application for retinal dystrophies.

  14. Nanoparticle-delivered VEGF-silencing cassette and suicide gene expression cassettes inhibit colon carcinoma growth in vitro and in vivo.

    Science.gov (United States)

    Leng, Aimin; Yang, Jing; Liu, Ting; Cui, Jianfang; Li, Xiu-Hua; Zhu, Yanan; Xiong, Ting; Chen, Yuxiang

    2011-12-01

    The strategies for tumor-specific expression of suicide genes and target tumor angiogenesis have been tested in tumors. However, the anti-tumor efficacy of the combination of these two strategies, particularly, delivering suicide gene and anti-angiogenesis agent by nanoparticles, has not yet been evaluated in colon carcinoma. We constructed a cassette to silence VEGF-A expression and express a fused yCDglyTK gene driven by tumor-specific promoter (shVEGF-CDTK). The DNA carrying shVEGF-CDTK was delivered into colon carcinoma cells by calcium phosphate nanoparticles (CPNPs). Cell proliferation was measured by MTT assay, and apoptosis was detected by flow cytometry. The anti-tumor effect of the combined cassette was tested in xenograft animal model. With 5-fluorocytosine (5-FC), CPNP-delivered shVEGF-CDTK DNA (CPNP-shVEGF-CDTK) showed high expression of fused yCDglyTK gene and effectively silenced VEGF-A expression in vitro and in vivo, which significantly inhibited colon carcinoma cell proliferation and induced apoptosis in vitro. With 5-FC, the systemic delivery of CPNP-shVEGF-CDTK significantly inhibited tumor growth in the colon carcinoma xenograft animal model. The combined cassette is obviously effective in inhibiting tumor cell proliferation and inducing apoptosis in vitro and tumor growth in vivo than the CPNP-shVEGF or CPNP-CDTK alone. The combination of VEGF-A-silencing and tumor-specific expression of suicide gene is an effective strategy for colon carcinoma treatment.

  15. Drug-conjugated polymers as gene carriers for synergistic therapeutic effect.

    Science.gov (United States)

    Pofali, P A; Singh, B; Dandekar, P; Jain, R D; Maharjan, S; Choi, Y J; Arote, R B; Cho, C S

    2016-05-01

    The ability to safely and effectively transfer gene into cells is the fundamental goal of gene delivery. In spite of the best efforts of researchers around the world, gene therapy has limited success. This may be because of several limitations of delivering gene which is one of the greatest technical challenges in the modern medicine. To address these issues, many efforts have been made to bind drugs and genes together by polymers for co-delivery to achieve synergistic effect. Usually, binding interaction of drugs with polymers is either physical or chemical. In case of drug-polymer physical interaction, the efficiency of drugs generally decreases because of separation of drugs from polymers in vivo whenever it comes in contact with charged biofluid/s or cells. While chemical interaction of drug-polymer overcomes the aforementioned obstacle, several problems such as steric hindrance, solubility, and biodegradability hinder it to develop as gene carrier. Considering these benefits and pitfalls, the objective of this review is to discuss the possible extent of drug-conjugated polymers as safe and efficient gene delivery carriers for achieving synergistic effect to combat various genetic disorders.

  16. siRNA Versus miRNA as Therapeutics for Gene Silencing.

    Science.gov (United States)

    Lam, Jenny K W; Chow, Michael Y T; Zhang, Yu; Leung, Susan W S

    2015-09-15

    Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed.

  17. Nucleic acid modulation of gene expression: approaches for nucleic acid therapeutics against cancer.

    Science.gov (United States)

    Nakata, Yuji; Kim, Tae-Kon; Shetzline, Susan; Gewirtz, Alan M

    2005-01-01

    Most cancers are characterized by abnormal gene expression, which is thought to contribute to the pathogenesis and maintenance of the malignant phenotype; abnormal proliferation, maturation, and apoptosis. Silencing such genes would appear to be a rational approach to the therapy of cancer, and some preliminary clinical studies support this concept. Of the strategies available, the anti-mRNA gene silencing approach has attracted much attention and is the focus of this review. This strategy includes three types of agents: (1) single-stranded antisense oligonucleotides; (2) catalytically active oligonucleotides, such as ribozymes, and DNAzymes that possess inherent RNA cleaving activity; and (3) small interfering RNA (siRNA) molecules that induce RNA interference (RNAi). Among these agents, antisense oligonucleotides, especially phosphorothioate (PS) oligonucleotides, have been the most frequently used in clinical trials. In this article, we provide an overview of anti-mRNA gene silencing agents and their development for use as cancer therapeutics.

  18. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.

    Science.gov (United States)

    Pellagatti, Andrea; Boultwood, Jacqueline

    2017-01-01

    Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies.

  19. In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges.

    Science.gov (United States)

    Mout, Rubul; Ray, Moumita; Lee, Yi-Wei; Scaletti, Federica; Rotello, Vincent M

    2017-03-17

    The successful use of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-based gene editing for therapeutics requires efficient in vivo delivery of the CRISPR components. There are, however, major challenges on the delivery front. In this Topical Review, we will highlight recent developments in CRISPR delivery, and we will present hurdles that still need to be overcome to achieve effective in vivo editing.

  20. Gene therapy of hepatocarcinoma: a long way from the concept to the therapeutical impact.

    Science.gov (United States)

    Gérolami, René; Uch, Rathviro; Bréchot, Christian; Mannoni, Patrice; Bagnis, Claude

    2003-09-01

    Hepatocellular carcinoma (HCC), the most prevalent histological form of primary liver cancer is one of the most frequent cancer worldwide. This pathology still requires the development of new therapeutical approaches. Gene therapy strategies focusing on the genetic manipulation of accessory cells involved in the immune reaction against cancer cells, or on the direct transduction of tumor cells with transgenes able to "suicide" cancer cells have been largely developed for more than ten years.

  1. Polyethylenimine-mediated gene delivery to the lung and therapeutic applications

    Directory of Open Access Journals (Sweden)

    Sante Di Gioia

    2008-09-01

    Full Text Available Sante Di Gioia, Massimo ConeseDepartment of Biomedical Sciences, University of Foggia, Foggia, ItalyAbstract: Nonviral gene delivery is now considered a promising alternative to viral vectors. Among nonviral gene delivery agents, polyethylenimine (PEI has emerged as a potent candidate for gene delivery to the lung. PEI has some advantages over other polycations in that it combines strong DNA compaction capacity with an intrinsic endosomolytic activity. However, intracellular (mainly the nuclear membrane and extracellular obstacles still hamper its efficiency in vitro and in vivo, depending on the route of administration and the type of PEI. Nuclear delivery has been increased by adding nuclear localization signals. To overcome nonspecific interactions with biological fluids, extracellular matrix components and nontarget cells, strategies have been developed to protect polyplexes from these interactions and to increase target specificity and gene expression. When gene delivery into airway epithelial cells of the conducting airways is necessary, aerosolization of complexes seems to be better suited to guarantee higher transgene expression in the airway epithelial cells with lower toxicity than observed with either intratracheal or intravenous administration. Aerosolization, indeed, is useful to target the alveolar epithelium and pulmonary endothelium. Proof-of-principle that PEI-mediated gene delivery has therapeutic application to some genetic and acquired lung disease is presented, using as genetic material either plasmidic DNA or small-interfering RNA, although optimization of formulation and delivery protocols and limitation of toxicity need further studies.Keywords: gene transfer, gene therapy, polyethylenimine, airway epithelial cells, lung, RNA interference

  2. Identification of therapeutic targets for Alzheimer's disease via differentially expressed gene and weighted gene co-expression network analyses.

    Science.gov (United States)

    Jia, Yujie; Nie, Kun; Li, Jing; Liang, Xinyue; Zhang, Xuezhu

    2016-11-01

    In order to investigate the pathogenic targets and associated biological process of Alzheimer's disease in the present study, mRNA expression profiles (GSE28146) and microRNA (miRNA) expression profiles (GSE16759) were downloaded from the Gene Expression Omnibus database. In GSE28146, eight control samples, and Alzheimer's disease samples comprising seven incipient, eight moderate, seven severe Alzheimer's disease samples, were included. The Affy package in R was used for background correction and normalization of the raw microarray data. The differentially expressed genes (DEGs) and differentially expressed miRNAs were identified using the Limma package. In addition, mRNAs were clustered using weighted gene correlation network analysis, and modules found to be significantly associated with the stages of Alzheimer's disease were screened out. The Database for Annotation, Visualization, and Integrated Discovery was used to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The target genes of the differentially expressed miRNAs were identified using the miRWalk database. Compared with the control samples, 175,59 genes and 90 DEGs were identified in the incipient, moderate and severe Alzheimer's disease samples, respectively. A module, which contained 1,592 genes was found to be closely associated with the stage of Alzheimer's disease and biological processes. In addition, pathways associated with Alzheimer's disease and other neurological diseases were found to be enriched in those genes. A total of 139 overlapped genes were identified between those genes and the DEGs in the three groups. From the miRNA expression profiles, 189 miRNAs were found differentially expressed in the samples from patients with Alzheimer's disease and 1,647 target genes were obtained. In addition, five overlapped genes were identified between those 1,647 target genes and the 139 genes, and these genes may be important pathogenic targets for Alzheimer

  3. Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement.

    Science.gov (United States)

    Kandalam, Saikrishna; Sindji, Laurence; Delcroix, Gaëtan J-R; Violet, Fabien; Garric, Xavier; André, Emilie M; Schiller, Paul C; Venier-Julienne, Marie-Claire; des Rieux, Anne; Guicheux, Jérôme; Montero-Menei, Claudia N

    2017-02-01

    Stem cells combined with biodegradable injectable scaffolds releasing growth factors hold great promises in regenerative medicine, particularly in the treatment of neurological disorders. We here integrated human marrow-isolated adult multilineage-inducible (MIAMI) stem cells and pharmacologically active microcarriers (PAMs) into an injectable non-toxic silanized-hydroxypropyl methylcellulose (Si-HPMC) hydrogel. The goal is to obtain an injectable non-toxic cell and growth factor delivery device. It should direct the survival and/or neuronal differentiation of the grafted cells, to safely transplant them in the central nervous system, and enhance their tissue repair properties. A model protein was used to optimize the nanoprecipitation conditions of the neuroprotective brain-derived neurotrophic factor (BDNF). BDNF nanoprecipitate was encapsulated in fibronectin-coated (FN) PAMs and the in vitro release profile evaluated. It showed a prolonged, bi-phasic, release of bioactive BDNF, without burst effect. We demonstrated that PAMs and the Si-HPMC hydrogel increased the expression of neural/neuronal differentiation markers of MIAMI cells after 1week. Moreover, the 3D environment (PAMs or hydrogel) increased MIAMI cells secretion of growth factors (b-NGF, SCF, HGF, LIF, PlGF-1, SDF-1α, VEGF-A & D) and chemokines (MIP-1α & β, RANTES, IL-8). These results show that PAMs delivering BDNF combined with Si-HPMC hydrogel represent a useful novel local delivery tool in the context of neurological disorders. It not only provides neuroprotective BDNF but also bone marrow-derived stem cells that benefit from that environment by displaying neural commitment and an improved neuroprotective/reparative secretome. It provides preliminary evidence of a promising pro-angiogenic, neuroprotective and axonal growth-promoting device for the nervous system.

  4. Long-Term Maintenance of Therapeutic Gains Associated With Cognitive-Behavioral Therapy for Insomnia Delivered Alone or Combined With Zolpidem.

    Science.gov (United States)

    Beaulieu-Bonneau, Simon; Ivers, Hans; Guay, Bernard; Morin, Charles M

    2017-03-01

    To document the long-term sleep outcomes at 12 and 24 months after patients with chronic insomnia were treated with cognitive-behavioral therapy (CBT), either singly or combined with zolpidem medication. Participants were 160 adults with chronic insomnia. They were first randomized for a six-week acute treatment phase involving CBT alone or CBT combined with nightly zolpidem, and randomized for a six-month extended treatment phase involving CBT, no additional treatment, CBT combined with zolpidem as needed, or CBT with zolpidem tapered. This paper reports results of the 12- and 24-month follow-ups on the main outcome measures derived from the Insomnia Severity Index and sleep diaries. Clinical improvements achieved 6 months following the end of treatment were well-maintained in all four conditions, with insomnia remission rates ranging from 48% to 74% at the 12-month follow-up, and from 44% to 63% at the 24-month follow-up. Participants receiving CBT with zolpidem taper in the extended treatment phase had significantly better results than those receiving CBT with continued zolpidem as needed. The magnitude of improvements on sleep diary parameters was similar between conditions, with a slight advantage for the CBT with zolpidem taper condition. The addition of extended CBT did not alter the long-term outcome over improvements obtained during the initial 6-week CBT. The results suggest that CBT for insomnia, when delivered alone or in combination with medication, produce durable sleep improvements up to two years after completion of treatment. These long-term results indicate that even if a combined CBT plus medication approach provide an added benefit immediately after treatment, extending CBT while tapering medication produce better sustained improvements compared to continued use of medication as needed.

  5. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    Science.gov (United States)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  6. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    Directory of Open Access Journals (Sweden)

    Zongli eHu

    2015-01-01

    Full Text Available Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi technology to partially silence three different genes (FOW2, FRP1 and OPR in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  7. Dexamethasone-loaded reconstitutable charged polymeric (PLGA)n -b-bPEI micelles for enhanced nuclear delivery of gene therapeutics.

    Science.gov (United States)

    Mishra, Deepa; Kang, Han Chang; Cho, Hana; Bae, You Han

    2014-06-01

    This study investigates the potential of dexamethasone (Dex) to enhance the nuclear accumulation and subsequent gene expression of plasmid DNA (pDNA) delivered using a charged polymeric micelle-based gene delivery system. (PLGA)n -b-bPEI25kDa block copolymers are synthesized and used to prepare Dex-loaded cationic micelles (DexCM). After preparing DexCM/pDNA complexes, bPEI1.8kDa is coated on the complexes using a Layer-by-Layer (LbL) technique to construct DexCM/pDNA/bPEI1.8kDa complexes (i.e., LbL-DexCM polyplexes) that are 100-180 nm in diameter and have a zeta potential of 30-40 mV. In MCF7 cells, LbL-DexCM polyplexes cause 3-13-fold higher transfection efficiencies compared to LbL-CM polyplexes and show negligible cytotoxicity. LbL-DexCM3 polyplexes induce much higher nuclear delivery of pDNA compared to LbL-CM3 polyplexes. These results suggest that Dex-loaded polyplexes could be used in gene and drug delivery applications to increase nuclear accumulation of therapeutic payloads, further leading to a decrease in the dose of the drug and gene necessary to achieve equivalent therapeutic effects.

  8. Preparation and characterization of a hydrogel carrier to deliver gatifloxacin and its application as a therapeutic contact lens for bacterial keratitis therapy.

    Science.gov (United States)

    Shi, Yunfeng; Lv, Hongling; Fu, Yeyun; Lu, Qingjun; Zhong, Jingxiang; Ma, Dong; Huang, Yuexin; Xue, Wei

    2013-10-01

    A soft and biocompatible hydrogel exhibiting a higher loading and the sustained release of gatifloxacin (GFLX) was developed as the potential matrix to fabricate a therapeutic contact lens for curing bacterial keratitis. 2-hydroxyethyl methacrylate (HEMA) and five other kinds of vinyl monomers with different side groups were used as co-monomers. Copolymerization took place in a cornea shaped mould via the gradient temperature-elevating method. The results of drug loading and in vitro release experiments showed that P(HEMA-co-MAA) achieved the highest drug loading of 11.78±0.77 µg mg(-1) among the obtained hydrogels, as well as a slow release. In addition, its physical properties and cytocompatibility were also proved suitable and safe for wearing on the eye surface. In animal experiments, a rat model of bacterial keratitis was established and employed to evaluate the clinical results of certain treatments employing obtained hydrogels; saline and GFLX eye drops were used as negative and positive controls, respectively. Corneal abscess and opacity caused by epithelial erosion and stromal ulceration were almost healed after wearing the drug loaded P(HEMA-co-MAA) hydrogel for 48 h. Its excellent antibacterial effect was also confirmed by testing the bacterial activity in tear extraction via the streak line method.

  9. Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells to Deliver Growth Factors in the Skeletal Muscle of a Familial ALS Rat Model.

    Science.gov (United States)

    Suzuki, Masatoshi; Svendsen, Clive N

    2016-01-01

    Therapeutic protein and molecule delivery to target sites by transplanted human stem cells holds great promise for ex vivo gene therapy. Our group has demonstrated the therapeutic benefits of ex vivo gene therapy targeting the skeletal muscles in a transgenic rat model of familial amyotrophic lateral sclerosis (ALS). We used human mesenchymal stem cells (hMSCs) and genetically modified them to release neuroprotective growth factors such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF). Intramuscular growth factor delivery via hMSCs can enhance neuromuscular innervation and motor neuron survival in a rat model of ALS (SOD1(G93A) transgenic rats). Here, we describe the protocol of ex vivo delivery of growth factors via lentiviral vector-mediated genetic modification of hMSCs and hMSC transplantation into the skeletal muscle of a familial ALS rat model.

  10. Effective inhibition of foot-and-mouth disease virus (FMDV replication in vitro by vector-delivered microRNAs targeting the 3D gene

    Directory of Open Access Journals (Sweden)

    Cai Xuepeng

    2011-06-01

    Full Text Available Abstract Background Foot-and-mouth disease virus (FMDV causes an economically important and highly contagious disease of cloven-hoofed animals. RNAi triggered by small RNA molecules, including siRNAs and miRNAs, offers a new approach for controlling viral infections. There is no report available for FMDV inhibition by vector-delivered miRNA, although miRNA is believed to have more potential than siRNA. In this study, the inhibitory effects of vector-delivered miRNAs targeting the 3D gene on FMDV replication were examined. Results Four pairs of oligonucleotides encoding 3D-specific miRNA of FMDV were designed and selected for construction of miRNA expression plasmids. In the reporter assays, two of four miRNA expression plasmids were able to significantly silence the expression of 3D-GFP fusion proteins from the reporter plasmid, p3D-GFP, which was cotransfected with each miRNA expression plasmid. After detecting the silencing effects of the reporter genes, the inhibitory effects of FMDV replication were determined in the miRNA expression plasmid-transfected and FMDV-infected cells. Virus titration and real-time RT-PCR assays showed that the p3D715-miR and p3D983-miR plasmids were able to potently inhibit the replication of FMDV when BHK-21 cells were infected with FMDV. Conclusion Our results indicated that vector-delivered miRNAs targeting the 3D gene efficiently inhibits FMDV replication in vitro. This finding provides evidence that miRNAs could be used as a potential tool against FMDV infection.

  11. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9.

    Science.gov (United States)

    LaFountaine, Justin S; Fathe, Kristin; Smyth, Hugh D C

    2015-10-15

    In recent years, several new genome editing technologies have been developed. Of these the zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 RNA-guided endonuclease system are the most widely described. Each of these technologies utilizes restriction enzymes to introduce a DNA double stranded break at a targeted location with the guide of homologous binding proteins or RNA. Such targeting is viewed as a significant advancement compared to current gene therapy methods that lack such specificity. Proof-of-concept studies have been performed to treat multiple disorders, including in vivo experiments in mammals and even early phase human trials. Careful consideration and investigation of delivery strategies will be required so that the therapeutic potential for gene editing is achieved. In this review, the mechanisms of each of these gene editing technologies and evidence of therapeutic potential will be briefly described and a comprehensive list of past studies will be provided. The pharmaceutical approaches of each of these technologies are discussed along with the current delivery obstacles. The topics and information reviewed herein provide an outline of the groundbreaking research that is being performed, but also highlights the potential for progress yet to be made using these gene editing technologies.

  12. Immune disease-associated variants in gene enhancers point to BET epigenetic mechanisms for therapeutic intervention.

    Science.gov (United States)

    Tough, David F; Prinjha, Rab K

    2016-12-07

    Genome-wide association studies have identified thousands of single nucleotide polymorphisms in the human genome that are statistically associated with particular disease traits. In this Perspective, we review emerging data suggesting that most single nucleotide polymorphisms associated with immune-mediated diseases are found in regulatory regions of the DNA - parts of the genome that control expression of the protein encoding genes - rather than causing mutations in proteins. We discuss how the emerging understanding of particular gene regulatory regions, gene enhancers and the epigenetic mechanisms by which they are regulated is opening up new opportunities for the treatment of immune-mediated diseases, focusing particularly on the BET family of epigenetic reader proteins as potential therapeutic targets.

  13. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    Science.gov (United States)

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-08-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  14. Nanoparticles deliver RNAi therapy

    Directory of Open Access Journals (Sweden)

    Martin C. Woodle

    2005-08-01

    Full Text Available Nanotechnology-based advanced materials are rapidly expanding development of better medicines. Long-standing efforts with lipid and polymer colloidal delivery systems, i.e. nanoparticles, have yielded better imaging and therapy. These benefits of nanotechnology, though limited, have driven efforts to develop advanced nanoparticles. This is particularly the case for targeted nucleic acid (gene therapeutics based on short interfering ribonucleic acid (siRNA, which is a new gene inhibitor that is highly potent and selective. Here, we evaluate the use of modular conjugates to construct targeted nanoparticle therapeutics for nucleic acids. These nanoparticles are beginning to emulate the sophistication of virus particles – nature's own nanoscale assemblies for nucleic acids. For medicine, they promise the creation of a new generation of ‘targeted’ therapeutics that can offer multiple levels of selectivity.

  15. Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing.

    Science.gov (United States)

    Park, Arnold; Hong, Patrick; Won, Sohui T; Thibault, Patricia A; Vigant, Frederic; Oguntuyo, Kasopefoluwa Y; Taft, Justin D; Lee, Benhur

    2016-01-01

    The advent of RNA-guided endonuclease (RGEN)-mediated gene editing, specifically via CRISPR/Cas9, has spurred intensive efforts to improve the efficiency of both RGEN delivery and targeted mutagenesis. The major viral vectors in use for delivery of Cas9 and its associated guide RNA, lentiviral and adeno-associated viral systems, have the potential for undesired random integration into the host genome. Here, we repurpose Sendai virus, an RNA virus with no viral DNA phase and that replicates solely in the cytoplasm, as a delivery system for efficient Cas9-mediated gene editing. The high efficiency of Sendai virus infection resulted in high rates of on-target mutagenesis in cell lines (75-98% at various endogenous and transgenic loci) and primary human monocytes (88% at the ccr5 locus) in the absence of any selection. In conjunction with extensive former work on Sendai virus as a promising gene therapy vector that can infect a wide range of cell types including hematopoietic stem cells, this proof-of-concept study opens the door to using Sendai virus as well as other related paramyxoviruses as versatile and efficient tools for gene editing.

  16. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  17. Gene Expression in Experimental Aortic Coarctation and Repair: Candidate Genes for Therapeutic Intervention?

    Science.gov (United States)

    LaDisa, John F; Bozdag, Serdar; Olson, Jessica; Ramchandran, Ramani; Kersten, Judy R; Eddinger, Thomas J

    2015-01-01

    Coarctation of the aorta (CoA) is a constriction of the proximal descending thoracic aorta and is one of the most common congenital cardiovascular defects. Treatments for CoA improve life expectancy, but morbidity persists, particularly due to the development of chronic hypertension (HTN). Identifying the mechanisms of morbidity is difficult in humans due to confounding variables such as age at repair, follow-up duration, coarctation severity and concurrent anomalies. We previously developed an experimental model that replicates aortic pathology in humans with CoA without these confounding variables, and mimics correction at various times using dissolvable suture. Here we present the most comprehensive description of differentially expressed genes (DEGs) to date from the pathology of CoA, which were obtained using this model. Aortic samples (n=4/group) from the ascending aorta that experiences elevated blood pressure (BP) from induction of CoA, and restoration of normal BP after its correction, were analyzed by gene expression microarray, and enriched genes were converted to human orthologues. 51 DEGs with >6 fold-change (FC) were used to determine enriched Gene Ontology terms, altered pathways, and association with National Library of Medicine Medical Subject Headers (MeSH) IDs for HTN, cardiovascular disease (CVD) and CoA. The results generated 18 pathways, 4 of which (cell cycle, immune system, hemostasis and metabolism) were shared with MeSH ID's for HTN and CVD, and individual genes were associated with the CoA MeSH ID. A thorough literature search further uncovered association with contractile, cytoskeletal and regulatory proteins related to excitation-contraction coupling and metabolism that may explain the structural and functional changes observed in our experimental model, and ultimately help to unravel the mechanisms responsible for persistent morbidity after treatment for CoA.

  18. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes

    Directory of Open Access Journals (Sweden)

    Chen Z

    2016-03-01

    Full Text Available Zhongjian Chen,1,* Tianpeng Zhang,2,* Baojian Wu,2 Xingwang Zhang2 1Department of Pharmaceutics, Shanghai Dermatology Hospital, 2Division of Pharmaceutics, College of Pharmacy, Jinan University, Gangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Malignant melanoma (MM represents the most dangerous form of skin cancer, and its incidence is expected to rise in the coming time. However, therapy for MM is limited by low topical drug concentration and multidrug resistance. This article aimed to develop folate-decorated cationic liposomes (fc-LPs for hypoxia-inducible factor-1α (HIF-1α small interfering (siRNA delivery, and to evaluate the potential of such siRNA/liposome complexes in MM therapy. HIF-1α siRNA-loaded fc-LPs (siRNA-fc-LPs were prepared by a film hydration method followed by siRNA incubation. Folate decoration of liposomes was achieved by incorporation of folate/oleic acid-diacylated oligochitosans. The resulting siRNA-fc-LPs were 95.3 nm in size with a ζ potential of 2.41 mV. The liposomal vectors exhibited excellent loading capacity and protective effect toward siRNA. The in vitro cell transfection efficiency was almost parallel to the commercially available Lipofectamine™ 2000. Moreover, the anti-melanoma activity of HIF-1α siRNA was significantly enhanced through fc-LPs. Western blot analysis and apoptosis test demonstrated that siRNA-fc-LPs substantially reduced the production of HIF-1α-associated protein and induced the apoptosis of hypoxia-tolerant melanoma cells. Our designed liposomal vectors might be applicable as siRNA delivery vehicle to systemically or topically treat MM. Keywords: malignant melanoma, HIF-1α siRNA, chitosan, cationic liposomes, gene therapy

  19. Illuminating the gateway of gene silencing: perspective of RNA interference technology in clinical therapeutics.

    Science.gov (United States)

    Sindhu, Annu; Arora, Pooja; Chaudhury, Ashok

    2012-07-01

    A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.

  20. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies.

    Science.gov (United States)

    Deng, Yan; Wang, Chi Chiu; Choy, Kwong Wai; Du, Quan; Chen, Jiao; Wang, Qin; Li, Lu; Chung, Tony Kwok Hung; Tang, Tao

    2014-04-01

    During recent decades there have been remarkable advances in biology, in which one of the most important discoveries is RNA interference (RNAi). RNAi is a specific post-transcriptional regulatory pathway that can result in silencing gene functions. Efforts have been done to translate this new discovery into clinical applications for disease treatment. However, technical difficulties restrict the development of RNAi, including stability, off-target effects, immunostimulation and delivery problems. Researchers have attempted to surmount these barriers and improve the bioavailability and safety of RNAi-based therapeutics by optimizing the chemistry and structure of these molecules. This paper aimed to describe the principles of RNA interference, review the therapeutic potential in various diseases and discuss the new strategies for in vivo delivery of RNAi to overcome the challenges.

  1. Efficient and nontoxic biological response carrier delivering TNF-α shRNA for gene silencing in a murine model of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Jialin Song

    2016-08-01

    Full Text Available Small interfering RNA (siRNA is an effective and specific method for silencing genes. However, an efficient and nontoxic carrier is needed to deliver the siRNA into the target cells. Tumor necrosis factor α (TNF-α plays a central role in the occurrence and progression of rheumatoid arthritis. In this study, we pre-synthetized a degradable cationic polymer (PDAPEI from 2,6-pyridinedicarboxaldehyde and low molecular weight polyethyleneimine (PEI, Mw=1.8 kDa as a gene vector for the delivery of TNF-α shRNA. The PDAPEI/pDNA complex showed a suitable particle size and stable zeta potential for transfection. In vitro study of the PDAPEI/pDNA complex revealed a lower cytotoxicity and higher transfection efficiency when transfecting TNF-α shRNA to macrophages by significantly down-regulating the expression of TNF-α. Moreover, the complex was extremely efficient in decreasing the severity of arthritis in mice with collagen-induced arthritis (CIA. PDAPEI delivered TNF-α shRNA has great potential in the treatment of rheumatoid arthritis.

  2. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.

    Science.gov (United States)

    Oude Blenke, Erik; Evers, Martijn J W; Mastrobattista, Enrico; van der Oost, John

    2016-12-28

    The CRISPR-Cas9 gene editing system has taken the biomedical science field by storm, initiating rumors about future Nobel Prizes and heating up a fierce patent war, but also making significant scientific impact. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with CRISPR-associated proteins (Cas) are a part of the prokaryotic adaptive immune system and have successfully been repurposed for genome editing in mammalian cells. The CRISPR-Cas9 system has been used to correct genetic mutations and for replacing entire genes, opening up a world of possibilities for the treatment of genetic diseases. In addition, recently some new CRISPR-Cas systems have been discovered with interesting mechanistic variations. Despite these promising developments, many challenges have to be overcome before the system can be applied therapeutically in human patients and enabling delivery technology is one of the key challenges. Furthermore, the relatively high off-target effect of the system in its current form prevents it from being safely applied directly in the human body. In this review, the transformation of the CRISPR-Cas gene editing systems into a therapeutic modality will be discussed and the currently most realistic in vivo applications will be highlighted.

  3. RNA splicing manipulation: strategies to modify gene expression for a variety of therapeutic outcomes.

    Science.gov (United States)

    Wilton, Steve D; Fletcher, Susan

    2011-08-01

    Antisense oligomers initially showed promise as compounds to modify gene expression, primarily through RNaseH induced degradation of the target transcript. Expansion of the field has led to new chemistries capable of invoking different mechanisms, including suppression of protein synthesis by translational blockade and gene silencing using short interfering RNAs. It is now apparent that the majority of the eukaryotic genome is transcribed and non-protein coding RNAs have been implicated in the regulation of gene expression at many levels. This review considers potential therapeutic applications of antisense oligomers to modify gene expression, primarily by interfering with the process of exon recognition and intron removal during gene transcript splicing. While suppression of gene expression will be necessary to address some conditions, it is likely that antisense oligomer splice modification will have extensive clinical application. Pre-mRNA splicing is a tightly co-ordinated, multifactorial process that can be disrupted by antisense oligomers in a highly specific manner to suppress aberrant splicing, remove exons to by-pass nonsense or frame-shifting mutations or influence exon selection to alter spliceoform ratios. Manipulation of splicing patterns has been applied to a diverse range of conditions, including b-thalassemia, Duchenne muscular dystrophy, spinal muscular atrophy and certain cancers. Alternative exon usage has been identified as a major mechanism for generating diversity from a limited repertoire of genes in higher eukaryotes. Considering that the majority of all human primary gene transcripts are reportedly alternatively spliced, intervention at the level of pre-mRNA processing is likely to become increasingly significant in the fight against genetic and acquired disorders.

  4. Gene editing in hematopoietic stem cells: a potential therapeutic approach for Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Diez Cabezas, B.

    2015-07-01

    targeting efficiency, due to the toxicity associated with the nucleofection of cells treated with these nanoparticles. In our next step, we moved from healthy donor HSCs to FA hematopoietic cells. Using a therapeutic donor vector carrying the FANCA gene, we demonstrated that gene targeting can correct the phenotype in a FA-A LCL. This was deduced from the restoration of FANCD2 foci formation and the reversion of the sensitivity of FA-A cells to interstrand cross linkers, such as mitomycin C (MMC). To improve the gene targeting efficiency in FA-A hematopoietic cells, we also investigated the effects mediated by the transient inhibition of anti-recombinase PARI. Although the inhibition of PARI increased RAD51 foci, no significant increase of homology directed repair efficiency was observed. In a final set of experiments we demonstrated that our gene targeting approach has also taken place in hematopoietic progenitor cells from FA-A patients, leading to a partial reversion in their hyper-sensitivity to MMC. Our study demonstrates for the first time that gene targeting in the AAVS1 safe harbor locus is feasible in hematopoietic cells from Fanconi anemia-A patients, opening up new perspectives for the future gene therapy of this and other monogenic diseases of the hematopoietic system.(Author)

  5. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours.

    Science.gov (United States)

    Parker, Brittany C; Engels, Manon; Annala, Matti; Zhang, Wei

    2014-01-01

    The emergence of fibroblast growth factor receptor (FGFR) family fusions across diverse cancers has brought attention to FGFR-derived cancer therapies. The discovery of the first recurrent FGFR fusion in glioblastoma was followed by discoveries of FGFR fusions in bladder, lung, breast, thyroid, oral, and prostate cancers. Drug targeting of FGFR fusions has shown promising results and should soon be translating into clinical trials. FGFR fusions form as a result of various mechanisms – predominantly deletion for FGFR1, translocation for FGFR2, and tandem duplication for FGFR3. The ability to exploit the unique targetability of FGFR fusions proves that FGFR-derived therapies could have a promising future in cancer therapeutics. Drug targeting of fusion genes has proven to be an extremely effective therapeutic approach for cancers such as the recurrent BCR–ABL1 fusion in chronic myeloid leukaemia. The recent discovery of recurrent FGFR family fusions in several cancer types has brought to attention the unique therapeutic potential for FGFR-positive patients. Understanding the diverse mechanisms of FGFR fusion formation and their oncogenic potential will shed light on the impact of FGFR-derived therapy in the future.

  6. Mesenchymal stem cell-based gene therapy: A promising therapeutic strategy.

    Science.gov (United States)

    Mohammadian, Mozhdeh; Abasi, Elham; Akbarzadeh, Abolfazl

    2016-08-01

    Mesenchymal stem cells (MSCs) are multipotent stromal cells that exist in bone marrow, fat, and so many other tissues, and can differentiate into a variety of cell types including osteoblasts, chondrocytes, and adipocytes, as well as myocytes and neurons. Moreover, they have great capacity for self-renewal while maintaining their multipotency. Their capacity for proliferation and differentiation, in addition to their immunomodulatory activity, makes them very promising candidates for cell-based regenerative medicine. Moreover, MSCs have the ability of mobilization to the site of damage; therefore, they can automatically migrate to the site of injury via their chemokine receptors following intravenous transplantation. In this respect, they can be applied for MSC-based gene therapy. In this new therapeutic method, genes of interest are introduced into MSCs via viral and non-viral-based methods that lead to transgene expression in them. Although stem cell-based gene therapy is a relatively new strategy, it lights a new hope for the treatment of a variety of genetic disorders. In the near future, MSCs can be of use in a vast number of clinical applications, because of their uncomplicated isolation, culture, and genetic manipulation. However, full consideration is still crucial before they are utilized for clinical trials, because the number of studies that signify the advantageous effects of MSC-based gene therapy are still limited.

  7. DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer.

    Science.gov (United States)

    Wang, Gary P; Garrigue, Alexandrine; Ciuffi, Angela; Ronen, Keshet; Leipzig, Jeremy; Berry, Charles; Lagresle-Peyrou, Chantal; Benjelloun, Fatine; Hacein-Bey-Abina, Salima; Fischer, Alain; Cavazzana-Calvo, Marina; Bushman, Frederic D

    2008-05-01

    Gene transfer has been used to correct inherited immunodeficiencies, but in several patients integration of therapeutic retroviral vectors activated proto-oncogenes and caused leukemia. Here, we describe improved methods for characterizing integration site populations from gene transfer studies using DNA bar coding and pyrosequencing. We characterized 160,232 integration site sequences in 28 tissue samples from eight mice, where Rag1 or Artemis deficiencies were corrected by introducing the missing gene with gamma-retroviral or lentiviral vectors. The integration sites were characterized for their genomic distributions, including proximity to proto-oncogenes. Several mice harbored abnormal lymphoproliferations following therapy--in these cases, comparison of the location and frequency of isolation of integration sites across multiple tissues helped clarify the contribution of specific proviruses to the adverse events. We also took advantage of the large number of pyrosequencing reads to show that recovery of integration sites can be highly biased by the use of restriction enzyme cleavage of genomic DNA, which is a limitation in all widely used methods, but describe improved approaches that take advantage of the power of pyrosequencing to overcome this problem. The methods described here should allow integration site populations from human gene therapy to be deeply characterized with spatial and temporal resolution.

  8. Use of retroviral-mediated gene transfer to deliver and test function of chimeric antigen receptors in human T-cells

    Directory of Open Access Journals (Sweden)

    Ana C. Parente-Pereira

    2014-07-01

    Full Text Available Chimeric antigen receptors (CARs are genetically delivered fusion molecules that elicit T-cell activation upon binding of a native cell surface molecule. These molecules can be used to generate a large number of memory and effector T-cells that are capable of recognizing and attacking tumor cells. Most commonly, stable CAR expression is achieved in T-cells using retroviral vectors. In the method described here, retroviral vectors are packaged in a two-step procedure. First, H29D human retroviral packaging cells (a derivative of 293 cells are transfected with the vector of interest, which is packaged transiently in vesicular stomatitis virus (VSV G pseudotyped particles. These particles are used to deliver the vector to PG13 cells, which achieve stable packaging of gibbon ape leukaemia virus (GALV-pseudotyped particles that are suitable for infection of human T-cells. The key advantage of the method reported here is that it robustly generates polyclonal PG13 cells that are 100% positive for the vector of interest. This means that efficient gene transfer may be repeatedly achieved without the need to clone individual PG13 cells for experimental pre-clinical testing. To achieve T-cell transduction, cells must first be activated using a non-specific mitogen. Phytohemagglutinin (PHA provides an economic and robust stimulus to achieve this. After 48-72 h, activated T-cells and virus-conditioned medium are mixed in RetroNectin-coated plasticware, which enhances transduction efficiency. Transduced cells are analyzed for gene transfer efficiency by flow cytometry 48 h following transduction and may then be tested in several assays to evaluate CAR function, including target-dependent cytotoxicity, cytokine production and proliferation.

  9. Novel therapeutic approaches for various cancer types using a modified sleeping beauty-based gene delivery system.

    Science.gov (United States)

    Hong, In-Sun; Lee, Hwa-Yong; Kim, Hyun-Pyo

    2014-01-01

    Successful gene therapy largely depends on the selective introduction of therapeutic genes into the appropriate target cancer cells. One of the most effective and promising approaches for targeting tumor tissue during gene delivery is the use of viral vectors, which allow for high efficiency gene delivery. However, the use of viral vectors is not without risks and safety concerns, such as toxicities, a host immune response towards the viral antigens or potential viral recombination into the host's chromosome; these risks limit the clinical application of viral vectors. The Sleeping Beauty (SB) transposon-based system is an attractive, non-viral alternative to viral delivery systems. SB may be less immunogenic than the viral vector system due to its lack of viral sequences. The SB-based gene delivery system can stably integrate into the host cell genome to produce the therapeutic gene product over the lifetime of a cell. However, when compared to viral vectors, the non-viral SB-based gene delivery system still has limited therapeutic efficacy due to the lack of long-lasting gene expression potential and tumor cell specific gene transfer ability. These limitations could be overcome by modifying the SB system through the introduction of the hTERT promoter and the SV40 enhancer. In this study, a modified SB delivery system, under control of the hTERT promoter in conjunction with the SV40 enhancer, was able to successfully transfer the suicide gene (HSV-TK) into multiple types of cancer cells. The modified SB transfected cancer cells exhibited a significantly increased cancer cell specific death rate. These data suggest that our modified SB-based gene delivery system can be used as a safe and efficient tool for cancer cell specific therapeutic gene transfer and stable long-term expression.

  10. Blood-brain barrier transport of non-viral gene and RNAi therapeutics.

    Science.gov (United States)

    Boado, Ruben J

    2007-09-01

    The development of gene- and RNA interference (RNAi)-based therapeutics represents a challenge for the drug delivery field. The global brain distribution of DNA genes, as well as the targeting of specific regions of the brain, is even more complicated because conventional delivery systems, i.e. viruses, have poor diffusion in brain when injected in situ and do not cross the blood-brain barrier (BBB), which is only permeable to lipophilic molecules of less than 400 Da. Recent advances in the "Trojan Horse Liposome" (THL) technology applied to the transvascular non-viral gene therapy of brain disorders presents a promising solution to the DNA/RNAi delivery obstacle. The THL is comprised of immunoliposomes carrying either a gene for protein replacement or small hairpin RNA (shRNA) expression plasmids for RNAi effect, respectively. The THL is engineered with known lipids containing polyethyleneglycol (PEG), which stabilizes its structure in vivo in circulation. The tissue target specificity of THL is given by conjugation of approximately 1% of the PEG residues to peptidomimetic monoclonal antibodies (MAb) that bind to specific endogenous receptors (i.e. insulin and transferrin receptors) located on both the BBB and the brain cellular membranes, respectively. These MAbs mediate (a) receptor-mediated transcytosis of the THL complex through the BBB, (b) endocytosis into brain cells and (c) transport to the brain cell nuclear compartment. The present review presents an overview of the THL technology and its current application to gene therapy and RNAi, including experimental models of Parkinson's disease and brain tumors.

  11. An interferon response gene signature is associated with the therapeutic response of hepatitis C patients.

    Directory of Open Access Journals (Sweden)

    Lawrence M Pfeffer

    Full Text Available Infection with the hepatitis C virus (HCV is a major cause of chronic liver diseases and hepatocellular carcinoma worldwide, and thus represents a significant public health problem. The type I interferon (IFN, IFNα, has been successful in treating HCV-infected patients, but current IFN-based treatment regimens for HCV have suboptimal efficacy, and relatively little is known about why IFN therapy eliminates the virus in some patients but not in others. Therefore, it is critical to understand the basic mechanisms that underlie the therapeutic resistance to IFN action in HCV-infected individuals, and there is an urgent need to identify those patients most likely to respond to IFN therapy for HCV. To characterize the response of HCV-infected patients to treatment with IFNα, the expression of an IFN-response gene signature comprised of IFN-stimulated genes and genes that play an important role in the innate immune response was examined in liver biopsies from HCV-infected patients enrolled in a clinical trial. In the present study we found that the expression of a subset of IFN-response genes was dysregulated in liver biopsy samples from nonresponsive hepatitis C patients as compared with virologic responders. Based on these findings, a statistical model was developed to help predict the response of patients to IFN therapy, and compared to results obtained to the IL28 mutation model, which is highly predictive of the response to IFN-based therapy in HCV-infected patients. We found that a model incorporating gene expression data can improve predictions of IFN responsiveness compared to IL28 mutation status alone.

  12. Cotton Leaf Curl Multan Betasatellite DNA as a Tool to Deliver and Express the Human B-Cell Lymphoma 2 (Bcl-2) Gene in Plants.

    Science.gov (United States)

    Kharazmi, Sara; Ataie Kachoie, Elham; Behjatnia, Seyed Ali Akbar

    2016-05-01

    The betasatellite DNA associated with Cotton leaf curl Multan virus (CLCuMB) contains a single complementary-sense ORF, βC1, which is a pathogenicity determinant. CLCuMB was able to replicate in plants in the presence of diverse helper geminiviruses, including Tomato leaf curl virus-Australia (TLCV-Au), Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]), and Beet curly top virus (BCTV-Svr), and can be used as a plant gene delivery vector. To test the hypothesis that CLCuMB has the potential to act as an animal gene delivery vector, a specific insertion construct was produced by the introduction of a human B-cell lymphoma 2 (Bcl-2) cDNA into a mutant DNA of CLCuMB in which the βC1 was deleted (β∆C1). The recombinant βΔC1-Bcl-2 construct was successfully replicated in tomato and tobacco plants in the presence of TLCV-Au, BCTV-Svr and TYLCV-[Ab]. Real-time PCR and Western blot analyses of plants containing the replicative forms of recombinant βΔC1-Bcl-2 DNA showed that Bcl-2 gene was expressed in an acceptable level in these plants, indicating that β∆C1 can be used as a tool to deliver and express animal genes in plants. This CLCuMB-based system, having its own promoter activity, offers the possibility of production of animal recombinant proteins in plants.

  13. Local co-administration of gene-silencing RNA and drugs in cancer therapy: State-of-the art and therapeutic potential.

    Science.gov (United States)

    Larsson, Mikael; Huang, Wei-Ting; Liu, Dean-Mo; Losic, Dusan

    2017-04-01

    Gene-silencing miRNA and siRNA are emerging as attractive therapeutics with potential to suppress any genes, which could be especially useful in combination cancer therapy to overcome multidrug resistant (MDR) cancer. Nanomedicine aims to advance cancer treatment through functional nanocarriers that delivers one or more therapeutics to cancer tissue and cells with minimal off-target effects and suitable release kinetics and dosages. Although much effort has gone into developing circulating nanocarriers with targeting functionality for systemic administration, another alternative and straightforward approach is to utilize formulations to be administered directly to the site of action, such as pulmonary and intratumoral delivery. The combination of gene-silencing RNA with drugs in nanocarriers for localized delivery is emerging with promising results. In this review, the current progress and strategies for local co-administration of RNA and drug for synergistic effects and future potential in cancer treatment are presented and discussed. Key advances in RNA-drug anticancer synergy and localized delivery systems were combined with a review of the available literature on local co-administration of RNA and drug for cancer treatment. It is concluded that advanced delivery systems for local administration of gene-silencing RNA and drug hold potential in treatment of cancer, depending on indication. In particular, there are promising developments using pulmonary delivery and intratumoral delivery in murine models, but further research should be conducted on other local administration strategies, designs that achieve effective intracellular delivery and maximize synergy and feasibility for clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. p53, SKP2 and DKK3 as MYCN target genes and their potential therapeutic significance

    Directory of Open Access Journals (Sweden)

    Lindi eChen

    2012-11-01

    Full Text Available Neuroblastoma is the most common extracranial solid tumour of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumour progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2 and DKK3 and strategies that may be employed to target them.

  15. Superparamagnetic Nanoparticles and RNAi-Mediated Gene Silencing: Evolving Class of Cancer Diagnostics and Therapeutics

    Directory of Open Access Journals (Sweden)

    Sanchareeka Dey

    2012-01-01

    Full Text Available The ever increasing death of patients affected by various types of fatal cancers is of concern worldwide. Curative attempts by radiation/chemotherapy and surgery are often a failure in the long run. Moreover, adverse side effects of such treatments burden the patients with painful survival at the last phase of their life. The failure of early diagnosis is one of the root causes of the problem. Intensive research activities are being pursued in reputed laboratories across the globe to find superior diagnostics and therapeutics. Over the last decade, a number of publications have highlighted RNA interference based silencing of cancer-related gene expression as a promising technology to tackle the aforesaid problems. Superparamagnetic iron oxide nanoparticles (SPIONs are reported to be excellent vehicles for short-interfering RNA (siRNA. The SPION-siRNA conjugate is biocompatible, stable, and amenable to specific targeting and can cross the blood brain barrier. The issues related to their synthesis, surface properties, delivery, tracking, imaging in relevance to cancer diagnostic and therapeutic, and so forth demand an extensive review, and we have addressed these aspects in this paper. The future prospects of the technology have also been traced.

  16. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy.

    Science.gov (United States)

    Meneghini, Vasco; Lattanzi, Annalisa; Tiradani, Luigi; Bravo, Gabriele; Morena, Francesco; Sanvito, Francesca; Calabria, Andrea; Bringas, John; Fisher-Perkins, Jeanne M; Dufour, Jason P; Baker, Kate C; Doglioni, Claudio; Montini, Eugenio; Bunnell, Bruce A; Bankiewicz, Krystof; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2016-05-02

    Metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD or Krabbe disease) are severe neurodegenerative lysosomal storage diseases (LSD) caused by arylsulfatase A (ARSA) and galactosylceramidase (GALC) deficiency, respectively. Our previous studies established lentiviral gene therapy (GT) as a rapid and effective intervention to provide pervasive supply of therapeutic lysosomal enzymes in CNS tissues of MLD and GLD mice. Here, we investigated whether this strategy is similarly effective in juvenile non-human primates (NHP). To provide proof of principle for tolerability and biological efficacy of the strategy, we established a comprehensive study in normal NHP delivering a clinically relevant lentiviral vector encoding for the human ARSA transgene. Then, we injected a lentiviral vector coding for the human GALC transgene in Krabbe-affected rhesus macaques, evaluating for the first time the therapeutic potential of lentiviral GT in this unique LSD model. We showed favorable safety profile and consistent pattern of LV transduction and enzyme biodistribution in the two models, supporting the robustness of the proposed GT platform. We documented moderate inflammation at the injection sites, mild immune response to vector particles in few treated animals, no indication of immune response against transgenic products, and no molecular evidence of insertional genotoxicity. Efficient gene transfer in neurons, astrocytes, and oligodendrocytes close to the injection sites resulted in robust production and extensive spreading of transgenic enzymes in the whole CNS and in CSF, leading to supraphysiological ARSA activity in normal NHP and close to physiological GALC activity in the Krabbe NHP, in which biological efficacy was associated with preliminary indication of therapeutic benefit. These results support the rationale for the clinical translation of intracerebral lentiviral GT to address CNS pathology in MLD, GLD, and other neurodegenerative LSD.

  17. Targeted delivery of Bcl-2 conversion gene by MPEG-PCL-PEI-FA cationic copolymer to combat therapeutic resistant cancer.

    Science.gov (United States)

    Li, Zibiao; Liu, Xuan; Chen, Xiaohong; Chua, Ming Xuan; Wu, Yun-Long

    2017-07-01

    Deregulation of anti-apoptosis Bcl-2 protein expression was a key feature in human cancers with therapeutic resistance. Nuclear receptor Nur77 could induce the conformation change of Bcl-2 protein and converted it into an apoptosis inducer by "enemy to friend" strategy. However, the safe and effective delivery of this gene to combat therapeutic resistant cancer remained largely unexplored. In this report, we designed an amphiphilic cationic MPEG-PCL-PEI-FA copolymer, comprising biocompatible and hydrophilic methoxy-poly(ethylene glycol) (MPEG), biodegradable and hydrophobic poly(ε-caprolactone) (PCL), cationic poly(ethylene imine) (PEI) segments, and folic acid (FA) as targeting group, as a high efficient Nur77 gene carrier to folate receptor (FR) highly expressed and therapeutic resistant HeLa/Bcl-2 cancer cells. Interestingly, due to the incorporation of PCL and PEG segments, this MPEG-PCL-PEI-FA copolymer showed less toxicity but better gene transfection efficiency than non-viral gene carrier gold standard PEI (25kDa). This might be due to the formation of micelles to stabilize polyplex for enhanced gene transfection ability. More importantly, MPEG-PCL-PEI-FA copolymer exhibited excellent growth inhibition ability on therapeutic resistant HeLa/Bcl-2 cancer cells, which was FR overexpressed HeLa cervical cancer cells with high expression of Bcl-2 protein, thanks to its FA induced targeting ability, high gene transfection efficiency, and low cytotoxicity. This work signifies the first time that cationic amphiphilic MPEG-PCL-PEI-FA copolymers could be utilized for the gene delivery to therapeutic resistant cancer cells with high expression of anti-apoptosis Bcl-2 protein and the positive results are encouraging for the further design of polymeric platforms for combating drug resistant tumors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics.

    Science.gov (United States)

    Strug, Lisa J; Gonska, Tanja; He, Gengming; Keenan, Katherine; Ip, Wan; Boëlle, Pierre-Yves; Lin, Fan; Panjwani, Naim; Gong, Jiafen; Li, Weili; Soave, David; Xiao, Bowei; Tullis, Elizabeth; Rabin, Harvey; Parkins, Michael D; Price, April; Zuberbuhler, Peter C; Corvol, Harriet; Ratjen, Felix; Sun, Lei; Bear, Christine E; Rommens, Johanna M

    2016-08-29

    Cystic fibrosis is realizing the promise of personalized medicine. Recent advances in drug development that target the causal CFTR directly result in lung function improvement, but variability in response is demanding better prediction of outcomes to improve management decisions. The genetic modifier SLC26A9 contributes to disease severity in the CF pancreas and intestine at birth and here we assess its relationship with disease severity and therapeutic response in the airways. SLC26A9 association with lung disease was assessed in individuals from the Canadian and French CF Gene Modifier consortia with CFTR-gating mutations and in those homozygous for the common Phe508del mutation. Variability in response to a CFTR-directed therapy attributed to SLC26A9 genotype was assessed in Canadian patients with gating mutations. A primary airway model system determined if SLC26A9 shows modification of Phe508del CFTR function upon treatment with a CFTR corrector.In those with gating mutations that retain cell surface-localized CFTR we show that SLC26A9 modifies lung function while this is not the case in individuals homozygous for Phe508del where cell surface expression is lacking. Treatment response to ivacaftor, which aims to improve CFTR-channel opening probability in patients with gating mutations, shows substantial variability in response, 28% of which can be explained by rs7512462 in SLC26A9 (P = 0.0006). When homozygous Phe508del primary bronchial cells are treated to restore surface CFTR, SLC26A9 likewise modifies treatment response (P = 0.02). Our findings indicate that SLC26A9 airway modification requires CFTR at the cell surface, and that a common variant in SLC26A9 may predict response to CFTR-directed therapeutics.

  19. Potent antitumoral effects of a novel gene-viral therapeutic system CNHK300-mEndostatin in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    LI Gen-cong; QIAN Qi-jun; YANG Jia-mei; NIE Ming-ming; SU Chan-ging; SUN Li-chen; QIAN Yan-zhen; FANG Guo-en; Jonathan Sham; WU Meng-chao

    2005-01-01

    Background The expression of therapeutic gene and its anti-tumor effects will be augmented and a synergism of oncolytic virus with the therapeutic gene is speculated. This study was undertaken to assess the anti-tumor effects of a novel gene-viral therapeutic system CNHK300-mEndostatin (CNHK300-mE) in hepatocellular carcinoma (HCC). Methods A novel gene-viral therapeutic system named CNHK300-mE was constructed using the human telomerase reverse transcriptase (hTERT) promoter to drive the expression of the adenovirus E1A gene and cloning the therapeutic gene mouse endostatin into the adenovirus genome. By the tissue culture infectious dose 50 (TCID50) method and cytoviability assay, the replicative and cytolytic capabilities of CNHK300-mE in two HCC lines (HepGII and Hep3B) and one normal cell line (MRC-5) were analyzed, and the transgene expressions of mouse endostatin in vitro and in vivo were detected by Western blotting and ELISA assay. Tumor growth suppression and anti-angiogenesis effects in vivo were investigated using nude mice xenografts model derived from SMMC-7721 HCC cells. Results The 3296-fold replicating capacity of CNHK300-mE in HCC cell lines versus in the normal cell line at 96 hours post infection and the 25-fold effective dose for killing 50% cells (ED50) in the normal cell line versus HCC cell lines, which were both superior to ONYX-015, were observed. Tumor growth suppression of CNHK300-mE superior to either Ad-mE or ONYX-015 was demonstrated (P<0.01) and the anti-angiogenic effects in vivo superior to Ad-mE were also observed with immunohistochemical staining of von Willebrand factor. In comparison with non-replicative adenovirus Ad-mE, the transgene expression of mE mediated by CNHK300-mE was significantly higher in vitro (P<0.005) and in vivo (P<0.05). Conclusion Being capable of replicating in and lysing the telomerase-positive HCC cells and mediating effective expression of the therapeutic gene in vitro and in vivo, the novel gene

  20. Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation

    Directory of Open Access Journals (Sweden)

    Niranjan Y. Sardesai

    2013-07-01

    Full Text Available Lassa virus (LASV causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC that expressed the LASV glycoprotein precursor gene (GPC. This plasmid was used to vaccinate guinea pigs (GPs using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6 with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.

  1. Association study of single nucleotide polymorphism of dopamine D2 receptor gene and Tourette syndrome therapeutic effects

    Institute of Scientific and Technical Information of China (English)

    黄环环

    2013-01-01

    Objective To explore the difference of rs1800497 of single nucleotide polymorphism (SNP) of dopamine D2 receptor (DRD2) gene genotype and allele frequency in Tourette syndrome (TS) patients with different therapeutic effect in Chinese Han population.Methods The

  2. The Increasing Complexity of the Oncofetal H19 Gene Locus: Functional Dissection and Therapeutic Intervention

    Directory of Open Access Journals (Sweden)

    Abraham Hochberg

    2013-02-01

    Full Text Available The field of the long non-coding RNA (lncRNA is advancing rapidly. Currently, it is one of the most popular fields in the biological and medical sciences. It is becoming increasingly obvious that the majority of the human transcriptome has little or no-protein coding capacity. Historically, H19 was the first imprinted non-coding RNA (ncRNA transcript identified, and the H19/IGF2 locus has served as a paradigm for the study of genomic imprinting since its discovery. In recent years, we have extensively investigated the expression of the H19 gene in a number of human cancers and explored the role of H19 RNA in tumor development. Here, we discuss recently published data from our group and others that provide further support for a central role of H19 RNA in the process of tumorigenesis. Furthermore, we focus on major transcriptional modulators of the H19 gene and discuss them in the context of the tumor-promoting activity of the H19 RNA. Based on the pivotal role of the H19 gene in human cancers, we have developed a DNA-based therapeutic approach for the treatment of cancers that have upregulated levels of H19 expression. This approach uses a diphtheria toxin A (DTA protein expressed under the regulation of the H19 promoter to treat tumors with significant expression of H19 RNA. In this review, we discuss the treatment of four cancer indications in human subjects using this approach, which is currently under development. This represents perhaps one of the very few examples of an existing DNA-based therapy centered on an lncRNA system. Apart from cancer, H19 expression has been reported also in other conditions, syndromes and diseases, where deregulated imprinting at the H19 locus was obvious in some cases and will be summarized below. Moreover, the H19 locus proved to be much more complicated than initially thought. It houses a genomic sequence that can transcribe, yielding various transcriptional outputs, both in sense and antisense directions. The

  3. Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells.

    Science.gov (United States)

    Prados, Jose; Melguizo, Consolación; Rama, Ana Rosa; Ortiz, Rául; Segura, Ana; Boulaiz, Houria; Vélez, Celia; Caba, Octavio; Ramos, Juan Luís; Aránega, Antonia

    2010-05-01

    The potential use of combined therapy is under intensive study including the association between classical cytotoxic and genes encoding toxic proteins which enhanced the antitumour activity. The main aim of this work was to evaluate whether the gef gene, a suicide gene which has a demonstrated antiproliferative activity in tumour cells, improved the antitumour effect of chemotherapeutic drugs used as first-line treatment in the management of advanced breast cancer. MCF-7 human breast cancer cells were transfected with gef gene using pcDNA3.1-TOPO expression vector. To determine the effect of the combined therapy, MCF-7 transfected and non-transfected cells were exposed to paclitaxel, docetaxel and doxorubicin at different concentrations. The growth-inhibitory effect of gef gene and/or drugs was assessed by MTT assay. Apoptosis modulation was determined by flow cytometric analysis, DNA fragmentation and morphological analysis. Multicellular tumour spheroids (MTS) from MCF-7 cells were used to confirm effectiveness of combined therapy (gef gene and drug). Our results demonstrate that combined therapy gef gene/drugs (paclitaxel, docetaxel or doxurubicin) caused a decrease in cell viability. However, only the gef-doxorubicin (10 microM) combination induced a greater enhancement in the antitumour activity in MCF-7 cells. Most importantly, this combined strategy resulted in a significant synergistic effect, thus allowing lower doses of the drug to be used to achieve the same therapeutic effect. These results were confirmed using MTS in which volume decrease with combined therapy was greater than obtained using the gene therapy or chemotherapy alone, or the sum of both therapies. The cytotoxic effect of gef gene in breast cancer cells enhances the chemotherapeutic effect of doxorubicin. This therapeutic approach has the potential to overcome some of the major limitations of conventional chemotherapy, and may therefore constitute a promising strategy for future

  4. Research progress in CYP2C9 and VKORC1 gene polymorphism and individualized warfarin therapeutic regimen

    Directory of Open Access Journals (Sweden)

    Yue-ping LIU

    2015-04-01

    Full Text Available Warfarin is still the most clinically used oral anti-coagulant despite of its narrow therapeutic index and high risk of hemorrhage. The mean daily dose of warfarin varies widely from patient to patient, and to achieve the same therapeutic effect, the daily dose of warfarin could be varied over 20-fold. The variability in warfarin dosage depends on several factors, including gene polymorphisms, index of body mass, age and other drugs, and these factors compelled the clinicians to individualize warfarin dosage in order to optimize the therapeutic regimen. A number of genes are involved in metabolism of warfarin, such as cytochrome P450 2C9 (CYP2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1, cytochrome P450 4F2 (CYP4F2, gamma-glutamylcarboxylase (GGCX, etc. Of them CYP2C9 and VKORC1 are the emphasis of current researches. The association between the polymorphism of CYP2C9 and VKORC1 and individualized warfarin therapeutic regimen are mainly discussed in this paper. DOI: 10.11855/j.issn.0577-7402.2015.02.16

  5. Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making

    Science.gov (United States)

    2014-10-01

    SUBTITLE Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making Improve...to determine whether Fetal Mammary Stem Cell (fMaSC) signatures correlate with response to chemotherapy and metastasis in different breast cancer...positioned to achieve its aims. 15. SUBJECT TERMS Breast Cancer Prognosis, Mammary Stem Cells, Embryonic Development, Single Cell Transcriptomics 16

  6. Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters

    Science.gov (United States)

    Doliwa, Christelle; Escotte-Binet, Sandie; Aubert, Dominique; Sauvage, Virginie; Velard, Frédéric; Schmid, Aline; Villena, Isabelle

    2013-01-01

    Several treatment failures have been reported for the treatment of toxoplasmic encephalitis, chorioretinitis, and congenital toxoplasmosis. Recently we found three Toxoplasma gondii strains naturally resistant to sulfadiazine and we developed in vitro two sulfadiazine resistant strains, RH-RSDZ and ME-49-RSDZ, by gradual pressure. In Plasmodium, common mechanisms of drug resistance involve, among others, mutations and/or amplification within genes encoding the therapeutic targets dhps and dhfr and/or the ABC transporter genes family. To identify genotypic and/or phenotypic markers of resistance in T. gondii, we sequenced and analyzed the expression levels of therapeutic targets dhps and dhfr, three ABC genes, two Pgp, TgABC.B1 and TgABC.B2, and one MRP, TgABC.C1, on sensitive strains compared to sulfadiazine resistant strains. Neither polymorphism nor overexpression was identified. Contrary to Plasmodium, in which mutations and/or overexpression within gene targets and ABC transporters are involved in antimalarial resistance, T. gondii sulfadiazine resistance is not related to these toxoplasmic genes studied. PMID:23707894

  7. Huntington's Disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database

    Directory of Open Access Journals (Sweden)

    Kalathur Ravi Kiran

    2012-06-01

    Full Text Available Abstract Background Huntington’s disease (HD is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. Methods To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. Results Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling, but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling. For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are

  8. Unique strategies for therapeutic gene transfer in haemophilia A and haemophilia BWFH State-of-the-Art Session on Therapeutic Gene Transfer Buenos Aires, Argentina.

    Science.gov (United States)

    Montgomery, R R; Monahan, P E; Ozelo, M C

    2010-07-01

    Gene therapy of haemophilia has been initiated through a number of approaches including expression in muscle, liver and omental implanted fibroblasts, or i.v. injection of an expression construct under the control of a ubiquitous promoter. In all these approaches, the goal was to have factor VIII (FVIII) or factor IX (FIX) synthesized so that it restored the levels of the missing protein in blood. The three talks in this session are totally, or at least in part, directed at strategies that may be clinically effective even in the absence of correction of the missing plasma clotting factor, although the haematopoietic stem cell or blood outgrowth endothelial cell therapy could achieve plasma correction as well. Two of the approaches achieve localized coagulation factor expression without necessarily correcting the systemic defect--one is with synthesis of FVIII or FIX within the joint space and the other is with the local release of FVIII (or FIX) by platelets at the site of vascular injury. All of the three approaches have demonstrated efficacy in small animal models and are now the subject of larger animal studies. None has yet to progress to human trials.

  9. Gene Therapy for Advanced Melanoma: Selective Targeting and Therapeutic Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Joana R. Viola

    2013-01-01

    Full Text Available Despite recent advances, the treatment of malignant melanoma still results in the relapse of the disease, and second line treatment mostly fails due to the occurrence of resistance. A wide range of mutations are known to prevent effective treatment with chemotherapeutic drugs. Hence, approaches with biopharmaceuticals including proteins, like antibodies or cytokines, are applied. As an alternative, regimens with therapeutically active nucleic acids offer the possibility for highly selective cancer treatment whilst avoiding unwanted and toxic side effects. This paper gives a brief introduction into the mechanism of this devastating disease, discusses the shortcoming of current therapy approaches, and pinpoints anchor points which could be harnessed for therapeutic intervention with nucleic acids. We bring the delivery of nucleic acid nanopharmaceutics into perspective as a novel antimelanoma therapeutic approach and discuss the possibilities for melanoma specific targeting. The latest reports on preclinical and already clinical application of nucleic acids in melanoma are discussed.

  10. [Therapeutic effect of GDNF gene-modified mesencephalic neural stem cell transplantation in a rat model of Parkinson disease].

    Science.gov (United States)

    Duan, Kuijia; Wang, Xiangpeng; Yang, Zhiyong; Wang, Bo; Wang, Mingguo; Zhang, Hailong; Deng, Xingli

    2016-01-01

    To evaluate the therapeutic effect of transplantation of mesencephalic neural stem cells (mNSCs) genetically modified by glial cell line-derived neurotrophic factor (GDNF) gene in a rat model of Parkinson disease. mNSCs isolated from the lateral component of the midbrain of fetal rats at gestational age of 14 or 15 days were cultured for 5 days before genetic modification with GFP or GDNF gene. Rat models of Parkinson disease established by stereotactic injection of 6-hydroxy dopamine in the ventral area of the midbrain and the medial forebrain bundle were randomized into 3 groups to receive PBS injection, GFP gene-modified mNSCs transplantation, or GDNF gene-modified mNSCs transplantation into the right stratum. The behavioral changes of the rats were evaluated by observing rotations induced by intraperitoneal injection of apomorphine after the transplantation, and the survival, migration and differentiation of the transplanted cells were identified by immunohistochemistry. Transplantation with GDNF gene-modified mNSCs significantly improved the behavioral abnormalities of the rat models as compared with PBS injection and GFP gene-modified mNSCs transplantation. At 56 days after the transplantation, a greater number of the transplanted cells survived in the rat brain and more differentiated dopaminergic neurons were detected in GDNF gene-modified mNSCs transplantation group than in GFP gene-modified mNSCs transplantation group. GDNF gene-modified mNSCs transplantation can significantly improve dyskinesia in rat models of Parkinson disease, but the molecular mechanism needs further clarification.

  11. MicroRNAs: association with radioresistant and potential uses of natural remedies as green gene therapeutic approaches.

    Science.gov (United States)

    Jothy, Subramanion L; Chen, Yeng; Vijayarathna, Soundararajan; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2015-01-01

    Radiotherapy plays an essential primary role in cancer patients. Regardless of its significant advances in treatment options, tumor recurrence and radio-resistance in cancer cells still occur in a high percentage of patients. Furthermore, the over expression of miRNAs accompanies the development of radio-resistant cancer cells. Consequently, miRNAs might serve as therapeutic targets for the treatment of radio-resistance in cancer cells. The findings of the current research also signify that the use of a natural anti-miRNA substance could inhibit specific miRNAs, and, concurrently, these natural remedies could exhibit radioprotective activity against the healthy cells during radiotherapy. Therefore, in this review, we have reported the association of miRNAs with radio-resistance and the potential uses of natural remedies as green gene therapeutic approaches, as well as radioprotectors against the adverse effects of irradiation on healthy cells during radiotherapy.

  12. Gene Editing and Genetic Lung Disease. Basic Research Meets Therapeutic Application.

    Science.gov (United States)

    Alapati, Deepthi; Morrisey, Edward E

    2017-03-01

    Although our understanding of the genetics and pathology of congenital lung diseases such as surfactant protein deficiency, cystic fibrosis, and alpha-1 antitrypsin deficiency is extensive, treatment options are lacking. Because the lung is a barrier organ in direct communication with the external environment, targeted delivery of gene corrective technologies to the respiratory system via intratracheal or intranasal routes is an attractive option for therapy. CRISPR/Cas9 gene-editing technology is a promising approach to repairing or inactivating disease-causing mutations. Recent reports have provided proof of concept by using CRISPR/Cas9 to successfully repair or inactivate mutations in animal models of monogenic human diseases. Potential pulmonary applications of CRISPR/Cas9 gene editing include gene correction of monogenic diseases in pre- or postnatal lungs and ex vivo gene editing of patient-specific airway stem cells followed by autologous cell transplant. Strategies to enhance gene-editing efficiency and eliminate off-target effects by targeting pulmonary stem/progenitor cells and the assessment of short-term and long-term effects of gene editing are important considerations as the field advances. If methods continue to advance rapidly, CRISPR/Cas9-mediated gene editing may provide a novel opportunity to correct monogenic diseases of the respiratory system.

  13. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants.

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Gotoh

    Full Text Available Vibrio parahaemolyticus, a bacterial pathogen, causes human gastroenteritis. A type III secretion system (T3SS2 encoded in pathogenicity island (Vp-PAI is the main contributor to enterotoxicity and expression of Vp-PAI encoded genes is regulated by two transcriptional regulators, VtrA and VtrB. However, a host-derived inducer for the Vp-PAI genes has not been identified. Here, we demonstrate that bile induces production of T3SS2-related proteins under osmotic conditions equivalent to those in the intestinal lumen. We also show that bile induces vtrA-mediated vtrB transcription. Transcriptome analysis of bile-responsive genes revealed that bile strongly induces expression of Vp-PAI genes in a vtrA-dependent manner. The inducing activity of bile was diminished by treatment with bile acid sequestrant cholestyramine. Finally, we demonstrate an in vivo protective effect of cholestyramine on enterotoxicity and show that similar protection is observed in infection with a different type of V. parahaemolyticus or with non-O1/non-O139 V. cholerae strains of vibrios carrying the same kind of T3SS. In summary, these results provide an insight into how bacteria, through the ingenious action of Vp-PAI genes, can take advantage of an otherwise hostile host environment. The results also reveal a new therapeutic potential for widely used bile acid sequestrants in enteric bacterial infections.

  14. PREPARATION OF GENE-VIRAL THERAPEUTIC SYSTEM CNHK200-HA AND ITS ANTITUMOR ACTIVITY ON LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To develop a novel adenoviral vector system, which combines the advantages of the antiangiogenic gene therapy and virus therapy, and to investigate its antitumor activity on lung cancer. Methods: A new kind of viral vector CNHK200, in which the E1b55kDa gene was deleted and the whole E1a gene was preserved, was constructed. Human angiostatin gene Kringle 1(5 (hA) was amplified and inserted into the genome of the replicative virus CNHK200, generating CNHK200-hA. The expression of hA and its effect on lung cancer cell growth in vitro and in vivo were studied. Results: The novel vector system CNHK200-hA, just like the replicative virus ONYX-015, replicated in p53-deficient tumor cells but not in normal cells, and thus specifically killed tumor cells. In in vitro experiment, both CNHK200-hA and the non-replicative virus Ad-hA could kill tumor cells but the latter needed 100 times more MOI to achieve the same level of cell killing. In in vivo experiment, the therapeutic effect of CNHK200-hA on human lung cancer A549 xenografts in nude mice was significantly better than that of Ad-hA or that of ONYX-015. Conclusion: CNHK200-hA, which carries the angiostatin gene, has the advantages of specific tumor targeting, high expression of transgene in tumor cells and potent antitumor activity.

  15. Regulation of the β-globin gene family expression, useful in the search for new therapeutic targets for hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    Karen G. Scheps

    2016-12-01

    Full Text Available Different hemoglobin isoforms are expressed during the embryonic, fetal and postnatal stages. They are formed by combination of polypeptide chains synthesized from the α- and β-globin gene clusters. Based on the fact that the presence of high hemoglobin F levels is beneficial in both sickle cell disease and severe thalassemic syndromes, a revision of the regulation of the β-globin cluster expression is proposed, especially regarding the genes encoding the y-globin chains (HBG1 and HBG2. In this review we describe the current knowledge about transcription factors and epigenetic regulators involved in the switches of the β-globin cluster. It is expected that the consolidation of knowledge in this field will allow finding new therapeutic targets for the treatment of hemoglobinopathies.

  16. Lipopolyplex for Therapeutic Gene Delivery and Its Application for the Treatment of Parkinson's Disease.

    Science.gov (United States)

    Chen, Wei; Li, Hui; Liu, Zhenguo; Yuan, Weien

    2016-01-01

    Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson's disease (PD) is the second most common neurodegenerative disorder and severely influences the patients' life quality. Current gene therapy clinical trials for PD employing viral vectors didn't achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier (BBB) and specific targeting to diseased brain cells.

  17. Therapeutic angiogenesis induced by human hepatocyte growth factor (HGF) gene in rat myocardial ischemia models

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to investigate the feasibility of myocardial ischemia gene therapy, we cloned human hepatocyte growth factor gene from human placenta cDNA library by the RT-PCR method. Recombination adenovirus Ad-HGF was constructed by the method of co-transfection and homologous recombination of plasmids in 293 cells. Ad-HGF was amplified in 293 cells and purified through CsCl density gradient centrifugation. Ad-HGF could be expressed in rat primary myocardial cells and HGF secreted into the culture media, which was tested by ELISA. The distribution and persistence of adenovirus in rat were investigated by green fluorescence protein as a report gene. In vivo we found that intramyocardial administration of Ad-HGF could induce angiogenesis in rat myocardium after ligation of coronary artery. The results suggested that Ad-HGF was effective in vitro and in vivo, and the data for designing human trial of gene therapy-- mediated cardiac angiogenesis were provided.

  18. RNAi-based therapeutic nanostrategy: IL-8 gene silencing in pancreatic cancer cells using gold nanorods delivery vehicles.

    Science.gov (United States)

    Panwar, Nishtha; Yang, Chengbin; Yin, Feng; Yoon, Ho Sup; Chuan, Tjin Swee; Yong, Ken-Tye

    2015-09-11

    RNA interference (RNAi)-based gene silencing possesses great ability for therapeutic intervention in pancreatic cancer. Among various oncogene mutations, Interleukin-8 (IL-8) gene mutations are found to be overexpressed in many pancreatic cell lines. In this work, we demonstrate IL-8 gene silencing by employing an RNAi-based gene therapy approach and this is achieved by using gold nanorods (AuNRs) for efficient delivery of IL-8 small interfering RNA (siRNA) to the pancreatic cell lines of MiaPaCa-2 and Panc-1. Upon comparing to Panc-1 cells, we found that the dominant expression of the IL-8 gene in MiaPaCa-2 cells resulted in an aggressive behavior towards the processes of cell invasion and metastasis. We have hence investigated the suitability of using AuNRs as novel non-viral nanocarriers for the efficient uptake and delivery of IL-8 siRNA in realizing gene knockdown of both MiaPaCa-2 and Panc-1 cells. Flow cytometry and fluorescence imaging techniques have been applied to confirm transfection and release of IL-8 siRNA. The ratio of AuNRs and siRNA has been optimized and transfection efficiencies as high as 88.40 ± 2.14% have been achieved. Upon successful delivery of IL-8 siRNA into cancer cells, the effects of IL-8 gene knockdown are quantified in terms of gene expression, cell invasion, cell migration and cell apoptosis assays. Statistical comparative studies for both MiaPaCa-2 and Panc-1 cells are presented in this work. IL-8 gene silencing has been demonstrated with knockdown efficiencies of 81.02 ± 10.14% and 75.73 ± 6.41% in MiaPaCa-2 and Panc-1 cells, respectively. Our results are then compared with a commercial transfection reagent, Oligofectamine, serving as positive control. The gene knockdown results illustrate the potential role of AuNRs as non-viral gene delivery vehicles for RNAi-based targeted cancer therapy applications.

  19. Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets.

    Directory of Open Access Journals (Sweden)

    Sonia Paco

    Full Text Available Ullrich congenital muscular dystrophy (UCMD, caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.

  20. Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets

    Science.gov (United States)

    Paco, Sonia; Kalko, Susana G.; Jou, Cristina; Rodríguez, María A.; Corbera, Joan; Muntoni, Francesco; Feng, Lucy; Rivas, Eloy; Torner, Ferran; Gualandi, Francesca; Gomez-Foix, Anna M.; Ferrer, Anna; Ortez, Carlos; Nascimento, Andrés; Colomer, Jaume; Jimenez-Mallebrera, Cecilia

    2013-01-01

    Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered. PMID:24223098

  1. Association of ABCB1 gene polymorphisms and haplotypes with therapeutic efficacy of glucocorticoids in Chinese patients with immune thrombocytopenia.

    Science.gov (United States)

    Xuan, Min; Li, Huiyuan; Fu, Rongfeng; Yang, Yanhui; Zhang, Donglei; Zhang, Xian; Yang, Renchi

    2014-04-01

    Resistance to glucocorticoids (GCs) remains a tricky problem complicating the therapy of ITP. Recently, ATP binding cassette gene B1 gene (ABCB1) was reported to be correlated with susceptibility and therapeutic efficacy of autoimmune diseases through P-glycoprotein (Pgp). We investigated three single nucleotide polymorphisms (SNPs) of ABCB1 and their haplotypes by PCR-RFLP (restriction fragment length polymorphism) method in 471 ITP patients and 383 healthy controls, patients were further assigned into GCs-responsive and -non-responsive group according to the therapeutic effects of GCs. We observed a remarkable difference in genotypes of G2677T/A between GCs-responsive and non-responsive group, but not between patients and controls. A frequently expression of T/A allele within G2677T/A was recorded in GCs-responsive group. Furthermore, we found that some haplotypes (CGC, CTC/CAC, CTT/CAT, TGC, TGT, TTC/TAC and TTT/TAT, in the order of position 1236-2677-3435) were presented significantly differences between non-responsive and responsive group. No difference of C1236T and C3435T polymorphisms was observed between ITP and controls, and between the GCs-responsive and -non-responsive group. Our findings suggest that ABCB1 polymorphisms, as well as haplotypes derived from C1235T, G2677T/A and C3435T, are associated with inter-individual differences of GCs treatment in ITP.

  2. Angiogenesis related gene expression profiles of EA.hy926 cells induced by irbesartan: a possible novel therapeutic approach

    Institute of Scientific and Technical Information of China (English)

    MA Cong; LU Xue-chun; LUO Yun; CAO Jian; YANG Bo; GAO Yan; LIU Xian-feng; FAN Li

    2012-01-01

    morphogenesis.Of these 56 genes we identified seven genes (VEGF,KDR,PTGS2,PLXND1,ROBO4,LMO2,and COL5A1) involved in the angiogenesis process.qRT-PCR analysis of these genes confirmed the microarray results.Protein expression of three VEGF pathway genes (VEGF,KDR,and PTGS2) was further confirmed by Western blotting.Conclusions Our study showed that irbesartan may induce angiogenic effects in vascular endothelial cells.It suggested that the mechanism of angiogenic effects of ARBs might be attributed to the signaling cascade from angiotensin receptors in the VEGF pathway.It also provided evidence indicating that ARBs could be used as a novel therapeutic approach to treat chronic ischemic heart disease as well as anti-hypertensive agents.

  3. Safety and therapeutic efficacy of adoptive p53-specific T cell antigen receptor (TCR) gene transfer

    OpenAIRE

    2014-01-01

    Immunotherapy with T cells genetically modified by retroviral transfer of tumor-associated antigen (TAA)-specific T cell receptors (TCR) is a promising approach in targeting cancer. Therefore, using a universal TAA to target different tumor entities by only one therapeutic approach was the main criteria for our TAA-specific TCR. Here, an optimized (opt) αβ-chain p53(264-272)-specific and an opt single chain (sc) p53(264-272)-specific TCR were designed, to reduce mispairing reactions of endoge...

  4. Combination therapy of potential gene to enhance oral cancer therapeutic effect

    Science.gov (United States)

    Yeh, Chia-Hsien; Hsu, Yih-Chih

    2015-03-01

    The epidermal growth factor receptor (EGFR) over-regulation related to uncontrolled cell division and promotes progression in tumor. Over-expression of human epidermal growth factor receptor (EGFR) has been detected in oral cancer cells. EGFR-targeting agents are potential therapeutic modalities for treating oral cancer based on our in vitro study. Liposome nanotechnology is used to encapsulate siRNA and were modified with target ligand to receptors on the surface of tumor cells. We used EGFR siRNA to treat oral cancer in vitro.

  5. Metagenomics and novel gene discovery: promise and potential for novel therapeutics.

    Science.gov (United States)

    Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin

    2014-04-01

    Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics.

  6. Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System

    Science.gov (United States)

    Pignataro, Diego; Sucunza, Diego; Vanrell, Lucia; Lopez-Franco, Esperanza; Dopeso-Reyes, Iria G.; Vales, Africa; Hommel, Mirja; Rico, Alberto J.; Lanciego, Jose L.; Gonzalez-Aseguinolaza, Gloria

    2017-01-01

    Adeno-associated viruses (AAVs) have become highly promising tools for research and clinical applications in the central nervous system (CNS). However, specific delivery of genes to the cell type of interest is essential for the success of gene therapy and therefore a correct selection of the promoter plays a very important role. Here, AAV8 vectors carrying enhanced green fluorescent protein (eGFP) as reporter gene under the transcriptional control of different CNS-specific promoters were used and compared with a strong ubiquitous promoter. Since one of the main limitations of AAV-mediated gene delivery lies in its restricted cloning capacity, we focused our work on small-sized promoters. We tested the transduction efficacy and specificity of each vector after stereotactic injection into the mouse striatum. Three glia-specific AAV vectors were generated using two truncated forms of the human promoter for glial fibrillar acidic protein (GFAP) as well as a truncated form of the murine GFAP promoter. All three vectors resulted in predominantly glial expression; however we also observed eGFP expression in other cell-types such as oligodendrocytes, but never in neurons. In addition, robust and neuron-specific eGFP expression was observed using the minimal promoters for the neural protein BM88 and the neuronal nicotinic receptor β2 (CHRNB2). In summary, we developed a set of AAV vectors designed for specific expression in cells of the CNS using minimal promoters to drive gene expression when the size of the therapeutic gene matters. PMID:28239341

  7. Delivering the Goods for Genome Engineering and Editing.

    Science.gov (United States)

    Skipper, Kristian Alsbjerg; Mikkelsen, Jacob Giehm

    2015-08-01

    A basic understanding of genome evolution and the life and impact of microorganisms, like viruses and bacteria, has been fundamental in the quest for efficient genetic therapies. The expanding tool box for genetic engineering now contains transposases, recombinases, and nucleases, all created from naturally occurring genome-modifying proteins. Whereas conventional gene therapies have sought to establish sustained expression of therapeutic genes, genomic tools are needed only in a short time window and should be delivered to cells ideally in a balanced "hit-and-run" fashion. Current state-of-the-art delivery strategies are based on intracellular production of protein from transfected plasmid DNA or in vitro-transcribed RNA, or from transduced viral templates. Here, we discuss advantages and challenges of intracellular production strategies and describe emerging approaches based on the direct delivery of protein either by transfer of recombinant protein or by lentiviral protein transduction. With focus on adapting viruses for protein delivery, we describe the concept of "all-in-one" lentiviral particles engineered to codeliver effector proteins and donor sequences for DNA transposition or homologous recombination. With optimized delivery methods-based on transferring DNA, RNA, or protein-it is no longer far-fetched that researchers in the field will indeed deliver the goods for somatic gene therapies.

  8. Aromatherapy and the central nerve system (CNS): therapeutic mechanism and its associated genes.

    Science.gov (United States)

    Lv, Xiao Nan; Liu, Zhu Jun; Zhang, Huan Jing; Tzeng, Chi Meng

    2013-07-01

    Molecular medical research on aromatherapy has been steadily increasing for use as an adjuvant therapy in managing psychiatric disorders and to examine its therapeutic mechanisms. Most studies, as well as clinically applied experience, have indicated that various essential oils, such as lavender, lemon and bergamot can help to relieve stress, anxiety, depression and other mood disorders. Most notably, inhalation of essential oils can communicate signals to the olfactory system and stimulate the brain to exert neurotransmitters (e.g. serotonin and dopamine) thereby further regulating mood. However, little research has been done on the molecular mechanisms underlying these effects, thus their mechanism of action remains ambiguous. Several hypotheses have been proposed regarding the therapeutic mechanism of depression. These have mainly centered on possible deficiencies in monoamines, neurotrophins, the neuroendocrine system, c-AMP, cation channels as well as neuroimmune interactions and epigenetics, however the precise mechanism or mechanisms related to depression have yet to be elucidated. In the current study, the effectiveness of aromatherapy for alleviating psychiatric disorders was examined using data collected from previously published studies and our unpublished data. A possible signaling pathway from olfactory system to the central nerve system and the associated key molecular elements of aromatherapy are also proposed.

  9. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities

    NARCIS (Netherlands)

    Uil, T.G.; Haisma, H.J.; Rots, Marianne

    2003-01-01

    Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger protein

  10. Gene delivery of the therapeutic polypeptide erythropoietin to primary brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Moos, Torben

    2016-01-01

    in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion into the brain. The non-mitotic BCECs might, however, not be very susceptible to non-viral gene therapy in vivo, since this strategy is believed to be dependent on active cell division. We have...

  11. Therapeutic potential of inhibiting ABCE1 and eRF3 genes via siRNA strategy using chitosan nanoparticles in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, Bagdat Burcu; Asik, Mehmet Dogan [Hacettepe University, Nanotechnology and Nanomedicine Division (Turkey); Kara, Goknur [Hacettepe University, Biochemistry Division, Chemistry Department (Turkey); Turk, Mustafa [Kirikkale University, Bioengineering Department (Turkey); Denkbas, Emir Baki, E-mail: denkbas@hacettepe.edu.tr [Hacettepe University, Biochemistry Division, Chemistry Department (Turkey)

    2015-04-15

    In recent years, targeted cancer therapy strategies have begun to take the place of the conventional treatments. Inhibition of the specific genes, involved in cancer progress, via small interfering RNA (siRNA) has become one of the promising therapeutic approaches for cancer therapy. However, due to rapid nuclease degradation and poor cellular uptake of siRNA, a suitable carrier for siRNA penetration inside the cells is required. We used chitosan nanoparticles (CS-NPs) to efficiently deliver ATP-binding casette E1 (ABCE1) and eukaryotic release factor 3 (eRF3)-targeting siRNAs, individually and together, to reduce the proliferation and induce the apoptosis of breast cancer cells. The CS-NPs were generated by ionic gelation method using tripolyphosphate (TPP) as a crosslinker. Nanoparticles (NPs) were obtained with diameters ranging between 110 and 230 nm and the zeta potential of approximately 27 mV optimizing the solution pH to 4.5 and CS/TPP mass ratio to 3:1. Loading efficiencies of 98.69 % ± 0.051 and 98.83 % ± 0.047 were achieved when ABCE1 siRNA and eRF3 siRNA were entrapped into the NPs, respectively. Cell proliferation assay demonstrated that siRNA-loaded CS-NPs were more effective on cancer cells when compared to siRNAs without CS-NPs. Parallel results were also obtained by apoptosis/necrosis, double-staining analysis. Within our study, the potency of ABCE1 and eRF3 siRNAs were shown for the first time with this kind of polymeric delivery system. The results also indicated that ABCE1 and eRF3, important molecules in protein synthesis, could serve as effective targets to inhibit the cancer cells.

  12. Multifunctional Poly(L-lactide)-Polyethylene Glycol-Grafted Graphene Quantum Dots for Intracellular MicroRNA Imaging and Combined Specific-Gene-Targeting Agents Delivery for Improved Therapeutics.

    Science.gov (United States)

    Dong, Haifeng; Dai, Wenhao; Ju, Huangxian; Lu, Huiting; Wang, Shiyan; Xu, Liping; Zhou, Shu-Feng; Zhang, Yue; Zhang, Xueji

    2015-05-27

    Photoluminescent (PL) graphene quantum dots (GQDs) with large surface area and superior mechanical flexibility exhibit fascinating optical and electronic properties and possess great promising applications in biomedical engineering. Here, a multifunctional nanocomposite of poly(l-lactide) (PLA) and polyethylene glycol (PEG)-grafted GQDs (f-GQDs) was proposed for simultaneous intracellular microRNAs (miRNAs) imaging analysis and combined gene delivery for enhanced therapeutic efficiency. The functionalization of GQDs with PEG and PLA imparts the nanocomposite with super physiological stability and stable photoluminescence over a broad pH range, which is vital for cell imaging. Cell experiments demonstrate the f-GQDs excellent biocompatibility, lower cytotoxicity, and protective properties. Using the HeLa cell as a model, we found the f-GQDs effectively delivered a miRNA probe for intracellular miRNA imaging analysis and regulation. Notably, the large surface of GQDs was capable of simultaneous adsorption of agents targeting miRNA-21 and survivin, respectively. The combined conjugation of miRNA-21-targeting and survivin-targeting agents induced better inhibition of cancer cell growth and more apoptosis of cancer cells, compared with conjugation of agents targeting miRNA-21 or survivin alone. These findings highlight the promise of the highly versatile multifunctional nanocomposite in biomedical application of intracellular molecules analysis and clinical gene therapeutics.

  13. Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics.

    Science.gov (United States)

    Candolfi, Marianela; Xiong, Weidong; Yagiz, Kader; Liu, Chunyan; Muhammad, A K M G; Puntel, Mariana; Foulad, David; Zadmehr, Ali; Ahlzadeh, Gabrielle E; Kroeger, Kurt M; Tesarfreund, Matthew; Lee, Sharon; Debinski, Waldemar; Sareen, Dhruv; Svendsen, Clive N; Rodriguez, Ron; Lowenstein, Pedro R; Castro, Maria G

    2010-11-16

    Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM.

  14. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9.

    Science.gov (United States)

    Li, Chang; Guan, Xinmeng; Du, Tao; Jin, Wei; Wu, Biao; Liu, Yalan; Wang, Ping; Hu, Bodan; Griffin, George E; Shattock, Robin J; Hu, Qinxue

    2015-08-01

    CCR5 serves as an essential coreceptor for human immunodeficiency virus type 1 (HIV-1) entry, and individuals with a CCR5(Δ32) variant appear to be healthy, making CCR5 an attractive target for control of HIV-1 infection. The CRISPR/Cas9, which functions as a naturally existing adaptive immune system in prokaryotes, has been recently harnessed as a novel nuclease system for genome editing in mammalian cells. Although CRISPR/Cas9 can be readily delivered into cell lines, due to the large size of the Cas9 protein, efficient delivery of CCR5-targeting CRISPR/Cas9 components into primary cells, including CD4(+) T-cells, the primary target for HIV-1 infection in vivo, remains a challenge. In the current study, following design of a panel of top-ranked single-guided RNAs (sgRNAs) targeting the ORF of CCR5, we demonstrate that CRISPR/Cas9 can efficiently mediate the editing of the CCR5 locus in cell lines, resulting in the knockout of CCR5 expression on the cell surface. Next-generation sequencing revealed that various mutations were introduced around the predicted cleavage site of CCR5. For each of the three most effective sgRNAs that we analysed, no significant off-target effects were detected at the 15 top-scoring potential sites. More importantly, by constructing chimeric Ad5F35 adenoviruses carrying CRISPR/Cas9 components, we efficiently transduced primary CD4(+) T-lymphocytes and disrupted CCR5 expression, and the positively transduced cells were conferred with HIV-1 resistance. To our knowledge, this is the first study establishing HIV-1 resistance in primary CD4(+) T-cells utilizing adenovirus-delivered CRISPR/Cas9.

  15. Salidroside-Mediated Neuroprotection is Associated with Induction of Early Growth Response Genes (Egrs) Across a Wide Therapeutic Window.

    Science.gov (United States)

    Lai, Wenfang; Zheng, Zhenwei; Zhang, Xiaoqin; Wei, Yicong; Chu, Kedan; Brown, John; Hong, Guizhu; Chen, Lidian

    2015-08-01

    Salidroside exhibits anti-inflammatory, anti-oxidative, and anti-apoptotic properties. To identify whether salidroside might be a candidate for treating ischemic stroke, we investigated the effects of salidroside or vehicle, given daily for 6 days, after middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for either 1 or 48 h in rats. Salidroside reduced cerebral infarct volume and significantly improved neurological scores whether started after 1 or 48 h of reperfusion. Microarray analysis showed that 20 % (133/678) of the genes down-regulated by ischemia and 1 h of reperfusion were up-regulated by salidroside, whereas 13 % (105/829) of the genes induced by ischemia-reperfusion were inhibited by salidroside, suggesting that salidroside can reverse effects of ischemia-reperfusion on gene expression. The main enriched functional categories induced by salidroside were genes related to synaptic plasticity, whereas salidroside inhibited genes related to inflammation. Induction of Egr1, Egr2, Egr4, and Arc by salidroside was confirmed by qRT-PCR and western blotting in ischemic brains treated after either 1 or 48 h of reperfusion. The potential protective role of Egr4 in salidroside-mediated neuroprotection was subsequently investigated in CoCl2-treated PC12 cells. Egr4 was dose-dependently induced by salidroside in PC12 cells, and depleting Egr4 with target-specific siRNA increased caspase-3 activity and Bax, but decreased Bcl-xl, which were reversed by salidroside. Finally, we confirmed that salidroside inhibited the Bax/Bcl-xl-related apoptosis after MCAO with reperfusion. In conclusion, salidroside is highly neuroprotective with a wide therapeutic time window after ischemia-reperfusion injury in the rat, and this partially involves induction of Egrs, leading to inhibition of Bax/Bcl-xl-related apoptosis.

  16. Gene delivery of therapeutic polypeptides to brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    of the proteins. Morphological examination of the protein expression was determined using immunofluorescence detecting FLAG. Additionally, the transfection efficiency were determined by Flow cytometry. Perspective: Our study opens for knowledge on how non-viral gene therapy to BCECs can lead to protein secretion......Background: The potential for treatment of chronic disorders affecting the CNS is complicated by the inability of several drugs to cross the blood-brain barrier (BBB). None-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints....... Results: mRNA expression of proteins with neuroprotective potential in RBEC were enabled. Their expression patters were compared with those of RBE4 and HeLa cells using RT-qPCR analyzes. The evidence for protein synthesis and secretion was obtained by detection of FLAG-tagged to the C-terminal of any...

  17. Tumor Microenvironment Gene Signature as a Prognostic Classifier and Therapeutic Target

    Science.gov (United States)

    2015-06-01

    expression profile data from two datasets were screened for differentially expressed (DE) genes between patients with residual disease (RD) and...16), liver (17–22), head and neck (11,23,24), stomach (25), bladder (26), prostate (7), lung (27), brain (28) and bone (29). ADAM12 has not been...examined as a potential biomarker in ovarian cancer. However, ADAM12 was identified in an unbi- ased screen as one of the transmembrane proteins

  18. Efficient gene therapy-based method for the delivery of therapeutics to primate cortex.

    Science.gov (United States)

    Kells, Adrian P; Hadaczek, Piotr; Yin, Dali; Bringas, John; Varenika, Vanja; Forsayeth, John; Bankiewicz, Krystof S

    2009-02-17

    Transduction of the primate cortex with adeno-associated virus (AAV)-based gene therapy vectors has been challenging, because of the large size of the cortex. We report that a single infusion of AAV2 vector into thalamus results in widespread expression of transgene in the cortex through transduction of widely dispersed thalamocortical projections. This finding has important implications for the treatment of certain genetic and neurodegenerative diseases.

  19. Advances in adult asthma diagnosis and treatment in 2012: potential therapeutics and gene-environment interactions.

    Science.gov (United States)

    Apter, Andrea J

    2013-01-01

    In the Journal of Allergy and Clinical Immunology in 2012, research reports related to asthma in adults clustered around mechanisms of disease, with a special focus on their potential for informing new therapies. There was also consideration of the effect of the environment on health from pollution, climate change, and epigenetic influences, underlining the importance of understanding gene-environment interactions in the pathogenesis of asthma and response to treatment.

  20. A NANOSCALE POLYNUCLEOTIDE-NEUTRAL LIPOSOME SELF-ASSEMBLIES FORMULATED FOR THERAPEUTIC GENE DELIVERY

    Directory of Open Access Journals (Sweden)

    Erhan Süleymanoglu,

    2004-01-01

    Full Text Available Human gene therapy research is currently discouraging due to the lack of suitable delivery vehicles for nucleic acid transfer to affected cell types. There is an urgent need for optimized gene delivery tools capable of protecting the polynucleotide from degradation through its route from site of administration to gene expression. Besides difficulties arising during the preparation of the currently employed cationic lipids, their cytotoxicity has been an unavoidable hurdle. Some energetics issues related to preparation and use of self-assemblies formed between neutral lipid and polynucleotides with various conformation and size are presented. The divalent metal cation-governed adsorption, aggregation and adhesion between single- and double-stranded polynucleotides with multilamellar and unilamellar phosphatidylcholine vesicles was followed turbidimetrically. Thermotropic phase transitions of zwitterionic liposomes and their complexes with polynucleotides and calf thymus DNA with Ca2+ and Mg2+ is presented and compared to the previous data for various electrostatic lipid - nucleic acid complexes. Differential scanning microcalorimetric measurements of synthetic phosphatidylcholine vesicles and polynucleotides and their ternary complexes with inorganic cations were used to build the thermodynamic model of their structural transitions. The increased thermal stability of the phospholipid bilayers is achieved by affecting their melting transition temperature by nucleic acid induced electrostatic charge screening. Thermodynamic measurements give evidence for the stabilization of polynucleotide helices upon their association with liposomes in presence of divalent metal cations. It is thus possible to suggest this self-assembly as an improved formulation with further potential in gene therapy trials. Although the pharmacodynamical features of the zwitterionic lipid-metal ion-DNA nanocondensates remain to be tested in further transfection experiments, at

  1. TC-2 Satellite Delivered

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On April 18, 2005, TC-2, the second satellite of Double Star Program (DSP), which was jointly developed by CNSA and ESA, was approved to be delivered to the user after the on-board test and trial operation. The satellite is working well and the performance can meet the user's need. The satellite has collected large amount of valuable scientific data

  2. Gene targeted therapeutics for liver disease in alpha-1 antitrypsin deficiency.

    LENUS (Irish Health Repository)

    McLean, Caitriona

    2009-01-01

    Alpha-1 antitrypsin (A1AT) is a 52 kDa serine protease inhibitor that is synthesized in and secreted from the liver. Although it is present in all tissues in the body the present consensus is that its main role is to inhibit neutrophil elastase in the lung. A1AT deficiency occurs due to mutations of the A1AT gene that reduce serum A1AT levels to <35% of normal. The most clinically significant form of A1AT deficiency is caused by the Z mutation (Glu342Lys). ZA1AT polymerizes in the endoplasmic reticulum of liver cells and the resulting accumulation of the mutant protein can lead to liver disease, while the reduction in circulating A1AT can result in lung disease including early onset emphysema. There is currently no available treatment for the liver disease other than transplantation and therapies for the lung manifestations of the disease remain limited. Gene therapy is an evolving field which may be of use as a treatment for A1AT deficiency. As the liver disease associated with A1AT deficiency may represent a gain of function possible gene therapies for this condition include the use of ribozymes, peptide nucleic acids (PNAs) and RNA interference (RNAi), which by decreasing the amount of aberrant protein in cells may impact on the pathogenesis of the condition.

  3. Therapeutic intracoronary gene delivery of VEGF-B167 in a preclinical animal model of dilated cardiomyopathy

    Science.gov (United States)

    Woitek, Felix; Zentilin, Lorena; Hoffman, Nicholas E.; Powers, Jeffrey; Ottiger, Isabel; Parikh, Suraj; Kulczycki, Anna M.; Hurst, Marykathryn; Ring, Nadja; Wang, Tao; Shaikh, Farah; Gross, Polina; Singh, Harinder; Kolpakov, Mikhail A.; Linke, Axel; Houser, Steven R.; Rizzo, Victor; Sabri, Abdelkarim; Madesh, Muniswamy; Giacca, Mauro; Recchia, Fabio A.

    2015-01-01

    BACKGROUND Vascular endothelial growth factor-B (VEGF-B) activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might prove an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. OBJECTIVES We evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. METHODS Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated-9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure (HF). Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor (ANF) promoter. RESULTS Compared to controls, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated HF. ANF-VEGF-B167 expression was low in normo-functioning hearts and stimulated by cardiac pacing; thus, it functioned as an ideal therapeutic transgene, active only under pathological conditions. CONCLUSIONS Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and highly effective new therapy for nonischemic HF. PMID:26160630

  4. Gene targeted therapeutics for liver disease in alpha-1 antitrypsin deficiency

    Directory of Open Access Journals (Sweden)

    Caitriona McLean

    2009-01-01

    Full Text Available Caitriona McLean*, Catherine M Greene*, Noel G McElvaneyRespiratory Research Division, Dept. Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; *Each of these authors contributed equally to this workAbstract: Alpha-1 antitrypsin (A1AT is a 52 kDa serine protease inhibitor that is synthesized in and secreted from the liver. Although it is present in all tissues in the body the present consensus is that its main role is to inhibit neutrophil elastase in the lung. A1AT deficiency occurs due to mutations of the A1AT gene that reduce serum A1AT levels to <35% of normal. The most clinically significant form of A1AT deficiency is caused by the Z mutation (Glu342Lys. ZA1AT polymerizes in the endoplasmic reticulum of liver cells and the resulting accumulation of the mutant protein can lead to liver disease, while the reduction in circulating A1AT can result in lung disease including early onset emphysema. There is currently no available treatment for the liver disease other than transplantation and therapies for the lung manifestations of the disease remain limited. Gene therapy is an evolving field which may be of use as a treatment for A1AT deficiency. As the liver disease associated with A1AT deficiency may represent a gain of function possible gene therapies for this condition include the use of ribozymes, peptide nucleic acids (PNAs and RNA interference (RNAi, which by decreasing the amount of aberrant protein in cells may impact on the pathogenesis of the condition.Keywords: alpha-1 antitrypsin deficiency, siRNA, peptide nucleic acid, ribozymes

  5. Gene delivery of therapeutic polypeptides into brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben;

    has been to investigate the usage of BCEC as factories for recombinant protein production. A non-viral gene carrier was prepared from pullulan-spermine conjugated with plasmid DNA (Thomsen et al., 2011). In vitro transfection of Rat Brain Endothelial Cells (RBE4) and Human Brain Microvascular...... Endothelial cells (HBMECs) were conducted with three plasmids bearing cDNA encoding human BDNF, EPO or the FGL peptide. Results revealed a high expression of BDNF, EPO and FGL transcripts in transfected cells compared to the non-transfected cells, which strongly suggest that transfection were successful...

  6. Gene control of synaptic plasticity and memory formation: implications for diseases and therapeutic strategies.

    Science.gov (United States)

    Vaillend, C; Rampon, C; Davis, S; Laroche, S

    2002-11-01

    There has been nearly a century of interest in the idea that information is stored in the brain as changes in the efficacy of synaptic connections between neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular and molecular bases of learning and memory. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. Here we briefly review these mechanisms and illustrate with a few examples of animal models of neurological disorders how new knowledge about these mechanisms can provide valuable insights into identifying the mechanisms that go awry when memory is deficient, and how, in turn, characterisation of the dysfunctional mechanisms offers prospects to design and evaluate molecular and biobehavioural strategies for therapeutic prevention and rescue.

  7. Therapeutics Targeting Drivers of Thoracic Aortic Aneurysms and Acute Aortic Dissections: Insights from Predisposing Genes and Mouse Models.

    Science.gov (United States)

    Milewicz, Dianna M; Prakash, Siddharth K; Ramirez, Francesco

    2017-01-14

    Thoracic aortic diseases, including aneurysms and dissections of the thoracic aorta, are a major cause of morbidity and mortality. Risk factors for thoracic aortic disease include increased hemodynamic forces on the ascending aorta, typically due to poorly controlled hypertension, and heritable genetic variants. The altered genes predisposing to thoracic aortic disease either disrupt smooth muscle cell (SMC) contraction or adherence to an impaired extracellular matrix, or decrease canonical transforming growth factor beta (TGF-β) signaling. Paradoxically, TGF-β hyperactivity has been postulated to be the primary driver for the disease. More recently, it has been proposed that the response of aortic SMCs to the hemodynamic load on a structurally defective aorta is the primary driver of thoracic aortic disease, and that TGF-β overactivity in diseased aortas is a secondary, unproductive response to restore tissue function. The engineering of mouse models of inherited aortopathies has identified potential therapeutic agents to prevent thoracic aortic disease.

  8. Recent progresses in gene delivery-based bone tissue engineering.

    Science.gov (United States)

    Lu, Chia-Hsin; Chang, Yu-Han; Lin, Shih-Yeh; Li, Kuei-Chang; Hu, Yu-Chen

    2013-12-01

    Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches.

  9. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in hindlimb ischemia of dogs

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A preclinical study of treating peripheral artery occlusive disease (PAD) was performed by using a hepatocyte growth factor (HGF) gene-expressing vector, plasmid pUDKH, in a dog model with complete ischemia of one hindlimb. After ligation of femoral artery of one hindlimb, pUDKH was transferred directly into the ischemic limb muscles. The angiogenic activity of the plasmid pUDKH was evaluated. On D 30 after injecting once of pUDKH at different doses into local muscles immediately after operation, the degree of augmentation of collateral vessel formation was significantly greater than that treated by blank vector. In addition, the blood flow rate of femoral artery in dogs treated with pUDKH was recovered on D 90, while the flow rate was only 1/5 to 1/3 in control dogs. The pulse amplitude of pUDKH-treated dogs was recovered on D 90, but it was hardly detectable in most of the control dogs. The side effects of intramuscular transfection of pUDKH were also investigated, and no significant positive change was found. It is suggested that angiogenesis induced by HGF gene has the potential for clinical use in the treatment of peripheral arterial diseases.

  10. Association between multidrug resistance 1 (MDR1) gene polymorphisms and therapeutic response to bromperidol in schizophrenic patients: a preliminary study.

    Science.gov (United States)

    Yasui-Furukori, Norio; Saito, Manabu; Nakagami, Taku; Kaneda, Ayako; Tateishi, Tomonori; Kaneko, Sunao

    2006-03-01

    The drug-transporting P-glycoprotein transports drugs against a concentration gradient across the blood-brain barrier back into the plasma and thereby reduces the bioavailability in the brain. Polymorphisms in the MDR1 gene regulating P-glycoprotein expression can be associated with differences in drug disposition in the brain. The present study was therefore designed to examine whether the major polymorphisms of MDR1 gene, C3435T and G2677T/A are related to therapeutic response to neuroleptics in the treatment of schizophrenia. Subjects consisted of 31 acutely exacerbated schizophrenic inpatients treated with bromperidol (6-18 mg/day). Plasma drug concentrations were monitored and clinical symptoms were evaluated using the Brief Psychiatric Rating Scale (BPRS) before and 3 weeks after the treatment. The C3435T and G2677T/A genotypes were determined by a polymerase chain reaction method. Schizophrenic symptoms were allocated into 5 clusters: positive, excitement, cognitive, negative, and anxiety-depression symptoms. Patients were C/C in 12, C/T in 12 and T/T in 7 cases for C3435T genotype and G/G in 3, G/T or A in 17 and T or A/T or A in 11 cases for G2677T/A genotype. There were a tendency of difference, but not statistically different, in the percentage improvement or the improved scores of 5 sub-grouped symptoms after the 3-week treatment between C3435T genotypes and between G2677T/A genotypes. Multiple regression analyses including age, body weight, gender and drug concentration showed significant correlations between the percentage improvement and the improved scores of cognitive symptoms and C3435T genotypes. The present results suggest that the C3435T polymorphism is associated with some therapeutic response to bromperidol in schizophrenic patients, possibly by different drug concentration in the brain.

  11. Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences.

    Science.gov (United States)

    Atkinson, Helen; Chalmers, Ronald

    2010-05-01

    Viruses have long been considered to be the most promising tools for human gene therapy. However, the initial enthusiasm for the use of viruses has been tarnished in the light of potentially fatal side effects. Transposons have a long history of use with bacteria in the laboratory and are now routinely applied to eukaryotic model organisms. Transposons show promise for applications in human genetic modification and should prove a useful addition to the gene therapy tool kit. Here we review the use of viruses and the limitations of current approaches to gene therapy, followed by a more detailed analysis of transposon length and the physical properties of internal sequences, which both affect transposition efficiency. As transposon length increases, transposition decreases: this phenomenon is known as length-dependence, and has implications for vector cargo capacity. Disruption of internal sequences, either via deletion of native DNA or insertion of exogenous DNA, may reduce or enhance genetic mobility. These effects may be related to host factor binding, essential spacer requirements or other influences yet to be elucidated. Length-dependence is a complex phenomenon driven not simply by the distance between the transposon ends, but by host proteins, the transposase and the properties of the DNA sequences encoded within the transposon.

  12. Gene exchange of thyA for interleukin-10 secures live GMO bacterial therapeutics.

    Science.gov (United States)

    Steidler, Lothar

    2003-12-01

    Extract: The exponential outburst of knowledge in molecular immunology has provided us with an in depth insight into the biological activity of cytokines. These are small, freely diffusible proteins that, together with numerous growth factors and chemokines, act as messengers by which cells of the immune system communicate with each other and with most other tissues in the body. As such, these molecules are able to regulate many aspects of the immune response in which numerous cells and tissues may be involved at any one time. Most often, cytokines are active in extremely low concentrations. It is for these reasons that they are considered a tempting source of candidate therapeutics for the treatment of immune disorders or of value for boosting prophylactic immune therapies. The field has, however, seen major technical obstacles to the proficient use of many cytokines. Interleukin-10 (IL-10), an anti-inflammatory cytokine, can certainly serve as one of the most prominent examples of this striking combination of high promises -- for targeting immune diseases such as Crohn's disease and asthma -- being blocked in its application by equally high complications such as unacceptable side effects and high clearance. As many of the problems arise from the systemic distribution of IL-10 in the body, targeted delivery could enable the successful use of recombinant IL-10. Here again, however, technical hurdles such as the inherent acid sensitivity of IL-10 alongside the intrinsic high cost of any purified recombinant cytokine probably underlie the non-existence of readily available classical formulations for mucosal application of this cytokine.

  13. Therapeutic strategies in male breast cancer: clinical implications of chromosome 17 gene alterations and molecular subtypes.

    Science.gov (United States)

    Schildhaus, Hans-Ulrich; Schroeder, Lars; Merkelbach-Bruse, Sabine; Binot, Elke; Büttner, Reinhard; Kuhn, Walther; Rudlowski, Christian

    2013-12-01

    Male breast cancer (MBC) is a rare disease. To date, therapy is mainly based on studies and clinical experiences with breast cancer in women. Only little is known about molecular typing of MBC, particularly with regard to potential biological predictors for adjuvant therapy. In female breast cancer tumors with chromosome 17 centromere (CEP17) duplication, HER2 and/or Topoisomerase II alpha (Topo II-α) gene alterations have been suggested to be associated with poor prognosis and increased sensitivity to anthracycline-containing regimens. In a well characterized cohort of 96 primary invasive MBC, we studied CEP17, HER2 and Topo II-α alterations by fluorescence in-situ hybridization (FISH), and expression of hormone receptors (HR), HER2 and Ki67 by immunohistochemistry to define molecular subtypes. Tumor characteristics and follow-up data were available and correlated with molecular findings. HER2 amplification and Topo II-α amplification/deletion were exceptionally rare in MBC (6.3% and 3.1%, respectively). CEP17 polysomy were found in 9.4% of tumors. HER2, Topo II-α and CEP17 gene alterations were not correlated to patients outcome. 96.9% of our cases were HR positive. Triple negative tumors were found in only 3.1% of the cases. In nodal negative tumors luminal A subtypes were significantly associated with better overall survival. Our results provide evidence for a predominant male breast cancer phenotype, characterized by HR expression and a lack of HER2/Topo II-α alterations and CEP17 duplicates. Therefore, the impact of anthracycline sensitivity linked to HER2/Topo II-α alterations as found in female breast cancer has low clinical significance for this specific male breast cancer phenotype. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications.

    Science.gov (United States)

    Rajangam, Thanavel; An, Seong Soo A

    2013-01-01

    Over the past two decades, many types of natural and synthetic polymer-based micro- and nanocarriers, with exciting properties and applications, have been developed for application in various types of tissue regeneration, including bone, cartilage, nerve, blood vessels, and skin. The development of suitable polymers scaffold designs to aid the repair of specific cell types have created diverse and important potentials in tissue restoration. Fibrinogen (Fbg)- and fibrin (Fbn)-based micro- and nanostructures can provide suitable natural matrix environments. Since these primary materials are abundantly available in blood as the main coagulation proteins, they can easily interact with damaged tissues and cells through native biochemical interactions. Fbg- and Fbn-based micro and nanostructures can also be consecutively furnished/or encapsulated and specifically delivered, with multiple growth factors, proteins, and stem cells, in structures designed to aid in specific phases of the tissue regeneration process. The present review has been carried out to demonstrate the progress made with micro and nanoscaffold applications and features a number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine.

  15. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications

    Directory of Open Access Journals (Sweden)

    Rajangam T

    2013-09-01

    Full Text Available Thanavel Rajangam, Seong Soo A An Department of Bionanotechnology, Gachon University, Seongnam-Si, Republic of Korea Abstract: Over the past two decades, many types of natural and synthetic polymer-based micro- and nanocarriers, with exciting properties and applications, have been developed for application in various types of tissue regeneration, including bone, cartilage, nerve, blood vessels, and skin. The development of suitable polymers scaffold designs to aid the repair of specific cell types have created diverse and important potentials in tissue restoration. Fibrinogen (Fbg- and fibrin (Fbn-based micro- and nanostructures can provide suitable natural matrix environments. Since these primary materials are abundantly available in blood as the main coagulation proteins, they can easily interact with damaged tissues and cells through native biochemical interactions. Fbg- and Fbn-based micro and nanostructures can also be consecutively furnished/or encapsulated and specifically delivered, with multiple growth factors, proteins, and stem cells, in structures designed to aid in specific phases of the tissue regeneration process. The present review has been carried out to demonstrate the progress made with micro and nanoscaffold applications and features a number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine. Keywords: biomaterial, polymer composite, cross-linking, growth factor, drug delivery, controlled release, tissue regeneration

  16. A Therapeutic Approach to Nasopharyngeal Carcinomas by DNAzymes Targeting EBV LMP-1 Gene

    Directory of Open Access Journals (Sweden)

    Lun-Quan Sun

    2010-09-01

    Full Text Available Epstein-Barr virus (EBV-encoded latent membrane protein 1 (LMP1 has been known to have oncogenic properties during latent infection in nasopharyngeal carcinoma (NPC. Genetic manipulation of LMP1 expression may provide a novel strategy for the treatment of NPC. DNAzymes are synthetic, single-stranded DNA catalysts that can be engineered to bind and cleave the target mRNA of a disease-causing gene. By targeting the LMP1 mRNA, we successfully obtained a phosphorothioate-modified ‘‘10–23’’ DNAzyme namely DZ1, through screening a series of DNAzymes. DZ1 could significantly down-regulate the expression of LMP1 in NPC cells, inhibit cell proliferation, metastasis, promote apoptosis and enhance radiosensitivity of NPC through interfering signal pathways which are abnormally activated by LMP1, including NF-κB, AP-1 and STAT3 signal pathways. Together, interfering LMP1 signaling pathway could be a promising strategy to target the malignant phenotypes of NPC.

  17. Overexpression of the neuroglobin gene delivered by ultrasound-targeted microbubble destruction protects SH-SY5Y cells against cobalt chloride induced hypoxia

    Institute of Scientific and Technical Information of China (English)

    Qian Yang; Dianwen Gao; Qingzhu Nie; Zhengang Cai; Jian Du; Lujuan Shan; Yuejian Liu

    2011-01-01

    In this study, we examined the effects of neuroglobin gene (Ngb) transfection into SH-SY5Y cells, using ultrasound-targeted microbubble destruction (UTMD), on cobalt chloride-induced hypoxia. With an ultrasound intensity of 0.8 W/cm2, a 60-second exposure duration, 50% duty cycle, and 20% microbubble concentration, pAcGFP1-C1-Ngb-transfected cells exhibited the highest cell viability and transfection efficiency. The efficiency of plasmid delivery was significantly higher with UTMD than transfection with plasmid alone, transfection with plasmid using microbubbles, or transfection of plasmid by ultrasound. In addition, during cobalt chloride-induced hypoxia, caspase-3 activity in pAcGFP1-C1-Ngb-transfected cells was significantly lower than in untransfected cells. Ngb protein and mRNA expression were significantly higher in cells transfected by UTMD than in cells transfected with the other methods. These results demonstrate that UTMD can very efficiently mediate exogenous gene delivery, and that Ngb overexpression protects cells against cobalt chloride-induced hypoxia.

  18. Therapeutic benefit of lentiviral-mediated neonatal intracerebral gene therapy in a mouse model of globoid cell leukodystrophy.

    Science.gov (United States)

    Lattanzi, Annalisa; Salvagno, Camilla; Maderna, Claudio; Benedicenti, Fabrizio; Morena, Francesco; Kulik, Willem; Naldini, Luigi; Montini, Eugenio; Martino, Sabata; Gritti, Angela

    2014-06-15

    Globoid cell leukodystrophy (GLD) is an inherited lysosomal storage disease caused by β-galactocerebrosidase (GALC) deficiency. Gene therapy (GT) should provide rapid, extensive and lifetime GALC supply in central nervous system (CNS) tissues to prevent or halt irreversible neurologic progression. Here we used a lentiviral vector (LV) to transfer a functional GALC gene in the brain of Twitcher mice, a severe GLD model. A single injection of LV.GALC in the external capsule of Twitcher neonates resulted in robust transduction of neural cells with minimal and transient activation of inflammatory and immune response. Importantly, we documented a proficient transduction of proliferating and post-mitotic oligodendroglia, a relevant target cell type in GLD. GALC activity (30-50% of physiological levels) was restored in the whole CNS of treated mice as early as 8 days post-injection. The early and stable enzymatic supply ensured partial clearance of storage and reduction of psychosine levels, translating in amelioration of histopathology and enhanced lifespan. At 6 months post-injection in non-affected mice, LV genome persisted exclusively in the injected region, where transduced cells overexpressed GALC. Integration site analysis in transduced brain tissues showed no aberrant clonal expansion and preferential targeting of neural-specific genes. This study establishes neonatal LV-mediated intracerebral GT as a rapid, effective and safe therapeutic intervention to correct CNS pathology in GLD and provides a strong rationale for its application in this and similar leukodystrophies, alone or in combination with therapies targeting the somatic pathology, with the final aim of providing an effective and timely treatment of these global disorders.

  19. Glycogen synthase kinase 3β gene polymorphisms may be associated with bipolar I disorder and the therapeutic response to lithium.

    Science.gov (United States)

    Lin, Yen-Feng; Huang, Ming-Chyi; Liu, Hsing-Cheng

    2013-05-01

    Glycogen Synthase Kinase 3β (GSK-3β) is thought to be a key feature in the therapeutic mechanism of mood stabilizers (e.g., lithium). Overexpression of GSK-3β might play a role in the pathogenesis of bipolar I disorder. Within the GSK-3β gene, a promoter single nucleotide polymorphism (SNP) rs334558 was identified associated with transcriptional strength, and an intronic SNP rs6438552 was found to regulate selection of splice acceptor sites. The aim of this study is to test the association between the two polymorphisms and bipolar I disorder. We genotyped the two SNPs in 138 Taiwanese bipolar I disorder patients and 131 controls. Lithium treatment efficacy was evaluated for 83 patients who had been treated with lithium carbonate for at least 24 months. We found no association between each of the two SNPs and the risk of bipolar I disorder. Following correction for multiple testing, CT genotype at rs6438552 was associated with an older age of onset than other genotypes (P=0.042) in female patients. Patients with genotype TT at rs334558 (P=0.044) had poorer response to lithium treatment. There was a trend that haplotype C-T increased the risk for bipolar I disorder (adjusted OR=4.22, corrected P=0.084), and patients with haplotype T-T had poorer treatment response to lithium than those with haplotype C-C. Limitations included small sample size, retrospective data collection, and a potential sampling bias. Despite the several limitations of the study, our results suggested GSK-3β genetic variants may be associated with the risk of bipolar I disorder, age of disease onset in females, and the therapeutic response to lithium. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Ultrasound and microbubble-targeted delivery of therapeutic compounds : ICIN Report Project 49: Drug and gene delivery through ultrasound and microbubbles

    NARCIS (Netherlands)

    Juffermans, L J M; Meijering, D B M; van Wamel, A; Henning, R H; Kooiman, K; Emmer, M; de Jong, N; van Gilst, W H; Musters, R; Paulus, W J; van Rossum, A C; Deelman, L E; Kamp, O

    2009-01-01

    The molecular understanding of diseases has been accelerated in recent years, producing many new potential therapeutic targets. A noninvasive delivery system that can target specific anatomical sites would be a great boost for many therapies, particularly those based on manipulation of gene expressi

  1. Oncolytic Viruses: Therapeutics With an Identity Crisis.

    Science.gov (United States)

    Breitbach, Caroline J; Lichty, Brian D; Bell, John C

    2016-07-01

    Oncolytic viruses (OV) are replicating viral therapeutics for the treatment of cancer and have been in laboratory development for about twenty years. Recently, the FDA approved Imlygic, a herpes virus based therapeutic for the treatment of melanoma and thus OVs have entered a new era where they are a weapon in the armament of the oncologist. OVs are unique therapeutics with multiple mechanisms of therapeutic activity. The exact path for their development and eventual uptake by pharmaceutical companies is somewhat clouded by an uncertain identity. Are they vaccines, tumour lysing therapeutics, inducers of innate immunity, gene therapy vectors, anti-vascular agents or all of the above? Should they be developed as stand-alone loco-regional therapeutics, systemically delivered tumour hunters or immune modulators best tested as combination therapeutics? We summarize data here supporting the idea, depending upon the virus, that OVs can be any or all of these things. Pursuing a "one-size fits all" approach is counter-productive to their clinical development and instead as a field we should build on the strengths of individual virus platforms.

  2. Oncolytic Viruses: Therapeutics With an Identity Crisis

    Directory of Open Access Journals (Sweden)

    Caroline J. Breitbach

    2016-07-01

    Full Text Available Oncolytic viruses (OV are replicating viral therapeutics for the treatment of cancer and have been in laboratory development for about twenty years. Recently, the FDA approved Imlygic, a herpes virus based therapeutic for the treatment of melanoma and thus OVs have entered a new era where they are a weapon in the armament of the oncologist. OVs are unique therapeutics with multiple mechanisms of therapeutic activity. The exact path for their development and eventual uptake by pharmaceutical companies is somewhat clouded by an uncertain identity. Are they vaccines, tumour lysing therapeutics, inducers of innate immunity, gene therapy vectors, anti-vascular agents or all of the above? Should they be developed as stand-alone loco-regional therapeutics, systemically delivered tumour hunters or immune modulators best tested as combination therapeutics? We summarize data here supporting the idea, depending upon the virus, that OVs can be any or all of these things. Pursuing a “one-size fits all” approach is counter-productive to their clinical development and instead as a field we should build on the strengths of individual virus platforms.

  3. 1000th magnet delivered!

    CERN Multimedia

    2006-01-01

    On Monday 20 February members of the AT Department marked the delivery of the 1000th superconducting dipole magnet to CERN. Only 232 more of the dipole magnets are needed for the LHC. The 35-tonne-dipoles are 15 meters long and are being manufactured by three companies: Babcock Noell Nuclear in Germany (which completed its contract in November 2005), Ansaldo Superconduttori in Italy and Alstom-Jeumont in France. 'The production is proceeding well and we expect to be complete in October as foreseen,' said Lucio Rossi, Head of the Magnets and Superconductors Group (AT-MAS). In total, 1650 main magnets are needed for the LHC, of which 1300 have already been delivered.

  4. 1000th magnet delivered!

    CERN Multimedia

    2006-01-01

    On Monday 20 February members of the AT Department marked the delivery of the 1000th superconducting dipole magnet to CERN. Only 232 more of the dipole magnets are needed for the LHC. The 35 tonne-dipoles are 15 meters long and are being manufactured by three companies: Babcock Noell Nuclear in Germany (which finished its contract in November 2005), Ansaldo Superconduttori in Italy and Alstom-Jeumont in France. "The production is proceeding well and we expect to be complete in October as previously foreseen," said Lucio Rossi, Head of the Magnets and Superconductors Group (AT-MAS). In total, 1650 main magnets are needed for the LHC, of which 1300 have been delivered.

  5. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    Science.gov (United States)

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preparing pharmacists to deliver a targeted service in hypertension management: evaluation of an interprofessional training program

    National Research Council Canada - National Science Library

    Bajorek, Beata V; Lemay, Kate S; Magin, Parker J; Roberts, Christopher; Krass, Ines; Armour, Carol L

    2015-01-01

    ...) control in hypertension. In this study, a training program was designed to enable community pharmacists to deliver a service in hypertension management targeting therapeutic adjustments and medication adherence...

  7. Delivering SKA Science

    CERN Document Server

    Quinn, Peter; Bird, Ian; Dodson, Richard; Szalay, Alex; Wicenec, Andreas

    2015-01-01

    The SKA will be capable of producing a stream of science data products that are Exa-scale in terms of their storage and processing requirements. This Google-scale enterprise is attracting considerable international interest and excitement from within the industrial and academic communities. In this chapter we examine the data flow, storage and processing requirements of a number of key SKA survey science projects to be executed on the baseline SKA1 configuration. Based on a set of conservative assumptions about trends for HPC and storage costs, and the data flow process within the SKA Observatory, it is apparent that survey projects of the scale proposed will potentially drive construction and operations costs beyond the current anticipated SKA1 budget. This implies a sharing of the resources and costs to deliver SKA science between the community and what is contained within the SKA Observatory. A similar situation was apparent to the designers of the LHC more than 10 years ago. We propose that it is time for...

  8. Radioiodine Therapy of Liver Cancer Cell Following Tissue Specific Sodium Iodide Symporter Gene Transfer and Assessment of Therapeutic Efficacy with Optical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byoung Kuk; Lee, You La; Lee, Yong Jin [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2008-10-15

    Cancer specific killing can be achieved by therapeutic gene activated by cancer specific promotor. Expression of sodium iodide symporter (NIS) gene causes transportation and concentration of iodide into the cell, therefore radioiodine treatment after NIS gene transfer to cancer cell could be a form of radionuclide gene therapy. luciferase (Luc) gene transfected cancer cell can be monitored by in vivo optical imaging after D-luciferin injection. Aims of the study are to make vector with both therapeutic NIS gene driven by AFP promoter and reporter Luc gene driven by CMV promoter, to perform hepatocellular carcinoma specific radiodiodine gene therapy by the vector, and assessment of the therapy effect by optical imaging using luciferase expression. A Vector with AFP promoter driven NIS gene and CMV promoter driven Luc gene (AFP-NIS-CMV-Luc) was constructed. Liver cancer cell (HepG2, Huh-7) and non liver cancer cell (HCT-15) were transfected with the vector using liposome. Expression of the NIS gene at mRNA level was elucidated by RT-PCR. Radioiodide uptake, perchlorate blockade, and washout tests were performed and bioluminescence also measured by luminometer in these cells. In vitro clonogenic assay with I-131 was performed. In vivo nuclear imaging was obtained with gamma camera after I-131 intraperitoneal injection. A Vector with AFP-NIS-CMV-Luc was constructed and successfully transfected into HepG2, Huh-7 and HCT-15 cells. HepG2 and Huh-7 cells with AFP-NIS-CMV-Luc gene showed higher iodide uptake than non transfected cells and the higher iodide uptake was totally blocked by addition of perchlorate. HCT-15 cell did not showed any change of iodide uptake by the gene transfection. Transfected cells had higher light output than control cells. In vitro clonogenic assay, transfected HepG2 and Huh-7 cells showed lower colony count than non transfected HepG2 and Huh-7 cells, but transfected HCT-15 cell did not showed any difference than non transfected HCT-15 cell

  9. Gene therapy: An overview

    Directory of Open Access Journals (Sweden)

    Sudip Indu

    2013-01-01

    Full Text Available Gene therapy "the use of genes as medicine" involves the transfer of a therapeutic or working copy of a gene into specific cells of an individual in order to repair a faulty gene copy. The technique may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. The objective of gene therapy is to introduce new genetic material into target cells while causing no damage to the surrounding healthy cells and tissues, hence the treatment related morbidity is decreased. The delivery system includes a vector that delivers a therapeutic gene into the patient′s target cell. Functional proteins are created from the therapeutic gene causing the cell to return to a normal stage. The vectors used in gene therapy can be viral and non-viral. Gene therapy, an emerging field of biomedicine, is still at infancy and much research remains to be done before this approach to the treatment of condition will realize its full potential.

  10. 3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances.

    Science.gov (United States)

    Iourov, Ivan Y; Vorsanova, Svetlana G; Voinova, Victoria Y; Yurov, Yuri B

    2015-01-01

    In contrast to other autism spectrum disorders, chromosome abnormalities are rare in Asperger syndrome (AS) or high-functioning autism. Consequently, AS was occasionally subjected to classical positional cloning. Here, we report on a case of AS associated with a deletion of the short arm of chromosome 3. Further in silico analysis has identified a candidate gene for AS and has suggested a therapeutic strategy for manifestations of the chromosome rearrangement. Using array comparative genomic hybridization, an interstitial deletion of 3p22.1p21.31 (~2.5 Mb in size) in a child with Asperger's syndrome, seborrheic dermatitis and chronic pancreatitis was detected. Original bioinformatic approach to the prioritization of candidate genes/processes identified CCK (cholecystokinin) as a candidate gene for AS. In addition to processes associated with deleted genes, bioinformatic analysis of CCK gene interactome indicated that zinc deficiency might be a pathogenic mechanism in this case. This suggestion was supported by plasma zinc concentration measurements. The increase of zinc intake produced a rise in zinc plasma concentration and the improvement in the patient's condition. Our study supported previous linkage findings and had suggested a new candidate gene in AS. Moreover, bioinformatic analysis identified the pathogenic mechanism, which was used to propose a therapeutic strategy for manifestations of the deletion. The relative success of this strategy allows speculating that therapeutic or dietary normalization of metabolic processes altered by a chromosome imbalance or genomic copy number variations may be a way for treating at least a small proportion of cases of these presumably incurable genetic conditions.

  11. Do dopaminergic gene polymorphisms affect mesolimbic reward activation of music listening response? Therapeutic impact on Reward Deficiency Syndrome (RDS).

    Science.gov (United States)

    Blum, Kenneth; Chen, Thomas J H; Chen, Amanda L H; Madigan, Margaret; Downs, B William; Waite, Roger L; Braverman, Eric R; Kerner, Mallory; Bowirrat, Abdalla; Giordano, John; Henshaw, Harry; Gold, Mark S

    2010-03-01

    Using fMRI, Menon and Levitin [9] clearly found for the first time that listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the nucleus accumbens (NAc) and the ventral tegmental area (VTA), as well as the hypothalamus, and insula, which are thought to be involved in regulating autonomic and physiological responses to rewarding and emotional stimuli. Importantly, responses in the NAc and VTA were strongly correlated pointing to an association between dopamine release and NAc response to music. Listing to pleasant music induced a strong response and significant activation of the VTA-mediated interaction of the NAc with the hypothalamus, insula, and orbitofrontal cortex. Blum et al. [10] provided the first evidence that the dopamine D2 receptor gene (DRD2) Taq 1 A1 allele significantly associated with severe alcoholism whereby the author's suggested that they found the first "reward gene" located in the mesolimbic system. The enhanced functional and effective connectivity between brain regions mediating reward, autonomic, and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. However, little is known about why some people have a more or less powerful mesolimbic experience when they are listening to music. It is well-known that music may induce an endorphinergic response that is blocked by naloxone, a known opioid antagonist (Goldstein [19]). Opioid transmission in the NAc is associated with dopamine release in the VTA. Moreover, dopamine release in the VTA is linked to polymorphisms of the DRD2 gene and even attention-deficit hyperactivity disorder (ADHD), whereby carriers of the DRD2 A1 allele show a reduced NAc release of dopamine (DA). Thus it is conjectured that similar mechanisms in terms of adequate dopamine release and subsequent activation of reward circuitry by listening to music might also be

  12. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    Science.gov (United States)

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy.

  13. Combination therapy and evaluation of therapeutic effect in hepatocellular carcinoma cell using triple reporter genes; containing for NIS, HSV1-sr39tk and GFP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You La; Lee, Yong Jin; Ahn, Sohn Joo; Ahn, Byeong Cheol; Lee, Sang Woo; Yoo, Jeong Soo; Lee, Jae Tae [Kyungpook National University, Daegu (Korea, Republic of)

    2007-07-01

    To identify therapeutic effect after combine Sodium Iodine Symporter (NIS) and Mutant Herpes-simplex virus type 1 sr39tk (HSV1-sr39tk) expression in hepatocellular carcinoma cell, we transfected triple gene and investigated the properties of these gene ability in hepatocellular carcinoma cell line. After making vector with gene encoding a fusion protein comprised of HSV1-sr39tk and green florescence protein (GFP), to make triple reporter genes NIS gene was further fused to the vector using IRES vector. The vector expressing triple reporter gene was transfected to the Huh-7 cell line using liposome. Functions of hNIS and HSV1-sr39tk expression were confirmed by radio iodine uptake with and without perchlorate and [3H]-penciclovir (3-H PCV) uptake, respectively. To evaluate therapeutic effect in vitro, GCV and I-131 was treated in Huh-7/NTG cell and dual therapy performed. An animal imaging acquired using Optix and microPET in vivo. I-125 uptake was increased up to 100-fold compare to that of non-transfected cells. The transfected cell accumulated H-3 PCV up to 53 times higher at 2 hour than that of non-transfected cells. With fluorescence microscopy, green fluorescence was detected in the transfected cell. In cytotoxic studies, the cell viability of Huh-7/NTG cell was decreased to 41 % of control cell at 10ug/ml GCV concentrations. The survival rate of the Huh-7/NTG cell treated with I-131 decreased up to 16%. In I-131 and GCV dual therapy, Huh-7/NTG cell survival rate decreased up to 4%. In animal studies, Huh-7/NTG tumors showed higher uptake of 18F-FHBG and I-124 than Huh-7 tumors. GFP signal is also higher in Huh-7/NTG tumor than control. We successfully constructed a vector with delivery two therapeutic genes and one reporter gene and transfected the vector to a Huh-7 cell. The hepatocellular carcinoma cell transfected with the vector can be treated with GCV and I-131. The effect of dual gene therapy could be easily assessed by the optical reporter gene imaging.

  14. P53 gene could be a new effective therapeutic target in triple-negative breast cancer:a Meta-analysis*

    Institute of Scientific and Technical Information of China (English)

    Fang Guo; Zhaozhe Liu(Co-first author); Hongbo Liu; Xiaodong Xie

    2013-01-01

    Objective:The aim of this study was to explore the relationship between p53 gene and triple-negative breast cancer (TNBC), and determine that whether p53 gene could be a new ef ective therapeutic target. Methods:We identified studies with quantitative data on the relation of p53 gene and TNBC through searching 12 databases online (Oct. 1999-Oct. 2012) and reviewing the references, which were written in English or Chinese. Summary estimates of odds ratio (OR) was calculated using the fixed-ef ects model or the random-ef ects model as appropriate. Results:We identified 12 eligible stud-ies with 1532 cases of TNBC patients and 6329 controls of non-TNBC patients. The test for homogeneity resulted inχ2=200.16 (P<0.05), it showed significant heterogeneity so that a random ef ect model was applied. Our results showed that the expression of p53 gene could be much stronger in TNBC group than that in non-TNBC group [OR=2.10, 95%confidence interval (CI)=1.21-3.65]. In ethnicity-subgroup analysis, we found that in Caucasian group, the expression of p53 gene were stronger in TNBC group (OR=2.60, 95%CI=1.21-5.57), but there was no statistical significance in Asian group (OR=1.69, 95%CI=0.83-3.45). Conclusion:P53 gene could be an ef ective predictor and a good therapeutic target for TNBC patients in the future, especial y in Caucasian. Further researches focusing on p53 gene would gain a breakthrough in the treatment of TNBC.

  15. Synthetic biology and therapeutic strategies for the degenerating brain: Synthetic biology approaches can transform classical cell and gene therapies, to provide new cures for neurodegenerative diseases.

    Science.gov (United States)

    Agustín-Pavón, Carmen; Isalan, Mark

    2014-10-01

    Synthetic biology is an emerging engineering discipline that attempts to design and rewire biological components, so as to achieve new functions in a robust and predictable manner. The new tools and strategies provided by synthetic biology have the potential to improve therapeutics for neurodegenerative diseases. In particular, synthetic biology will help design small molecules, proteins, gene networks, and vectors to target disease-related genes. Ultimately, new intelligent delivery systems will provide targeted and sustained therapeutic benefits. New treatments will arise from combining 'protect and repair' strategies: the use of drug treatments, the promotion of neurotrophic factor synthesis, and gene targeting. Going beyond RNAi and artificial transcription factors, site-specific genome modification is likely to play an increasing role, especially with newly available gene editing tools such as CRISPR/Cas9 systems. Taken together, these advances will help develop safe and long-term therapies for many brain diseases in human patients. © 2014 The Authors. Bioessays published by WILEY Periodicals, Inc.

  16. Therapeutic Use of 3β-[N-(N',N'-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury.

    Science.gov (United States)

    Gwak, So-Jung; Yun, Yeomin; Yoon, Do Heum; Kim, Keung Nyun; Ha, Yoon

    2016-01-01

    Gene delivery holds therapeutic promise for the treatment of neurological diseases and spinal cord injury. Although several studies have investigated the use of non-viral vectors, such as polyethylenimine (PEI), their clinical value is limited by their cytotoxicity. Recently, biodegradable poly (lactide-co-glycolide) (PLGA) nanospheres have been explored as non-viral vectors. Here, we show that modification of PLGA nanospheres with 3β-[N-(N',N'-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) enhances gene transfection efficiency. PLGA/DC-Chol nanospheres encapsulating DNA were prepared using a double emulsion-solvent evaporation method. PLGA/DC-Chol nanospheres were less cytotoxic than PEI both in vitro and in vivo. DC-Chol modification improved the uptake of nanospheres, thereby increasing their transfection efficiency in mouse neural stem cells in vitro and rat spinal cord in vivo. Also, transgene expression induced by PLGA nanospheres was higher and longer-lasting than that induced by PEI. In a rat model of spinal cord injury, PLGA/DC-Chol nanospheres loaded with vascular endothelial growth factor gene increased angiogenesis at the injury site, improved tissue regeneration, and resulted in better recovery of locomotor function. These results suggest that DC-Chol-modified PLGA nanospheres could serve as therapeutic gene delivery vehicles for spinal cord injury.

  17. Therapeutic efifcacy and bone marrow protection of the mdr1 gene and over-dose chemotherapy with doxorubicin for rabbits with VX2 hepatocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Yi Wang; Xian-Qing Jin; Shan Wang; Qiao Wang; Qing Luo; Xiao-Ji Luo

    2006-01-01

    BACKGROUND: Malignant tumors are common diseases threatening to the health and life of human being. Clinically, the multidrug resistance of tumor cells and bone marrow depression caused by chemotherapeutic agents are the main obstacles to the treatment of tumors, and both are related to the mdr1 gene. The over expression of the mdr1 gene in tumor cells contributes to the multidrug resistance of malignant tumor cells. With little expression of the mdr1 gene, bone marrow cells particularly susceptible to multidrug resistance-sensitive agents, which cause serious toxicity in bone marrow. This study was undertaken to assess therapeutic efifcacy of transplantation of bone marrow mononuclear cells transferred with the mdr1 gene and over-dose chemotherapy with doxorubicin for VX2 hepatocarcinoma of rabbits. METHODS: The mdr1 gene was transferred into the bone marrow mononuclear cells of rabbits, which was co-cultured with retroviral vector-containing supernatant, and the cells were autotransplanted into a rabbit model with VX2 hepatocarcinoma. After chemotherapy with doxorubicin, the protective effects of the mdr1 gene and therapeutic efifcacy of over-dose chemotherapy were observed. RESULTS:The mdr1 gene was transferred successfully into the bone marrow mononuclear cells, with a transduction efifciency of 35%. After autotransplantation, the mdr1 gene was expressed functionally in bone marrow with a positive rate of 8%, indicating that the gene played an important role in bone marrow protection. The rabbits with VX2 hepatocarcinoma, which had received the mdr1 gene-transduced cells, survived after chemotherapy with a 3-fold dose of adriamycin, and their white blood cell counts were (4.26±1.03)×104/L. Since hepatocarcinoma cells were eradicated, the survival time (97.00±46.75 d) of the rabbits was extended (P CONCLUSIONS:The transferring of the mdr1 gene into bone marrow mononuclear cells could confer chemoprotection to bone marrow, and over-dose chemotherapy could be

  18. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal.

    Science.gov (United States)

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Bucris, Efrat; Ziv-Av, Amotz; Xiang, Cunli; Bobbitt, Kevin; Rempel, Sandra A; Hasselbach, Laura; Mikkelsen, Tom; Slavin, Shimon; Brodie, Chaya

    2013-02-01

    MicroRNAs (miRNAs) have emerged as potential cancer therapeutics; however, their clinical use is hindered by lack of effective delivery mechanisms to tumor sites. Mesenchymal stem cells (MSCs) have been shown to migrate to experimental glioma and to exert anti-tumor effects by delivering cytotoxic compounds. Here, we examined the ability of MSCs derived from bone marrow, adipose tissue, placenta and umbilical cord to deliver synthetic miRNA mimics to glioma cells and glioma stem cells (GSCs). We examined the delivery of miR-124 and miR-145 mimics as glioma cells and GSCs express very low levels of these miRNAs. Using fluorescently labeled miRNA mimics and in situ hybridization, we demonstrated that all the MSCs examined delivered miR-124 and miR-145 mimics to co-cultured glioma cells and GSCs via gap junction- dependent and independent processes. The delivered miR-124 and miR-145 mimics significantly decreased the luciferase activity of their respected reporter target genes, SCP-1 and Sox2, and decreased the migration of glioma cells and the self-renewal of GSCs. Moreover, MSCs delivered Cy3-miR-124 mimic to glioma xenografts when administered intracranially. These results suggest that MSCs can deliver synthetic exogenous miRNA mimics to glioma cells and GSCs and may provide an efficient route of therapeutic miRNA delivery in vivo.

  19. Bombarding Cancer: Biolistic Delivery of therapeutics using Porous Si Carriers

    Science.gov (United States)

    Zilony, Neta; Tzur-Balter, Adi; Segal, Ester; Shefi, Orit

    2013-08-01

    A new paradigm for an effective delivery of therapeutics into cancer cells is presented. Degradable porous silicon carriers, which are tailored to carry and release a model anti-cancer drug, are biolistically bombarded into in-vitro cancerous targets. We demonstrate the ability to launch these highly porous microparticles by a pneumatic capillary gene gun, which is conventionally used to deliver cargos by heavy metal carriers. By optimizing the gun parameters e.g., the accelerating gas pressure, we have successfully delivered the porous carriers, to reach deep targets and to cross a skin barrier in a highly spatial resolution. Our study reveals significant cytotoxicity towards the target human breast carcinoma cells following the delivery of drug-loaded carriers, while administrating empty particles results in no effect on cell viability. The unique combination of biolistics with the temporal control of payload release from porous carriers presents a powerful and non-conventional platform for designing new therapeutic strategies.

  20. Reducing amyloid plaque burden via ex vivo gene delivery of an Abeta-degrading protease: a novel therapeutic approach to Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Matthew L Hemming

    2007-08-01

    Full Text Available Understanding the mechanisms of amyloid-beta protein (Abeta production and clearance in the brain has been essential to elucidating the etiology of Alzheimer disease (AD. Chronically decreasing brain Abeta levels is an emerging therapeutic approach for AD, but no such disease-modifying agents have achieved clinical validation. Certain proteases are responsible for the catabolism of brain Abeta in vivo, and some experimental evidence suggests they could be used as therapeutic tools to reduce Abeta levels in AD. The objective of this study was to determine if enhancing the clearance of Abeta in the brain by ex vivo gene delivery of an Abeta-degrading protease can reduce amyloid plaque burden.We generated a secreted form of the Abeta-degrading protease neprilysin, which significantly lowers the levels of naturally secreted Abeta in cell culture. We then used an ex vivo gene delivery approach utilizing primary fibroblasts to introduce this soluble protease into the brains of beta-amyloid precursor protein (APP transgenic mice with advanced plaque deposition. Brain examination after cell implantation revealed robust clearance of plaques at the site of engraftment (72% reduction, p = 0.0269, as well as significant reductions in plaque burden in both the medial and lateral hippocampus distal to the implantation site (34% reduction, p = 0.0020; and 55% reduction, p = 0.0081, respectively.Ex vivo gene delivery of an Abeta-degrading protease reduces amyloid plaque burden in transgenic mice expressing human APP. These results support the use of Abeta-degrading proteases as a means to therapeutically lower Abeta levels and encourage further exploration of ex vivo gene delivery for the treatment of Alzheimer disease.

  1. Bioinformatic analysis of patient-derived ASPS gene expressions and ASPL-TFE3 fusion transcript levels identify potential therapeutic targets.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line (ASPS-1, was analyzed jointly with patient ASPL-TFE3 (t(X;17(p11;q25 fusion transcript data to identify disease-specific pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS. These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17(p11;q25 translocation include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in pathways involved in the cell cycle (CHK1, cell adhesion (ARHGD1A, cell division (CDC6, control of meiosis (RAD51L3 and mitosis (BIRC5, and chemokine-related protein tyrosine kinase activity (CCL4.

  2. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells.

    Science.gov (United States)

    Xiong, Ranhua; Raemdonck, Koen; Peynshaert, Karen; Lentacker, Ine; De Cock, Ine; Demeester, Jo; De Smedt, Stefaan C; Skirtach, Andre G; Braeckmans, Kevin

    2014-06-24

    There is a great interest in delivering macromolecular agents into living cells for therapeutic purposes, such as siRNA for gene silencing. Although substantial effort has gone into designing nonviral nanocarriers for delivering macromolecules into cells, translocation of the therapeutic molecules from the endosomes after endocytosis into the cytoplasm remains a major bottleneck. Laser-induced photoporation, especially in combination with gold nanoparticles, is an alternative physical method that is receiving increasing attention for delivering macromolecules in cells. By allowing gold nanoparticles to bind to the cell membrane, nanosized membrane pores can be created upon pulsed laser illumination. Depending on the laser energy, pores are created through either direct heating of the AuNPs or by vapor nanobubbles (VNBs) that can emerge around the AuNPs. Macromolecules in the surrounding cell medium can then diffuse through the pores directly into the cytoplasm. Here we present a systematic evaluation of both photoporation mechanisms in terms of cytotoxicity, cell loading, and siRNA transfection efficiency. We find that the delivery of macromolecules under conditions of VNBs is much more efficient than direct photothermal disturbance of the plasma membrane without any noticeable cytotoxic effect. Interestingly, by tuning the laser energy, the pore size could be changed, allowing control of the amount and size of molecules that are delivered in the cytoplasm. As only a single nanosecond laser pulse is required, we conclude that VNBs are an interesting photoporation mechanism that may prove very useful for efficient high-throughput macromolecular delivery in live cells.

  3. Therapeutic efficacy of a tuberculosis DNA vaccine encoding heat shock protein 65 of Mycobacterium tuberculosis and the human interleukin 2 fusion gene.

    Science.gov (United States)

    Changhong, Shi; Hai, Zhang; Limei, Wang; Jiaze, An; Li, Xi; Tingfen, Zhang; Zhikai, Xu; Yong, Zhao

    2009-01-01

    Use of therapeutic DNA vaccines is a promising strategy against tuberculosis (TB), however, their immunogenicity still needs to be improved. In this study, a plasmid DNA vaccine expressing heat shock protein 65 (HSP65) and the human interleukin 2 (IL-2) fusion gene was constructed. Immune responses induced by the vaccine in the mice and protection against Mycobacterium tuberculosis (MTB) were investigated, along with the therapeutic effect of the DNA vaccine on tuberculosis in mice. Administration of the HSP65-IL-2-DNA vaccine enhanced Th1-type cellular responses by producing greater amounts of interferon-gamma (IFN-gamma) and IL-2 with a higher titer of antigen-specific anti-Hsp65 IgG2a. Compared with the Bacille Calmette-Guérin (BCG) vaccine, the DNA vaccine was able to evoke both CD4 and CD8 T-cell responses, with an especially high percentage of CD8 T-cells. The DNA vaccine was also able to induce high antigen-specific cytotoxicity activity against target cells. When the mice were challenged with virulent MTB H37Rv, a dramatic decrease in the numbers of MTB colony forming units in the spleen and lungs was observed in the mice immunized with HSP65-IL-2-DNA (P<0.05). Meanwhile, the bacterial numbers in TB infected mice treated with the DNA vaccine were also significantly reduced. The protective and therapeutic effects of the HSP65-IL-2-DNA vaccine in the spleen and lungs were superior to that of the HSP65-DNA vaccine (P<0.05). These results suggest that the DNA vaccine expression of IL-2 and the HSP65 fusion gene enhances the immunogenicity and protective as well as therapeutic effects of the HSP65-DNA vaccine against TB in mice by improving the Th1-type response.

  4. Mesenchymal stem cells deliver exogenous miRNAs to neural cells and induce their differentiation and glutamate transporter expression.

    Science.gov (United States)

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Brodie, Chaya

    2014-12-01

    MicroRNAs (miRNAs) are potential therapeutic targets in a variety of pathological conditions in the brain; however, their clinical application is hampered by lack of efficient delivery modes. Mesenchymal stromal stem cells (MSCs) migrate to sites of injury and inflammation and exert therapeutic effects in various neurological disorders. Here, we examined the ability of MSCs to deliver exogenous miRNA mimics and pre-miRNAs to human neural progenitor cells (NPCs) and astrocytes and characterized the functional impact of this delivery. We found that MSCs efficiently delivered fluorescent-labeled miR-124 and miR-145 mimics to cocultured NPCs and astrocytes. We further demonstrated the delivery of the miRNAs using novel reporter plasmids that contain a sequence complementary to miR-124 or miR-145 downstream of luciferase or mCherry. Binding of the specific miRNAs to these sequences results in decreased luciferase activity or mCherry fluorescence and therefore enable analysis of miRNA delivery in living cells. The delivered exogenous miR-124 significantly decreased the expression of the target gene Sox9 by targeting its 3'-UTR, and increased the neuronal differentiation of the NPCs. In addition, the delivered miR-124 increased the expression of the glutamate transporters, EAAT1 in NPCs and EAAT2 in both NPCs and astrocytes. Similar results were obtained with MSCs transfected with pre-miR-124. The miRNA delivery was mediated by MSC-derived exosomes and was cell contact independent. These results suggest that MSCs can functionally deliver exogenous miRNAs to neural cells and provide an efficient route of therapeutic miRNA delivery to the brain in pathological conditions with clinical implications for regenerative medicine.

  5. Microarray gene expression analysis of fixed archival tissue permits molecular classification and identification of potential therapeutic targets in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Linton, Kim; Howarth, Christopher; Wappett, Mark; Newton, Gillian; Lachel, Cynthia; Iqbal, Javeed; Pepper, Stuart; Byers, Richard; Chan, Wing John; Radford, John

    2012-01-01

    Refractory/relapsed diffuse large B-cell lymphoma (DLBCL) has a poor prognosis. Novel drugs targeting the constitutively activated NF-κB pathway characteristic of ABC-DLBCL are promising, but evaluation depends on accurate activated B cell-like (ABC)/germinal center B cell-like (GCB) molecular classification. This is traditionally performed on gene microarray expression profiles of fresh biopsies, which are not routinely collected, or by immunohistochemistry on formalin-fixed, paraffin-embedded (FFPE) tissue, which lacks reproducibility and classification accuracy. We explored the possibility of using routine archival FFPE tissue for gene microarray applications. We examined Affymetrix HG U133 Plus 2.0 gene expression profiles from paired archival FFPE and fresh-frozen tissues of 40 ABC/GCB-classified DLBCL cases to compare classification accuracy and test the potential for this approach to aid the discovery of therapeutic targets and disease classifiers in DLBCL. Unsupervised hierarchical clustering of unselected present probe sets distinguished ABC/GCB in FFPE with remarkable accuracy, and a Bayesian classifier correctly assigned 32 of 36 cases with >90% probability. Enrichment for NF-κB genes was appropriately seen in ABC-DLBCL FFPE tissues. The top discriminatory genes expressed in FFPE separated cases with high statistical significance and contained novel biology with potential therapeutic insights, warranting further investigation. These results support a growing understanding that archival FFPE tissues can be used in microarray experiments aimed at molecular classification, prognostic biomarker discovery, and molecular exploration of rare diseases. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Buga

    Full Text Available BACKGROUND: Because most human stroke victims are elderly, studies of experimental stroke in the aged rather than the young rat model may be optimal for identifying clinically relevant cellular responses, as well for pinpointing beneficial interventions. METHODOLOGY/PRINCIPAL FINDINGS: We employed the Affymetrix platform to analyze the whole-gene transcriptome following temporary ligation of the middle cerebral artery in aged and young rats. The correspondence, heat map, and dendrogram analyses independently suggest a differential, age-group-specific behaviour of major gene clusters after stroke. Overall, the pattern of gene expression strongly suggests that the response of the aged rat brain is qualitatively rather than quantitatively different from the young, i.e. the total number of regulated genes is comparable in the two age groups, but the aged rats had great difficulty in mounting a timely response to stroke. Our study indicates that four genes related to neuropathic syndrome, stress, anxiety disorders and depression (Acvr1c, Cort, Htr2b and Pnoc may have impaired response to stroke in aged rats. New therapeutic options in aged rats may also include Calcrl, Cyp11b1, Prcp, Cebpa, Cfd, Gpnmb, Fcgr2b, Fcgr3a, Tnfrsf26, Adam 17 and Mmp14. An unexpected target is the enzyme 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 in aged rats, a key enzyme in the cholesterol synthesis pathway. Post-stroke axonal growth was compromised in both age groups. CONCLUSION/SIGNIFICANCE: We suggest that a multi-stage, multimodal treatment in aged animals may be more likely to produce positive results. Such a therapeutic approach should be focused on tissue restoration but should also address other aspects of patient post-stroke therapy such as neuropathic syndrome, stress, anxiety disorders, depression, neurotransmission and blood pressure.

  7. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects

    Directory of Open Access Journals (Sweden)

    Regine Mühlfriedel

    2017-05-01

    Full Text Available Achromatopsia type 2 (ACHM2 is a severe, inherited eye disease caused by mutations in the CNGA3 gene encoding the α subunit of the cone photoreceptor cyclic nucleotide-gated (CNG channel. Patients suffer from strongly impaired daylight vision, photophobia, nystagmus, and lack of color discrimination. We have previously shown in the Cnga3 knockout (KO mouse model of ACHM2 that gene supplementation therapy is effective in rescuing cone function and morphology and delaying cone degeneration. In our preclinical approach, we use recombinant adeno-associated virus (AAV vector-mediated gene transfer to express the murine Cnga3 gene under control of the mouse blue opsin promoter. Here, we provide novel data on the efficiency and permanence of such gene supplementation therapy in Cnga3 KO mice. Specifically, we compare the influence of two different AAV vector capsids, AAV2/5 (Y719F and AAV2/8 (Y733F, on restoration of cone function, and assess the effect of age at time of treatment on the long-term outcome. The evaluation included in vivo analysis of retinal function using electroretinography (ERG and immunohistochemical analysis of vector-driven Cnga3 transgene expression. We found that both vector capsid serotypes led to a comparable rescue of cone function over the observation period between 4 weeks and 3 months post treatment. In addition, a clear therapeutic effect was present in mice treated at 2 weeks of age as well as in mice treated at 3 months of age at the first assessment at 4 weeks after treatment. Importantly, the effect extended in both cases over the entire observation period of 12 months post treatment. However, the average ERG amplitude levels differed between the two groups, suggesting a role of the absolute age, or possibly, the associated state of the degeneration, on the achievable outcome. In summary, we found that the therapeutic time window of opportunity for AAV-mediated Cnga3 gene supplementation therapy in the Cnga3 KO mouse

  8. Durable Expression of Minicircle DNA-Liposome-Delivered Androgen Receptor cDNA in Mice with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Tian-You Chang

    2014-01-01

    Full Text Available Background. The most common gene-based cancer therapies involve the suppression of oncogenic molecules and enhancement of the expression of tumor-suppressor genes. Studies in noncancer disease animal models have shown that minicircle (MC DNA vectors are easy to deliver and that the proteins from said MC-carrying DNA vectors are expressed over a long period of time. However, delivery of therapeutic genes via a liposome-mediated, MC DNA complex has never been tested in vascular-rich hepatocellular carcinoma (HCC. Liposome-mediated DNA delivery exhibits high in vivo transfection efficiency and minimal systemic immune response, thereby allowing for repetitive interventions. In this study, we evaluated the efficacy of delivering an MC-liposome vector containing a 3.2 kb androgen receptor (AR; HCC metastasis suppressor cDNA into Hepatitis B Virus- (HBV- induced HCC mouse livers. Results. Protein expression and promoter luciferase assays revealed that liposome-encapsulated MC-AR resulted in abundant functional expression of AR protein (100 kD for up to two weeks. The AR cDNA was also successfully delivered into normal livers and diseased livers, where it was persistently expressed. In both normal livers and livers with tumors, the expression of AR was detectable for up to 60 days. Conclusion. Our results show that an MC/liposome delivery system might improve the efficacy of gene therapy in patients with HCC.

  9. Serotonin transporter gene (SLC6A4) polymorphism and susceptibility to a home-visiting maternal-infant attachment intervention delivered by community health workers in South Africa: Reanalysis of a randomized controlled trial

    Science.gov (United States)

    Moser, Dirk; Skeen, Sarah; Cooper, Peter; Murray, Lynne; Moran, Greg

    2017-01-01

    Background Clear recognition of the damaging effects of poverty on early childhood development has fueled an interest in interventions aimed at mitigating these harmful consequences. Psychosocial interventions aimed at alleviating the negative impacts of poverty on children are frequently shown to be of benefit, but effect sizes are typically small to moderate. However, averaging outcomes over an entire sample, as is typically done, could underestimate efficacy because weaker effects on less susceptible individuals would dilute estimation of effects on those more disposed to respond. This study investigates whether a genetic polymorphism of the serotonin transporter gene moderates susceptibility to a psychosocial intervention. Methods and findings We reanalyzed data from a randomized controlled trial of a home-visiting program delivered by community health workers in a black, isiXhosa-speaking population in Khayelitsha, South Africa. The intervention, designed to enhance maternal-infant attachment, began in the third trimester and continued until 6 mo postpartum. Implemented between April 1999 and February 2003, the intervention comprised 16 home visits delivered to 220 mother–infant dyads by specially trained community health workers. A control group of 229 mother–infant dyads did not receive the intervention. Security of maternal-infant attachment was the main outcome measured at infant age 18 mo. Compared to controls, infants in the intervention group were significantly more likely to be securely attached to their primary caregiver (odds ratio [OR] = 1.7, p = 0.029, 95% CI [1.06, 2.76], d = 0.29). After the trial, 162 intervention and 172 control group children were reenrolled in a follow-up study at 13 y of age (December 2012–June 2014). At this time, DNA collected from 279 children (134 intervention and 145 control) was genotyped for a common serotonin transporter polymorphism. There were both genetic data and attachment security data for 220 children

  10. Gene targeting in melanoma therapy: exploiting of surface markers and specific promoters

    Directory of Open Access Journals (Sweden)

    Sverdlov E. D.

    2012-01-01

    Full Text Available One of the problems of gene therapy of melanoma is effective expression of therapeutic gene in tumor cells and their metastases but not in normal cells. In this review, we will consider a two-step approach to a highly specific gene therapy. At the first step, therapeutic genes are delivered specifically to tumor cells using cell surface markers of melanoma cells as targets. At the second step, a specific expression of the therapeutic genes in tumor cells is ensured. Surface markers of melanoma cells were analyzed as potential targets for therapeutic treatment. Criteria for choosing the most promising targets are proposed. The use of specific melanoma promoters allows to further increase the specificity of treatment via transcriptional control of therapeutic gene expression in melanoma cells.

  11. Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making

    Science.gov (United States)

    2015-12-01

    SMART -seq 2 protocol to prepare cDNA libraries . Sequencing of these libraries is currently in progress. 2g. Cells will be sorted using population...cell capture and library preparation system to improve reproducibility in the generation of gene expression profiles from individual fMaSC. These...each predicted a higher likelihood of response, while stromal and luminal features predicted a lower response rate. D) The list of genes in the fMaSC

  12. Gene Therapy.

    Science.gov (United States)

    Thorne, Barb; Takeya, Ryan; Vitelli, Francesca; Swanson, Xin

    2017-03-14

    Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.

  13. Anti-tumoral effect of the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium.

    Directory of Open Access Journals (Sweden)

    Jae-Ho Jeong

    Full Text Available Bacterial cancer therapy relies on the fact that several bacterial species are capable of targeting tumor tissue and that bacteria can be genetically engineered to selectively deliver therapeutic proteins of interest to the targeted tumors. However, the challenge of bacterial cancer therapy is the release of the therapeutic proteins from the bacteria and entry of the proteins into tumor cells. This study employed an attenuated Salmonella typhimurium to selectively deliver the mitochondrial targeting domain of Noxa (MTD as a potential therapeutic cargo protein, and examined its anti-cancer effect. To release MTD from the bacteria, a novel bacterial lysis system of phage origin was deployed. To facilitate the entry of MTD into the tumor cells, the MTD was fused to DS4.3, a novel cell-penetrating peptide (CPP derived from a voltage-gated potassium channel (Kv2.1. The gene encoding DS4.3-MTD and the phage lysis genes were placed under the control of PBAD , a promoter activated by L-arabinose. We demonstrated that DS4.3-MTD chimeric molecules expressed by the Salmonellae were anti-tumoral in cultured tumor cells and in mice with CT26 colon carcinoma.

  14. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  15. Lipid Nanoparticles to Deliver miRNA in Cancer.

    Science.gov (United States)

    Campani, Virginia; De Rosa, Giuseppe; Misso, Gabriella; Zarone, Mayra R; Grimaldi, Anna

    MicroRNAs (miRNAs) are a class of post-transcriptional gene expression modulators. In the past two decades, over 1500 human miRNAs were discovered. These small non-coding RNAs regulate various biological processes, including cell growth, proliferation, differentiation, and cell death. Thus, miRNAs have been proposed as new therapeutical agents in different multifactorial diseases such as cancer. Since miRNAs therapies represent a great promise, many research studies have been focused on the development of delivery strategies to overcome miRNAs biopharmaceutical issues. Lipid delivery systems are undoubtedly the non-viral carriers most largely investigated due to their biocompatibility, biodegradability, easy production, low toxicity and immunogenicity, possibility to easily modify the carriers for targeting strategies. In this mini-review we provide a rapid and updated overview on the lipid delivery system currently used to deliver miRNAs, pointing out the progresses achieved in the optimization of these nanovectors, which led up to the first clinical trial.

  16. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound.

    Science.gov (United States)

    Omata, Daiki; Negishi, Yoichi; Suzuki, Ryo; Oda, Yusuke; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2015-01-01

    The combination of therapeutic ultrasound (US) and nano/microbubbles is an important system for establishing a novel and noninvasive gene delivery system. Genes are delivered more efficiently using this system compared with a conventional nonviral vector system such as the lipofection method, resulting in higher gene expression. This higher efficiency is due to the gene being delivered into the cytosol and bypassing the endocytosis pathway. Many in vivo studies have demonstrated US-mediated gene delivery with nano/microbubbles, and several gene therapy feasibility studies for various diseases have been reported. In addition, nano/microbubbles can deliver genes site specifically by the control of US exposure site. In the present review, we summarize the gene delivery systems by the combination of nano/microbubbles and US, describe their properties, and assess applications and challenges of US theranostics.

  17. New insights into schizophrenia disease genes interactome in the human brain: emerging targets and therapeutic implications in the postgenomics era.

    Science.gov (United States)

    Podder, Avijit; Latha, Narayanan

    2014-12-01

    Schizophrenia, a complex neurological disorder, is comprised of interactions between multiple genetic and environmental factors wherein each of the factors individually exhibits a small effect. In this regard a network-based strategy is best suited to capture the combined effect of multiple genes with their definite pattern of interactions. Given that schizophrenia affects multiple regions of the brain, we postulated that instead of any single specific tissue, a mutual set of interactions occurs between different regions of brain in a well-defined pattern responsible for the disease phenotype. To validate, we constructed and compared tissue specific co-expression networks of schizophrenia candidate genes in twenty diverse brain tissues. As predicted, we observed a common interaction network of certain genes in all the studied brain tissues. We examined fundamental network topologies of the common network to sequester essential common candidates for schizophrenia. We also performed a gene set analysis to identify the essential biological pathways enriched by the common candidates in the network. Finally, the candidate drug targets were prioritized and scored against known available schizophrenic drugs by molecular docking studies. We distinctively identified protein kinases as the top candidates in the network that can serve as probable drug targets for the disease. Conclusively, we propose that a comprehensive study of the connectivity amongst the disease genes themselves may turn out to be more informative to understand schizophrenia disease etiology and the underlying complexity.

  18. Imbalanced protein expression patterns of anabolic, catabolic, anti-catabolic and inflammatory cytokines in degenerative cervical disc cells: new indications for gene therapeutic treatments of cervical disc diseases.

    Directory of Open Access Journals (Sweden)

    Demissew S Mern

    Full Text Available Degenerative disc disease (DDD of the cervical spine is common after middle age and can cause loss of disc height with painful nerve impingement, bone and joint inflammation. Despite the clinical importance of these problems, in current publications the pathology of cervical disc degeneration has been studied merely from a morphologic view point using magnetic resonance imaging (MRI, without addressing the issue of biological treatment approaches. So far a wide range of endogenously expressed bioactive factors in degenerative cervical disc cells has not yet been investigated, despite its importance for gene therapeutic approaches. Although degenerative lumbar disc cells have been targeted by different biological treatment approaches, the quantities of disc cells and the concentrations of gene therapeutic factors used in animal models differ extremely. These indicate lack of experimentally acquired data regarding disc cell proliferation and levels of target proteins. Therefore, we analysed proliferation and endogenous expression levels of anabolic, catabolic, ant-catabolic, inflammatory cytokines and matrix proteins of degenerative cervical disc cells in three-dimensional cultures. Preoperative MRI grading of cervical discs was used, then grade III and IV nucleus pulposus (NP tissues were isolated from 15 patients, operated due to cervical disc herniation. NP cells were cultured for four weeks with low-glucose in collagen I scaffold. Their proliferation rates were analysed using 3-(4, 5-dimethylthiazolyl-2-2,5-diphenyltetrazolium bromide. Their protein expression levels of 28 therapeutic targets were analysed using enzyme-linked immunosorbent assay. During progressive grades of degeneration NP cell proliferation rates were similar. Significantly decreased aggrecan and collagen II expressions (P<0.0001 were accompanied by accumulations of selective catabolic and inflammatory cytokines (disintegrin and metalloproteinase with thrombospondin motifs 4

  19. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  20. Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1 rescues Nr2e3 associated retinal disease.

    Directory of Open Access Journals (Sweden)

    Nelly M Cruz

    Full Text Available Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.

  1. The reg4 gene, amplified in the early stages of pancreatic cancer development, is a promising therapeutic target.

    Directory of Open Access Journals (Sweden)

    Aude Legoffic

    Full Text Available BACKGROUND: The aim of our work was to identify the genes specifically altered in pancreatic adenocarcinoma and especially those that are altered early in cancer development. METHODOLOGY/PRINCIPAL FINDINGS: Gene copy number was systematically assessed with an ultra-high resolution CGH oligonucleotide microarray in DNA from samples of pancreatic cancer. Several new cancer-associated variations were observed. In this work we focused on one of them, involving the reg4 gene. Gene copy number gain of the reg4 gene was confirmed by qPCR in 14 cancer samples. It was also found with increased copy number in most PanIN3 samples. The relationship betweena gain in reg4 gene copy number and cancer development was investigated on the human pancreatic cancer cell line Mia-PaCa2 xenografted under the skin of nude mice. When cells were transfected with a vector allowing reg4 expression, they generated tumors almost twice larger in size. In addition, these tumors were more resistant to gemcitabine treatment than control tumors. Interestingly, weekly intraperitoneal administration of a monoclonal antibody to reg4 halved the size of tumors generated by Mia-PaCa2 cells, suggesting that the antibody interfered with a paracrine/autocrine mechanism involving reg4 and stimulating cancer progression. The addition of gemcitabine resulted in further reduction, tumors becoming 5 times smaller than control. Exposure to reg4 antibody resulted in a significant decrease in intra-tumor levels of pAkt, Bcl-xL, Bcl-2, survivin and cyclin D1. CONCLUSIONS/SIGNIFICANCE: It was concluded that adjuvant therapies targeting reg4 could improve the standard treatment of pancreatic cancer with gemcitabine.

  2. Mutations in the DDR2 Kinase Gene identify a Novel therapeutic target in squamous cell lung cancer

    NARCIS (Netherlands)

    Hammerman, Peter S.; Sos, Martin L.; Ramos, Alex H.; Xu, Chunxiao; Dutt, Amit; Zhou, Wenjun; Brace, Lear E.; Woods, Brittany A.; Lin, Wenchu; Zhang, Jianming; Deng, Xianming; Lim, Sang Min; Heynck, Stefanie; Peifer, Martin; Simard, Jeffrey R.; Lawrence, Michael S.; Onofrio, Robert C.; Salvesen, Helga B.; Seidel, Danila; Zander, Thomas; Heuckmann, Johannes M.; Soltermann, Alex; Moch, Holger; Koker, Mirjam; Leenders, Frauke; Gabler, Franziska; Querings, Silvia; Ansen, Sascha; Brambilla, Elisabeth; Brambilla, Christian; Lorimier, Philippe; Brustugun, Odd Terje; Helland, Aslaug; Petersen, Iver; Clement, Joachim H.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Stoelben, Erich; Wolf, Juergen; Beer, David G.; Tsao, Ming Sound; Hanna, Megan; Hatton, Charles; Eck, Michael J.; Janne, Pasi A.; Johnson, Bruce E.; Winckler, Wendy; Greulich, Heidi; Bass, Adam J.; Cho, Jeonghee; Rauh, Daniel; Gray, Nathanael S.; Wong, Kwok-Kin; Haura, Eric B.; Thomas, Roman K.; Meyerson, Matthew

    2011-01-01

    Although genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations that drive squamous cell cancer (SCC) of the lung. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of lung

  3. Tyrosine kinase inhibitors for epidermal growth factor receptor gene mutation-positive non-small cell lung cancers: an update for recent advances in therapeutics.

    Science.gov (United States)

    Chung, Clement

    2016-06-01

    inhibitors as targeted therapies for these gene mutations. Therapeutic strategies to overcome resistance, including emerging and novel therapies, are discussed.

  4. Delivering advanced therapies: The big pharma approach.

    Science.gov (United States)

    Tarnowski, J; Krishna, D; Jespers, L; Ketkar, A; Haddock, R; Imrie, J; Kili, S

    2017-07-24

    After two decades of focused development and some recent clinical successes, cell and gene therapy (CGT) is emerging as a promising approach to personalized medicines. Genetically engineered cells as a medical modality are poised to stand alongside or in combination with small molecule and biopharmaceutical approaches to bring new therapies to patients globally. Big pharma can play a vital role in industrializing CGT by focusing on diseases with high un-met medical need and compelling genetic evidence. Pharma should invest in manufacturing and supply chain solutions that deliver reproducible, high quality therapies at a commercially viable cost. Due to the fast pace of innovation in this field proactive engagement with regulators is critical. It is also vital to understand the needs of patients all along the patient care pathway and to establish product pricing that is accepted by prescribers, payers, and patients.Gene Therapy accepted article preview online, 24 July 2017. doi:10.1038/gt.2017.65.

  5. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    Directory of Open Access Journals (Sweden)

    Siragusa Gregory R

    2011-06-01

    Full Text Available Abstract Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase and a holin (PF04531. Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1 strongly significant host-specific sequence variation within the endolysin, and 2 a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products.

  6. Using Boolean Logic Modeling of Gene Regulatory Networks to Exploit the Links Between Cancer and Metabolism for Therapeutic Purposes.

    Science.gov (United States)

    Arshad, Osama A; Venkatasubramani, Priyadharshini S; Datta, Aniruddha; Venkatraj, Jijayanagaram

    2016-01-01

    The uncontrolled cell proliferation that is characteristically associated with cancer is usually accompanied by alterations in the genome and cell metabolism. Indeed, the phenomenon of cancer cells metabolizing glucose using a less efficient anaerobic process even in the presence of normal oxygen levels, termed the Warburg effect, is currently considered to be one of the hallmarks of cancer. Diabetes, much like cancer, is defined by significant metabolic changes. Recent epidemiological studies have shown that diabetes patients treated with the antidiabetic drug Metformin have significantly lowered risk of cancer as compared to patients treated with other antidiabetic drugs. We utilize a Boolean logic model of the pathways commonly mutated in cancer to not only investigate the efficacy of Metformin for cancer therapeutic purposes but also demonstrate how Metformin in concert with other cancer drugs could provide better and less toxic clinical outcomes as compared to using cancer drugs alone.

  7. Metagenomic Analysis of Antibiotic Resistance Genes in Dairy Cow Feces following Therapeutic Administration of Third Generation Cephalosporin.

    Directory of Open Access Journals (Sweden)

    Lindsey Chambers

    Full Text Available Although dairy manure is widely applied to land, it is relatively understudied compared to other livestock as a potential source of antibiotic resistance genes (ARGs to the environment and ultimately to human pathogens. Ceftiofur, the most widely used antibiotic used in U.S. dairy cows, is a 3rd generation cephalosporin, a critically important class of antibiotics to human health. The objective of this study was to evaluate the effect of typical ceftiofur antibiotic treatment on the prevalence of ARGs in the fecal microbiome of dairy cows using a metagenomics approach. β-lactam ARGs were found to be elevated in feces from Holstein cows administered ceftiofur (n = 3 relative to control cows (n = 3. However, total numbers of ARGs across all classes were not measurably affected by ceftiofur treatment, likely because of dominance of unaffected tetracycline ARGs in the metagenomics libraries. Functional analysis via MG-RAST further revealed that ceftiofur treatment resulted in increases in gene sequences associated with "phages, prophages, transposable elements, and plasmids", suggesting that this treatment also enriched the ability to horizontally transfer ARGs. Additional functional shifts were noted with ceftiofur treatment (e.g., increase in genes associated with stress, chemotaxis, and resistance to toxic compounds; decrease in genes associated with metabolism of aromatic compounds and cell division and cell cycle, along with measureable taxonomic shifts (increase in Bacterioidia and decrease in Actinobacteria. This study demonstrates that ceftiofur has a broad, measureable and immediate effect on the cow fecal metagenome. Given the importance of 3rd generation cephalospirins to human medicine, their continued use in dairy cattle should be carefully considered and waste treatment strategies to slow ARG dissemination from dairy cattle manure should be explored.

  8. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gabriel Lima Lopes

    2015-08-01

    Full Text Available AbstractLung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21, first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs. Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  9. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  10. Therapeutic targeting of liver cancer with a recombinant DNA vaccine containing the hemagglutinin-neuraminidase gene of Newcastle disease virus via apoptotic-dependent pathways.

    Science.gov (United States)

    Chen, Li-Gang; Liu, Yuan-Sheng; Zheng, Tang-Hui; Chen, Xu; Li, Ping; Xiao, Chuan-Xing; Ren, Jian-Lin

    2016-11-01

    A total of ~38.6 million mortalities occur due to liver cancer annually, worldwide. Although a variety of therapeutic methods are available, the efficacy of treatment at present is extremely limited due to an increased risk of malignancy and inherently poor prognosis of liver cancer. Gene therapy is considered a promising option, and has shown notable potential for the comprehensive therapy of liver cancer, in keeping with advances that have been made in the development of cancer molecular biology. The present study aimed to investigate the synergistic effects of the abilities of the hemagglutinin neuraminidase protein of Newcastle disease virus (NDV), the pro-apoptotic factor apoptin from chicken anaemia virus, and the interferon-γ inducer interleukin-18 (IL-18) in antagonizing liver cancer. Therefore, a recombinant DNA plasmid expressing the three exogenous genes, VP3, IL-18 and hemagglutinin neuraminidase (HN), was constructed. Flow cytometry, acridine orange/ethidium bromide staining and analysis of caspase-3 activity were performed in H22 cell lines transfected with the recombinant DNA plasmid. In addition, 6-week-old C57BL/6 mice were used to establish a H22 hepatoma-bearing mouse model. Mice tumor tissue was analyzed by immunohistochemistry and scanning electron microscopy. The results of the present study revealed that the recombinant DNA vaccine containing the VP3, IL-18 and HN genes inhibited cell proliferation and induced autophagy via the mitochondrial pathway in vivo and in vitro.

  11. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model

    Science.gov (United States)

    Wang, Hanjie; Su, Wenya; Wang, Sheng; Wang, Xiaomin; Liao, Zhenyu; Kang, Chunsheng; Han, Lei; Chang, Jin; Wang, Guangxiu; Pu, Peiyu

    2012-09-01

    Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic nanocrystals; and polymeric lipid shells anchored with functional molecules such as PEG chains, TAT peptides and RGD peptides that can help the vectors to condense the gene, prolong the circulation time, cross the blood brain barrier and target delivery to the cancer tissue. The results showed that the magnetic PLGA/MPLs nanosphere has a nanosized core-shell structure, can achieve sustained drug release and has good DNA binding abilities. Importantly, compared with the control group and other groups with single functionality, it can co-deliver the drug and gene into the same cell in vitro and show the strongest inhibiting effect on the growth of the in situ malignant glioblastoma in vivo. All of these results indicated that the different functional components of magnetic PLGA/MPLs, can form an organic whole and none of them can be dispensed with. The magnetic PLGA/MPLs nanosphere may be another option for treatment of glioblastoma.Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic

  12. Gene therapy in ocular diseases

    Directory of Open Access Journals (Sweden)

    Singh Vijay

    2002-01-01

    Full Text Available Gene therapy is a novel form of drug delivery that enlists the synthetic machinery of the patient′s cells to produce a therapeutic agent. Genes may be delivered into cells in vitro or in vivo utilising viral or non-viral vectors. Recent technical advances have led to the demonstration of the molecular basis of various ocular diseases. Ocular disorders with the greatest potential for benefit of gene therapy include hereditary diseases such as retinitis pigmentosa, tumours such as retinoblastoma or melanoma, and acquired proliferative and neovascular retinal disorders. Gene transfer into ocular tissues has been demonstrated with growing functional success and may develop into a new therapeutic tool for clinical ophthalmology in future.

  13. Associations between MDR1 gene polymorphisms and schizophrenia and therapeutic response to olanzapine in female schizophrenic patients.

    Science.gov (United States)

    Bozina, Nada; Kuzman, Martina Rojnic; Medved, Vesna; Jovanovic, Nikolina; Sertic, Jadranka; Hotujac, Ljubomir

    2008-01-01

    Multidrug resistant protein (MDR1) gene, which codes for P-glycoprotein and functions as an efflux transporter in different cells, is widely localized in normal tissues including the gastrointestinal tract, blood cells, biliary tract, kidney and brain and plays a major role in absorption, distribution and elimination of various xenobiotics. Therefore, MDR1 gene variants were proposed as potential susceptibility factors for diseases and as determinants of treatment response to various drugs. We investigated the relationships between exon 21 G2677T and exon 26 C3435T genetic variants of MDR1 gene with susceptibility and treatment response in female schizophrenic patients. The study was conducted in two steps. We first compared allele, genotype and haplotype distributions between 117 female schizophrenic patients and 123 control female subjects. Afterwards, we studied treatment response to olanzapine, in 87 out of 117 previously unmedicated female patients. Overall, we found lower representation of G2677/C3435 haplotype in schizophrenic female patients compared to controls. Test result for linkage disequilibrium between loci was found to be significant. Furthermore, we found significant associations between MDR1 exon 21 G2677T genotypes and treatment response measured with positive PANSS percentage changes, with T allele and TT genotype being associated with significantly better treatment response. A borderline, non-significant statistical association was found between MDR1 exon 26 C3435T genotypes and treatment response, with TT genotype being associated with better treatment response. Our data support functional importance of the MDR1 mutations for the susceptibility and treatment response in female schizophrenic patients.

  14. The CRKL gene encoding an adaptor protein is amplified, overexpressed, and a possible therapeutic target in gastric cancer

    Directory of Open Access Journals (Sweden)

    Natsume Hiroko

    2012-07-01

    Full Text Available Abstract Background Genomic DNA amplification is a genetic factor involved in cancer, and some oncogenes, such as ERBB2, are highly amplified in gastric cancer. We searched for the possible amplification of other genes in gastric cancer. Methods and Results A genome-wide single nucleotide polymorphism microarray analysis was performed using three cell lines of differentiated gastric cancers, and 22 genes (including ERBB2 in five highly amplified chromosome regions (with a copy number of more than 6 were identified. Particular attention was paid to the CRKL gene, the product of which is an adaptor protein containing Src homology 2 and 3 (SH2/SH3 domains. An extremely high CRKL copy number was confirmed in the MKN74 gastric cancer cell line using fluorescence in situ hybridization (FISH, and a high level of CRKL expression was also observed in the cells. The RNA-interference-mediated knockdown of CRKL in MKN74 disclosed the ability of CRKL to upregulate gastric cell proliferation. An immunohistochemical analysis revealed that CRKL protein was overexpressed in 24.4% (88/360 of the primary gastric cancers that were analyzed. The CRKL copy number was also examined in 360 primary gastric cancers using a FISH analysis, and CRKL amplification was found to be associated with CRKL overexpression. Finally, we showed that MKN74 cells with CRKL amplification were responsive to the dual Src/BCR-ABL kinase inhibitor BMS354825, likely via the inhibition of CRKL phosphorylation, and that the proliferation of MKN74 cells was suppressed by treatment with a CRKL-targeting peptide. Conclusion These results suggested that CRKL protein is overexpressed in a subset of gastric cancers and is associated with CRKL amplification in gastric cancer. Furthermore, our results suggested that CRKL protein has the ability to regulate gastric cell proliferation and has the potential to serve as a molecular therapy target for gastric cancer.

  15. Low-Dose Liver-Targeted Gene Therapy for Pompe Disease Enhances Therapeutic Efficacy of ERT via Immune Tolerance Induction

    Directory of Open Access Journals (Sweden)

    Sang-oh Han

    2017-03-01

    Full Text Available Pompe disease results from acid α-glucosidase (GAA deficiency, and enzyme replacement therapy (ERT with recombinant human (rh GAA has clinical benefits, although its limitations include the short half-life of GAA and the formation of antibody responses. The present study compared the efficacy of ERT against gene transfer with an adeno-associated viral (AAV vector containing a liver-specific promoter. GAA knockout (KO mice were administered either a weekly injection of rhGAA (20 mg/kg or a single injection of AAV2/8-LSPhGAA (8 × 1011 vector genomes [vg]/kg. Both treatments significantly reduced glycogen content of the heart and diaphragm. Although ERT triggered anti-GAA antibody formation, there was no detectable antibody response following AAV vector administration. The efficacy of three lower dosages of AAV2/8-LSPhGAA was evaluated in GAA-KO mice, either alone or in combination with ERT. The minimum effective dose (MED identified was 8 × 1010 vg/kg to reduce glycogen content in the heart and diaphragm of GAA-KO mice. A 3-fold higher dose was required to suppress antibody responses to ERT. Efficacy from liver gene therapy was slightly greater in male mice than in female mice. Vector dose correlated inversely with anti-GAA antibody formation, whereas higher vector doses suppressed previously formed anti-GAA antibodies as late as 25 weeks after the start of ERT and achieved biochemical correction of glycogen accumulation. In conclusion, we identified the MED for effective AAV2/8-LSPhGAA-mediated tolerogenic gene therapy in Pompe disease mice.

  16. Hypermethylation of BRCA1 gene: implication for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer.

    Science.gov (United States)

    Zhu, X; Shan, L; Wang, F; Wang, J; Wang, F; Shen, G; Liu, X; Wang, B; Yuan, Y; Ying, J; Yang, H

    2015-04-01

    Paraffin sections from 239 cases of surgical resected mammary gland carcinomas were assessed to determine the role of BRCA1 gene methylation in sporadic triple-negative breast cancer and to evaluate the relationship between BRCA1 gene methylation and clinicopathologic features of triple-negative breast cancer in the National Cancer Center, China. Diagnostic tissues collected from patients received mastectomy in the National Cancer Center from January 1, 1999 to December 31, 2008 were reviewed. Tissue microarrays were constructed using 239 triple-negative breast cancer cases and stained with estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, cytokeratin 5/6, and epidermal growth factor receptor. Methylation status of the BRCA1 promoter was measured by methylation-specific PCR and analyzed against clinicopathologic characteristics, subtypes, and prognosis using standard statistical methods. Among the 239 triple-negative breast cancer cases, 137 (57.3 %) showed methylation of the BRCA1. According to the immunohistochemistry results, triple-negative breast cancer cases were classified into basal-like breast cancer (60.7 %) and non-basal-like breast cancer (39.3 %). The frequency of BRCA1 methylation was significantly higher in basal-like breast cancer subtype (71.7 %) than the non-basal subtype (35.1 %). Thus, BRCA1 methylation is statistically significantly correlated with basal-like breast cancer subtype (p triple-negative breast cancer. Here we demonstrated that epigenetic alteration of key tumor suppressor gene can be a promising biomarker for the prognosis of triple-negative breast cancer/basal-like breast cancer. Specifically our finding revealed that BRCA1 methylation is closely associated with a significant decrease in overall survival and disease-free survival, highlighting BRCA1 promoter methylation as promising and powerful biomarkers for effect and better prognosis of DNA damaging agents for triple-negative breast cancer

  17. Association study of olanzapine-induced weight gain and therapeutic response with SERT gene polymorphisms in female schizophrenic patients.

    Science.gov (United States)

    Bozina, Nada; Medved, Vesna; Kuzman, Martina Rojnic; Sain, Ivica; Sertic, Jadranka

    2007-09-01

    We investigated the relationships between L/S promoter (SERTPR) and l/s intron2 (SERTin2) genetic variants of serotonin transporter (SERT) polymorphisms with olanzapine-induced weight gain and treatment response in 94 female schizophrenic patients treated with olanzapine for up to 3 months. Body mass index (BMI) was calculated for each patient prior to olanzapine administration and 3 months afterwards. To assess and evaluate improvement of clinical psychotic symptoms and therapeutic response to the antipsychotic, all patients were rated using the Positive and Negative Syndrome ScaLe (PANSS). Overall, the presence of S SERTPR allelic variant and SS genotype was associated with significantly higher weight gain in subjects who were non-obese at the time of admission. The presence of L SERTPR variant was associated with significantly better treatment response measured with total PANSS and general PANSS subscale, while the presence of l SERTin2 variant determined better treatment response only in several items. No evidence of linkage disequilibrium between the two loci was found in the sample. These findings identify genetic factors associated with oLanzapine-induced weight gain and treatment response in femaLe schizophrenic patients.

  18. Therapeutic strategies for Parkinson's disease: the ancient meets the future--traditional Chinese herbal medicine, electroacupuncture, gene therapy and stem cells.

    Science.gov (United States)

    Wang, Xuan; Liang, Xi-Bin; Li, Feng-Qiao; Zhou, Hui-Fang; Liu, Xian-Yu; Wang, Jian-Jun; Wang, Xiao-Min

    2008-10-01

    In China, it has been estimated that there are more than 2.0 million people suffering from Parkinson's disease, which is currently becoming one of the most common chronic neurodegenerative disorders during recent years. For many years, scientists have struggled to find new therapeutic approaches for this disease. Since 1994, our research group led by Drs. Ji-Sheng Han and Xiao-Min Wang of Neuroscience Research Institute, Peking University has developed several prospective treatment strategies for the disease. These studies cover the traditional Chinese medicine-herbal formula or acupuncture, and modern technologies such as gene therapy or stem cell replacement therapy, and have achieved some original results. It hopes that these data may be beneficial for the research development and for the future clinical utility for treatment of Parkinson's disease.

  19. Exome analysis of HIV patients submitted to dendritic cells therapeutic vaccine reveals an association of CNOT1 gene with response to the treatment

    Science.gov (United States)

    Moura, Ronald; Pontillo, Alessandra; D'Adamo, Pio; Pirastu, Nicola; Coelho, Antonio Campos; Crovella, Sergio

    2014-01-01

    Introduction With the aim of searching genetic factors associated with the response to an immune treatment based on autologous monocyte-derived dendritic cells pulsed with autologous inactivated HIV, we performed exome analysis by screening more than 240,000 putative functional exonic variants in 18 HIV-positive Brazilian patients that underwent the immune treatment. Methods Exome analysis has been performed using the ILLUMINA Infinium HumanExome BeadChip. zCall algorithm allowed us to recall rare variants. Quality control and SNP-centred analysis were done with GenABEL R package. An in-house implementation of the Wang method permitted gene-centred analysis. Results CCR4-NOT transcription complex, subunit 1 (CNOT1) gene (16q21), showed the strongest association with the modification of the response to the therapeutic vaccine (p=0.00075). CNOT1 SNP rs7188697 A/G was significantly associated with DC treatment response. The presence of a G allele indicated poor response to the therapeutic vaccine (p=0.0031; OR=33.00; CI=1.74–624.66), and the SNP behaved in a dominant model (A/A vs. A/G+G/G p=0.0009; OR=107.66; 95% CI=3.85–3013.31), being the A/G genotype present only in weak/transient responders, conferring susceptibility to poor response to the immune treatment. Discussion CNOT1 is known to be involved in the control of mRNA deadenylation and mRNA decay. Moreover, CNOT1 has been recently described as being involved in the regulation of inflammatory processes mediated by tristetraprolin (TTP). The TTP-CCR4-NOT complex (CNOT1 in the CCR4-NOT complex is the binding site for TTP) has been reported as interfering with HIV replication, through post-transcriptional control. Therefore, we can hypothesize that genetic variation occurring in the CNOT1 gene could impair the TTP-CCR4-NOT complex, thus interfering with HIV replication and/or host immune response. Conclusions Being aware that our findings are exclusive to the 18 patients studied with a need for replication

  20. Exome analysis of HIV patients submitted to dendritic cells therapeutic vaccine reveals an association of CNOT1 gene with response to the treatment

    Directory of Open Access Journals (Sweden)

    Ronald Moura

    2014-01-01

    Full Text Available Introduction: With the aim of searching genetic factors associated with the response to an immune treatment based on autologous monocyte-derived dendritic cells pulsed with autologous inactivated HIV, we performed exome analysis by screening more than 240,000 putative functional exonic variants in 18 HIV-positive Brazilian patients that underwent the immune treatment. Methods: Exome analysis has been performed using the ILLUMINA Infinium HumanExome BeadChip. zCall algorithm allowed us to recall rare variants. Quality control and SNP-centred analysis were done with GenABEL R package. An in-house implementation of the Wang method permitted gene-centred analysis. Results: CCR4-NOT transcription complex, subunit 1 (CNOT1 gene (16q21, showed the strongest association with the modification of the response to the therapeutic vaccine (p=0.00075. CNOT1 SNP rs7188697 A/G was significantly associated with DC treatment response. The presence of a G allele indicated poor response to the therapeutic vaccine (p=0.0031; OR=33.00; CI=1.74–624.66, and the SNP behaved in a dominant model (A/A vs. A/G+G/G p=0.0009; OR=107.66; 95% CI=3.85–3013.31, being the A/G genotype present only in weak/transient responders, conferring susceptibility to poor response to the immune treatment. Discussion: CNOT1 is known to be involved in the control of mRNA deadenylation and mRNA decay. Moreover, CNOT1 has been recently described as being involved in the regulation of inflammatory processes mediated by tristetraprolin (TTP. The TTP-CCR4-NOT complex (CNOT1 in the CCR4-NOT complex is the binding site for TTP has been reported as interfering with HIV replication, through post-transcriptional control. Therefore, we can hypothesize that genetic variation occurring in the CNOT1 gene could impair the TTP-CCR4-NOT complex, thus interfering with HIV replication and/or host immune response. Conclusions: Being aware that our findings are exclusive to the 18 patients studied with a need

  1. Design, Characterization, and Lead Selection of Therapeutic miRNAs Targeting Huntingtin for Development of Gene Therapy for Huntington's Disease.

    Science.gov (United States)

    Miniarikova, Jana; Zanella, Ilaria; Huseinovic, Angelina; van der Zon, Tom; Hanemaaijer, Evelyn; Martier, Raygene; Koornneef, Annemart; Southwell, Amber L; Hayden, Michael R; van Deventer, Sander J; Petry, Harald; Konstantinova, Pavlina

    2016-03-22

    Huntington's disease (HD) is a neurodegenerative disorder caused by accumulation of CAG expansions in the huntingtin (HTT) gene. Hence, decreasing the expression of mutated HTT (mtHTT) is the most upstream approach for treatment of HD. We have developed HTT gene-silencing approaches based on expression cassette-optimized artificial miRNAs (miHTTs). In the first approach, total silencing of wild-type and mtHTT was achieved by targeting exon 1. In the second approach, allele-specific silencing was induced by targeting the heterozygous single-nucleotide polymorphism (SNP) rs362331 in exon 50 or rs362307 in exon 67 linked to mtHTT. The miHTT expression cassette was optimized by embedding anti-HTT target sequences in ten pri-miRNA scaffolds and their HTT knockdown efficacy, allele selectivity, passenger strand activity, and processing patterns were analyzed in vitro. Furthermore, three scaffolds expressing miH12 targeting exon 1 were incorporated in an adeno-associated viral serotype 5 (AAV5) vector and their HTT knock-down efficiency and pre-miHTT processing were compared in the humanized transgenic Hu128/21 HD mouse model. Our data demonstrate strong allele-selective silencing of mtHTT by miSNP50 targeting rs362331 and total HTT silencing by miH12 both in vitro and in vivo. Ultimately, we show that HTT knock-down efficiency and guide strand processing can be enhanced by using different cellular pri-miRNA scaffolds.

  2. Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention in a mouse model of cervical cancer.

    Science.gov (United States)

    Jonson, Amy L; Rogers, Lisa M; Ramakrishnan, Sundaram; Downs, Levi S

    2008-11-01

    Selective silencing of HPV oncogenes using short interfering RNA (siRNA) blocks E6/E7 expression and restores normal p53 and Rb function. Our objective was to determine if siRNA targeting E6/E7 would inhibit the growth of established tumors in a mouse model of cervical cancer. In vitro studies were performed using unique siRNA sequences to confirm their ability to target and reduce E6/E7 mRNA and restore functioning p53. Next, siRNA targeting lamin was injected daily for three days into tumors established from HPV 16 positive CaSki human cervical cancer cells. Immunohistochemistry and branched DNA gene quantification were used to determine distribution and duration of activity of these siRNA. For our therapeutic studies tumors were directly injected with siRNA targeting E6/E7, non-targeting control siRNA, or saline. In preliminary experiments injections were daily or every three days for a total of three doses. A second therapeutic experiment utilized every three day dosing for 35 days. Tumor volume, growth curves and E7 mRNA levels were assessed. The two most active siRNA sequences resulted in a 67% and 71% reduction in E6/E7 mRNA. Fluorescent lamin siRNA was visualized up to 120 h after the initial tumor injection and was evenly distributed throughout the tumors. IHC showed lamin expression to be inhibited by 68% and 75% when compared to controls at 54 and 120 h respectively. In our preliminary therapeutic intervention experiments there was no significant difference in tumor growth between the treatment groups when mice were treated with three daily injections (p=0.41). However, when treated every third day for three injections final tumor volume was less in animals injected with siRNA sequences A (78% reduction; pE6/E7 mRNA. Extended treatment with siRNA completely or nearly eradicated tumors in 70% of the animals. Therapeutic siRNA targeting E6/E7 significantly inhibits tumor growth in this mouse model of cervical cancer. Further investigation is needed to

  3. Genetic testing for inherited ocular disease: delivering on the promise at last?

    Science.gov (United States)

    Gillespie, Rachel L; Hall, Georgina; Black, Graeme C

    2014-01-01

    Genetic testing is of increasing clinical utility for diagnosing inherited eye disease. Clarifying a clinical diagnosis is important for accurate estimation of prognosis, facilitating genetic counselling and management of families, and in the future will direct gene-specific therapeutic strategies. Often, precise diagnosis of genetic ophthalmic conditions is complicated by genetic heterogeneity, a difficulty that the so-called 'next-generation sequencing' technologies promise to overcome. Despite considerable counselling and ethical complexities, next-generation sequencing offers to revolutionize clinical practice. This will necessitate considerable adjustment to standard practice but has the power to deliver a personalized approach to genomic medicine for many more patients and enhance the potential for preventing vision loss.

  4. Annexin A9 (ANXA9) biomarker and therapeutic target in epithelial cancer

    Science.gov (United States)

    Hu, Zhi [El Cerrito, CA; Kuo, Wen-Lin [San Ramon, CA; Neve, Richard M [San Mateo, CA; Gray, Joe W [San Francisco, CA

    2012-06-12

    Amplification of the ANXA9 gene in human chromosomal region 1q21 in epithelial cancers indicates a likelihood of both in vivo drug resistance and metastasis, and serves as a biomarker indicating these aspects of the disease. ANXA9 can also serve as a therapeutic target. Interfering RNAs (iRNAs) (such as siRNA and miRNA) and shRNA adapted to inhibit ANXA9 expression, when formulated in a therapeutic composition, and delivered to cells of the tumor, function to treat the epithelial cancer.

  5. Association of polymorphisms of cytosine arabinoside-metabolizing enzyme gene with therapeutic efficacy for acute myeloid leukemia

    Institute of Scientific and Technical Information of China (English)

    XU Pei-pei; WANG Xue-mei; XU Ke; Margaret Schultz; CHEN Bao-an; FENG Ji-feng; CHENG Lu; XIA Guo-hua; LI Yu-feng; QIAN Jun; DING Jia-hua; LU Zu-hong

    2012-01-01

    Background The cytosine arabinoside (Ara-C)-based chemotherapy is the major remedial measure for acute myeloid leukemia (AML).Deoxycytidine kinase (DCK) and cytidine deaminase (CDA) are the key enzymes in the metabolism ofAra-C.Many single nucleotide polymorphisms (SNPs) and haplotypes of DCK and CDA,which contribute to susceptibility to Ara-C,have been identified in Africans and Europeans.However,there has been no report about the relation among three SNPs in DCK (rs115543896,rs72552079,and rs111454937) and two SNPs in CDA (rs2072671 and rs60369023),and their clinical response to Ara-C for a Chinese population.In this study,we aimed to investigate whether these five SNPs are associated with the therapeutic outcomes of Ara-C-based chemotherapy regimens in patients with AML.Methods A total of 151 Chinese patients with AML were enrolled in our study.SNPs genotyping were performed using the MassARRAY system by means of the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) method.Results The results illustrated that DCKrs111454937 AA genotype was more frequent in patients with higher platelet count,and A allele frequency was significantly higher in the group ≤40 years,lower white blood ceil (WBC) count patients group and the group with platelet counts >60×109/L.Meanwhile,both DCKrs72552079 TC (OR=1.225,95% Cl=1.225-9.851,P=0.0192) and CDArs60369023 GA (OR=9.851,95% Cl=1.31-77.93,P=0.0263) significantly improved Ara-C-based chemotherapy response.While DCKrs11554389 AA (OR=0.147,95% Cl=0.027-0.801,P=0.0267) wasassociated with the decrease of Ara-C-based chemotherapy response.Conclusion It is evident that the DCK and CDA polymorphisms might be the important markers for the AML patients' therapy outcomes in a Chinese population.

  6. Correction of Murine Rag2 Severe Combined Immunodeficiency by Lentiviral Gene Therapy Using a Codon-optimized RAG2 Therapeutic Transgene

    Science.gov (United States)

    van Til, Niek P; de Boer, Helen; Mashamba, Nomusa; Wabik, Agnieszka; Huston, Marshall; Visser, Trudi P; Fontana, Elena; Poliani, Pietro Luigi; Cassani, Barbara; Zhang, Fang; Thrasher, Adrian J; Villa, Anna; Wagemaker, Gerard

    2012-01-01

    Recombination activating gene 2 (RAG2) deficiency results in severe combined immunodeficiency (SCID) with complete lack of T and B lymphocytes. Initial gammaretroviral gene therapy trials for other types of SCID proved effective, but also revealed the necessity of safe vector design. We report the development of lentiviral vectors with the spleen focus forming virus (SF) promoter driving codon-optimized human RAG2 (RAG2co), which improved phenotype amelioration compared to native RAG2 in Rag2−/− mice. With the RAG2co therapeutic transgene, T-cell receptor (TCR) and immunoglobulin repertoire, T-cell mitogen responses, plasma immunoglobulin levels and T-cell dependent and independent specific antibody responses were restored. However, the thymus double positive T-cell population remained subnormal, possibly due to the SF virus derived element being sensitive to methylation/silencing in the thymus, which was prevented by replacing the SF promoter by the previously reported silencing resistant element (ubiquitous chromatin opening element (UCOE)), and also improved B-cell reconstitution to eventually near normal levels. Weak cellular promoters were effective in T-cell reconstitution, but deficient in B-cell reconstitution. We conclude that immune functions are corrected in Rag2−/− mice by genetic modification of stem cells using the UCOE driven codon-optimized RAG2, providing a valid optional vector for clinical implementation. PMID:22692499

  7. Structuring polymers for delivery of DNA-based therapeutics: updated insights.

    Science.gov (United States)

    Gupta, Madhu; Tiwari, Shailja; Vyas, Suresh

    2012-01-01

    Gene therapy offers greater opportunities for treating numerous incurable diseases from genetic disorders, infections, and cancer. However, development of appropriate delivery systems could be one of the most important factors to overcome numerous biological barriers for delivery of various therapeutic molecules. A number of nonviral polymer-mediated vectors have been developed for DNA delivery and offer the potential to surmount the associated problems of their viral counterpart. To address the concerns associated with safety issues, a wide range of polymeric vectors are available and have been utilized successfully to deliver their therapeutics in vivo. Today's research is mainly focused on the various natural or synthetic polymer-based delivery carriers that protect the DNA molecule from degradation, which offer specific targeting to the desired cells after systemic administration, have transfection efficiencies equivalent to virus-mediated gene delivery, and have long-term gene expression through sustained-release mechanisms. This review explores an updated overview of different nonviral polymeric delivery system for delivery of DNA-based therapeutics. These polymeric carriers have been evaluated in vitro and in vivo and are being utilized in various stages of clinical evaluation. Continued research and understanding of the principles of polymer-based gene delivery systems will enable us to develop new and efficient delivery systems for the delivery of DNA-based therapeutics to achieve the goal of efficacious and specific gene therapy for a vast array of clinical disorders as the therapeutic solutions of tomorrow.

  8. Self-entanglement of long linear DNA vectors using transient non-B-DNA attachment points: a new concept for improvement of non-viral therapeutic gene delivery.

    Science.gov (United States)

    Tolmachov, Oleg E

    2012-05-01

    The cell-specific and long-term expression of therapeutic transgenes often requires a full array of native gene control elements including distal enhancers, regulatory introns and chromatin organisation sequences. The delivery of such extended gene expression modules to human cells can be accomplished with non-viral high-molecular-weight DNA vectors, in particular with several classes of linear DNA vectors. All high-molecular-weight DNA vectors are susceptible to damage by shear stress, and while for some of the vectors the harmful impact of shear stress can be minimised through the transformation of the vectors to compact topological configurations by supercoiling and/or knotting, linear DNA vectors with terminal loops or covalently attached terminal proteins cannot be self-compacted in this way. In this case, the only available self-compacting option is self-entangling, which can be defined as the folding of single DNA molecules into a configuration with mutual restriction of molecular motion by the individual segments of bent DNA. A negatively charged phosphate backbone makes DNA self-repulsive, so it is reasonable to assume that a certain number of 'sticky points' dispersed within DNA could facilitate the entangling by bringing DNA segments into proximity and by interfering with the DNA slipping away from the entanglement. I propose that the spontaneous entanglement of vector DNA can be enhanced by the interlacing of the DNA with sites capable of mutual transient attachment through the formation of non-B-DNA forms, such as interacting cruciform structures, inter-segment triplexes, slipped-strand DNA, left-handed duplexes (Z-forms) or G-quadruplexes. It is expected that the non-B-DNA based entanglement of the linear DNA vectors would consist of the initial transient and co-operative non-B-DNA mediated binding events followed by tight self-ensnarement of the vector DNA. Once in the nucleoplasm of the target human cells, the DNA can be disentangled by type II

  9. Multi-drug resistance (MDR1 gene and P-glycoprotein influence on pharmacokinetic and pharmacodymanic of therapeutic drugs

    Directory of Open Access Journals (Sweden)

    Linardi Renata Lehn

    2006-01-01

    Full Text Available (MDR1 gene expressed in tumor cells and also in several normal tissues, such as intestine, liver, kidney, blood-brain barrier, spinal cord, and placenta. P-gp has been identified in mice, rat, bovine, monkey, rodents, and human beings and has been receiving a particular clinical relevance because this protein expression limits brain access and intestinal absorption of many drugs. This protein plays a role as a protective barrier against a wide variety of substrates, avoiding drug entry into the central nervous system. P-glycoprotein also interferes with drug bioavailability and disposition, including absorption, distribution, metabolization, and excretion, influencing pharmacokinetic and pharmacodynamic of drugs. Modulation of P-gp may help the efficacy of treatment of several diseases and can explain some adverse central nervous system effects induced by drugs after intravenous administration and the poor response of oral administration in patients. Alteration in P-gp expression or function has been associated with several diseases susceptibility in humans and animals. Furthermore, additional studies relating MDR1 and P-gp expression has an important clinical implication also in terms of treatment efficacy.

  10. Role of calcitonin gene-related peptide in cerebral vasospasm, and as a therapeutic approach to subarachnoid haemorrhage

    Directory of Open Access Journals (Sweden)

    Stelios eKokkoris

    2012-11-01

    Full Text Available Calcitonin gene-related peptide (CGRP is one of the most potent microvascular vasodilators identified to date. Vascular relaxation and vasodilation is mediated via activation of the CGRP receptor. This atypical receptor is made up of a G-protein-coupled receptor called calcitonin receptor-like receptor (CLR, a single transmembrane protein called receptor activity-modifying protein (RAMP, and an additional protein that is required for Gas coupling, known as receptor component protein (RCP. Several mechanisms involved in CGRP mediated relaxation have been identified. These include nitric oxide (NO-dependent endothelium-dependent mechanisms or cAMP-mediated endothelium-independent pathways; the latter being more common. Subarachnoid haemorrhage (SAH is associated with cerebral vasoconstriction that occurs several days after the haemorrhage and is often fatal. The vasospasm occurs in 30–40% of patients and is the major cause of death from this condition. The vasoconstriction is associated with a decrease in CGRP levels in nerves and an increase in CGRP levels in draining blood, suggesting that CGRP is released from nerves to oppose the vasoconstriction. This evidence has led to the concept that exogenous CGRP may be beneficial in a condition that has proven hard to treat. The present article reviews: a the pathophysiology of delayed ischaemic neurologic deficit after SAH b the basics of the CGRP receptor structure, signal transduction and vasodilatation mechanisms and c the studies that have been conducted so far using CGRP in both animals and humans with SAH.

  11. Frontiers in nano-therapeutics

    CERN Document Server

    Tasnim, Nishat; Sai Krishna, Katla; Kalagara, Sudhakar; Narayan, Mahesh; Noveron, Juan C; Joddar, Binata

    2017-01-01

    This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.

  12. Therapeutic hemoglobin levels after gene transfer in β-thalassemia mice and in hematopoietic cells of β-thalassemia and sickle cells disease patients.

    Directory of Open Access Journals (Sweden)

    Laura Breda

    Full Text Available Preclinical and clinical studies demonstrate the feasibility of treating β-thalassemia and Sickle Cell Disease (SCD by lentiviral-mediated transfer of the human β-globin gene. However, previous studies have not addressed whether the ability of lentiviral vectors to increase hemoglobin synthesis might vary in different patients.We generated lentiviral vectors carrying the human β-globin gene with and without an ankyrin insulator and compared their ability to induce hemoglobin synthesis in vitro and in thalassemic mice. We found that insertion of an ankyrin insulator leads to higher, potentially therapeutic levels of human β-globin through a novel mechanism that links the rate of transcription of the transgenic β-globin mRNA during erythroid differentiation with polysomal binding and efficient translation, as reported here for the first time. We also established a preclinical assay to test the ability of this novel vector to synthesize adult hemoglobin in erythroid precursors and in CD34(+ cells isolated from patients affected by β-thalassemia and SCD. Among the thalassemic patients, we identified a subset of specimens in which hemoglobin production can be achieved using fewer copies of the vector integrated than in others. In SCD specimens the treatment with AnkT9W ameliorates erythropoiesis by increasing adult hemoglobin (Hb A and concurrently reducing the sickling tetramer (Hb S.Our results suggest two major findings. First, we discovered that for the purpose of expressing the β-globin gene the ankyrin element is particularly suitable. Second, our analysis of a large group of specimens from β-thalassemic and SCD patients indicates that clinical trials could benefit from a simple test to predict the relationship between the number of vector copies integrated and the total amount of hemoglobin produced in the erythroid cells of prospective patients. This approach would provide vital information to select the best candidates for these

  13. Therapeutic hemoglobin levels after gene transfer in β-thalassemia mice and in hematopoietic cells of β-thalassemia and sickle cells disease patients.

    Science.gov (United States)

    Breda, Laura; Casu, Carla; Gardenghi, Sara; Bianchi, Nicoletta; Cartegni, Luca; Narla, Mohandas; Yazdanbakhsh, Karina; Musso, Marco; Manwani, Deepa; Little, Jane; Gardner, Lawrence B; Kleinert, Dorothy A; Prus, Eugenia; Fibach, Eitan; Grady, Robert W; Giardina, Patricia J; Gambari, Roberto; Rivella, Stefano

    2012-01-01

    Preclinical and clinical studies demonstrate the feasibility of treating β-thalassemia and Sickle Cell Disease (SCD) by lentiviral-mediated transfer of the human β-globin gene. However, previous studies have not addressed whether the ability of lentiviral vectors to increase hemoglobin synthesis might vary in different patients.We generated lentiviral vectors carrying the human β-globin gene with and without an ankyrin insulator and compared their ability to induce hemoglobin synthesis in vitro and in thalassemic mice. We found that insertion of an ankyrin insulator leads to higher, potentially therapeutic levels of human β-globin through a novel mechanism that links the rate of transcription of the transgenic β-globin mRNA during erythroid differentiation with polysomal binding and efficient translation, as reported here for the first time. We also established a preclinical assay to test the ability of this novel vector to synthesize adult hemoglobin in erythroid precursors and in CD34(+) cells isolated from patients affected by β-thalassemia and SCD. Among the thalassemic patients, we identified a subset of specimens in which hemoglobin production can be achieved using fewer copies of the vector integrated than in others. In SCD specimens the treatment with AnkT9W ameliorates erythropoiesis by increasing adult hemoglobin (Hb A) and concurrently reducing the sickling tetramer (Hb S).Our results suggest two major findings. First, we discovered that for the purpose of expressing the β-globin gene the ankyrin element is particularly suitable. Second, our analysis of a large group of specimens from β-thalassemic and SCD patients indicates that clinical trials could benefit from a simple test to predict the relationship between the number of vector copies integrated and the total amount of hemoglobin produced in the erythroid cells of prospective patients. This approach would provide vital information to select the best candidates for these clinical trials

  14. In vitro magnetic stimulation: a simple stimulation device to deliver defined low intensity electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Stephanie Grehl

    2016-11-01

    Full Text Available Non-invasive electromagnetic field brain stimulation (NIBS appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined.Here we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS delivered at 3 frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modelling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency (BHFS, which we have previously shown induces neural circuit reorganisation. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-minute stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially

  15. In vitro Magnetic Stimulation: A Simple Stimulation Device to Deliver Defined Low Intensity Electromagnetic Fields

    Science.gov (United States)

    Grehl, Stephanie; Martina, David; Goyenvalle, Catherine; Deng, Zhi-De; Rodger, Jennifer; Sherrard, Rachel M.

    2016-01-01

    Non-invasive brain stimulation (NIBS) by electromagnetic fields appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although, in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits) so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined. Here, we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS) delivered at three frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modeling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency, which we have previously shown induces neural circuit reorganization. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-min stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially modified

  16. [Gene chip study on cerebral gene of effect of Jinkui Shenqiwan and Youguiwan on mouse model of kidney-yang asthenia with syndrome disproved according to therapeutic efficacy of drugs used].

    Science.gov (United States)

    Yang, Yuhua; Li, Zhen; Sun, Jing

    2009-05-01

    To inquire into the cerebral gene change of effect of Jingui Shenqiwan and Youguiwan for animal model of kidney-yang asthenia caused by excessive physical and sexual activities, which may study the effect mechanism of the medicine with syndrome disproved therapeutic efficacy of drugs used. Male mice of Kunming species, weight 35-40 g, and female weight 28-35 g were randomly divided into four groups: control group, model group and treatment groups of Jigui Shenqiwan and Youguiwan in which there were ten male mice, fifteen ones, ten ones and ten ones, respectively. All of them were fed normally, and poured into their stomach with 0.5 mL of distill water for each mouse in the control group and model group, and with 0.5 mL suspension of the drugs (including 1.1 g x kg(-1) drug) for each one in the treatment groups every day. The mice in the model group and treatment groups were kept by means of each male mouse with six female mice in the same cage, and all male mice swam until they gradully submerged and were scooped up from water once everyday for lasting four weeks to induce the kidney-yang asthenia with excessive physical and sexual activities. Animals' manifestation such as fearing cold, activity and responses, mouse' fur and so on were observed. The brain gene were detected with the mouse brain gene chip of 36K Mouse genome array made by Capital Bio Corp. Beijing, China, and the differential expression gene were screened according to the ratio equal to or above 2 and equal to or below 0.5 with the related fluorescent intensity comparing the two groups, which could be further verified in the light of partly differential expression gene with qRT-PCR. The mouse model of kidney-yang asthenia in the model group was successfully induced by way of excessive physical and sexual activities. There were twenty-three genes among up-regulated genes in the model group versus control group but down-regulated genes in the treatment groups versus model group, chiefly including the

  17. Delivery of RNAi Therapeutics to the Airways-From Bench to Bedside.

    Science.gov (United States)

    Qiu, Yingshan; Lam, Jenny K W; Leung, Susan W S; Liang, Wanling

    2016-09-20

    RNA interference (RNAi) is a potent and specific post-transcriptional gene silencing process. Since its discovery, tremendous efforts have been made to translate RNAi technology into therapeutic applications for the treatment of different human diseases including respiratory diseases, by manipulating the expression of disease-associated gene(s). Similar to other nucleic acid-based therapeutics, the major hurdle of RNAi therapy is delivery. Pulmonary delivery is a promising approach of delivering RNAi therapeutics directly to the airways for treating local conditions and minimizing systemic side effects. It is a non-invasive route of administration that is generally well accepted by patients. However, pulmonary drug delivery is a challenge as the lungs pose a series of anatomical, physiological and immunological barriers to drug delivery. Understanding these barriers is essential for the development an effective RNA delivery system. In this review, the different barriers to pulmonary drug delivery are introduced. The potential of RNAi molecules as new class of therapeutics, and the latest preclinical and clinical studies of using RNAi therapeutics in different respiratory conditions are discussed in details. We hope this review can provide some useful insights for moving inhaled RNAi therapeutics from bench to bedside.

  18. Therapeutic induction of angiogenesis by direct myocardial administration of an adenovirus vector encoding human hepatocyte growth factor gene and its safety

    Institute of Scientific and Technical Information of China (English)

    WU Danli; ZHANG Yourong; LAO Miaofen; YUAN Lizhen; WANG Lan; HA Xiaoqin; WU Zuze(WU Cutse)

    2004-01-01

    After the study in vitro and in rats, we assessed further the effects and safety of local angiogen therapy using intramyocardial delivery of an adenovirus carrying hepatocyte growth factor gene (Ad-HGF) in a canine ischemia model. The angiogenic activity of Ad-HGF was evaluated from three aspects. First, the augmentation of collateral vessel development was assessed by angiography 30 d after surgery. The results showed that the density of collateral vessels in treated group was higher than that of control group. Secondly, infarct size was evaluated by TTC staining and image analysis. The results showed that the infarct size of treated group was smaller than that of control group. Thirdly, the myocardial regional blood flow was determined by the method of colored microspheres. The results showed that the blood flow recovered to the level before ligation in treated group, but that of the control group was lower than normal level. In addition, during the study of chronic toxicity, we tested the anti-adenovirus antibodies by neutralization method. The antibodies yielded after the fourth injection decreased slowly from peak level and disappeared 12 weeks after drug withdrawal. Overall, Ad-HGF can promote angiogenesis in ischemic myocardium and reduce infarct size.So this method may be considered as a therapeutic angiogenesis induction strategy for ischemic disease including myocardial infarction and peripheral artery disease. At the same time, Ad-HGF could induce the yield of anti-adenovirus antibodies to neutralize adenovirus, which may be the mechanism of adenovirus clearance.

  19. Genotype Phenotype Correlation of Genetic Polymorphism of PPAR Gamma Gene and Therapeutic Response to Pioglitazone in Type 2 Diabetes Mellitus- A Pilot Study

    Science.gov (United States)

    Sankaran, Ramalingam; Ramalingam, Sudha; Sairam, Thiagarajan; Somasundaram, LS

    2016-01-01

    Introduction Pro12Ala polymorphism is a missense mutation at codon 12 in peroxisome proliferator-activated receptor γ gene (PPARG). This polymorphism is known to be associated with increased insulin sensitivity. Pioglitazone, a thiazolidinedione, is an anti-diabetic drug which acts as an agonist at PPAR γ receptor. Aim To determine the association between Pro12Ala polymorphism of the PPARG and variation in therapeutic response to the PPARγ agonist, pioglitazone. Materials and Methods The study was done as a hospital based pilot project in 30 patients with type 2 diabetes mellitus, on treatment with sulfonylurea or metformin but without adequate glycaemic control. They were started on pioglitazone as add on therapy for a period of 12 weeks. The participants were categorized as responders and non-responders based on the change in HbA1C level after 12 weeks. Pro12Ala polymorphism was analysed by polymerase chain reaction-restriction fragment length polymorphism. Statistical Analysis Logistic regression analysis was done to evaluate the associations between age, baseline body weight, BMI, waist circumference, waist-hip ratio and Pro12Ala variants with the response to pioglitazone. The p-valuePro12Ala polymorphism and glycaemic response to pioglitazone. PMID:27042481

  20. Gene therapy in the cornea.

    Science.gov (United States)

    Mohan, Rajiv R; Sharma, Ajay; Netto, Marcelo V; Sinha, Sunilima; Wilson, Steven E

    2005-09-01

    Technological advances in the field of gene therapy has prompted more than three hundred phase I and phase II gene-based clinical trials for the treatment of cancer, AIDS, macular degeneration, cardiovascular, and other monogenic diseases. Besides treating diseases, gene transfer technology has been utilized for the development of preventive and therapeutic vaccines for malaria, tuberculosis, hepatitis A, B and C viruses, AIDS, and influenza. The potential therapeutic applications of gene transfer technology are enormous. The cornea is an excellent candidate for gene therapy because of its accessibility and immune-privileged nature. In the last two decades, various viral vectors, such as adeno, adeno-associated, retro, lenti, and herpes simplex, as well as non-viral methods, were examined for introducing DNA into corneal cells in vitro, in vivo and ex vivo. Most of these studies used fluorescent or non-fluorescent marker genes to track the level and duration of transgene expression in corneal cells. However, limited studies were directed to evaluate prospects of gene-based interventions for corneal diseases or disorders such as allograft rejection, laser-induced post-operative haze, herpes simplex keratitis, and wound healing in animal models. We will review the successes and obstacles impeding gene therapy approaches used for delivering genes into the cornea.

  1. Retrovirus-delivered siRNA

    Directory of Open Access Journals (Sweden)

    Devroe Eric

    2002-08-01

    Full Text Available Abstract Background The ability of transfected synthetic small interfering (si RNAs to suppress the expression of specific transcripts has proved a useful technique to probe gene function in mammalian cells. However, high production costs limit this technology's utility for many laboratories and experimental situations. Recently, several DNA-based plasmid vectors have been developed that direct transcription of small hairpin RNAs, which are processed into functional siRNAs by cellular enzymes. Although these vectors provide certain advantages over chemically synthesized siRNAs, numerous disadvantages remain including merely transient siRNA expression and low and variable transfection efficiency. Results To overcome several limitations of plasmid-based siRNA, a retroviral siRNA delivery system was developed based on commerically available vectors. As a pilot study, a vector was designed to target the human Nuclear Dbf2-Related (NDR kinase. Cells infected with the anti-NDR siRNA virus dramatically downregulate NDR expression, whereas control viruses have no effect on total NDR levels. To confirm and extend these findings, an additional virus was constructed to target a second gene, transcriptional coactivator p75. Conclusion The experiments presented here demonstrate that retroviruses are efficient vectors for delivery of siRNA into mammalian cells. Retrovirus-delivered siRNA provides significant advancement over previously available methods by providing efficient, uniform delivery and immediate selection of stable "knock-down" cells. This development should provide a method to rapidly assess gene function in established cell lines, primary cells, or animals.

  2. Small RNAs as potential platelet therapeutics.

    Science.gov (United States)

    Edelstein, Leonard C; Bray, Paul F

    2012-01-01

    MicroRNAs (miRNAs) are 21-23 nucleotide RNAs that regulate more than 60% of mammalian protein coding genes. miRNAs play critical roles in hematopoiesis and megakaryocyte function and development. Platelets, in addition to possessing functional miRNA processing machinery, have miRNA levels that have been correlated with platelet reactivity, and these miRNAs have been shown to target mRNAs that encode proteins that alter platelet function. There are potential uses of platelet miRNA as biomarkers and therapeutic agents. Due to the ability of platelets to release miRNA-containing microparticles at sites of activation, including angiogenic regions, tumors, and atherosclerotic plaques, there is the possibility of engineering platelets to deliver miRNA-based therapies to these sites. Cellpreferential expression of miRNAs could be exploited to restrict transgene expression in hematopoietic stem cell gene therapy to the desired lineage, including megakaryocytes and platelets. Finally, manipulation of gene expression in stored platelets may allow more effective platelet storage. Although much work remains to be done, there is great potential in miRNA-based platelet therapies.

  3. Application of mesenchymal stem cells as a vehicle to deliver replication-competent adenovirus for treating malignant glioma

    Institute of Scientific and Technical Information of China (English)

    Cui Hai; Yong-Min Jin; Wen-Biao Jin; Zhe-Zhu Han; Mei-Nv Cui; Xue-Zhe Piao; Xiong-Hu Shen; Song-Nan Zhang; Hong-Hua Sun

    2012-01-01

    Although gene therapy was regarded as a promising approach for glioma treatment,its therapeutic efficacy was often disappointing because of the lack of efficient drug delivery systems.Mesenchymal stem cells (MSCs) have been reported to have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy.Therefore,in this study,we attempted to treat glioma by using MSCs as a vehicle for delivering replication-competent adenovirus.We firstly compared the infectivity of type 3,type 5,and type 35 fiber-modified adenoviruses in MSCs.We also determined suitable adenovirus titer in vitro and then used this titer to analyze the ability of MSCs to deliver replication-competent adenovirus into glioma in vivo.Our results indicated that type 35 fiber-modified adenovirus showed higher infectivity than did naked type 3 or type 5 fiber-modified adenovirus.MSCs carrying replication-competent adenovirus significantly inhibited tumor growth in vivo compared with other control groups.In conclusion,MSCs are an effective vehicle that can successfully transport replication-competent adenovirus into glioma,making it a potential therapeutic strategy for treating malignant glioma.

  4. Employment of Salmonella in Cancer Gene Therapy.

    Science.gov (United States)

    Lee, Che-Hsin

    2016-01-01

    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors.

  5. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors.

    Science.gov (United States)

    Senzer, Neil; Nemunaitis, John; Nemunaitis, Derek; Bedell, Cynthia; Edelman, Gerald; Barve, Minal; Nunan, Robert; Pirollo, Kathleen F; Rait, Antonina; Chang, Esther H

    2013-05-01

    Selective delivery of therapeutic molecules to primary and metastatic tumors is optimal for effective cancer therapy. A liposomal nanodelivery complex (scL) for systemic, tumor-targeting delivery of anticancer therapeutics has been developed. scL employs an anti-transferrin receptor (TfR), scFv as the targeting molecule. Loss of p53 suppressor function, through mutations or inactivation of the p53 pathway, is present in most human cancers. Rather than being transiently permissive for tumor initiation, persistence of p53 dysfunction is a continuing requirement for maintaining tumor growth. Herein, we report results of a first-in-man Phase I clinical trial of restoration of the normal human tumor suppressor gene p53 using the scL nanocomplex (SGT-53). Minimal side effects were observed in this trial in patients with advanced solid tumors. Furthermore, the majority of patients demonstrated stable disease. One patient with adenoid cystic carcinoma had his status changed from unresectable to resectable after one treatment cycle. More significantly, we observed an accumulation of the transgene in metastatic tumors, but not in normal skin tissue, in a dose-related manner. These results show not only that systemically delivered SGT-53 is well tolerated and exhibits anticancer activity, but also supply evidence of targeted tumor delivery of SGT-53 to metastatic lesions.

  6. [Therapeutic touch and anorexia nervosa].

    Science.gov (United States)

    Satori, Nadine

    2016-01-01

    An innovative practice, therapeutic touch has been used for around ten years in the treatment of eating disorders. Delivered by nurse clinicians having received specific training, this approach is based on nursing diagnoses which identify the major symptoms of this pathology. The support is built around the body and its perceptions. Through the helping relationship, it mobilises the patient's resources to favour a relationship of trust, a letting-go, physical, psychological and emotional relaxation, and improves the therapeutic alliance. Copyright © 2016. Published by Elsevier Masson SAS.

  7. Therapeutic nanomedicine for brain cancer

    OpenAIRE

    Tzeng, Stephany Y.; Green, Jordan J.

    2013-01-01

    Malignant brain cancer treatment is limited by a number of barriers, including the blood–brain barrier, transport within the brain interstitium, difficulties in delivering therapeutics specifically to tumor cells, the highly invasive quality of gliomas and drug resistance. As a result, the prognosis for patients with high-grade gliomas is poor and has improved little in recent years. Nanomedicine approaches have been developed in the laboratory, with some technologies being translated to the ...

  8. WHAT CAN WE LEARN FROM VIRUS IN DESIGNING NONVIRAL GENE VECTORS

    Institute of Scientific and Technical Information of China (English)

    Chun-hong Xu; Mei-hua Sui; Jian-bin Tang; You-qing Shen

    2011-01-01

    Gene therapy has emerged as a potential new approach to treat genetic disorders by delivering therapeutic genes to target diseased tissues. However, its clinical use has been impeded by gene delivery systems. The viral vectors are very efficient in delivering and expressing their carried genes, but they have safety issues in clinical use. While nonviral vectors are much safer with very low risks after careful material design, but their gene transcription efficiency is too low to be clinically used. Thus, rational design of nonviral vectors mimicking the viral vectors would be a way to break this bottleneck. This review compares side-by-side how viral/nonviral gene vectors transcend these biological barriers in terms of blood circulation, cellular uptake, endosome escape, nucleus import and gene transcription.

  9. Therapeutic Antisense Oligonucleotides against Cancer: Hurdling to the Clinic

    Science.gov (United States)

    Moreno, Pedro; Pêgo, Ana

    2014-10-01

    Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen), oligonucleotide-based therapeutics have not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given towards a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

  10. THERAPEUTIC ANTISENSE OLIGONUCLEOTIDES AGAINST CANCER: HURDLING TO THE CLINIC

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Duarte Moreno

    2014-10-01

    Full Text Available Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen, oligonucleotide-based therapeutics have not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given towards a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

  11. Development of a Health System-Based Nurse-Delivered Aromatherapy Program.

    Science.gov (United States)

    Joswiak, Denise; Kinney, Mary Ellen; Johnson, Jill R; Kolste, Alison K; Griffin, Kristen H; Rivard, Rachael L; Dusek, Jeffery A

    2016-04-01

    Healthcare systems are increasingly looking to integrate aromatherapy (essential oils) as a safe, low-cost, and nonpharmacologic option for patient care to reduce pain, nausea, and anxiety and to improve sleep. This article describes the development and implementation of a healthcare system-wide program of nurse-delivered essential oil therapeutic interventions to inpatients throughout an acute care setting. In addition, we provide lessons learned for nursing administrators interested in developing similar nurse-delivered aromatherapy programs.

  12. Ovarian cancer gene therapy using HPV-16 pseudovirion carrying the HSV-tk gene.

    Directory of Open Access Journals (Sweden)

    Chien-Fu Hung

    Full Text Available Ovarian cancer is the leading cause of death from all gynecological cancers and conventional therapies such as surgery, chemotherapy, and radiotherapy usually fail to control advanced stages of the disease. Thus, there is an urgent need for alternative and innovative therapeutic options. We reason that cancer gene therapy using a vector capable of specifically delivering an enzyme-encoding gene to ovarian cancer cells will allow the cancer cell to metabolize a harmless prodrug into a potent cytotoxin, which will lead to therapeutic effects. In the current study, we explore the use of a human papillomavirus (HPV pseudovirion to deliver a herpes simplex virus thymidine kinase (HSV-tk gene to ovarian tumor cells. We found that the HPV-16 pseudovirion was able to preferentially infect murine and human ovarian tumor cells when administered intraperitoneally. Furthermore, intraperitoneal injection of HPV-16 pseudovirions carrying the HSV-tk gene followed by treatment with ganciclovir led to significant therapeutic anti-tumor effects in murine ovarian cancer-bearing mice. Our data suggest that HPV pseudovirion may serve as a potential delivery vehicle for ovarian cancer gene therapy.

  13. Using therapeutic cloning to fight human disease: a conundrum or reality?

    Science.gov (United States)

    Hall, Vanessa J; Stojkovic, Petra; Stojkovic, Miodrag

    2006-07-01

    The development and transplantation of autologous cells derived from nuclear transfer embryonic stem cell (NT-ESC) lines to treat patients suffering from disease has been termed therapeutic cloning. Human NT is still a developing field, with further research required to improve somatic cell NT and human embryonic stem cell differentiation to deliver safe and effective cell replacement therapies. Furthermore, the implications of transferring mitochondrial heteroplasmic cells, which may harbor aberrant epigenetic gene expression profiles, are of concern. The production of human NT-ESC lines also remains plagued by ethical dilemmas, societal concerns, and controversies. Recently, a number of alternate therapeutic strategies have been proposed to circumvent the moral implications surrounding human nuclear transfer. It will be critical to overcome these biological, legislative, and moral restraints to maximize the potential of this therapeutic strategy and to alleviate human disease.

  14. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  15. A pharmacokinetic analysis of molecular cardiac surgery with recirculation mediated delivery of βARKct gene therapy: developing a quantitative definition of the therapeutic window.

    Science.gov (United States)

    Fargnoli, Anthony S; Katz, Michael G; Yarnall, Charles; Sumaroka, Marina V; Stedman, Hansell; Rabinowitz, Joseph J; Koch, Walter J; Bridges, Charles R

    2011-08-01

    Two major problems for translating gene therapy for heart failure therapy are: safe and efficient delivery and the inability to establish a relationship between vector exposure and in vivo effects. We present a pharmacokinetics (PK) analysis of molecular cardiac surgery with recirculating delivery (MCARD) of scAAV6-βARKct. MCARD's stable cardiac specific delivery profile was exploited to determine vector exposure, half-life, and systemic clearance. Five naive sheep underwent MCARD with 10(14) genome copies of scAAV6-βARKct. Blood samples were collected over the recirculation interval time of 20 minutes and evaluated with quantitative polymerase chain reaction (qPCR). C(t) curves were generated and expressed on a log scale. The exposure, half-life, and clearance curves were generated for analysis. qPCR and Western blots were used to determine biodistribution. Finally, all in vivo transduction data was plotted against MCARD's PK to determine if a relationship existed. Vector concentrations at each time point were (cardiac and systemic, respectively): 5 minutes: 9.16 ± 0.15 and 3.21 ± 0.38; 10 minutes: 8.81 ± 0.19 and 3.62 ± 0.37; 15 minutes: 8.75 ± 0.12 and 3.69 ± 0.31; and 20 minutes: 8.66 ± 0.22 and 3.95 ± 0.26; P data revealed that only 0.61 ± 0.43% of the original dose remained in the blood after delivery, and complete clearance from the system was achieved at 1 week. A PK transfer function revealed a positive correlation between exposure and in vivo transduction. Robust βARKct expression was found in all cardiac regions with none in the liver. MCARD may offer a viable method to establish a relationship between vector exposure and in vivo transduction. Using this methodology, it may be possible to address a critical need for establishing an effective therapeutic window. Published by Elsevier Inc.

  16. Therapeutic ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Lawrence A [Center for Industrial and Medical Ultrasound, 1013 NE 40th Street, University of Washington, Seattle, WA 98105 (United States)

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  17. The -174G/C Interleukin-6 Gene Promoter Polymorphism as a Genetic Marker of Differences in Therapeutic Response to Methotrexate and Leflunomide in Rheumatoid Arthritis.

    Science.gov (United States)

    Ruiz-Padilla, A J; Gamez-Nava, J I; Saldaña-Cruz, A M; Murillo-Vazquez, J D; Vazquez-Villegas, M L; Zavaleta-Muñiz, S A; Martín-Márquez, B T; Ponce-Guarneros, J M; Rodriguez Jimenez, N A; Flores-Chavez, A; Sandoval-Garcia, F; Vasquez-Jimenez, J C; Cardona-Muñoz, E G; Totsuka-Sutto, S E; Gonzalez-Lopez, L

    2016-01-01

    Objective. To evaluate the association of -174G/C IL-6 polymorphism with failure in therapeutic response to methotrexate (MTX) or leflunomide (LEF). This prospective, observational cohort included 96 Mexican-Mestizo patients with moderate or severe rheumatoid arthritis (RA), initiating MTX or LEF, genotyped for IL-6 -174G/C polymorphism by PCR-RFLP. Therapeutic response was strictly defined: only if patients achieved remission or low disease activity (DAS-28 < 3.2). Results. Patients with MTX or LEF had significant decrement in DAS-28 (p < 0.001); nevertheless, only 14% and 12.5% achieved DAS-28 < 3.2 at 3 and 6 months. After 6 months with any of these drugs the -174G/G genotype carriers (56%) had higher risk of therapeutic failure compared with GC (RR: 1.19, 95% CI: 1.07-1.56). By analyzing each drug separately, after 6 months with LEF, GG genotype confers higher risk of therapeutic failure than GC (RR = 1.56; 95% CI = 1.05-2.3; p = 0.003), or CC (RR = 1.83; 95% CI = 1.07-3.14; p = 0.001). This risk was also observed in the dominant model (RR = 1.33; 95% CI = 1.03-1.72; p = 0.02). Instead, in patients receiving MTX no genotype was predictor of therapeutic failure. We concluded that IL-6 -174G/G genotype confers higher risk of failure in therapeutic response to LEF in Mexicans and if confirmed in other populations this can be used as promissory genetic marker to differentiate risk of therapeutic failure to LEF.

  18. The -174G/C Interleukin-6 Gene Promoter Polymorphism as a Genetic Marker of Differences in Therapeutic Response to Methotrexate and Leflunomide in Rheumatoid Arthritis

    Science.gov (United States)

    Ruiz-Padilla, A. J.; Saldaña-Cruz, A. M.; Murillo-Vazquez, J. D.; Vazquez-Villegas, M. L.; Ponce-Guarneros, J. M.; Flores-Chavez, A.; Sandoval-Garcia, F.; Vasquez-Jimenez, J. C.; Totsuka-Sutto, S. E.

    2016-01-01

    Objective. To evaluate the association of -174G/C IL-6 polymorphism with failure in therapeutic response to methotrexate (MTX) or leflunomide (LEF). This prospective, observational cohort included 96 Mexican-Mestizo patients with moderate or severe rheumatoid arthritis (RA), initiating MTX or LEF, genotyped for IL-6 -174G/C polymorphism by PCR-RFLP. Therapeutic response was strictly defined: only if patients achieved remission or low disease activity (DAS-28 < 3.2). Results. Patients with MTX or LEF had significant decrement in DAS-28 (p < 0.001); nevertheless, only 14% and 12.5% achieved DAS-28 < 3.2 at 3 and 6 months. After 6 months with any of these drugs the -174G/G genotype carriers (56%) had higher risk of therapeutic failure compared with GC (RR: 1.19, 95% CI: 1.07–1.56). By analyzing each drug separately, after 6 months with LEF, GG genotype confers higher risk of therapeutic failure than GC (RR = 1.56; 95% CI = 1.05–2.3; p = 0.003), or CC (RR = 1.83; 95% CI = 1.07–3.14; p = 0.001). This risk was also observed in the dominant model (RR = 1.33; 95% CI = 1.03–1.72; p = 0.02). Instead, in patients receiving MTX no genotype was predictor of therapeutic failure. We concluded that IL-6 -174G/G genotype confers higher risk of failure in therapeutic response to LEF in Mexicans and if confirmed in other populations this can be used as promissory genetic marker to differentiate risk of therapeutic failure to LEF. PMID:27738630

  19. The -174G/C Interleukin-6 Gene Promoter Polymorphism as a Genetic Marker of Differences in Therapeutic Response to Methotrexate and Leflunomide in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    A. J. Ruiz-Padilla

    2016-01-01

    Full Text Available Objective. To evaluate the association of -174G/C IL-6 polymorphism with failure in therapeutic response to methotrexate (MTX or leflunomide (LEF. This prospective, observational cohort included 96 Mexican-Mestizo patients with moderate or severe rheumatoid arthritis (RA, initiating MTX or LEF, genotyped for IL-6 -174G/C polymorphism by PCR-RFLP. Therapeutic response was strictly defined: only if patients achieved remission or low disease activity (DAS-28 < 3.2. Results. Patients with MTX or LEF had significant decrement in DAS-28 (p<0.001; nevertheless, only 14% and 12.5% achieved DAS-28 < 3.2 at 3 and 6 months. After 6 months with any of these drugs the -174G/G genotype carriers (56% had higher risk of therapeutic failure compared with GC (RR: 1.19, 95% CI: 1.07–1.56. By analyzing each drug separately, after 6 months with LEF, GG genotype confers higher risk of therapeutic failure than GC (RR = 1.56; 95% CI = 1.05–2.3; p=0.003, or CC (RR = 1.83; 95% CI = 1.07–3.14; p=0.001. This risk was also observed in the dominant model (RR = 1.33; 95% CI = 1.03–1.72; p=0.02. Instead, in patients receiving MTX no genotype was predictor of therapeutic failure. We concluded that IL-6 -174G/G genotype confers higher risk of failure in therapeutic response to LEF in Mexicans and if confirmed in other populations this can be used as promissory genetic marker to differentiate risk of therapeutic failure to LEF.

  20. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics

    Science.gov (United States)

    Chen, Kuan-Ju

    Over the past decades, significant efforts have been devoted to explore the use of various nanoparticle-based systems in the field of nanomedicine, including molecular imaging and therapy. Supramolecular synthetic approaches have attracted lots of attention due to their flexibility, convenience, and modularity for producing nanoparticles. In this dissertation, the developmental story of our size-controllable supramolecular nanoparticles (SNPs) will be discussed, as well as their use in specific biomedical applications. To achieve the self-assembly of SNPs, the well-characterized molecular recognition system (i.e., cyclodextrin/adamantane recognition) was employed. The resulting SNPs, which were assembled from three molecular building blocks, possess incredible stability in various physiological conditions, reversible size-controllability and dynamic disassembly that were exploited for various in vitro and in vivo applications. An advantage of using the supramolecular approach is that it enables the convenient incorporation of functional ligands onto SNP surface that confers functionality ( e.g., targeting, cell penetration) to SNPs. We utilized SNPs for molecular imaging such as magnetic resonance imaging (MRI) and positron emission tomography (PET) by introducing reporter systems (i.e., radio-isotopes, MR contrast agents, and fluorophores) into SNPs. On the other hand, the incorporation of various payloads, including drugs, genes and proteins, into SNPs showed improved delivery performance and enhanced therapeutic efficacy for these therapeutic agents. Leveraging the powers of (i) a combinatorial synthetic approach based on supramolecular assembly and (ii) a digital microreactor, a rapid developmental pathway was developed that is capable of screening SNP candidates for the ideal structural and functional properties that deliver optimal performance. Moreover, SNP-based theranostic delivery systems that combine reporter systems and therapeutic payloads into a

  1. DNA as therapeutics; an update

    Directory of Open Access Journals (Sweden)

    Saraswat P

    2009-01-01

    Full Text Available Human gene therapy is the introduction of new genetic material into the cells of an individual with the intention of producing a therapeutic benefit for the patient. Deoxyribonucleic acid and ribonucleic acid are used in gene therapy. Over time and with proper oversight, human gene therapy might become an effective weapon in modern medicine′s arsenal to help fight diseases such as cancer, acquired immunodeficiency syndrome, diabetes, high blood pressure, coronary heart disease, peripheral vascular disease, neurodegenerative diseases, cystic fibrosis, hemophilia and other genetic disorders. Gene therapy trials in humans are of two types, somatic and germ line gene therapy. There are many ethical, social, and commercial issues raised by the prospects of treating patients whose consent is impossible to obtain. This review summarizes deoxyribonucleic acid-based therapeutics and gene transfer technologies for the diseases that are known to be genetic in origin. Deoxyribonucleic acid-based therapeutics includes plasmids, oligonucleotides for antisense and antigene applications, deoxyribonucleic acid aptamers and deoxyribonucleic acidzymes. This review also includes current status of gene therapy and recent developments in gene therapy research.

  2. DNA as therapeutics; an update.

    Science.gov (United States)

    Saraswat, P; Soni, R R; Bhandari, A; Nagori, B P

    2009-09-01

    Human gene therapy is the introduction of new genetic material into the cells of an individual with the intention of producing a therapeutic benefit for the patient. Deoxyribonucleic acid and ribonucleic acid are used in gene therapy. Over time and with proper oversight, human gene therapy might become an effective weapon in modern medicine's arsenal to help fight diseases such as cancer, acquired immunodeficiency syndrome, diabetes, high blood pressure, coronary heart disease, peripheral vascular disease, neurodegenerative diseases, cystic fibrosis, hemophilia and other genetic disorders. Gene therapy trials in humans are of two types, somatic and germ line gene therapy. There are many ethical, social, and commercial issues raised by the prospects of treating patients whose consent is impossible to obtain. This review summarizes deoxyribonucleic acid-based therapeutics and gene transfer technologies for the diseases that are known to be genetic in origin. Deoxyribonucleic acid-based therapeutics includes plasmids, oligonucleotides for antisense and antigene applications, deoxyribonucleic acid aptamers and deoxyribonucleic acidzymes. This review also includes current status of gene therapy and recent developments in gene therapy research.

  3. Bacteriophage Procurement for Therapeutic Purposes.

    Science.gov (United States)

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented.

  4. Delivering HPC Systems to 132 Dock

    Energy Technology Data Exchange (ETDEWEB)

    Kettering, Brett Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-23

    The intention of this document is to provide the subcontractor with information to enable trucks delivering HPC (High Performance Computing) systems to the 03-0132, computer rooms with the information they need to do so successfully.

  5. Time Outdoors May Deliver Better Sleep

    Science.gov (United States)

    ... fullstory_163389.html Time Outdoors May Deliver Better Sleep Camping and exposure to natural light helps prime ... Spending time in the outdoors may improve your sleep, a small study suggests. Researchers found that a ...

  6. Musings on genome medicine: is there hope for ethical and safe stem cell therapeutics?

    Science.gov (United States)

    Rao, Mahendra; Condic, Maureen L

    2009-07-14

    Although most stem cell therapy has been non-controversial, therapy based on pluripotent stem cells has raised both ethical and safety concerns. Despite these concerns, the use of cells derived from pluripotent stem cells has recently been approved for clinical trials. We suggest that recent advances in the field have provided avenues to develop pluripotent cells that raise far fewer ethical concerns. Moreover, advances in cell sorting, gene modification and screening have allowed the development of safer therapeutic approaches. Continued advances in this rapidly evolving field are likely to allow therapy to be delivered in a safe and effective manner without socially divisive ethical controversy in the not-so-distant future.

  7. Therapeutic ultrasound - The healing sound and its applications in oral diseases: The review of literature

    Directory of Open Access Journals (Sweden)

    Jyothirmai Koneru

    2012-01-01

    Full Text Available The application of medical ultrasound was mainly centered on the soft tissue diagnostic imaging until now. Recently, its use has been widened and adopted for various therapeutic purposes. It has been reported to facilitate the healing of bone fractures, wounds, apthous ulcers and temporomandibular disorders. In addition, ultrasound has also been shown to facilitate delivery of chemotherapeutic drugs into tumors, promote gene therapy to targeted tissues, and deliver thrombolytic drugs into blood clots. This article reviews the principles and current status of ultrasound-based treatments.

  8. Gene therapy approaches for spinal cord injury

    Science.gov (United States)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  9. Streptococcus sp. and Staphylococcus aureus isolates from patients with psoriasis possess genes that code for toxins (superantigens): clinical and therapeutic implications.

    Science.gov (United States)

    El Ferezli, Jessica; Jenbazian, Lori; Rubeiz, Nelly; Kibbi, Abdul-Ghani; Zaynoun, Shukrallah; Abdelnoor, Alexander M

    2008-01-01

    Superantigens are powerful T lymphocyte-stimulating agents that are believed to contribute to the pathogenesis of certain diseases such as psoriasis. Toxins produced by Streptococcus pyogenes and Staphylococcus aureus are superantigens. The aim of this study was to detect genes that code for superantigens in Streptococcus and Staphylococcus aureus isolates from psoriatic patients. Primers to amplify streptococcal pyrogenic exotoxin A, B, and C and streptolysin O genes and staphylococcal enterotoxin A, B, C, and D genes were used. Streptococcal exotoxin B was detected in five streptococcal isolates. Staphyloccocus aureus enterotoxin A and/or C genes were detected in nine S. aureus isolates. Isolates from 13 of 22 patients possesed gene(s) that code for toxin(s) (superantigens). These results might support the role of superantigens in the exacerbation of psoriasis.

  10. CK1δ in lymphoma: gene expression and mutation analyses and validation of CK1δ kinase activity for therapeutic application

    Directory of Open Access Journals (Sweden)

    Brigitte Sophia Winkler

    2015-02-01

    Full Text Available The prognosis of lymphoid neoplasms has improved considerably during the last decades. However, treatment response for some lymphoid neoplasms is still poor, indicating the need for new therapeutic approaches. One promising new strategy is the inhibition of kinases regulating key signal transduction pathways, which are of central importance in tumorigenesis. Kinases of the CK1 family may represent an attractive drug target since CK1 expression and/or activity are associated with the pathogenesis of malignant diseases. Over the last years efforts were taken to develop highly potent and selective CK1-specific inhibitor compounds and their therapeutic potential has now to be proved in pre-clinical trials. Therefore, we analyzed expression and mutational status of CK1δ in several cell lines representing established lymphoma entities, and also measured the mRNA expression level in primary lymphoma tissue as well as non-neoplastic blood cells. For a selection of lymphoma cell lines we furthermore determined CK1δ kinase activity and demonstrated therapeutic potential of CK1-specific inhibitors as a putative therapeutic option in the treatment of lymphoid neoplasms.

  11. Correction of murine rag2 severe combined immunodeficiency by lentiviral gene therapy using a codon-optimized RAG2 therapeutic transgene

    NARCIS (Netherlands)

    N.P. van Til (Niek); H. de Boer (Helen); N. Mashamba (Nomusa); A. Wabik (Agnieszka); M.W. Huston (Marshall W.); T.P. Visser (Trudi); R.J. Fontana (Robert); P.L. Poliani (Pietro); B. Cassani (Barbara); F. Zhang (Fang); A.J. Thrasher (Adrian); A. Anna (Villa); G. Wagemaker (Gerard)

    2012-01-01

    textabstractRecombination activating gene 2 (RAG2) deficiency results in severe combined immunodeficiency (SCID) with complete lack of T and B lymphocytes. Initial gammaretroviral gene therapy trials for other types of SCID proved effective, but also revealed the necessity of safe vector design. We

  12. Development of new RNAi therapeutics

    OpenAIRE

    LIU, G; Wong-Staal, F; Li, Q. X.

    2007-01-01

    RNAi-mediated gene inactivation has become a cornerstone of the present day gene function studies that are the foundation of mechanism and target based drug discovery and development, which could potentially shorten the otherwise long process of drug development. In particular, the coming of age of “RNAi drug” could provide new promising therapeutics bypassing traditional approaches. However, there are technological hurdles need to overcome and the biological limita...

  13. Delay Efficient Method for Delivering IPTV Services

    Directory of Open Access Journals (Sweden)

    Sangamesh

    2014-07-01

    Full Text Available Internet Protocol Television (IPTV is a system through which Internet television services are delivered using the architecture and networking methods of the Internet Protocol Suite over a packet-switched network infrastructure, e.g., the Internet and broadband Internet access networks, instead of being delivered through traditional radio frequency broadcast, satellite signal, and cable television (CATV formats. IPTV provides mainly three services: live TV, catch up TV, and video on demand (VoD.This paper focuses on delivering the live TV services by exploiting the virtualised cloud architecture of the IPTV and statistical multiplexing. The VoD tasks are prescheduled so that there will be less Instant Channel Change (ICC delay. We select a proper scheduling algorithm for rescheduling the VoD tasks. We then implement the scheduling algorithm for preshifting the VoD tasks.

  14. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases.

    Science.gov (United States)

    Suen, Colin M; Mei, Shirley H J; Kugathasan, Lakshmi; Stewart, Duncan J

    2013-10-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety.

  15. Two-compartment model of radioimmunotherapy delivered through cerebrospinal fluid

    Energy Technology Data Exchange (ETDEWEB)

    He, Ping [Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD (United States); Kramer, Kim; Cheung, Nai-Kong V. [Memorial Sloan-Kettering Cancer Center, Department of Pediatrics, New York, NY (United States); Smith-Jones, Peter; Larson, Steven M. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Zanzonico, Pat; Humm, John [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics, New York, NY (United States)

    2011-02-15

    Radioimmunotherapy (RIT) using {sup 131}I-3F8 injected into cerebrospinal fluid (CSF) was a safe modality for the treatment of leptomeningeal metastases (JCO, 25:5465, 2007). A single-compartment pharmacokinetic model described previously (JNM 50:1324, 2009) showed good fitting to the CSF radioactivity data obtained from patients. We now describe a two-compartment model to account for the ventricular reservoir of {sup 131}I-3F8 and to identify limiting factors that may impact therapeutic ratio. Each parameter was examined for its effects on (1) the area under the radioactivity concentration curve of the bound antibody (AUC[C{sub IAR}]), (2) that of the unbound antibody AUC[C{sub IA}], and (3) their therapeutic ratio (AUC[C{sub IAR}]/AUC[C{sub IA}]). Data fitting showed that CSF kBq/ml data fitted well using the two-compartment model (R = 0.95 {+-} 0.03). Correlations were substantially better when compared to the one-compartment model (R = 0.92 {+-} 0.11 versus 0.77 {+-} 0.21, p = 0.005). In addition, we made the following new predictions: (1) Increasing immunoreactivity of {sup 131}I-3F8 from 10% to 90% increased both (AUC[C{sub IAR}]) and therapeutic ratio (AUC[C{sub IAR}]/AUC[C{sub IA}]) by 7.4 fold, (2) When extrapolated to the clinical setting, the model predicted that if {sup 131}I-3F8 could be split into 4 doses of 1.4 mg each and given at {>=}24 hours apart, an antibody affinity of K{sub D} of 4 x 10{sup -9} at 50% immunoreactivity were adequate in order to deliver {>=}100 Gy to tumor cells while keeping normal CSF exposure to <10 Gy. This model predicted that immunoreactivity, affinity and optimal scheduling of antibody injections were crucial in improving therapeutic index. (orig.)

  16. Stem cell therapy in animal models of central nervous system (CNS diseases: therapeutic role, challenges and perspectives

    Directory of Open Access Journals (Sweden)

    Swapan Kumar Maiti

    2014-09-01

    Full Text Available Many human diseases relating to central nervous system (CNS are mimicked in animal models to evaluate the efficacy of stem cell therapy. The therapeutic role of stem cells in animal models of CNS diseases include replacement of diseased or degenerated neuron, oligodendrocytes or astrocytes with healthy ones, secretion of neurotrophic factors and delivery of therapeutics/genes. Scaffolds can be utilized for delivering stem cells in brain. Sustained delivery of stem cells, lineage specific differentiation, and enhanced neuronal network integration are the hallmarks of scaffold mediated stem cell delivery in CNS diseases. This review discusses the therapeutic role, challenges and future perspectives of stem cell therapy in animal models of CNS diseases.

  17. Effective Delivery of Therapeutic Interventions: Findings from Four Site Visits

    Science.gov (United States)

    Atkinson, Cathy; Squires, Garry; Bragg, Joanna; Wasilewski, David; Muscutt, Janet

    2013-01-01

    This project follows a survey into the role of UK educational psychologists (EPs) in delivering therapeutic interventions to children and young people. Four educational psychology services (EPSs) that identified themselves as providing effective therapeutic practice were selected on the basis of their qualitative responses to the survey. Site…

  18. Gene expression of hematoregulatory cytokines is elevated endogenously after sublethal gamma irradiation and is differentially enhanced by therapeutic administration of biologic response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, V.M. [Univ. of Colorado Health Sciences Center, Denver, CO (United States); Adamovicz, J.J.; Madonna, G.S.; Gause, W.C. [Uniformed Services Univ. of the Health Sciences, Bethesda, MD (United States); Elliott, T.B.; Moore, M.M.; Ledney, G.D.; Jackson, W.E. III [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States)

    1994-09-01

    Prompt, cytokine-mediated restoration of hematopoiesis is a prerequisite for survival after irradiation. Therapy with biologic response modifiers (BRMs), such as LPS, 3D monophosphoryl lipid A (MPL), and synthetic trehalose dicrynomycolate (S-TDCM) presumably accelerates hematopoietic recovery after irradiation are poorly defined. One hour after sublethal (7.0 Gy) {sup 60}Co gamma irradiation, B6D2F1/J female mice received a single i.p. injection of LPS, MPL, S-TDCM, an extract from Serratia marcescens (Sm-BRM), or Tween 80 in saline (TS). Five hours later, a quantitative reverse transcription-PCR assay demonstrated marked splenic gene expression for IL-1{beta}, IL-3, IL-6, and granulocyte-CSF (G-CSF). Enhanced gene expression for TNF-{alpha}, macrophage-CSF (M-CSF), and stem cell factor (SCF) was not detected. Injection of any BRM further enhanced cytokine gene expression and plasma levels of CSF activity within 24 h after irradiation and hastened bone marrow recovery. Mice injected with S-TDCM or Sm-BRM sustained expression of the IL-6 gene for at least 24 h after irradiation. Sm-BRM-treated mice exhibited greater gene expression for IL-1{beta}, IL-3, TNF-{alpha}, and G-CSF at day 1 than any other BRM. When challenged with 2 LD{sub 50/30} of Klebsiella pneumoniae 4 days after irradiation, 100% of Sm-BRM-treated mice and 70% of S-TDCM-treated mice survived, whereas {le}30% of mice treated with LPS, MPL, or TS survived. Thus, sublethal irradiation induces transient, splenic cytokine gene expression that can be differentially amplified and prolonged by BRMs. BRMs that sustained and/or enhanced irradiation-induced expression of specific cytokine genes improved survival after experimental infection. 67 refs., 7 figs., 1 tab.

  19. Is International Accounting Education Delivering Pedagogical Value?

    Science.gov (United States)

    Patel, Chris; Millanta, Brian; Tweedie, Dale

    2016-01-01

    This paper examines whether universities are delivering pedagogical value to international accounting students commensurate with the costs of studying abroad. The paper uses survey and interview methods to explore the extent to which Chinese Learners (CLs) in an Australian postgraduate accounting subject have distinct learning needs. The paper…

  20. TC-1 Satellite of DSP Delivered

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    TC-1 satellite of Double Star Program (DSP), a near-earth equatorial satellite, was delivered to the representative of the end user, the Research Center for Space Science and Application under the Chinese Academy of Sciences (CAS) on April 12, 2004, which symbolized that TC-1 satellite was put into operation formally.

  1. Interactivity in an Electronically Delivered Marketing Course.

    Science.gov (United States)

    Larson, Paul D.

    2002-01-01

    In a marketing course delivered using Lotus Notes, 32 students were randomly assigned to large or small groups with heavy or light coaching. No differences in interactivity appeared related to group size or gender. More coaching increased the quantity, not quality, of interactivity. Quality seemed to decrease as quantity increased. (Contains 35…

  2. Is International Accounting Education Delivering Pedagogical Value?

    Science.gov (United States)

    Patel, Chris; Millanta, Brian; Tweedie, Dale

    2016-01-01

    This paper examines whether universities are delivering pedagogical value to international accounting students commensurate with the costs of studying abroad. The paper uses survey and interview methods to explore the extent to which Chinese Learners (CLs) in an Australian postgraduate accounting subject have distinct learning needs. The paper…

  3. Science Ⅲ marine research ship delivered

    Institute of Scientific and Technical Information of China (English)

    Gong Wei

    2006-01-01

    @@ On August 18, China's most advanced marine research ship Science Ⅲ was commissioned into operation at Qingdao and became an official member of China's marine research fleet. Designed and built by CSIC, the ship was delivered at Shanghai to the Institute of Oceanology, Chinese Academy of Sciences.

  4. Delivering Online Examinations: A Case Study

    Directory of Open Access Journals (Sweden)

    John MESSING

    2004-07-01

    Full Text Available Delivering Online Examinations: A Case Study Jason HOWARTH John MESSING Irfan ALTAS Charles Sturt University Wagga Wagga-AUSTRALIA ABSTRACT This paper represents a brief case study of delivering online examinations to a worldwide audience. These examinations are delivered in partnership with a commercial online testing company as part of the Industry Master’s degree at Charles Sturt University (CSU. The Industry Master’s degree is an academic program for students currently employed in the IT industry. Using Internet Based Testing (IBT, these students are examined in test centres throughout the world. This offers many benefits. For example, students have the freedom of sitting exams at any time during a designated interval. Computer-based testing also provides instructors with valuable feedback through test statistics and student comments. In this paper, we document CSU’s use of the IBT system, including how tests are built and delivered, and how both human and statistical feedback is used to evaluate and enhance the testing process.

  5. Delivering best care in war and peace.

    Science.gov (United States)

    Moore, Alison

    2014-06-24

    Col Alan Finnegan, the fi rst Ministry of Defence professor of nursing, is driving forward research into preparing nurses for deployment and ensuring they deliver the best care possible in war and peace. Research topics range from the role of autonomous practitioners to the effects on soldiers of injuries to their genitalia.

  6. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  7. Cell-Internalization SELEX: Method for Identifying Cell-Internalizing RNA Aptamers for Delivering siRNAs to Target Cells

    Science.gov (United States)

    Thiel, William H.; Thiel, Kristina W.; Flenker, Katie S.; Bair, Tom; Dupuy, Adam J.; McNamara, James O.; Miller, Francis J.; Giangrande, Paloma H.

    2015-01-01

    After a decade of work to address cellular uptake, the principal obstacle to RNAi-based therapeutics, there is now well-deserved, renewed optimism about RNAi-based drugs. Phase I and II studies have shown safe, strong, and durable-gene knockdown (80–90 %, lasting for a month after a single injection) and/or clinical benefit in treating several liver pathologies. Although promising, these studies have also highlighted the need for robust delivery techniques to develop RNAi therapeutics for treating other organ systems and diseases. Conjugation of siRNAs to cell-specific, synthetic RNA ligands (aptamers) is being proposed as a viable solution to this problem. While encouraging, the extended use of RNA aptamers as a delivery tool for siRNAs awaits the identification of RNA aptamer sequences capable of targeting and entering the cytoplasm of many different cell types. We describe a cell-based selection process for the rapid identification and characterization of RNA aptamers suited for delivering siRNA drugs into the cytoplasm of target cells. This process, termed “cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment),” entails the combination of multiple sophisticated technologies, including cell culture-based SELEX procedures, next-generation sequencing (NGS), and novel bioinformatics tools. PMID:25319652

  8. Id-1 and Id-2 genes and products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-09-30

    A method for treatment and amelioration of breast, cervical, ovarian, endometrial, squamous cells, prostate cancer and melanoma in a patient comprising targeting Id-1 or Id-2 gene expression with a delivery vehicle comprising a product which modulates Id-1 or Id-2 expression.

  9. Id-1 and Id-2 genes and products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    Science.gov (United States)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-09-30

    A method for treatment and amelioration of breast, cervical, ovarian, endometrial, squamous cells, prostate cancer and melanoma in a patient comprising targeting Id-1 or Id-2 gene expression with a delivery vehicle comprising a product which modulates Id-1 or Id-2 expression.

  10. Antibiotics with a selective aerobic or anaerobic spectrum have different therapeutic activities in various regions of the colon in interleukin 10 gene deficient mice

    NARCIS (Netherlands)

    Hoentjen, F; Harmsen, HJM; Braat, H; Torrice, CD; Mann, BA; Sartor, RB; Dieleman, LA

    2003-01-01

    Background and aims: Multiple rodent models implicate resident intestinal bacteria in the pathogenesis of chronic immune mediated intestinal inflammation. Specific pathogen free (SPF) interleukin 10 gene deficient (IL-10(-/-)) mice develop colitis, which does not occur in the germ free (GF) state. W

  11. Mitochondrial diseases: therapeutic approaches.

    Science.gov (United States)

    DiMauro, Salvatore; Mancuso, Michelangelo

    2007-06-01

    Therapy of mitochondrial encephalomyopathies (defined restrictively as defects of the mitochondrial respiratory chain) is woefully inadequate, despite great progress in our understanding of the molecular bases of these disorders. In this review, we consider sequentially several different therapeutic approaches. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but extends to other metabolites. Attempts to bypass blocks in the respiratory chain by administration of electron acceptors have not been successful, but this may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and is especially important in disorders due to primary deficiencies of specific compounds, such as carnitine or coenzyme Q10. There is increasing interest in the administration of reactive oxygen species scavengers both in primary mitochondrial diseases and in neurodegenerative diseases directly or indirectly related to mitochondrial dysfunction. Aerobic exercise and physical therapy prevent or correct deconditioning and improve exercise tolerance in patients with mitochondrial myopathies due to mitochondrial DNA (mtDNA) mutations. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but interesting experimental approaches are being pursued and include, for example, decreasing the ratio of mutant to wild-type mitochondrial genomes (gene shifting), converting mutated mtDNA genes into normal nuclear DNA genes (allotopic expression), importing cognate genes from other species, or correcting mtDNA mutations with specific restriction endonucleases. Germline therapy raises ethical problems but is being considered for prevention of maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is

  12. TMS delivered for A-3 Test Stand

    Science.gov (United States)

    2010-01-01

    A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.

  13. Therapeutic efficacy of artemisinin combination therapies and prevalence of S769N mutation in PfATPase6 gene of Plasmodium falciparum in Kolkata, India

    Institute of Scientific and Technical Information of China (English)

    Pabitra Saha; Shrabanee Mullick; Krishnangshu Ray; Ardhendu K Maji; Arindam Naskar; Swagata Ganguly; Sonali Das; Subhasish K Guha; Asit Biswas; Dilip K Bera; Pratip K Kundu; Madhusudan Das

    2013-01-01

    Objective: To study the in vivo efficacy of these two ACTs in the treatment of Plasmodium falciparum (P. falciparum malaria) in Kolkata and to determine the prevalence of mutant S769N codon of the PfATPase6 gene among field isolates of P. falciparum collected from the study area.Methods:A total of 207 P. falciparum positive cases were enrolled randomly in two study arms and followed up for 42 days as per WHO (2009) protocol. A portion of PfATPase6 gene spanning codon S769N was amplified and sequenced by direct sequencing method. Results: It was observed that the efficacy of both the ACT regimens were highly effective in the study area and no mutant S769N was detected from any isolate. Conclusions: The used, combination AS+SP is effective and the other combination AM+LF might be an alternative, if needed.

  14. Research progress of suicide gene in malignant tumor therapeutic application%自杀基因在肿瘤治疗应用中的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨章孺; 吴敬波

    2013-01-01

    Suicide gene therapy was a new cancer treatment method, the focus of current cancer treatment research, which had favorable clinical prospects. This paper mainly reviewed on the achievements of suicide gene achieved in cancer treatment at home and abroad, and discussed from principle, type, bystander effect, targeted therapy and combination therapy, respectively.%  自杀基因疗法是具有临床应用前景的新型肿瘤治疗方法,也是目前肿瘤治疗研究的焦点。本文就目前自杀基因在国内外肿瘤治疗中取得的成果,分别从原理、种类、旁观者效应、靶向治疗及联合治疗等几个方面做一综述。

  15. Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy

    Directory of Open Access Journals (Sweden)

    Saji Uthaman

    2015-01-01

    Full Text Available Today, nanotechnology plays a vital role in biomedical applications, especially for the diagnosis and treatment of various diseases. Among the many different types of fabricated nanoparticles, magnetic metal oxide nanoparticles stand out as unique and useful tools for biomedical applications, because of their imaging characteristics and therapeutic properties such as drug and gene carriers. Polymer-coated magnetic particles are currently of particular interest to investigators in the fields of nanobiomedicine and fundamental biomaterials. Theranostic magnetic nanoparticles that are encapsulated or coated with polymers not only exhibit imaging properties in response to stimuli, but also can efficiently deliver various drugs and therapeutic genes. Even though a large number of polymer-coated magnetic nanoparticles have been fabricated over the last decade, most of these have only been used for imaging purposes. The focus of this review is on polysaccharide-coated magnetic nanoparticles used for imaging and gene delivery.

  16. Liposomes for Use in Gene Delivery

    Directory of Open Access Journals (Sweden)

    Daniel A. Balazs

    2011-01-01

    Full Text Available Liposomes have a wide array of uses that have been continuously expanded and improved upon since first being observed to self-assemble into vesicular structures. These arrangements can be found in many shapes and sizes depending on lipid composition. Liposomes are often used to deliver a molecular cargo such as DNA for therapeutic benefit. The lipids used to form such lipoplexes can be cationic, anionic, neutral, or a mixture thereof. Herein physical packing parameters and specific lipids used for gene delivery will be discussed, with lipids classified according to overall charge.

  17. Prognostic role of KiSS-1 and possibility of therapeutic modality of metastin, the final peptide of the KiSS-1 gene, in urothelial carcinoma.

    Science.gov (United States)

    Takeda, Toshikazu; Kikuchi, Eiji; Mikami, Shuji; Suzuki, Eriko; Matsumoto, Kazuhiro; Miyajima, Akira; Okada, Yasunori; Oya, Mototsugu

    2012-04-01

    The KiSS-1 gene has been reported to be a metastasis suppressor gene in human melanoma. The gene product was isolated from human placenta as the ligand of GPR54, a G protein-coupled receptor, and the C-terminally amidated peptide of 54 amino acids is called metastin. The binding of metastin to GPR54 has been shown to inhibit tumor metastasis in some tumor cells; however, its function remains unclear in urothelial carcinoma. We first evaluated KiSS-1 expression and GPR54 expression in 151 patients with upper urinary tract urothelial carcinoma to determine their prognostic significance. Next, we examined the role of metastin in the invasiveness and lung metastasis of MBT-2 variant (MBT-2V), which is a highly metastatic murine bladder cancer cell. Multivariate analysis revealed that KiSS-1 expression was an independent predictor of metastasis and overall survival. However, GPR54 expression was not selected. Hematogeneous metastasis had a significantly lower level of KiSS-1 expression compared with lymph node metastasis. Metastin treatment significantly reduced the invasiveness of MBT-2V cells and inhibited the DNA-binding activity of NF-κB by blocking its nuclear translocation, leading to a reduction in the expression and activity of matrix metalloproteinase-9. Metastin treatment dramatically prevented the occurrence of lung metastatic nodules (6.3 ± 2.3, n = 15) compared with controls (30.4 ± 5.1, n = 15; P metastin may be an effective inhibitor of metastasis in urothelial carcinoma through its blockade of NF-κB function.

  18. Restoration of the methylation status of hypermethylated gene promoters by microRNA-29b in human breast cancer: A novel epigenetic therapeutic approach

    Directory of Open Access Journals (Sweden)

    Athena Starlard-Davenport

    2013-01-01

    Full Text Available It is well established that transcriptional silencing of critical tumor-suppressor genes by DNA methylation is a fundamental component in the initiation of breast cancer. However, the involvement of microRNAs (miRNAs in restoring abnormal DNA methylation patterns in breast cancer is not well understood. Therefore, we investigated whether miRNA-29b, due to its complimentarity to the 3′- untranslated region of DNA methyltransferase 3A (DNMT3A and DNMT3B, could restore normal DNA methylation patterns in human breast cancers and breast cancer cell lines. We demonstrated that transfection of pre-miRNA-29b into less aggressive MCF-7 cells, but not MDA-MB-231 mesenchymal cells, inhibited cell proliferation, decreased DNMT3A and DNMT3B messenger RNA (mRNA, and decreased promoter methylation status of ADAM23 , CCNA1, CCND2, CDH1, CDKN1C, CDKN2A, HIC1, RASSF1, SLIT2, TNFRSF10D, and TP73 tumor-suppressor genes. Using methylation polymerase chain reaction (PCR arrays and real-time PCR, we also demonstrated that the methylation status of several critical tumor-suppressor genes increased as stage of breast disease increased, while miRNA-29b mRNA levels were significantly decreased in breast cancers versus normal breast. This increase in methylation status was accompanied by an increase in DNMT1 and DNMT3B mRNA in advanced stage of human breast cancers and in MCF-7, MDA-MB-361, HCC70, Hs-578T, and MDA-MB-231 breast cancer cells as compared to normal breast specimens and MCF-10-2A, a non-tumorigenic breast cell line, respectively. Our findings highlight the potential for a new epigenetic approach in improving breast cancer therapy by targeting DNMT3A and DNMT3B through miRNA-29b in non-invasive epithelial breast cancer cells.

  19. Improved animal models for testing gene therapy for atherosclerosis.

    Science.gov (United States)

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  20. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bodei, L. [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Kidd, M. [Wren Laboratories, Branford, CT (United States); Modlin, I.M. [LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Yale School of Medicine, New Haven, CT (United States); Severi, S.; Nicolini, S.; Paganelli, G. [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Nuclear Medicine and Radiometabolic Units, Meldola (Italy); Drozdov, I. [Bering Limited, London (United Kingdom); Kwekkeboom, D.J.; Krenning, E.P. [LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Erasmus Medical Center, Nuclear Medicine Department, Rotterdam (Netherlands); Baum, R.P. [LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Zentralklinik Bad Berka, Theranostics Center for Molecular Radiotherapy and Imaging, Bad Berka (Germany)

    2016-05-15

    Peptide receptor radionuclide therapy (PRRT) is an effective method for treating neuroendocrine tumors (NETs). It is limited, however, in the prediction of individual tumor response and the precise and early identification of changes in tumor size. Currently, response prediction is based on somatostatin receptor expression and efficacy by morphological imaging and/or chromogranin A (CgA) measurement. The aim of this study was to assess the accuracy of circulating NET transcripts as a measure of PRRT efficacy, and moreover to identify prognostic gene clusters in pretreatment blood that could be interpolated with relevant clinical features in order to define a biological index for the tumor and a predictive quotient for PRRT efficacy. NET patients (n = 54), M: F 37:17, median age 66, bronchial: n = 13, GEP-NET: n = 35, CUP: n = 6 were treated with {sup 177}Lu-based-PRRT (cumulative activity: 6.5-27.8 GBq, median 18.5). At baseline: 47/54 low-grade (G1/G2; bronchial typical/atypical), 31/49 {sup 18}FDG positive and 39/54 progressive. Disease status was assessed by RECIST1.1. Transcripts were measured by real-time quantitative reverse transcription PCR (qRT-PCR) and multianalyte algorithmic analysis (NETest); CgA by enzyme-linked immunosorbent assay (ELISA). Gene cluster (GC) derivations: regulatory network, protein:protein interactome analyses. Statistical analyses: chi-square, non-parametric measurements, multiple regression, receiver operating characteristic and Kaplan-Meier survival. The disease control rate was 72 %. Median PFS was not achieved (follow-up: 1-33 months, median: 16). Only grading was associated with response (p < 0.01). At baseline, 94 % of patients were NETest-positive, while CgA was elevated in 59 %. NETest accurately (89 %, χ{sup 2} = 27.4; p = 1.2 x 10{sup -7}) correlated with treatment response, while CgA was 24 % accurate. Gene cluster expression (growth-factor signalome and metabolome) had an AUC of 0.74 ± 0.08 (z-statistic = 2.92, p < 0

  1. Further Stimulation of Cellular Immune Responses through Association of HPV-16 E6, E7 and L1 Genes in order to produce more Effective Therapeutic DNA Vaccines in Cervical Cancer Model.

    Science.gov (United States)

    Fazeli, Maryam; Soleimanjahi, Hoorieh; Dadashzadeh, Simin

    2015-01-01

    Cervical cancer has been shown to be highly associated with human papillomavirus (HPV) infection. The viral oncogenes E6 and E7 are constantly expressed by the tumor cells and are therefore potent targets for therapeutic genetic vaccination. In the present study, it was investigated the potential effect of HPV-16 E6, E7 and L1 co-administration to activate specific cytotoxic T lymphocytes in tumor mice models. The HPV-16 E6, E7 and L1 genes from Iranian isolate were separately inserted into the mammalian expression vector, pcDNA3, to construct the DNA vaccine candidates. Tumor-bearing Animals (C57BL/6 mice) were immunized with the vaccine candidate; then, Lymphocyte Proliferation Assay (LPA) and relative tumor volume measurements were carried out in order to examine the immunological effects of the vaccine. Obtained results showed that co-administration of the HPV-16 E6, E7 and L1 DNA induced HPV-16 specific cellular immune responses and also protected against TC-1-induced tumor in vivo compared with negative controls. The results showed that mixed delivery systems might be valuable to improve the magnitude of the induced immune responses and confirmed therapeutic effects of HPV-16 E6, E7 through cytotoxic T lymphocyte induction and illustrate the new promising role for HPV-16 L1 CTL epitopes as a suitable CTL inducer.

  2. Bifunctional Bisphosphonates for Delivering Biomolecules to Bone

    Science.gov (United States)

    2012-01-13

    different when p< 0.05. RESULTS AND DISCUSSION Bone tissue is the most preferential site for cancer metastasis . Breast, lung , and prostate...skeletal diseases, such as osteoporosis, bone metastasis , Paget’s disease, hypercalcemia, osteoarthritis, etc. Similarly, there are many therapeutic...osteoporotic 19 bone fractures, other bone diseases, such as osteosarcoma and osteoarthritis, also require a surgical replacement of bone

  3. Bacteria as vectors for gene therapy of cancer.

    LENUS (Irish Health Repository)

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  4. Delivering IT and eBusiness value

    CERN Document Server

    Willcocks, Leslie

    2001-01-01

    Delivering Business Value from IT' is focused on the evaluation issue in IT and how IT evaluation can proceed across the life-cycle of any IT investment and be linked positively to improving business performance. .Chapters 1,2 and 3 detail an approach to IT evaluation whilst chapters 4 and 5 build on these by showing two distinctive approaches to linking IT to business performance. The remaining three chapters deal with a range of evaluation issues emerging as important - specifically Internet evaluation, Y2K and beyond, EMU, quality outsourcing, infrastructure, role of benchmarking, and cost

  5. Enzyme therapeutics for systemic detoxification.

    Science.gov (United States)

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.

  6. Split vector systems for ultra-targeted gene delivery: a contrivance to achieve ethical assurance of somatic gene therapy in vivo.

    Science.gov (United States)

    Tolmachov, Oleg E

    2014-08-01

    Tightly controlled spatial localisation of therapeutic gene delivery is essential to maximize the benefits of somatic gene therapy in vivo and to reduce its undesired effects on the 'bystander' cell populations, most importantly germline cells. Indeed, complete ethical assurance of somatic gene therapy can only be achieved with ultra-targeted gene delivery, which excludes the risk of inadvertent germline gene transfer. Thus, it is desired to supplement existing strategies of physical focusing and biological (cell-specific) targeting of gene delivery with an additional principle for the rigid control over spread of gene transfer within the body. In this paper I advance the concept of 'combinatorial' targeting of therapeutic gene transfer in vivo. I hypothesize that it is possible to engineer complex gene delivery vector systems consisting of several components, each one of them capable of independent spread within the human body but incapable of independent facilitation of gene transfer. As the gene delivery augmented by such split vector systems would be reliant on the simultaneous availability of all the vector system components at a predetermined body site, it is envisaged that higher order reaction kinetics required for the assembly of the functional gene transfer configuration would sharpen spatial localisation of gene transfer via curtailing the blurring effect of the vector spread within the body. A particular implementation of such split vector system could be obtained through supplementing a viral therapeutic gene vector with a separate auxiliary vector carrying a non-integrative and non-replicative form of a gene (e.g., mRNA) coding for a cellular receptor of the therapeutic vector component. Gene-transfer-enabling components of the vector system, which would be delivered separately from the vector component loaded with the therapeutic gene cargo, could also be cell-membrane-insertion-proficient receptors, elements of artificial transmembrane channels

  7. Humanized mouse G6 anti-idiotypic monoclonal antibody has therapeutic potential against IGHV1-69 germline gene-based B-CLL.

    Science.gov (United States)

    Chang, De-Kuan; Kurella, Vinodh B; Biswas, Subhabrata; Avnir, Yuval; Sui, Jianhua; Wang, Xueqian; Sun, Jiusong; Wang, Yanyan; Panditrao, Madhura; Peterson, Eric; Tallarico, Aimee; Fernandes, Stacey; Goodall, Margaret; Zhu, Quan; Brown, Jennifer R; Jefferis, Roy; Marasco, Wayne A

    2016-01-01

    In 10-20% of the cases of chronic lymphocytic leukemia of B-cell phenotype (B-CLL), the IGHV1-69 germline is utilized as VH gene of the B cell receptor (BCR). Mouse G6 (MuG6) is an anti-idiotypic monoclonal antibody discovered in a screen against rheumatoid factors (RFs) that binds with high affinity to an idiotope expressed on the 51p1 alleles of IGHV1-69 germline gene encoded antibodies (G6-id(+)). The finding that unmutated IGHV1-69 encoded BCRs are frequently expressed on B-CLL cells provides an opportunity for anti-idiotype monoclonal antibody immunotherapy. In this study, we first showed that MuG6 can deplete B cells encoding IGHV1-69 BCRs using a novel humanized GTL mouse model. Next, we humanized MuG6 and demonstrated that the humanized antibodies (HuG6s), especially HuG6.3, displayed ∼2-fold higher binding affinity for G6-id(+) antibody compared to the parental MuG6. Additional studies showed that HuG6.3 was able to kill G6-id(+) BCR expressing cells and patient B-CLL cells through antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Finally, both MuG6 and HuG6.3 mediate in vivo depletion of B-CLL cells in NSG mice. These data suggest that HuG6.3 may provide a new precision medicine to selectively kill IGHV1-69-encoding G6-id(+) B-CLL cells.

  8. Adenovirally Delivered Brain-derived Neurotrophic Factor to Rat Retina

    Institute of Scientific and Technical Information of China (English)

    Xu Hou; Dan Hu; Yannian Hui

    2004-01-01

    Purpose: To study the expression of brain-derived neurotrophic factor (BDNF) in the rat retina delivered by adenovirus.Methods: Adenovirus with BDNF gene was injected into the vitreous. Gene expression was detected by immunofluorescence staining, and quantitative analysis was performed after injury and transfection by Enzyme-linked immunosorbent assay (ELISA).Results: The positive cells can be seen on the 3rd day and last 4 weeks by immunofluorescence staining. Positive cells in the control group were fewer than those in the transfection group or the fluorescence intensity was lower at every time point. Quantitative analysis showed that the expression of BDNF groups was higher than that of the control group at every time point(P < 0.01 ), and that of the injured group without transfection was higher than that of the control group on the 3rd day and the 7th day (P < 0.01 ).Conclusion: Efficient and stable transfer of BDNF gene could be achieved by adenovirus delivery into the retina of rats. Injury can promote the expression of BDNF in early period.

  9. Therapeutic approaches for celiac disease

    Science.gov (United States)

    Plugis, Nicholas M.; Khosla, Chaitan

    2015-01-01

    Celiac disease is a common, lifelong autoimmune disorder for which dietary control is the only accepted form of therapy. A strict gluten-free diet is burdensome to patients and can be limited in efficacy, indicating there is an unmet need for novel therapeutic approaches to supplement or supplant dietary therapy. Many molecular events required for disease pathogenesis have been recently characterized and inspire most current and emerging drug-discovery efforts. Genome-wide association studies (GWAS) confirm the importance of human leukocyte antigen genes in our pathogenic model and identify a number of new risk loci in this complex disease. Here, we review the status of both emerging and potential therapeutic strategies in the context of disease pathophysiology. We conclude with a discussion of how genes identified during GWAS and follow-up studies that enhance susceptibility may offer insight into developing novel therapies. PMID:26060114

  10. Therapeutic Benefits of Cannabis: A Patient Survey

    OpenAIRE

    2014-01-01

    Clinical research regarding the therapeutic benefits of cannabis (“marijuana”) has been almost non-existent in the United States since cannabis was given Schedule I status in the Controlled Substances Act of 1970. In order to discover the benefits and adverse effects perceived by medical cannabis patients, especially with regards to chronic pain, we hand-delivered surveys to one hundred consecutive patients who were returning for yearly re-certification for medical cannabis use in Hawai‘i.

  11. DESIGNS MATTER: Delivering Information Sources for Tourism

    Directory of Open Access Journals (Sweden)

    Margie A. Nolasco

    2016-11-01

    Full Text Available Tourism has benefits not just for travelers, but also to the local economy. Since, Bicol Region has natural and cultural attractions; it is a potential travel destination in the country. Technology in delivering information sources played vital role for the success of the tourism industry in the Region. This allows travel enthusiasts to get more information about various tourist attractions. This paper analyzes the effectiveness of delivering information sources such as web advertisement and desktop publishing for tourist promotion in the Bicol Region. Specifically, it determined the status of tourism, and identified common forms of promotions for tourism development. The study adopted mixed method of research. This method was utilized to confirm and validate findings. Interviews and focus group discussions were used to gather data from the respondents of the selected Local Government Units, Department of Tourism, Travel Agencies and Hotel Agents in the Region. Based on the findings, of the total foreign visitors in the country, only 9.14% visited Bicol Region in 2014. That is why, domestic tourist showed high percentage against foreign visitors with 25.7%. Brochures with EZ maps as most commonly used desktop publishing materials and websites and social media for web advertisement. Thus, there is a need to reevaluate promotional activities by the DOT and other agencies. Adoption suggestive features for creative desktop publishing materials and web services should be considered to increase tourist visitors in the Region.

  12. Preventative Therapeutics for Heterotopic Ossification

    Science.gov (United States)

    2016-12-01

    bone. Defining the early development phase of HO in re- lationship to concurrent wound healing is critical to selection of candidate means of...Genes involved in chondrogenesis (COL1α1), osteogenesis (RUNX-2, OCN, PHEX, and POU5F1), wound healing /tissue repair (MMP9, CSF3, FGF-10, and HAS1...the wound healing process in humans will be important in formulating therapeutic interventions that target early chondrogenic, angiogenic, and

  13. Varying polymer architecture to deliver drugs

    OpenAIRE

    Heath, Felicity; Haria, Prinal; Alexander, Cameron

    2007-01-01

    Variable architecture polymers are of considerable interest for the delivery of therapeutic biopolymers, such as DNA and proteins, to their site of action. Polymers that can respond with a change in conformation to biologically relevant stimuli, such as temperature and pH, are being carefully designed to take advantage of the change in environmental conditions the polymer-drug conjugate encounters upon progression from larger-scale systems in the body to subcellular compartments. Viruses resp...

  14. Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression.

    Directory of Open Access Journals (Sweden)

    Anton M Markovets

    Full Text Available UNLABELLED: The incidence of age-related macular degeneration (AMD, the main cause of blindness in older patients in the developed countries, is increasing with the ageing population. At present there is no effective treatment for the prevailing geographic atrophy, dry AMD, whereas antiangiogenic therapies successful used in managing the wet form of AMD. Recently we showed that mitochondria-targeted antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1 is able to prevent the development and moreover caused regression of pre-existing signs of the retinopathy in OXYS rats, an animal model of AMD. Here we examine the effects of SkQ1 on expression of key regulators of angiogenesis vascular endothelial growth factor A (VEGF and its antagonist pigment epithelium-derived factor (PEDF genes in the retina of OXYS rats as evidenced by real-time PCR and an ELISA test for VEGF using Wistar rats as control. Ophthalmoscopic examinations confirmed that SkQ1 supplementation (from 1.5 to 3 months of age, 250 nmol/kg prevented development while eye drops SkQ1 (250 nM, from 9 to 12 months caused some reduction of retinopathy signs in OXYS rats and did not reveal any negative effects on the control Wistar rat's retina. Prevention of premature retinopathy by SkQ1 was connected with an increase of VEGF mRNA and protein in OXYS rat's retina up to the levels corresponding to the Wistar rats, and did not involve changes in PEDF expression. In contrast the treatment with SkQ1 drops caused a decrease of VEGF mRNA and protein levels and an increase in the PEDF mRNA level in the middle-aged OXYS rats, but in Wistar rats the changes of gene expression were the opposite. CONCLUSIONS: The beneficial effects of SkQ1 on retinopathy connected with normalization of expression of VEGF and PEDF in the retina of OXYS rats and depended on age of the animals and the stage of retinopathy.

  15. 肌萎缩侧索硬化症的新型致病基因及治疗展望%New disease-causing genes in amyotrophic lateral sclerosis and the new therapeutic treatments

    Institute of Scientific and Technical Information of China (English)

    戴淑琪; 康丽; 武策; 杨叔媛; 应征

    2015-01-01

    肌萎缩侧索硬化症是一种渐进性的神经退行性疾病,也是最常见的运动神经元疾病。起因是中枢神经系统内控制骨骼肌的运动神经元退变,导致病人从发病开始2到3年内便会出现进展迅速的肌肉萎缩并最终因呼吸衰竭而死亡。近年来随着基因测序技术的不断发展,该病许多新型致病基因被鉴定出来,其功能研究以及寻找潜在治疗靶点逐渐引起人们关注。%Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease and the most common motor neuron disease. The etiology of ALS is that the degeneration of motor neurons in the central never system which control skeletal muscle, and it leads to the rapid amyotrophy, respiratory insufficiency and death in 2-3 years after disease onset. With the advantage of new sequencing technology, many new ALS disease-causing genes have been identified in recent years. Studies of the functions of these genes and seeking for the potential therapeutic targets are thereby worth attention.

  16. Phage therapy: delivering on the promise.

    Science.gov (United States)

    Harper, D R; Anderson, J; Enright, M C

    2011-07-01

    Bacteriophages are viruses that infect and, in many cases, destroy their bacterial targets. Within a few years of their initial discovery they were being investigated as therapeutic agents for infectious disease, an approach known as phage therapy. However, the nature of these exquisitely specific agents was not understood and much early use was both uninformed and unsuccessful. As a result they were replaced by chemical antibiotics once these became available. Although work on phage therapy continued (and continues) in Eastern Europe, this was not conducted to a standard allowing it to support clinical uses in areas regulated by the European Medicines Agency or the US FDA. To develop phage therapy for these areas requires work carried out in accordance with the requirements of these agencies, and, driven by the current crisis of antibiotic resistance, such clinical trials are now under way. The first Phase I clinical trial of safety was reported in 2005, and the results of the first Phase II clinical trial of efficacy of a bacteriophage therapeutic was published in 2009. While the delivery of these relatively large and complex agents to the site of disease can be more challenging than for conventional, small-molecule antibiotics, bacteriophages are then able to multiply locally even from an extremely low (picogram range) initial dose. This multiplication where and only where they are needed underlies the potential for bacteriophage therapeutics to become a much needed and powerful weapon against bacterial disease.

  17. Getting miRNA Therapeutics into the Target Cells for Neurodegenerative Diseases: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Ming Ming Wen

    2016-11-01

    Full Text Available Abstract:MiRNAs play important roles in modulating gene expression in varying cellular processes and disease pathogenesis, including neurodegenerative diseases. Several miRNAs are expressed in the brain and control brain development and identified as important biomarkers in the pathogenesis of motor- and neuro-cognitive diseases such as Alzheimer, Huntington's and Parkinson's diseases and amyotrophic lateral sclerosis. These remarkable miRNAs could be used as diagnostic markers and therapeutic targeting potential for many stressful and untreatable progressive neurodegenerative diseases. To modulate these miRNA activities, there are currently two strategies involved; first one is to therapeutically restore the suppressed miRNA level by miRNA mimics (agonist, and the other one is to inhibit miRNA function by using antimiR (antagonist to repress overactive miRNA function. However, RNAi-based therapeutics often faces in vivo instability because naked nucleic acids are subject to enzyme degradation before reaching the target sites. Therefore, an effective, safe and stable bio-responsive delivery system is necessary to protect the nucleic acids from serum degradation and assist their entrance to the cells. Since neuronal cells are non-regenerating, to design engineered miRNAs to be delivered to the CNS for long term gene expression and knockdown is representing an enormous challenge for scientists. This article provides an insight summary on some of the innovative strategies employed to deliver miRNA into target cells. These viral and non-viral carrier systems hold promise in RNA therapy delivery for neurodegenerative diseases.

  18. Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention against head and neck cancer-containing HPV16 cell lines.

    Science.gov (United States)

    Adhim, Zainal; Otsuki, Naoki; Kitamoto, Junko; Morishita, Naoya; Kawabata, Masato; Shirakawa, Toshiro; Nibu, Ken-Ichi

    2013-07-01

    Our results indicate that siRNA E6 and/or E7 may have potential as a gene-specific therapy for human papillomavirus (HPV) type 16 (HPV16)-related squamous cell carcinoma of the head and neck (HNSCC). To evaluate the effectiveness of siRNA targeting E6 and/or E7 on the in vitro and in vivo growth suppression of HPV16-related HNSCC. HPV16-related HNSCC (UM-SCC47) cell lines were used for the present study. Expression of HPV viral oncogenes E6 and/or E7 and their cellular targets, p53 and pRb, was evaluated by real-time PCR, Western blotting, and immunofluorescence staining. To study the effect of siRNA on tumor growth in vivo, we developed animal models. Representative tumors harvested from each group were processed for apoptosis analyses (TUNEL assay) and immunofluorescence staining for p53 and pRb. E6 and E7 oncogenes of HPV16 were down-regulated by E6 and/or E7 targeting siRNAs, respectively. The expression of p53 and pRb proteins in both the E6 siRNA group and E7 siRNA group was up-regulated compared with those of control groups. The cellular proliferation and apoptosis indexes of E6 and/or E7 siRNA groups were higher than those of controls. In vivo studies showed significant inhibitory effect of E6 and/or E7 siRNA compared with those of control groups, which was consistent with in vitro studies.

  19. The c.-1639g>A polymorphism of the VKORC1 gene and his influence on the therapeutic response during oral anticoagulants use

    Directory of Open Access Journals (Sweden)

    Kovač Mirjana

    2009-01-01

    Full Text Available Background/Aim. A single nucleotide polymorphism c.- 1639G>A in the promoter region of vitamin K-epoxide reductase (VKORC1 gene has been found to account for most of the variability in response to oral anticoagulants (OA. The aim of the study was to determine the incidence and the effect of c.-1639G>A polymorphism on the acenocoumarol dosage requirements in the group of patients under stable anticoagulation, and to estimate the variability in response to OA. Methods. Our study included 200 consecutive patients requiring low (n = 43, medium (n = 127 and high (n = 30 acenocoumarol dose. Results. Out of 43 low dose patients, 40 (93 % carried the A allele. The A allele was less frequent in the group of 30 patients requiring high dose: among these patients 13 (43.3% carried the A allele in the heterozygous form and none of them carried AA genotype. The patients with GG genotype required 2.6 times higher dose than the patients carriers of AA genotype (p < 0.0001. In 33 patients (16.5% the overdose occurred during the initiation of anticoagulant therapy and in 11 patients (5.5% it was associated with bleeding. Out of the group of 33 overdosed patients, 27 and 6 patients carried AA and GA genotype, respectively (p < 0.000001. Conclusion. VKORC1 significantly influenced OA dose and predicted individuals predisposed to unstable anticoagulation. The carriers of AA genotype required 2.6 time lower doses of OA than the carriares of GG genotype. Pharmacogenetic testing could predict a high risk of overdose among 28.5 % of our patients - carriers of AA genotype, before anticoagulation therapy initiation.

  20. Variability in delivered dose and respirable delivered dose from nebulizers: are current regulatory testing guidelines sufficient to produce meaningful information?

    Science.gov (United States)

    Hatley, Ross HM; Byrne, Sarah M

    2017-01-01

    Background To improve convenience to patients, there have been advances in the operation of nebulizers, resulting in fast treatment times and less drug lost to the environment. However, limited attention has been paid to the effects of these developments on the delivered dose (DD) and respirable delivered dose (RDD). Published pharmacopoeia and ISO testing guidelines for adult-use testing utilize a single breathing pattern, which may not be sufficient to enable effective comparisons between the devices. Materials and methods The DD of 5 mg of salbutamol sulfate into adult breathing patterns with inhalation:exhalation (I:E) ratios between 1:1 and 1:4 was determined. Droplet size was determined by laser diffraction and RDD calculated. Nine different nebulizer brands with different modes of operation (conventional, venturi, breath-enhanced, mesh, and breath-activated) were tested. Results Between the non-breath-activated nebulizers, a 2.5-fold difference in DD (~750–1,900 µg salbutamol) was found; with RDD, there was a more than fourfold difference (~210–980 µg). With increasing time spent on exhalation, there were progressive reductions in DD and RDD, with the RDD at an I:E ratio of 1:4 being as little as 40% of the dose with the 1:1 I:E ratio. The DD and RDD from the breath-activated mesh nebulizer were independent of the I:E ratio, and for the breath-activated jet nebulizer, there was less than 20% change in RDD between the I:E ratios of 1:1 and 1:4. Conclusion Comparing nebulizers using the I:E ratio recommended in the guidelines does not predict relative performance between the devices at other ratios. There was significant variance in DD or RDD between different brands of non-breath-activated nebulizer. In future, consideration should be given to revision of the test protocols included in the guidelines, to reflect more accurately the potential therapeutic dose that is delivered to a realistic spectrum of breathing patterns. PMID:28203110

  1. People deliver eye care: managing human resources

    Directory of Open Access Journals (Sweden)

    Kayode Odusote

    2005-12-01

    Full Text Available People deliver health. Effective health care needs an efficient and motivated health workforce, which is the totality of individuals who directly or indirectly contribute to the promotion, protection and improvement of the health of the population.Community eye health is about providing eye health care to the people as close as possible to where they live and as much as possible at a price they can afford. It promotes people-centred care rather than the traditional disease-centred eye care services. In order to provide effective and efficient eye care services, we need an adequate number of well-qualified, well-motivated and equitably distributed eye health workers (EHWs.

  2. ISES Experience in Delivering Space Weather Services

    Science.gov (United States)

    Boteler, David

    The International Space Environment Service has over eighty years experience in providing space weather services to meet a wide variety of user needs. This started with broadcast on December 1, 2008 from the Eiffel Tower about radio conditions. The delivery of information about ionospheric effects on high frequency (HF) radio propagation continue to be a major concern in many parts of the world. The movement into space brought requirements for a new set of space weather services, ranging from radiation dangers to man in space, damage to satellites and effects on satellite communication and navigation systems. On the ground magnetic survey, power system and pipeline operators require information about magnetic disturbances that can affect their operations. In the past these services have been delivered by individual Regional Warning Centres. However, the needs of new trans-national users are stimulating the development of new collaborative international space weather services.

  3. Delivering Hubble Discoveries to the Classroom

    Science.gov (United States)

    Eisenhamer, B.; Villard, R.; Weaver, D.; Cordes, K.; Knisely, L.

    2013-04-01

    Today's classrooms are significantly influenced by current news events, delivered instantly into the classroom via the Internet. Educators are challenged daily to transform these events into student learning opportunities. In the case of space science, current news events may be the only chance for educators and students to explore the marvels of the Universe. Inspired by these circumstances, the education and news teams developed the Star Witness News science content reading series. These online news stories (also available in downloadable PDF format) mirror the content of Hubble press releases and are designed for upper elementary and middle school level readers to enjoy. Educators can use Star Witness News stories to reinforce students' reading skills while exposing students to the latest Hubble discoveries.

  4. Combining Technologies to Deliver Distance Education

    Directory of Open Access Journals (Sweden)

    Vicki Freeman

    1999-01-01

    Full Text Available In 1997 a Health Resources and Services Administration (HRSA grant was awarded to the Department of Clinical Laboratory Sciences (CLS at The University of Texas Medical Branch - Galveston (UTMB for support of the Laboratory Education and Advancement Project (LEAP. The project entailed three primary objectives, targeting laboratory practitioners in rural and medically underserved areas of Texas for delivering a bachelor's degree, laboratory-intensive course of study via distance education. Several delivery mechanisms were utilized and evaluated for their effectiveness and friendliness to both the faculty and students. The authors discuss and describe the mechanisms utilized for delivery of courses, the advantages and disadvantages encountered with each mechanism, and subjective evaluation of the effectiveness of the courses. Also discussed are the lessons learned and plans for future development.

  5. Empathic engineering: helping deliver dignity through design

    Science.gov (United States)

    Hosking, Ian; Cornish, Katie; Bradley, Mike; Clarkson, P. John

    2015-01-01

    Abstract Dignity is a key value within healthcare. Technology is also recognized as being a fundamental part of healthcare delivery, but also a potential cause of dehumanization of the patient. Therefore, understanding how medical devices can be designed to help deliver dignity is important. This paper explores the role of empathy tools as a way of engendering empathy in engineers and designers to enable them to design for dignity. A framework is proposed that makes the link between empathy tools and outcomes of feelings of dignity. It represents a broad systems view that provides a structure for reviewing the evidence for the efficacy of empathy tools and also how dignity can be systematically understood for particular medical devices. PMID:26453036

  6. Predictive and therapeutic markers in ovarian cancer

    Science.gov (United States)

    Gray, Joe W.; Guan, Yinghui; Kuo, Wen-Lin; Fridlyand, Jane; Mills, Gordon B.

    2013-03-26

    Cancer markers may be developed to detect diseases characterized by increased expression of apoptosis-suppressing genes, such as aggressive cancers. Genes in the human chromosomal regions, 8q24, 11q13, 20q11-q13, were found to be amplified indicating in vivo drug resistance in diseases such as ovarian cancer. Diagnosis and assessment of amplification levels certain genes shown to be amplified, including PVT1, can be useful in prediction of poor outcome of patient's response and drug resistance in ovarian cancer patients with low survival rates. Certain genes were found to be high priority therapeutic targets by the identification of recurrent aberrations involving genome sequence, copy number and/or gene expression are associated with reduced survival duration in certain diseases and cancers, specifically ovarian cancer. Therapeutics to inhibit amplification and inhibitors of one of these genes, PVT1, target drug resistance in ovarian cancer patients with low survival rates is described.

  7. Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals.

    Science.gov (United States)

    Bates, Katie; Kostarelos, Kostas

    2013-12-01

    Promising therapeutic and prophylactic effects have been achieved following advances in the gene therapy research arena, giving birth to the new generation of disease-modifying therapeutics. The greatest challenge that gene therapy vectors still face is the ability to deliver sufficient genetic payloads in order to enable efficient gene transfer into target cells. A wide variety of viral and non-viral gene therapy vectors have been developed and explored over the past 10years, including carbon nanotubes. In this review we will address the application of carbon nanotubes as non-viral vectors in gene therapy with the aim to give a perspective on the past achievements, present challenges and future goals. A series of important topics concerning carbon nanotubes as gene therapy vectors will be addressed, including the benefits that carbon nanotubes offer over other non-viral delivery systems. Furthermore, a perspective is given on what the ideal genetic cargo to deliver using carbon nanotubes is and finally the geno-pharmacological impact of carbon nanotube-mediated gene therapy is discussed.

  8. Intranasal formulations: promising strategy to deliver vaccines.

    Science.gov (United States)

    Riese, Peggy; Sakthivel, Priya; Trittel, Stephanie; Guzmán, Carlos A

    2014-10-01

    The emergence of new diseases and the lack of efficient vaccines against numerous non-treatable pathogens require the development of novel vaccination strategies. To date, only a few mucosal vaccines have been approved for humans. This was in part due to i) the use of live attenuated vaccines, which are not suitable for certain groups of individuals, ii) safety concerns derived from implementation in humans of some mucosal vaccines, iii) the poor stability, absorption and immunogenicity of antigens delivered by the mucosal route and iv) the limited number of available technologies to overcome the bottlenecks associated with mucosal antigen delivery. Recent advances make feasible the development of efficacious mucosal vaccines with adequate safety profile. Thus, currently intranasal vaccines represent an attractive and valid alternative to conventional vaccines. The present review is focused on the potentials and limitations of market-approved intranasal vaccines and promising candidates undergoing clinical investigations. Furthermore, emerging strategies to overcome main bottlenecks including efficient breaching of the mucosal barrier and safety concerns by implementation of new adjuvants and delivery systems are discussed. The rational design of intranasal vaccines requires an in-depth understanding of the anatomic, physicochemical and barrier properties of the nasal mucosa, as well as the molecular mechanisms governing the activation of the local innate and adaptive immune system. This would provide the critical knowledge to establish effective approaches to deliver vaccine antigens across the mucosal barrier, supporting the stimulation of a long-lasting protective response at both mucosal and systemic levels. Current developments in the area of adjuvants, nanotechnologies and mucosal immunology, together with the identification of surface receptors that can be exploited for cell targeting and manipulating their physiological properties, will become instrumental

  9. Skeletal myoblast based delivery of angiogenic growth factors:a comparison between angiopoietin-1 and VEGF gene delivery for therapeutic angiogenesis in the heart

    Institute of Scientific and Technical Information of China (English)

    Lei Ye; Husnain Kh Haider; Shujia Jiang; Rusan Tan; In-Chin Song; Ruowen Ge; Peter K Law; Eugene KW Sim

    2006-01-01

    Objectives This study investigated the efficacy of human skeletal myoblasts (SkM) mediated either human vascular endothelial growth factor-165 (hVEGF165) or angiopoietin-1 (Ang-1) on vascular development and myocardial regional perfusion. Methods A porcine heart model of chronic infarction was created in 28 female swine by coronary artery ligation. The animals were randomized into:(1) group-1, DMEM injected (n=6), (2) group-2, Ad-null transduced SkM transplanted (n=6), (3) group-3, Ad-hVEGF165 transduced SkM transplanted (n=8), and (4) group-4, Ad-Ang-1 transduced SkM (n=8). Three weeks later, 5 ml DMEM containing 3× 108 SkM carrying exogenous genes were intramyocardially injected into 20 sites in left ventricle in groups-2, -3 and -4. Animals in group-1 were injected 5 ml DMEM without cells. Animals were kept on 5 mg/kg cyclosporine per day for 6 weeks. Regional blood flow was measured using fluorescent microspheres. The heart was explanted at 2, 6 and 12 weeks after transplantation for histological studies. Results Histological examination showed survival of lac-z expressing myoblasts in host tissue. Capillary density based on Von Willebrand factor-Ⅷ (vWF-Ⅷ) at low power field (× 100) was 57.13+11.85 in group-3 at 6 weeks and declined to 32.1±5.21 at 12 weeks, while it was 39.9±10.26 at 6 weeks and increased to 45.14±6.54 at 12 weeks in group-4. The mature blood vessel index was highest in group4 at 6 and 12 weeks after transplantation. The regional blood flow in the center and peri-infarct area was significantly increased in animals of groups-3 and -4. Conclusions SkM carrying either hVEGF165 or Ang- 1 induced neovascularization with increased blood flow. Ang- 1 overexpression resulted in mature and stable blood vessel formation and may be a more potent arteriogenic inducer for neovascularization.(J Geriatr Cardiol 2006;3:152-60.)

  10. Magnetic therapeutic delivery using navigable agents.

    Science.gov (United States)

    Martel, S

    2014-02-01

    For treating cancer in particular, therapeutic agents have evolved in complexity in an effort to enhance targeting efficacy. So far, efforts towards the synthesis alone of new therapeutics have attracted most attention. However, present cancer treatments frequently fail because of severe side effects related to the fact that the drug accumulates in insufficient concentration at the tumor site, while being distributed over healthy tissues and organs. More recently, advanced engineering principles have been considered for the development of platforms and drug-loaded vehicles to deliver payloads to the area to be treated by navigating them using the most direct route in order to improve tumor killing effects while minimizing toxic side effects caused by drug activity in nontargeted regions. If the introduction of engineering and principles of robotics to provide complementary techniques in targeted cancer therapy prove to be beneficial, it could influence future delivery methods and the synthesis of therapeutic carriers.

  11. Design Environment for Novel Vertical Lift Vehicles: DELIVER

    Science.gov (United States)

    Theodore, Colin

    2016-01-01

    This is a 20 minute presentation discussing the DELIVER vision. DELIVER is part of the ARMD Transformative Aeronautics Concepts Program, particularly the Convergent Aeronautics Solutions Project. The presentation covers the DELIVER vision, transforming markets, conceptual design process, challenges addressed, technical content, and FY2016 key activities.

  12. Diet-delivered RNAi in Helicoverpa armigera--Progresses and challenges.

    Science.gov (United States)

    Lim, Zhi Xian; Robinson, Karl E; Jain, Ritesh G; Chandra, G Sharath; Asokan, R; Asgari, Sassan; Mitter, Neena

    2016-02-01

    Helicoverpa armigera (the cotton bollworm) is a significant agricultural pest endemic to Afro-Eurasia and Oceania. Gene suppression via RNA interference (RNAi) presents a potential avenue for management of the pest, which is highly resistant to traditional insecticide sprays. This article reviews current understanding on the fate of ingested double-stranded RNA in H. armigera. Existing in vivo studies on diet-delivered RNAi and their effects are summarized and followed by a discussion on the factors and hurdles affecting the efficacy of diet-delivered RNAi in H. armigera.

  13. Potential of human serum albumin nanoparticles as a novel gene vector to deliver SEA gene for targeting therapy of bladder cancer%携带超抗原SEA基因的白蛋白纳米载体的构建及其治疗膀胱癌潜能研究

    Institute of Scientific and Technical Information of China (English)

    徐峰; 阮国锋; 郑浩; 郑小青; 詹鸣; 李怀富

    2011-01-01

    目的 构建一种非病毒载体基因投递系统-携带超抗原葡萄球菌肠毒素A(SEA)基因的白蛋白纳米载体,观察白蛋白纳米粒表征并探讨其潜在的靶向基因投递作用和强大的抗瘤机制.方法 采用去溶剂化法制备白蛋白纳米粒,平均粒径(253.1±11.9)nm,Zeta电位(-34.0±4.5)mV,PDI 0.43±0.04;抽提SEA基因质粒(pSEA)260/280:1.84±0.02,pSEA浓度:(85.54±1.43)mg/L;经生物活性及基因测序鉴定后耦合SEA基因质粒和白蛋白纳米载体,并观察耦合物的稳定性及白蛋白纳米载体对SEA基因的保护作用.结果 成功构建携带超抗原SFA基因的白蛋白纳米载体,平均粒径(118.9±4.8)nm,Zeta电位(-43.9±10.5)mV,PDI 0.19±0.02,基因转载率为(97.61±0.06)%,性质稳定、分散性较好,体外实验表明白蛋白纳米载体能保护SEA基因免受DNase Ⅰ的降解.结论 获得符合超抗原SEA基因转染要求的白蛋白纳米载体.%Objective To assess the characteristics of human serum albumin nanoparticles (HSA-NP) as a nonviral vector system for delivery staphylococcal enterotoxin A (SEA) gene and probe into its potential targeted antitumor mechanism.Methods HSA-NP and plasmid containing SEA gene (pSEA)encapsulated in HSA (pSEA-HSA-NP) were prepared by a desolvation-crosslinking method.HSA-NP had a mean size of (253.1 ± 11.9) nm,zeta potential of ( -34.0 ±4.5) mV,polydispersity index of 0.43 ±0.04.The superantigen SEA gene was extracted by the Endo-Free Plasmid Maxi Kit,260/280 of pSEA was 1.84 ±0.02 and the concentration of pSEA was ( 85.54 ± 1.43 ) mg/L.pSEA was verified by sequencing and biological activity survey,the stability of pSEA-HSA-NP was investigated by laying for 10 days at room temperature,and the size and zeta potential were remeasured and contrasted with the samples 10 days before.HSA-NP protecting pSEA from degradation of DNase I was detected by gel electrophoresis.Results Electrophoretic mobility analysis and fluorescent labeling revealed

  14. Gene therapy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005147 CNHK200-hA-a gene-viral therapeutic system and its antitumor effect on lung cancer. WANG Wei-guo(王伟国),et al. Viral & Gene Ther Center, Eastern Hepatobilli Surg Instit 2nd Milit Univ, Shanghai 200438. Chin J Oncol,2005:27(2):69-72. Objective: To develop a novel vector system, which combines the advantages of the gene therapy,

  15. American Society of Gene Therapy - Third Annual Meeting.

    Science.gov (United States)

    Atkinson, E M

    2000-09-01

    The field of gene therapy, delivering genes to directly treat diseases, has had a remarkable year. This is no more evident than in the scope of the third annual meeting of the American Society of Gene Therapy (ASGT). Clear progress has been made in both ex vivo clinical protocols and in vivo administration. The meeting covered every major method of gene delivery, from injection of naked DNA to advanced synthetic gene delivery systems, as well as the major viral-based vectors. The optimism of the society was tempered, however, by the much-publicized death of a patient in a clinical trial at the University of Pennsylvania last year. There was a correspondingly high regulatory presence at the meeting, with several presentations by representatives of the US FDA and National Institutes of Health (NIH). Major clinical advances in gene therapy have been in genetic diseases, including hemophilia, severe combined immunodeficiency, and cystic fibrosis. Therapies are in later-stage clinical trials, and evidence of efficacy has been demonstrated, most notably by the apparent cure of SCID-affected children in Paris by ex vivo gene therapy with cytokine receptor subunit genes. Cancer gene therapy is also making significant headway, with many products entering phase II and III trials. Basic technology development is proceeding in vector targeting, enhancement of gene transfer efficiency, and regulating expression of therapeutic genes. In addition, basic research demonstrates the promise of new combined modes for treating diseases such as muscular dystrophy, lysosomal storage diseases and cardiovascular disease.

  16. Micro-PET/CT Monitoring of Herpes Thymidine Kinase Suicide Gene Therapy in a Prostate Cancer Xenograft: The Advantage of a Cell-specific Transcriptional Targeting Approach

    Directory of Open Access Journals (Sweden)

    Mai Johnson

    2005-10-01

    Full Text Available Cancer gene therapy based on tissue-restricted expression of cytotoxic gene should achieve superior therapeutic index over an unrestricted method. This study compared the therapeutic effects of a highly augmented, prostate-specific gene expression method to a strong constitutive promoter-driven approach. Molecular imaging was coupled to gene therapy to ascertain real-time therapeutic activity. The imaging reporter gene (luciferase and the cytotoxic gene (herpes simplex thymidine kinase were delivered by adenoviral vectors injected directly into human prostate tumors grafted in SCID mice. Serial bioluminescence imaging, positron emission tomography, and computed tomography revealed restriction of gene expression to the tumors when prostate-specific vector was employed. In contrast, administration of constitutive active vector resulted in strong signals in the liver. Liver serology, tissue histology, and frail condition of animals confirmed liver toxicity suffered by the constitutive active cohorts, whereas the prostate-targeted group was unaffected. The extent of tumor killing was analyzed by apoptotic staining and human prostate marker (prostate-specific antigen. Overall, the augmented prostate-specific expression system was superior to the constitutive approach in safeguarding against systemic toxicity, while achieving effective tumor killing. Integrating noninvasive imaging into cytotoxic gene therapy will provide a useful strategy to monitor gene expression and therapeutic efficacy in future clinical protocols.

  17. Delivering enhanced testosterone replacement therapy through nanochannels.

    Science.gov (United States)

    Ferrati, Silvia; Nicolov, Eugenia; Bansal, Shyam; Zabre, Erika; Geninatti, Thomas; Ziemys, Arturas; Hudson, Lee; Ferrari, Mauro; Goodall, Randal; Khera, Mohit; Palapattu, Ganesh; Grattoni, Alessandro

    2015-02-18

    Primary or secondary hypogonadism results in a range of signs and symptoms that compromise quality of life and requires life-long testosterone replacement therapy. In this study, an implantable nanochannel system is investigated as an alternative delivery strategy for the long-term sustained and constant release of testosterone. In vitro release tests are performed using a dissolution set up, with testosterone and testosterone:2-hydroxypropyl-β-cyclodextrin (TES:HPCD) 1:1 and 1:2 molar ratio complexes release from the implantable nanochannel system and quantify by HPLC. 1:2 TES:HPCD complex stably achieve 10-15 times higher testosterone solubility with 25-30 times higher in vitro release. Bioactivity of delivered testosterone is verified by LNCaP/LUC cell luminescence. In vivo evaluation of testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) levels by liquid chromatography mass spectrometry (LC/MS) and multiplex assay is performed in castrated Sprague-Dawley rats over 30 d. Animals are treated with the nanochannel implants or degradable testosterone pellets. The 1:2 TES:HPCD nanochannel implant exhibits sustained and clinically relevant in vivo release kinetics and attains physiologically stable plasma levels of testosterone, LH, and FSH. In conclusion, it is demonstrated that by providing long-term steady release 1:2 TES:HPCD nanochannel implants may represent a major breakthrough for the treatment of male hypogonadism.

  18. Where should noninvasive ventilation be delivered?

    Science.gov (United States)

    Hill, Nicholas S

    2009-01-01

    Noninvasive ventilation (NIV) has assumed an important role in the management of certain types of respiratory failure in acute-care hospitals. However, the optimal location for NIV has been a matter of debate. Some have argued that all patients begun on NIV in the acute-care setting should go to an intensive care unit (ICU), but this is impractical because ICU beds are often unavailable, and it may not be a sensible use of resources. Also, relatively few studies have examined the question of location for NIV. One problem is that various units' capabilities to deliver NIV differ substantially, even in the same hospital. Choosing the appropriate environment for NIV requires consideration of the patient's need for monitoring, the monitoring capabilities of the unit, including both technical and personnel resources (nursing and respiratory therapy), and the staff's skill and experience. In some hospitals NIV is begun most often in the emergency department, but is most often managed in an ICU. Step-down units are often good locations for NIV, but many institutions do not have step-down units. With ICU beds at a premium, many hospitals are forced to manage some NIV patients on general wards, which can be safely done with more stable patients if the ward is suitably monitored and experienced. When deciding where to locate the patient, clinicians must be familiar with the capabilities of the units in their facility and try to match the patient's need for monitoring and the unit's capabilities.

  19. Delivering new physics at impressive speed

    CERN Multimedia

    2010-01-01

    The speed with which the heavy ion run at the LHC is delivering new physics is impressive not only for the insights it is bringing to the early Universe, but also for the clear demonstration it gives of the value of competition and complementarity between the experiments.   ALICE was the first off the mark to publish papers from the ion run, as you’d expect from the LHC’s dedicated ion experiment, but results emerging from ATLAS and CMS are bringing new understanding in their own right. Each collaboration’s result plays to the strengths of its detector, and it is by taking all the results together that our knowledge advances. The creation, observation and understanding of the hot dense matter that would have existed in the early Universe, normally known as Quark Gluon Plasma (QGP), is complex science and one of the ion programme’s key goals. Many signals for QGP exist, and like pieces of a puzzle, we must assemble all of them to get the full picture. At th...

  20. Changes in nurse education: delivering the curriculum.

    Science.gov (United States)

    Carr, Graham

    2008-01-01

    The aim of this study is to examine changes in pre-registration nursing education through the personal accounts of nurse teachers. This paper is based on 37 in-depth interviews within a central London Healthcare Faculty. Each interview was subjected to a process of content analysis described by Miles and Huberman. The interviews took place between August 2003 and March 2004 and totalled 34.4 hours or 305,736 words. There were thirty female and seven male participants, who shared 1015 years of nursing experience, averaging at 27.4 years (min 7-max 42). These were supplemented by 552 years of teaching practice, the average being 15 years (min 0.5-max 29). This paper--delivering the nursing curriculum--identifies that the nature of nursing has changed as it has both expanded and contracted. Participants identified three major changes; the nature of nursing, selection of future nurses and the current impact that large cohorts have on our traditional model of person-centred education. The practice placements remain central to nursing education and it is the nursing role that should define the curriculum and the values of higher education should be supportive of this identity.

  1. Urban poverty: delivering babies in the slum.

    Science.gov (United States)

    Lloyd, M

    1998-01-01

    Government of India statistics indicate that about 3 million of New Delhi's 11 million people live in slums, while another 3 million people, most fleeing rural poverty, are expected to migrate to the capital by 2000. ASHA Community Health and Development Society is a nongovernmental organization currently working in 23 of India's slums, serving a population of about 150,000 people. The group has pioneered the use of community-based networks in New Delhi to improve health in the poorest communities. While ASHA has a small, full-time staff, most of the daily health care work is conducted by slum volunteers. Ekta Vihar is a slum community of 1800 residents. Community members' primary source of health care are Vimla Rana and Sobha, two illiterate women who reside in the community and are part of a team of community health workers trained by ASHA. Rana and Sobha deliver almost all of the babies born annually in the slum and care for community members when they become ill.

  2. Hydrogels for therapeutic cardiovascular angiogenesis.

    Science.gov (United States)

    Rufaihah, Abdul Jalil; Seliktar, Dror

    2016-01-15

    Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor or cell therapy is promising, the retention of bioactive agents in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Various types of biomaterials with different physical and chemical properties have been developed to improve the localized delivery of growth factor and/or cells for therapeutic angiogenesis in ischemic tissues. Hydrogels are particularly advantageous as carrier systems because they are structurally similar to the tissue extracellular matrix (ECM), they can be processed under relatively mild conditions and can be delivered in a minimally invasive manner. Moreover, hydrogels can be designed to degrade in a timely fashion that coincides with the angiogenic process. For these reasons, hydrogels have shown great potential as pro-angiogenic matrices. This paper reviews a few of the hydrogel systems currently being applied together with growth factor delivery and/or cell therapy to promote therapeutic angiogenesis in ischemic tissues, with emphasis on myocardial applications.

  3. Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors

    Science.gov (United States)

    Chen, Yunching; Liu, Ya-Chi; Sung, Yun-Chieh; Ramjiawan, Rakesh R.; Lin, Ts-Ting; Chang, Chih-Chun; Jeng, Kuo-Shyang; Chang, Chiung-Fang; Liu, Chun-Hung; Gao, Dong-Yu; Hsu, Fu-Fei; Duyverman, Annique M.; Kitahara, Shuji; Huang, Peigen; Dima, Simona; Popescu, Irinel; Flaherty, Keith T.; Zhu, Andrew X.; Bardeesy, Nabeel; Jain, Rakesh K.; Benes, Cyril H.; Duda, Dan G.

    2017-01-01

    Sorafenib is a RAF inhibitor approved for several cancers, including hepatocellular carcinoma (HCC). Inhibition of RAF kinases can induce a dose-dependent “paradoxical” upregulation of the downstream mitogen-activated protein kinase (MAPK) pathway in cancer cells. It is unknown whether “paradoxical” ERK activation occurs after sorafenib therapy in HCC, and if so, if it impacts the therapeutic efficacy. Here, we demonstrate that RAF inhibition by sorafenib rapidly leads to RAF dimerization and ERK activation in HCCs, which contributes to treatment evasion. The transactivation of RAF dimers and ERK signaling promotes HCC cell survival, prevents apoptosis via downregulation of BIM and achieves immunosuppression by MAPK/NF-kB-dependent activation of PD-L1 gene expression. To overcome treatment evasion and reduce systemic effects, we developed CXCR4-targeted nanoparticles to co-deliver sorafenib with the MEK inhibitor AZD6244 in HCC. Using this approach, we preferentially and efficiently inactivated RAF/ERK, upregulated BIM and down-regulated PD-L1 expression in HCC, and facilitated intra-tumoral infiltration of cytotoxic CD8+ T cells. These effects resulted in a profound delay in tumor growth. Thus, this nano-delivery strategy to selectively target tumors and prevent the paradoxical ERK activation could increase the feasibility of dual RAF/MEK inhibition to overcome sorafenib treatment escape in HCC. PMID:28276530

  4. [Health security--GMOs in therapeutics].

    Science.gov (United States)

    Trouvin, J-H

    2003-03-01

    The recent progress in human therapeutics has been made possible thanks to molecular biology and its use in producing proteins having the same sequence and structure as that of human proteins. The use of GMOs allows production of proteins with high added value in therapeutics, which are of satisfactory quality. GMOs may also be directly administered to patients as gene therapy vectors. However, the use of GMOs in therapeutics must take into consideration some risks, particularly those of microbiological contamination, of neo-antigenicity as well as environmental risks with regard to the way of use of the GMO. Nevertheless, those risks are taken in due consideration in the development of these new medicinal products; solutions have been found to allow their use in therapeutics with a very positive benefit/risk ratio. Medicinal products from biotechnology have enabled considerable therapeutic progress without compromising health security.

  5. Development of Viral Vectors for Gene Therapy for Chronic Pain

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2011-01-01

    Full Text Available Chronic pain is a major health concern that affects millions of people. There are no adequate long-term therapies for chronic pain sufferers, leading to significant cost for both society and the individual. The most commonly used therapy for chronic pain is the application of opioid analgesics and nonsteroidal anti-inflammatory drugs, but these drugs can lead to addiction and may cause side effects. Further studies of the mechanisms of chronic pain have opened the way for development of new treatment strategies, one of which is gene therapy. The key to gene therapy is selecting safe and highly efficient gene delivery systems that can deliver therapeutic genes to overexpress or suppress relevant targets in specific cell types. Here we review several promising viral vectors that could be applied in gene transfer for the treatment of chronic pain and further discuss the possible mechanisms of genes of interest that could be delivered with viral vectors for the treatment of chronic pain.

  6. More Soil Delivered to Phoenix Lab

    Science.gov (United States)

    2008-01-01

    This image, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, documents the delivery of a soil sample from the 'Snow White' trench to the Wet Chemistry Laboratory. A small pile of soil is visible on the lower edge of the second cell from the top.This deck-mounted lab is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer (MECA). The delivery was made on Sept. 12, 2008, which was Sol 107 (the 107th Martian day) of the mission, which landed on May 25, 2008. The Wet Chemistry Laboratory mixes Martian soil with an aqueous solution from Earth as part of a process to identify soluble nutrients and other chemicals in the soil. Preliminary analysis of this soil confirms that it is alkaline, and composed of salts and other chemicals such as perchlorate, sodium, magnesium, chloride and potassium. This data validates prior results from that same location, said JPL's Michael Hecht, the lead scientist for MECA. In the coming days, the Phoenix team will also fill the final four of eight single-use ovens on another soil-analysis instrument, the Thermal and Evolved Gas Analyzer, or TEGA. The team's strategy is to deliver as many samples as possible before the power produced by Phoenix's solar panels declines due to the end of the Martian summer. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  8. The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127.

    Science.gov (United States)

    Wu, Hong-Fu; Cen, Jing-Sheng; Zhong, Qian; Chen, Luming; Wang, Jue; Deng, David Y B; Wan, Yong

    2013-02-01

    Lingo-1 is selectively expressed on both oligodendrocytes and neurons in the central nervous system (CNS) and serves as a key negative regulator of nerve regeneration, implying a therapeutic target for spinal cord injury (SCI). Here we described a strategy to knock-down Lingo-1 expression in vivo using lentiviral vectors encoding Lingo-1 short harpin interfering RNA (shRNA) delivered by Pluronic F-127 (PF-127) gel, a non-cytotoxic scaffold and gene delivery carrier, after the complete transection of the T10 spinal cord in adult rats. We showed administration of PF-127 encapsulating Lingo-1 shRNA lentiviral vectors efficiently down-regulated the expression of Lingo-1, and exhibited transduction efficiency comparable to using vectors alone in oligodendrocyte culture in vitro. Furthermore, similar silencing effects and higher transfection efficiency were observed in vivo when Lingo-1 shRNA was co-delivered to the injured site by PF-127 gel with lower viral concentrations. Cografting of gel and Lingo-1 RNAi significantly promoted functional recovery and nerve regeneration, enhanced neurite outgrowth and synapses formation, preserved myelinated axons, and induced the proliferation of glial cells. In addition, the combined implantation also improved neuronal survival and inhibited cell apoptosis, which may be associated with the attenuation of endoplasmic reticulum (ER) stress after SCI. Together, our data indicated that delivering Lingo-1 shRNA by gel scaffold was a valuable treatment approach to SCI and PF-127 delivery of viral vectors to the spinal cord may provide strategy to study and develop therapies for SCI.

  9. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy.

    Science.gov (United States)

    Kasala, Dayananda; Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-07-01

    Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research.

  10. Bifunctional bisphosphonates for delivering PTH (1-34) to bone mineral with enhanced bioactivity.

    Science.gov (United States)

    Yewle, Jivan N; Puleo, David A; Bachas, Leonidas G

    2013-04-01

    The objective of this work was to demonstrate the bioactivity of parathyroid hormone (1-34) (PTH) delivered through a single molecule of bisphosphonate to improve tissue/cell interactions. Bifunctional hydrazine-bisphosphonates (HBPs) with varying length and lipophilicity were used as a drug delivery vehicle. PTH was oxidized with periodate treatment to obtain an N-terminal aldehyde that was then conjugated to HBPs. The toxicity and apoptotic properties of HBPs and HBP-PTH conjugates were studied with macrophages (RAW 264.7). It was found that one of the HBPs had significant apoptotic characteristics similar to alendronate, which is a widely prescribed drug in the treatment of osteoporosis. The improved binding affinity of PTH following conjugation to HBP was determined using a hydroxyapatite binding assay. The amount of PTH delivered to bone through HBPs was not affected by the length or lipophilicity of the HBPs. Furthermore, the improved bioactivity of PTH delivered to bone through HBPs, in comparison to adsorbed PTH, was demonstrated by quantifying the cAMP produced by pre-osteoblastic (MC3T3-E1) cells in response to PTH. The delivery of bioactive PTH to bone tissue by HBP conjugation demonstrates the potential use of HBPs in delivering therapeutic macromolecules to bone for the treatment of several skeletal diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Gene therapy and respiratory neuroplasticity.

    Science.gov (United States)

    Mantilla, Carlos B

    2017-01-01

    Breathing is a life-sustaining behavior that in mammals is accomplished by activation of dedicated muscles responsible for inspiratory and expiratory forces acting on the lung and chest wall. Motor control is exerted by specialized pools of motoneurons in the medulla and spinal cord innervated by projections from multiple centers primarily in the brainstem that act in concert to generate both the rhythm and pattern of ventilation. Perturbations that prevent the accomplishment of the full range of motor behaviors by respiratory muscles commonly result in significant morbidity and increased mortality. Recent developments in gene therapy and novel targeting strategies have contributed to deeper understanding of the organization of respiratory motor systems. Gene therapy has received widespread attention and substantial progress has been made in recent years with the advent of improved tools for vector design. Genes can be delivered via a variety of plasmids, synthetic or viral vectors and cell therapies. In recent years, adeno-associated viruses (AAV) have become one of the most commonly used vector systems, primarily because of the extensive characterization conducted to date and the versatility in targeting strategies. Recent studies highlight the power of using AAV to selectively and effectively transduce respiratory motoneurons and muscle fibers with promising therapeutic effects. This brief review summarizes current evidence for the use of gene therapy in respiratory disorders with a primary focus on interventions that address motor control and neuroplasticity, including regeneration, in the respiratory system.

  12. Social Media–Delivered Sexual Health Intervention

    Science.gov (United States)

    Bull, Sheana S.; Levine, Deborah; Black, Sandra R.; Schmiege, Sarah; Santelli, John

    2012-01-01

    Background Youth are using social media regularly and represent a group facing substantial risk for sexually transmitted infection (STI). Although there is evidence that the Internet can be used effectively in supporting healthy sexual behavior, this hasn't yet extended to social networking sites. Purpose To determine whether STI prevention messages delivered via Facebook are efficacious in preventing increases in sexual risk behavior at 2 and 6 months. Design Cluster RCT, October 2010–May 2011. Setting/participants Individuals (seeds) recruited in multiple settings (online, via newspaper ads and face-to-face) were asked to recruit three friends, who in turn recruited additional friends, extending three waves from the seed. Seeds and waves of friends were considered networks and exposed to either the intervention or control condition. Intervention Exposure to Just/Us, a Facebook page developed with youth input, or to control content on 18–24 News, a Facebook page with current events for 2 months. Main outcome measures Condom use at last sex and proportion of sex acts protected by condoms. Repeated measures of nested data were used to model main effects of exposure to Just/Us and time by treatment interaction. Results 1578 participants enrolled, with 14% Latino and 35% African-American; 75% of participants completed at least one study follow-up. Time by treatment effects were observed at 2 months for condom use (intervention 68% vs control 56%, p=0.04) and proportion of sex acts protected by condoms (intervention 63% vs control 57%, p=0.03) where intervention participation reduced the tendency for condom use to decrease over time. No effects were seen at 6 months. Conclusions Social networking sites may be venues for efficacious health education interventions. More work is needed to understand what elements of social media are compelling, how network membership influences effects, and whether linking social media to clinical and social services can be beneficial

  13. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres.

    Science.gov (United States)

    Meng, Ying; Wang, Shanshan; Li, Chengyi; Qian, Min; Yan, Xueying; Yao, Shuangchao; Peng, Xiyue; Wang, Yi; Huang, Rongqin

    2016-09-01

    Combining controllable photothermal therapy and efficacious gene therapy in a single platform holds great promise in cancer therapy due to the enhanced combined therapeutic effects. Herein, polyethyleneimine-grafted oxidized mesoporous carbon nanospheres (OP) were developed for combined photothermal combined gene therapy in vitro and in vivo. The synthesized OP was characterized to have three dimensional spherical structure with uniformed diameter, ordered mesopores with graphitic domains, high water dispersion with zeta potential of +22 mV, and good biocompatibility. Consequently, OP was exploited as the photothermal convertor with strong NIR absorption and the gene vector via electrostatic interaction, which therefore cannot only deliver the therapeutic gene (pING4) to tumors for gene therapy, but also can eliminate the tumors by photothermal ablation. Moreover, the improved gene therapy accompanied by the NIR photothermally enhanced gene release was also well achieved based on OP. The excellent combined therapeutic effects demonstrated in vitro and in vivo suggested the OP's potential for cancer therapy.

  14. Lipid-based cochleates: a promising formulation platform for oral and parenteral delivery of therapeutic agents.

    Science.gov (United States)

    Rao, Ravi; Squillante, Emilio; Kim, Kwon H

    2007-01-01

    Cochleates are lipid-based supramolecular assemblies that display great potential as delivery systems for systemic delivery of drugs, including peptides, proteins, vaccines, oligonucleotides, and genes. This is mainly attributed to their high stability and biocompatibility and their ability to deliver both hydrophilic and lipophilic drugs. Cochleates have a unique multilayered spiral structure, which is composed of a negatively charged phospholipid and a divalent cation, and can encapsulate diverse drug molecules of various shapes and sizes while minimizing toxicity associated with polymeric materials present in micro- and nanoparticle systems. This review describes current technological advances in the preparation methods, physicochemical characterization, and potential applications of cochleates as a drug delivery system for systemic delivery of various types of therapeutic agents.

  15. Non-Viral Delivery and Therapeutic Application of Small Interfering RNAs.

    Science.gov (United States)

    Nikitenko, N A; Prassolov, V S

    2013-07-01

    RNA interference (RNAi) is a powerful method used for gene expression regulation. The increasing knowledge about the molecular mechanism of this phenomenon creates new avenues for the application of the RNAi technology in the treatment of various human diseases. However, delivery of RNA interference mediators, small interfering RNAs (siRNAs), to target cells is a major hurdle. Effective and safe pharmacological use of siRNAs requires carriers that can deliver siRNA to its target site and the development of methods for protection of these fragile molecules from in vivo degradation. This review summarizes various strategies for siRNA delivery, including chemical modification and non-viral approaches, such as the polymer-based, peptide-based, lipid-based techniques, and inorganic nanosystems. The advantages, disadvantages, and prospects for the therapeutic application of these methods are also examined in this paper.

  16. IL-12 based gene therapy in veterinary medicine.

    Science.gov (United States)

    Pavlin, Darja; Cemazar, Maja; Sersa, Gregor; Tozon, Natasa

    2012-11-21

    The use of large animals as an experimental model for novel treatment techniques has many advantages over the use of laboratory animals, so veterinary medicine is becoming an increasingly important translational bridge between preclinical studies and human medicine. The results of preclinical studies show that gene therapy with therapeutic gene encoding interleukin-12 (IL-12) displays pronounced antitumor effects in various tumor models. A number of different studies employing this therapeutic plasmid, delivered by either viral or non-viral methods, have also been undertaken in veterinary oncology. In cats, adenoviral delivery into soft tissue sarcomas has been employed. In horses, naked plasmid DNA has been delivered by direct intratumoral injection into nodules of metastatic melanoma. In dogs, various types of tumors have been treated with either local or systemic IL-12 electrogene therapy. The results of these studies show that IL-12 based gene therapy elicits a good antitumor effect on spontaneously occurring tumors in large animals, while being safe and well tolerated by the animals. Hopefully, such results will lead to further investigation of this therapy in veterinary medicine and successful translation into human clinical trials.

  17. IL-12 based gene therapy in veterinary medicine

    Directory of Open Access Journals (Sweden)

    Pavlin Darja

    2012-11-01

    Full Text Available Abstract The use of large animals as an experimental model for novel treatment techniques has many advantages over the use of laboratory animals, so veterinary medicine is becoming an increasingly important translational bridge between preclinical studies and human medicine. The results of preclinical studies show that gene therapy with therapeutic gene encoding interleukin-12 (IL-12 displays pronounced antitumor effects in various tumor models. A number of different studies employing this therapeutic plasmid, delivered by either viral or non-viral methods, have also been undertaken in veterinary oncology. In cats, adenoviral delivery into soft tissue sarcomas has been employed. In horses, naked plasmid DNA has been delivered by direct intratumoral injection into nodules of metastatic melanoma. In dogs, various types of tumors have been treated with either local or systemic IL-12 electrogene therapy. The results of these studies show that IL-12 based gene therapy elicits a good antitumor effect on spontaneously occurring tumors in large animals, while being safe and well tolerated by the animals. Hopefully, such results will lead to further investigation of this therapy in veterinary medicine and successful translation into human clinical trials.

  18. Novel therapeutic modalities and drug delivery in pancreatic cancer – an ongoing search for improved efficacy

    Directory of Open Access Journals (Sweden)

    Yuqing Zhang

    2012-12-01

    Full Text Available Pancreatic cancer is an incredibly challenging disease due to its high rates of resistance to traditional chemotherapy and radiotherapy. There has been little improvement in the prognosis of pancreatic cancer cases in the past decades, highlighting the crucial need for more effective therapeutic approaches. Erlotinib, an EGFR inhibitor, and gemcitabine, a nucleoside analog, are currently used in combination for chemotherapy treatment, but new developments in drug delivery systems using liposomes and nanoparticles may be promising new modalities for management of the disease. In addition to standard chemotherapeutic drugs, these delivery systems can be utilized to deliver therapeutic agents such as siRNA, oncolytic viruses, small molecule inhibitors, antibodies, and suicide genes. Further work is required to elucidate how ligands and antibodies could be used to enhance the targeted delivery of drugs, thus increasing specificity, improving stability, and reducing the effect of the drugs on healthy tissue. Despite significant preclinical data, there are currently very few clinical trials involving pancreatic cancer targeted drug delivery. This article summarizes current developments in targeted pancreatic cancer drug delivery, focusing on delivery systems, targets, and therapeutic agents.

  19. Rational protein design: developing next-generation biological therapeutics and nanobiotechnological tools.

    Science.gov (United States)

    Wilson, Corey J

    2015-01-01

    Proteins are the most functionally diverse macromolecules observed in nature, participating in a broad array of catalytic, biosensing, transport, scaffolding, and regulatory functions. Fittingly, proteins have become one of the most promising nanobiotechnological tools to date, and through the use of recombinant DNA and other laboratory methods we have produced a vast number of biological therapeutics derived from human genes. Our emerging ability to rationally design proteins (e.g., via computational methods) holds the promise of significantly expanding the number and diversity of protein therapies and has opened the gateway to realizing true and uncompromised personalized medicine. In the last decade computational protein design has been transformed from a set of fundamental strategies to stringently test our understanding of the protein structure-function relationship, to practical tools for developing useful biological processes, nano-devices, and novel therapeutics. As protein design strategies improve (i.e., in terms of accuracy and efficiency) clinicians will be able to leverage individual genetic data and biological metrics to develop and deliver personalized protein therapeutics with minimal delay.

  20. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    Science.gov (United States)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve

  1. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis.

    Science.gov (United States)

    Maroof, Asher; Brown, Najmeeyah; Smith, Barbara; Hodgkinson, Michael R; Maxwell, Alice; Losch, Florian O; Fritz, Ulrike; Walden, Peter; Lacey, Charles N J; Smith, Deborah F; Aebischer, Toni; Kaye, Paul M

    2012-03-01

    Therapeutic vaccines, when used alone or in combination therapy with antileishmanial drugs, may have an important place in the control of a variety of forms of human leishmaniasis. Here, we describe the development of an adenovirus-based vaccine (Ad5-KH) comprising a synthetic haspb gene linked to a kmp11 gene via a viral 2A sequence. In nonvaccinated Leishmania donovani-infected BALB/c mice, HASPB- and KMP11-specific CD8(+) T cell responses were undetectable, although IgG1 and IgG2a antibodies were evident. After therapeutic vaccination, antibody responses were boosted, and IFNγ(+)CD8(+) T cell responses, particularly to HASPB, became apparent. A single vaccination with Ad5-KH inhibited splenic parasite growth by ∼66%, a level of efficacy comparable to that observed in early stage testing of clinically approved antileishmanial drugs in this model. These studies indicate the usefulness of adenoviral vectors to deliver leishmanial antigens in a potent and host protective manner to animals with existing L. donovani infection.

  2. Juvenile rheumatoid arthritis: therapeutic perspectives.

    Science.gov (United States)

    Chikanza, Ian C

    2002-01-01

    Juvenile rheumatoid arthritis (JRA) is the most common childhood chronic systemic autoimmune inflammatory disease. The therapeutic approach to JRA has, to date, been casual and based on extensions of clinical experiences gained in the management of adult rheumatoid arthritis (RA). The physiology of inflammation has been systemically studied and this has led to the identification of specific therapeutic targets and the development of novel approaches to the management of JRA. The classical treatments of the disease such as methotrexate, sodium aurothiomalate and sulfasalazine, are not always effective in controlling RA and JRA. This has necessitated the development of novel agents for treating RA, most of which are biological in nature and are targeted at specific sites of the inflammatory cascades. These biological therapeutic strategies in RA have proved successful and are being applied in the management of JRA. These developments have been facilitated by the advances in molecular biology which have heralded the advent of biodrugs (recombinant proteins) and gene therapy, in which specific genes can be introduced locally to enhance in vivo gene expression or suppress gene(s) of interest with a view to down-regulating inflammation. Some of these biodrugs, such as anti-tumor necrosis factor alpha (anti-TNFalpha), monoclonal antibodies (infliximab, adalimumab), TNF soluble receptor constructs (etanercept) and interleukin-1 receptor antagonist (IL-1Ra) have been tested and shown to be effective in RA. Etanercept has now been licensed for JRA. Clinical trials of infliximab in JRA are planned. Studies show that the clinical effects are transient, necessitating repeated treatments and the risk of vaccination effects. Anti-inflammatory cytokines such as IL-4, IL-10, transforming growth factor-beta and interferon-beta (IFN-beta) are undergoing clinical trials. Many of these agents have to be administered parenterally and production costs are very high; thus, there is a need

  3. Oral microflora in infants delivered vaginally and by caesarean section

    DEFF Research Database (Denmark)

    Nelun Barfod, Mette; Magnusson, Kerstin; Lexner, Michala Oron

    2011-01-01

    International Journal of Paediatric Dentistry 2011 Background. Early in life, vaginally delivered infants exhibit a different composition of the gut flora compared with infants delivered by caesarean section (C-section); however, it is unclear whether this also applies to the oral cavity. Aim....... To investigate and compare the oral microbial profile between infants delivered vaginally and by C-section. Design. This is a cross-sectional case-control study. Eighty-four infants delivered either vaginally (n = 42) or by C-section (n = 42) were randomly selected from the 2009 birth cohort at the County...

  4. Chemotherapeutic Drugs Interfere with Gene Delivery Mediated by Chitosan-Graft-Poly(ethylenimine.

    Directory of Open Access Journals (Sweden)

    Wing-Fu Lai

    Full Text Available Combined chemo-gene therapy is one of the treatment modalities that have attracted extensive research interests; however, there is little information regarding the influence of drug application on gene transfer. This study bridges this gap by examining how chemotherapeutic drugs (teniposide, cis-diamminedichloroplatinum(II and temozolomide interfere with polyplex formation and transfection of chitosan-graft-poly(ethylenimine. Our results indicate that the degree of drug interference varies with the mechanism of drug action, with the transgene expression being severely suppressed when the plasmid is co-delivered with cis-diamminedichloroplatinum(II or teniposide but not temozolomide. In addition, the interference with transfection by drugs varies with different gene/drug co-formulations. This is the first study to evidence that, though combined chemo-gene therapy has therapeutic potential, some chemotherapeutic drugs may reduce the treatment efficiency of gene therapy.

  5. Are Financial Variables Inputs in Delivered Production Functions? Are Financial Variables Inputs in Delivered Production Functions?

    Directory of Open Access Journals (Sweden)

    Miguel Kiguel

    1995-03-01

    Full Text Available Fischer's classic (1974 paper develops conditions under which it is appropriate to use money as an input in a 'delivered' production function. In this paper, we extend Fischer's model I (the Baumol-Tobin inventory approach by incorporating credit into the analysis. Our investigation of the extended model brings out a very restrictive but necessary implicit assumption employed by Fischer to treat money as an input. Namely. that there exists a binding constraint on the use of money! A similar result holds for our more general model. Fischer's classic (1974 paper develops conditions under which it is appropriate to use money as an input in a 'delivered' production function. In this paper, we extend Fischer's model I (the Baumol-Tobin inventory approach by incorporating credit into the analysis. Our investigation of the extended model brings out a very restrictive but necessary implicit assumption employed by Fischer to treat money as an input. Namely. that there exists a binding constraint on the use of money! A similar result holds for our more general model.

  6. Chicanoizing the Therapeutic Community

    Science.gov (United States)

    Aron, William S.; And Others

    1974-01-01

    Focusing on the drug addiction problem and its antecedent conditions in a Chicano population, the article examines several therapeutic interventions suggested by these conditions and indicates how they might be incorporated into a drug addiction Therapeutic Community treatment program designed to meet the needs of Chicano drug addicts. (Author/NQ)

  7. Strategies in Gene Therapy for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Mariano S. Viapiano

    2013-10-01

    Full Text Available Glioblastoma (GBM is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  8. Strategies in Gene Therapy for Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S., E-mail: mviapiano@partners.org [Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2013-10-22

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  9. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Devang M. Patel

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases.

  10. Evaluation of nanoparticle delivered cisplatin in beagles

    Science.gov (United States)

    Feldhaeusser, Brittany; Platt, Simon R.; Marrache, Sean; Kolishetti, Nagesh; Pathak, Rakesh K.; Montgomery, David J.; Reno, Lisa R.; Howerth, Elizabeth; Dhar, Shanta

    2015-08-01

    Intracranial neoplasia is a significant cause of morbidity and mortality in both human and veterinary patients, and is difficult to treat with traditional therapeutic methods. Cisplatin is a platinum (Pt)-containing chemotherapeutic agent approved by the Food and Drug Administration; however, substantial limitations exist for its application in canine brain tumor treatment due to the difficulty in crossing the blood-brain barrier (BBB), development of resistance, and toxicity. A modified Pt(iv)-prodrug of cisplatin, Platin-M, was recently shown to be deliverable to the brain via a biocompatible mitochondria-targeted lipophilic polymeric nanoparticle (NP) that carries the drug across the BBB and to the mitochondria. NP mediated controlled release of Platin-M and subsequent reduction of this prodrug to cisplatin allowed cross-links to be formed with the mitochondrial DNA, which have no nucleotide excision repair system, forcing the overactive cancer cells to undergo apoptosis. Here, we report in vitro effects of targeted Platin-M NPs (T-Platin-M-NPs) in canine glioma and glioblastoma cell lines with results indicating that this targeted NP formulation is more effective than cisplatin. In both the cell lines, T-Platin-M-NP was significantly more efficacious compared to carboplatin, another Pt-based chemotherapy, which is used in the settings of recurrent high-grade glioblastoma. Mitochondrial stress analysis indicated that T-Platin-M-NP is more effective in disrupting the mitochondrial bioenergetics in both the cell types. A 14-day distribution study in healthy adult beagles using a single intravenous injection at 0.5 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs showed high levels of Pt accumulation in the brain, with negligible amounts in the other analyzed organs. Safety studies in the beagles monitoring physical, hematological, and serum chemistry evaluations were within the normal limits on days 1, 7, and 14 after injection of either 0.5 mg kg-1 or 2 mg kg

  11. Glioblastoma and the significance of MGMT gene methylation

    Directory of Open Access Journals (Sweden)

    Payam Izadpanahi

    2014-08-01

    Full Text Available In this research Glioblastoma has been studied as one of the most common brain tumors and a short review of the available therapeutic methods have presented including surgery, radiotherapy, chemotherapy and particularly adjuvant chemotherapy with temozolomide, as the most effective developed treatment. Moreover, MGMT gene promoter methylation has been introduced as an important predictive factor of treatment response to temozolamide. The different mechanisms of methylation and the availableliterature on its association with patient survival and disease recurrence have been summarized. Taken together, Glioblastoma is a tumor in which the MGMT gene expression can potentially deliver the highest amount of data in comparison to other tumors; as almost every related study has emphasized on the direct association between MGMT methylation and patient survival. Regarding this debate, the pseudoprogression pattern in Glioblastoma patients and the laboratory methods studying MGMT gene methylation have been examined. At the end of this review, the obstacles to its development have been briefly mentioned.

  12. Therapeutics in duchenne muscular dystrophy.

    Science.gov (United States)

    Strober, Jonathan B

    2006-04-01

    Duchenne muscular dystrophy (DMD) is a fatal disorder affecting approximately 1 in 3,500 live born males, characterized by progressive muscle weakness. Several different strategies are being investigated in developing a cure for this disorder. Until a cure is found, therapeutic and supportive care is essential in preventing complications and improving the afflicted child's quality of life. Currently, corticosteroids are the only class of drug that has been extensively studied in this condition, with controversy existing over the use of these drugs, especially in light of the multiple side effects that may occur. The use of nutritional supplements has expanded in recent years as researchers improve our abilities to use gene and stem cell therapies, which will hopefully lead to a cure soon. This article discusses the importance of therapeutic interventions in children with DMD, the current debate over the use of corticosteroids to treat this disease, the growing use of natural supplements as a new means of treating these boys and provides an update on the current state of gene and stem cell therapies.

  13. ULTRASOUND AND MICROBUBBLE-INDUCED LOCAL DELIVERY OF MICRORNA-BASED THERAPEUTICS

    NARCIS (Netherlands)

    Kwekkeboom, Rick F. J.; Lei, Zhiyong; Bogaards, Sylvia J. P.; Aiazian, Eric; Kamp, Otto; Paulus, Walter J.; Sluijter, Joost P. G.; Musters, Rene J. P.

    2015-01-01

    MicroRNAs are involved in many pathologic processes and are a promising target for therapeutic intervention. However, successful, localized delivery of microRNA-based therapeutics is lacking. In this study, cationic ultrasound-responsive microbubbles (MBs) were used to deliver microRNA blockers and

  14. The Use of Freshmen Seminar Programs to Deliver Personalized Feedback

    Science.gov (United States)

    Henslee, Amber M.; Correia, Christopher J.

    2009-01-01

    The current study tested the effectiveness of delivering personalized feedback to first-semester college freshmen in a group lecture format. Participants enrolled in semester-long courses were randomly assigned to receive either personalized feedback or general information about alcohol. Both lecture conditions were delivered during a standard…

  15. Delivering value to multiple stakeholders: 2013 and beyond.

    Science.gov (United States)

    Nugent, Michael E

    2012-12-01

    To deliver greater value, top payers and providers should: Measure the value they deliver to their business partners and customers, Create value through continuous performance improvement, Package and price value to optimize their margin, mission, and market share, Organize for value through new legal entities, employed medical groups, or both.

  16. 76 FR 35295 - Delivering an Efficient, Effective, and Accountable Government

    Science.gov (United States)

    2011-06-16

    ... June 16, 2011 Part III The President Executive Order 13576--Delivering an Efficient, Effective, and... 13576 of June 13, 2011 Delivering an Efficient, Effective, and Accountable Government By the authority... frequently analyzed ] and reviewed by agency leadership. Agencies shall update these metrics quarterly,...

  17. Implementation of nanoparticles in therapeutic radiation oncology

    Science.gov (United States)

    Beeler, Erik; Gabani, Prashant; Singh, Om V.

    2017-05-01

    Development and progress of cancer is a very complex disease process to comprehend because of the multiple changes in cellular physiology, pathology, and pathophysiology resulting from the numerous genetic changes from which cancer originates. As a result, most common treatments are not directed at the molecular level but rather at the tissue level. While personalized care is becoming an increasingly aim, the most common cancer treatments are restricted to chemotherapy, radiation, and surgery, each of which has a high likelihood of resulting in rather severe adverse side effects. For example, currently used radiation therapy does not discriminate between normal and cancerous cells and greatly relies on the external targeting of the radiation beams to specific cells and organs. Because of this, there is an immediate need for the development of new and innovative technologies that help to differentiate tumor cells and micrometastases from normal cells and facilitate the complete destruction of those cells. Recent advancements in nanoscience and nanotechnology have paved a way for the development of nanoparticles (NPs) as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery, and improve the therapeutic index of radiation and tumor response to the treatment. The application of NPs in radiation therapy has aimed to improve outcomes in radiation therapy by increasing therapeutic effect in tumors and reducing toxicity on normal tissues. Because NPs possess unique properties, such as preferential accumulation in tumors and minimal uptake in normal tissues, it makes them ideal for the delivery of radiotherapy. This review provides an overview of the recent development of NPs for carrying and delivering therapeutic radioisotopes for systemic radiation treatment for a variety of cancers in radiation oncology.

  18. “O brave new world” CRISPR Mediated Gene Editing in Somatic and Germ Line Contexts for Therapeutics and Enhancement of the Human Species – an Ethical and Legal Discussion.

    OpenAIRE

    Farrell, Cathal B

    2016-01-01

    Gene editing has been a topic of controversy since the late 1970’s, however as of 2015 the topic of gene editing and its potential applications has shot to the forefront of biomedical, ethical and legal debate. CRISPR is a new molecular technology, which is essentially a molecular scissors capable of cutting a single gene, or multiple genes out of the genome of any species. Scientists have further manipulated CRISPR so that after it has excised a gene, or genes, it can then insert a gene of c...

  19. Enhancement of therapeutic drug and DNA delivery into cells by electroporation* Enhancement of therapeutic drug and DNA delivery into cells by electroporation

    Science.gov (United States)

    Rabussay, Dietmar; Dev, Nagendu B.; Fewell, Jason; Smith, Louis C.; Widera, Georg; Zhang, Lei

    2003-02-01

    The effectiveness of potentially powerful therapeutics, including DNA, is often limited by their inability to permeate the cell membrane efficiently. Electroporation (EP) also referred to as `electropermeabilization' of the outer cell membrane renders this barrier temporarily permeable by inducing `pores' across the lipid bilayer. For in vivo EP, the drug or DNA is delivered into the interstitial space of the target tissue by conventional means, followed by local EP. EP pulses of micro- to millisecond duration and field strengths of 100-1500 V cm-1 generally enhance the delivery of certain chemotherapeutic drugs by three to four orders of magnitude and intracellular delivery of DNA several hundred-fold. We have used EP in clinical studies for human cancer therapy and in animals for gene therapy and DNA vaccination. Late stage squamous cell carcinomas of the head and neck were treated with intratumoural injection of bleomycin and subsequent EP. Of the 69 tumours treated, 25% disappeared completely and another 32% were reduced in volume by more than half. Residence time of bleomycin in electroporated tumours was significantly greater than in non-electroporated lesions. Histological findings and gene expression patterns after bleomycin-EP treatment indicated rapid apoptosis of the majority of tumour cells. In animals, we demonstrated the usefulness of EP for enhanced DNA delivery by achieving normalization of blood clotting times in haemophilic dogs, and by substantially increasing transgene expression in smooth muscle cells of arterial walls using a novel porous balloon EP catheter. Finally, we have found in animal experiments that the immune response to DNA vaccines can be dramatically enhanced and accelerated by EP and co-injection of micron-sized particles. We conclude that EP represents an effective, economical and safe approach to enhance the intracellular delivery, and thus potency, of important drugs and genes for therapeutic purposes. The safety and pharmaco

  20. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors.

    Science.gov (United States)

    Hirsch, Matthew L; Wolf, Sonya J; Samulski, R J

    2016-01-01

    Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber's congenital amaurosis. In addition to rAAV's high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package "large" genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6-8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6-8, 2010; Duan et al., J Virol 73(1):161-169, 1999; Duan et al., J Virol 72(11):8568-8577, 1998; Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002). This method involves "splitting" the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002; Ghosh et al., Mol Ther 16(1):124-130, 2008; Ghosh et al., Mol Ther 15(4):750-755, 2007). The other major

  1. Successful disabling of the 5' UTR of HCV using adeno-associated viral vectors to deliver modular multimeric primary microRNA mimics.

    Science.gov (United States)

    Bourhill, Tarryn; Arbuthnot, Patrick; Ely, Abdullah

    2016-09-01

    Chronic hepatitis C virus (HCV) infection is a major health concern and is strongly associated with cirrhosis, hepatocellular carcinoma and liver-related mortality. The HCV genome is the template for both protein translation and viral replication and, being RNA, is amenable to direct genetic silencing by RNA interference (RNAi). HCV is a highly mutable virus and is capable of escaping RNAi-mediated silencing. This has highlighted the importance of developing RNAi-based therapy that simultaneously targets multiple regions of the HCV genome. To develop a multi-targeting RNAi activator, a novel approach for the generation of anti-HCV gene therapy was investigated. Five artificial primary miRNA (pri-miR) were each designed to mimic the naturally occurring monomeric pri-miR-31. Potent knockdown of an HCV reporter was seen with four of the five constructs and were processed according to the intended design. The design of the individual pri-miR mimics enabled the modular assembly into multimeric mimics of any possible conformation. Consequently the four potent pri-miR mimics were used to generate polycistronic cassettes, which showed impressive silencing of an HCV target. To further their application as a gene therapy, recombinant adeno-associated viral (rAAV) vectors that express the polycistronic pri-miR mimics were generated. All AAV-delivered anti-HCV pri-miR mimics significantly knocked down the expression of an HCV target and showed inhibition of HCV replicon replication. Here we describe a protocol for the generation of therapeutic rAAVs that express modular polycistronic pri-miR cassettes allowing for rapid alteration and generation of tailored therapeutic constructs against HCV.

  2. Manipulating the NF-κB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions

    Directory of Open Access Journals (Sweden)

    Ortega RA

    2016-05-01

    Full Text Available Ryan A Ortega,1–3 Whitney Barham,3 Kavya Sharman,4 Oleg Tikhomirov,3 Todd D Giorgio,1–3 Fiona E Yull3 1Department of Biomedical Engineering, Vanderbilt University, 2Vanderbilt Institute for Nanoscale Science and Engineering, 3Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, 4Department of Neuroscience, Vanderbilt University, Nashville, TN, USA Abstract: Tumor-associated macrophages (TAMs are critically important in the context of solid tumor progression. Counterintuitively, these host immune cells can often support tumor cells along the path from primary tumor to metastatic colonization and growth. Thus, the ability to transform protumor TAMs into antitumor, immune-reactive macrophages would have significant therapeutic potential. However, in order to achieve these effects, two major hurdles would need to be overcome: development of a methodology to specifically target macrophages and increased knowledge of the optimal targets for cell-signaling modulation. This study addresses both of these obstacles and furthers the development of a therapeutic agent based on this strategy. Using ex vivo macrophages in culture, the efficacy of mannosylated nanoparticles to deliver small interfering RNA specifically to TAMs and modify signaling pathways is characterized. Then, selective small interfering RNA delivery is tested for the ability to inhibit gene targets within the canonical or alternative nuclear factor-kappaB pathways and result in antitumor phenotypes. Results confirm that the mannosylated nanoparticle approach can be used to modulate signaling within macrophages. We also identify appropriate gene targets in critical regulatory pathways. These findings represent an important advance toward the development of a novel cancer therapy that would minimize side effects because of the targeted nature of the intervention and that has rapid translational potential. Keywords: nanotechnology, targeted nanoparticles, cancer immunology, RNAi

  3. Mitochondria targeting nano agents in cancer therapeutics

    Science.gov (United States)

    Zhang, Xiao-Ying; Zhang, Pei-Ying

    2016-01-01

    Mitochondria have emerged as noteworthy therapeutic targets as their physiological functions are often altered in pathological conditions such as cancer. The electronic databases of MEDLINE, EMBASE and PubMed were searched for recent studies reporting the importance of mitochondria targeting nanoagents in cancer therapeutics. The concluding remarks of the above papers mostly confirmed the growing potential of these novel nanoagents in the area of anticancer research. Furthermore, numerous studies demonstrated the immense potential of nanocarriers in delivering mitochondria-acting compounds to their target site. Among the assemblage of nanomaterials, carbon nanotubes (CNTs) are becoming more prominent for drug delivery due to favorable attributes including their unique shape, which promotes cellular uptake, and large aspect ratio that facilitates conjugation of bioactive molecules on their surface. The present review focused on the current view of variable options available in mitochondria-targeting anticancer therapeutics. It may be concluded that improvements are essential for its establishment as a gold standard therapeutic option especially in the clinical setting. PMID:28105197

  4. Therapeutic Exercise and Hypertension

    African Journals Online (AJOL)

    Nekky Umera

    focus of this review is to discuss the therapeutic efficacy of exercise on ... as high level of sodium in diet, alcohol consumption, obesity, physical inactivity, age, and .... idiopathic (essential) hypertension, there are two modes or approaches.

  5. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...... the examples of polymer therapeutics being applied as an antiviral treatment are few and far in-between. This work aims to explore antiviral therapeutics, specifically in context of hepatitis virus C (HCV) and HIV. The current treatment of hepatitis C consists of a combination of drugs, of which ribavirin....... Curiously, the therapeutic window of ribavirin was vastly improved in several of these polymers suggesting altered pharmacodynamics. The applicability of liver-targeting sugar moieties is likewise tested in a similarly methodical approach. The same technique of synthesis was applied with zidovudine to make...

  6. Sustained and therapeutic levels of human factor IX in hemophilia B mice implanted with microcapsules: key role of encapsulated cells.

    Science.gov (United States)

    Wen, Jianping; Vargas, Andrew Gómez; Ofosu, Frederick A; Hortelano, Gonzalo

    2006-03-01

    A gene therapy delivery system based on microcapsules enclosing recombinant cells engineered to secrete a therapeutic protein was explored in this study. In order to prevent immune rejection of the delivered cells, they were enclosed in non-antigenic biocompatible alginate microcapsules prior to being implanted intraperitoneally into mice. We have shown that encapsulated C2C12 myoblasts can temporarily deliver therapeutic levels of factor IX (FIX) in mice, but the C2C12 myoblasts elicited an immune response to FIX. In this study we report the use of mouse fetal G8 myoblasts secreting hFIX in hemophilia mice. Mouse G8 myoblasts were transduced with MFG-FIX vector. A pool of recombinant G8 myoblasts secreting approximately 1500 ng hFIX/10(6) cells/24 h in vitro were enclosed in biocompatible alginate microcapsules and implanted intraperitoneally into immunocompetent C57BL/6 and hemophilic mice. Circulating levels of hFIX in treated mice reached approximately 400 ng/ml for at least 120 days (end of experiment). Interestingly, mice treated with encapsulated G8 myoblasts did not develop anti-hFIX antibodies. Activated partial thromboplastin time (APTT) of plasmas obtained from treated hemophilic mice was reduced from 107 to 82 sec on day 60 post-treatment, and whole blood clotting time (WBCT) was also corrected from 7-9 min before treatment to 3-5 min following microcapsule implantation. Further, mice were protected against bleeding following major trauma. Thus, the FIX delivery in vivo was biologically active. Our findings suggest that the type of cells encapsulated play a key role in the generation of immune responses against the transgene. Further, a judicious selection of encapsulated cells is critical for achieving sustained gene expression. Our findings support the feasibility of encapsulated G8 myoblasts as a gene therapy approach for hemophilia B.

  7. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    Science.gov (United States)

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation.

  8. A Guide to Approaching Regulatory Considerations for Lentiviral-Mediated Gene Therapies.

    Science.gov (United States)

    White, Michael; Whittaker, Roger; Gándara, Carolina; Stoll, Elizabeth A

    2017-08-01

    Lentiviral vectors are increasingly the gene transfer tool of choice for gene or cell therapies, with multiple clinical investigations showing promise for this viral vector in terms of both safety and efficacy. The third-generation vector system is well characterized, effectively delivers genetic material and maintains long-term stable expression in target cells, delivers larger amounts of genetic material than other methods, is nonpathogenic, and does not cause an inflammatory response in the recipient. This report aims to help academic scientists and regulatory managers negotiate the governance framework to achieve successful translation of a lentiviral vector-based gene therapy. The focus is on European regulations and how they are administered in the United Kingdom, although many of the principles will be similar for other regions, including the United States. The report justifies the rationale for using third-generation lentiviral vectors to achieve gene delivery for in vivo and ex vivo applications; briefly summarizes the extant regulatory guidance for gene therapies, categorized as advanced therapeutic medicinal products (ATMPs); provides guidance on specific regulatory issues regarding gene therapies; presents an overview of the key stakeholders to be approached when pursuing clinical trials authorization for an ATMP; and includes a brief catalogue of the documentation required to submit an application for regulatory approval of a new gene therapy.

  9. Development of gene therapy for inner ear disease: Using bilateral vestibular hypofunction as a vehicle for translational research.

    Science.gov (United States)

    Staecker, Hinrich; Praetorius, Mark; Brough, Douglas E

    2011-06-01

    Despite the significant impact of hearing and balance disorders on the general population there are currently no dedicated pharmaceuticals that target the inner ear. Advances in molecular biology and neuroscience have improved our understanding of the inner ear allowing the development of a range of molecular targets that have the potential to treat both hearing and balance disorders. One of the principal advantages of the inner ear is that it is accessible through a variety of approaches that would allow a potential to be delivered locally rather than systemically. This significantly broadens the potential medications that can be developed and opens the possibility of local gene delivery as a therapeutic intervention. Several potential clinical targets have been identified including delivery of neurotrophin expressing genes as an adjunct to cochlear implantation, delivery of protective genes to prevent trauma and the development of strategies for regenerating inner ear sensory cells. In order to translate these potential therapeutics into humans we will want to optimize the gene delivery methodology, dosing and activity of the drug for therapeutic value. To this end we have developed a series of adenovectors that efficiently transduce the inner ear. The use of these gene delivery approaches are attractive for the potential of hair cell regeneration after loss induced by trauma or ototoxins. This approach is particularly suited for the development of molecular therapies targeted at the vestibular system given that no device based therapeutic such a cochlear implant available for vestibular loss.

  10. Novel Polymeric Nanoparticles for Pulmonary Gene Delivery

    Science.gov (United States)

    Fields, Rachel Jennifer

    The lung is an important target for gene and drug therapy of many diseases such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), tubuerculosis (TB) and lung cancer. In fact, the pulmonary route has been employed as a means of delivering drugs for centuries, dating back 4000 years to India where inhaled vapors were used for medicinal purpose. Currently, pulmonary administration of small, hydrophobic drugs leads to rapid local and systemic absorption. However, delivery of large biomacromolecules, such as therapeutic genes, has not yet been accomplished. Here, I test the hypothesis that a rationally engineered nanoparticle (NP) vector can improve delivery of large biomacromolecules. . In this dissertation I tested this hypothesis using a hybrid NP delivery system consisting of a blend of poly(lactic-co-glycolic acid) (PLGA) and a poly(beta-amino ester) (PBAE), a cationic polymer that is particularly useful for delivery of nucleic acids.. PBAE/PLGA nanoparticles (15% PBAE) loaded with plasmid DNA were surface modified with cell-penetrating peptides (CPPs) via a PEGylated phospholipid linker. This optimized NP formulation was able to induce substantial intracellular uptake and transfect lung epithelial cells in vitro while imparting minimal cellular toxicity. In order to determine the most effective method to deliver these NPs to the lung I used fluorescently labeled particles to study the biodistribution of particles after administration to the lung of mice via various administration routes. I determined that the intranasal route was most effective. I further investigated this route and determined that an average of 37.1 +/- 15.1 % of lung cells had NP association after 4hrs. I also investigated the association of particles with different lung cell types like macrophages and alveolar epithelial cells and determined that our best particle formulations associated with approximately 80% of both of these cell types. To demonstrate the ability of the

  11. p53 gene therapy using RNA interference.

    Science.gov (United States)

    Berindan-Neagoe, I; Balacescu, O; Burz, C; Braicu, C; Balacescu, L; Tudoran, O; Cristea, V; Irimie, A

    2009-09-01

    p53 gene, discovered almost 35 years ago, keeps the main role in cell cycle control, apoptosis pathways and transcription. p53 gene is found mutated in more than 50% of all human cancers in different locations. Many structures from viral to non viral were designed to incorporate and deliver in appropriate conditions forms of p53 gene or its transcripts, systemically to target tumor cells and to eliminate them through apoptosis or to restore the normal tumor suppressor gene role. Each delivery system presents advantages and low performance in relation to immune system recognition and acceptance. One of the major discoveries in the last years, silencing of RNA, represents a powerful tool for inhibiting post transcriptional control of gene expression. According to several studies, the RNA silencing technology for p53 transcripts together with other carriers or transporters at nano level can be used for creating new therapeutic models. RNA interference for p53 uses different double-stranded (ds) molecules like short interfering (si) RNA and, despite the difficulty of introducing them into mammalian cells due to immune system response, it can be exploited in cancer therapy.

  12. Therapeutic dose from a pyroelectric electron accelerator.

    Science.gov (United States)

    Fullem, T Z; Fazel, K C; Geuther, J A; Danon, Y

    2009-11-01

    Simple heating of pyroelectric crystals has been used as the basis for compact sources of X rays, electrons, ions and neutrons. We report on the evaluation of the feasibility of using a portable pyroelectric electron accelerator to deliver a therapeutic dose to tissue. Such a device could be mass produced as a handheld, battery-powered instrument. Experiments were conducted with several crystal sizes in which the crystal was heated inside a vacuum chamber and the emitted electrons were allowed to penetrate a thin beryllium window into the surrounding air. A Faraday cup was used to count the number of electrons that exited the window. The energy of these electrons was determined by measuring the energy spectrum of the X rays that resulted from the electron interactions with the Faraday cup. Based on these measurements, the dose that this source could deliver to tissue was calculated using Monte Carlo calculations. It was found that 10(13) electrons with a peak energy of the order of 100 keV were emitted from the beryllium window and could deliver a dose of 1664 Gy to a 2-cm-diameter, 110-microm-deep region of tissue located 1.5 cm from the window with air between the window and the tissue. This dose level is high enough to consider this technology for medical applications in which shallow energy deposition is beneficial.

  13. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review).

    Science.gov (United States)

    Katoh, Masaru

    2013-10-01

    Angiogenesis is a process of neovascular formation from pre-existing blood vessels, which consists of sequential steps for vascular destabilization, angiogenic sprouting, lumen formation and vascular stabilization. Vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiopoietin, Notch, transforming growth factor-β (TGF-β), Hedgehog and WNT signaling cascades orchestrate angiogenesis through the direct or indirect regulation of quiescence, migration and the proliferation of endothelial cells. Small-molecule compounds and human/humanized monoclonal antibodies interrupting VEGF signaling have been developed as anti-angiogenic therapeutics for cancer and neovascular age-related macular degeneration (AMD). Gene or protein therapy delivering VEGF, FGF2 or FGF4, as well as cell therapy using endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been developed as pro-angiogenic therapeutics for ischemic heart disease and peripheral vascular disease. Anti-angiogenic therapy for cancer and neovascular AMD is more successful than pro-angiogenic therapy for cardiovascular diseases, as VEGF-signal interruption is technically feasible compared with vascular re-construction. Common and rare genetic variants are detected using array-based technology and personal genome sequencing, respectively. Drug and dosage should be determined based on personal genotypes of VEGF and other genes involved in angiogenesis. As epigenetic alterations give rise to human diseases, polymer-based hydrogel film may be utilized for the delivery of drugs targeting epigenetic processes and angiogenesis as treatment modalities for cardiovascular diseases. Circulating microRNAs (miRNAs) in exosomes and microvesicles are applied as functional biomarkers for diagnostics and prognostics, while synthetic miRNAs in polymer-based nanoparticles are applicable for therapeutics. A more profound understanding of the spatio

  14. Characterization of PLL-g-PEG-DNA nanoparticles for the delivery of therapeutic DNA.

    Science.gov (United States)

    Rimann, Markus; Lühmann, Tessa; Textor, Marcus; Guerino, Barbara; Ogier, Joëlle; Hall, Heike

    2008-02-01

    Local and controlled DNA release is a critical issue in current gene therapy. As viral gene delivery systems are associated with severe security problems, nonviral gene delivery vehicles were developed. Here, DNA-nanoparticles using grafted copolymers of PLL and PEG to increase their biocompatibility and stealth properties were systematically studied. Ten different PLL-based polymers with no, low, and high PEG grafting and PEG molecular weights as well as different PLL backbone lengths were complexed with plasmids containing 3200 to 10,100 base pairs. Stable complexes were formed and selected for cytotoxicity and transfection efficiency. Predominantly, PLL-g-PEG-DNA nanoparticles grafted with 4 or 5% PEG moieties of 5 kDa transfected 40% COS-7 cells without reduction of cell viability when formed at N/P ratios between 0.1 and 12.5. The molecular weight of PLL did not significantly affect transfection efficiency or cytotoxicity indicating that a specific cationic charge-density-to-PEG-ratio is important for efficient transfection and low cytotoxicity. The PLL-g-PEG-DNA nanoparticles were spherical with a diameter of approximately 100 nm and did not aggregate over 2 weeks. Moreover, they protected included plasmid DNA against serum components and DNase I digestion. Therefore, such storage stable and versatile PLL-g-PEG-DNA nanoparticles might be useful to deliver differently sized therapeutic DNA for in vivo applications.

  15. A novel bicistronic high-capacity gutless adenovirus vector that drives constitutive expression of herpes simplex virus type 1 thymidine kinase and tet-inducible expression of Flt3L for glioma therapeutics.

    Science.gov (United States)

    Puntel, Mariana; Muhammad, A K M G; Candolfi, Marianela; Salem, Alireza; Yagiz, Kader; Farrokhi, Catherine; Kroeger, Kurt M; Xiong, Weidong; Curtin, James F; Liu, Chunyan; Bondale, Niyati S; Lerner, Jonathan; Pechnick, Robert N; Palmer, Donna; Ng, Philip; Lowenstein, Pedro R; Castro, Maria G

    2010-06-01

    Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform. Herein, we describe for the first time a novel bicistronic HC-Ad driving constitutive expression of herpes simplex virus type 1 thymidine kinase (HSV1-TK) and inducible Tet-mediated expression of Flt3L within a single-vector platform. We achieved anti-GBM therapeutic efficacy with no overt toxicities using this bicistronic HC-Ad even in the presence of systemic Ad immunity. The bicistronic HC-Ad-TK/TetOn-Flt3L was delivered into intracranial gliomas in rats. Survival, vector biodistribution, neuropathology, systemic toxicity, and neurobehavioral deficits were assessed for up to 1 year posttreatment. Therapeutic efficacy was also assessed in animals preimmunized against Ads. We demonstrate therapeutic efficacy, with vector genomes being restricted to the brain injection site and an absence of overt toxicities. Importantly, antiadenoviral immunity did not inhibit therapeutic efficacy. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L genes. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.

  16. Fundamental study on gene transfer utilizing magnetic force and jet injector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Nakagami, H.; Akiyama, Y.; Nishjima, S. [Osaka University, Osaka (Japan)

    2017-03-15

    Recently, DNA vaccination is attracting attentions as a new therapeutic method for lifestyle diseases and autoimmune diseases. However, its clinical applications are limited because a safe and efficient gene transfer method has not been established yet. In this study, a new method of gene transfer was proposed which utilizes the jet injection and the magnetic transfection. The jet injection is a method to inject medical liquid by momentary high pressure without needle. The injected liquid diffuses in the bio tissue and the endocytosis is considered to be improved by the diffusion. The magnetic transfection is a method to deliver the conjugates of plasmid DNA and magnetic particles to the desired site by external magnetic field. It is expected that jet injection of the conjugates causes slight membrane disruptions and the traction of the conjugates by magnetic field induces the efficient gene transfer. In conclusion, the possibility of improvement of the gene expression by the combination of jet injection and magnetic transfection was confirmed.

  17. Sola dosis facit venenum. Leukemia in gene therapy trials: a question of vectors, inserts and dosage?

    Science.gov (United States)

    Staal, F J T; Pike-Overzet, K; Ng, Y Y; van Dongen, J J M

    2008-10-01

    In clinical gene therapy trials for X-linked severe combined immunodeficiency, the development of leukemia has come up as a severe adverse effect. In all five cases, T-cell acute lymphoblastic leukemia (T-ALL) occurred as a direct consequence of insertional mutagenesis by the retrovirus used to deliver the therapeutic gene. Here, we review the mechanisms of insertional mutagenesis, the function of the Il2RG gene and the future developments in the field. New lentiviral and gamma retroviral vectors can significantly improve the safety profile of the tools used but still carry the risk of insertional mutagenesis, as shown in this issue of Leukemia. Finally, the unfortunate side effects of gene therapy have given more insight into the development of human T-ALL.

  18. Desarrollo e implementación de un Campus Virtual como soporte del cursado de la asignatura Diagnóstico y Terapéutica por Imágenes (DyT Development and Implementation of a Virtual Campus to support Diagnostic and Therapeutic Imaging Course

    Directory of Open Access Journals (Sweden)

    Raúl Simonetto

    2011-03-01

    Full Text Available Objetivo: analizar el impacto de la utilización de herramientas didácticas virtuales como soporte de las actividades presenciales en el cursado de la asignatura Diagnóstico y Terapéutica por Imágenes, de la Facultad de Ciencias Médicas de la Universidad Nacional de La Plata. Se evaluó el grado de adhesión de los estudiantes y se lo comparó con el interés generado por otras actividades no obligatorias presenciales ofrecidas en un período similar. Material y métodos: se desarrolló e implementó un Campus Virtual utilizando diversos programas que permitieron crear, organizar, ofrecer, actualizar e incrementar permanentemente el material didáctico. El proyecto se desarrolló en treinta días, luego de lo cual el sitio fue de acceso público. La muestra de alumnos participantes fue de 700 y el análisis se realizó desde el 1º de octubre de 2007 al 30 de septiembre de 2008. Resultados: la adhesión a la utilización de esta nueva herramienta didáctica fue elevada, alcanzando el 82% de los estudiantes en curso durante el lapso mencionado, a diferencia del bajo número de interesados en las propuestas convencionales. Éstas últimas no superaron el 40%. Conclusiones: la implementación de una herramienta didáctica de soporte basada en un Campus Virtual tuvo un rápido y elevado grado de adhesión voluntaria por parte de los alumnos, en comparación con las actividades convencionales ofrecidas por el mismo grupo de docentes.Aim: To analyze the impact of didactic tools on virtual environments to support the Diagnostic and Therapeutic Imaging (T & I course at the National La Plata University (School of Medical Sciences. We evaluated the commitment of students in comparison with their interest in extra classroom activities offered in a similar period. Material and methods: We developed and implemented a Virtual Campus using various programs to continuously create, organize, deliver, update and improve the teaching material. The project was

  19. Oral microflora in infants delivered vaginally and by caesarean section.

    Science.gov (United States)

    Nelun Barfod, Mette; Magnusson, Kerstin; Lexner, Michala Oron; Blomqvist, Susanne; Dahlén, Gunnar; Twetman, Svante

    2011-11-01

    BACKGROUND.  Early in life, vaginally delivered infants exhibit a different composition of the gut flora compared with infants delivered by caesarean section (C-section); however, it is unclear whether this also applies to the oral cavity. AIM.  To investigate and compare the oral microbial profile between infants delivered vaginally and by C-section. DESIGN.  This is a cross-sectional case-control study. Eighty-four infants delivered either vaginally (n = 42) or by C-section (n = 42) were randomly selected from the 2009 birth cohort at the County Hospital in Halmstad, Sweden. Medically compromised and premature children (oral health need to be further investigated.

  20. Delivering Physical Education in selected schools in Soweto, South ...

    African Journals Online (AJOL)

    Delivering Physical Education in selected schools in Soweto, South Africa: ... Principals and sport masters of all five schools made up the 10 interviewees. ... preparedness of teachers, as well as the level of motivation and workload of teachers.

  1. Maximising the potential of social media to deliver academic library ...

    African Journals Online (AJOL)

    Maximising the potential of social media to deliver academic library services to ... that academic libraries in Kenya are currently using Facebook, WhatsApp, ... The Technical University of Kenya library, social media, social media marketing ...

  2. Capacity to deliver pharmaceutical care by community pharmacies ...

    African Journals Online (AJOL)

    The capacity of community pharmacies to deliver pharmaceutical care was studied ... Ninety five percent (95%) of the respondents always educated customers on ... of the principles of Millennium Development Goals and pharmaceutical care ...

  3. Lymphedema and Therapeutic Lymphangiogenesis

    Directory of Open Access Journals (Sweden)

    Yukihiro Saito

    2013-01-01

    Full Text Available Lymphedema is a disorder of the lymphatic vascular system characterized by impaired lymphatic return and swelling of the extremities. Lymphedema is divided into primary and secondary forms based on the underlying etiology. Despite substantial advances in both surgical and conservative techniques, therapeutic options for the management of lymphedema are limited. Although rarely lethal, lymphedema is a disfiguring and disabling condition with an associated decrease in the quality of life. The recent impressive expansion of knowledge on the molecular mechanisms governing lymphangiogenesis provides new possibilities for the treatment of lymphedema. This review highlights the lymphatic biology, the pathophysiology of lymphedema, and the therapeutic lymphangiogenesis using hepatocyte growth factor.

  4. Pancreatic Pseudocyst: Therapeutic Dilemma

    Directory of Open Access Journals (Sweden)

    A. K. Khanna

    2012-01-01

    Full Text Available Pancreatic pseudocyst develops in both acute and chronic pancreatitis. It is an entity likely to either remain asymptomatic or develop devastating complications. Despite being diagnosed easily, treatment exercise is still at crossroads whether in the form of internal or external drainage or endoscopic, laparoscopic, or open intervention with a good radiological guidance. The therapeutic dilemma whether to treat a patient with a pancreatic pseudocyst, as well as when and with what technique, is a difficult one. This paper is intended to get information about diagnostic and therapeutic exercises most appropriate for acute and chronic pancreatic pseudocyst.

  5. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  6. 金匮肾气丸、右归丸对肾阳虚小鼠模型以药反证的脑基因芯片研究%Gene chip study on cerebral gene of effect of Jinkui Shenqiwan and Youguiwan on mouse model of kidney-yang asthenia with syndrome disproved accroding to therapeutic efficacy of drugs used

    Institute of Scientific and Technical Information of China (English)

    杨裕华; 李震; 孙静

    2009-01-01

    目的:在基因水平上探讨补肾中药金匮肾气丸、右归丸对肾阳虚小鼠模型的作用机制.方法:昆明种小鼠分为正常组、模型组、金匮组和右归丸组.正常组和模型组每天灌胃蒸馏水0.5 mL;金匮组和右归丸组每天分别灌胃金匮.肾气丸混悬液和右归丸混悬液0.5 mL,含生药129 mg·kg~(-1).造模组和治疗组均采用雄雌鼠比例1:6同笼喂养,雄鼠每日游泳1次,直至无力下沉时捞出,达4周,以诱导产生"劳倦过度、房室不节"肾阳虚证.观察动物的畏寒、活动及反应、饮食和皮毛等情况.用36K mouse genome array鼠脑芯片检测正常组和肾阳虚模型组鼠脑基因,并以二者荧光信号相对强度比值≥2和≤0.5筛选差异显著基因,用qRT-PCR对部分差异表达基因进行验证.结果:模型组/正常组上调基因,二药治疗组/造模组基因下调23个基因,主要是与炎症/免疫、神经传递/信号转导等相关基因;造模组/对照组下调基因而治疗组/造模组基因上调的基因有6个,其主要是与细胞周期/细胞结构、神经传递/信号转导、转录等有关基因.qRT-PCR也证实了金匮组/模型组、模型组/正常组的GH和Scgb3a1的差异表达.结论:金匮肾气丸、右归丸可使肾阳虚小鼠模型显著下凋的激素、黑色素显著上调并促进细胞增殖,从而在基因水平上探讨了金匮肾气丸和右归丸的药物作用机制及其差别.%Objective: To inquire into the cerebral gene change of effect of Jingui Shenqiwan and Yougniwan for animal model of kidney-yang asthenia eausod by excessive physical and sexual activities, which may study the effect mechanism of the medicine with syndrome disproved therapeutic efficacy of drugs used. Method: Male mice of Kunming species, weight 35-40 g, and female weight 28-35 g were randomly divided into four groups: control group, model group and treatment groups of Jigui Shenqiwan and Youguiwan in which there were ten male mice

  7. A Novel Approach of Low-frequency Ultrasonic Naked Plasmid Gene Delivery and Its Assessment

    Institute of Scientific and Technical Information of China (English)

    WEI WANG; ZHENG-ZHONG BIAN; YONG-JIE WU; YA-LIN MIAO

    2005-01-01

    Objective To deliver the naked genes into cells through the bioeffects of cell membrane porous produced by low-frequency ultrasound (US) and to investigate the safety by determining the threshold of cell damage and membrane permeability. Methods The suspension of red cells from chickens, rabbits, rats, and S180 cells was exposed to calibrated US field with different parameters in still and flowing state. Laser scanning confocal microscopy, fluorescent microscopy, scanning electron microscopy, flow cytometry and spectrophotometry were used to examine cell morphology, membrane permeability, enzymes, free radicals, naked gene expression efficiency, threshold of cell damage and cell viability. Results The plasmid of green fluorescent protein (GFP) as a reporter gene was delivered into S180 cells under optimal conditions without cell damage and cytotoxicity. The transfection rate was (35.83±2.53)% (n=6) in viable cells, and the cell viability was (90.17±1.47)% (n=6). Also, malondialdehyde, hydroxyl free radical, alkaline phosphatase, and acid phosphatase showed a S-shaped growth model (r=0.98±0.01) in response to the permeability change and alteration of cell morphology. The constant E of energy accumulation in US delivery at 90% cell viability was an optimal control factor, and at 80% cell viability was the damage threshold. Conclusion US under optimal conditions is a versatile gene therapy tool. The intensity of GFP expression in US group has a higher fluorescent peak than that in AVV-GFP group and control group (P<0.001). The optimal gene uptakes, expression of gene and safety depend on E, which can be applied to control gene delivery efficiency in combination with other parameters. The results are helpful for development of a novel clinical naked gene therapeutic system and non-hyperthermia cancer therapeutic system.

  8. rAAV vector-mediated gene therapy for experimental ischemic stroke

    Directory of Open Access Journals (Sweden)

    Li Zhao-Jian

    2008-01-01

    Full Text Available The safest viral vector system for gene therapy is based on recombinant adeno-associated virus (rAAV up to date in Phase I clinical trials, which has been developed rapidly and applied for ischemic stroke gene therapy in animal experiments since the past seven years. rAAV vector has made great progress in improving gene delivery by modification of the capsid and increasing transgene expression by encapsidation of double-stranded rAAV genome. And in all, nine therapeutic genes in 12 animal studies were successfully delivered using rAAV vector to ischemic brain via different approaches in rat or mice stroke models for gene therapy and the results suggested that rAAV could mediate genes′ expression efficiently; most of them displayed evidently therapeutic efficacy with satisfactory biological safety. Gene therapy involving rAAV vector seems effective in attenuation of ischemic damage in stroke and has greatly promising potential use for patients in the future. In this review, we will focus on the basic biology and development of rAAV vector itself as well as the recent progress in the use of this vector for ischemic stroke gene therapy in animal experiments.

  9. Extracorporeal adsorption therapy: A Method to improve targeted radiation delivered by radiometal-labeled monoclonal antibodies.

    Energy Technology Data Exchange (ETDEWEB)

    Nemecek, Eneida R.; Green, Damian J.; Fisher, Darrell R.; Pagal, John M.; Lin, Yukang; Gopal, A. K.; Durack, Lawrence D.; Rajendran, Joseph G.; Wilbur, D. S.; Nilsson, Rune; Sandberg, Bengt; Press, Oliver W.

    2008-04-01

    Many investigators have demonstrated the ability to treat hematologic malignancies with radiolabeled monoclonal antibodies targeting hematopoietic antigens such as anti-CD20 and anti-CD45. [1-5] Although the remission rates achieved with radioimmunotherapy (RIT) are relatively high, many patients subsequently relapse presumably due to suboptimal delivery of enough radiation to eradicate the malignancy. The dose-response of leukemia and lymphoma to radiation has been proven. Substantial amounts of radiation can be delivered by RIT if followed by hematopoietic cell transplantation to rescue the bone marrow from myeloablation.[ref] However, the maximum dose of RIT that can be used is still limited by toxicity to normal tissues affected by nonspecific delivery of radiation. Efforts to improve RIT focus on improving the therapeutic ratios of radiation in target versus non-target tissues by removing the fraction of radioisotope that fails to bind to target tissues and circulates freely in the bloodstream perfusing non-target tissues. Our group and others have explored several alternatives for removal of unbound circulating antibody. [refs] One such method, extracorporeal adsorption therapy (ECAT) consists of removing unbound antibody by a method similar to plasmapheresis after critical circulation time and distribution of antibody into target tissues have been achieved. Preclinical studies of ECAT in murine xenograft models demonstrated significant improvement in therapeutic ratios of radioactivity. Chen and colleagues demonstrated that a 2-hour ECAT procedure could remove 40 to 70% of the radioactivity from liver, lung and spleen. [ref] Although isotope concentration in the tumor was initially unaffected, a 50% decrease was noted approximately 36 hours after the procedure. This approach was also evaluated in a limited phase I pilot study of patients with refractory B-cell lymphoma. [ref] After radiographic confirmation of tumor localization of a test dose of anti-CD20

  10. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis

    Science.gov (United States)

    Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md. Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep; Nagpal, Gandharva; Usmani, Salman Sadullah; Thakur, Anamika; Kaur, Gazaldeep; Sharma, Shivangi; Bhardwaj, Aman; Qureshi, Abid; Raghava, Gajendra Pal Singh; Kumar, Manoj

    2016-01-01

    Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates. PMID:27633273

  11. Gene therapy: light is finally in the tunnel.

    Science.gov (United States)

    Cao, Huibi; Molday, Robert S; Hu, Jim

    2011-12-01

    After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber's congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adeno-associated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.

  12. Pharmacokinetics and pharmacodynamics of chlorambucil delivered in long-circulating nanoemulsion.

    Science.gov (United States)

    Ganta, Srinivas; Sharma, Puneet; Paxton, James W; Baguley, Bruce C; Garg, Sanjay

    2010-02-01

    Chlorambucil was incorporated into a nanoemulsion modified with poly(ethylene glycol) to improve its pharmacokinetics and tissue distribution, and thus enhance its therapeutic efficacy. A long-circulating nanoemulsion (LNE) was prepared using soybean oil, egg lecithin, cholesterol and PEG(2000)DSPE. The LNE had an oil droplet size chlorambucil was encapsulated in the LNE. Intravenous (i.v.) administration of the chlorambucil LNE to C57 B/6 mice showed improved pharmacokinetic parameters with 1.4-fold higher area under the plasma concentration-time curve (AUC) and 1.3-fold longer half-life compared to a non-PEG-modified nanoemulsion, and 2.7-fold higher AUC and 7.6-fold longer half-life compared to chlorambucil solution. Tissue distribution studies after i.v. administration with LNE showed a considerable decrease in drug uptake in the reticulo-endothelial system containing organs compared to non-PEG-modified nanoemulsion. Additionally, the chlorambucil delivered in LNE significantly enhanced therapeutic efficacy in the subcutaneous colon-38 adenocarcinoma tumor mouse model with no apparent increase in toxicity. This study suggests that LNE could produce remarkably improved pharmacokinetic profile and therapeutic efficacy of chlorambucil compared to non-PEG-modified nanoemulsion and solution.

  13. Melatonin-Based Therapeutics for Neuroprotection in Stroke

    Directory of Open Access Journals (Sweden)

    Cesar V. Borlongan

    2013-04-01

    Full Text Available The present review paper supports the approach to deliver melatonin and to target melatonin receptors for neuroprotection in stroke. We discuss laboratory evidence demonstrating neuroprotective effects of exogenous melatonin treatment and transplantation of melatonin-secreting cells in stroke. In addition, we describe a novel mechanism of action underlying the therapeutic benefits of stem cell therapy in stroke, implicating the role of melatonin receptors. As we envision the clinical entry of melatonin-based therapeutics, we discuss translational experiments that warrant consideration to reveal an optimal melatonin treatment strategy that is safe and effective for human application.

  14. [Alternative therapeutic excision of intraepithelial conjunctival carcinoma with corneal extension].

    Science.gov (United States)

    Zemba, M; Stamate, Alina-Cristina; Avram, Corina Ioana; Sîrbu, Laura Nicoleta Urucu; Camburu, Raluca Lăcrămioara; Ochinciuc, Uliana; Burcea, M

    2013-01-01

    Surgical treatment for conjunctival neoplasms, with wide local excision, with or without supplemental cryotherapy to the surgical margins represents the treatment of choice for this pathology. In some cases, these neoplasms can be diffuse or multifocal, with borders that are difficult to detect clinically, such that topical therapies offer a more efficient method for treating the entire ocular surface, delivering high drug concentrations at this level, with negligible systemic side effects. Beginning from the clinical case of a patient diagnosed with conjunctival intraepithelial neoplasia, we try to present other therapeutical alternatives, although in this case the therapeutical approach was the classic one.

  15. Conotoxins: Structure, Therapeutic Potential and Pharmacological Applications.

    Science.gov (United States)

    Mir, Rafia; Karim, Sajjad; Kamal, Mohammad Amjad; Wilson, Cornelia M; Mirza, Zeenat

    2016-01-01

    Cone snails, also known as marine gastropods, from Conus genus produce in their venom a diverse range of small pharmacologically active structured peptides called conotoxins. The cone snail venoms are widely unexplored arsenal of toxins with therapeutic and pharmacological potential, making them a treasure trove of ligands and peptidic drug leads. Conotoxins are small disulfide bonded peptides, which act as remarkable selective inhibitors and modulators of ion channels (calcium, sodium, potassium), nicotinic acetylcholine receptors, noradrenaline transporters, N-methyl-D-aspartate receptors, and neurotensin receptors. They are highly potent and specific against several neuronal targets making them valuable as research tools, drug leads and even therapeutics. In this review, we discuss their gene superfamily classification, nomenclature, post-translational modification, structural framework, pharmacology and medical applications of the active conopeptides. We aim to give an overview of their structure and therapeutic potential. Understanding these aspects of conopeptides will help in designing more specific peptidic analogues.

  16. Applications of inorganic nanoparticles as therapeutic agents

    Science.gov (United States)

    Kim, Taeho; Hyeon, Taeghwan

    2014-01-01

    During the last decade, various functional nanostructured materials with interesting optical, magnetic, mechanical and chemical properties have been extensively applied to biomedical areas including imaging, diagnosis and therapy. In therapeutics, most research has focused on the application of nanoparticles as potential delivery vehicles for drugs and genes, because nanoparticles in the size range of 2-100 nm can interact with biological systems at the molecular level, and allow targeted delivery and passage through biological barriers. Recent investigations have even revealed that several kinds of nanomaterials are intrinsically therapeutic. Not only can they passively interact with cells, but they can also actively mediate molecular processes to regulate cell functions. This can be seen in the treatment of cancer via anti-angiogenic mechanisms as well as the treatment of neurodegenerative diseases by effectively controlling oxidative stress. This review will present recent applications of inorganic nanoparticles as therapeutic agents in the treatment of disease.

  17. Delivery Systems in Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    Liu Hu; Anas El-Aneed; Cui Guohui

    2005-01-01

    1 Gene therapy Gene therapy includes the treatment of both genetically based and infectious diseases by introducing genetic materials which have therapeutic effects[1~3]. In its simplest terms, a wild type gene (which is non-functional in the cell leading to disease development) is introduced into the somatic cell lacking this gene to restore the normal gene function in this cell. Many gene therapy strategies, however, utilize genes to destroy specific cells.

  18. Measuring Therapeutic Effectiveness.

    Science.gov (United States)

    Callister, Sheldon L.

    In the recent past, there has been a great deal of effort directed toward developing techniques for documenting therapeutic outcome. Funding sources and the general public seem to be demanding more meaningful data which indicate, in a clear manner, whether or not the services they are paying for are of value. Mental health centers, like other…

  19. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  20. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  1. Measuring Therapeutic Effectiveness.

    Science.gov (United States)

    Callister, Sheldon L.

    In the recent past, there has been a great deal of effort directed toward developing techniques for documenting therapeutic outcome. Funding sources and the general public seem to be demanding more meaningful data which indicate, in a clear manner, whether or not the services they are paying for are of value. Mental health centers, like other…

  2. Rethinking therapeutic action.

    Science.gov (United States)

    Gabbard, Glen O; Westen, Drew

    2003-08-01

    Like other core psychoanalytic constructs, the theory of therapeutic action is currently in flux, as theorists of differing persuasions propose different mechanisms. In this article, the authors attempt to integrate developments within and without psychoanalysis to provide a working model of the multifaceted processes involved in producing change in psychoanalysis and psychoanalytic psychotherapy. A theory of therapeutic action must describe both what changes (the aims of treatment) and what strategies are likely to be useful in facilitating those changes (technique). The authors believe that single-mechanism theories of therapeutic action, no matter how complex, are unlikely to prove useful at this point because of the variety of targets of change and the variety of methods useful in effecting change in those targets (such as techniques aimed at altering different kinds of conscious and unconscious processes). Interventions that facilitate change may be classified into one of three categories: those that foster insight, those that make use of various mutative aspects of the treatment relationship and a variety of secondary strategies that can be of tremendous importance. They propose that, in all forms of psychoanalytic treatment, we would be more accurate to speak of the therapeutic actions, rather than action.

  3. p53 gene in treatment of hepatic carcinoma:Status quo

    Institute of Scientific and Technical Information of China (English)

    Yong-Song Guan; Zi La; Lin Yang; Qing He; Ping Li

    2007-01-01

    Hepatocellular carcinoma(HCC)is one of the 10 most common cancers worldwide.There is no ideal treatment for HCC yet and many researchers are trying to improve the effects of treatment by changing therapeutic strategies.As the majority of human cancers seem to exhibit either abnormal p53 gene or disrupted p53 gene activation pathways,intervention to restore wild-type p53 (wt-p53)activities is an attractive anti-cancer therapy including HCC.Abnormalities of p53 are also considered a predisposition factor for hepatocarcinogenesis.p53 is frequently mutated in HCC.Most HCCs have defects in the p53-mediated apoptotic pathway although they carry wt-p53.High expression of p53 in vivo may exert therapeutic effects on HCC in two aspects:(1)High expression of exogenous p53 protein induces apoptosis of tumor cells by inhibiting proliferation of cells through several biologic pathways and(2)Exogenous p53 renders HCC more sensitive to some chemotherapeutic agents.Several approaches have been designed for the treatment of HCC via the p53 pathway by restoring the tumor suppression function from inactivation,rescuing the mutated p53 gene from instability,or delivering therapeutic exogenous p53.Products with p53 status as the target have been studied extensively in vitro and in vivo.This review elaborates some therapeutic mechanisms and advances in using recombinant human adenovirus p53 and oncolytic virus products for the treatment of HCC.

  4. Autophagy in lung disease pathogenesis and therapeutics

    Directory of Open Access Journals (Sweden)

    Stefan W. Ryter

    2015-04-01

    Full Text Available Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, and immune system functions. Selective pathways for autophagic degradation of cargoes may have variable significance in disease pathogenesis. Among these, the autophagic clearance of bacteria (xenophagy may represent a crucial host defense mechanism in the pathogenesis of sepsis and inflammatory diseases. Our recent studies indicate that the autophagic clearance of mitochondria, a potentially protective program, may aggravate the pathogenesis of chronic obstructive pulmonary disease by activating cell death programs. We report similar findings with respect to the autophagic clearance of cilia components, which can contribute to airways dysfunction in chronic lung disease. In certain diseases such as pulmonary hypertension, autophagy may confer protection by modulating proliferation and cell death. In other disorders, such as idiopathic pulmonary fibrosis and cystic fibrosis, impaired autophagy may contribute to pathogenesis. In lung cancer, autophagy has multiple consequences by limiting carcinogenesis, modulating therapeutic effectiveness, and promoting tumor cell survival. In this review we highlight the multiple functions of autophagy and its selective autophagy subtypes that may be of significance to the pathogenesis of human disease, with an emphasis on lung disease and therapeutics.

  5. Therapeutic Strategies in HCC: Radiation Modalities.

    Science.gov (United States)

    Gallicchio, R; Nardelli, A; Mainenti, P; Nappi, A; Capacchione, D; Simeon, V; Sirignano, C; Abbruzzi, F; Barbato, F; Landriscina, M; Storto, G

    2016-01-01

    Patients with hepatocellular carcinoma (HCC) comply with an advanced disease and are not eligible for radical therapy. In this distressed scenario new treatment options hold great promise; among them transarterial chemoembolization (TACE) and transarterial metabolic radiotherapy (TAMR) have shown efficacy in terms of both tumor shrinking and survival. External radiation therapy (RTx) by using novel three-dimensional conformal radiotherapy has also been used for HCC patients with encouraging results while its role had been limited in the past for the low tolerance of surrounding healthy liver. The rationale of TAMR derives from the idea of delivering exceptional radiation dose locally to the tumor, with cell killing intent, while preserving normal liver from undue exposition and minimizing systemic irradiation. Since the therapeutic efficacy of TACE is being continuously disputed, the TAMR with (131)I Lipiodol or (90)Y microspheres has gained consideration providing adequate therapeutic responses regardless of few toxicities. The implementation of novel radioisotopes and technological innovations in the field of RTx constitutes an intriguing field of research with important translational aspects. Moreover, the combination of different therapeutic approaches including chemotherapy offers captivating perspectives. We present the role of the radiation-based therapies in hepatocellular carcinoma patients who are not entitled for radical treatment.

  6. Therapeutic Strategies in HCC: Radiation Modalities

    Science.gov (United States)

    Gallicchio, R.; Nardelli, A.; Mainenti, P.; Nappi, A.; Capacchione, D.; Simeon, V.; Sirignano, C.; Abbruzzi, F.; Barbato, F.; Landriscina, M.

    2016-01-01

    Patients with hepatocellular carcinoma (HCC) comply with an advanced disease and are not eligible for radical therapy. In this distressed scenario new treatment options hold great promise; among them transarterial chemoembolization (TACE) and transarterial metabolic radiotherapy (TAMR) have shown efficacy in terms of both tumor shrinking and survival. External radiation therapy (RTx) by using novel three-dimensional conformal radiotherapy has also been used for HCC patients with encouraging results while its role had been limited in the past for the low tolerance of surrounding healthy liver. The rationale of TAMR derives from the idea of delivering exceptional radiation dose locally to the tumor, with cell killing intent, while preserving normal liver from undue exposition and minimizing systemic irradiation. Since the therapeutic efficacy of TACE is being continuously disputed, the TAMR with 131I Lipiodol or 90Y microspheres has gained consideration providing adequate therapeutic responses regardless of few toxicities. The implementation of novel radioisotopes and technological innovations in the field of RTx constitutes an intriguing field of research with important translational aspects. Moreover, the combination of different therapeutic approaches including chemotherapy offers captivating perspectives. We present the role of the radiation-based therapies in hepatocellular carcinoma patients who are not entitled for radical treatment. PMID:27563661

  7. Therapeutic Strategies in HCC: Radiation Modalities

    Directory of Open Access Journals (Sweden)

    R. Gallicchio

    2016-01-01

    Full Text Available Patients with hepatocellular carcinoma (HCC comply with an advanced disease and are not eligible for radical therapy. In this distressed scenario new treatment options hold great promise; among them transarterial chemoembolization (TACE and transarterial metabolic radiotherapy (TAMR have shown efficacy in terms of both tumor shrinking and survival. External radiation therapy (RTx by using novel three-dimensional conformal radiotherapy has also been used for HCC patients with encouraging results while its role had been limited in the past for the low tolerance of surrounding healthy liver. The rationale of TAMR derives from the idea of delivering exceptional radiation dose locally to the tumor, with cell killing intent, while preserving normal liver from undue exposition and minimizing systemic irradiation. Since the therapeutic efficacy of TACE is being continuously disputed, the TAMR with 131I Lipiodol or 90Y microspheres has gained consideration providing adequate therapeutic responses regardless of few toxicities. The implementation of novel radioisotopes and technological innovations in the field of RTx constitutes an intriguing field of research with important translational aspects. Moreover, the combination of different therapeutic approaches including chemotherapy offers captivating perspectives. We present the role of the radiation-based therapies in hepatocellular carcinoma patients who are not entitled for radical treatment.

  8. Therapeutic and diagnostic challenges for frontotemporal dementia

    Directory of Open Access Journals (Sweden)

    Simon eD'Alton

    2014-08-01

    Full Text Available In the search for therapeutic modifiers, frontotemporal dementia (FTD has traditionally been overshadowed by other conditions such as Alzheimer’s disease. A clinically and pathologically diverse condition, FTD has been galvanized by a number of recent discoveries such as novel genetic variants in familial and sporadic forms of disease and the identification of TAR DNA binding protein of 43kDa (TDP-43 as the defining constituent of inclusions in more than half of cases. In combination with an ever-expanding knowledge of the function and dysfunction of tau - a protein which is pathologically aggregated in the majority of the remaining cases - there exists a greater understanding of FTD than ever before. These advances may indicate potential approaches for the development of hypothetical therapeutics, but FTD remains highly complex and the roles of tau and TDP-43 in neurodegeneration are still wholly unclear. Here the challenges facing potential therapeutic strategies are discussed, which include sufficiently accurate disease diagnosis and sophisticated technology to deliver effective therapies.

  9. PEGylated poly(ethylene imine) copolymer-delivered siRNA inhibits HIV replication in vitro.

    Science.gov (United States)

    Weber, Nick D; Merkel, Olivia M; Kissel, Thomas; Muñoz-Fernández, María Ángeles

    2012-01-10

    RNA interference is increasingly being utilized for the specific targeting and down-regulation of disease-causing genes, including targeting viral infections such as HIV. T lymphocytes, the primary target for HIV, are very difficult to treat with gene therapy applications such as RNA interference because of issues with drug delivery. To circumvent these problems, we investigated poly(ethylene imine) (PEI) as a method of improving transfection efficiency of siRNA to T lymphocytes. Additionally, polyethylene glycol (PEG) moieties were engrafted to the PEI polymers with the goals of improving stability and reducing cytotoxicity. Initial studies on PEG-PEI/siRNA polyplex formation, size and their interaction with cell membranes demonstrated their feasibility as drug delivery agents. Assays with lymphocytes revealed low cytotoxicity profiles of the polyplexes at pharmacologically relevant concentrations with PEGylated copolymers obtaining the best results. Successful transfection of a T cell line or primary T cells with siRNA was observed via flow cytometry and confocal microscopy. Finally, the biological effect of copolymer-delivered siRNA was measured. Of particular significance, siRNA targeted to the HIV gene nef and delivered by one of the PEG-PEI copolymers in repetitive treatments every 2-3 days was observed to inhibit HIV replication to the same extent as azidothymidine over the course of 15 days. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The use of Endo-Porter to deliver morpholinos in kidney organ culture.

    Science.gov (United States)

    Nikopoulos, George N; Adams, Tamara L; Adams, Derek; Oxburgh, Leif; Prudovsky, Igor; Verdi, Joseph M

    2008-04-01

    Cellular interactions in development of the kidney are used as a model of reciprocal inductive events between epithelium and mesenchyme. Time- and labor-intensive methods have been developed to study this phenomenon. For example, in mice, the targeted disruption of genes in vivo has been used to modify the genetic program directing kidney development. However, gene targeting is a resource-intensive approach and alternative strategies for gene and protein modification in the kidney need to be developed. Herein, we have developed an efficient system for the delivery of antisense morpholino to alter normal protein expression. We describe the use of Endo-Porter to effectively deliver morpholinos to all parts and regions of the kidney explant. Also, we definitively show via confocal microscopy and Western blot analysis that the use of Endo-Porter in delivering antisense morpholinos is robust throughout the entire kidney explant, providing efficient suppression of protein expression. This method saves time and cost when compared with targeted disruption and is an improvement upon previous kidney organ culture methods.

  11. Carbohydrates in therapeutics.

    Science.gov (United States)

    Kilcoyne, Michelle; Joshi, Lokesh

    2007-07-01

    Awareness of the importance of carbohydrates in living systems and medicine is growing due to the increasing understanding of their biological and pharmacological relevance. Carbohydrates are ubiquitous and perform a wide array of biological roles. Carbohydrate-based or -modified therapeutics are used extensively in cardiovascular and hematological treatments ranging from inflammatory diseases and anti-thrombotic treatments to wound healing. Heparin is a well-known and widely used example of a carbohydrate-based drug but will not be discussed as it has been extensively reviewed. We will detail carbohydrate-based and -modified therapeutics, both those that are currently marketed or in various stages of clinical trials and those that are potential therapeutics based on promising preclinical investigations. Carbohydrate-based therapeutics include polysaccharide and oligosaccharide anti-inflammatory, anti-coagulant and anti-thrombotic agents from natural and synthetic sources, some as an alternative to heparin and others which were designed based on known structure-functional relationships. Some of these compounds have multiple biological effects, showing anti-adhesive, anti-HIV and anti-arthrithic activities. Small molecules, derivatives or mimetics of complement inhibitors, are detailed for use in limiting ischemia/ reperfusion injuries. Monosaccharides, both natural and synthetic, have been investigated for their in vivo anti-inflammatory and cardioprotective properties. Modification by glycosylation of natural products, or glycosylation-mimicking modification, has a significant effect on the parent molecule including increased plasma half-life and refining or increasing desired functions. It is hoped that this review will highlight the vast therapeutic potential of these natural bioactive molecules.

  12. Nanotechnology in Neuroscience and its Perspective as Gene Carrier.

    Science.gov (United States)

    Khanh, T M T; Wei, D; Tran, P H L; Tran, Thao T D

    2017-01-01

    Gene therapy has a strong potential in neuroscience by suppressing or replacing abnormalities in genetic materials. The employment of nano-gene carrier for neurological disorders is comparatively young and restricted since the aim to effectively deliver therapeutic agents into the central nervous system (CNS) commonly has confronted difficulties of several natural occurring barriers in the body and unfavorable characteristics of pharmaceutical agents. Two major anatomical and biochemical barriers are blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB), which significantly prevent permeation of most drugs and genes to brain parenchyma. In this concern, nanotechnology emerges as an innovative method for transporting therapeutics to the CNS. Diverse nano-systems have been closely investigated, some of which have demonstrated initial success for in vivo studies. The perspectives of nanotechnology for gene therapy would be a promising field to be further explored in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Advances in Non-Viral DNA Vectors for Gene Therapy

    Directory of Open Access Journals (Sweden)

    Cinnamon L. Hardee

    2017-02-01

    Full Text Available Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic

  14. Advances in Non-Viral DNA Vectors for Gene Therapy

    Science.gov (United States)

    Hardee, Cinnamon L.; Arévalo-Soliz, Lirio Milenka; Hornstein, Benjamin D.; Zechiedrich, Lynn

    2017-01-01

    Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic. PMID:28208635

  15. Influence Of Promoter Polymorphisms Of The Tnf-α (-308g/A And IL-6 (-174g/C Genes On Therapeutic Response To Etanercept In Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Jančić Ivan

    2015-10-01

    Full Text Available Background: The study was undertaken to assess the influence of functional -308G/A TNF-α (rs 1800629 and -174G/C IL-6 (rs1800795 promoter polymorphisms on the therapeutic response to etanercept, a TNF-α blocker, in patients with rheumatoid arthritis (RA.

  16. IONP-PLL: a novel non-viral vector for efficient gene delivery.

    Science.gov (United States)

    Xiang, Juan-Juan; Tang, Jing-Qun; Zhu, Shi-Guo; Nie, Xin-Min; Lu, Hong-Bin; Shen, Shou-Rong; Li, Xiao-Ling; Tang, Ke; Zhou, Ming; Li, Gui-Yuan

    2003-09-01

    Non-viral methods of gene delivery have been an attractive alternative to virus-based gene therapy. However, the vectors that are currently available have drawbacks limiting their therapeutic application. We have developed a self-assembled non-viral gene carrier, poly-L-lysine modified iron oxide nanoparticles (IONP-PLL), which is formed by modifying poly-L-lysine to the surface of iron oxide nanoparticles. The ability of IONP-PLL to bind DNA was determined by ratio-dependent retardation of DNA in the agarose gel and co-sedimentation assay. In vitro cytotoxic effects were quantified by MTT assay. The transfection efficiency in vitro was evaluated by delivering exogenous DNA to different cell lines using IONP-PLL. Intravenous injection of IONP-PLL/DNA complexes into mice was evaluated as a gene delivery system for gene therapy. The PGL2-control gene encoding firefly luciferase and the EGFP-C2 gene encoding green fluorescent protein were used as marker genes. IONP-PLL could bind and protect DNA. In contrast to PLL and cationic liposomes, IONP-PLL described here was less cytotoxic in a broad range of concentrations. In the current study, we have demonstrated that IONP-PLL can deliver exogenous gene to cells in vitro and in vivo. After intravenous injection, IONP-PLL transferred reporter gene EGFP-C2 to lung, brain, spleen and kidney. Furthermore, we have demonstrated that IONP-PLL transferred exogenous DNA across the blood-brain barrier to the glial cells and neuron of brain. IONP-PLL, a low-toxicity vector, appears to have potential for fundamental research and genetic therapy in vitro and in vivo, especially for gene therapy of CNS disease. Copyright 2003 John Wiley & Sons, Ltd.

  17. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors

    Science.gov (United States)

    Hirsch, Matthew L.; Wolf, Sonya J.; Samulski, R.J.

    2016-01-01

    Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber’s congenital amaurosis. In addition to rAAV’s high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package “large” genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6–8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6–8, 2010; Duan et al., J Virol 73(1):161–169, 1999; Duan et al., J Virol 72(11):8568–8577, 1998; Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002). This method involves “splitting” the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002; Ghosh et al., Mol Ther 16(1):124–130, 2008; Ghosh et al., Mol Ther 15

  18. 基因治疗导入微小RNA沉默肌腱细胞转化生长因子基因的体外研究和体内应用%In vitro study and in vivo application of microRNA to silence expression of the transforming growth factor β1 gene delivered to tenocytes

    Institute of Scientific and Technical Information of China (English)

    陈传好; 汤锦波; 周友浪; 曹怡; 吴亚芳

    2010-01-01

    目的 探讨微小RNA(miRNA)导入肌腱细胞和损伤肌腱沉默转化生长因子(TGF)β基因的作用及对Ⅰ、Ⅲ型胶原和结缔组织生长因子(CTGF)基因表达的影响.方法 针对鸡TGF β1基因的mRNA序列,合成4对miRNA TGF β1 DNA序列和一对不编码序列,分别插入至miRNA质粒载体中,获得5个miRNA TGF β1质粒载体,并分别命名为miRNA #1、#2、#3、#4和阴性对照.采用实时PCR技术检测并分析miRNA导入肌腱细胞后TGF β1、Ⅰ、Ⅲ型胶原和CTGF基因表达变化.在转基因治疗肌腱1周和6周后,检测TGF β1、Ⅰ、Ⅲ型胶原和CTGF基因在体内损伤肌腱中的表达.结果 与阴性对照细胞组相比,实时PCR结果分析显示:miRNA #1和#2质粒载体治疗的细胞组TGF β1基因表达分别下降了68%和43%;在miRNA #1治疗的细胞组,Ⅲ型胶原和CTGF基因表达分别下降70%和68%.使用miRNA #1干扰质粒转基因至体内损伤肌腱结果显示:术后1周,TGF β1基因表达下降67%,而Ⅰ、Ⅲ型胶原和CTGF基因表达未变化;术后6周,TGF β1和Ⅲ型胶原基因表达分别下降56%和58%.结论 miRNA导入肌腱细胞后TGF β1、Ⅲ型胶原和CTGF基因表达显著下降.导入miRNA至活体损伤肌腱后1周,TGF β1基因表达显著下降;术后6周,TGF β1和Ⅲ型胶原基因表达显著下降.%Objective To investigate the effects of delivery of microRNA(miRNA) to silence expression of the