WorldWideScience

Sample records for deletions involving chromosome

  1. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  2. The significance of chromosome deletions in atomic-bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Shigeta, Chiharu; Oguma, Nobuo; Kamada, Nanao; Deng, Z.; Niimi, Masanobu; Aisaka, Tadaichi.

    1986-01-01

    In 39 A-bomb survivors 40 years after exposure at ≤ 1,000 m from ground zero, the frequency and features of chromosome deletions in peripheral lymphocytes were examined using a differential staining technique. Simultaneously, in vitro irradiation experiment with Cf-252 was made to infer chromosome aberrations occuring immediately after exposure. Californium-252 with 100 rad induced dicentric and ring chromosomes in 40 % of the cells and acentric fragments in 44 %. Among the A-bomb survivors, chromosome aberrations were observed in 651 (21 %) of the total 3,136 cells. There were 146 cells with deletions (22 % of abnormal cells; 5 % of the total cells), and 10 cells with acentric fragment (0.3 % of the total cells). The figure for deletions was far higher than that reported in the literature. A large number of deletions were seen in chromosomes no.4, no.21, and no.22, and a few deletions in chromosomes no.7 and no.20. Significance of chromosome deletions is discussed. (Namekawa, K.)

  3. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  4. Array based characterization of a terminal deletion involving chromosome subband 15q26.2: an emerging syndrome associated with growth retardation, cardiac defects and developmental delay

    Directory of Open Access Journals (Sweden)

    Björkhem Gudrun

    2008-01-01

    Full Text Available Abstract Background Subtelomeric regions are gene rich and deletions in these chromosomal segments have been demonstrated to account for approximately 2.5% of patients displaying mental retardation with or without association of dysmorphic features. However, cases that report de novo terminal deletions on chromosome arm 15q are rare. Methods In this study we present the first example of a detailed molecular genetic mapping of a de novo deletion in involving 15q26.2-qter, caused by the formation of a dicentric chromosome 15, using metaphase FISH and tiling resolution (32 k genome-wide array-based comparative genomic hybridization (CGH. Results After an initial characterization of the dicentric chromosome by metaphase FISH, array CGH analysis mapped the terminal deletion to encompass a 6.48 megabase (Mb region, ranging from 93.86–100.34 Mb on chromosome 15. Conclusion In conclusion, we present an additional case to the growing family of reported cases with 15q26-deletion, thoroughly characterized at the molecular cytogenetic level. In the deleted regions, four candidate genes responsible for the phenotype of the patient could be delineated: IGFR1, MEF2A, CHSY1, and TM2D3. Further characterization of additional patients harboring similar 15q-aberrations might hopefully in the future lead to the description of a clear cut clinically recognizable syndrome.

  5. Inversion duplication deletions involving the long arm of chromosome 13: phenotypic description of additional three fetuses and genotype-phenotype correlation.

    Science.gov (United States)

    Quelin, Chloe; Spaggiari, Emmanuel; Khung-Savatovsky, Suonavy; Dupont, Celine; Pasquier, Laurent; Loeuillet, Laurence; Jaillard, Sylvie; Lucas, Josette; Marcorelles, Pascale; Journel, Hubert; Pluquailec-Bilavarn, Khantaby; Bazin, Anne; Verloes, Alain; Delezoide, Anne-Lise; Aboura, Azzedine; Guimiot, Fabien

    2014-10-01

    Inversion duplication and terminal deletion of the long arm of chromosome 13 (inv dup del 13q) is a rare chromosomal rearrangement: only five patients have been reported, mostly involving a ring chromosome 13. We report on additional three fetuses with pure inv dup del 13q: Patient 1 had macrosomia, enlarged kidneys, hypersegmented lungs, unilateral moderate ventriculomegaly, and a mild form of hand and feet preaxial polydactyly; Patient 2 had intrauterine growth retardation, widely spaced eyes, left microphthalmia, right anophthalmia, short nose, bilateral absent thumbs, cutaneous syndactyly of toes 4 and 5, bifid third metacarpal, a small left kidney, hyposegmented lungs, and partial agenesis of the corpus callosum; Patient 3 had widely spaced eyes, long and smooth philtrum, low-set ears, median notch in the upper alveolar ridge, bifid tongue, cutaneous syndactyly of toes 2 and 3, enlarged kidneys and pancreas, arhinencephaly, and partial agenesis of the corpus callosum. We compared the phenotypes of these patients to those previously reported for ring chromosome 13, pure 13q deletions and duplications. We narrowed some critical regions previously reported for lung, kidney and fetal growth, and for thumb, cerebral, and eye anomalies. © 2014 Wiley Periodicals, Inc.

  6. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  7. Partial 2p deletion in a girl with a complex chromosome rearrangement involving chromosomes 2, 6, 11, and 21.

    OpenAIRE

    Young, R S; Medrano, M A; Hansen, K L

    1985-01-01

    We describe the clinical and cytogenetic findings of a 9 1/2 month old girl with a complex chromosome rearrangement resulting in a probable deletion of band 2p14. She does not resemble other reported cases of del(2p).

  8. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    Science.gov (United States)

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  9. Correlation between chromosome 9p21 locus deletion and prognosis in clinically localized prostate cancer.

    Science.gov (United States)

    Barros, Érika Aparecida Felix de; Pontes-Junior, José; Reis, Sabrina Thalita; Lima, Amanda Eunice Ramos; Souza, Isida C; Salgueiro, Jose Lucas; Fontes, Douglas; Dellê, Humberto; Coelho, Rafael Ferreira; Viana, Nayara Izabel; Leite, Kátia Ramos Moreira; Nahas, William C; Srougi, Miguel

    2017-05-04

    Some studies have reported that deletions at chromosome arm 9p occur frequently and represent a critical step in carcinogenesis of some neoplasms. Our aim was to evaluate the deletion of locus 9p21 and chromosomes 3, 7 and 17 in localized prostate cancer (PC) and correlate these alterations with prognostic factors and biochemical recurrence after surgery. We retrospectively evaluated surgical specimens from 111 patients with localized PC who underwent radical prostatectomy. Biochemical recurrence was defined as a prostate-specific antigen (PSA) >0.2 ng/mL and the mean postoperative follow-up was 123 months. The deletions were evaluated using fluorescence in situ hybridization with centromeric and locus-specific probes in a tissue microarray containing 2 samples from each patient. We correlated the occurrence of any deletion with pathological stage, Gleason score, ISUP grade group, PSA and biochemical recurrence. We observed a loss of any probe in only 8 patients (7.2%). The most common deletion was the loss of locus 9p21, which occurred in 6.4% of cases. Deletions of chromosomes 3, 7 and 17 were observed in 2.3%, 1.2% and 1.8% patients, respectively. There was no correlation between chromosome loss and Gleason score, ISUP, PSA or stage. Biochemical recurrence occurred in 83% cases involving 9p21 deletions. Loss of 9p21 locus was significantly associated with time to recurrence (p = 0.038). We found low rates of deletion in chromosomes 3, 7 and 17 and 9p21 locus. We observed that 9p21 locus deletion was associated with worse prognosis in localized PC treated by radical prostatectomy.

  10. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions.

    Science.gov (United States)

    Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R

    2010-12-01

    Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.

  11. Phosphatase and tensin homologue deleted on chromosome 10 ...

    African Journals Online (AJOL)

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH) for the PTEN ...

  12. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs and/or possible chromosome 5p chromothripsis.

    Directory of Open Access Journals (Sweden)

    Heng Gu

    Full Text Available Cri-du-Chat syndrome (MIM 123450 is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs, diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5(p13.3p15.33 spanning ≈ 26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5 (q23;p14.1p15.31,ins(21;5(q21;p13.3p14.1,ins(21;5(q21;p15.31p15.33,inv(7(p22q32dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5 identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5. Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.

  13. Identification of a basic helix-loop-helix-type transcription regulator gene in Aspergillus oryzae by systematically deleting large chromosomal segments.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-09-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We constructed 12 mutants harboring deletions that spanned 16- to 150-kb segments of chromosome 7 and scored phenotypic changes in the resulting mutants. Among the deletion mutants, strains designated Delta5 and Delta7 displayed clear phenotypic changes involving growth and conidiation. In particular, the Delta5 mutant exhibited vigorous growth and conidiation, potentially beneficial characteristics for certain industrial applications. Further deletion analysis allowed identification of the AO090011000215 gene as the gene responsible for the Delta5 mutant phenotype. The AO090011000215 gene was predicted to encode a helix-loop-helix binding protein belonging to the bHLH family of transcription factors. These results illustrate the potential of the approach for identifying novel functional genes.

  14. Monoamine oxidase deficiency in males with an X chromosome deletion.

    Science.gov (United States)

    Sims, K B; de la Chapelle, A; Norio, R; Sankila, E M; Hsu, Y P; Rinehart, W B; Corey, T J; Ozelius, L; Powell, J F; Bruns, G

    1989-01-01

    Mapping of the human MAOA gene to chromosomal region Xp21-p11 prompted our study of two affected males in a family previously reported to have Norrie disease resulting from a submicroscopic deletion in this chromosomal region. In this investigation we demonstrate in these cousins deletion of the MAOA gene, undetectable levels of MAO-A and MAO-B activities in their fibroblasts and platelets, respectively, loss of mRNA for MAO-A in fibroblasts, and substantial alterations in urinary catecholamine metabolites. The present study documents that a marked deficiency of MAO activity is compatible with life and that genes for MAO-A and MAO-B are near each other in this Xp chromosomal region. Some of the clinical features of these MAO deletion patients may help to identify X-linked MAO deficiency diseases in humans.

  15. Leukemia-related clonal chromosome aberrations observed in A-bomb survivors. Deletion in chromosome 5 and inversion in chromosome 14

    International Nuclear Information System (INIS)

    Ohtaki, Kazuo

    1999-01-01

    Chromosome aberrations were analyzed by G differentiation staining method on about 5,400 peripheral lymphocytes of 168 A-bomb survivors, of whom 143 had been exposed to mean DS86 dose of 2.05 Gy (exposed group) and of 25, 0 Gy (control) and results concerning clonal growth of abnormal cells were described in this paper. G band analysis of the aberrations in T-lymphocytes revealed that frequency of translocation in the exposed group increased to 17 times of the control and deletion, 5 times. Deletion in chromosome 5 where tumor-suppressor gene was present, [del(5q-)], was found in about 30% of total deletions. Since patients of myelodysplasia syndrome and acute myelogenic leukemia had the deletion in more than 50%, growth of cells possessing it was suggestive of the progression of pre-leukemic step. Frequency of inversion in chromosome 14, inv(14)(q11q32), was as high as 80% of total 118 inversions of T-ALL (T-acute lymphocyte leukemia) and T-CLL (T-chronic LL) types in the exposed group. Therefore, the inversion also can be a pre-leukemic step. However, it was suggested that these aberrations were not sufficient for crisis of the disease, which required other factors.(K.H.)

  16. Interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q

    International Nuclear Information System (INIS)

    Le Beau, M.M.; Epstein, N.D.; O'Brien, S.J.; Nienhuis, A.W.; Yang, Y.C.; Clark, S.C.; Rowley, J.D.

    1987-01-01

    The gene IL-3 encodes interleukin 3, a hematopoietic colony-stimulating factor (CSF) that is capable of supporting the proliferation of a broad range of hematopoietic cell types. By using somatic cell hybrids and in situ chromosomal hybridization, the authors localized this gene to human chromosome 5 at bands q23-31, a chromosomal region that is frequently deleted [del(5q)] in patients with myeloid disorders. By in situ hybridization, IL-3 was found to be deleted in the 5q-chromosome of one patient with refractory anemia who had a del(5)(q15q33.3), of three patients with refractory anemia (two patients) or acute nonlymphocytic leukemia (ANLL) de novo who had a similar distal breakpoint [del(5)(q13q33.3)], and of a fifth patient, with therapy-related ANLL, who had a similar distal breakpoint in band q33[del(5)(q14q33.3)]. Southern blot analysis of somatic cell hybrids retaining the normal or the deleted chromosome 5 from two patients with the refractory anemia 5q- syndrome indicated that IL-3 sequences were absent from the hybrids retaining the deleted chromosome 5 but not from hybrids that had a cytologically normal chromosome 5. Thus, a small segment of chromosome 5 contains IL-3, GM-CSF, CSF-1, and FMS. The findings and earlier results indicating that GM-CSF, CSF-1, and FMS were deleted in the 5q- chromosome, suggest that loss of IL-3 or of other CSF genes may play an important role in the pathogenesis of hematologic disorders associated with a del(5q)

  17. Assignment of CSF-1 to 5q33.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders

    International Nuclear Information System (INIS)

    Pettenati, M.J.; Le Beau, M.M.; Lemons, R.S.; Shima, E.A.; Kawasaki, E.S.; Larson, R.A.; Sherr, C.J.; Diaz, M.O.; Rowley, J.D.

    1987-01-01

    The CSF-1 gene encodes a hematopoietic colony-stimulating factor (CSF) that promotes growth, differentiation, and survival of mononuclear phagocytes. By using somatic cell hybrids and in situ hybridization, the authors localized this gene to human chromosome 5 at bands q31 to q35, a chromosomal region that is frequently deleted [del(5q)] in patients with myeloid disorders. By in situ hybridization, the CSF-1 gene was found to be deleted in the 5q- chromosome of a patient with refractory anemia who had a del(5) (q15q33.3) and in that of a second patient with acute nonlymphocytic leukemia de novo who had a similar distal breakpoint [del(5)(q13q33.3)]. The gene was present in the deleted chromosome of a third patient, with therapy-related acute nonlymphocytic leukemia, who had a more proximal breakpoint in band q33 [del(5)(q22q33.1)]. Hybridization of the CSF-1 probe to metaphase cells of a fourth patient, with acute nonlymphocytic leukemia de novo, who had a rearrangement of chromosomes 5 and 21 resulted in labeling of the breakpoint junctions of both rearranged chromosomes; this suggested that CSF-1 is located at 5q33.1. Thus, a small segment of chromosome 5 contains GM-CSF (the gene encoding the granulocyte-macrophage CSF), CSF-1, and FMS, which encodes the CSF-1 receptor, in that order from the centromere; this cluster of genes may be involved in the altered hematopoiesis associated with a deletion of 5q

  18. Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome.

    Science.gov (United States)

    Belova, Tatiana; Grønvold, Lars; Kumar, Ajay; Kianian, Shahryar; He, Xinyao; Lillemo, Morten; Springer, Nathan M; Lien, Sigbjørn; Olsen, Odd-Arne; Sandve, Simen R

    2014-09-01

    A total of 3,671 sequence contigs and scaffolds were mapped to deletion bins on wheat chromosome 7B providing a foundation for developing high-resolution integrated physical map for this chromosome. Bread wheat (Triticum aestivum L.) has a large, complex and highly repetitive genome which is challenging to assemble into high quality pseudo-chromosomes. As part of the international effort to sequence the hexaploid bread wheat genome by the international wheat genome sequencing consortium (IWGSC) we are focused on assembling a reference sequence for chromosome 7B. The successful completion of the reference chromosome sequence is highly dependent on the integration of genetic and physical maps. To aid the integration of these two types of maps, we have constructed a high-density deletion bin map of chromosome 7B. Using the 270 K Nimblegen comparative genomic hybridization (CGH) array on a set of cv. Chinese spring deletion lines, a total of 3,671 sequence contigs and scaffolds (~7.8 % of chromosome 7B physical length) were mapped into nine deletion bins. Our method of genotyping deletions on chromosome 7B relied on a model-based clustering algorithm (Mclust) to accurately predict the presence or absence of a given genomic sequence in a deletion line. The bin mapping results were validated using three different approaches, viz. (a) PCR-based amplification of randomly selected bin mapped sequences (b) comparison with previously mapped ESTs and (c) comparison with a 7B genetic map developed in the present study. Validation of the bin mapping results suggested a high accuracy of the assignment of 7B sequence contigs and scaffolds to the 7B deletion bins.

  19. Localization of the MEN1 gene to a small region within chromosome 11q13 by deletion mapping in tumors

    International Nuclear Information System (INIS)

    Bystroem, C.; Larsson, C.; Blomberg, C.; Nordenskjoeld, M.; Sandelin, K.; Falkmer, U.; Werner, S.; Skogseid, B.; Oeberg, K.

    1990-01-01

    The gene for multiple endocrine neoplasia type 1 (MEN1), and inherited predisposition to neuroendocrine neoplasm of the parathyroid glands, the pancreatic islet parenchyma, and the anterior pituitary gland, was recently mapped to chromosome 11q13 based on genetic linkage in families. The authors now show that the pathogenesis of MEN1-associated parathyroid lesions involves unmasking of a recessive mutation at the disease locus and that sporadic primary hyperparathyroidism shares the same mechanisms. By examination of allele losses in MEN1-associated lesions, they could define deletions of chromosome 11 and map the MEN1 locus to a small region within chromosome band 11q13, telomeric to the PYGM locus. In contrast, a low incidence of deletions involving the MEN1 gene was found in sporadic pituitary adenomas

  20. Linguistic and Psychomotor Development in Children with Chromosome 14 Deletions

    Science.gov (United States)

    Zampini, Laura; D'Odorico, Laura; Zanchi, Paola; Zollino, Marcella; Neri, Giovanni

    2012-01-01

    The present study focussed on a specific type of rare genetic condition: chromosome 14 deletions. Children with this genetic condition often show developmental delays and brain and neurological problems, although the type and severity of symptoms varies depending on the size and location of the deleted genetic material. The specific aim of the…

  1. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  2. A Rare De novo Complex Chromosomal Rearrangement (CCR) Involving Four Chromosomes in An Oligo-asthenosperm Infertile Man.

    Science.gov (United States)

    Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms.

  3. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  4. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Payne CM

    2011-05-01

    Full Text Available Claire M Payne, Cheray Crowley-Skillicorn, Carol Bernstein, Hana Holubec, Harris BernsteinDepartment of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USAAbstract: Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.Keywords: chromosome 1p, colon carcinogenesis, molecular pathways, cellular pathways

  5. The Role of Dicentric Chromosome Formation and Secondary Centromere Deletion in the Evolution of Myeloid Malignancy

    Science.gov (United States)

    MacKinnon, Ruth N.; Campbell, Lynda J.

    2011-01-01

    Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centromere deletion in cancer cells. We review what is known about dicentric chromosomes and the mechanisms by which they can undergo stabilization in both constitutional and cancer genomes. The failure to identify centromere deletion in cancer cells until recently can be partly explained by the standard approaches to routine diagnostic cancer genome analysis, which do not identify centromeres in the context of chromosome organization. This hitherto hidden group of primary dicentric, secondary monocentric chromosomes, together with other unrecognized dicentric chromosomes, points to a greater role for dicentric chromosomes in cancer initiation and progression than is generally acknowledged. We present a model that predicts and explains a significant role for dicentric chromosomes in the formation of unbalanced translocations in malignancy. PMID:22567363

  6. The Role of Dicentric Chromosome Formation and Secondary Centromere Deletion in the Evolution of Myeloid Malignancy

    Directory of Open Access Journals (Sweden)

    Ruth N. MacKinnon

    2011-01-01

    Full Text Available Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centromere deletion in cancer cells. We review what is known about dicentric chromosomes and the mechanisms by which they can undergo stabilization in both constitutional and cancer genomes. The failure to identify centromere deletion in cancer cells until recently can be partly explained by the standard approaches to routine diagnostic cancer genome analysis, which do not identify centromeres in the context of chromosome organization. This hitherto hidden group of primary dicentric, secondary monocentric chromosomes, together with other unrecognized dicentric chromosomes, points to a greater role for dicentric chromosomes in cancer initiation and progression than is generally acknowledged. We present a model that predicts and explains a significant role for dicentric chromosomes in the formation of unbalanced translocations in malignancy.

  7. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    Science.gov (United States)

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  8. Chromosomal deletion unmasking a recessive disease: 22q13 deletion syndrome and metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Bisgaard, A-M; Kirchhoff, M; Nielsen, J E

    2008-01-01

    A deletion on one chromosome and a mutant allele on the other may cause an autosomal recessive disease. We report on two patients with mental retardation, dysmorphic features and low catalytic activity of arylsulfatase A. One patient had a pathogenic mutation in the arylsulfatase A gene (ARSA......) and succumbed to metachromatic leukodystrophy (MLD). The other patient had a pseudoallele, which does not lead to MLD. The presenting clinical features and low arylsulfatase A activity were explained, in each patients, by a deletion of 22q13 and, thereby, of one allele of ARSA....

  9. Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bova, G.S.; Pin, S.S.; Isaacs, W.B. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)]|[Brady Urological Institute, Baltimore, MD (United States)] [and others

    1996-07-01

    Numerous studies have implicated the short arm of chromosome 8 as the site of one or more tumor suppressor genes inactivated in carcinogenesis of the prostate, colon, lung, and liver. Previously, we identified a homozygous deletion on chromosome 8p22 in a metastatic prostate cancer. To map this homozygous deletion physically, long-range restriction mapping was performed using yeast artificial chromosomes (YACs) spanning approximately 2 Mb of chromosome band 8p22. Subcloned genomic DNA and cDNA probes isolated by hybrid capture from these YACs were mapped in relation to one another, reinforcing map integrity. Mapped single-copy probes from the region were then applied to DNA isolated from a metastatic prostate cancer containing a chromosome 8p22 homozygous deletion and indicated that its deletion spans 730-970 kb. Candidate genes PRLTS (PDGF-receptor {beta}-like tumor suppressor) and CTSB (cathepsin B) are located outside the region of homozygous deletion. Genethon marker D8S549 is located approximately at the center of this region of homozygous deletion. Two new microsatellite polymorphisms, D8S1991 and D8S1992, also located within the region of homozygous deletion on chromosome 8p22, are described. Physical mapping places cosmid CI8-2644 telomeric to MSR (macrophage scavenger receptor), the reverse of a previously published map, altering the interpretation of published deletion studies. This work should prove helpful in the identification of candidate tumor suppressor genes in this region. 47 refs., 5 figs., 1 tab.

  10. Anterior Pituitary Aplasia in an Infant with Ring Chromosome 18p Deletion

    Directory of Open Access Journals (Sweden)

    Edward J. Bellfield

    2016-01-01

    Full Text Available We present the first reported case of an infant with 18p deletion syndrome with anterior pituitary aplasia secondary to a ring chromosome. Endocrine workup soon after birth was reassuring; however, repeat testing months later confirmed central hypopituitarism. While MRI reading initially indicated no midline defects, subsequent review of the images confirmed anterior pituitary aplasia with ectopic posterior pituitary. This case demonstrates how deletion of genetic material, even if resulting in a chromosomal ring, still results in a severe syndromic phenotype. Furthermore, it demonstrates the necessity of close follow-up in the first year of life for children with 18p deletion syndrome and emphasizes the need to verify radiology impressions if there is any doubt as to the radiologic findings.

  11. Molecular and cytogenetic investigation of Y chromosome deletions over three generations facilitated by intracytoplasmic sperm injection.

    Science.gov (United States)

    Minor, Agata; Wong, Edgar Chan; Harmer, Karynn; Ma, Sai

    2007-08-01

    The azoospermic factor (AZF) region is critical for normal spermatogenesis since microdeletions and partial deletions have been associated with infertility. We investigate the diagnostic ability of karyotyping in detecting clinically relevant Y chromosome deletions. The clinical significance of heterochromatin deletions, microdeletions and partial AZFc deletions is also evaluated. A patient with a Yq deletion, affected by severe oligoasthenoteratozoospermia, underwent intracytoplasmic sperm injection (ICSI) which resulted in the birth of a healthy baby boy. The patient, his father and his son underwent Y chromosome microdeletion and partial AZFc deletion screening. We also studied the aneuploidy rate in the sperm of the patient by fluorescent in situ hybridization. AZF microdeletions were absent in the family. However, microdeletion analysis confirmed that the Yq deletion was limited to the heterochromatin. We found a partial AZFc gr/gr deletion in all three family members. We observed an increased rate of sex chromosome aneuploidy in the infertile patient. Cytogenetic analysis was misleading in identifying the Yq breakpoint. Infertility observed in the patient was associated with the gr/gr partial deletion. However, because of the incomplete penetrance of gr/gr deletions, the consequence of the vertical transmission of the deletion through ICSI remains unknown. Copyright (c) 2007 John Wiley & Sons, Ltd.

  12. De novo deletion of chromosome 11q12.3 in monozygotic twins affected by Poland Syndrome.

    Science.gov (United States)

    Vaccari, Carlotta Maria; Romanini, Maria Victoria; Musante, Ilaria; Tassano, Elisa; Gimelli, Stefania; Divizia, Maria Teresa; Torre, Michele; Morovic, Carmen Gloria; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2014-05-30

    Poland Syndrome (PS) is a rare disorder characterized by hypoplasia/aplasia of the pectoralis major muscle, variably associated with thoracic and upper limb anomalies. Familial recurrence has been reported indicating that PS could have a genetic basis, though the genetic mechanisms underlying PS development are still unknown. Here we describe a couple of monozygotic (MZ) twin girls, both presenting with Poland Syndrome. They carry a de novo heterozygous 126 Kbp deletion at chromosome 11q12.3 involving 5 genes, four of which, namely HRASLS5, RARRES3, HRASLS2, and PLA2G16, encode proteins that regulate cellular growth, differentiation, and apoptosis, mainly through Ras-mediated signaling pathways. Phenotype concordance between the monozygotic twin probands provides evidence supporting the genetic control of PS. As genes controlling cell growth and differentiation may be related to morphological defects originating during development, we postulate that the observed chromosome deletion could be causative of the phenotype observed in the twin girls and the deleted genes could play a role in PS development.

  13. Ring Chromosome 17 Not Involving the Miller-Dieker Region: A Case with Drug-Resistant Epilepsy.

    Science.gov (United States)

    Coppola, Antonietta; Morrogh, Deborah; Farrell, Fiona; Balestrini, Simona; Hernandez-Hernandez, Laura; Krithika, S; Sander, Josemir W; Waters, Jonathan J; Sisodiya, Sanjay M

    2017-12-01

    Chromosomal abnormalities are often identified in people with neurodevelopmental disorders including intellectual disability, autism, and epilepsy. Ring chromosomes, which usually involve gene copy number loss, are formed by fusion of subtelomeric or telomeric chromosomal regions. Some ring chromosomes, including ring 14, 17, and 20, are strongly associated with seizure disorders. We report an individual with a ring chromosome 17, r(17)(p13.3q25.3), with a terminal 17q25.3 deletion and no short arm copy number loss, and with a phenotype characterized by intellectual disability and drug-resistant epilepsy, including a propensity for nonconvulsive status epilepticus.

  14. Chromosome breakage in Prader-Willi and Angelman syndrome deletions may involve recombination between a repeat at the proximal and distal breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    Amos-Landgraf J.; Nicholls, R.D. [Case Western Reserve Univ., Cleveland, OH (United States); Gottlieb, W. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1994-09-01

    Prader-Willi (PWS) and Angelman (AS) syndromes most commonly arise from large deletions of 15q11-q13. Deletions in PWS are paternal in origin, while those in AS are maternal in origin, clearly demonstrating genomic imprinting in these clinically distinct neurobehavioural disorders. In at least 90% of PWS and AS deletion patients, the same 4 Mb region within 15q11-q13 is deleted with breakpoints clustering in single YAC clones at the proximal and distal ends. To study the mechanism of chromosome breakage in PWS and AS, we have previously isolated 25 independent clones from these three YACs using Alu-vector PCR. Four clones were selected that appear to detect a low copy repeat that is located in the proximal and distal breakpoint regions of chromosome 15q11-q13. Three clones detect the same 4 HindIII bands in genomic DNA, all from 15q11-q13, with differing intensities for the probes located at the proximal or distal breakpoints region, respectively. This suggests that these probes detect related members of a low-copy repeat at either location. Moreover, the 254RL2 probe detects a novel HindIII band in two unrelated PWS deletion patients, suggesting that this may represent a breakpoint fragment, with recombination occurring within a similar interval in both patients. A fourth clone, 318RL3 detects 5 bands in HindIII-digested genomic DNA, all from 15q11-q13. This YAC endclone itself is not deleted in PWS and AS deletion patients, as seen by an invariant strong band. Two other strong bands are variably intact or deleted in different PWS or AS deletion patients, suggesting a relationship of this sequence to the breakpoints. Moreover, PCR using 318RL3 primers from the distal 93C9 YAC led to the isolation of a related clone with 96% identity, demonstrating the existence of a low-copy repeat with members close to the proximal and distal breakpoints. Taken together, our data suggest a complex, low-copy repeat with members at both the proximal and distal boundaries.

  15. The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome.

    Science.gov (United States)

    Cook, R Kimberley; Christensen, Stacey J; Deal, Jennifer A; Coburn, Rachel A; Deal, Megan E; Gresens, Jill M; Kaufman, Thomas C; Cook, Kevin R

    2012-01-01

    Chromosomal deletions are used extensively in Drosophila melanogaster genetics research. Deletion mapping is the primary method used for fine-scale gene localization. Effective and efficient deletion mapping requires both extensive genomic coverage and a high density of molecularly defined breakpoints across the genome. A large-scale resource development project at the Bloomington Drosophila Stock Center has improved the choice of deletions beyond that provided by previous projects. FLP-mediated recombination between FRT-bearing transposon insertions was used to generate deletions, because it is efficient and provides single-nucleotide resolution in planning deletion screens. The 793 deletions generated pushed coverage of the euchromatic genome to 98.4%. Gaps in coverage contain haplolethal and haplosterile genes, but the sizes of these gaps were minimized by flanking these genes as closely as possible with deletions. In improving coverage, a complete inventory of haplolethal and haplosterile genes was generated and extensive information on other haploinsufficient genes was compiled. To aid mapping experiments, a subset of deletions was organized into a Deficiency Kit to provide maximal coverage efficiently. To improve the resolution of deletion mapping, screens were planned to distribute deletion breakpoints evenly across the genome. The median chromosomal interval between breakpoints now contains only nine genes and 377 intervals contain only single genes. Drosophila melanogaster now has the most extensive genomic deletion coverage and breakpoint subdivision as well as the most comprehensive inventory of haploinsufficient genes of any multicellular organism. The improved selection of chromosomal deletion strains will be useful to nearly all Drosophila researchers.

  16. 6q deletion detected by fluorescence in situ hybridization using bacterial artificial chromosome in chronic lymphocytic leukemia.

    Science.gov (United States)

    Dalsass, Alessia; Mestichelli, Francesca; Ruggieri, Miriana; Gaspari, Paola; Pezzoni, Valerio; Vagnoni, Davide; Angelini, Mario; Angelini, Stefano; Bigazzi, Catia; Falcioni, Sadia; Troiani, Emanuela; Alesiani, Francesco; Catarini, Massimo; Attolico, Immacolata; Scortechini, Ilaria; Discepoli, Giancarlo; Galieni, Piero

    2013-07-01

    Deletions of the long arm of chromosome 6 are known to occur at relatively low frequency (3-6%) in chronic lymphocytic leukemia (CLL), and they are more frequently observed in 6q21. Few data have been reported regarding other bands on 6q involved by cytogenetic alterations in CLL. The cytogenetic study was performed in nuclei and metaphases obtained after stimulation with a combination of CpG-oligonucleotide DSP30 and interleukin-2. Four bacterial artificial chromosome (BAC) clones mapping regions in bands 6q16, 6q23, 6q25, 6q27 were used as probes for fluorescence in situ hybridization in 107 CLL cases in order to analyze the occurrence and localization of 6q aberrations. We identified 11 cases (10.2%) with 6q deletion of 107 patients studied with CLL. The trends of survival curves and the treatment-free intervals (TFI) of patients with deletion suggest a better outcome than the other cytogenetic risk groups. We observed two subgroups with 6q deletion as the sole anomaly: two cases with 6q16 deletion, and three cases with 6q25.2-27 deletion. There were differences of age, stage, and TFI between both subgroups. By using BAC probes, we observed that 6q deletion has a higher frequency in CLL and is linked with a good prognosis. In addition, it was observed that the deletion in 6q16 appears to be the most frequent and, if present as the only abnormality, it could be associated with a most widespread disease. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Early onset intellectual disability in chromosome 22q11.2 deletion syndrome.

    Science.gov (United States)

    Cascella, Marco; Muzio, Maria Rosaria

    2015-01-01

    Chromosome 22q11.2 deletion syndrome, or DiGeorge syndrome, or velocardiofacial syndrome, is one of the most common multiple anomaly syndromes in humans. This syndrome is commonly caused by a microdelection from chromosome 22 at band q11.2. Although this genetic disorder may reflect several clinical abnormalities and different degrees of organ commitment, the clinical features that have driven the greatest amount of attention are behavioral and developmental features, because individuals with 22q11.2 deletion syndrome have a 30-fold risk of developing schizophrenia. There are differing opinions about the cognitive development, and commonly a cognitive decline rather than an early onset intellectual disability has been observed. We report a case of 22q11.2 deletion syndrome with both early assessment of mild intellectual disabilities and tetralogy of Fallot as the only physic manifestation. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. A paternally transmitted complex chromosomal rearrangement (CCR) involving chromosomes 2, 6, and 18 includes eight breakpoints and five insertional translocations (ITs) through three generations.

    Science.gov (United States)

    Gruchy, Nicolas; Barreau, Morgane; Kessler, Ketty; Gourdier, Dominique; Leporrier, Nathalie

    2010-01-01

    Complex chromosomal rearrangements (CCRs) are uncommon and mainly occur de novo. We report here on a familial CCR involving chromosomes 2, 6, and 18. The propositus is a boy first referred because of growth delays, hypotonia, and facial anomalies, suggestive of deletion 18q syndrome. However, a cytogenetic family study disclosed a balanced CCR in three generations, which was detailed by FISH using BAC clones, and consisted of eight breakpoints with five insertional translocations (ITs). The propositus had a cryptic 18q deletion and a 6p duplication. Paternal transmission of this CCR was observed through three generations without meiotic recombination. Our investigation allowed us to provide porosities counseling and management of prenatal diagnosis for propositus cousin who carries this particular CCR.

  19. Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori.

    Science.gov (United States)

    Abe, H; Seki, M; Ohbayashi, F; Tanaka, N; Yamashita, J; Fujii, T; Yokoyama, T; Takahashi, M; Banno, Y; Sahara, K; Yoshido, A; Ihara, J; Yasukochi, Y; Mita, K; Ajimura, M; Suzuki, M G; Oshiki, T; Shimada, T

    2005-08-01

    In the silkworm, Bombyx mori (female, ZW; male, ZZ), femaleness is determined by the presence of a single W chromosome, irrespective of the number of autosomes or Z chromosomes. The W chromosome is devoid of functional genes, except the putative female-determining gene (Fem). However, there are strains in which chromosomal fragments containing autosomal markers have been translocated on to W. In this study, we analysed the W chromosomal regions of the Zebra-W strain (T(W;3)Ze chromosome) and the Black-egg-W strain (T(W;10)+(w-2) chromosome) at the molecular level. Initially, we undertook a project to identify W-specific RAPD markers, in addition to the three already established W-specific RAPD markers (W-Kabuki, W-Samurai and W-Kamikaze). Following the screening of 3648 arbitrary 10-mer primers, we obtained nine W-specific RAPD marker sequences (W-Bonsai, W-Mikan, W-Musashi, W-Rikishi, W-Sakura, W-Sasuke, W-Yukemuri-L, W-Yukemuri-S and BMC1-Kabuki), almost all of which contained the border regions of retrotransposons, namely portions of nested retrotransposons. We confirmed the presence of eleven out of twelve W-specific RAPD markers in the normal W chromosomes of twenty-five silkworm strains maintained in Japan. These results indicate that the W chromosomes of the strains in Japan are almost identical in type. The Zebra-W strain (T(W;3)Ze chromosome) lacked the W-Samurai and W-Mikan RAPD markers and the Black-egg-W strain (T(W;10)+(w-2) chromosome) lacked the W-Mikan RAPD marker. These results strongly indicate that the regions containing the W-Samurai and W-Mikan RAPD markers or the W-Mikan RAPD marker were deleted in the T(W;3)Ze and T(W;10)+(w-2) chromosomes, respectively, due to reciprocal translocation between the W chromosome and the autosome. This deletion apparently does not affect the expression of Fem; therefore, this deleted region of the W chromosome does not contain the putative Fem gene.

  20. Y chromosome gr/gr deletions are a risk factor for low semen quality

    NARCIS (Netherlands)

    Visser, L.; Westerveld, G. H.; Korver, C. M.; van Daalen, S. K. M.; Hovingh, S. E.; Rozen, S.; van der Veen, F.; Repping, S.

    2009-01-01

    Subfertility affects one in eight couples. In up to 50% of cases, the male partner has low semen quality. Four Y chromosome deletions, i.e. Azoospermia factor a (AZFa), P5/proximal-P1 (AZFb), P5/distal-P1 and AZFc deletions, are established causes of low semen quality. Whether a recently identified

  1. DNA-based detection of chromosome deletion and amplification: diagnostic and mechanistic significance

    International Nuclear Information System (INIS)

    Latt, S.A.; Lalande, M.; Donlon, T.

    1986-01-01

    This paper describes a few of the many possible examples in which application of a molecular cytogenetic approach can ultimately lead to a new, important understanding about the statics and dynamics of human chromosome structure. In the case of retinoblastoma, cytological observations of deletions and linkage analysis have positioned the retinoblastoma locus to bank 13q14. This locus is grossly deleted in some spontaneous tumors. It is still necessary to locate more precisely and characterize the nature of the retinoblastoma locus, as well as the basis for the heterogeneity in deletions removing one copy of this locus. One is left with the possibility that those deletions that may be observed cytologically reflect but the tip of the iceberg of deletions; detection of others may require molecular probes. A related question is the nature of the DNA sequences at the deletion boundaries and the role they play in promoting these deletions

  2. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated island in the Miller-Dieker chromosome region

    International Nuclear Information System (INIS)

    Ledbetter, D.H.; Ledbetter, S.A.; vanTuinen, P.

    1989-01-01

    The Miller-Dieker syndrome (MDS), composed of characteristic facial abnormalities and a severe neuronal migration disorder affecting the cerebral cortex, is caused by visible or submicroscopic deletions of chromosome band 17p13. Twelve anonymous DNA markers were tested against a panel of somatic cell hybrids containing 17p deletions from seven MDS patients. All patients, including three with normal karyotypes, are deleted for a variable set of 5-12 markers. Two highly polymorphic VNTR (variable number of tandem repeats) probes, YNZ22 and YNH37, are codeleted in all patients tested and make molecular diagnosis for this disorder feasible. By pulsed-field gel electrophoresis, YNZ22 and YNH37 were shown to be within 30 kilobases (kb) of each other. Cosmid clones containing both VNTR sequences were identified, and restriction mapping showed them to be 100 kb were completely deleted in all patients, providing a minimum estimate of the size of the MDS critical region. A hypomethylated island and evolutionarily conserved sequences were identified within this 100-kb region, indications of the presence of one or more expressed sequences potentially involved in the pathophysiology of this disorder. The conserved sequences were mapped to mouse chromosome 11 by using mouse-rat somatic cell hybrids, extending the remarkable homology between human chromosome 17 and mouse chromosome 11 by 30 centimorgans, into the 17p telomere region

  3. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Stimpson

    2010-08-01

    Full Text Available Genome rearrangement often produces chromosomes with two centromeres (dicentrics that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

  4. Identification of a Basic Helix-Loop-Helix-Type Transcription Regulator Gene in Aspergillus oryzae by Systematically Deleting Large Chromosomal Segments▿ †

    OpenAIRE

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-01-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We con...

  5. Subtelomeric deletion of chromosome 10p15.3: clinical findings and molecular cytogenetic characterization.

    Science.gov (United States)

    DeScipio, Cheryl; Conlin, Laura; Rosenfeld, Jill; Tepperberg, James; Pasion, Romela; Patel, Ankita; McDonald, Marie T; Aradhya, Swaroop; Ho, Darlene; Goldstein, Jennifer; McGuire, Marianne; Mulchandani, Surabhi; Medne, Livija; Rupps, Rosemarie; Serrano, Alvaro H; Thorland, Erik C; Tsai, Anne C-H; Hilhorst-Hofstee, Yvonne; Ruivenkamp, Claudia A L; Van Esch, Hilde; Addor, Marie-Claude; Martinet, Danielle; Mason, Thornton B A; Clark, Dinah; Spinner, Nancy B; Krantz, Ian D

    2012-09-01

    We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM 608668) and DIP2C (OMIM 611380; UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study. Copyright © 2012 Wiley Periodicals, Inc.

  6. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Di Bartolo Daniel L

    2012-07-01

    Full Text Available Abstract Partial duplication and partial deletion of the short arm of chromosome 9 have each been reported in the literature as clinically recognizable syndromes. We present clinical, cytogenetic, and molecular findings on a five-week-old female infant with concomitant duplication and terminal deletion of the short arm of chromosome 9. To our knowledge ten such cases have previously been reported. Conventional cytogenetic analysis identified additional material on chromosome 9 at band p23. FISH analysis aided in determining the additional material consisted of an inverted duplication with a terminal deletion of the short arm. Microarray analysis confirmed this interpretation and further characterized the abnormality as a duplication of about 32.7 Mb, from 9p23 to 9p11.2, and a terminal deletion of about 11.5 Mb, from 9p24.3 to 9p23. The infant displayed characteristic features of Duplication 9p Syndrome (hypotonia, bulbous nose, single transverse palmar crease, cranial anomalies, as well as features associated with Deletion 9p Syndrome (flat nasal bridge, long philtrum, cardiac anomalies despite the deletion being distal to the reported critical region for this syndrome. This case suggests that there are genes or regulatory elements that lie outside of the reported critical region responsible for certain phenotypic features associated with Deletion 9p Syndrome. It also underscores the importance of utilizing array technology to precisely define abnormalities involving the short arm of 9p in order to further refine genotype/phenotype associations and to identify additional cases of duplication/deletion.

  7. Periventricular heterotopia in a boy with interstitial deletion of chromosome 4p.

    Science.gov (United States)

    Gawlik-Kuklinska, Katarzyna; Wierzba, Jolanta; Wozniak, Agnieszka; Iliszko, Mariola; Debiec-Rychter, Maria; Dubaniewicz-Wybieralska, Miroslawa; Limon, Janusz

    2008-01-01

    We report on a 4-year-old boy with a proximal interstitial deletion in the short arm of chromosome 4p with the karyotype 46,XY,del(4)(p14p15.32),inv(9)(p13q13). For a precise delineation of the deleted region, an array-based comparative genomic hybridization (a-CGH) analysis was performed. The proband's phenotype and cytogenetic findings are compared with previously reported cases with proximal 4p deletion syndrome. The syndrome is associated with normal growth, varying degrees of mental retardation, characteristic facial appearance and minor dysmorphic features. Additionally, our patient developed a seizure disorder due to abnormal neuronal migration, i.e., periventricular heterotopia.

  8. Small regions of overlapping deletions on 6q26 in human astrocytic tumours identified using chromosome 6 tile path array CGH

    Science.gov (United States)

    Ichimura, Koichi; Mungall, Andrew J; Fiegler, Heike; Pearson, Danita M.; Dunham, Ian; Carter, Nigel P; Collins, V. Peter

    2009-01-01

    Deletions of chromosome 6 are a common abnormality in diverse human malignancies including astrocytic tumours, suggesting the presence of tumour suppressor genes (TSG). In order to help identify candidate TSGs, we have constructed a chromosome 6 tile path microarray. The array contains 1780 clones (778 PACs and 1002 BACs) that cover 98.3% of the published chromosome 6 sequences. A total of 104 adult astrocytic tumours (10 diffuse astrocytomas, 30 anaplastic astrocytomas (AA), 64 glioblastomas (GB)) were analysed using this array. Single copy number change was successfully detected and the result was in general concordant with a microsatellite analysis. The pattern of copy number change was complex with multiple interstitial deletions/gains. However, a predominance of telomeric 6q deletions was seen. Two small common and overlapping regions of deletion at 6q26 were identified. One was 1002 kb in size and contained PACRG and QKI, while the second was 199 kb and harbours a single gene, ARID1B. The data show that the chromosome 6 tile path array is useful in mapping copy number changes with high resolution and accuracy. We confirmed the high frequency of chromosome 6 deletions in AA and GB, and identified two novel commonly deleted regions that may harbour TSGs. PMID:16205629

  9. Molecular evidence for the induction of large interstitial deletions on mouse chromosome 8 by ionizing radiation

    International Nuclear Information System (INIS)

    Turker, Mitchell S.; Pieretti, Maura; Kumar, Sudha

    1997-01-01

    The P19H22 mouse embryonal carcinoma cell line is characterized by a hemizygous deficiency for the chromosome 8 encoded aprt (adenine phosphoribosyltransferase) gene and heterozygosity for many chromosome 8 loci. We have previously demonstrated that this cell line is suitable for mutational studies because it is permissive of events ranging in size from base-pair substitutions at the aprt locus to apparent loss of chromosome 8. Large mutational events, defined by loss of the remaining aprt allele, were found to predominate in spontaneous mutants and those induced by ionizing radiation. In this study we have used a PCR based assay to screen for loss of heterozygosity at microsatellite loci both proximal and distal to aprt in 137 Cs-induced and spontaneous aprt mutants. This approach allowed us to distinguish apparent interstitial deletional events from apparent recombinational events. Significantly, 32.5% (26 of 80) of the mutational events induced by 137 Cs appeared to be interstitial deletions as compared with 7.7% (6 of 78) in the spontaneous group. This difference was statistically significant (p 137 Cs caused a significant number of deletion mutations. Most 137 Cs-induced interstitial deletions were larger than 6 cM, whereas none of the spontaneous deletions were larger than 6 cM. These results provide further support for the notion that ionizing radiation induces deletion mutations and validate the use of the P19H22 cell line for the study of events induced by ionizing radiation

  10. Deletion of short arm of chromosome 18, Del(18p syndrome

    Directory of Open Access Journals (Sweden)

    Prashant Babaji

    2014-01-01

    Full Text Available Deletion of the short arm of chromosome 18 is a rare syndrome clinically presenting with variable mental retardation, growth retardation, low height, pectus excavatum, craniofacial malformations including long ear, ptosis, microcephaly and short neck. This case report presents with characteristic features along with rare feature of single nostril.

  11. Submicroscopic interstitial deletion of the X chromosome explains a complex genetic syndrome dominated by Norrie disease.

    Science.gov (United States)

    Gal, A; Wieringa, B; Smeets, D F; Bleeker-Wagemakers, L; Ropers, H H

    1986-01-01

    Norrie disease (ND), an X-linked recessive disorder, is characterized by congenital blindness followed by bulbar atrophy. We have examined a three-generation family in which ND is part of a complex X-linked syndrome with severe mental retardation, hypogonadism, growth disturbances, and increased susceptibility to infections as additional features. This syndrome is apparently due to an interstitial deletion, as evidenced by the failure of the L1.28 DNA probe (DXS7 locus, Xp11.3) to detect complementary DNA sequences on the defective X chromosome of an affected male and of several obligatory heterozygotes. Attempts to further define this deletion with other DNA probes from the proximal short arm of the X chromosome or by prometaphase chromosome analysis were unsuccessful.

  12. Expanding the clinical spectrum of chromosome 15q26 terminal deletions associated with IGF-1 resistance.

    Science.gov (United States)

    O'Riordan, Aisling M; McGrath, Niamh; Sharif, Farhana; Murphy, Nuala P; Franklin, Orla; Lynch, Sally Ann; O'Grady, Michael J

    2017-01-01

    Haploinsufficiency of the insulin-like growth factor-1 receptor (IGF1R) gene on chromosome 15q26.3 is associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. Terminal deletions of chromosome 15q26 arising more proximally may also be associated with congenital heart disease, epilepsy, diaphragmatic hernia and renal anomalies. We report three additional cases of 15q26 terminal deletions with novel features which may further expand the spectrum of this rarely reported contiguous gene syndrome. Phenotypic features including neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been reported previously. Similarly, laboratory features of insulin-like growth factor 1 (IGF-1) resistance are described, including markedly elevated IGF-1 of up to +4.7 SDS. In one patient, the elevated IGF-1 declined over time and this coincided with a period of spontaneous growth acceleration. Deletions of 15q26 are a potential risk factor for aortic root dilatation, neonatal lymphedema and aplasia cutis in addition to causing growth restriction. What is Known: • Terminal deletions of chromosome 15q26 are associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. What is New: • Neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been previously described in 15q26 terminal deletions and may represent novel features. • IGF-1 levels may be increased up to 4.7 SDS.

  13. Phenotype and 244k array-CGH characterization of chromosome 13q deletions: an update of the phenotypic map of 13q21.1-qter

    DEFF Research Database (Denmark)

    Kirchhoff, Maria; Bisgaard, Anne-Marie; Stoeva, Radka

    2009-01-01

    Partial deletions of the long arm of chromosome 13 lead to variable phenotypes dependant on the size and position of the deleted region. In order to update the phenotypic map of chromosome 13q21.1-qter deletions, we applied 244k Agilent oligonucleotide-based array-CGH to determine the exact break......-genotype correlation on chromosome 13. In contrast to previous reports of carriers of 13q32 band deletions as the most seriously affected patients, we present two such individuals with long-term survival, 28 and 2.5 years....

  14. Hypertensive Cerebral Hemorrhage in a Patient with Turner Syndrome Caused by Deletion in the Short Arm of the X Chromosome.

    Science.gov (United States)

    Hori, Yusuke S; Ohkura, Takahiro; Ebisudani, Yuki; Umakoshi, Michiari; Ishi, Masato; Oda, Kazunori; Aoi, Mizuho; Inoue, Takushi; Furujo, Mahoko; Tanaka, Hiroyuki; Fukuhara, Toru

    2018-01-01

    Turner syndrome is a chromosomal disorder usually caused by complete deletion of an X chromosome, with deletion in the short arm of the X chromosome being a rare cause of the condition. Patients with Turner syndrome commonly develop hypertension, and associated vascular complications such as aortic dissection or cerebral hemorrhage have been reported. Cerebral hemorrhage in Turner syndrome is a rare complication, and only a few reports have been published. In these reports, all patients have XO karyotypes or a mosaic type as the cause of Turner syndrome, while no other Turner syndrome types have been documented. In this report, we present for the first time a patient with Turner syndrome caused by deletion in the short arm of the X chromosome who experienced hypertensive hemorrhage as a late complication. © 2017 S. Karger AG, Basel.

  15. [A case of mosaic ring chromosome 4 with subtelomeric 4p deletion].

    Science.gov (United States)

    Kim, Jeong Hyun; Oh, Phil Soo; Na, Hye Yeon; Kim, Sun-Hee; Cho, Hyoun Chan

    2009-02-01

    Ring chromosome is a structural abnormality that is thought to be the result of fusion and breakage in the short and long arms of chromosome. Wolf-Hirschhorn syndrome (WHS) is a well-known congenital anomaly in the ring chromosome 4 with a partial deletion of the distal short arm. Here we report a 10-month-old male of mosaic ring chromosome 4 with the chief complaint of severe short stature. He showed the height of -4 standard deviation, subtle hypothyroidism and mild atrial septal defect/ventricular septal defect, and also a mild language developmental delay was suspected. Brain magnetic resonance imaging showed multifocal leukomalacia. Chromosomal analysis of the peripheral blood showed the mosaic karyotype with [46,XY,r(4)(p16q35)[84]/45,XY,-4[9]/91,XXYY, dic r(4;4)(p16q35;p16q35)[5]/46,XY,dic r(4;4)(p16q35;p16q35)[2

  16. Phenotypic variation within European carriers of the Y-chromosomal gr/gr deletion is independent of Y-chromosomal background

    DEFF Research Database (Denmark)

    Krausz, C; Giachini, C; Xue, Y

    2008-01-01

    of duplications and the Y-chromosomal haplogroup were characterised. Although the study had good power to detect factors that accounted for >or=5.5% of the variation in sperm concentration, no such factor was found. A negative effect of gr/gr deletions followed by b2/b4 duplication was found within...

  17. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.

    Science.gov (United States)

    Darrow, Emily M; Huntley, Miriam H; Dudchenko, Olga; Stamenova, Elena K; Durand, Neva C; Sun, Zhuo; Huang, Su-Chen; Sanborn, Adrian L; Machol, Ido; Shamim, Muhammad; Seberg, Andrew P; Lander, Eric S; Chadwick, Brian P; Aiden, Erez Lieberman

    2016-08-02

    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.

  18. A girl with cutaneous hyperpigmentation, cafe au lait spots and ring chromosome 15 without significant deletion.

    NARCIS (Netherlands)

    Morava, E.; Bartsch, O.; Czako, M.; Frensel, A.; Karteszi, J.; Kosztolanyi, G.Y.

    2003-01-01

    Ring chromosome 15 [r(15)] syndrome is characterised by specific facial features, cafe au lait spots, failure to thrive, mental retardation and typically with a terminal deletion of the long arm of chromosome 15. We report a 2.5 year old girl showing normal growth and development, large

  19. HOMOZYGOUS DELETION IN A SMALL-CELL LUNG-CANCER CELL-LINE INVOLVING A 3P21 REGION WITH A MARKED INSTABILITY IN YEAST ARTIFICIAL CHROMOSOMES

    NARCIS (Netherlands)

    KOK, K; van den Berg, Anke; VELDHUIS, PMJF; VANDERVEEN, AY; FRANKE, M; SCHOENMAKERS, EFPM; HULSBEEK, MMF; VANDERHOUT, AH; DELEIJ, L; VANDEVEN, W; BUYS, CHCM

    1994-01-01

    All types of lung carcinoma are characterized by a high frequency of loss of sequences from the short arm of chromosome 3, the smallest region of overlap containing D3F15S2 in band p21. Here we characterize a 440-kilobase segment from this region, which we found homozygously deleted in one of our

  20. The Involvement of Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN in the Regulation of Inflammation Following Coronary Microembolization

    Directory of Open Access Journals (Sweden)

    Jiangyou Wang

    2014-06-01

    Full Text Available Background/Aims: Growing evidence shows that phosphatase and tensin homolog deleted on chromosome ten (PTEN is involved in regulating inflammation in different pathological conditions. Therefore, we hypothesized that the upregulation of PTEN correlates with the impairment of cardiac function in swine following coronary microembolization (CME. Methods: To possibly disclose an anti-inflammatory effect of PTEN, we induced swine CME by injecting inertia plastic microspheres (42 μm in diameter into the left anterior descending coronary artery and analyzed the myocardial tissue by immunochemistry, qRT-PCR and western blot analyses. In addition, we downregulated PTEN using siRNA. Results: Following CME, PTEN mRNA and protein levels were elevated as early as 3 h, peaked at 12 h, and then continuously decreased at 24 h and 48 h but remained elevated. Through linear correlation analysis, the PTEN protein level positively correlated with cTnI and TNF-α but was negatively correlated with LVEF. Furthermore, PTEN siRNA reduced the microinfarct volume, improved cardiac function (LVEF, reduced the release of cTnI, and suppressed PTEN and TNF-α protein expression. Conclusion: This study demonstrated, for the first time, that PTEN is involved in CME-induced inflammatory injury. The data generated from this study provide a rationale for the development of PTEN-based anti-inflammatory strategies.

  1. Plasma amine oxidase activities in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase.

    Science.gov (United States)

    Murphy, D L; Sims, K B; Karoum, F; Garrick, N A; de la Chapelle, A; Sankila, E M; Norio, R; Breakefield, X O

    1991-01-01

    Two individuals with an X-chromosomal deletion were recently found to lack the genes encoding monoamine oxidase type A (MAO-A) and MAO-B. This abnormality was associated with almost total (90%) reductions in the oxidatively deaminated urinary metabolites of the MAO-A substrate, norepinephrine, and with marked (100-fold) increases in an MAO-B substrate, phenylethylamine, confirming systemic functional consequences of the genetic enzyme deficiency. However, urinary concentrations of the deaminated metabolites of dopamine and serotonin (5-HT) were essentially normal. To investigate other deaminating systems besides MAO-A and MAO-B that might produce these metabolites of dopamine and 5-HT, we examined plasma amine oxidase (AO) activity in these two patients and two additional patients with the same X-chromosomal deletion. Normal plasma AO activity was found in all four Norrie disease-deletion patients, in four patients with classic Norrie disease without a chromosomal deletion, and in family members of patients from both groups. Marked plasma amine metabolite abnormalities and essentially absent platelet MAO-B activity were found in all four Norrie disease-deletion patients, but in none of the other subjects in the two comparison groups. These results indicate that plasma AO is encoded by gene(s) independent of those for MAO-A and MAO-B, and raise the possibility that plasma AO, and perhaps the closely related tissue AO, benzylamine oxidase, as well as other atypical AOs or MAOs encoded independently from MAO-A and MAO-B may contribute to the oxidative deamination of dopamine and 5-HT in humans.

  2. Constitutional 11q14-q22 chromosome deletion syndrome in a child with neuroblastoma MYCN single copy.

    Science.gov (United States)

    Passariello, Annalisa; De Brasi, Daniele; Defferrari, Raffaella; Genesio, Rita; Tufano, Maria; Mazzocco, Katia; Capasso, Maria; Migliorati, Roberta; Martinsson, Tommy; Siani, Paolo; Nitsch, Lucio; Tonini, Gian Paolo

    2013-11-01

    Constitutional 11q deletion is a chromosome imbalance possibly found in MCA/MR patients analyzed for chromosomal anomalies. Its role in determining the phenotype depends on extension and position of deleted region. Loss of heterozygosity of 11q (region 11q23) is also associated with neuroblastoma, the most frequent extra cranial cancer in children. It represents one of the most frequent cytogenetic abnormalities observed in the tumor of patients with high-risk disease even if germline deletion of 11q in neuroblastoma is rare. Hereby, we describe a 18 months old girl presenting with trigonocephaly and dysmorphic facial features, including hypotelorism, broad depressed nasal bridge, micrognathia, synophrys, epicanthal folds, and with a stage 4 neuroblastoma without MYCN amplification, carrying a germline 11q deletion (11q14.1-q22.3), outside from Jacobsen syndrome and from neuroblastoma 11q critical regions. The role of 11q deletion in determining the clinical phenotype and its association with neuroblastoma development in the patient are discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Abnormal protein in the cerebrospinal fluid of patients with a submicroscopic X-chromosomal deletion associated with Norrie disease: preliminary report.

    Science.gov (United States)

    Joy, J E; Poglod, R; Murphy, D L; Sims, K B; de la Chapelle, A; Sankila, E M; Norio, R; Merril, C R

    1991-01-01

    Norrie disease is an X-linked recessive disorder characterized by congenital blindness and, in many cases, mental retardation. Some Norrie disease cases have been shown to be associated with a submicroscopic deletion in chromosomal region Xp11.3. Cerebrospinal fluid (CSF) was collected from four male patients with an X-chromosomal deletion associated with Norrie disease. CSF proteins were resolved using two-dimensional gel electrophoresis and then analyzed by computer using the Elsie V program. Our analysis revealed a protein that appears to be altered in patients with Norrie disease deletion.

  4. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    Science.gov (United States)

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  5. Sexual dimorphism in white campion: complex control of carpel number is revealed by Y chromosome deletions

    International Nuclear Information System (INIS)

    Lardon, A.; Georgiev, S.; Aghmir, A.; Le Merrer, G.; Negrutiu, I.

    1999-01-01

    Sexual dimorphism in the dioecious plant white campion (Silene latifolia = Melandrium album) is under the control of two main regions on the Y chromosome. One such region, encoding the gynoecium-suppressing function (GSF), is responsible for the arrest of carpel initiation in male flowers. To generate chromosomal deletions, we used pollen irradiation in male plants to produce hermaphroditic mutants (bsx mutants) in which carpel development was restored. The mutants resulted from alterations in at least two GSF chromosomal regions, one autosomal and one located on the distal half of the (p)-arm of the Y chromosome. The two mutations affected carpel development independently, each mutation showing incomplete penetrance and variegation, albeit at significantly different levels. During successive meiotic generations, a progressive increase in penetrance and a reduction in variegation levels were observed and quantified at the level of the Y-linked GSF (GSF-Y). Possible mechanisms are proposed to explain the behavior of the bsx mutations: epigenetic regulation or/and second-site mutation of modifier genes. In addition, studies on the inheritance of the hermaphroditic trait showed that, unlike wild-type Y chromosomes, deleted Y chromosomes can be transmitted through both the male and the female lines. Altogether, these findings bring experimental support, on the one hand, to the existence on the Y chromosome of genic meiotic drive function(s) and, on the other hand, to models that consider that dioecy evolved through multiple mutation events. As such, the GSF is actually a system containing more than one locus and whose primary component is located on the Y chromosome

  6. An Interstitial 4q Deletion with a Mosaic Complementary Ring Chromosome in a Child with Dysmorphism, Linear Skin Pigmentation, and Hepatomegaly

    Directory of Open Access Journals (Sweden)

    J. Carter

    2017-01-01

    Full Text Available Interstitial deletions of 4q are rarely reported, vary in size, and have limited genotype-phenotype correlations. Here, genome-wide array CGH analysis identified a 21.6 Mb region of copy number loss at 4q12-q21.1 in a patient diagnosed with dysmorphism, linear skin pigmentation, and hepatomegaly. An additional small ring chromosome was detected in 5/30 cells examined via G-banding. Confirmation of the origin of the ring chromosome was obtained by FISH analysis which identified that the ring chromosome contained material from the deleted region of chromosome 4 and was therefore complementary to the 21.6 Mb deletion. Further microarray studies in the proband using a different microarray platform showed no evidence of mosaicism. This case highlights the importance of an integrated approach to cytogenetic analysis and demonstrates the value of G-banding for detecting mosaicism, as current microarray platforms are unable to detect low level mosaics.

  7. Detailed comparison between the wheat chromosome group 7 short arms and the rice chromosome arms 6S and 8L with special reference to genes involved in starch biosynthesis

    DEFF Research Database (Denmark)

    Li, Zhongyi; Huang, Bingyan; Rampling, Lynette

    2004-01-01

    Rice bacterial artificial chromosome (BAC) clones have been identified that contain sequences orthologous to each EST localized to wheat chromosome 7AS deletion stocks by Southern blot hybridization. This information has been used to relate the DNA sequence included in each wheat deletion stock t...

  8. Unmasking of a hemizygous WFS1 gene mutation by a chromosome 4p deletion of 8.3 Mb in a patient with Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Flipsen-ten Berg, Klara; van Hasselt, Peter M; Eleveld, Marc J; van der Wijst, Suzanne E; Hol, Frans A; de Vroede, Monique A M; Beemer, Frits A; Hochstenbach, P F Ron; Poot, Martin

    2007-11-01

    The Wolf-Hirschhorn syndrome (WHS (MIM 194190)), which is characterized by growth delay, mental retardation, epilepsy, facial dysmorphisms, and midline fusion defects, shows extensive phenotypic variability. Several of the proposed mutational and epigenetic mechanisms in this and other chromosomal deletion syndromes fail to explain the observed phenotypic variability. To explain the complex phenotype of a patient with WHS and features reminiscent of Wolfram syndrome (WFS (MIM 222300)), we performed extensive clinical evaluation and classical and molecular cytogenetic (GTG banding, FISH and array-CGH) and WFS1 gene mutation analyses. We detected an 8.3 Mb terminal deletion and an adjacent 2.6 Mb inverted duplication in the short arm of chromosome 4, which encompasses a gene associated with WFS (WFS1). In addition, a nonsense mutation in exon 8 of the WFS1 gene was found on the structurally normal chromosome 4. The combination of the 4p deletion with the WFS1 point mutation explains the complex phenotype presented by our patient. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletions represents an additional explanation for the phenotypic variability observed in chromosomal deletion disorders.

  9. Deletion of 1p36 as a primary chromosomal aberration in intestinal tumorigenesis

    DEFF Research Database (Denmark)

    Bardi, G; Pandis, N; Fenger, C

    1993-01-01

    rearrangements were found that led to loss of genetic material from 1p. In three of the cases, the deletion was restricted to the 1p36 band; the rest had lost larger 1p segments. The rearrangement of chromosome 1 was the sole karyotypic anomaly in three adenomas, all with mild or moderate dysplasia...

  10. Chromosome abnormalities in colorectal adenomas: two cytogenetic subgroups characterized by deletion of 1p and numerical aberrations

    DEFF Research Database (Denmark)

    Bomme, L; Bardi, G; Pandis, N

    1996-01-01

    Cytogenetic analysis of short-term cultures from 34 benign colorectal polyps, all histologically verified as adenomas, revealed clonal chromosome aberrations in 21 of them. Eight polyps had structural rearrangements, whereas only numerical changes were found in 13. A combination of structural...... and another with a small 1p deletion. In three adenomas, del(1)(p36) was the only cytogenetic aberration, supporting the authors' previous conclusion that loss of one or more gene loci in band 1p36 is a common early change in colorectal tumorigenesis. Chromosome 8 was involved in structural changes in two...... adenomas; in one this led to loss of 8p and in the other to gain of 8q. The cytogenetic findings did not correlate in a statistically significant manner with clinicopathologic parameters, such as grade of dysplasia, macroscopic or microscopic adenoma structure, tumor size and location, or the patients' sex...

  11. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  12. Using data mining and OLAP to discover patterns in a database of patients with Y-chromosome deletions.

    Science.gov (United States)

    Dzeroski, S; Hristovski, D; Peterlin, B

    2000-01-01

    The paper presents a database of published Y chromosome deletions and the results of analyzing the database with data mining techniques. The database describes 382 patients for which 177 different markers were tested: 364 of the 382 patients had deletions. Two data mining techniques, clustering and decision tree induction were used. Clustering was used to group patients according to the overall presence/absence of deletions at the tested markers. Decision trees and On-Line-Analytical-Processing (OLAP) were used to inspect the resulting clustering and look for correlations between deletion patterns, populations and the clinical picture of infertility. The results of the analysis indicate that there are correlations between deletion patterns and patient populations, as well as clinical phenotype severity.

  13. Interstitial deletion in the "critical region" of the long arm of the X chromosome in a mentally retarded boy and his normal mother

    DEFF Research Database (Denmark)

    Tabor, A; Andersen, O; Lundsteen, C

    1983-01-01

    A family in which an intestitial deletion of the X chromosome, del(X)(q13q21.3), is segregating was ascertained through a boy with cleft lip and palate, agenesis of the corpus callosum, and severe mental retardation. The possible causal relationship to his chromosome abnormality is discussed. Alt....... Although the deletion occurred within the critical region, the mother showed no signs of gonadal dysgenesis. A phenotypically normal daughter was, as her mother, monosomic for this region of the X, and both showed random inactivation of the X chromosome....

  14. Seizures as the first manifestation of chromosome 22q11.2 deletion syndrome in a 40-year old man: a case report

    OpenAIRE

    Tonelli, Adriano R; Kosuri, Kalyan; Wei, Sainan; Chick, Davoren

    2007-01-01

    Abstract Background The microdeletion of chromosome 22q11.2 is the most common human deletion syndrome. It typically presents early in life and is rarely considered in adult patients. As part of the manifestations of this condition, patients can have parathyroid glandular involvement ranging from hypocalcemic hypoparathyroidism to normocalcemia with normal parathryroid hormone levels. The first manifestation of the syndrome might be seizures due to profound hypocalcemia. Case presentation A 4...

  15. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    Science.gov (United States)

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  16. Chromosomal mechanisms in murine radiation acute myeloid leukemogenesis

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Breckon, G.; Cox, R.

    1996-01-01

    Chromosome 2 abnormalities, particularly interstitial deletions, characterize murine radiation-induced acute myeloid leukaemias (AMLs). Here, G-band analyses in CBA/H mice of early (1-6 month) post 3 Gy X-radiation events in bone marrow cells in vivo and karyotype evolution in one unusual AML are presented. The early event analysis showed that all irradiated animals carry chromosome 2 abnormalities, that chromosome 2 abnormalities are more frequent than expected and that interstitial deletions are more common in chromosome 2 than in the remainder of the genome. On presentation AML case N122 carried a t(2; 11) terminal translocation which, with passaging, evolved into a del2(C3F3). Therefore two pathways in leukaemogenesis might exist, one deletion-driven, the other terminal tranlocation-driven involving interstitial genes and terminal genes respectively of chromosome 2. As all irradiated individuals carried chromosome 2 abnormalities, the formation of these aberrations does not determine individual leukaemogenic sensitivity as only 20-25% of animals would be expected to develop AML. Similar lines of argument suggest that chromosome 2 abnormalities are necessary but not sufficient for radiation leukaemogenesis in CBA/H nor are they rate limiting in leukaemogenesis. (Author)

  17. Deletion affecting band 7q36 not associated with holoprosencephaly

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, S.A.D.; Krivchenia, E.; Mohamed, A.N. [Wayne State Univ., Detroit, MI (United States)] [and others

    1994-09-01

    Although the appearance of 7q36 aberrations have been postulated to be responsible for holoprosencephaly (HPE), the presence of a de novo 7q36 deletion in fetus without HPE has not been reported. We report the first case of a fetus with 7q36 deletion but lacking HPE. Ultrasound examination of a 25-year-old G3P1 Caucasian female showed small head circumference with microcephaly at 28 weeks. Decreased amniotic fluid volume, bilateral renal dilatation and abnormal facial features were also noted. Chromosome analysis after cordocentesis showed an abnormal female karyotype with a deletion involving the chromosome band 7q36, 46,XX,del(7)(q36). Chromosome studies on the biological parents were normal. In view of the chromosome finding and after extensive counseling, the couple elected to terminate the pregnancy. The chromosome findings were confirmed by fetal blood chromosome analysis at termination. Post-mortem examination confirmed dysmorphic features including a depressed nasal bridge and large flat ears with no lobules, but no cleft lip or palate was noted. Internal abnormalities included a bicuspid pulmonary valve and abnormally located lungs. The brain weighed 190g (249 {plus_minus} 64g expected) and had symmetric cerebral hemispheres without evidence of HPE or other gross or microscopic malformation, except focal cerebellar cortical dysplasia. In summary, our patient showed a deletion of the same chromosomal band implicated in HPE but lacked HPE. This finding indicates that 7q36 deletion may be seen in the absence of HPE and suggests that other genetic mechanisms may be responsible for HPE in this setting.

  18. Chromosomal deletion, promoter hypermethylation and downregulation of FYN in prostate cancer

    DEFF Research Database (Denmark)

    Sørensen, Karina Dalsgaard; Borre, Michael; Ørntoft, Torben Falck

    2008-01-01

    prostate hyperplasia (BPH), as well as in 6 prostate adenocarcinoma cell lines compared with that in BPH-1 cells. By immunohistochemistry, FYN protein was detected in nonmalignant prostate epithelium, but not in cancerous glands. Moreover, genomic bisulfite sequencing revealed frequent aberrant methylation......, consistent with gene silencing, was detected in 2 of 18 tumors (11%). No methylation was found in BPH-1 cells or nonmalignant prostate tissue samples (0 of 7). These results indicate that FYN is downregulated in prostate cancer by both chromosomal deletion and promoter hypermethylation, and therefore...

  19. Failure to thrive as primary feature in two patients with subtle chromosomal aneuploidy: Interstitial deletion 2q33

    Energy Technology Data Exchange (ETDEWEB)

    Grace, K.; Mulla, W.; Stump, T. [Children`s Hospital of Philadelpha, PA (United States)] [and others

    1994-09-01

    It is well known that patients with chromosomal aneuploidy present with multiple congenital anomalies and dysmorphia, and that they may have associated failure to thrive. However, rarely is failure to thrive the predominant presenting feature. We report two such patients. Patient 1 had a marked history of failure to thrive, (weight 50% for 5 1/2 months at 20 months, length 50% for 15 months at 20 months). Patient 2 was noted to be growth retarded at 2 months upon presenting to the hospital with respiratory symptoms (weight 50% for a newborn, length 50% for 36 weeks gestation). There was relative head sparing in both patients. Chromosome analysis in patient 1, prompted by a negative work-up for the failure to thrive, and emerging evidence of developmental delay, revealed a 46,XY,del(2)(q32.2q33) karyotype. Chromosome analysis in patient 2, done as part of a complete workup for the failure to thrive, revealed a 46,XX,del(2)(q33.2q33.2 or q33.2q33.3) karyotype. On careful examination, subtle dysmorphic features were seen. In both patients these included a long flat philtrum, thin upper lip and high arched palate. Patient 1 also had a small posterior cleft of the palate. These patients have the smallest interstitial deletions of chromosome 2 so far reported. Their deletions overlap within 2q33 although they are not identical. Review of the literature reveals 15 patients with interstitial deletions which include 2q33. Marked growth retardation is reported in 14 of these cases. Cleft palate/abnormal uvula were frequently associated. These cases illustrate the need to include high resolution chromosomal studies as part of a complete work-up for unexplained failure to thrive.

  20. Paracentric inversion of chromosome 2 associated with cryptic duplication of 2q14 and deletion of 2q37 in a patient with autism.

    Science.gov (United States)

    Devillard, Françoise; Guinchat, Vincent; Moreno-De-Luca, Daniel; Tabet, Anne-Claude; Gruchy, Nicolas; Guillem, Pascale; Nguyen Morel, Marie-Ange; Leporrier, Nathalie; Leboyer, Marion; Jouk, Pierre-Simon; Lespinasse, James; Betancur, Catalina

    2010-09-01

    We describe a patient with autism and a paracentric inversion of chromosome 2q14.2q37.3, with a concurrent duplication of the proximal breakpoint at 2q14.1q14.2 and a deletion of the distal breakpoint at 2q37.3. The abnormality was derived from his mother with a balanced paracentric inversion. The inversion in the child appeared to be cytogenetically balanced but subtelomere FISH revealed a cryptic deletion at the 2q37.3 breakpoint. High-resolution single nucleotide polymorphism array confirmed the presence of a 3.5 Mb deletion that extended to the telomere, and showed a 4.2 Mb duplication at 2q14.1q14.2. FISH studies using a 2q14.2 probe showed that the duplicated segment was located at the telomeric end of chromosome 2q. This recombinant probably resulted from breakage of a dicentric chromosome. The child had autism, mental retardation, speech and language delay, hyperactivity, growth retardation with growth hormone deficiency, insulin-dependent diabetes, and mild facial dysmorphism. Most of these features have been previously described in individuals with simple terminal deletion of 2q37. Pure duplications of the proximal chromosome 2q are rare and no specific syndrome has been defined yet, so the contribution of the 2q14.1q14.2 duplication to the phenotype of the patient is unknown. These findings underscore the need to explore apparently balanced chromosomal rearrangements inherited from a phenotypically normal parent in subjects with autism and/or developmental delay. In addition, they provide further evidence indicating that chromosome 2q terminal deletions are among the most frequently reported cytogenetic abnormalities in individuals with autism.

  1. Meiotic and mitotic behaviour of a ring/deleted chromosome 22 in human embryos determined by preimplantation genetic diagnosis for a maternal carrier

    Directory of Open Access Journals (Sweden)

    Laver Sarah

    2009-01-01

    Full Text Available Abstract Background Ring chromosomes are normally associated with developmental anomalies and are rarely inherited. An exception to this rule is provided by deletion/ring cases. We were provided with a unique opportunity to investigate the meiotic segregation at oogenesis in a woman who is a carrier of a deleted/ring 22 chromosome. The couple requested preimplantation genetic diagnosis (PGD following the birth of a son with a mosaic karyotype. The couple underwent two cycles of PGD. Studies were performed on lymphocytes, single embryonic cells removed from 3 day-old embryos and un-transferred embryos. Analysis was carried out using fluorescence in situ hybridisation (FISH with specific probe sets in two rounds of hybridization. Results In total, 12 embryos were biopsied, and follow up information was obtained for 10 embryos. No embryos were completely normal or balanced for chromosome 22 by day 5. There was only one embryo diagnosed as balanced of 12 biopsied but that accumulated postzygotic errors by day 5. Three oocytes apparently had a balanced chromosome 22 complement but all had the deleted and the ring 22 and not the intact chromosome 22. After fertilisation all the embryos accumulated postzygotic errors for chromosome 22. Conclusion The study of the preimplantation embryos in this case provided a rare and significant chance to study and understand the phenomena associated with this unusual type of anomaly during meiosis and in the earliest stages of development. It is the first reported PGD attempt for a ring chromosome abnormality.

  2. Impaired spermatogenesis and gr/gr deletions related to Y chromosome haplogroups in Korean men.

    Directory of Open Access Journals (Sweden)

    Jin Choi

    Full Text Available Microdeletion of the Azoospermia Factor (AZF regions in Y chromosome is a well-known genetic cause of male infertility resulting from spermatogenetic impairment. However, the partial deletions of AZFc region related to spermatogenetic impairment are controversial. In this study, we characterized partial deletion of AZFc region in Korean patients with spermatogenetic impairment and assessed whether the DAZ and CDY1 contributes to the phenotype in patients with gr/gr deletions. Total of 377 patients with azoo-/oligozoospermia and 217 controls were analyzed using multiplex polymerase chain reaction (PCR, analysis of DAZ-CDY1 sequence family variants (SFVs, and quantitative fluorescent (QF-PCR. Of the 377 men with impaired spermatogenesis, 59 cases (15.6% had partial AZFc deletions, including 32 gr/gr (8.5%, 22 b2/b3 (5.8%, four b1/b3 (1.1% and one b3/b4 (0.3% deletion. In comparison, 14 of 217 normozoospermic controls (6.5% had partial AZFc deletions, including five gr/gr (2.3% and nine b2/b3 (4.1% deletions. The frequency of gr/gr deletions was significantly higher in the azoo-/oligozoospermic group than in the normozoospermic control group (p = 0.003; OR = 3.933; 95% CI = 1.509-10.250. Concerning Y haplogroup, we observed no significant differences in the frequency of gr/gr deletions between the case and the control groups in the YAP+ lineages, while gr/gr deletion were significantly higher in azoo-/oligozoospermia than normozoospermia in the YAP- lineage (p = 0.004; OR = 6.341; 95% CI = 1.472-27.312. Our data suggested that gr/gr deletion is associated with impaired spermatogenesis in Koreans with YAP- lineage, regardless of the gr/gr subtypes.

  3. Unique mosaicism of structural chromosomal rearrangement: is chromosome 18 preferentially involved?

    NARCIS (Netherlands)

    Pater, J.M. de; Smeets, D.F.C.M.; Scheres, J.M.J.C.

    2003-01-01

    The mentally normal mother of a 4-year-old boy with del(18)(q21.3) syndrome was tested cytogenetically to study the possibility of an inherited structural rearrangement of chromosome 18. She was found to carry an unusual mosaicism involving chromosomes 18 and 21. Two unbalanced cell lines were seen

  4. Seizures as the first manifestation of chromosome 22q11.2 deletion syndrome in a 40-year old man: a case report

    Directory of Open Access Journals (Sweden)

    Tonelli Adriano R

    2007-12-01

    Full Text Available Abstract Background The microdeletion of chromosome 22q11.2 is the most common human deletion syndrome. It typically presents early in life and is rarely considered in adult patients. As part of the manifestations of this condition, patients can have parathyroid glandular involvement ranging from hypocalcemic hypoparathyroidism to normocalcemia with normal parathryroid hormone levels. The first manifestation of the syndrome might be seizures due to profound hypocalcemia. Case presentation A 40-year-old man without significant past medical history presented with a new-onset generalized tonic-clonic seizure. He had no personal history of hypocalcemia or seizures. Physical examination was remarkable for short stature, hypertelorism, prominent forehead and nasal voice. His initial laboratory examination showed hypocalcemia (Calcium 5.2 mg/dl and Calcium ionized 0.69 mmol/l with hypoparathyroidism (Parathyroid hormone intact Conclusion Microdeletion of chromosome 22q11.2 is among the most clinically variable syndromes, with more than 180 features associated with the deletion. It has a variable phenotypical expression, requiring a high level of awareness for its early diagnosis. Seizures, related to marked hypocalcemia due to idiopathic hypoparathyroidism, might be the presenting feature in an adult patient with this syndrome.

  5. Sexual dimorphism in white campion: deletion on the Y chromosome results in a floral asexual phenotype

    International Nuclear Information System (INIS)

    Farbos, I.; Veuskens, J.; Vyskot, B.; Oliveira, M.; Hinnisdaels, S.; Aghmir, A.; Mouras, A.; Negrutiu, I.

    1999-01-01

    White campion is a dioecious plant with heteromorphic X and Y sex chromosomes. In male plants, a filamentous structure replaces the pistil, while in female plants the stamens degenerate early in flower development. Asexual (asx) mutants, cumulating the two developmental defects that characterize the sexual dimorphism in this species, were produced by gamma ray irradiation of pollen and screening in the M1 generation. The mutants harbor a novel type of mutation affecting an early function in sporogenous/parietal cell differentiation within the anther. The function is called stamen-promoting function (SPF). The mutants are shown to result from interstitial deletions on the Y chromosome. We present evidence that such deletions tentatively cover the central domain on the (p)-arm of the Y chromosome (Y2 region). By comparing stamen development in wild-type female and asx mutant flowers we show that they share the same block in anther development, which results in the production of vestigial anthers. The data suggest that the SPF, a key function(s) controlling the sporogenous/parietal specialization in premeiotic anthers, is genuinely missing in females (XX constitution). We argue that this is the earliest function in the male program that is Y-linked and is likely responsible for ''male dimorphism'' (sexual dimorphism in the third floral whorl) in white campion. More generally, the reported results improve our knowledge of the structural and functional organization of the Y chromosome and favor the view that sex determination in this species results primarily from a trigger signal on the Y chromosome (Y1 region) that suppresses female development. The default state is therefore the ancestral hermaphroditic state

  6. The fate of deleted DNA produced during programmed genomic deletion events in Tetrahymena thermophila.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    1994-01-01

    Thousands of DNA deletion events occur during macronuclear development in the ciliate Tetrahymena thermophila. In two deleted genomic regions, designated M and R, the eliminated sequences form circles that can be detected by PCR. However, the circles are not normal products of the reaction pathway. The circular forms occur at very low levels in conjugating cells, but are stable. Sequencing analysis showed that many of the circles (as many as 50% of those examined) reflected a precise deletion in the M and R regions. The remaining circles were either smaller or larger and contained varying lengths of sequences derived from the chromosomal DNA surrounding the eliminated region. The chromosomal junctions left behind after deletion were more precise, although deletions in either the M or R regions can generate any of several alternative junctions (1). Some new chromosomal junctions were detected in the present study. The results suggest that the deleted segment is released as a linear DNA species that is degraded rapidly. The species is only rarely converted to the stable circles we detect. The deletion mechanism is different from those proposed for deletion events in hypotrichous ciliates (2-4), and does not reflect a conservative site-specific recombination process such as that promoted by the bacteriophage lambda integrase (5). Images PMID:7838724

  7. Localization of the endpoints of deletions in the 5' region of the Duchenne gene using a sequence isolated by chromosome jumping

    Energy Technology Data Exchange (ETDEWEB)

    Kenwrick, S J; Smith, T J; England, S; Collins, F; Davies, K E

    1988-02-25

    The authors have used chromosome jumping technology to move from within a large intron sequence in the Duchenne muscular dystrophy (DMD) gene to a region adjacent to exons of the gene. The single copy jump clone, HH1, was used to characterize deletions in patients previously shown to be deleted for DNA markers in the 5' end of the gene. 12 out of 15 such patients have breakpoints which lie between HH1 and the genomic locus J-47. Thus the vast majority of the deletions in these patients have proximal breakpoints in a similar region distal to the 5'end of the gene. HH1 was mapped with respect to the X;1 translocation in a DMD female and was shown to lie at least 80 kb from the starting point of the chromosome jump, HIP25.

  8. Molecular studies of deletions at the human steroid sulfatase locus

    International Nuclear Information System (INIS)

    Shapiro, L.J.; Yen, P.; Pomerantz, D.; Martin, E.; Rolewic, L.; Mohandas, T.

    1989-01-01

    The human steroid sulfatase gene (STS) is located on the distal X chromosome short arm close to the pseudoautosomal region but in a segment of DNA that is unique to the X chromosome. In contrast to most X chromosome-encoded genes, STS expression is not extinguished during the process of X chromosome inactivation. Deficiency of STS activity produced the syndrome of X chromosome-linked ichthyosis, which is one of the most common inborn errors of metabolism in man. Approximately 90% of STS - individuals have large deletions at the STS locus. The authors and others have found that the end points of such deletions are heterogeneous in their location. One recently ascertained subject was observed to have a 40-kilobase deletion that is entirely intragenic, permitting the cloning and sequencing of the deletion junction. Studies of this patient and of other X chromosome sequences in other subjects permit some insight into the mechanism(s) responsible for generating frequent deletions on the short arm of the X chromosome

  9. Localization of the endpoints of deletions in the 5' region of the Duchenne gene using a sequence isolated by chromosome jumping

    Energy Technology Data Exchange (ETDEWEB)

    Kenwrick, S.J.; Smith, T.J.; England, S.; Collins, F.; Davies, K.E.

    1988-02-25

    The authors have used chromosome jumping technology to move from within a large intron sequence in the Duchenne muscular dystrophy (DMD) gene to a region adjacent to exons of the gene. The single copy jump clone, HH1, was used to characterize deletions in patients previously shown to be deleted for DNA markers in the 5' end of the gene. 12 out of 15 such patients have breakpoints which lie between HH1 and the genomic locus J-47. Thus the vast majority of the deletions in these patients have proximal breakpoints in a similar region distal to the 5'end of the gene. HH1 was mapped with respect to the X;1 translocation in a DMD female and was shown to lie at least 80 kb from the starting point of the chromosome jump, HIP25.

  10. Prenatal diagnosis and molecular cytogenetic characterization of a de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14).

    Science.gov (United States)

    Chen, Chih-Ping; Lee, Meng-Ju; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Chen, Yu-Ting; Lee, Meng-Shan; Wang, Wayseen

    2013-10-25

    We present prenatal diagnosis of de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14) and molecular cytogenetic characterization of the deletion using uncultured amniocytes. We review the phenotypic abnormalities of previously reported patients with similar proximal interstitial 4p deletions, and we discuss the functions of the genes of RBPJ, CCKAR, STIM2, PCDH7 and ARAP2 that are deleted within this region. © 2013.

  11. De novo deletion of HOXB gene cluster in a patient with failure to thrive, developmental delay, gastroesophageal reflux and bronchiectasis.

    Science.gov (United States)

    Pajusalu, Sander; Reimand, Tiia; Uibo, Oivi; Vasar, Maire; Talvik, Inga; Zilina, Olga; Tammur, Pille; Õunap, Katrin

    2015-01-01

    We report a female patient with a complex phenotype consisting of failure to thrive, developmental delay, congenital bronchiectasis, gastroesophageal reflux and bilateral inguinal hernias. Chromosomal microarray analysis revealed a 230 kilobase deletion in chromosomal region 17q21.32 (arr[hg19] 17q21.32(46 550 362-46 784 039)×1) encompassing only 9 genes - HOXB1 to HOXB9. The deletion was not found in her mother or father. This is the first report of a patient with a HOXB gene cluster deletion involving only HOXB1 to HOXB9 genes. By comparing our case to previously reported five patients with larger chromosomal aberrations involving the HOXB gene cluster, we can suppose that HOXB gene cluster deletions are responsible for growth retardation, developmental delay, and specific facial dysmorphic features. Also, we suppose that bilateral inguinal hernias, tracheo-esophageal abnormalities, and lung malformations represent features with incomplete penetrance. Interestingly, previously published knock-out mice with targeted heterozygous deletion comparable to our patient did not show phenotypic alterations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. 35-Year Follow-Up of a Case of Ring Chromosome 2

    DEFF Research Database (Denmark)

    Sarri, Catherine; Douzgou, Sofia; Kontos, Haris

    2015-01-01

    Côté et al. [1981] suggested that ring chromosomes with or without deletions share a common pattern of phenotypic anomalies, regardless of which chromosome is involved. The phenotype of this 'general ring syndrome' consists of growth failure without malformations, few or no minor anomalies, and m...

  13. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution.

    Directory of Open Access Journals (Sweden)

    Einat Hazkani-Covo

    2008-10-01

    Full Text Available Non-homologous end joining (NHEJ is the major mechanism of double-strand break repair (DSBR in mammalian cells. NHEJ has traditionally been inferred from experimental systems involving induced double strand breaks (DSBs. Whether or not the spectrum of repair events observed in experimental NHEJ reflects the repair of natural breaks by NHEJ during chromosomal evolution is an unresolved issue. In primate phylogeny, nuclear DNA sequences of mitochondrial origin, numts, are inserted into naturally occurring chromosomal breaks via NHEJ. Thus, numt integration sites harbor evidence for the mechanisms that act on the genome over evolutionary timescales. We have identified 35 and 55 lineage-specific numts in the human and chimpanzee genomes, respectively, using the rhesus monkey genome as an outgroup. One hundred and fifty two numt-chromosome fusion points were classified based on their repair patterns. Repair involving microhomology and repair leading to nucleotide additions were detected. These repair patterns are within the experimentally determined spectrum of classical NHEJ, suggesting that information from experimental systems is representative of broader genetic loci and end configurations. However, in incompatible DSBR events, small deletions always occur, whereas in 54% of numt integration events examined, no deletions were detected. Numts show a statistically significant reduction in deletion frequency, even in comparison to DSBR involving filler DNA. Therefore, numts show a unique mechanism of integration via NHEJ. Since the deletion frequency during numt insertion is low, native overhangs of chromosome breaks are preserved, allowing us to determine that 24% of the analyzed breaks are cohesive with overhangs of up to 11 bases. These data represent, to the best of our knowledge, the most comprehensive description of the structure of naturally occurring DSBs. We suggest a model in which the sealing of DSBs by numts, and probably by other filler

  14. Single-nucleotide variant in multiple copies of a deleted in azoospermia (DAZ) sequence - a human Y chromosome quantitative polymorphism.

    Science.gov (United States)

    Szmulewicz, Martin N; Ruiz, Luis M; Reategui, Erika P; Hussini, Saeed; Herrera, Rene J

    2002-01-01

    The evolution of the deleted in azoospermia (DAZ) gene family supports prevalent theories on the origin and development of sex chromosomes and sexual dimorphism. The ancestral DAZL gene in human chromosome 3 is known to be involved in germline development of both males and females. The available phylogenetic data suggest that some time after the divergence of the New World and Old World monkey lineages, the DAZL gene, which is found in all mammals, was copied to the Y chromosome of an ancestor to the Old World monkeys, but not New World monkeys. In modern man, the Y-linked DAZ gene complex is located on the distal part of the q arm. It is thought that after being copied to the Y chromosome, and after the divergence of the human and great ape lineages, the DAZ gene in the former underwent internal rearrangements. This included tandem duplications as well as a T > C transition altering an MboI restriction enzyme site in a duplicated sequence. In this study, we report on the ratios of MboI-/MboI+ variant sequences in individuals from seven worldwide human populations (Basque, Benin, Egypt, Formosa, Kungurtug, Oman and Rwanda) in the DAZ complex. The ratio of PCR MboI- and MboI+ amplicons can be used to characterize individuals and populations. Our results show a nonrandom distribution of MboI-/MboI+ sequence ratios in all populations examined, as well as significant differences in ratios between populations when compared pairwise. The multiple ratios imply that there have been more than one recent reorganization events at this locus. Considering the dynamic nature of this locus and its involvement in male fertility, we investigated the extent and distribution of this polymorphism. Copyright 2002 S. Karger AG, Basel

  15. The entire β-globin gene cluster is deleted in a form of τδβ-thalassemia.

    NARCIS (Netherlands)

    E.R. Fearon; H.H.Jr. Kazazian; P.G. Waber (Pamela); J.I. Lee (Joseph); S.E. Antonarakis; S.H. Orkin (Stuart); E.F. Vanin; P.S. Henthorn; F.G. Grosveld (Frank); A.F. Scott; G.R. Buchanan

    1983-01-01

    textabstractWe have used restriction endonuclease mapping to study a deletion involving the beta-globin gene cluster in a Mexican-American family with gamma delta beta-thalassemia. Analysis of DNA polymorphisms demonstrated deletion of the beta-globin gene from the affected chromosome. Using a DNA

  16. Patients with High-Grade Gliomas Harboring Deletions of Chromosomes 9p and 10q Benefit from Temozolomide Treatment

    Directory of Open Access Journals (Sweden)

    Silke Wemmert

    2005-10-01

    Full Text Available Surgical cure of glioblastomas is virtually impossible and their clinical course is mainly determined by the biologic behavior of the tumor cells and their response to radiation and chemotherapy. We investigated whether response to temozolomide (TMZ chemotherapy differs in subsets of malignant glioblastomas defined by genetic lesions. Eighty patients with newly diagnosed glioblastoma were analyzed with comparative genomic hybridization and loss of heterozygosity. All patients underwent radical resection. Fifty patients received TMZ after radiotherapy (TMZ group and 30 patients received radiotherapy alone (RT group. The most common aberrations detected were gains of parts of chromosome 7 and losses of 10% 9p, or 13q. The spectrum of genetic aberrations did not differ between the TMZ and RT groups. Patients treated with TMZ showed significantly better survival than patients treated with radiotherapy alone (19.5 vs 9.3 months. Genomic deletions on chromosomes 9 and 10 are typical for glioblastoma and associated with poor prognosis. However, patients with these aberrations benefited significantly from TMZ in univariate analysis. In multivariate analysis, this effect was pronounced for 9p deletion and for elderly patients with 10q deletions, respectively. This study demonstrates that molecular genetic and cytogenetic analyses potentially predict responses to chemotherapy in patients with newly diagnosed glioblastomas.

  17. Chronic lymphocytic leukemia-associated chromosomal abnormalities and miRNA deregulation

    Directory of Open Access Journals (Sweden)

    Kiefer Y

    2012-03-01

    Full Text Available Yvonne Kiefer1, Christoph Schulte2, Markus Tiemann2, Joern Bullerdiek11Center for Human Genetics, University of Bremen, Bremen, Germany; 2Hematopathology Hamburg, Hamburg, GermanyAbstract: Chronic lymphocytic leukemia is the most common leukemia in adults. By cytogenetic investigations major subgroups of the disease can be identified that reflect different routes of tumor development. Of these chromosomal deviations, trisomy 12 and deletions of parts of either the long arm of chromosome 13, the long arm of chromosome 11, or the short arm of chromosome 17 are most commonly detected. In some of these aberrations the molecular target has been identified as eg, ataxia telangiectasia mutated (ATM in case of deletions of chromosomal region 11q22~23 and the genes encoding microRNAs miR-15a/16-1 as likely targets of deletions of chromosomal band 13q14.3. Of note, these aberrations do not characterize independent subgroups but often coexist within the metaphases of one tumor. Generally, complex aberrations are associated with a worse prognosis than simple karyotypic alterations. Due to smaller sizes of the missing segment the detection of recurrent deletions is not always possible by means of classical cytogenetics but requires more advanced techniques as in particular fluorescence in situ hybridization (FISH. Nevertheless, at this time it is not recommended to replace classical cytogenetics by FISH because this would miss additional information given by complex or secondary karyotypic alterations. However, the results of cytogenetic analyses allow the stratification of prognostic and predictive groups of the disease. Of these, the group characterized by deletions involving TP53 is clinically most relevant. In the future refined methods as eg, array-based comparative genomic hybridization will supplement the existing techniques to characterize CLL. Keywords: chronic lymphocytic leukemia, chromosomal abnormality, miRNA deregulation

  18. Production and characterization of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of Japanese bunching onion (A. fistulosum L.).

    Science.gov (United States)

    Hang, Tran Thi Minh; Shigyo, Masayoshi; Yamauchi, Naoki; Tashiro, Yosuke

    2004-10-01

    First and second backcrosses of amphidiploid hybrids (2n = 4x = 32, genomes AAFF) between shallot (Allium cepa Aggregatum group) and A. fistulosum were conducted to produce A. cepa - A. fistulosum alien addition lines. When shallot (A. cepa Aggregatum group) was used as a pollinator, the amphidiploids and allotriploids set germinable BC(1) and BC(2) seeds, respectively. The 237 BC(1) plants mainly consisted of 170 allotriploids (2n = 3x = 24, AAF) and 42 hypo-allotriploids possessing 23 chromosomes, i.e., single-alien deletions (2n = 3x-1 = 23, AAF-nF). The single-alien deletions in the BC(1) progeny showed dwarfing characteristics and were discriminated from the allotriploids (2n = 24) and hyper-allotriploids (2n = 25) by means of flow cytometric analysis. The chromosome numbers of 46 BC(2) seedlings varied from 16 to 24. Eight monosomic additions (2n = 2x+1 = 17, AA+nF) and 20 single-alien deletions were found in these BC(2) seedlings. Consequently, six kinds of A. cepa - A. fistulosum alien chromosome additions possessing different chromosome numbers (2n = 17, 18, 20, 21, 22, 23) were recognized in the BC(1) and BC(2) populations. A total of 79 aneuploids, including 62 single-alien deletions, were analyzed by a chromosome 6F-specific isozyme marker (Got-2) in order to recognize its existence in their chromosome complements. This analysis revealed that two out of 62 single-alien deletions did not possess 6F. One (AAF-6F) out of the possible eight single-alien deletions could be identified at first. The present study is a first step toward the development of a useful tool, such as a complete set of eight different single-alien deletions, for the rapid chromosomal assignment of genes and genetic markers in A. fistulosum.

  19. Gr/gr deletions on Y-chromosome correlate with male infertility: an original study, meta-analyses, and trial sequential analyses

    Science.gov (United States)

    Bansal, Sandeep Kumar; Jaiswal, Deepika; Gupta, Nishi; Singh, Kiran; Dada, Rima; Sankhwar, Satya Narayan; Gupta, Gopal; Rajender, Singh

    2016-02-01

    We analyzed the AZFc region of the Y-chromosome for complete (b2/b4) and distinct partial deletions (gr/gr, b1/b3, b2/b3) in 822 infertile and 225 proven fertile men. We observed complete AZFc deletions in 0.97% and partial deletions in 6.20% of the cases. Among partial deletions, the frequency of gr/gr deletions was the highest (5.84%). The comparison of partial deletion data between cases and controls suggested a significant association of the gr/gr deletions with infertility (P = 0.0004); however, the other partial deletions did not correlate with infertility. In cohort analysis, men with gr/gr deletions had a relatively poor sperm count (54.20 ± 57.45 million/ml) in comparison to those without deletions (72.49 ± 60.06), though the difference was not statistically significant (p = 0.071). Meta-analysis also suggested that gr/gr deletions are significantly associated with male infertility risk (OR = 1.821, 95% CI = 1.39-2.37, p = 0.000). We also performed trial sequential analyses that strengthened the evidence for an overall significant association of gr/gr deletions with the risk of male infertility. Another meta-analysis suggested a significant association of the gr/gr deletions with low sperm count. In conclusion, the gr/gr deletions show a strong correlation with male infertility risk and low sperm count, particularly in the Caucasian populations.

  20. Small supernumerary marker chromosome derived from proximal p-arm of chromosome 2: identification by fluorescent in situ hybridization.

    Science.gov (United States)

    Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor

    2003-08-01

    Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.

  1. Mosaic deletion of 20pter due to rescue by somatic recombination.

    Science.gov (United States)

    Martin, Megan M; Vanzo, Rena J; Sdano, Mallory R; Baxter, Adrianne L; South, Sarah T

    2016-01-01

    We report on a unique case of a mosaic 20pter-p13 deletion due to a somatic repair event identified by allele differentiating single nucleotide polymorphism (SNP) probes on chromosomal microarray. Small terminal deletions of 20p have been reported in a few individuals and appear to result in a variable phenotype. This patient was a 24-month-old female who presented with failure to thrive and speech delay. Chromosomal microarray analysis (CMA) performed on peripheral blood showed a 1.6 Mb deletion involving the terminus of 20p (20pter-20p13). This deletion appeared mosaic by CMA and this suspicion was confirmed by fluorescence in situ hybridization (FISH) analysis. Additionally, the deletion interval at 20p was directly adjacent to 15 Mb of mosaic copy-neutral loss of heterozygosity (LOH). The pattern of SNP probes was highly suggestive of a somatic repair event that resulted in rescue of the deleted region using the non-deleted homologue as a template. Structural mosaicism is rare and most often believed to be due to a postzygotic mechanism. This case demonstrates the additional utility of allele patterns to help distinguish mechanisms and in this case identified the possibility of either a post-zygotic repair of a germline deletion or a post-zygotic deletion with somatic recombination repair in a single step. © 2015 Wiley Periodicals, Inc.

  2. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J; Mecucci, Cristina

    2016-08-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. Copyright© Ferrata Storti Foundation.

  3. Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review.

    Science.gov (United States)

    Lennon, P A; Cooper, M L; Peiffer, D A; Gunderson, K L; Patel, A; Peters, Sarika; Cheung, S W; Bacino, C A

    2007-04-15

    We report on a young male with moderate mental retardation, dysmorphic features, and language delay who is deleted for 7q31.1-7q31.31. His full karyotype is 46,XY,der(7)del(7)(q31.1q31.31)ins(10;7)(q24.3;q31.1q31.31)mat. This child had language impairment, including developmental verbal dyspraxia, but did not meet criteria for autism according to standardized ADOS testing. Our patient's deletion, which is the smallest reported deletion including FOXP2, adds to the body of evidence that supports the role of FOXP2 in speech and language impairment, but not in autism. A reported association between autism and deletions of WNT2, a gene also deleted in our patient, is likewise not supported by our case. Previously, fine mapping with microsatellites markers within in a large three-generation family, in which half the members had severe specific language impairment, aided the localization of the SPCH1 locus to 7q31 within markers D7S2459 (107.1 Mb) and D7S643 (120.5 Mb). Additionally, chromosome rearrangement of 7q31 and mutational analyses have supported the growing evidence that FOXP2, a gene within the SPCH1 region, is involved with speech and language development. It is unclear however whether the AUTS1 (autistic spectrum 1) locus, highly linked to 7q31, overlaps with the SPCH1 and FOXP2. Copyright 2007 Wiley-Liss, Inc.

  4. Homozygous deletion of the α- and β1-interferon genes in human leukemia and derived cell lines

    International Nuclear Information System (INIS)

    Diaz, M.O.; Ziemin, S.; Le Beau, M.M.; Pitha, P.; Smith, S.D.; Chilcote, R.R.; Rowley, J.D.

    1988-01-01

    The loss of bands p21-22 from one chromosome 9 homologue as a consequence of a deletion of the short arm [del(9p)], unbalanced translocation, or monosomy 9 is frequently observed in the malignant cells of patients with lymphoid neoplasias, including acute lymphoblastic leukemia and non-Hodgkin lymphoma. The α- and β 1 -interferon genes have been assigned to this chromosome region (9p21-22). The authors now present evidence of the homozygous deletion of the interferon genes in neoplastic hematopoietic cell lines and primary leukemia cells in the presence or absence of chromosomal deletions that are detectable at the level of the light microscope. In these cell lines, the deletion of the interferon genes is accompanied by a deficiency of 5'-methylthioadenosine phosphorylase, an enzyme of purine metabolism. These homozygous deletions may be associated with the loss of a tumor-suppressor gene that is involved in the development of these neoplasias. The relevant genes may be either the interferon genes themselves or a gene that has a tumor-suppressor function and is closely linked to them

  5. Working Memory Impairments in Chromosome 22q11.2 Deletion Syndrome: The Roles of Anxiety and Stress Physiology

    Science.gov (United States)

    Sanders, Ashley F.; Hobbs, Diana A.; Stephenson, David D.; Laird, Robert D.; Beaton, Elliott A.

    2017-01-01

    Stress and anxiety have a negative impact on working memory systems by competing for executive resources and attention. Broad memory deficits, anxiety, and elevated stress have been reported in individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS). We investigated anxiety and physiological stress reactivity in relation to visuospatial…

  6. Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Directory of Open Access Journals (Sweden)

    Ritch Robert

    2004-06-01

    Full Text Available Abstract Background Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. Methods We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. Results Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1 probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. Conclusions Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss.

  7. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster.

    Science.gov (United States)

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-12-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding sequences that can be mapped to the assembled euchromatic arms, we identified sequences that are specific to heterochromatin and used them to design heterochromatin specific probes ("H-probes") for microarray. By comparative genomic hybridization (CGH) analyses of embryos deficient for each chromosome or chromosome arm, we were able to map most of our H-probes to specific chromosome arms. We also positioned sequences mapped to the second and X chromosomes to finer intervals by analyzing smaller deletions with breakpoints in heterochromatin. Using this approach, we were able to map >40% (13.9 Mb) of the previously unmapped heterochromatin sequences assembled by the whole-genome sequencing effort on arm U and arm Uextra to specific locations. We also identified and mapped 110 kb of novel heterochromatic sequences. Subsequent analyses revealed that sequences located within different heterochromatic regions have distinct properties, such as sequence composition, degree of repetitiveness, and level of underreplication in polytenized tissues. Surprisingly, although heterochromatin is generally considered to be transcriptionally silent, we detected region-specific temporal patterns of transcription in heterochromatin during oogenesis and early embryonic development. Our study provides a useful approach to elucidate the molecular organization and function of heterochromatin and reveals region-specific variation of heterochromatin.

  8. Cryptic chromosome 9q34 deletion generates TAF-Ialpha/CAN and TAF-Ibeta/CAN fusion transcripts in acute myeloid leukemia.

    Science.gov (United States)

    Rosati, Roberto; La Starza, Roberta; Barba, Gianluca; Gorello, Paolo; Pierini, Valentina; Matteucci, Caterina; Roti, Giovanni; Crescenzi, Barbara; Aloisi, Teresa; Aversa, Franco; Martelli, Massimo Fabrizio; Mecucci, Cristina

    2007-02-01

    In hematologic malignancies chromosome aberrations generating fusion genes include cryptic deletions. In a patient with acute myeloid leukemia and normal karyo-type we discovered a new cryptic 9q34 deletion and here report the cytogenetic and molecular findings. The 9q34 deletion extends 2.5 megabases and juxtaposes the 5' TAF-I to the 3' CAN producing a TAF-I/CAN fusion gene. TAF-I/CAN transcribes into two fusion proteins bearing either TAF-Ialpha or TAF-Ibeta moieties. We set up molecular assays to monitor the chimeric TAF-Ialpha/CAN and TAF-Ibeta/CAN transcripts which, after hematopoietic stem cell transplantation from an HLA-identical sibling, were no longer detected.

  9. One in Four Individuals of African-American Ancestry Harbors a 5.5kb Deletion at chromosome 11q13.1

    Science.gov (United States)

    Zainabadi, Kayvan; Jain, Anuja V.; Donovan, Frank X.; Elashoff, David; Rao, Nagesh P.; Murty, Vundavalli V.; Chandrasekharappa, Settara C.; Srivatsan, Eri S.

    2014-01-01

    Cloning and sequencing of 5.5kb deletion at chromosome 11q13.1 from the HeLa cells, tumorigenic hybrids and two fibroblast cell lines has revealed homologous recombination between AluSx and AluY resulting in the deletion of intervening sequences. Long-range PCR of the 5.5kb sequence in 494 normal lymphocyte samples showed heterozygous deletion in 28.3% of African- American ancestry samples but only in 4.8% of Caucasian samples (pdeletion occurs in 27% of YRI (Yoruba – West African) population but none in non-African populations. The HapMap analysis further identified strong linkage disequilibrium between 5 single nucleotide polymorphisms and the 5.5kb deletion in the people of African ancestry. Computational analysis of 175kb sequence surrounding the deletion site revealed enhanced flexibility, low thermodynamic stability, high repetitiveness, and stable stem-loop/hairpin secondary structures that are hallmarks of common fragile sites. PMID:24412158

  10. Alternative Splicing of CHEK2 and Codeletion with NF2 Promote Chromosomal Instability in Meningioma

    Directory of Open Access Journals (Sweden)

    Hong Wei Yang

    2012-01-01

    Full Text Available Mutations of the NF2 gene on chromosome 22q are thought to initiate tumorigenesis in nearly 50% of meningiomas, and 22q deletion is the earliest and most frequent large-scale chromosomal abnormality observed in these tumors. In aggressive meningiomas, 22q deletions are generally accompanied by the presence of large-scale segmental abnormalities involving other chromosomes, but the reasons for this association are unknown. We find that large-scale chromosomal alterations accumulate during meningioma progression primarily in tumors harboring 22q deletions, suggesting 22q-associated chromosomal instability. Here we show frequent codeletion of the DNA repair and tumor suppressor gene, CHEK2, in combination with NF2 on chromosome 22q in a majority of aggressive meningiomas. In addition, tumor-specific splicing of CHEK2 in meningioma leads to decreased functional Chk2 protein expression. We show that enforced Chk2 knockdown in meningioma cells decreases DNA repair. Furthermore, Chk2 depletion increases centrosome amplification, thereby promoting chromosomal instability. Taken together, these data indicate that alternative splicing and frequent codeletion of CHEK2 and NF2 contribute to the genomic instability and associated development of aggressive biologic behavior in meningiomas.

  11. Prenatal Diagnosis of 4p and 4q Subtelomeric Microdeletion in De Novo Ring Chromosome 4

    Directory of Open Access Journals (Sweden)

    Halit Akbas

    2013-01-01

    Full Text Available Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0 referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH. However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb and 4q35.2 (2.449 Mb. In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis.

  12. Prenatal diagnosis of 4p and 4q subtelomeric microdeletion in de novo ring chromosome 4.

    Science.gov (United States)

    Akbas, Halit; Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis.

  13. Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.).

    Science.gov (United States)

    Yaguchi, Shigenori; Hang, Tran Thi Minh; Tsukazaki, Hikaru; Hoa, Vu Quynh; Masuzaki, Shin-ichi; Wako, Tadayuki; Masamura, Noriya; Onodera, Shuichi; Shiomi, Norio; Yamauchi, Naoki; Shigyo, Masayoshi

    2009-02-01

    To develop the bunching onion (Allium fistulosum L.; genomes, FF) chromosome-specific genetic markers for identifying extra chromosomes, eight shallot (A. cepa L. Aggregatum group; genomes, AA)--A. fistulosum monosomic addition plants (AA+nF) and 62 shallot--A. fistulosum single-alien deletion plants (AAF-nF) were analyzed by 23 different chromosome-specific genetic markers of shallot. The eight monosomic addition plants consisted of one AA+2F, two AA+6F, and five AA+8F. Of the 62 single-alien deletion plants, 60 could be identified as six different single-alien deletion lines (AAF-1F, -3F, -4F, -6F, -7F, and -8F) out of the eight possible types. Several single-alien deletion lines were classified on the basis of leaf and bulb characteristics. AAF-8F had the largest number of expanded leaves of five deletion plants. AAF-7F grew most vigorously, as expressed by its long leaf blade and biggest bulb size. AAF-4F had very small bulbs. AAF-7F and AAF-8F had different bulbs from those of shallot as well as other types of single-alien deletion lines in skin and outer scale color. Regarding the sugar content of the bulb tissues, the single-alien deletion lines showed higher fructan content than shallot. Moreover, shallot could not produce fructan with degree of polymerization (DP) 12 or higher, although the single-alien deletion lines showed DP 20 or higher. The content of S-alk(en)yl-L-cysteine sulfoxide (ACSO) in the single-alien deletion lines was significantly lower than that in shallot. These results indicated that chromosomes from A. fistulosum might carry anonymous factors to increase the highly polymerized fructan production and inhibit the synthesis of ACSO in shallot bulbs. Accordingly, alien chromosomes from A. fistulosum in shallot would contribute to modify the quality of shallot bulbs.

  14. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster

    Science.gov (United States)

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-01-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding sequences that can be mapped to the assembled euchromatic arms, we identified sequences that are specific to heterochromatin and used them to design heterochromatin specific probes (“H-probes”) for microarray. By comparative genomic hybridization (CGH) analyses of embryos deficient for each chromosome or chromosome arm, we were able to map most of our H-probes to specific chromosome arms. We also positioned sequences mapped to the second and X chromosomes to finer intervals by analyzing smaller deletions with breakpoints in heterochromatin. Using this approach, we were able to map >40% (13.9 Mb) of the previously unmapped heterochromatin sequences assembled by the whole-genome sequencing effort on arm U and arm Uextra to specific locations. We also identified and mapped 110 kb of novel heterochromatic sequences. Subsequent analyses revealed that sequences located within different heterochromatic regions have distinct properties, such as sequence composition, degree of repetitiveness, and level of underreplication in polytenized tissues. Surprisingly, although heterochromatin is generally considered to be transcriptionally silent, we detected region-specific temporal patterns of transcription in heterochromatin during oogenesis and early embryonic development. Our study provides a useful approach to elucidate the molecular organization and function of heterochromatin and reveals region-specific variation of heterochromatin. PMID:22745230

  15. A rare balanced nonrobertsonian translocation involving acrocentric chromosomes: Chromosome abnormality of t(13;15(p11.2;q22.1

    Directory of Open Access Journals (Sweden)

    Dalvi Rupa

    2016-01-01

    Full Text Available BACKGROUND: Balanced non-robertsonian translocation (RT, involving acrocentric chromosomes, is a rare event and only a few cases are reported. Most of the RTs are balanced involving acrocentric chromosomes with the breakpoints (q10;q10. MATERIALS AND METHODS: Chromosome analysis was performed as per standard procedure – Giemsa-trypsin banding with 500 band resolution was analyzed for chromosome identification. RESULTS: In the present study, we report a rare balanced non-RTs involving chromosomes 13 and 15 with cytogenetic finding of 46, XX, t(13;15(p11.2;q22.1. CONCLUSION: To the best of our knowledge, this is the first such report of an unusual non-RT of t(13:15 with (p11.2;q22.1 break points.

  16. Complex chromosome rearrangements related 15q14 microdeletion plays a relevant role in phenotype expression and delineates a novel recurrent syndrome

    Directory of Open Access Journals (Sweden)

    Tomaiuolo Anna

    2011-04-01

    Full Text Available Abstract Complex chromosome rearrangements are constitutional structural rearrangements involving three or more chromosomes or having more than two breakpoints. These are rarely seen in the general population but their frequency should be much higher due to balanced states with no phenotypic presentation. These abnormalities preferentially occur de novo during spermatogenesis and are transmitted in families through oogenesis. Here, we report a de novo complex chromosome rearrangement that interests eight chromosomes in eighteen-year-old boy with an abnormal phenotype consisting in moderate developmental delay, cleft palate, and facial dysmorphisms. Standard G-banding revealed four apparently balanced traslocations involving the chromosomes 1;13, 3;19, 9;15 and 14;18 that appeared to be reciprocal. Array-based comparative genomic hybridization analysis showed no imbalances at all the breakpoints observed except for an interstitial microdeletion on chromosome 15. This deletion is 1.6 Mb in size and is located at chromosome band 15q14, distal to the Prader-Willi/Angelman region. Comparing the features of our patient with published reports of patients with 15q14 deletion this finding corresponds to the smallest genomic region of overlap. The deleted segment at 15q14 was investigated for gene content.

  17. The E7-associated cell-surface antigen: a marker for the 11p13 chromosomal deletion associated with aniridia-Wilms tumor.

    OpenAIRE

    Scoggin, C H; Fisher, J H; Shoemaker, S A; Morse, H; Leigh, T; Riccardi, V M

    1985-01-01

    Unbalanced interstitial deletions of the p13 region of human chromosome 11 have been associated with congenital hypoplasia or aplasia of the iris, mental retardation, ambiguous genitalia, and predisposition to Wilms tumor of the kidney. Utilizing somatic cell hybrids containing either the normal or abnormal chromosome 11 from a child with Wilms tumor and aniridia, we previously mapped the E7 cell-surface antigen to the 11p1300-to-11p15.1 region. To localize even further the site of this antig...

  18. Interstitial deletion of 14q24.3-q32.2 in a male patient with plagiocephaly, BPES features, developmental delay, and congenital heart defects

    DEFF Research Database (Denmark)

    Cingöz, Sultan; Bache, Iben; Bjerglund, Lise

    2011-01-01

    Distal interstitial deletions of chromosome 14 involving the 14q24-q23.2 region are rare, and only been reported so far in 20 patients. Ten of these patients were analyzed both clinically and genetically. Here we present a de novo interstitial deletion of chromosome 14q24.3-q32.2 in a male patient...... on genotype-phenotype comparisons of the 10 previously published patients and the present case, we suggest that the shortest regions for deletion overlap may include candidate genes for speech impairment, mental retardation, and hypotonia....

  19. Juvenile Moyamoya and Craniosynostosis in a Child with Deletion 1p32p31: Expanding the Clinical Spectrum of 1p32p31 Deletion Syndrome and a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Paolo Prontera

    2017-09-01

    Full Text Available Moyamoya angiopathy (MA is a rare cerebrovascular disorder characterised by the progressive occlusion of the internal carotid artery. Its aetiology is uncertain, but a genetic background seems likely, given the high MA familial rate. To investigate the aetiology of craniosynostosis and juvenile moyamoya in a 14-year-old male patient, we performed an array-comparative genomic hybridisation revealing a de novo interstitial deletion of 8.5 Mb in chromosome region 1p32p31. The deletion involved 34 protein coding genes, including NF1A, whose haploinsufficiency is indicated as being mainly responsible for the 1p32-p31 chromosome deletion syndrome phenotype (OMIM 613735. Our patient also has a deleted FOXD3 of the FOX gene family of transcription factors, which plays an important role in neural crest cell growth and differentiation. As the murine FOXD3−/− model shows craniofacial anomalies and abnormal common carotid artery morphology, it can be hypothesised that FOXD3 is involved in the pathogenesis of the craniofacial and vascular defects observed in our patient. In support of our assumption, we found in the literature another patient with a syndromic form of MA who had a deletion involving another FOX gene (FOXC1. In addition to describing the clinical history of our patient, we have reviewed all of the available literature concerning other patients with a 1p32p31 deletion, including cases from the Decipher database, and we have also reviewed the genetic disorders associated with MA, which is a useful guide for the diagnosis of syndromic form of MA.

  20. Partial deletion 11q

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Tommerup, N; Sørensen, F B

    1995-01-01

    We describe the cytogenetic findings and the dysmorphic features in a stillborn girl with a large de novo terminal deletion of the long arm of chromosome 11. The karyotype was 46,XX,del(11)(q21qter). By reviewing previous reports of deletion 11q, we found that cleft lip and palate are most...

  1. Radiation susceptibility of the mouse smalleye mutants, Del(2)Sey3Hpax6 and Del(2)Sey4Hpax6, which delete the chromosome 2 middle regions

    International Nuclear Information System (INIS)

    Nitta, Y.; Hoshi, M.; Yoshida, K.; Yamate, J.; Peters, J.; Cattanach, B.M.

    2003-01-01

    Full text: LOH at the chromosome 2 middle regions is common in the radiation-induced mouse acute myeloid leukemia (AML). To identify the suppressor or the modifier gene of AML at this region, the mouse deletion mutants, Del(2)Sey3H pax6 and Del(2)Sey3H pax6 could be the good models, as they deleted the chromosome 2 middle regions hemizygously. The allele of the partially deleted chromosome 2 was paternally generated and maintained hemizygously. The exact deleted regions of the two mutants were mapped by the PCR-based detection of polymorphism of the STS markers. The length of the deletions was 3.01Mb and 10.11MB for Del(2)Sey3H pax6 and Del(2)Sey3H pax6 , respectively. For the induction of tumors, a radiation, 3.0Gy of Co-60 and a chemical carcinogen, N-methyl-N-nitrosourea were applied to the mutants. Their tumorigenicity was compared with those of control as well as normal sibs by the Kaplan-Meier analysis. Both mutants were found to predispose to small intestinal tumors. Intestinal tumors developed spontaneously with the incidence of 30%. The radiation and the chemical accelerated the malignancy and increased the incidence of the intestinal tumors. Radiation shortened the latency of AML development in the Del(2)Sey3H pax6 mutant but not in the Del(2)Sey3H pax6 . Spontaneous AML has not been observed, nor any increase in the incidence of induced AMLs. The commonly deleted region of the two mutants, the 3.01Mb region, must be critical for the development of tumors and the high susceptibility to radiation. The role of Pax6 gene should be considered in the intestinal tumorigenesis, as the Pax6 gene plays an important role in the pancreas development during the embryogenesis. The Wt1, a tumor suppressor gene, which is deleted hemizygously in these mutants as well. The screening of homozygous deletion has been started using the induced as well as spontaneously developed tumors

  2. Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia guyanensis.

    Directory of Open Access Journals (Sweden)

    Rubens Monte-Neto

    2015-02-01

    Full Text Available Antimony resistance complicates the treatment of infections caused by the parasite Leishmania.Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1. Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion.This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites.

  3. A novel partial deletion of the Y chromosome azoospermia factor c region is caused by non-homologous recombination between palindromes and may be associated with increased sperm counts

    NARCIS (Netherlands)

    Noordam, M. J.; van Daalen, S. K. M.; Hovingh, S. E.; Korver, C. M.; van der Veen, F.; Repping, S.

    2011-01-01

    BACKGROUND: The male-specific region of the human Y chromosome (MSY) contains multiple testis-specific genes. Most deletions in the MSY lead to inadequate or absent sperm production. Nearly all deletions occur via homologous recombination between amplicons. Previously, we identified two P5/distal-P1

  4. A Case With Short Stature, Growth Hormone Deficiency and 46, XX, Xq27-qter Deletion.

    Science.gov (United States)

    Yıldırım, Şule; Topaloğlu, Naci; Tekin, Mustafa; Sılan, Fatma

    2017-10-01

    We report a case of 11-year-old girl with growth retardation and 46, XX, Xq27-qter deletion. The endocrinologic evaluation revealed growth hormone deficiency. In karyotype analysis  46, XX, Xq27-qter deletion was determined. The deletion of terminal region of chromosome 27 is most commonly being detected during the evaluation of infertility, premature ovarian insufficiency or in screening for fragile X carrier status. To our knowledge, this is the first reported case with 46, XX, Xq27-qter deletion and growth hormone deficiency. Furthermore, this case might facilitate future search for candidate genes involved in growth hormone deficiency.

  5. De novo interstitial deletions of 9q22.1-22.3 in two unrelated cases with different phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.N.; Bawle, E.; Conard, J. [Wayne State Univ., Detroit, MI (United States)] [and others

    1994-09-01

    Deletions involving the long arm of chromosome 9 are rare. A recent review, particularly with deletions of 9q22-32 region, failed to recognize a distinct pattern of dysmorphies and malformations. Herein, we described two phenotypically abnormal unrelated cases with interstitial deletion of chromosome 9 at band q22.1-q22.3. Parents of both cases exhibited normal karyotypes, indicating that the deletions were de novo events. Therefore, the clinical features present in these two cases can be attributed to partial monosomy for the deleted band 9q22. The first case was a 2-day-old baby with ambiguous genitalia, hydrocephalus, cleft palate and lip, polycystic kidney, absence of uterus on ultrasound and one gonad in the labiosacral region. Chromosome analysis showed a male karyotype, 46,XY,del(9)(q22.1q22.3). The absence of monosomy X cell line and the normal histology of testicular tissue were against the diagnosis of mixed gonadal dysgenesis or XY gonadal dysgenesis. The second 3-day-old newborn baby girl presented with right side hypoplastic heart and pulmonary atresia. In addition, the patient showed multiple dysmorphic features including epicanthal fold, low-set ears, depressed nasal bridge, hypertelorism, and micrognathia. The uvula is absent with slight cleft palate. Bilateral clinodactyly of 5th fingers and severe club feet were also present. The external genitalia was of a normal female phenotype. Chromosome study also indicated interstatial deletion of band 9q22. Although both cases appeared to have the same chromosomal anomalies, neither a discrete facial appearance nor a common pattern of malformations was noted.

  6. Mirror-symmetric duplicated chromosome 21q with minor proximal deletion, and with neocentromere in a child without the classical Down syndrome phenotype.

    Science.gov (United States)

    Barbi, G; Kennerknecht, I; Wöhr, G; Avramopoulos, D; Karadima, G; Petersen, M B

    2000-03-13

    We report on a mentally retarded child with multiple minor anomalies and an unusually rearranged chromosome 21. This der(21) chromosome has a deletion of 21p and of proximal 21q, whereas the main portion of 21q is duplicated leading to a mirror-symmetric appearance with the mirror axis at the breakpoint. The centromere is only characterized by a secondary constriction (with a centromeric index of a G chromosome) at an unexpected distal position, but fluorescence in situ hybridization (FISH) with either chromosome specific or with all human centromeres alpha satellite DNA shows no cross hybridization. Thus, the marker chromosome represents a further example of an "analphoid marker with neocentromere." Molecular analysis using polymorphic markers on chromosome 21 verified a very small monosomic segment of the proximal long arm of chromosome 21, and additionally trisomy of the remaining distal segment. Although trisomic for almost the entire 21q arm, our patient shows no classical Down syndrome phenotype, but only a few minor anomalies found in trisomy 21 and in monosomy of proximal 21q, respectively. Copyright 2000 Wiley-Liss, Inc.

  7. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  8. Three patients with Wolf-Hirschhorn syndrome carrying a satellited chromosome 4p.

    Science.gov (United States)

    Liang, Desheng; Zhou, Zhongmin; Meng, Dahua; Du, Juan; Wen, Juan; Niikawa, Norio; Wu, Lingqian

    2012-07-01

    Wolf-Hirschhorn syndrome (WHS) is caused by a deletion involving the 4p16.3 region. Approximately 70% of WHS patients have a de novo isolated deletion and 22% involve unbalanced translocations. However, WHS with unbalanced rearrangements involving the short arm of an acrocentric chromosome are infrequently reported. Cytogenetic and molecular analyses by using standard G-banding, argyrophilic nucleolar organiser region (Ag-NOR) staining, fluorescence in situ hybridization, and single nucleotide polymorphism array for copy number detection were performed in three patients with WHS phenotype from two Chinese families. A heterozygous 2,767,380-bp terminal 4p deletion was detected in patients 1 and 2 and a heterozygous 5,047,291-bp terminal 4p deletion was detected in patient3. Clinical comparisons among our patients and previously reported cases have been reviewed. Two terminal 4p deletions were identified in three WHS patients with a satellited 4p and an attempt was made to refine the genotypic-phenotypic correlations of the deleted regions. Copyright © 2012 Wiley Periodicals, Inc.

  9. Deletion 22q13.3 syndrome

    Directory of Open Access Journals (Sweden)

    Phelan Mary C

    2008-05-01

    Full Text Available Abstract The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH or array comparative genomic hybridization (CGH is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy. Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements

  10. Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups.

    Directory of Open Access Journals (Sweden)

    Martin M Johansson

    Full Text Available The human Y chromosome is almost always excluded from genome-wide investigations of copy number variants (CNVs due to its highly repetitive structure. This chromosome should not be forgotten, not only for its well-known relevance in male fertility, but also for its involvement in clinical phenotypes such as cancers, heart failure and sex specific effects on brain and behaviour.We analysed Y chromosome data from Affymetrix 6.0 SNP arrays and found that the signal intensities for most of 8179 SNP/CN probes in the male specific region (MSY discriminated between a male, background signals in a female and an isodicentric male containing a large deletion of the q-arm and a duplication of the p-arm of the Y chromosome. Therefore, this SNP/CN platform is suitable for identification of gain and loss of Y chromosome sequences. In a set of 1718 males, we found 25 different CNV patterns, many of which are novel. We confirmed some of these variants by PCR or qPCR. The total frequency of individuals with CNVs was 14.7%, including 9.5% with duplications, 4.5% with deletions and 0.7% exhibiting both. Hence, a novel observation is that the frequency of duplications was more than twice the frequency of deletions. Another striking result was that 10 of the 25 detected variants were significantly overrepresented in one or more haplogroups, demonstrating the importance to control for haplogroups in genome-wide investigations to avoid stratification. NO-M214(xM175 individuals presented the highest percentage (95% of CNVs. If they were not counted, 12.4% of the rest included CNVs, and the difference between duplications (8.9% and deletions (2.8% was even larger.Our results demonstrate that currently available genome-wide SNP platforms can be used to identify duplications and deletions in the human Y chromosome. Future association studies of the full spectrum of Y chromosome variants will demonstrate the potential involvement of gain or loss of Y chromosome sequence in

  11. Chromosome 15q24 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Magoulas Pilar L

    2012-01-01

    involves a multi-disciplinary approach to care with the primary care physician and clinical geneticist playing a crucial role in providing appropriate screening, surveillance, and care for individuals with this syndrome. At the time of diagnosis, individuals should receive baseline echocardiograms, audiologic, ophthalmologic, and developmental assessments. Growth and feeding should be closely monitored. Other specialists that may be involved in the care of individuals with 15q24 deletion syndrome include immunology, endocrine, orthopedics, neurology, and urology. Chromosome 15q24 microdeletion syndrome should be differentiated from other genetic syndromes, particularly velo-cardio-facial syndrome (22q11.2 deletion syndrome, Prader-Willi syndrome, and Noonan syndrome. These conditions share some phenotypic similarity to 15q24 deletion syndrome yet have characteristic features specific to each of them that allows the clinician to distinguish between them. Molecular genetic testing and/or aCGH will be able to diagnose these conditions in the majority of individuals. Disease name and synonyms Chromosome 15q24 deletion syndrome 15q24 deletion syndrome 15q24 microdeletion syndrome

  12. Rapid molecular cytogenetic analysis of X-chromosomal microdeletions: Fluorescence in situ hybridization (FISH) for complex glycerol kinase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Worley, K.C.; Lindsay, E.A.; McCabe, E.R.B. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1995-07-17

    Diagnosis of X-chromosomal microdeletions has relied upon the traditional methods of Southern blotting and DNA amplification, with carrier identification requiring time-consuming and unreliable dosage calculations. In this report, we describe rapid molecular cytogenetic identification of deleted DNA in affected males with the Xp21 contiguous gene syndrome (complex glycerol kinase deficiency, CGKD) and female carriers for this disorder. CGKD deletions involve the genes for glycerol kinase, Duchenne muscular dystrophy, and/or adrenal hypoplasia congenita. We report an improved method for diagnosis of deletions in individuals with CGKD and for identification of female carriers within their families using fluorescence in situ hybridization (FISH) with a cosmid marker (cosmid 35) within the glycerol kinase gene. When used in combination with an Xq control probe, affected males demonstrate a single signal from the control probe, while female carriers demonstrate a normal chromosome with two signals, as well as a deleted chromosome with a single signal from the control probe. FISH analysis for CGKD provides the advantages of speed and accuracy for evaluation of submicroscopic X-chromosome deletions, particularly in identification of female carriers. In addition to improving carrier evaluation, FISH will make prenatal diagnosis of CGKD more readily available. 17 refs., 2 figs.

  13. Large deletions play a minor but essential role in congenital coagulation factor VII and X deficiencies.

    Science.gov (United States)

    Rath, M; Najm, J; Sirb, H; Kentouche, K; Dufke, A; Pauli, S; Hackmann, K; Liehr, T; Hübner, C A; Felbor, U

    2015-01-01

    Congenital factor VII (FVII) and factor X (FX) deficiencies belong to the group of rare bleeding disorders which may occur in separate or combined forms since both the F7 and F10 genes are located in close proximity on the distal long arm of chromosome 13 (13q34). We here present data of 192 consecutive index cases with FVII and/or FX deficiency. 10 novel and 53 recurrent sequence alterations were identified in the F7 gene and 5 novel as well as 11 recurrent in the F10 gene including one homozygous 4.35 kb deletion within F7 (c.64+430_131-6delinsTCGTAA) and three large heterozygous deletions involving both the F7 and F10 genes. One of the latter proved to be cytogenetically visible as a chromosome 13q34 deletion and associated with agenesis of the corpus callosum and psychomotor retardation. Large deletions play a minor but essential role in the mutational spectrum of the F7 and F10 genes. Copy number analyses (e. g. MLPA) should be considered if sequencing cannot clarify the underlying reason of an observed coagulopathy. Of note, in cases of combined FVII/FX deficiency, a deletion of the two contiguous genes might be part of a larger chromosomal rearrangement.

  14. [Molecular cytogenetic analysis of a case with ring chromosome 3 syndrome].

    Science.gov (United States)

    Zhang, Kaihui; Song, Fengling; Zhang, Dongdong; Zhang, Haiyan; Wang, Ying; Dong, Rui; Zhang, Yufeng; Liu, Yi; Gai, Zhongtao

    2016-12-10

    To investigate the genetic cause for a child with developmental delay and congenital heart disease through molecular cytogenetic analysis. G-banded karyotyping and chromosomal microarray analysis (CMA) were performed for the patient and his parents. The proband's karyotype was detected as ring chromosome 3, and a 3q26.3-25.3 deletion encompassing 45 genes has been found with CMA. Testing of both parents was normal. Clinical phenotype of the patient with ring chromosome 3 mainly depends on the involved genes. It is necessary to combine CMA and karyotyping for the diagnosis of ring chromosome, as CMA can provide more accurate information for variations of the genome.

  15. Human chromosome-specific changes in a human-hamster hybrid cell line (AL) assessed by fluorescent in situ hybridization (fish)

    International Nuclear Information System (INIS)

    Geard, Charles R.; Jenkins, Gloria

    1995-01-01

    Purpose: To quantitatively assess all gamma-ray induced chromosomal changes confined to one human chromosome using fluorescence microscopy and in situ hybridization with a fluorescently labeled human chromosome specific nucleic acid probe. Methods and Materials: Synchronized human-hamster hybrid cells containing human chromosome 11 were obtained by a modified mitotic shake-off procedure. G1 phase cells (> 95%) were irradiated with 137 Cs gamma rays (0, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, and 10.0 Gy) at a dose rate of 1.1 Gy/min and mitotic cells collected 16-20 h later; chromosomal spreads were prepared, denatured, and hybridized with a fluorescein-tagged nucleic acid probe against total human DNA. Chromosomes were examined by fluorescence microscopy and all categories of change involving the human chromosome 11 as target, recorded. Results: Overall, of the 3104 human-hamster hybrid cells examined, 82.1% were euploid, of which 88.6% contained one copy of human chromosome 11, 6.2% contained two copies, and 5.2% contained 0 copies. This is compatible with mitotic nondisjunction in a small fraction of cells. Of the remaining 17.9% of cells, 85.2% were tetraploid cells with two copies of human chromosome 11. For all aberrations involving human chromosome 11 there was a linear relationship between yield and absorbed dose of 0.1 aberrations per chromosome per Gy. The yield of dicentrics, translocations, and terminal deletions that involve one lesion on the human chromosome was linear, while the yield of interstitial deletions that arise from two interacting lesions on the human chromosome was curvilinear. The frequencies of dicentrics and translocations were about equal, while there was a high (40-60%) incidence of incomplete exchanges between human and hamster chromosomes. Conclusions: Fluorescent in situ hybridization (FISH) procedures allow for the efficient detection of a broad range of induced changes in target chromosomes. Symmetrical exchanges induced in G1

  16. 31 CFR 363.144 - May I delete a pending transaction involving a certificate of indebtedness?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false May I delete a pending transaction... I delete a pending transaction involving a certificate of indebtedness? (a) You may delete a pending... a pending purchase of a security using a certificate of indebtedness as payment. (c) You may not...

  17. Isolation of anonymous DNA sequences from within a submicroscopic X chromosomal deletion in a patient with choroideremia, deafness, and mental retardation

    International Nuclear Information System (INIS)

    Nussbaum, R.L.; Lesko, J.G.; Lewis, R.A.; Ledbetter, S.A.; Ledbetter, D.H.

    1987-01-01

    Choroideremia, an X-chromosome linked retinal dystrophy of unknown pathogenesis, causes progressive nightblindness and eventual central blindness in affected males by the third to fourth decade of life. Choroideremia has been mapped to Xq13-21 by tight linkage to restriction fragment length polymorphism loci. The authors have recently identified two families in which choroideremia is inherited with mental retardation and deafness. In family XL-62, an interstitial deletion Xq21 is visible by cytogenetic analysis and two linked anonymous DNA markers, DXYS1 and DXS72, are deleted. In the second family, XL-45, an interstitial deletion was suspected on phenotypic grounds but could not be confirmed by high-resolution cytogenetic analysis. They used phenol-enhanced reassociation of 48,XXXX DNA in competition with excess XL-45 DNA to generate a library of cloned DNA enriched for sequences that might be deleted in XL-45. Two of the first 83 sequences characterized from the library were found to be deleted in probands from family XL-45 as well as from family XL-62. Isolation of these sequences proves that XL-45 does contain a submicroscopic deletion and provides a starting point for identifying overlapping genomic sequences that span the XL-45 deletion. Each overlapping sequence will be studied to identify exons from the choroideremia locus

  18. Severe persistent pulmonary hypertension of the newborn and dysmorphic features in neonate with a deletion involving TWIST1 and PHF14: a case report.

    Science.gov (United States)

    Schinagl, Carina; Melum, Guro Reinholt; Rødningen, Olaug Kristin; Bjørgo, Kathrine; Andresen, Jannicke Hanne

    2017-08-17

    Persistent pulmonary hypertension is a well-known disease of the newborn that in most cases responds well to treatment with nitric oxide and treatment of any underlying causes. Genetic causes of persistent pulmonary hypertension of the newborn are rare. The TWIST1 gene is involved in morphogenetics, and deletions are known to cause Saethre-Chotzen syndrome. Deletions of PHF14 have never been reported in neonates, but animal studies have shown a link between severe defects in lung development and deletions of this gene. There have not, to the best of our knowledge, been any publications of a link between the genes TWIST1 and PHF14 and persistent pulmonary hypertension of the newborn, making this a novel finding. We describe a white male neonate born at term to non-consanguineous white parents; he presented with dysmorphic features and a therapy-refractory persistent pulmonary hypertension. Array-based comparative genomic hybridization revealed the presence of a 14.7 Mb interstitial deletion on chromosome 7, encompassing the genes TWIST1 and PHF14. The TWIST1 gene can explain our patient's dysmorphic features. His severe persistent pulmonary hypertension has, however, not been described before in conjunction with the TWIST1 gene, but could be explained by involvement of PHF14, consistent with findings in animal experiments showing lethal respiratory failure with depletion of PHF14. These findings are novel and of importance for the clinical management and diagnostic workup of neonates with severe persistent pulmonary hypertension of the newborn and dysmorphic features.

  19. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  20. A novel contiguous deletion involving NDP, MAOB and EFHC2 gene in a patient with familial Norrie disease: bilateral blindness and leucocoria without other deficits.

    Science.gov (United States)

    Jia, Bei; Huang, Liping; Chen, Yaoyu; Liu, Siping; Chen, Cuihua; Xiong, Ke; Song, Lanlin; Zhou, Yulai; Yang, Xinping; Zhong, Mei

    2017-12-01

    Contiguous microdeletions of the Norrie disease pseudoglioma (NDP) region on chromosome Xp11.3 have been widely confirmed as contributing to the typical clinical features of Norrie disease (ND). However, the precise relation between genotype and phenotype could vary. The contiguous deletion of NDP and its neighbouring genes, MAOA/B and EFHC2, reportedly leads to syndromic clinical features such as microcephaly, intellectual disability, and epilepsy. Herewe report a novel contiguous microdeletion of the NDP region containing the MAOB and EFHC2 genes,which causes eye defects but no cognitive disability.We detected a deletion of 494.6 kb atXp11.3 in both the proband and carrier mother. This deletionwas then used as the molecular marker in prenatal diagnosis for two subsequent pregnancies. The deletion was absent in one of the foetuses, who remain without any abnormalities at 2 years of age. The proband shows the typical ocular clinical features of ND including bilateral retinal detachment, microphthalmia, atrophic irides, corneal opacification, and cataracts, but no symptoms of microcephaly, intellectual disability, and epilepsy. This familial study demonstrates that a deficiency in one of two MAO genes may not lead to psychomotor delay, and deletion of EFHC2 may not cause epilepsy. Our observations provide new information on the genotype-phenotype relations of MAOA/B and EFHC2 genes involved in the contiguous deletions of ND.

  1. Recombinant chromosome 7 in a mosaic 45,X/47,XXX patient.

    Science.gov (United States)

    Tirado, Carlos A; Gotway, Garrett; Torgbe, Emmanuel; Iyer, Santha; Dallaire, Stephanie; Appleberry, Taylor; Suterwala, Mohamed; Garcia, Rolando; Valdez, Federico; Patel, Sangeeta; Koduru, Prasad

    2012-01-01

    Individuals with pericentric inversions are at risk for producing offspring with chromosomal gains and losses, while those carrying paracentric inversions usually produce unviable gametes [Madan, 1995]. In this current study, we present a newborn with dysmorphic features and malformations, whose karyotype showed an abnormal copy of chromomosome 7 described at first as add(7)(q32) as well as mos 45,X/47,XXX. Array comparative genomic hybridization (CGH) revealed an interstitial deletion in the long arm of chromosome 7 involving bands q35 to q36.3 but retaining the 7q subtelomere. The patient's deletion is believed to be due to meiotic recombination in the inversion loop in the phenotypically normal father who seems to carry two paracentric inversions in the long arm of chromosome 7, which was described as rec(7)(7pter- > q35::q36.3- > 7qter)pat. The abnormal copy of chromosome 7 in the father has been described as: der(7)(7pter- > q22.1::q36.3- > q35::q22.1- > q35::q36.3- > 7qter). This is a unique karyotype that to our knowledge has not been previously reported in the literature and predisposes to meiotic recombination that can result in deletions or duplications of 7q35-36. Copyright © 2011 Wiley Periodicals, Inc.

  2. Disparities in visuo-spatial constructive abilities in Williams syndrome patients with typical deletion on chromosome 7q11.23.

    Science.gov (United States)

    Muramatsu, Yukako; Tokita, Yoshihito; Mizuno, Seiji; Nakamura, Miho

    2017-02-01

    Williams syndrome (WS) is known for its uneven cognitive abilities, especially the difficulty in visuo-spatial cognition, though there are some inter-individual phenotypic differences. It has been proposed that the difficulty in visuo-spatial cognition of WS patients can be attributed to a haploinsufficiency of some genes located on the deleted region in 7q11.23, based on an examination of atypical deletions identified in WS patients with atypical cognitive deficits. According to this hypothesis, the inter-individual differences in visuo-spatial cognitive ability arise from variations in deletion. We investigated whether there were inter-individual differences in the visuo-spatial constructive abilities of five unrelated WS patients with the typical deletion on chromosome 7q11.23 that includes the candidate genes contributing visuo-spatial difficulty in WS patients. We used tests with three-dimensional factors such as Benton's three-dimensional block construction test, which are considered to be more sensitive than those with only two-dimensional factors. There were diverse inter-individual differences in the visuo-spatial constructive abilities among the present participants who shared the same typical genomic deletion of WS. One of the participants showed almost equivalent performances to typically developing adults in those tests. In the present study, we found a wide range of cognitive abilities in visuo-spatial construction even among the patients with a common deletion pattern of WS. The findings suggest that attributing differences in the phenotypes entirely to genetic factors such as an atypical deletion may not be always correct. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Reciprocal duplication of the Williams-Beuren syndrome deletion on chromosome 7q11.23 is associated with schizophrenia.

    Science.gov (United States)

    Mulle, Jennifer Gladys; Pulver, Ann E; McGrath, John A; Wolyniec, Paula S; Dodd, Anne F; Cutler, David J; Sebat, Jonathan; Malhotra, Dheeraj; Nestadt, Gerald; Conrad, Donald F; Hurles, Matthew; Barnes, Chris P; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F; Gejman, Pablo V; Sanders, Alan R; Duan, Jubao; Mitchell, Adele A; Peter, Inga; Sklar, Pamela; O'Dushlaine, Colm T; Grozeva, Detelina; O'Donovan, Michael C; Owen, Michael J; Hultman, Christina M; Kähler, Anna K; Sullivan, Patrick F; Kirov, George; Warren, Stephen T

    2014-03-01

    Several copy number variants (CNVs) have been implicated as susceptibility factors for schizophrenia (SZ). Some of these same CNVs also increase risk for autism spectrum disorders, suggesting an etiologic overlap between these conditions. Recently, de novo duplications of a region on chromosome 7q11.23 were associated with autism spectrum disorders. The reciprocal deletion of this region causes Williams-Beuren syndrome. We assayed an Ashkenazi Jewish cohort of 554 SZ cases and 1014 controls for genome-wide CNV. An excess of large rare and de novo CNVs were observed, including a 1.4 Mb duplication on chromosome 7q11.23 identified in two unrelated patients. To test whether this 7q11.23 duplication is also associated with SZ, we obtained data for 14,387 SZ cases and 28,139 controls from seven additional studies with high-resolution genome-wide CNV detection. We performed a meta-analysis, correcting for study population of origin, to assess whether the duplication is associated with SZ. We found duplications at 7q11.23 in 11 of 14,387 SZ cases with only 1 in 28,139 control subjects (unadjusted odds ratio 21.52, 95% confidence interval: 3.13-922.6, p value 5.5 × 10(-5); adjusted odds ratio 10.8, 95% confidence interval: 1.46-79.62, p value .007). Of three SZ duplication carriers with detailed retrospective data, all showed social anxiety and language delay premorbid to SZ onset, consistent with both human studies and animal models of the 7q11.23 duplication. We have identified a new CNV associated with SZ. Reciprocal duplication of the Williams-Beuren syndrome deletion at chromosome 7q11.23 confers an approximately tenfold increase in risk for SZ. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  5. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    Science.gov (United States)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  6. Exploration of methods to localize DNA sequences missing from c-locus deletions

    International Nuclear Information System (INIS)

    Albritton, L.M.; Russell, L.B.; Montgomery, C.S.

    1987-01-01

    The authors have earlier characterized a large number of radiation-induced mutations at the c locus (on Chromosome 7) through genetic analysis, including extensive complementation tests. Based on this work, they have postulated that many of these mutations are deletions of various lengths, overlapping at c (the marker used in the mutation-rate experiments that generated the mutants). It was possible to apportion these deletions among 13 complementation groups and to fit them to a linear map of 8 functional units. Collectively, the deletions extend from a point between tp and c to one between sh-1 and Hbb, i.e., a genetic distance of from 6 to 10 cM, corresponding to at least 10 4 Kb of DNA. This year, the authors completed a pilot study designed to explore methods for finding DNA sequences that map to the region covered by the various c-deletions. The general plan was to probe DNA with clones derived from Chromosome-7-enriched libraries or with sequences known (or suspected) to reside in Chromosome 7. Three methods were explored for deriving the c-region-deficient DNA: (a) from mouse-hamster somatic-cell hydrids retaining a deleted mouse Chromosome 7, but no homologue; (b) from F 1 hybrids of M. musculus domesticus (carrying a c-locus deletion) by M. spretus; and (c) from F 1 hybrids of M. domesticus stocks carrying complementing deletions

  7. [Recombinant chromosome 4 with partial 4p deletion and 4q duplication inherited from paternal pericentric inversion].

    Science.gov (United States)

    Mun, Se Jin; Cho, Eun Hae; Chey, Myoung-Jae; Shim, Gyu-Hong; Shin, Bo-Moon; Lee, Rae-Kyung; Ko, Ji-Kyung; Yoo, Soo Jin

    2010-02-01

    Pericentric inversion of chromosome 4 can give rise to 2 alternate recombinant (rec) chromosomesby duplication or deletion of 4p. The deletion of distal 4p manifests as Wolf-Hirschhorn syndrome (WHS). Here, we report the molecular cytogenetic findings and clinical manifestations observed in an infant with 46,XX,rec(4)dup(4q)inv(4)(p16q31.3)pat. The infant was delivered by Cesarean section at the 33rd week of gestation because pleural effusion and polyhydramnios were detected on ultrasonography. At birth, the infant showed no malformation or dysfunction, except for a preauricular skin tag. Array comparative genomic hybridization analysis of neonatal peripheral blood samples showed a gain of 38 Mb on 4q31.3-qter and a loss of 3 Mb on 4p16.3, and these results were consistent with WHS. At the last follow-up at 8 months of age (corrected age, 6 months), the infant had not achieved complete head control.

  8. Formation and Expansion of Leukemia-Specific Chromosome Aberrations in Hematopoietic Cells of X-ray Irradiated Mice

    International Nuclear Information System (INIS)

    Ban, N.; Kai, M.; Kusama, T.

    2004-01-01

    C3H/He mice develop acute myeloid leukemia (AML) after whole-body irradiation, and typical chromosome 2 deletions are found in the leukemia cells. To investigate a process of the formation and the expansion of the AML-specific deletions, we have examined its frequency in primitive hematopoietic cells that could be the target of the leukemogenesis. Male C3H/He mice were exposed to 3Gy x-rays and sacrificed after certain periods of time. Bone marrow cells were collected from the femora and a single-cell suspension from each animal was divided into two parts. One part of the cell suspension was cultured in methylcellulose medium and metaphase spreads were prepared from each growing colony. The other part was sorted to obtain Lin+ and Lin Scal cells and those cells were scored with FISH for the AML-specific deletions. Karyotyping of the cultured cells detected signs of the delayed chromosomal instability, but an aberration involving chromosome 2 has not been found so far. FISH to the sorted cells, however, revealed the ANL-specific deletions could be produced in the primitive hematopoietic cells as an early event of radiation exposure. (Author) 16 refs

  9. Frequent Chromosome Aberrations Revealed by Molecular Cytogenetic Studies in Patients with Aniridia

    OpenAIRE

    Crolla, John A.; van Heyningen, Veronica

    2002-01-01

    Seventy-seven patients with aniridia, referred for cytogenetic analysis predominantly to assess Wilms tumor risk, were studied by fluorescence in situ hybridization (FISH), through use of a panel of cosmids encompassing the aniridia-associated PAX6 gene, the Wilms tumor predisposition gene WT1, and flanking markers, in distal chromosome 11p13. Thirty patients were found to be chromosomally abnormal. Cytogenetically visible interstitial deletions involving 11p13 were found in 13 patients, 11 o...

  10. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation.

    Directory of Open Access Journals (Sweden)

    Boris V Skryabin

    2007-12-01

    Full Text Available Prader-Willi syndrome (PWS [MIM 176270] is a neurogenetic disorder characterized by decreased fetal activity, muscular hypotonia, failure to thrive, short stature, obesity, mental retardation, and hypogonadotropic hypogonadism. It is caused by the loss of function of one or more imprinted, paternally expressed genes on the proximal long arm of chromosome 15. Several potential PWS mouse models involving the orthologous region on chromosome 7C exist. Based on the analysis of deletions in the mouse and gene expression in PWS patients with chromosomal translocations, a critical region (PWScr for neonatal lethality, failure to thrive, and growth retardation was narrowed to the locus containing a cluster of neuronally expressed MBII-85 small nucleolar RNA (snoRNA genes. Here, we report the deletion of PWScr. Mice carrying the maternally inherited allele (PWScr(m-/p+ are indistinguishable from wild-type littermates. All those with the paternally inherited allele (PWScr(m+/p- consistently display postnatal growth retardation, with about 15% postnatal lethality in C57BL/6, but not FVB/N crosses. This is the first example in a multicellular organism of genetic deletion of a C/D box snoRNA gene resulting in a pronounced phenotype.

  11. The emerging role of genomics in the diagnosis and workup of congenital urinary tract defects: a novel deletion syndrome on chromosome 3q13.31-22.1

    Science.gov (United States)

    Materna-Kiryluk, Anna; Kiryluk, Krzysztof; Burgess, Katelyn E; Bieleninik, Arkadiusz; Sanna-Cherchi, Simone; Gharavi, Ali G.; Latos-Bielenska, Anna

    2014-01-01

    Background Copy number variants (CNVs) are increasingly recognized as an important cause of congenital malformations and likely explain over 16% cases of CAKUT. Here, we illustrate how a molecular diagnosis of CNV can inform the clinical management of a pediatric patient presenting with CAKUT and other organ defects. Methods We describe a 14 year-old girl with a large de novo deletion of chromosome 3q13.31-22.1 that disrupts 101 known genes and manifests with CAKUT, neurodevelopmental delay, agenesis of corpus callosum (ACC), cardiac malformations, electrolyte and endocrine disorders, skeletal abnormalities and dysmorphic features. We perform extensive annotation of the deleted region to prioritize genes for specific phenotypes and to predict future disease risk. Results Our case defined new minimal chromosomal candidate regions for both CAKUT and ACC. Moreover, the presence of the CASR gene in the deleted interval predicted a diagnosis of hypocalciuric hypercalcemia, which was confirmed by serum and urine chemistries. Our gene annotation explained clinical hypothyroidism and predicted that the index case is at increased risk of thoracic aortic aneurysm, renal cell carcinoma and myeloproliferative disorder. Conclusions Extended annotation of CNV regions refines diagnosis and uncovers previously unrecognized phenotypic features. This approach enables personalized treatment and prevention strategies in patients harboring genomic deletions. PMID:24292865

  12. Microclones derived from the mouse chromosome 7 D-E bands map within the proximal region of the c14CoS deletion in albino mutant mice

    International Nuclear Information System (INIS)

    Toenjes, R.R.W.; Weith, A.; Rinchik, E.M.; Winking, H.; Carnwath, J.W.; Kaliner, B.; Paul, D.

    1991-01-01

    A group of radiation-induced perinatal-lethal deletions that include the albino (c) locus on mouse chromosome 7 causes failure of expression of various hepatocyte-specific genes when homozygous. The transcription of such genes could be controlled in trans by a regulatory gene(s) located within the proximal region of the C14CoS deletion. To identify this potential regulatory gene, a microclone library was established from microdissected D and E bands of chromosome 7. Three nonoverlapping microclones (E305, E336B, and E453B) hybridizing with wildtype but not with C14CoS/C14CoS DNA were isolated. E336B represents a single-copy DNA fragment, whereas E305 and E453B hybridized with 3 and 10 EcoRI DNA restriction fragments, respectively. All fragments map exclusively within the deletion. The microclones hybridized to DNA of viable C6H/C14CoS deletion heterozygotes but not to DNA of homozygotes for the lethal mutation c10R75M, which belongs to the same complementation group as c14CoS. DNA of viable homozygous mutant C62DSD, which carries a deletion breakpoint proximal to that of c6H, hybridized only with E453B. This microclone identified 6 EcoRI restriction fragments in C62DSD/C62DSD DNA. The results demonstrate that of the isolated microclones, E453B identifies a locus (D7RT453B) that maps closest to the hsdr-1 (hepatocyte-specific developmental regulation) locus, which maps between the proximal breakpoints of deletions c10R75M and c62DSD

  13. Induction of anchorage-independent growth of human embryonic fibroblasts with a deletion in the short arm of chromosome 11 by human papillomavirus type 16 DNA

    International Nuclear Information System (INIS)

    Smits, H.L.; Raadsheer, E.; Rood, I.; Mehendale, S.; Slater, R.M.; van der Noordaa, J.; Ter Schegget, J.

    1988-01-01

    Human embryonic fibroblasts with a large deletion (11p11.11p15.1) in the short arm of one chromosome 11 (del-11 cells) appeared to be susceptible to transformation by early human papillomavirus type 16 (HPV-16) DNA, whereas diploid human embryonic fibroblasts were not. This difference in susceptibility might be explained by the absence of a tumor suppressor gene located within the deleted part on the short arm of chromosome 11. The presence of abundant viral early-gene transcripts in transformed cells suggests that transformation was induced by an elevated level of an HPV-16 early-gene product(s). The low transcriptional activity of HPV-16 in diploid cells may indicate that cellular genes affect viral transcription. Interruption of the HPV-16 E2 early open reading frame is probably required for high-level HPV-16 early-gene expression driven from the homologous enhancer-promoter region

  14. A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans

    Directory of Open Access Journals (Sweden)

    Chin Kara

    2007-03-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA mutations are of increasing interest due to their involvement in aging, disease, fertility, and their role in the evolution of the mitochondrial genome. The presence of reactive oxygen species and the near lack of repair mechanisms cause mtDNA to mutate at a faster rate than nuclear DNA, and mtDNA deletions are not uncommon in the tissues of individuals, although germ-line mtDNA is largely lesion-free. Large-scale deletions in mtDNA may disrupt multiple genes, and curiously, some large-scale deletions persist over many generations in a heteroplasmic state. Here we examine the phenotypic effects of one such deletion, uaDf5, in Caenorhabditis elegans (C. elegans. Our study investigates the phenotypic effects of this 3 kbp deletion. Results The proportion of uaDf5 chromosomes in worms was highly heritable, although uaDf5 content varied from worm to worm and within tissues of individual worms. We also found an impact of the uaDf5 deletion on metabolism. The deletion significantly reduced egg laying rate, defecation rate, and lifespan. Examination of sperm bearing the uaDf5 deletion revealed that sperm crawled more slowly, both in vitro and in vivo. Conclusion Worms harboring uaDf5 are at a selective disadvantage compared to worms with wild-type mtDNA. These effects should lead to the rapid extinction of the deleted chromosome, but it persists indefinitely. We discuss both the implications of this phenomenon and the possible causes of a shortened lifespan for uaDf5 mutant worms.

  15. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  16. Deletion at the GCNT2 Locus Causes Autosomal Recessive Congenital Cataracts.

    Science.gov (United States)

    Irum, Bushra; Khan, Shahid Y; Ali, Muhammad; Daud, Muhammad; Kabir, Firoz; Rauf, Bushra; Fatima, Fareeha; Iqbal, Hira; Khan, Arif O; Al Obaisi, Saif; Naeem, Muhammad Asif; Nasir, Idrees A; Khan, Shaheen N; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Eghrari, Allen O; Riazuddin, S Amer

    2016-01-01

    The aim of this study is to identify the molecular basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous pedigree. All participating individuals underwent a detailed ophthalmic examination. Each patient's medical history, particularly of cataracts and other ocular abnormalities, was compiled from available medical records and interviews with family elders. Blood samples were donated by all participating family members and used to extract genomic DNA. Genetic analysis was performed to rule out linkage to known arCC loci and genes. Whole-exome sequencing libraries were prepared and paired-end sequenced. A large deletion was found that segregated with arCC in the family, and chromosome walking was conducted to estimate the proximal and distal boundaries of the deletion mutation. Exclusion and linkage analysis suggested linkage to a region of chromosome 6p24 harboring GCNT2 (glucosaminyl (N-acetyl) transferase 2) with a two-point logarithm of odds score of 5.78. PCR amplifications of the coding exons of GCNT2 failed in individuals with arCC, and whole-exome data analysis revealed a large deletion on chromosome 6p in the region harboring GCNT2. Chromosomal walking using multiple primer pairs delineated the extent of the deletion to approximately 190 kb. Interestingly, a failure to amplify a junctional fragment of the deletion break strongly suggests an insertion in addition to the large deletion. Here, we report a novel insertion/deletion mutation at the GCNT2 locus that is responsible for congenital cataracts in a large consanguineous family.

  17. Search for copy number variants in chromosomes 15q11-q13 and 22q11.2 in obsessive compulsive disorder

    Directory of Open Access Journals (Sweden)

    Grabe Hans

    2010-06-01

    Full Text Available Abstract Background Obsessive-compulsive disorder (OCD is a clinically and etiologically heterogeneous syndrome. The high frequency of obsessive-compulsive symptoms reported in subjects with the 22q11.2 deletion syndrome (DiGeorge/velocardiofacial syndrome or Prader-Willi syndrome (15q11-13 deletion of the paternally derived chromosome, suggests that gene dosage effects in these chromosomal regions could increase risk for OCD. Therefore, the aim of this study was to search for microrearrangements in these two regions in OCD patients. Methods We screened the 15q11-13 and 22q11.2 chromosomal regions for genomic imbalances in 236 patients with OCD using multiplex ligation-dependent probe amplification (MLPA. Results No deletions or duplications involving 15q11-13 or 22q11.2 were identified in our patients. Conclusions Our results suggest that deletions/duplications of chromosomes 15q11-13 and 22q11.2 are rare in OCD. Despite the negative findings in these two regions, the search for copy number variants in OCD using genome-wide array-based methods is a highly promising approach to identify genes of etiologic importance in the development of OCD.

  18. Markerless deletion of putative alanine dehydrogenase genes in Bacillus licheniformis using a codBA-based counterselection technique.

    Science.gov (United States)

    Kostner, David; Rachinger, Michael; Liebl, Wolfgang; Ehrenreich, Armin

    2017-11-01

    Bacillus licheniformis strains are used for the large-scale production of industrial exoenzymes from proteinaceous substrates, but details of the amino acid metabolism involved are largely unknown. In this study, two chromosomal genes putatively involved in amino acid metabolism of B. licheniformis were deleted to clarify their role. For this, a convenient counterselection system for markerless in-frame deletions was developed for B. licheniformis. A deletion plasmid containing up- and downstream DNA segments of the chromosomal deletion target was conjugated to B. licheniformis and integrated into the genome by homologous recombination. Thereafter, the counterselection was done by using a codBA cassette. The presence of cytosine deaminase and cytosine permease exerted a conditionally lethal phenotype on B. licheniformis cells in the presence of the cytosine analogue 5-fluorocytosine. Thereby clones were selected that lost the integrated vector sequence and the anticipated deletion target after a second recombination step. This method allows the construction of markerless mutants in Bacillus strains in iterative cycles. B. licheniformis MW3 derivatives lacking either one of the ORFs BL03009 or BL00190, encoding a putative alanine dehydrogenase and a similar putative enzyme, respectively, retained the ability to grow in minimal medium supplemented with alanine as the carbon source. In the double deletion mutant MW3 ΔBL03009 ΔBL00190, however, growth on alanine was completely abolished. These data indicate that the two encoded enzymes are paralogues fulfilling mutually replaceable functions in alanine utilization, and suggest that in B. licheniformis MW3 alanine utilization is initiated by direct oxidative transamination to pyruvate and ammonium.

  19. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf–Hirschhorn syndrome

    Science.gov (United States)

    South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-01-01

    Background Wolf–Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Methods Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. Results We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. Conclusions We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. PMID:26747863

  20. Interstitial deletion of 5q33.3q35.1 in a boy with severe mental retardation

    OpenAIRE

    Lee, Jin Hwan; Kim, Hyo Jeong; Yoon, Jung Min; Cheon, Eun Jung; Lim, Jae Woo; Ko, Kyong Og; Lee, Gyung Min

    2016-01-01

    Constitutional interstitial deletions of the long arm of chromosome 5 (5q) are quite rare, and the corresponding phenotype is not yet clearly delineated. Severe mental retardation has been described in most patients who present 5q deletions. Specifically, the interstitial deletion of chromosome 5q33.3q35.1, an extremely rare chromosomal aberration, is characterized by mental retardation, developmental delay, and facial dysmorphism. Although the severity of mental retardation varies across cas...

  1. Loss of heterozygosity on the X chromosome in human breast cancer.

    Science.gov (United States)

    Loupart, M L; Adams, S; Armour, J A; Walker, R; Brammar, W; Varley, J

    1995-08-01

    The analysis of loss of heterozygosity (LOH) in tumours can be a powerful tool for mapping the sites of tumour suppressor genes in the human genome. A panel of breast cancer patients was assembled as pairs of tumour and lymphocyte DNA samples and LOH studies carried out by Southern hybridisation with polymorphic loci mapping to the X chromosome with appropriate controls. Deletion mapping revealed a high frequency of small regionalised deletions, defining at least three independent regions, one of which is particularly well mapped to a 500 kb stretch of DNA in the distal portion of the pseudoautosomal region of Xp. A second region has been identified within the pseudoautosomal region close to the pseudoautosomal boundary, and there is a third discrete site of loss on distal Xq. Perturbations of sequences at these regions represent independent events in a number of patients. This study represents the first detailed analysis of LOH on the X chromosome in human breast tumours, the results of which indicate that at least three regions of this chromosome are involved in the disease.

  2. A case of 18p deletion syndrome after blepharoplasty

    Directory of Open Access Journals (Sweden)

    Xu LJ

    2017-01-01

    Full Text Available Li-juan Xu,1 Lv-xian Wu,2 Qing Yuan,3 Zhi-gang Lv,1 Xue-yan Jiang2 1Department of Opthalmology, 2Department of Pediatrics, 3Department of Clinical Laboratory, Jinhua Central Hospital, Jinhua, Zhejiang, People’s Republic of China Objective: The deletion of the short arm of chromosome 18 is thought to be one of the rare chromosomal aberrations. Here, we report a case to review this disease.Case report: The proband is a five-and-a-half-year-old girl who has had phenotypes manifested mainly by ptosis, broad face, broad neck with low posterior hairline, mental retardation, short stature, and other malformations. Chromosomal analysis for her mother showed a normal karyotype. Her father and younger brother were phenotypically normal.Result: Phenotypical features were quite similar throughout other cases and in accordance with the usual phenotype of del(18p suggested within the same cases and among the del(18p cases described. She underwent blepharoplasty, which improved her appearance.Conclusion: 18p deletion syndrome is diagnosed by gene analysis. Plastic surgeries for improving the appearance might be an option for these patients. Keywords: chromosome, deletion, blepharoplasty

  3. A novel contiguous deletion involving NDP, MAOB and EFHC2 gene ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 6. A novel contiguous deletion involving NDP, MAOBand EFHC2gene in a patient with familial Norrie disease: bilateral blindness and leucocoria without other deficits. BEI JIA LIPING HUANG YAOYU CHEN SIPING LIU CUIHUA CHEN KE XIONG LANLIN SONG YULAI ...

  4. A novel contiguous deletion involving NDP, MAOB and EFHC2 gene ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 6. A novel contiguous deletion involving NDP, MAOBitalic> and EFHC2italic> gene in a patient with familial Norrie disease: bilateral blindness and leucocoria without other deficits. BEI JIA LIPING HUANG YAOYU CHEN SIPING LIU CUIHUA CHEN KE XIONG LANLIN ...

  5. Vitamin D deficiency, behavioral atypicality, anxiety and depression in children with chromosome 22q11.2 deletion syndrome.

    Science.gov (United States)

    Kelley, L; Sanders, A F P; Beaton, E A

    2016-12-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a complex developmental disorder with serious medical, cognitive and emotional symptoms across the lifespan. This genetic deletion also imparts a lifetime risk for developing schizophrenia that is 25-30 times that of the general population. The origin of this risk is multifactorial and may include dysregulation of the stress response and immunological systems in relation to brain development. Vitamin D is involved in brain development and neuroprotection, gene transcription, immunological regulation and influences neuronal signal transduction. Low levels of vitamin D are associated with schizophrenia, depression and anxiety in the general population. Yet, little is known about how vitamin D levels in children with 22q11.2DS could mediate risk of psychosis in adulthood. Blood plasma levels of vitamin D were measured in children aged 7-16 years with (n=11) and without (n=16) 22q11.2DS in relation to parent reports of children's anxiety and atypicality. Anxiety and atypicality in childhood are risk indicators for the development of schizophrenia in those with 22q11.2DS and the general population. Children with 22q11.2DS had lower vitamin D levels, as well as elevated anxiety and atypicality compared with typical peers. Higher levels of anxiety, depression and internalizing problems but not atypicality were associated with lower levels of vitamin D. Vitamin D insufficiency may relate to higher levels of anxiety and depression, in turn contributing to the elevated risk of psychosis in this population. Further study is required to determine casual linkages between anxiety, stress, mood and vitamin D in children with 22q11.2DS.

  6. Frequency of heterozygous TET2 deletions in myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Joseph Tripodi

    2010-09-01

    Full Text Available Joseph Tripodi1, Ronald Hoffman1, Vesna Najfeld2, Rona Weinberg31The Myeloproliferative Disorders Program, Tisch Cancer Institute, Department of Medicine and 2Department of Medicine and Pathology, Mount Sinai School of Medicine, 3The Myeloproliferative Disorders Program, Cellular Therapy Laboratory, The New York Blood Center, New York, NY, USAAbstract: The Philadelphia chromosome (Ph-negative myeloproliferative neoplasms (MPNs, including polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a group of clonal hematopoietic stem cell disorders with overlapping clinical and cytogenetic features and a variable tendency to evolve into acute leukemia. These diseases not only share overlapping chromosomal abnormalities but also a number of acquired somatic mutations. Recently, mutations in a putative tumor suppressor gene, ten-eleven translocation 2 (TET2 on chromosome 4q24 have been identified in 12% of patients with MPN. Additionally 4q24 chromosomal rearrangements in MPN, including TET2 deletions, have also been observed using conventional cytogenetics. The goal of this study was to investigate the frequency of genomic TET2 rearrangements in MPN using fluorescence in situ hybridization as a more sensitive method for screening and identifying genomic deletions. Among 146 MPN patients, we identified two patients (1.4% who showed a common 4q24 deletion, including TET2. Our observations also indicated that the frequency of TET2 deletion is increased in patients with an abnormal karyotype (5%.Keywords: TET2, myeloproliferative neoplasms, fluorescence in situ hybridization, cytogenetics

  7. Somatically Acquired Isodicentric Y and Mosaic Loss of Chromosome Y in a Boy with Hypospadias.

    Science.gov (United States)

    Miyado, Mami; Muroya, Koji; Katsumi, Momori; Saito, Kazuki; Kon, Masafumi; Fukami, Maki

    2018-04-07

    Isodicentric Y chromosome [idic(Y)] represents a relatively common subtype of Y chromosomal rearrangements in the germline; however, limited evidence supports the postzygotic occurrence of idic(Y). Here, we report a boy with hypospadias and somatically acquired idic(Y). The 3.5-year-old boy has been identified in our previous study for patients with hypospadias. In the present study, cytogenetic analysis including FISH revealed a 45,X[5]/46,X,idic(Y)[7]/46,XY[8] karyotype. MLPA showed a mosaic deletion involving PPP1R12BP1 and RBMY2DP. The idic(Y) was likely to have been formed through aberrant recombination between P1 palindromes and subsequently underwent mosaic loss. The patient's phenotype was attributable to deletion of some Y chromosomal genes and/or mosaic loss of chromosome Y (mLOY). The results suggest that idic(Y) can originate in postzygotic cells via palindrome-mediated crossovers. Moreover, our data indicate that somatically acquired idic(Y) can trigger mLOY, which usually appears as an aging-related phenomenon in elderly men. © 2018 S. Karger AG, Basel.

  8. Clinical characterization and proposed mechanism of juvenile glaucoma--a patient with a chromosome 4p deletion, Wolf-Hirschhorn Syndrome.

    Science.gov (United States)

    Curtin, Jeremy; Moloney, Greg; Grigg, John; Sharota Franzco, Dorian

    2010-09-01

    The case presented is that of a 22-year-old male with Wolf-Hirschhorn syndrome who was referred with glaucoma refractory to medical treatment. Six other patients have been described with Wolf-Hirschhorn syndrome (WHS) and glaucoma, most being congenital glaucoma with diagnosis in infancy. We describe the first case of juvenile onset glaucoma in this syndrome. Our patient had narrow angles on gonioscopy, with ultrasound biomicroscopy revealing ciliary body cysts. We alert others to the possibility of this mechanism of secondary narrow angle glaucoma associated with this chromosomal deletion syndrome.

  9. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Ho, Karen S; South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-04-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. The DrosDel Deletion Collection: A Drosophila Genomewide Chromosomal Deficiency Resource

    OpenAIRE

    Ryder, Edward; Ashburner, Michael; Bautista-Llacer, Rosa; Drummond, Jenny; Webster, Jane; Johnson, Glynnis; Morley, Terri; Chan, Yuk Sang; Blows, Fiona; Coulson, Darin; Reuter, Gunter; Baisch, Heiko; Apelt, Christian; Kauk, Andreas; Rudolph, Thomas

    2007-01-01

    We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering ∼77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks. In addition to deletions, we demonstrate how the P elements may also be used to generate a set of custom inversions and duplications, particularly...

  11. Chromosomal aberrations induced by low-dose γ-irradiation: Study of R-banded chromosomes of human lymphocytes

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Lefrancois, D.; Aurias, A.

    1991-01-01

    The effect of low-dose (0-0.5 Gy) γ-radiations was studied on R-banded chromosomes from lymphocytes of healthy donors of various ages. In cells from newborns, an increase of chromosome damage roughly proportional to the dose was found. In lymphocytes from young adults chromosomal aberrations were not detected at doses of 0.05 and 0.1 Gy, and in lymphocytes from old adults not even at 0.2 Gy. The difficulty in detecting aberrations in lymphocytes from adults is largely due to a considerable background of chromosomal anomalies which should be borne in mind in dosimetry studies. The rate of induction largely depends on the types of rearrangements. One-break terminal deletions are efficiently induced at 0.1 and 0.2 Gy and are the best indicators of exposure at these doses. At 0.5 Gy, the frequencies of 2-break lesions, i.e., dicentrics and reciprocal translocations, increase, whereas the of deletions decreases. (author). 6 refs., 3 figs., 2 tabs

  12. Chromosomal abnormalities in amenorrhea: a retrospective study and review of 637 patients in South India.

    Science.gov (United States)

    Dutta, Usha R; Ponnala, Rajitha; Pidugu, Vijaya Kumar; Dalal, Ashwin B

    2013-05-01

    The aim of the present study was to investigate the chromosomal abnormalities and to identify the most prevalent or frequent type of chromosomal abnormalities in cases of amenorrhea from the southern region of India. A total of 637 cases with amenorrhea were analyzed using G- banding, C-banding, Silver staining, and fluorescence in situ hybridization was done wherever necessary. Out of the 637 cases involved in our study, 132 abnormalities were detected. The incidence of chromosomal abnormalities in cases with primary and secondary amenorrhea was around 20.7 %. In addition to the numerical anomalies, various structural aberrations of the X chromosome like deletions, isochromosomes, duplications, ring chromosome, and also male karyotype were detected. Review of the literature and overall incidence of chromosomal abnormalities in patients with amenorrhea suggests the need for cytogenetic analysis to be performed in all the cases referred for amenorrhea with or without short stature. Precise identification of chromosomal abnormalities helps in confirming the provisional diagnosis; it helps the secondary amenorrhea patients in assisted reproduction and to understand the clinical heterogeneity involved and in efficient genetic counseling.

  13. The gene for replication factor C subunit 2 (RFC2) is within the 7q11.23 Williams syndrome deletion

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.; Perez-Jurado, L.; Francke, U.; Yu-Ker Wang [Stanford Univ. Medical Center, CA (United States); Kaplan, P. [Children`s Hospital of Philadelphia, PA (United States)

    1996-06-01

    Williams syndrome (WS) is a developmental disorder with multiple system manifestations, including supraval var aortic stenosis (SVAS), peripheral pulmonic stenosis, connective tissue abnormalities, short stature, characteristic personality profile and cognitive deficits, and variable hypercalcemia in infancy. It is caused by heterozygosity for a chromosomal deletion of part of band 7q11.23 including the elastin locus (ELN). Since disruption of the ELN gene causes autosomal dominant SVAS, it is assumed that ELN haploinsufficiency is responsible for the cardiovascular features of WS. The deletion that extends from the ELN locus in both directions is {ge}200 kb in size, although estimates of {ge}2 Mb are suggested by high-resolution chromosome banding and physical mapping studies. We have searched for additional dosage-sensitive genes within the deletion that may be responsible for the noncardiovascular features. We report here that the gene for replication factor C subunit 2 (RFC2) maps within the WS deletion region and was found to be deleted in all of 18 WS patients studied. The protein product of RFC2 is part of a multimeric complex involved in DNA elongation during replication. 14 refs., 3 figs.

  14. SHANK1 Deletions in Males with Autism Spectrum Disorder.

    Science.gov (United States)

    Sato, Daisuke; Lionel, Anath C; Leblond, Claire S; Prasad, Aparna; Pinto, Dalila; Walker, Susan; O'Connor, Irene; Russell, Carolyn; Drmic, Irene E; Hamdan, Fadi F; Michaud, Jacques L; Endris, Volker; Roeth, Ralph; Delorme, Richard; Huguet, Guillaume; Leboyer, Marion; Rastam, Maria; Gillberg, Christopher; Lathrop, Mark; Stavropoulos, Dimitri J; Anagnostou, Evdokia; Weksberg, Rosanna; Fombonne, Eric; Zwaigenbaum, Lonnie; Fernandez, Bridget A; Roberts, Wendy; Rappold, Gudrun A; Marshall, Christian R; Bourgeron, Thomas; Szatmari, Peter; Scherer, Stephen W

    2012-05-04

    Recent studies have highlighted the involvement of rare (number variations and point mutations in the genetic etiology of autism spectrum disorder (ASD); these variants particularly affect genes involved in the neuronal synaptic complex. The SHANK gene family consists of three members (SHANK1, SHANK2, and SHANK3), which encode scaffolding proteins required for the proper formation and function of neuronal synapses. Although SHANK2 and SHANK3 mutations have been implicated in ASD and intellectual disability, the involvement of SHANK1 is unknown. Here, we assess microarray data from 1,158 Canadian and 456 European individuals with ASD to discover microdeletions at the SHANK1 locus on chromosome 19. We identify a hemizygous SHANK1 deletion that segregates in a four-generation family in which male carriers--but not female carriers--have ASD with higher functioning. A de novo SHANK1 deletion was also detected in an unrelated male individual with ASD with higher functioning, and no equivalent SHANK1 mutations were found in >15,000 controls (p = 0.009). The discovery of apparent reduced penetrance of ASD in females bearing inherited autosomal SHANK1 deletions provides a possible contributory model for the male gender bias in autism. The data are also informative for clinical-genetics interpretations of both inherited and sporadic forms of ASD involving SHANK1. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Analysis of the Ceratitis capitata y chromosome using in situ hybridization to mitotic chromosomes

    International Nuclear Information System (INIS)

    Willhoeft, U.; Franz, G.

    1998-01-01

    In Ceratitis capitata the Y chromosome is responsible for sex-determination. We used fluorescence in situ hybridization (FISH) for cytogenetic analysis of mitotic chromosomes. FISH with the wild-type strain EgyptII and two repetitive DNA probes enabled us to differentiate between the short and the long arm of the Y chromosome and gives a much better resolution than C-banding of mitotic chromosomes. We identified the Y-chromosomal breakpoints in Y-autosome translocations using FISH. Even more complex rearrangements i.e. deletions and insertions in some translocation strains were detected by this method. A strategy for mapping the primary sex determination factor in Ceratitis capitata by FISH is presented. (author)

  16. Severe intellectual disability, omphalocele, hypospadia and high blood pressure associated to a deletion at 2q22.1q22.3: case report

    Directory of Open Access Journals (Sweden)

    Mulatinho Milene

    2012-06-01

    Full Text Available Abstract Background Recently, array-comparative genomic hybridization (aCGH platforms have significantly improved the resolution of chromosomal analysis allowing the identification of genomic copy number gains and losses smaller than 5 Mb. Here we report on a young man with unexplained severe mental retardation, autism spectrum disorder, congenital malformations comprising hypospadia and omphalocele, and episodes of high blood pressure. An ~ 6 Mb interstitial deletion that includes the causative genes is identified by oligonucleotide-based aCGH. Results Our index case exhibited a de novo chromosomal abnormality at 2q22 [del(2(q22.1q22.3dn] which was not visible at the 550 haploid band level. The deleted region includes eight genes: HNMT, SPOPL, NXPH2, LOC64702, LRP1B, KYNU, ARHGAP15 and GTDC1. Discussion aCGH revealed an ~ 6 Mb deletion in 2q22.1 to 2q22.3 in an as-yet unique clinical case associated with intellectual disability, congenital malformations and autism spectrum disorder. Interestingly, the deletion is co-localized with a fragile site (FRA2K, which could be involved in the formation of this chromosomal aberration. Further studies are needed to determine if deletions of 2q22.1 to 2q22.3 define a new microdeletion syndrome.

  17. Angelman syndrome associated with an inversion of chromosome 15q11.2q24.3

    Energy Technology Data Exchange (ETDEWEB)

    Greger, V.; Knoll, J.H.M.; Wagstaff, J.; Lalande, M. [and others

    1997-03-01

    Angelman syndrome (AS) most frequently results from large ({ge}5 Mb) de novo deletions of chromosome 15q11-q13. The deletions are exclusively of maternal origin, and a few cases of paternal uniparental disomy of chromosome 15 have been reported. The latter finding indicates that AS is caused by the absence of a maternal contribution to the imprinted 15q11-q13 region. Failure to inherit a paternal 15q11-q13 contribution results in the clinically distinct disorder of Prader-Willi syndrome. Cases of AS resulting from translocations or pericentric inversions have been observed to be associated with deletions, and there have been no confirmed reports of balanced rearrangements in AS. We report the first such case involving a paracentric inversion with a breakpoint located {approximately}25 kb proximal to the reference marker D15S10. This inversion has been inherited from a phenotypically normal mother. No deletion is evident by molecular analysis in this case, by use of cloned fragments mapped to within {approximately}1 kb of the inversion breakpoint. Several hypotheses are discussed to explain the relationship between the inversion and the AS phenotype. 47 refs., 3 figs.

  18. Genetics Home Reference: distal 18q deletion syndrome

    Science.gov (United States)

    ... 18q deletion syndrome chromosome 18q monosomy chromosome 18q- syndrome De Grouchy syndrome del(18q) syndrome monosomy 18q Related Information How ... MS, Tienari PJ, Wirtavuori KO, Valanne LK. 18q-syndrome: brain MRI shows poor differentiation of gray and white matter on ... RL, Hale DE, Rose SR, Leach RJ, Cody JD. The spectrum ...

  19. Ring chromosome 9 in a girl with developmental delay and dysmorphic features

    DEFF Research Database (Denmark)

    la Cour Sibbesen, Else; Jespersgaard, Cathrine; Alosi, Daniela

    2013-01-01

    In this report, we describe a female child with dysmorphic features and developmental delay. Chromosome microarray analysis followed by conventional karyotyping revealed a ring chromosome 9 with a 12 Mb deletion at 9pter-p23 and a 540 kb deletion at 9q34.3-qter. Four percent of the analyzed cells...

  20. The prevalence of Y chromosome microdeletions in Pakistani infertile men

    Directory of Open Access Journals (Sweden)

    Rubina Tabassum Siddiqui

    2013-01-01

    Full Text Available Background: Microdeletions of the azoospermia factor locus of the long arm of Y chromosome are an etiological factor of severe oligozoospermia or azoospermia. Objective: The aim of this study was to investigate the prevalence of Y-chromosome microdeletions in AZF region and their role in infertility in Pakistani population. Materials and Methods: The type of deletions in AZF locus were detected in infertile men (n=113 and the association of Y chromosome microdeletions with male infertility was assessed by including men (50 with normal karyotype and having children. Y chromosome microdeletions were detected by multiplex PCR using 10 sequence tagged sites namely sY81, sY130, sY141, sY142, sY155, sY157, sY160, sY182, sY231, and sY202 that covered all three regions of AZF. Results: Individuals with severe oligozoospermia showed 2.86% deletion frequency in AZFc region as compared to azoospermic males (5.5%. Conclusion: The results of our study showed that deletions in Y chromosome are not playing major part in male infertility. Moreover, multiplex-PCR strategy might preferably be employed for the detection of Y chromosome microdeletions allied to male infertility.

  1. A recurrent deletion syndrome at chromosome bands 2p11.2-2p12 flanked by segmental duplications at the breakpoints and including REEP1.

    Science.gov (United States)

    Stevens, Servi J C; Blom, Eveline W; Siegelaer, Ingrid T J; Smeets, Eric E J G L

    2015-04-01

    We identified an identical and recurrent 9.4-Mbp deletion at chromosome bands 2p11.2-2p12, which occurred de novo in two unrelated patients. It is flanked at the distal and proximal breakpoints by two homologous segmental duplications consisting of low copy repeat (LCR) blocks in direct orientation, which have >99% sequence identity. Despite the fact that the deletion was almost 10 Mbp in size, the patients showed a relatively mild clinical phenotype, that is, mild-to-moderate intellectual disability, a happy disposition, speech delay and delayed motor development. Their phenotype matches with that of previously described patients. The 2p11.2-2p12 deletion includes the REEP1 gene that is associated with spastic paraplegia and phenotypic features related to this are apparent in most 2p11.2-2p12 deletion patients, but not in all. Other hemizygous genes that may contribute to the clinical phenotype include LRRTM1 and CTNNA2. We propose a recurrent but rare 2p11.2-2p12 deletion syndrome based on (1) the identical, non-random localisation of the de novo deletion breakpoints in two unrelated patients and a patient from literature, (2) the patients' phenotypic similarity and their phenotypic overlap with other 2p deletions and (3) the presence of highly identical LCR blocks flanking both breakpoints, consistent with a non-allelic homologous recombination (NAHR)-mediated rearrangement.

  2. Chromosome 12q24.31-q24.33 deletion causes multiple dysmorphic features and developmental delay: First mosaic patient and overview of the phenotype related to 12q24qter defects

    Directory of Open Access Journals (Sweden)

    Sakati Nadia

    2011-04-01

    Full Text Available Abstract Background Genomic imbalances of the 12q telomere are rare; only a few patients having 12q24.31-q24.33 deletions were reported. Interestingly none of these were mosaic. Although some attempts have been made to establish phenotype/genotype interaction for the deletions in this region, no clear relationship has been established to date. Results We have clinically screened more than 100 patients with dysmorphic features, mental retardation and normal karyotype using high density oligo array-CGH (aCGH and identified a ~9.2 Mb hemizygous interstitial deletion at the 12q telomere (Chromosome 12: 46,XY,del(12(q24.31q24.33 in a severely developmentally retarded patient having dysmorphic features such as low set ears, microcephaly, undescended testicles, bent elbow, kyphoscoliosis, and micropenis. Parents were found to be not carriers. MLPA experiments confirmed the aCGH result. Interphase FISH revealed mosaicism in cultured peripheral blood lymphocytes. Conclusions Since conventional G-Banding technique missed the abnormality; this work re-confirms that any child with unexplained developmental delay and systemic involvement should be studied by aCGH techniques. The FISH technique, however, would still be useful to further delineate the research work and identify such rare mosaicism. Among the 52 deleted genes, P2RX2, ULK1, FZD10, RAN, NCOR2 STX2, TESC, FBXW8, and TBX3 are noteworthy since they may have a role in observed phenotype.

  3. Structural variations of chromosome 1 R from rye cultivar Jingzhouheimai induced by irradiation

    International Nuclear Information System (INIS)

    Wang Conglei; Zhuang Lifang; Qi Zengjun

    2012-01-01

    Irradiated with 60 Co γ-rays (12 Gy), the pollen of wheat landrace Huixianhong-Secale cereal cv. Jingzhouheimai DA1R was pollinated to the emasculated spikes of Huixianhong. Analyzed with genomic in situ hybridization GISH using gDNA of rye cv. Jingzhouheimai as a probe, four plants with reciprocal translocation, four plants with large segmental translocation and one plant with distal segmental translocation, one plant with one telocentric chromosome were identified from 33 M 1 seeds. The results showed that the translocation frequency was 30.30% and of the total 11 breakage-fusion events, 1 involved centric regions and 10 involved interstitial regions. The experiment showed that pollen irradiation was an effective method to induce wheat alien chromosomal structural variations which could effectively by used in deletion mapping, chromosomal location of important agronomic genes and development of small segmental translocations with target genes. (authors)

  4. Familial deletion 18p syndrome: case report

    Directory of Open Access Journals (Sweden)

    Lemyre Emmanuelle

    2006-07-01

    Full Text Available Abstract Background Deletion 18p is a frequent deletion syndrome characterized by dysmorphic features, growth deficiencies, and mental retardation with a poorer verbal performance. Until now, five families have been described with limited clinical description. We report transmission of deletion 18p from a mother to her two daughters and review the previous cases. Case presentation The proband is 12 years old and has short stature, dysmorphic features and moderate mental retardation. Her sister is 9 years old and also has short stature and similar dysmorphic features. Her cognitive performance is within the borderline to mild mental retardation range. The mother also presents short stature. Psychological evaluation showed moderate mental retardation. Chromosome analysis from the sisters and their mother revealed the same chromosomal deletion: 46, XX, del(18(p11.2. Previous familial cases were consistent regarding the transmission of mental retardation. Our family differs in this regard with variable cognitive impairment and does not display poorer verbal than non-verbal abilities. An exclusive maternal transmission is observed throughout those families. Women with del(18p are fertile and seem to have a normal miscarriage rate. Conclusion Genetic counseling for these patients should take into account a greater range of cognitive outcome than previously reported.

  5. Delineation and analysis of chromosomal regions specifying Yersinia pestis.

    Science.gov (United States)

    Derbise, Anne; Chenal-Francisque, Viviane; Huon, Christèle; Fayolle, Corinne; Demeure, Christian E; Chane-Woon-Ming, Béatrice; Médigue, Claudine; Hinnebusch, B Joseph; Carniel, Elisabeth

    2010-09-01

    Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore

  6. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    Science.gov (United States)

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  7. Topography of multi-locus deletions induced by gamma-rays and neutrons in the black, cinnabar and vestigial regions of drosophila melanogaster

    International Nuclear Information System (INIS)

    Alexandrov, I.V.; Lapidus, I.L.; Alexandrova, M.V.

    1997-01-01

    The extend and breakpoint location of 85 chromosomal-scale deletions induced by gamma-rays or fission neutrons in the black, cinnabar and vestigial regions of Drosophila genome have been examined by conventional cytogenetic analysis of the polytene chromosomes. It was found that the topographies of deletions are similar for both type of radiation and for all regions under study: the largest deletions have 3.5 Mb length, i.e. more than 2 divisions of the polytene chromosome; the breakpoints of deletions are located within the inter-bands and mapped more often in the centro-metric directions; the sizes of deletions are multiple to one, two or more visible chromomeres of polytene chromosome. These findings seem to be very well explained within the framework of the rosette-loopy model of higher (super-chromosome) level of the chromatin organization and of the notions about the illegitimate recombination promoted by the clustered damages of the core DNA resulting from the one-hit events of energy deposition at this target supported by the linear relationship observed between the delation yield and the dose of radiations studied. (authors)

  8. Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia.

    Science.gov (United States)

    Tischkowitz, M D; Morgan, N V; Grimwade, D; Eddy, C; Ball, S; Vorechovsky, I; Langabeer, S; Stöger, R; Hodgson, S V; Mathew, C G

    2004-03-01

    Fanconi anemia (FA) is an autosomal recessive chromosomal instability disorder caused by mutations in one of seven known genes (FANCA,C,D2,E,F,G and BRCA2). Mutations in the FANCA gene are the most prevalent, accounting for two-thirds of FA cases. Affected individuals have greatly increased risks of acute myeloid leukemia (AML). This raises the question as to whether inherited or acquired mutations in FA genes might be involved in the development of sporadic AML. Quantitative fluorescent PCR was used to screen archival DNA from sporadic AML cases for FANCA deletions, which account for 40% of FANCA mutations in FA homozygotes. Four heterozygous deletions were found in 101 samples screened, which is 35-fold higher than the expected population frequency for germline FANCA deletions (PFANCA in the AML samples with FANCA deletions did not detect mutations in the second allele and there was no evidence of epigenetic silencing by hypermethylation. However, real-time quantitative PCR analysis in these samples showed reduced expression of FANCA compared to nondeleted AML samples and to controls. These findings suggest that gene deletions and reduced expression of FANCA may be involved in the promotion of genetic instability in a subset of cases of sporadic AML.

  9. Clival encephalocele and 5q15 deletion: a case report.

    Science.gov (United States)

    Puvabanditsin, Surasak; Malik, Imran; Garrow, Eugene; Francois, Lissa; Mehta, Rajeev

    2015-03-01

    A preterm neonate presenting with respiratory distress after birth was found to have a clival encephalocele, which is a variant of a basal encephalocele, and hypoplasia of the cerebellum. Genetic studies revealed a small deletion of the long arm of chromosome 5: 5q15 deletion. We report a rare variant of a basal encephalocele with a cerebellar malformation and 5q15 deletion. © The Author(s) 2014.

  10. Male gametophytic sterility. 1 - Gametic sterilities and deletions in petunia

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, A.; Maizonnier, D. (Station d' Amelioration des Plantes de l' I.N.R.A., Dijon (France))

    1982-01-01

    Terminal deletions induced by ionizing radiations in Petunia are not sexually transmitted. Cytogenetic study of plants with a heterozygous deletion and their progenies shows that this lack of transmission is accompanied by a gametic semi-sterility due to the fact that gametes carrying the deleted chromosome are not viable. The interest of such a male sterility with a gametophytic determinism for the study of sporophyte-gametophyte relationships is underlined.

  11. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus.

    Science.gov (United States)

    Barutcu, A Rasim; Maass, Philipp G; Lewandowski, Jordan P; Weiner, Catherine L; Rinn, John L

    2018-04-13

    The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conformation capture (Hi-C), we focus on one TAD boundary on chromosome X harboring ~ 15 CTCF binding sites and located at the long non-coding RNA (lncRNA) locus Firre. Specifically, this TAD boundary is invariant across evolution, tissues, and temporal dynamics of X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner. In contrast, Firre's deletion disrupts the chromatin super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation.

  12. Size does matter: Cre-mediated somatic deletion efficiency depends on the distance between the target lox-sites

    NARCIS (Netherlands)

    Coppoolse, E.R.; Vroomen, de M.J.; Gennip, van F.; Hersmus, B.J.M.; Haaren, van M.J.

    2005-01-01

    Cre/lox recombination in vivo has become an important tool to induce chromosomal rearrangements like deletions. Using a combination of Ds transposition and Cre/lox recombination in two independent experiments on chromosomes 6 and 7 of tomato, two sets of somatic deletions up to a size of 200 kb were

  13. Conditional Deletion of Pten Causes Bronchiolar Hyperplasia

    OpenAIRE

    Davé, Vrushank; Wert, Susan E.; Tanner, Tiffany; Thitoff, Angela R.; Loudy, Dave E.; Whitsett, Jeffrey A.

    2007-01-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (PtenΔ/Δ) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as in...

  14. Coexistence of 9p Deletion Syndrome and Autism Spectrum Disorder

    Science.gov (United States)

    Günes, Serkan; Ekinci, Özalp; Ekinci, Nuran; Toros, Fevziye

    2017-01-01

    Deletion or duplication of the short arm of chromosome 9 may lead to a variety of clinical conditions including craniofacial and limb abnormalities, skeletal malformations, mental retardation, and autism spectrum disorder. Here, we present a case report of 5-year-old boy with 9p deletion syndrome and autism spectrum disorder.

  15. DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is deleted in malignant brain tumours

    DEFF Research Database (Denmark)

    Mollenhauer, J; Wiemann, S; Scheurlen, W

    1997-01-01

    Loss of sequences from human chromosome 10q has been associated with the progression of human cancer. Medulloblastoma and glioblastoma multiforme are the most common malignant brain tumours in children and adults, respectively. In glioblastoma multiforme, the most aggressive form, 80% of the tumo......Loss of sequences from human chromosome 10q has been associated with the progression of human cancer. Medulloblastoma and glioblastoma multiforme are the most common malignant brain tumours in children and adults, respectively. In glioblastoma multiforme, the most aggressive form, 80....... Intragenic homozygous deletions has been detected in 2/20 medulloblastomas and in 9/39 glioblastomas multiformes. Lack of DMBT1 expression has been demonstrated in 4/5 brain-tumour cell lines. We suggest that DMBT1 is a putative tumour-suppressor gene implicated in the carcinogenesis of medulloblastoma...

  16. Allelic imbalance on chromosome 1 in human breast cancer. I. Minisatellite and RFLP analysis.

    Science.gov (United States)

    Loupart, M L; Armour, J; Walker, R; Adams, S; Brammar, W; Varley, J

    1995-01-01

    In order to characterise the role of chromosome 1 more fully in breast cancer, polymorphic markers mapping along the length of the whole chromosome were used to assess a panel of 71 tumour-lymphocyte pairs for allelic imbalance. Complex patterns of alterations were established that are consistent with cytogenetic data in the literature. Deletion mapping of individuals with loss of heterozygosity identified five independent smallest common regions of deletion, two of which are novel. There are also three discrete regions showing a gain in copy number of one homologue. The two arms of the chromosome may be subject to different events; the short arm primarily undergoes interstitial deletions, whereas the long arm is subject to whole arm events (as both gains and losses) as well as regional deletions.

  17. Recombinant Chromosome 4 from a Familial Pericentric Inversion: Prenatal and Adulthood Wolf-Hirschhorn Phenotypes

    Directory of Open Access Journals (Sweden)

    Francesca Malvestiti

    2013-01-01

    Full Text Available Pericentric inversion of chromosome 4 can give rise to recombinant chromosomes by duplication or deletion of 4p. We report on a familial case of Wolf-Hirschhorn Syndrome characterized by GTG-banding karyotypes, FISH, and array CGH analysis, caused by a recombinant chromosome 4 with terminal 4p16.3 deletion and terminal 4q35.2 duplication. This is an aneusomy due to a recombination which occurred during the meiosis of heterozygote carrier of cryptic pericentric inversion. We also describe the adulthood and prenatal phenotypes associated with the recombinant chromosome 4.

  18. Cyc17, a meiosis-specific cyclin, is essential for anaphase initiation and chromosome segregation in Tetrahymena thermophila.

    Science.gov (United States)

    Yan, Guan-Xiong; Dang, Huai; Tian, Miao; Zhang, Jing; Shodhan, Anura; Ning, Ying-Zhi; Xiong, Jie; Miao, Wei

    2016-07-17

    Although the role of cyclins in controlling nuclear division is well established, their function in ciliate meiosis remains unknown. In ciliates, the cyclin family has undergone massive expansion which suggests that diverse cell cycle systems exist, and this warrants further investigation. A screen for cyclins in the model ciliate Tetrahymena thermophila showed that there are 34 cyclins in this organism. Only 1 cyclin, Cyc17, contains the complete cyclin core and is specifically expressed during meiosis. Deletion of CYC17 led to meiotic arrest at the diakinesis-like metaphase I stage. Expression of genes involved in DNA metabolism and chromosome organization (chromatin remodeling and basic chromosomal structure) was repressed in cyc17 knockout matings. Further investigation suggested that Cyc17 is involved in regulating spindle pole attachment, and is thus essential for chromosome segregation at meiosis. These findings suggest a simple model in which chromosome segregation is influenced by Cyc17.

  19. Interstitial deletion of the short arm of chromosome 3. Fetal pathology and exclusion of the gene for beta-galactosidase-1 (GLB-1) from 3(p11----p14.2)

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Coerdt, W; Hahnemann, N

    1988-01-01

    A de novo interstitial deletion of the short arm of chromosome 3 was prenatally diagnosed in a male fetus, karyotype 46,XY,del(3)(pter----p14.2::p11----qter). The fetus had craniofacial dysmorphisms, a single transverse palmar crease, ulnar deviation in the wrists, cardiovascular anomalies...

  20. Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus.

    Science.gov (United States)

    Duggin, Iain G; Dubarry, Nelly; Bell, Stephen D

    2011-01-05

    Archaea of the genus Sulfolobus have a single-circular chromosome with three replication origins. All three origins fire in every cell in every cell cycle. Thus, three pairs of replication forks converge and terminate in each replication cycle. Here, we report 2D gel analyses of the replication fork fusion zones located between origins. These indicate that replication termination involves stochastic fork collision. In bacteria, replication termination is linked to chromosome dimer resolution, a process that requires the XerC and D recombinases, FtsK and the chromosomal dif site. Sulfolobus encodes a single-Xer homologue and its deletion gave rise to cells with aberrant DNA contents and increased volumes. Identification of the chromosomal dif site that binds Xer in vivo, and biochemical characterization of Xer/dif recombination revealed that, in contrast to bacteria, dif is located outside the fork fusion zones. Therefore, it appears that replication termination and dimer resolution are temporally and spatially distinct processes in Sulfolobus.

  1. The male gametophytic sterility. 1 - Gametic sterilities and deletions in petunia

    International Nuclear Information System (INIS)

    Cornu, A.; Maizonnier, D.

    1982-01-01

    Terminal deletions induced by ionizing radiations in Petunia are not sexually transmitted. Cytogenetic study of plants with a heterozygous deletion and their progenies shows that this lack of transmission is accompanied by a gametic semi-sterility due to the fact that gametes carrying the deleted chromosome are not viable. The interest of such a male sterility with a gametophytic determinism for the study of sporophyte-gametophyte relationships is underlined [fr

  2. Deletion analysis of male sterility effects of t-haplotypes in the mouse.

    Science.gov (United States)

    Bennett, D; Artzt, K

    1990-01-01

    We present data on the effects of three chromosome 17 deletions on transmission ratio distortion (TRD) and sterility of several t-haplotypes. All three deletions have similar effects on male TRD: that is, Tdel/tcomplete genotypes all transmit their t-haplotype in very high proportion. However, each deletion has different effects on sterility of heterozygous males, with TOr/t being fertile, Thp/t less fertile, and TOrl/t still less fertile. These data suggest that wild-type genes on chromosomes homologous to t-haplotypes can be important regulators of both TRD and fertility in males, and that the wild-type genes concerned with TRD and fertility are at least to some extent different. The data also provide a rough map of the positions of these genes.

  3. Myeloid Malignancies with Chromosome 5q Deletions Acquire a Dependency on an Intrachromosomal NF-κB Gene Network

    Directory of Open Access Journals (Sweden)

    Jing Fang

    2014-09-01

    Full Text Available Chromosome 5q deletions (del[5q] are common in high-risk (HR myelodysplastic syndrome (MDS and acute myeloid leukemia (AML; however, the gene regulatory networks that sustain these aggressive diseases are unknown. Reduced miR-146a expression in del(5q HR MDS/AML and miR-146a−/− hematopoietic stem/progenitor cells (HSPCs results in TRAF6/NF-κB activation. Increased survival and proliferation of HSPCs from miR-146alow HR MDS/AML is sustained by a neighboring haploid gene, SQSTM1 (p62, expressed from the intact 5q allele. Overexpression of p62 from the intact allele occurs through NF-κB-dependent feedforward signaling mediated by miR-146a deficiency. p62 is necessary for TRAF6-mediated NF-κB signaling, as disrupting the p62-TRAF6 signaling complex results in cell-cycle arrest and apoptosis of MDS/AML cells. Thus, del(5q HR MDS/AML employs an intrachromosomal gene network involving loss of miR-146a and haploid overexpression of p62 via NF-κB to sustain TRAF6/NF-κB signaling for cell survival and proliferation. Interfering with the p62-TRAF6 signaling complex represents a therapeutic option in miR-146a-deficient and aggressive del(5q MDS/AML.

  4. Comparison of type and frequency of chromosome aberrations by conventional and G-staining methods in Hiroshima atomic bomb survivors

    International Nuclear Information System (INIS)

    Ohtaki, Kazuo; Shimba, Hachiro; Sofuni, Toshio; Awa, A.A.

    1982-07-01

    Somatic chromosomes derived from cultured lymphocytes of 23 atomic bomb survivors of Hiroshima were analyzed to determine the type and frequency of radiation-induced structural aberrations, using in sequence the ordinary staining method (O-method) and the trypsin G-banding method (G-method). Of 896 cells examined, 342 were found to contain induced aberrations, including 31 cells in which the precise identification of the type of aberrations was not possible even by the G-method. The number of chromosome aberrations observed was 376 in the 311 cells where aberrant precise identification was possible. The majority (288 or 76.6%) were intra- or inter-chromosomal symmetric exchanges due to a two-break event, while only 24 were found to be asymmetric exchanges (dicentrics, rings, and interstitial deletions). Further, there were 28 aberrations showing acentric fragments and terminal deletions, and the remaining 36 were complex intra- and inter-chromosomal exchanges involving three or more breaks which result in insertions and double translocations. A comparative karyotype analysis of the same metaphases examined by the sequential 0- And G-methods was carried out independently on 361 aberrations, mostly of the symmetric type. It was found that 78 (21.6%) of the 361 were detected only by the G-method; among these were 14 paracentric inversions, 48 reciprocal interchanges of chromosome segments with either equal length (11) or unequal length (37), 14 minor deletions and 2 complex rearrangements, all of which were nevertheless judged to fall within the normal range of variation by theO-method. In contrast, 25 aberrations detected in O-method chromosomes which were overcontracted or twisted, were shown to have normal banding patterns by the G-method. (author)

  5. A Rare Chromosome 3 Imbalance and Its Clinical Implications

    Directory of Open Access Journals (Sweden)

    Karen Sims

    2012-01-01

    Full Text Available The duplication of chromosome 3q is a rare disorder with varying chromosomal breakpoints and consequently symptoms. Even rarer is the unbalanced outcome from a parental inv(3 resulting in duplicated 3q and a deletion of 3p. Molecular karyotyping should aid in precisely determining the length and breakpoints of the 3q+/3p− so as to better understand a child’s future development and needs. We report a case of an infant male with a 57.5 Mb duplication from 3q23-qter. This patient also has an accompanying 1.7 Mb deletion of 3p26.3. The duplicated segment in this patient encompasses the known critical region of 3q26.3-q27, which is implicated in the previously reported 3q dup syndrome; however, the accompanying 3p26.3 deletion is smaller than the previously reported cases. The clinical phenotype of this patient relates to previously reported cases of 3q+ that may suggest that the accompanying 1.7 Mb heterozygous deletion is not clinically relevant. Taken together, our data has refined the location and extent of the chromosome 3 imbalance, which will aid in better understanding the molecular underpinning of the 3q syndrome.

  6. Neocentric X-chromosome in a girl with Turner-like syndrome

    Directory of Open Access Journals (Sweden)

    Hemmat Morteza

    2012-06-01

    Full Text Available Abstract Background Neocentromeres are rare human chromosomal aberrations in which a new centromere has formed in a previously non-centromeric location. We report the finding of a structurally abnormal X chromosome with a neocentromere in a 15-year-old girl with clinical features suggestive of Turner syndrome, including short stature and primary amenorrhea. Result G-banded chromosome analysis revealed a mosaic female karyotype involving two abnormal cell lines. One cell line (84% of analyzed metaphases had a structurally abnormal X chromosome (duplication of the long arm and deletion of the short arm and a normal X chromosome. The other cell line (16% of cells exhibited monosomy X. C-banding studies were negative for the abnormal X chromosome. FISH analysis revealed lack of hybridization of the abnormal X chromosome with both the X centromere-specific probe and the “all human centromeres” probe, a pattern consistent with lack of the X chromosome endogenous centromere. A FISH study using an XIST gene probe revealed the presence of two XIST genes, one on each long arm of the iso(Xq, required for inactivation of the abnormal X chromosome. R-banding also demonstrated inactivation of the abnormal X chromosome. An assay for centromeric protein C (CENP-C was positive on both the normal and the abnormal X chromosomes. The position of CENP-C in the abnormal X chromosome defined a neocentromere, which explains its mitotic stability. The karyotype is thus designated as 46,X,neo(X(qter- > q12::q12- > q21.2- > neo- > q21.2- > qter[42]/45,X[8], which is consistent with stigmata of Turner syndrome. The mother of this patient has a normal karyotype; however, the father was not available for study. Conclusion To our knowledge, this is the first case of mosaic Turner syndrome involving an analphoid iso(Xq chromosome with a proven neocentromere among 90 previously described cases with a proven neocentromere.

  7. Interchanges in popcorn (Zea mays L. involving the nucleolus organizer chromosome

    Directory of Open Access Journals (Sweden)

    Maria Suely Pagliarini

    2006-01-01

    Full Text Available The analysis of microsporogenesis in endogamous plants of popcorn (S5 to S7 showed several and distinctinterchanges which involve the nucleolus organizer (chromosome 6. The detection of cells with interchanges was facilitatedby the presence of two nucleoli of different sizes in contrast to normal ones with a single big nucleolus. Interchange points donot always seem to be at the same place. Whereas in several situations the interchange point clearly involved more than twochromosome pairs, a simple terminal translocation seemed to occur in others. During diplotene, a cross-shaped configurationconnected with the nucleoli was observed in some meiocytes. Some heteromorphic bivalents were found during diakinesis,after which meiosis progressed normally to the end and gave rise to apparently normal tetrads with one normal nucleolus ineach microspore. Tests of pollen viability in fixed pollen grains showed 100% stainability in normal and in affected plants.This is the first report on chromosome interchanges in popcorn.

  8. Norrie disease as part of a complex syndrome explained by a submicroscopic deletion of the X chromosome.

    Science.gov (United States)

    Bleeker-Wagemakers, E M; Zweije-Hofman, I; Gal, A

    1988-11-01

    A 15-year-old male patient with the typical ocular symptoms of Norrie disease is described. Additionally, he presents severe mental retardation, growth disturbances, hypogonadism, and increased susceptibility to infections. This complex syndrome is apparently segregating through three generations: four other male relatives of the patient were blind from birth and died from recurrent infections between the ages of three to 15 months. The DNA sequence of the DXS7 locus (L1.28 probe), known to be closely linked to the Norrie gene, was not found in the patient's DNA. This result suggests that the more complex clinical picture seen is the result of a deletion of the X chromosome spanning DXS7, the Norrie gene, and several neighbouring loci. A detailed clinical description of the patient is given and compared to that of similar cases.

  9. [Analysis of genetics mechanism for the phenotypic diversity in a patient carrying a rare ring chromosome 9].

    Science.gov (United States)

    Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan

    2016-02-01

    To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.

  10. Characterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis.

    Science.gov (United States)

    Pouillot, Flavie; Fayolle, Corinne; Carniel, Elisabeth

    2008-10-01

    The transformation of the enteropathogenic bacterium Yersinia pseudotuberculosis into the plague bacillus, Yersinia pestis, has been accompanied by extensive genetic loss. This study focused on chromosomal regions conserved in Y. pseudotuberculosis and lost during its transformation into Y. pestis. An extensive PCR screening of 78 strains of the two species identified five regions (R1 to R5) and four open reading frames (ORFs; orf1 to orf4) that were conserved in Y. pseudotuberculosis and absent from Y. pestis. Their conservation in Y. pseudotuberculosis suggests a positive selective pressure and a role during the life cycle of this species. Attempts to delete two ORFs (orf3 and orf4) from the chromosome of strain IP32953 were unsuccessful, indicating that they are essential for its viability. The seven remaining loci were individually deleted from the IP32953 chromosome, and the ability of each mutant to grow in vitro and to kill mice upon intragastric infection was evaluated. Four loci (orf1, R2, R4, and R5) were not required for optimal growth or virulence of Y. pseudotuberculosis. In contrast, orf2, encoding a putative pseudouridylate synthase involved in RNA stability, was necessary for the optimal growth of IP32953 at 37 degrees C in a chemically defined medium (M63S). Deletion of R1, a region predicted to encode the methionine salvage pathway, altered the mutant pathogenicity, suggesting that the availability of free methionine is severely restricted in vivo. R3, a region composed mostly of genes of unknown functions, was necessary for both optimal growth of Y. pseudotuberculosis at 37 degrees C in M63S and for virulence. Therefore, despite their loss in Y. pestis, five of the nine Y. pseudotuberculosis-specific chromosomal loci studied play a role in the survival, growth, or virulence of this species.

  11. Phenotypic expression of partial AZFc deletions is independent of the variations in DAZL and BOULE in a Han population.

    Science.gov (United States)

    Chen, Pu; Ma, Mingyi; Li, Lei; Zhang, Sizhong; Su, Dan; Ma, Yongxin; Liu, Yunqiang; Tao, Dachang; Lin, Li; Yang, Yuan

    2010-01-01

    DAZ on the Y chromosome and 2 autosomal ancestral genes DAZL and BOULE are suggested to represent functional conservation in spermatogenesis. The partial AZFc deletion, a common mutation of the Y chromosome, always involves 2 DAZ copies and represents a different spermatogenic phenotype in the populations studied. To investigate whether the variations in DAZL and BOULE influence partial AZFc deletion phenotype, the genotyping of 15 loci variations, including 4 known mutations and 11 single-nucleotide polymorphisms (SNPs), was carried out in 157 azoo-/oligzoospermic men and 57 normozoospermic men, both groups with partial AZFc deletions. The frequencies of the alleles, genotypes, and haplotypes of the variations were compared between the 2 groups. As a result, for 9 exonic variations in DAZL and BOULE, only T12A was observed in both groups with similar frequency, and I71V was identified in an azoospermic man with b2/b3 deletion, whereas the rest were absent in the population. The distribution of DAZL haplotypes from 4 variations, including T12A, and of BOULE haplotypes from 2 SNPs was similar between men with normozoospermia and spermatogenic failure. Our findings indicate that the contribution of DAZL and BOULE variations to spermatogenic impairment in men with the DAZ defect is greatly limited, suggesting that expression of spermatogenic phenotypes of partial AZFc deletions is independent of the variations in DAZL and BOULE in the Han population.

  12. Ring chromosome 4 and Wolf-Hirschhorn syndrome (WHS) in a child with multiple anomalies.

    Science.gov (United States)

    Balci, Sevim; Engiz, Ozlem; Aktaş, Dilek; Vargel, Ibrahim; Beksaç, M S; Mrasek, Kristin; Vermeesch, Joris; Liehr, Thomas

    2006-03-15

    We report on a 16-month-old male patient with ring chromosome 4 and deletion of Wolf-Hirschhorn syndrome (WHS) region with multiple congenital anomalies including unilateral cleft lip and palate, iris coloboma, microcephaly, midgut malrotation, hypospadias, and double urethral orifices. Peripheral chromosome analysis of the patient showed 46,XY,r(4)(p16.3q35) de novo. Multicolor fluorescence in situ hybridization (FISH) study was also performed and according to multicolor banding (MCB) a r(4)(::p16.3 --> q34.3 approximately 35.1::) was found in all metaphases. Subtelomeric 4p region, subtelomeric 4q region, as well as, Wolf-Hirschhorn critical region were deleted in ring chromosome 4. Genomic microarray analysis was also performed to delineate the size of deletion. Cranial magnetic resonance imaging (MRI) showed hypoplastic corpus callosum, delayed myelinization, and frontal and occipital lobe atrophies. Both maternal and paternal chromosomal analyses were normal. We compare the phenotypic appearance of our patient with the previously reported 16 cases of ring chromosome 4 in the medical literature. 2006 Wiley-Liss, Inc.

  13. Loss of heterozygosity of chromosome 15 in human lung carcinomas

    International Nuclear Information System (INIS)

    Mitchell, C.E.; Palmisano, W.A.; Lechner, J.F.

    1994-01-01

    Loss of heterozygosity (LOH) in tumors may be associated with the inactivation of tumor suppressor genes. A tumor suppressor gene for lung cancer may reside on chromosome 15, because deletions in this chromosome are frequently observed. Recently, it was reported that a newly discovered gene, GTPase-activating protein-3 (GAP3) maps to chromosome 15. GAP3 is a member of a family of GAP-related genes. Although the precise function of GAP3 is not known, it is thought that GAP3 is involved in the regulation of ras-like GTPase activities. Ras proteins have a low intrinsic activity, and their inactivation is dependent on GAPS in vivo. Oncogenic mutants of ras proteins, for example, at codons 12, 13, or 61, are resistant to GAP-mediated GTPase stimulation and are constituitively locked in their active, GTP-bound states. The purpose of this investigation was to determine the frequency and extent of LOH of GAP3 in a group of patients with lung cancer

  14. Genotype-phenotype analysis of recombinant chromosome 4 syndrome: an array-CGH study and literature review.

    Science.gov (United States)

    Hemmat, Morteza; Hemmat, Omid; Anguiano, Arturo; Boyar, Fatih Z; El Naggar, Mohammed; Wang, Jia-Chi; Wang, Borris T; Sahoo, Trilochan; Owen, Renius; Haddadin, Mary

    2013-05-02

    Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions.

  15. Alternative Lengthening of Telomeres: Recurrent Cytogenetic Aberrations and Chromosome Stability under Extreme Telomere Dysfunction

    Directory of Open Access Journals (Sweden)

    Despoina Sakellariou

    2013-11-01

    Full Text Available Human tumors using the alternative lengthening of telomeres (ALT exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines.We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted.We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.

  16. Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma

    International Nuclear Information System (INIS)

    Rao, Pulivarthi H; Murty, Vundavalli VVS; Arias-Pulido, Hugo; Lu, Xin-Yan; Harris, Charles P; Vargas, Hernan; Zhang, Fang F; Narayan, Gopeshwar; Schneider, Achim; Terry, Mary Beth

    2004-01-01

    Carcinoma of uterine cervix is the second most common cancers among women worldwide. Combined radiation and chemotherapy is the choice of treatment for advanced stages of the disease. The prognosis is poor, with a five-year survival rate ranging from about 20–65%, depending on stage of the disease. Therefore, genetic characterization is essential for understanding the biology and clinical heterogeneity in cervical cancer (CC). We used a genome-wide screening method – comparative genomic hybridization (CGH) to identify DNA copy number changes in 77 patients with cervical cancer. We applied categorical and survival analyses to analyze whether chromosomal changes were related to clinico-pathologic characteristics and patients survival. The CGH analysis revealed a loss of 2q33-q37 (57.1%), gain of 3q (54.5%) and chromosomal amplifications (20.77%) as frequent genetic changes. A total of 15 amplified chromosomal sites were detected in 16 cases that include 1p31, 2q32, 7q22, 8q21.2-q24, 9p22, 10q21, 10q24, 11q13, 11q21, 12q15, 14q12, 17p11.2, 17q22, 18p11.2, and 19q13.1. Recurrent amplified sites were noted at 11q13, 11q21, and 19q13.1. The genomic alterations were further evaluated for prognostic significance in CC patients, and we did not find any correlation with a number of clinical or histological parameters. The tumors harboring HPV18 exhibited higher genomic instability compared to tumors with HPV 16. This study demonstrated that 2q33-q37 deletions, 3q gains and chromosomal amplifications as characteristic changes in invasive CC. These genetic alterations will aid in the identification of novel tumor suppressor gene(s) at 2q33-q37 and oncogenes at amplified chromosomal sites. Molecular characterization of these chromosomal changes utilizing the current genomic technologies will provide new insights into the biology and clinical behavior of CC

  17. Deletion Mutagenesis and Identification of Causative Mutations in Maize.

    Science.gov (United States)

    Jia, Shangang; Li, Aixia; Zhang, Chi; Holding, David

    2018-01-01

    We describe a method for gamma-irradiation of mature maize seeds to generate mutants with opaque endosperm and reduced kernel fill phenotypes. We also describe methods for mapping mutants and identifying causal gene mutations. Using this method, a population of 1788M2 families and 47 Mo17 × F2s showing stable, segregating, and viable kernel phenotypes was developed. For molecular characterization of the mutants, we utilized a novel functional genomics platform that combines separate Bulked Segregant RNA and exome sequencing data sets (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. We also describe the use of exome capture sequencing of F2 mutant and normal pools to perform mapping and candidate gene identification without the need for separate RNA-seq (BSEx-seq). To exemplify the utility of the deletion mutants for functional genomics and provide proof-of-concept for the bioinformatics platform, we summarize the identification of the causative deletion in two mutants. Mutant 937, which was characterized by BSREx-seq, harbors a 6203-bp in-frame deletion covering six exons within the Opaque-1 gene on chromosome 4. Preliminary investigation of opaque mutant 1486 with BSEx-seq shows a tight mapping interval and associated deletion on chromosome 10.

  18. A de novo 2q35-q36.1 deletion incorporating IHH in a Chinese boy (47,XYY) with syndactyly, type III Waardenburg syndrome, and congenital heart disease.

    Science.gov (United States)

    Wang, D; Ren, G F; Zhang, H Z; Yi, C Y; Peng, Z J

    2016-12-02

    Reports of terminal and interstitial deletions of the long arm of chromosome 2 are rare in the literature. Here, we present a case report concerning a Chinese boy with a 47,XYY karyotype and a de novo deletion comprising approximately 5 Mb between 2q35 and q36.1, along with syndactyly, type III Waardenburg syndrome, and congenital heart disease. High-resolution chromosome analysis to detect copy number variations was carried out using an Affymetrix microarray platform, and the genes affected by the patient's deletion, including IHH, were determined. However, no copy number changes were observed in his healthy parents. The present case exhibited novel syndactyly features, broadening the spectrum of clinical findings observed in individuals with 2q interstitial deletions. Our data, together with previous observations, suggest that IHH haploinsufficiency is the principal pathogenic factor in the syndactyly phenotype in this study, and that different types of variations at the IHH locus may cause divergent disease phenotypes. This is the first report of the involvement of IHH haploinsufficiency in syndactyly phenotype.

  19. Genetics Home Reference: 2q37 deletion syndrome

    Science.gov (United States)

    ... on PubMed or Free article on PubMed Central Casas KA, Mononen TK, Mikail CN, Hassed SJ, Li S, ... 2005 Aug 18. Citation on PubMed Falk RE, Casas KA. Chromosome 2q37 deletion: clinical and molecular aspects. ...

  20. Cloning of the gene encoding the δ subunit of the human T-cell receptor reveals its physical organization within the α-subunit locus and its involvement in chromosome translocations in T-cell malignancy

    International Nuclear Information System (INIS)

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M.

    1988-01-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) δ-chain gene. They analyzed clones spanning the entire J α region extending 115 kilobases 5' of the TCR α-chain constant region and have shown that the TCR δ-chain gene is located over 80 kilobases 5' of C α . TCR δ-chain gene is rearranged in the γ/δ-expressing T-cell line Peer and is deleted in α/β-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C δ and J δ segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J δ segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR δ chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11

  1. Role of DNA deletion length in mutation and cell survival

    International Nuclear Information System (INIS)

    Braby, L.A.; Morgan, T.L.

    1992-01-01

    A model is presented which is based on the assumption that malignant transformation, mutation, chromosome aberration, and reproductive death of cells are all manifestations of radiation induced deletions in the DNA of the cell, and that the size of the deletion in relation to the spacing of essential genes determines the consequences of that deletion. It is assumed that two independent types of potentially lethal lesions can result in DNA deletions, and that the relative numbers of these types of damage is dependent on radiation quality. The repair of the damage reduces the length of a deletion, but does not always eliminate it. The predictions of this model are in good agreement with a wide variety of experimental evidence. (author)

  2. Chromosomal differences between acute nonlymphocytic leukemia in patients with prior solid tumors and prior hematologic malignancies. A study of 14 cases with prior breast cancer

    International Nuclear Information System (INIS)

    Mamuris, Z.; Dumont, J.; Dutrillaux, B.; Aurias, A.

    1989-01-01

    A cytogenetic study of 14 patients with secondary acute nonlymphocytic leukemia (S-ANLL) with prior treatment for breast cancer is reported. The chromosomes recurrently involved in numerical or structural anomalies are chromosomes 7, 5, 17, and 11, in decreasing order of frequency. The distribution of the anomalies detected in this sample of patients is similar to that observed in published cases with prior breast or other solid tumors, though anomalies of chromosome 11 were not pointed out, but it significantly differs from that of the S-ANLL with prior hematologic malignancies. This difference is principally due to a higher involvement of chromosome 7 in patients with prior hematologic malignancies and of chromosomes 11 and 17 in patients with prior solid tumors. A genetic determinism involving abnormal recessive alleles located on chromosomes 5, 7, 11, and 17 uncovered by deletions of the normal homologs may be a cause of S-ANLL. The difference between patients with prior hematologic malignancies or solid tumors may be explained by different constitutional mutations of recessive genes in the two groups of patients

  3. Molecular characterization of chromosome 22 deletions in schwannomas

    NARCIS (Netherlands)

    Bijlsma, E. K.; Brouwer-Mladin, R.; Bosch, D. A.; Westerveld, A.; Hulsebos, T. J.

    1992-01-01

    Schwannomas are tumors of the cranial, spinal, and peripheral nerve sheaths that originate from Schwann cells. Acoustic neurinomas are the most frequent cranial schwannomas. They might develop sporadically or in the context of neurofibromatosis type 2 (NF2). Loss of part or all of chromosome 22 is

  4. Philadelphia chromosome-positive adult acute leukemia with monosomy of chromosome number seven: a subgroup with poor response to therapy.

    Science.gov (United States)

    Maddox, A M; Keating, M J; Trujillo, J; Cork, A; Youness, E; Ahearn, M J; McCredie, K B; Freireich, E J

    1983-01-01

    Thirty-four adult patients were seen at the University of Texas M. D. Anderson Hospital and Tumor Institute at Houston, Texas between 1969 and 1980 with acute leukemia (AL) and a deleted G-group chromosome that was shown by Giemsa banding to be a Philadelphia (Ph1) chromosome t(9;22) in 21 patients. Fourteen had the Ph1 chromosome as the sole abnormality, 12 had the Ph1 chromosome and loss of one chromosome of the C-group (identified by Giemsa banding analysis as number 7 in eight patients), while eight had the Ph1 chromosome and other changes. These three groups were similar in sex, age distribution and hematologic parameters. The median age of 40 was lower than usually seen in AL. The distribution of the morphologic subtypes was similar to that seen at this institution, with 50% being acute myeloblastic, 12% acute myelomonocytic, 20% lymphoblastic and 18% acute undifferentiated. The complete remission rate with chemotherapy was low: 25% in the Ph1 +/- 7, 50% in the Ph1 +/other group and 43% in the Ph1 +/other group. Median survival time was 8 months for the Ph1 +/- 7 group, 5.5 months for the Ph1 +/other group and 9.0 months for the Ph1 +/alone group. These patients with Ph1 + AL had higher white blood cell counts, increased extramedullary disease and poorer responses to therapy than usual for patients with AL. The deletion of chromosome 7 and the acquisition of the Ph1 chromosome identifies a group of patients with characteristics similar to all the patients with Ph1 + AL but a poor response to therapy and short remission duration.

  5. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Kristen Dilzell

    2015-01-01

    Full Text Available This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.

  6. Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa.

    Science.gov (United States)

    García-García, Gema; Aller, Elena; Jaijo, Teresa; Aparisi, Maria J; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M

    2014-01-01

    The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures.

  7. Velocardiofacial syndrome in father and daughter: What is the mechanism for the deletion 22(q11.2q11.2) in only the daughter?

    Energy Technology Data Exchange (ETDEWEB)

    Magenis, R.E.; Gunter, K.; Toth-Fejel, S. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    E.G. had marked feeding difficulty noted at birth; the cause was determined to be a paralyzed palate. In 1992 chromosome studies were performed because of the provisional diagnosis of velocardiofacial syndrome, and a small interstitial deletion of chromosome 22 was found. Recently the family was seen in our Genetics Clinic. The father had unusual facial features shared by his daughter, a paralyzed upper lip and a history of repaired Tetralogy of Fallot. His chromosomes appeared normal. FISH studies were performed on the child`s peripheral blood using the ONCOR DiGeorge region probe (D22S75) and the deletion verified. However, the father`s chromosomes were not deleted for the ONCOR probe (D22S75) and probe DO832 sent to us by Peter Scambler. Skin cells were then obtained and no deletion was detected in a total of 66 cells examined using both probes. Several questions arise from these data: does the father have velocardiofacial syndrome? Does he have occult mosaicism? Does he have a molecular deletion not detected by the probes used? And was this deletion somehow {open_quotes}amplified{close_quotes} in his daughter?

  8. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma

    NARCIS (Netherlands)

    Santo, E. E.; Ebus, M. E.; Koster, J.; Schulte, J. H.; Lakeman, A.; van Sluis, P.; Vermeulen, J.; Gisselsson, D.; Øra, I.; Lindner, S.; Buckley, P. G.; Stallings, R. L.; Vandesompele, J.; Eggert, A.; Caron, H. N.; Versteeg, R.; Molenaar, J. J.

    2012-01-01

    Neuroblastoma tumors frequently show loss of heterozygosity of chromosome 11q with a shortest region of overlap in the 11q23 region. These deletions are thought to cause inactivation of tumor suppressor genes leading to haploinsufficiency. Alternatively, micro-deletions could lead to gene fusion

  9. Neural correlates of reward processing in adults with 22q11 deletion syndrome

    NARCIS (Netherlands)

    van Duin, Esther D. A.; Goossens, Liesbet; Hernaus, Dennis; da Silva Alves, Fabiana; Schmitz, Nicole; Schruers, Koen; van Amelsvoort, Therese

    2016-01-01

    Background: 22q11.2 deletion syndrome (22q11DS) is caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk to develop psychosis. The gene coding for catechol-O-methyl-transferase (COMT) is located at the deleted region, resulting in disrupted dopaminergic

  10. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  11. The Development of Cognitive Control in Children with Chromosome 22q11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Heather M Shapiro

    2014-06-01

    Full Text Available Chromosome 22q11.2 Deletion Syndrome (22q11.2DS is caused by the most common human microdeletion, and it is associated with cognitive impairments across many domains. While impairments in cognitive control have been described in children with 22q11.2DS, the nature and development of these impairments are not clear. Children with 22q11.2DS and typically developing children (TD were tested on four well-validated tasks aimed at measuring specific foundational components of cognitive control: response inhibition, cognitive flexibility, and working memory. Molecular assays were also conducted in order to examine genotype of catechol-O-methyltransferase (COMT, a gene located within the deleted region in 22q11.2DS and hypothesized to play a role in cognitive control. Mixed model regression analyses were used to examine group differences, as well as age-related effects on cognitive control component processes in a cross-sectional analysis. Regression models with COMT genotype were also conducted in order to examine potential effects of the different variants of the gene. Response inhibition, cognitive flexibility, and working memory were impaired in children with 22q11.2DS relative to TD children, even after accounting for global intellectual functioning (as measured by full-scale IQ. When compared with TD individuals, children with 22q11.2DS demonstrated atypical age-related patterns of response inhibition and cognitive flexibility. Both groups demonstrated typical age-related associations with working memory. The results of this cross-sectional analysis suggest a specific aberration in the development of systems mediating response inhibition in a sub-set of children with 22q11.2DS. It will be important to follow up with longitudinal analyses to directly examine these developmental trajectories, and correlate neurocognitive variables with clinical and adaptive outcome measures.

  12. Patients Carrying 9q31.1-q32 Deletion Share Common Features with Cornelia de Lange Syndrome

    Directory of Open Access Journals (Sweden)

    Ruixue Cao

    2015-01-01

    Full Text Available Background: Cornelia de Lange Syndrome (CdLS is a rare but severe clinically heterogeneous developmental disorder characterized by facial dysmorphia, growth and cognitive retardation, and abnormalities of limb development. Objectives: To determine the pathogenesis of a patient with CdLS. Methods: We studied a patient with CdLS by whole exome sequencing, karyotyping and Agilent CGH Array. The results were confirmed by quantitative real-time PCR analysis of the patient and her parents. Further comparison of our patient and cases with partially overlapping deletions retrieved from the literature and databases was undertaken. Results: Whole exome sequencing had excluded the mutation of cohesion genes such as NIPBL,SMC1A and SMC3. The result of karyotyping showed a deletion of chromosome 9q31.1-q32 and the result of Agilent CGH Array further displayed a 12.01-Mb region of deletion at chromosome bands 9q31.1-q32. Reported cases with the deletion of 9q31.1-q32 share similar features with our CdLS patient. One of the genes in the deleted region, SMC2, belongs to the Structural Maintenance of Chromosomes (SMC family and regulates gene expression and DNA repair. Conclusions: Patients carrying the deletion of 9q31.1-q32 showed similar phenotypes with CdLS.

  13. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U.; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A m 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A m 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. PMID:26476691

  14. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Molecular cytogenetic characterization of two Turner syndrome patients with mosaic ring X chromosome.

    Science.gov (United States)

    Chauhan, Pooja; Jaiswal, Sushil Kumar; Lakhotia, Anjali Rani; Rai, Amit Kumar

    2016-09-01

    In the present study, we reported two cases of TS with mosaic ring X chromosome showing common clinical characteristics of TS like growth retardation and ovarian dysfunction. The purpose of the present study was to cytogenetically characterize both cases. Whole blood culture and G-banding were performed for karyotyping the cases following standard protocol. Origin of the ring chromosome and degree of mosaicism were further determined by fluorescence in situ hybridization (FISH). Breakpoints and loss of genetic material in formation of different ring X chromosomes r (X) in cases were determined with the help of cytogenetic microarray. Cases 1 and 2 with ring chromosome were cytogenetically characterized as 45, X [114]/46Xr (X) (p22.11q21.32) [116] and 45, X [170]/46, Xr (X) (p22.2q21.33) [92], respectively. Sizes of these ring X chromosomes were found to be ~75 and ~95 Mb in cases 1 and 2, respectively, using visual estimation as part of cytogenetic observation. In both cases, we observed breakpoints on Xq chromosome were within relatively narrow region between Xq21.33 and Xq22.1 compared to regions in previously reported cases associated with ovarian dysgenesis. Our observation agrees with the fact that despite of large heterogeneity, severity of the cases with intact X-inactive specific transcript (XIST) is dependent on degree of mosaicism and extent of Xq deletion having crucial genes involved directly or indirectly in various physiological involving ovarian cyclicity.

  16. Prader-Willi syndrome and atypical submicroscopic 15q11-q13 deletions with or without imprinting defects.

    Science.gov (United States)

    Hassan, Maaz; Butler, Merlin G

    2016-11-01

    We report a 20 year follow up on a Caucasian female, now 26 years of age, with Prader-Willi syndrome (PWS) harboring an atypical 15q11-q13 submicroscopic deletion of 100-200 kb in size first detected in 1996 involving the imprinting center, SNRPN gene and surrounding region. PWS is a rare complex disorder caused by the loss of paternally expressed genes in the 15q11-q13 region. With high resolution chromosomal microarray and methylation - specific MLPA analysis, we updated the genetic findings on our patient and found a 209,819bp deletion including the SNURF-SNRPN gene complex which includes the imprinting center and the SNORD116 region. We compared with four other similarly reported individuals in the literature with atypical submicroscopic deletions within this region but without imprinting center involvement to better characterize the specific genetic lesions causing PWS clinical findings. Clinically, our patient met the diagnostic criteria of PWS including infantile hypotonia, a poor suck with feeding difficulties, global developmental delays and later food foraging, childhood obesity, small hands and skin picking. Small atypical deletions of comparable sizes were seen in the 15q11-q13 region in all five cases and similar behavioral/physical characteristics were found despite an imprinting defect in our patient. These results further support an overlapping critical deletion region involving the non-coding snoRNA SNORD116 in common in the five individuals playing a key role in contributing to the PWS phenotype. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. 3p interstitial deletion including PRICKLE2 in identical twins with autistic features.

    Science.gov (United States)

    Okumura, Akihisa; Yamamoto, Toshiyuki; Miyajima, Masakazu; Shimojima, Keiko; Kondo, Satoshi; Abe, Shinpei; Ikeno, Mitsuru; Shimizu, Toshiaki

    2014-11-01

    Microdeletion and microduplication syndromes without characteristic dysmorphic features are difficult to diagnose without chromosomal microarrays. We describe the clinical course and genetic findings of monozygotic twins with intellectual disabilities and autistic features associated with mild facial dysmorphism and microdeletion of chromosome 3p14. The postnatal course of the second twin was complicated by intestinal malrotation, whereas that of the first twin was unremarkable. Both twins had several mild dysmorphic features including upswept frontal hair, low-set posterior rotated ears, arched down-slanting eyebrows, prominent forehead, epicanthic folds, micrognathia, hypertelorism, broad nasal bridge, short philtrum, and camptodactyly of the bilateral fifth fingers. They had autistic features such as poor eye contact and no social smile, stereotyped behaviors, and preference for solitary play. Array comparative genomic hybridization analysis revealed de novo 6.88-Mb deletions of 3p14 (chr3: 60,472,496-67,385,119) involving 17 genes in both twins. The deleted region contained 17 genes, five of which are known or presumed to be related to central nervous system disorders: FEZF2, SYNPR, ATXN7, PRICKLE2, and MAGI1. We consider that PRICKLE2 is the most likely causative gene for the autistic features exhibited by these individuals. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Chromosome Studies in Patients with Polycythaemia Vera after Treatment with {sup 32}P

    Energy Technology Data Exchange (ETDEWEB)

    Millard, Rosemary E.; Kay, H. E.M.; Lawler, S. D. [Royal Marsden Hospital, London (United Kingdom)

    1969-11-15

    The chromosomes of bone-marrow cells and blood lymphocytes of forty-six patients with polycythaemia vera were analysed to trace the sequence of events leading to the development of bone-marrow failure or 'leukaemia'. All except one of the patients had received radiophosphorus ({sup 32}P). It might be expected that the yield of chromosomal aberrations of the two-break type (translocations etc.) from the low dose-rate beta radiation of {sup 32}P would be small. However, 'unstable' types of abnormality (dicentrics, fragments) and stable types (translocations, inversions, deletions) were observed in 6-25% of the blood lymphocytes; there was no evidence of clones of abnormal cells. In the majority of patients the bone marrow was predominantly normal diploid; occasional sporadic cells with 'stable' chromosomal abnormalities were seen in two-thirds of the cases, but 'unstable' aberrations were rare. In seven cases there were clones of cells characterised by deletions or translocations. All these chromosomal changes are probably radiation-induced. Clones of cells with a similar abnormality, an apparent deletion of one of the F-group chromosomes, were observed in the bone marrow in ten patients. Eight of these had received {sup 32}P and two busulphan. In two cases the clone appeared to develop after treatment. A similar anomaly has been reported in several cases of idiopathic sideroblastic anaemia who had not been irradiated. Progression into the leukaemic phase of the disease is associated in some cases with gross chromosomal abnormalities, such as shift of the stem line chromosome number and bizarre chromosome 'markers'. In other cases, some of whom have not been irradiated for several years, the chromosomal changes are less pronounced and may result from non-disjunctional gain of one or more chromosomes or chromosome loss. One case showed a step-by-step clonal evolution over a two-year period. None of the chromosomal abnormalities in the 'leukaemic' phase appear to be a

  19. Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location.

    Science.gov (United States)

    Maranchie, Jodi K; Afonso, Anoushka; Albert, Paul S; Kalyandrug, Sivaram; Phillips, John L; Zhou, Shubo; Peterson, James; Ghadimi, Bijan M; Hurley, Katheen; Riss, Joseph; Vasselli, James R; Ried, Thomas; Zbar, Berton; Choyke, Peter; Walther, McClellan M; Klausner, Richard D; Linehan, W Marston

    2004-01-01

    von Hippel Lindau disease (VHL) is an autosomal dominant familial cancer syndrome linked to alteration of the VHL tumor suppressor gene. Affected patients are predisposed to develop pheochromocytomas and cystic and solid tumors of the kidney, CNS, pancreas, retina, and epididymis. However, organ involvement varies considerably among families and has been shown to correlate with the underlying germline alteration. Clinically, we observed a paradoxically lower prevalence of renal cell carcinoma (RCC) in patients with complete germline deletion of VHL. To determine if a relationship existed between the type of VHL deletion and disease, we retrospectively evaluated 123 patients from 55 families with large germline VHL deletions, including 42 intragenic partial deletions and 13 complete VHL deletions, by history and radiographic imaging. Each individual and family was scored for cystic or solid involvement of CNS, pancreas, and kidney, and for pheochromocytoma. Germline deletions were mapped using a combination of fluorescent in situ hybridization (FISH) and quantitative Southern and Southern blot analysis. An age-adjusted comparison demonstrated a higher prevalence of RCC in patients with partial germline VHL deletions relative to complete deletions (48.9 vs. 22.6%, p=0.007). This striking phenotypic dichotomy was not seen for cystic renal lesions or for CNS (p=0.22), pancreas (p=0.72), or pheochromocytoma (p=0.34). Deletion mapping revealed that development of RCC had an even greater correlation with retention of HSPC300 (C3orf10), located within the 30-kb region of chromosome 3p, immediately telomeric to VHL (52.3 vs. 18.9%, p <0.001), suggesting the presence of a neighboring gene or genes critical to the development and maintenance of RCC. Careful correlation of genotypic data with objective phenotypic measures will provide further insight into the mechanisms of tumor formation. Copyright 2003 Wiley-Liss, Inc.

  20. Complex chromosome rearrangement in a child with microcephaly, dysmorphic facial features and mosaicism for a terminal deletion del(18(q21.32-qter investigated by FISH and array-CGH: Case report

    Directory of Open Access Journals (Sweden)

    Kokotas Haris

    2008-11-01

    Full Text Available Abstract We report on a 7 years and 4 months old Greek boy with mild microcephaly and dysmorphic facial features. He was a sociable child with maxillary hypoplasia, epicanthal folds, upslanting palpebral fissures with long eyelashes, and hypertelorism. His ears were prominent and dysmorphic, he had a long philtrum and a high arched palate. His weight was 17 kg (25th percentile and his height 120 cm (50th percentile. High resolution chromosome analysis identified in 50% of the cells a normal male karyotype, and in 50% of the cells one chromosome 18 showed a terminal deletion from 18q21.32. Molecular cytogenetic investigation confirmed a del(18(q21.32-qter in the one chromosome 18, but furthermore revealed the presence of a duplication in q21.2 in the other chromosome 18. The case is discussed concerning comparable previously reported cases and the possible mechanisms of formation.

  1. Systematic Identification of Determinants for Single-Strand Annealing-Mediated Deletion Formation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maia Segura-Wang

    2017-10-01

    Full Text Available To ensure genomic integrity, living organisms have evolved diverse molecular processes for sensing and repairing damaged DNA. If improperly repaired, DNA damage can give rise to different types of mutations, an important class of which are genomic structural variants (SVs. In spite of their importance for phenotypic variation and genome evolution, potential contributors to SV formation in Saccharomyces cerevisiae (budding yeast, a highly tractable model organism, are not fully recognized. Here, we developed and applied a genome-wide assay to identify yeast gene knockout mutants associated with de novo deletion formation, in particular single-strand annealing (SSA-mediated deletion formation, in a systematic manner. In addition to genes previously linked to genome instability, our approach implicates novel genes involved in chromatin remodeling and meiosis in affecting the rate of SSA-mediated deletion formation in the presence or absence of stress conditions induced by DNA-damaging agents. We closely examined two candidate genes, the chromatin remodeling gene IOC4 and the meiosis-related gene MSH4, which when knocked-out resulted in gene expression alterations affecting genes involved in cell division and chromosome organization, as well as DNA repair and recombination, respectively. Our high-throughput approach facilitates the systematic identification of processes linked to the formation of a major class of genetic variation.

  2. An Interstitial Deletion at 7q33-36.1 in a Patient with Intellectual Disability, Significant Language Delay, and Severe Microcephaly

    Directory of Open Access Journals (Sweden)

    Trupti Kale

    2016-01-01

    Full Text Available Interstitial deletions of the distal 7q region are considered a rare entity. In this report, we describe a seven-year-old male with a heterozygous interstitial deletion at 7q33-36.1 with characteristic dysmorphic facial features, intellectual disability, severe microcephaly, and significant language delay. The primary focus of our report is to compare our case with the few others in the literature describing interstitial deletions at the long arm of chromosome 7. Based on the various breakpoints in prior studies, a number of phenotypic variations have been identified that are unique to each of the reports. However, there are also a number of similarities among these cases as well. We hope to provide a concise review of the literature and genes involved within our deletion sequence in the hope that it will contribute to creating a phenotypic profile for this patient population.

  3. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    International Nuclear Information System (INIS)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-01-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system

  4. Molecular mechanisms involved in the production of chromosomal aberrations. I

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Obe, G.

    1978-01-01

    Chinese hamster ovary cells (CHO) were X-irradiated in G2 stage of the cell cycle and immediately treated, in the presence of inactivated Sendai virus, with Neurospora endonuclease (E.C. 3.1.4.), an enzyme which is specific for cleaving single-stranded DNA. With this treatment, the frequencies of all types of chromosome aberrations increased when compared to X-irradiated controls. These results are interpreted as due to the conversion of some of the X-ray induced single-stranded DNA breaks into double-strand breaks by this enzyme. Similar enhancement due to this enzyme was found following treatment with methyl methanesulfonate (MMS) and bleomycin, but not following UV and mitomycin C. Addition of Micrococcus endonuclease and Neurospora endonuclease to the cells did not alter the frequencies of aberrations induced by UV. The introduction of enzymes with specific DNA-repair function offers possibilities to probe into the molecular events involved in the formation of structural chromosome aberrations induced by different classes of physical and chemical mutagens. (Auth.)

  5. Chromosome segregation analysis in human embryos obtained from couples involving male carriers of reciprocal or Robertsonian translocation.

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    Full Text Available The objective of this study was to investigate the frequency and type of chromosome segregation patterns in cleavage stage embryos obtained from male carriers of Robertsonian (ROB and reciprocal (REC translocations undergoing preimplantation genetic diagnosis (PGD at our reproductive center. We used FISH to analyze chromosome segregation in 308 day 3 cleavage stage embryos obtained from 26 patients. The percentage of embryos consistent with normal or balanced segregation (55.1% vs. 27.1% and clinical pregnancy (62.5% vs. 19.2% rates were higher in ROB than the REC translocation carriers. Involvement of non-acrocentric chromosome(s or terminal breakpoint(s in reciprocal translocations was associated with an increase in the percent of embryos consistent with adjacent 1 but with a decrease in 3∶1 segregation. Similar results were obtained in the analysis of nontransferred embryos donated for research. 3∶1 segregation was the most frequent segregation type in both day 3 (31% and spare (35% embryos obtained from carriers of t(11;22(q23;q11, the only non-random REC with the same breakpoint reported in a large number of unrelated families mainly identified by the birth of a child with derivative chromosome 22. These results suggest that chromosome segregation patterns in day 3 and nontransferred embryos obtained from male translocation carriers vary with the type of translocation and involvement of acrocentric chromosome(s or terminal breakpoint(s. These results should be helpful in estimating reproductive success in translocation carriers undergoing PGD.

  6. Cryptic deletions and inversions of chromosome 21 in a phenotypically normal infant with transient abnormal myelopoiesis: a molecular cytogenetic study.

    Science.gov (United States)

    Kempski, H M; Craze, J L; Chessells, J M; Reeves, B R

    1998-11-01

    A case of transient abnormal myelopoiesis in a normal newborn without features of Down syndrome is described. The majority of bone marrow cells analysed belonged to a chromosomally abnormal clone with trisomy for chromosomes 18 and 21. Complex intrachromosomal rearrangements of one chromosome 21, demonstrated by fluorescence in situ hybridization using locus-specific probes, were found in a minor population of the clonal cells. These rearrangements involved loci previously shown to be rearranged in the leukaemic cells from patients with Down syndrome and leukaemia. However, the child's myeloproliferation resolved rapidly, with disappearance of the abnormal clone, and 3.5 years later she remains well.

  7. Nance-Horan syndrome: a contiguous gene syndrome involving deletion of the amelogenin gene? A case report and molecular analysis.

    Science.gov (United States)

    Franco, E; Hodgson, S; Lench, N; Roberts, G J

    1995-03-01

    A case of Nance-Horan syndrome in a male is presented, with some features of the condition in his carrier mother and her mother. It is proposed that Nance-Horan syndrome might be a contiguous gene syndrome mapping to chromosome Xp21.2-p22.3. The proband had congenital cataract microphthalmia and dental abnormalities including screwdriver shaped incisors and evidence of enamel pitting hypoplasia. The region Xp21.2-p22.3 also contains the tooth enamel protein gene, amelogenin (AMGX). Using molecular genetic techniques, we have shown that there is no evidence that the AMGX gene is deleted in this case of the Nance-Horan syndrome.

  8. Chromosome aberrations involving 10q22: report of three overlapping interstitial deletions and a balanced translocation disrupting C10orf11

    DEFF Research Database (Denmark)

    Tzschach, Andreas; Bisgaard, Anne-Marie; Kirchhoff, Maria

    2010-01-01

    feeding problems, facial dysmorphisms and profound mental retardation. Patients 2 and 3 had nearly identical deletions of 3.2 and 3.6 Mb, the proximal breakpoints of which were located at an identical low-copy repeat. Both patients were mentally retarded; patient 3 also suffered from growth retardation...

  9. New trends in chromosomal investigation in children with cardiovascular malformations.

    Science.gov (United States)

    Schellberg, Ruth; Schwanitz, Gesa; Grävinghoff, Lutz; Kallenberg, Rolf; Trost, Detlef; Raff, Ruth; Wiebe, Walter

    2004-12-01

    We investigated a group of 376 children, seen over a period of 7 years with different types of congenital cardiovascular defects, to assess the presence of chromosomal aberrations. The diagnostic approach, achieved in 3 consecutive steps, revealed conventional chromosomal aberrations in 30 of the patients (8%) excluding trisomies 13, 18, 21. Fluorescence in situ hybridisation for microdeletions showed 51 microdeletions (15%), with 43 patients having deletions of 22q11.2, 7 patients with deletion of 7q11.23, and 1 patient with deletion of 4p16.3. In 23 patients with additional clinical abnormalities, we carried out a subtelomeric screening. This revealed, in two cases (9%), different subtelomeric aberrations, namely deletions of 1p and of 1q. Thus, subtelomeric screening proved to be a very valuable as a new diagnostic approach. Our approach to genetic investigation in three phases makes it possible to detect a high rate of pathologic karyotypes in patients with congenital cardiovascular malformations, thus guaranteeing more effective genetic counselling of the families, and a more precise prognosis for the patient.

  10. Rare human diseases: 9p deletion syndrome

    Directory of Open Access Journals (Sweden)

    Galagan V.O.

    2014-09-01

    Full Text Available Objective of the study was to review the anamnesis, pheno - and genotype in patients with rare chromosome disorders such as 9p deletion syndrome. Genetic methods of investigation (clinical and genealogical, cytogenetic, FISH- method, paraclinical and instrumental methods of examination were used. Karyotyping was performed by the G-method of differential staining of chromosomes. Only three cases of pathology were diagnosed in the Medical Genetics Center over the last 10 years. By anamnesis data nobody in the probands’ families had bad habits, was exposed to occupational hazards, took part in the elimination of the Chernobyl accident or lived in contaminated areas. Clinical signs of diseases have not been identified in probands’ parents. All probands had trigonocephaly, bilateral epicanthal folds, ocular hypertelorism, downslanting palpebral fissures, long philtrum, flat face and nasal bridge, low set ears with malformed auricles. Two patients of three ones had exophthalmos, contracture of the second and third fingers, abnormal external genitalia. In all three cases there was monosomy of chromosome 9 of critical segment p 24. Normal karyotypes were seen in all parents, so there were three cases of new mutations of 9p deletion syndrome. Retardation of physical, psycho-spech, mental development in proband with or without congenital anomalies requires medical genetic counseling in a specialized institution. Cases of reproductive loss in anamnesis require cytogenetic investigation of fetal membranes and amniotic fluid.

  11. Analysis of aneuploid lines of bread wheat to map chromosomal locations of genes controlling root hair length.

    Science.gov (United States)

    Liu, Miao; Rathjen, Tina; Weligama, Kumara; Forrest, Kerrie; Hayden, Matthew; Delhaize, Emmanuel

    2017-06-01

    Long root hairs enable the efficient uptake of poorly mobile nutrients such as phosphorus. Mapping the chromosomal locations of genes that control root hair length can help exploit the natural variation within crops to develop improved cultivars. Genetic stocks of the wheat cultivar 'Chinese Spring' were used to map genes that control root hair length. Aneuploid stocks of 'Chinese Spring' were screened using a rapid method based on rhizosheath size and then selected lines were assayed for root hair length to identify chromosomes harbouring genes controlling root hair length. A series of lines with various fractional deletions of candidate chromosomes were then screened to map the root hair loci more accurately. A line with a deletion in chromosome 5A was analysed with a 90 000 single nucleotide polymorphism (SNP) array. The phosphorus acquisition efficiency (PAE) of one deletion line was compared with that of euploid 'Chinese Spring' by growing the seedlings in pots at low and luxury phosphorus supplies. Chromosomes 1A, 1D and 5A were found to harbour genes controlling root hair length. The 90 000 SNP array identified two candidate genes controlling root hair length located on chromosome 5A. The line with a deletion in chromosome 5A had root hairs that were approx. 20 % shorter than euploid 'Chinese Spring', but this was insufficient to reduce its PAE. A rapid screen for rhizosheath size enabled chromosomal regions controlling root hair length to be mapped in the wheat cultivar 'Chinese Spring' and subsequent analysis with an SNP array identified candidate genes controlling root hair length. The difference in root hair length between euploid 'Chinese Spring' and a deletion line identified in the rapid screen was still apparent, albeit attenuated, when the seedlings were grown on a fully fertilized soil. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Concurrent deletion of 16q23 and PTEN is an independent prognostic feature in prostate cancer.

    Science.gov (United States)

    Kluth, Martina; Runte, Frederic; Barow, Philipp; Omari, Jazan; Abdelaziz, Zaid M; Paustian, Lisa; Steurer, Stefan; Christina Tsourlakis, Maria; Fisch, Margit; Graefen, Markus; Tennstedt, Pierre; Huland, Hartwig; Michl, Uwe; Minner, Sarah; Sauter, Guido; Simon, Ronald; Adam, Meike; Schlomm, Thorsten

    2015-11-15

    The deletion of 16q23-q24 belongs to the most frequent chromosomal changes in prostate cancer, but the clinical consequences of this alteration have not been studied in detail. We performed fluorescence in situ hybridization analysis using a 16q23 probe in more than 7,400 prostate cancers with clinical follow-up data assembled in a tissue microarray format. Chromosome 16q deletion was found in 21% of cancers, and was linked to advanced tumor stage, high Gleason grade, accelerated cell proliferation, the presence of lymph node metastases (p Deletion was more frequent in ERG fusion-positive (27%) as compared to ERG fusion-negative cancers (16%, p deletions including phosphatase and tensin homolog (PTEN) (p deletion of 16q was linked to early biochemical recurrence independently from the ERG status (p deletion of 16q alone. Multivariate modeling revealed that the prognostic value of 16q/PTEN deletion patterns was independent from the established prognostic factors. In summary, the results of our study demonstrate that the deletion of 16q and PTEN cooperatively drives prostate cancer progression, and suggests that deletion analysis of 16q and PTEN could be of important clinical value particularly for preoperative risk assessment of the clinically most challenging group of low- and intermediated grade prostate cancers. © 2015 UICC.

  13. Renal Failure Associated with APECED and Terminal 4q Deletion: Evidence of Autoimmune Nephropathy

    Directory of Open Access Journals (Sweden)

    Mohammed Al-Owain

    2010-01-01

    Full Text Available Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED is a rare autosomal recessive disorder caused by mutations in the autoimmune regulator gene (AIRE. Terminal 4q deletion is also a rare cytogenetic abnormality that causes a variable syndrome of dysmorphic features, mental retardation, growth retardation, and heart and limb defects. We report a 12-year-old Saudi boy with mucocutaneous candidiasis, hypoparathyroidism, and adrenocortical failure consistent with APECED. In addition, he has dysmorphic facial features, growth retardation, and severe global developmental delay. Patient had late development of chronic renal failure. The blastogenesis revealed depressed lymphocytes' response to Candida albicans at 38% when compared to control. Chromosome analysis of the patient revealed 46,XY,del(4(q33. FISH using a 4p/4q subtelomere DNA probe assay confirmed the deletion of qter subtelomere on chromosome 4. Parental chromosomes were normal. The deleted array was further defined using array CGH. AIRE full gene sequencing revealed a homozygous mutation namely 845_846insC. Renal biopsy revealed chronic interstitial nephritis with advanced fibrosis. In addition, there was mesangial deposition of C3, C1q, and IgM. This is, to the best of our knowledge, the first paper showing evidence of autoimmune nephropathy by renal immunofluorescence in a patient with APECED and terminal 4q deletion.

  14. Microdeletion of Y‑chromosome and Their High Impact on Male ...

    African Journals Online (AJOL)

    crossing over (meiosis). The region outside PARs does not play a significant role in linkage and known as the nonrecombining region of the Y‑chromosome. However, molecular deletion studies of Y‑chromosomes (Yq11.21,. Yq11.22, and Yq11.23) are based on sequence tagged sites have identified the loci responsible for ...

  15. A case of an atypically large proximal 15q deletion as cause for Prader-Willi syndrome arising from a de novo unbalanced translocation.

    Science.gov (United States)

    Hickey, Scott E; Thrush, Devon Lamb; Walters-Sen, Lauren; Reshmi, Shalini C; Astbury, Caroline; Gastier-Foster, Julie M; Atkin, Joan

    2013-09-01

    We describe an 11 month old female with Prader-Willi syndrome (PWS) resulting from an atypically large deletion of proximal 15q due to a de novo 3;15 unbalanced translocation. The 10.6 Mb deletion extends from the chromosome 15 short arm and is not situated in a region previously reported as a common distal breakpoint for unbalanced translocations. There was no deletion of the reciprocal chromosome 3q subtelomeric region detected by either chromosomal microarray or FISH. The patient has hypotonia, failure to thrive, and typical dysmorphic facial features for PWS. The patient also has profound global developmental delay consistent with an expanded, more severe, phenotype. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Kaposi's sarcoma herpesvirus C-terminal LANA concentrates at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes

    International Nuclear Information System (INIS)

    Kelley-Clarke, Brenna; Ballestas, Mary E.; Komatsu, Takashi; Kaye, Kenneth M.

    2007-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) tethers KSHV terminal repeat (TR) DNA to mitotic chromosomes to efficiently segregate episomes to progeny nuclei. LANA contains N- and C-terminal chromosome binding regions. We now show that C-terminal LANA preferentially concentrates to paired dots at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes through residues 996-1139. Deletions within C-terminal LANA abolished both self-association and chromosome binding, consistent with a requirement for self-association to bind chromosomes. A deletion abolishing TR DNA binding did not affect chromosome targeting, indicating LANA's localization is not due to binding its recognition sequence in chromosomal DNA. LANA distributed similarly on human and non-human mitotic chromosomes. These results are consistent with C-terminal LANA interacting with a cell factor that concentrates at pericentromeric and peri-telomeric regions of mitotic chromosomes

  17. Intra-chromosomal aberrations observed after high-LET radiation exposure in vivo using a state-of-the-art cytogenetic technique

    International Nuclear Information System (INIS)

    Mitchell, C.R.; Geard, C.R.; Brenner, D.J.; Hande, P.; Azizova, T.V.; Burak, L.E.; Khokhryakov, V.F.; Vasienko, E.K.

    2003-01-01

    Multicolor banding fluorescence in situ hybridization (mBAND) was used to investigate the presence of stable intra-chromosomal aberrations in chromosomes 1, 2 and 5 in a population of individuals exposed previously to low and/or high-LET radiation. Peripheral blood lymphocytes were taken from healthy Russian nuclear workers occupationally exposed to plutonium α -particles, γ -rays or both at the Mayak complex from 1949 onwards. Metaphase spreads were produced and chromosomes hybridized with mBAND probes and scored for intra-chromosomal aberrations including inversions and deletions. A large difference between the intra-chromosomal aberration frequencies for the high-plutonium (∼1.1 Gy) and the high- γ exposed (∼1.5 Gy) individuals was observed in all three chromosomes studied (chromosome 1: 1.9 ± 0.5 % (n=7) vs. 0.1 ± 0.1% (n=5); chromosome 2: 1.7 ± 0.4% (n=7) vs. 0 [0 -0.3]% (n=6); chromosome 5: 3.7 ± 0.5 % (n=11) vs. 0.1 ± 0.1 % (n=11) (high-plutonium vs. high-γ exposure)). Controls (n=5) showed very few or no intra-chromosomal aberrations. Significantly fewer aberrations were observed in chromosomes 1 and 2 compared with chromosome 5, studied previously in this cohort, suggesting that intra-chromosomal changes involving chromosomes 1 and 2 may be more lethal to the cell than those involving chromosome 5. The dramatic differences in yields of intra-chromosomal aberrations in high-plutonium exposure relative to low may provide a means of discrimination to estimate both the dose and type of previous radiation exposure in populations

  18. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    Science.gov (United States)

    Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C

    2013-04-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  19. Cerebellar and brainstem hypoplasia in a child with a partial monosomy for the short arm of chromosome 5 and partial trisomy for the short arm of chromosome 10

    NARCIS (Netherlands)

    Arts, W F M; Hofstee, Y; Drejer, G F; Beverstock, G C; Oosterwijk, J C

    A child with hypoplasia of the cerebellum and brainstem in association with an unbalanced translocation, resulting in a partial deletion of the short arm of chromosome 5 and a partial trisomy of the short arm of chromosome 10, is described. A balanced translocation was present in his mother and

  20. Reproductive Incompatibility Involving Senegalese Aedes aegypti (L Is Associated with Chromosome Rearrangements.

    Directory of Open Access Journals (Sweden)

    Laura B Dickson

    2016-04-01

    staining was used to identify AT-rich regions, chromomycin A3 following pretreatment with barium hydroxide stained for GC-rich regions and stained the ribosomal RNA locus and YOYO-1 was used to test for differential staining. Chromosome patterns in SenAae strains revealed by these three stains differed from those in IB12. For FISH, 40 BAC clones previously physically mapped on Aaa chromosomes were used to test for chromosome rearrangements in SenAae relative to IB12. Differences in the order of markers identified two chromosomal rearrangements between IB12 and SenAae strains. The first rearrangement involves two overlapping pericentric (containing the centromere inversions in chromosome 3 or an insertion of a large fragment into the 3q arm. The second rearrangement is close to the centromere on the p arm of chromosome 2. Linkage analysis of the SDL and the white-eye locus identified a likely chromosomal rearrangement on chromosome 1. The reproductive incompatibility observed within SenAae and between SenAae and Aaa may be generally associated with chromosome rearrangements on all three chromosomes and specifically caused by pericentric inversions on chromosomes 2 and 3.

  1. Reproductive Incompatibility Involving Senegalese Aedes aegypti (L) Is Associated with Chromosome Rearrangements

    Science.gov (United States)

    Dickson, Laura B.; Sharakhova, Maria V.; Timoshevskiy, Vladimir A.; Fleming, Karen L.; Caspary, Alex; Sylla, Massamba; Black, William C.

    2016-01-01

    was used to identify AT-rich regions, chromomycin A3 following pretreatment with barium hydroxide stained for GC-rich regions and stained the ribosomal RNA locus and YOYO-1 was used to test for differential staining. Chromosome patterns in SenAae strains revealed by these three stains differed from those in IB12. For FISH, 40 BAC clones previously physically mapped on Aaa chromosomes were used to test for chromosome rearrangements in SenAae relative to IB12. Differences in the order of markers identified two chromosomal rearrangements between IB12 and SenAae strains. The first rearrangement involves two overlapping pericentric (containing the centromere) inversions in chromosome 3 or an insertion of a large fragment into the 3q arm. The second rearrangement is close to the centromere on the p arm of chromosome 2. Linkage analysis of the SDL and the white-eye locus identified a likely chromosomal rearrangement on chromosome 1. The reproductive incompatibility observed within SenAae and between SenAae and Aaa may be generally associated with chromosome rearrangements on all three chromosomes and specifically caused by pericentric inversions on chromosomes 2 and 3. PMID:27105225

  2. Quantitative PCR analysis reveals a high incidence of large intragenic deletions in the FANCA gene in Spanish Fanconi anemia patients.

    Science.gov (United States)

    Callén, E; Tischkowitz, M D; Creus, A; Marcos, R; Bueren, J A; Casado, J A; Mathew, C G; Surrallés, J

    2004-01-01

    Fanconi anaemia is an autosomal recessive disease characterized by chromosome fragility, multiple congenital abnormalities, progressive bone marrow failure and a high predisposition to develop malignancies. Most of the Fanconi anaemia patients belong to complementation group FA-A due to mutations in the FANCA gene. This gene contains 43 exons along a 4.3-kb coding sequence with a very heterogeneous mutational spectrum that makes the mutation screening of FANCA a difficult task. In addition, as the FANCA gene is rich in Alu sequences, it was reported that Alu-mediated recombination led to large intragenic deletions that cannot be detected in heterozygous state by conventional PCR, SSCP analysis, or DNA sequencing. To overcome this problem, a method based on quantitative fluorescent multiplex PCR was proposed to detect intragenic deletions in FANCA involving the most frequently deleted exons (exons 5, 11, 17, 21 and 31). Here we apply the proposed method to detect intragenic deletions in 25 Spanish FA-A patients previously assigned to complementation group FA-A by FANCA cDNA retroviral transduction. A total of eight heterozygous deletions involving from one to more than 26 exons were detected. Thus, one third of the patients carried a large intragenic deletion that would have not been detected by conventional methods. These results are in agreement with previously published data and indicate that large intragenic deletions are one of the most frequent mutations leading to Fanconi anaemia. Consequently, this technology should be applied in future studies on FANCA to improve the mutation detection rate. Copyright 2003 S. Karger AG, Basel

  3. G-banding analysis of radiation-induced chromosome damage in lymphocytes of Hiroshima atomic-bomb survivors

    International Nuclear Information System (INIS)

    Ohtaki, Kazuo; Nakashima, Eiji.

    1994-06-01

    This report describes the G-banding analysis of somatic chromosomes in lymphocytes from 63 atomic-bomb survivors in Hiroshima to determine the type and frequency of radiation-induced chromosome aberrations. Summary findings are as follows: (1) The cells with stable-type chromosome aberrations (Cs cells) predominated among the aberrant cells and showed a dose-dependent increase. All stable chromosome aberrations were classified into 9 types: reciprocal translocations (t), translocations of complex type (t-cx), insertions (ins), complex exchanges (e-cx), peri- and paracentric inversions (inv-peri, inv-para), terminal and interstitial deletions (del-ter, del-int), and unidentified rearrangements. Aberration frequencies increased with increasing dose for all aberration categories. Among the chromosome aberrations classified, reciprocal translocations predominated in all dose ranges. The frequencies of complex aberrations were low at the low-dose level but increased sharply as dose increased. (2) The linear model was fitted to test the dose-response relationship for Cs-cell frequencies. With a constant neutron relative biological effectiveness of 10, an estimated linear slope of 15.2%/Sv was obtained for Dosimetry System 1986 bone-marrow dose with an intercept of 2.9% at dose 0. The present observation confirmed a wide variability of Cs-cell frequencies among individual survivors in every dose category.(3) Statistical analysis of data on 3370 break sites showed good correlations between relative DNA content and the distribution of chromosome breaks involved in translocations, although the involvement of chromosome 1 is significantly higher, for as-yet-unknown reasons. (J.P.N.)

  4. Syndrome of proximal interstitial deletion 4p15: Report of three cases and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Chitayat, D.; Babul, R.; Teshima, I.E. [Univ. of Toronto, Ontario (Canada)] [and others

    1995-01-16

    We report on two boys and a girl with interstitial deletion in the short arm of chromosome 4 including the segment p15.2p15.33. All had normal growth with psychomotor retardation, multiple minor congenital anomalies, and a characteristic face distinct from that of the Wolf-Hirschhorn syndrome. One of the patients had congenitally enlarged penis. These patients resemble some of the previously reported patients with similar cytogenetic abnormalities and suggests the recognition of a specific clinical chromosome deletion syndrome. 12 refs., 6 figs., 1 tab.

  5. 1.5Mb deletion of chromosome 4p16.3 associated with postnatal growth delay, psychomotor impairment, epilepsy, impulsive behavior and asynchronous skeletal development.

    Science.gov (United States)

    Misceo, D; Barøy, T; Helle, J R; Braaten, O; Fannemel, M; Frengen, E

    2012-10-01

    Several Wolf-Hirschhorn syndrome patients have been studied, mouse models for a few candidate genes have been constructed and two WHS critical regions have been postulated, but the molecular basis of the syndrome remains poorly understood. Single gene contributions to phenotypes of microdeletion syndromes have often been based on the study of patients carrying small, atypical deletions. We report a 5-year-old girl harboring an atypical 1.5Mb del4p16.3 and review seven previously published patients carrying a similar deletion. They show a variable clinical presentation and the only consistent feature is post-natal growth delay. However, four of eight patients carry a ring (4), and ring chromosomes in general are associated with growth deficiency. The Greek helmet profile is absent, although a trend towards common dysmorphic features exists. Variable expressivity and incomplete penetrance might play a role in WHS, resulting in difficult clinical diagnosis and challenge in understanding of the genotype/phenotype correlation. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A 725 kb deletion at 22q13.1 chromosomal region including SOX10 gene in a boy with a neurologic variant of Waardenburg syndrome type 2.

    Science.gov (United States)

    Siomou, Elisavet; Manolakos, Emmanouil; Petersen, Michael; Thomaidis, Loretta; Gyftodimou, Yolanda; Orru, Sandro; Papoulidis, Ioannis

    2012-11-01

    Waardenburg syndrome (WS) is a rare (1/40,000) autosomal dominant disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four clinical subtypes (WS1-S4). Six genes have been identified to be associated with the different subtypes of WS, among which SOX10, which is localized within the region 22q13.1. Lately it has been suggested that whole SOX10 gene deletions can be encountered when testing for WS. In this study we report a case of a 13-year-old boy with a unique de novo 725 kb deletion within the 22q13.1 chromosomal region, including the SOX10 gene and presenting clinical features of a neurologic variant of WS2. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Restoration of half the normal dystrophin sequence in a double-deletion Duchenne muscular dystrophy family

    Energy Technology Data Exchange (ETDEWEB)

    Hoop, R.C.; Schwartz, L.S.; Hoffman, E.P. [Univ. of Pittsburgh School of Medicine, Pittsburgh, PA (United States); Russo, L.S. [Univ. of Florida, Jacksonville, FL (United States); Riconda, D.L. [Orlando Regional Medical Center, Orlando, FL (United States)

    1994-02-01

    Two male cousins with Duchenne muscular dystrophy were found to have different maternal dystrophin gene haplotypes and different deletion mutations. One propositus showed two noncontiguous deletions-one in the 5{prime}, proximal deletional hotspot region, and the other in the 3{prime}, more distal deletional hotspot region. The second propositus showed only the 5{prime} deletion. Using multiple fluorescent exon dosage and fluorescent multiplex CA repeat linkage analyses, the authors show that the mother of each propositus carries both deletions on the same grandmaternal X chromosome. This paradox is explained by a single recombinational event between the 2 deleted regions of one of the carrier`s dystrophin genes, giving rise to a son with a partially {open_quotes}repaired{close_quotes} gene retaining only the 5{prime} deletion. 20 refs., 4 figs.

  8. Strategies for state-dependent quantum deleting

    International Nuclear Information System (INIS)

    Song Wei; Yang Ming; Cao Zhuoliang

    2004-01-01

    A quantum state-dependent quantum deleting machine is constructed. We obtain a upper bound of the global fidelity on N-to-M quantum deleting from a set of K non-orthogonal states. Quantum networks are constructed for the above state-dependent quantum deleting machine when K=2. Our deleting protocol only involves a unitary interaction among the initial copies, with no ancilla. We also present some analogies between quantum cloning and deleting

  9. Assessment of chromosomal imbalances in CIMP-high and CIMP-low/CIMP-0 colorectal cancers.

    Science.gov (United States)

    Kozlowska, Joanna; Karpinski, Pawel; Szmida, Elzbieta; Laczmanska, Izabela; Misiak, Blazej; Ramsey, David; Bebenek, Marek; Kielan, Wojciech; Pesz, Karolina A; Sasiadek, Maria M

    2012-08-01

    Data presented in a number of recent studies have revealed a negative correlation between CpG island methylator phenotype (CIMP) and chromosomal instability (CIN) measured by a loss of heterozygosity (LOH) of selected loci, suggesting that CIN and CIMP represent two independent mechanisms in sporadic colorectal cancer (CRC) carcinogenesis. However, CIN is a heterogeneous phenomenon, which may be studied not only by employing LOH analysis but also by observing chromosomal imbalances (gains and deletions). The current study aimed to investigate the relationship between CIMP and chromosomal gains and deletions (assessed by comparative genomic hybridization) in a group of 20 CIMP-high and 79 CIMP-low/CIMP-0 CRCs. Our results revealed that the mean numbers of gains and of total chromosomal imbalances were significantly greater (p = 0.004 and p = 0.007, respectively) in the CIMP-low/CIMP-0 group compared to the CIMP-high group, while no significant difference was observed between the mean numbers of losses (p = 0.056). The analysis of copy number changes of 41 cancer-related genes by multiplex ligation-dependent probe amplification showed that CRK gene was exclusively deleted in CIMP-low/CIMP-0 tumors (p = 0.02). Given that chromosomal losses play an important role in tumor suppressor inactivation and chromosomal gains, in the activation of proto-oncogenes, we hypothesize that tumor suppressor inactivation plays similar roles in both CIMP-high and CIMP-low/CIMP-0 CRCs, while the predominance of chromosomal gains in CIMP-low/CIMP-0 tumors may suggest that the activation of proto-oncogenes is the underlying mechanism of CIMP-low/CIMP-0 CRC progression.

  10. An Fgf8 Mouse Mutant Phenocopies Human 22q11 Deletion Syndrome

    OpenAIRE

    Frank, Deborah U.; Fotheringham, Lori K.; Brewer, Judson A.; Muglia, Louis J.; Tristani-Firouzi, Martin; Capecchi, Mario R.; Moon, Anne M.

    2002-01-01

    Deletion of chromosome 22q11, the most common microdeletion detected in humans, is associated with a life-threatening array of birth defects. Although 90% of affected individuals share the same three megabase deletion, their phenotype is highly variable and includes craniofacial and cardiovascular anomalies, hypoplasia or aplasia of the thymus with associated deficiency of T cells, hypocalcemia with hypoplasia or aplasia of the parathyroids, and a variety of central nervous system abnormaliti...

  11. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    Science.gov (United States)

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  12. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    Directory of Open Access Journals (Sweden)

    Yu Jane-Fang

    2008-03-01

    Full Text Available Abstract Background The Azoospermia Factor c (AZFc region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes.

  13. Noninvolvement of the X chromosome in radiation-induced chromosome translocations in the human lymphoblastoid cell line TK6

    International Nuclear Information System (INIS)

    Jordan, R.; Schwartz, J.L.

    1994-01-01

    Fluorescence in situ hybridization procedures were used to examine the influence of chromosome locus on the frequency and type of chromosome aberrations induced by 60 Co γ rays in the human lymphoblastoid cell line TK6. Aberrations involving the X chromosome were compared to those involving the similarly sized autosome chromosome 7. When corrected for DNA content, acentric fragments were induced with equal frequency in the X and 7 chromosomes. Dose-dependent increases in chromosomal interchanges involving chromosome 7 were noted, and the frequencies of balanced translocations and dicentrics produced were approximately equal. Chromosome interchanges involving the X chromosome were rare and showed no apparent dose dependence. Thus, while chromosomes 7 and X are equally sensitive to the induction of chromosome breaks, the X chromosome is much less likely to interact with autosomes than chromosome 7. The noninvolvement of the X chromosome in translocations with autosomes may reflect a more peripheral and separate location for the X chromosome in the mammalian nucleus. 20 refs., 2 figs., 1 tab

  14. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  15. The cld mutation: narrowing the critical chromosomal region and selecting candidate genes.

    Science.gov (United States)

    Péterfy, Miklós; Mao, Hui Z; Doolittle, Mark H

    2006-10-01

    Combined lipase deficiency (cld) is a recessive, lethal mutation specific to the tw73 haplotype on mouse Chromosome 17. While the cld mutation results in lipase proteins that are inactive, aggregated, and retained in the endoplasmic reticulum (ER), it maps separately from the lipase structural genes. We have narrowed the gene critical region by about 50% using the tw18 haplotype for deletion mapping and a recombinant chromosome used originally to map cld with respect to the phenotypic marker tf. The region now extends from 22 to 25.6 Mbp on the wild-type chromosome, currently containing 149 genes and 50 expressed sequence tags (ESTs). To identify the affected gene, we have selected candidates based on their known role in associated biological processes, cellular components, and molecular functions that best fit with the predicted function of the cld gene. A secondary approach was based on differences in mRNA levels between mutant (cld/cld) and unaffected (+/cld) cells. Using both approaches, we have identified seven functional candidates with an ER localization and/or an involvement in protein maturation and folding that could explain the lipase deficiency, and six expression candidates that exhibit large differences in mRNA levels between mutant and unaffected cells. Significantly, two genes were found to be candidates with regard to both function and expression, thus emerging as the strongest candidates for cld. We discuss the implications of our mapping results and our selection of candidates with respect to other genes, deletions, and mutations occurring in the cld critical region.

  16. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements.

    Science.gov (United States)

    Demaerel, Wolfram; Hestand, Matthew S; Vergaelen, Elfi; Swillen, Ann; López-Sánchez, Marcos; Pérez-Jurado, Luis A; McDonald-McGinn, Donna M; Zackai, Elaine; Emanuel, Beverly S; Morrow, Bernice E; Breckpot, Jeroen; Devriendt, Koenraad; Vermeesch, Joris R

    2017-10-05

    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A-D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A-B 22q11.2 deletion carry inversions of LCR22B-D or LCR22C-D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders. Copyright © 2017. Published by Elsevier Inc.

  17. Ocular Findings in Children With 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Gokturk, Bahar; Topcu-Yilmaz, Pinar; Bozkurt, Banu; Yildirim, Mahmut Selman; Guner, Sukru Nail; Sayar, Esra Hazar; Reisli, Ismail

    2016-07-01

    To identify the ocular features of children diagnosed as having 22q11.2 deletion syndrome in a Turkish population, which is the most common microdeletion syndrome with a wide range of facial and ocular abnormalities. Sixteen children aged between 4 months and 18 years with a microdeletion in chromosome 22q11.2 underwent a detailed ophthalmological examination including uncorrected and best corrected visual acuity testing, stereoscopic vision examination, biomicroscopic and indirect fundus examination, and ocular motility testing. All patients had at least one ocular abnormality. The major abnormalities were eyelid abnormalities (eye hooding, narrow palpebral fissure, telecanthus, hypertelorism, sparse and thin eyebrows and eyelashes, blepharitis, and distichiasis), posterior embryotoxon, and tortuous retinal vessels in at least half of the patients. Other ophthalmological disorders were refractive errors, iris remnants, and strabismus. The chromosome 22q11.2 deletion syndrome is associated with a wide range of ocular disorders, which necessitates a comprehensive eye examination for appropriate treatment and follow-up. Ocular findings sometimes can provide a clue to the diagnosis of 22q11.2 deletion. [J Pediatr Ophthalmol Strabismus. 2016;53(4):218-222]. Copyright 2016, SLACK Incorporated.

  18. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    Directory of Open Access Journals (Sweden)

    Reuben B Vercoe

    2013-04-01

    Full Text Available In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs and their associated (Cas proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2 involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  19. Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands

    Science.gov (United States)

    Vercoe, Reuben B.; Chang, James T.; Dy, Ron L.; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S.; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R.; Fineran, Peter C.

    2013-01-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624

  20. Clinical spectrum associated with recurrent genomic rearrangements in chromosome 17q12

    OpenAIRE

    Nagamani, Sandesh Chakravarthy Sreenath; Erez, Ayelet; Shen, Joseph; Li, Chumei; Roeder, Elizabeth; Cox, Sarah; Karaviti, Lefkothea; Pearson, Margret; Kang, Sung-Hae L; Sahoo, Trilochan; Lalani, Seema R; Stankiewicz, Pawel; Sutton, V Reid; Cheung, Sau Wai

    2009-01-01

    Deletions in chromosome 17q12 encompassing the HNF1β gene cause cystic renal disease and maturity onset diabetes of the young, and have been recently described as the first recurrent genomic deletion leading to diabetes. Earlier reports of patients with this microdeletion syndrome have suggested an absence of cognitive impairment, differentiating it from most other contiguous gene deletion syndromes. The reciprocal duplication of 17q12 is rare and has been hypothesized to be associated with a...

  1. Velo-Cardio-Facial syndrome and DiGeorge sequence with meningomyelocele and deletions of the 22q11 region

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, R.E.; Pillers, D.M.; Merkens, M.; Magenis, R.E.; Zonana, J. [Oregon Health Sciences Univ., Portland, OR (United States); Driscoll, D.A.; Emanuel, B.S. [Univ. of Pennsylvania Medical Center, Philadelphia, PA (United States)

    1994-10-01

    Approximately 5% of children with neural tube defects (NTDs) have a congenital heart defect and/or cleft lip and palate. The cause of isolated meningomyelocele, congenital heart defects, or cleft lip and palate has been largely thought to be multifactorial. However, chromosomal, teratogenic, and single gene causes of combinations of NTDs with congenital heart defects and/or cleft lip and palate have been reported. We report on 3 patients with meningomyelocele, congenital heart defects, and 22q11 deletions. Two of the children had the clinical diagnosis of velo-cardio-facial syndrome (VCFS); both have bifid uvula. The third child had DiGeorge sequence (DGS). The association of NTDs with 22q11 deletion has not been reported previously. An accurate diagnosis of the 22q11 deletion is critical as this micro-deletion and its associated clinical problems is transmitted as an autosomal dominant trait due to the inheritance of the deletion-bearing chromosome. We recommend that all children with NTDs and congenital heart defects, with or without cleft palate, have cytogenetic and molecular studies performed to detect 22q11 deletions. 31 refs., 3 figs.

  2. A Marfan syndrome-like phenotype caused by a neocentromeric supernumerary ring chromosome 15.

    Science.gov (United States)

    Quinonez, Shane C; Gelehrter, Thomas D; Uhlmann, Wendy R

    2017-01-01

    Small supernumerary marker chromosomes (sSMC) are abnormal chromosomes that cannot be characterized by standard banding cytogenetic techniques. A minority of sSMC contain a neocentromere, which is an ectopic centromere lacking the characteristic alpha-satellite DNA. The phenotypic manifestations of sSMC and neocentromeric sSMC are variable and range from severe intellectual disability and multiple congenital anomalies to a normal phenotype. Here we report a patient with a diagnosis of Marfan syndrome and infertility found to have an abnormal karyotype consisting of a chromosome 15 deletion and a ring-type sSMC likely stabilized by a neocentromere derived via a mechanism initially described by Barbara McClintock in 1938. Analysis of the sSMC identified that it contained the deleted chromosome 15 material and also one copy of FBN1, the gene responsible for Marfan syndrome. We propose that the patient's diagnosis arose from disruption of the FBN1 allele on the sSMC. To date, a total of 29 patients have been reported with an sSMC derived from a chromosomal deletion. We review these cases with a specific focus on the resultant phenotypes and note significant difference between this class of sSMC and other types of sSMC. Through this review we also identified a patient with a clinical diagnosis of neurofibromatosis type 1 who lacked a family history of the condition but was found to have a chromosome 17-derived sSMC that likely contained NF1 and caused the patient's disorder. We also review the genetic counseling implications and recommendations for a patient or family harboring an sSMC. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Refinement of the critical 2p25.3 deletion region

    DEFF Research Database (Denmark)

    De Rocker, Nina; Vergult, Sarah; Koolen, David

    2015-01-01

    PURPOSE: Submicroscopic deletions of chromosome band 2p25.3 are associated with intellectual disability and/or central obesity. Although MYT1L is believed to be a critical gene responsible for intellectual disability, so far no unequivocal data have confirmed this hypothesis. METHODS: In this study...

  4. Detection of the deletion on Yp11.2 in a Chinese population.

    Science.gov (United States)

    Chen, Wenjing; Wu, Weiwei; Cheng, Jianding; Zhang, Yinming; Chen, Yong; Sun, Hongyu

    2014-01-01

    Sex determination tests based on Amelogenin gene as part of commercial PCR multiplex reaction kits have been widely applied in forensic DNA analysis. Mutations that cause dropout of Y chromosomal Amelogenin gene (AMELY) could lead to errors in gender determination and mixture interpretation. To infer the mechanism and estimate the dropout frequency of AMELY and adjacent Y-STRs, we studied 3 samples with AMELY dropout combined with DYS458 and/or DYS456 and 37 samples with DYS456 dropout. DYS456, DYS458 and AMELY are located in the Yp11.2 region. The singleplex amplification system showed the null alleles could be caused by fragment deletion in Yp11.2 rather than a point mutation in the primer binding region. After detection of the 17 Y-STR and 77 STS markers, the deletion map showed different patterns. The DYS456-AMELY-DYS458 deletion pattern was the largest, breaking from 3.60 Mb to 8.29 Mb in the Y chromosome, and the overall frequency was 0.0077%. The AMELY-DYS458 deletion pattern was broke from 6.74 Mb to 9.17 Mb, with a 0.0155% frequency. The DYS456 negative pattern was concentrated in two main deletion regions, with a 0.8220% frequency. The frequency of all negative pattern was 0.0155%. All the AMELY-DYS458 and DYS456-AMELY-DYS458, and 92% of the DYS456 deletion patterns belonged to Hg O3, the rest belonged to Hg Q. The DYS456 deletion pattern was first reported in Chinese population. The current and previous findings suggest additional gender test for ambiguous sex determination may be required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Sequence analysis of the MYC oncogene involved in the t(8;14)(q24;q11) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered

    International Nuclear Information System (INIS)

    Finver, S.N.; Nishikura, K.; Finger, L.R.; Haluska, F.G.; Finan, J.; Nowell, P.C.; Croce, C.M.

    1988-01-01

    The authors cloned the translocation-associated and homologous normal MYC alleles from SKW-3, a leukemia T-cell line with the t(8; 14)(q24; q11) translocation, and determined the sequence of the MYC oncogene first exon and flanking 5' putative regulatory regions. S1 nuclease protection experiments utilizing a MYC first exon probe demonstrated transcriptional deregulation of the MYC gene associated with the T-cell receptor α locus on the 8q + chromosome of SKW-3 cells. Nucleotide sequence analysis of the translocation-associated (8q +) MYC allele identified a single base substitution within the upstream flanking region; the homologous nontranslocated allele contained an additional substitution and a two-base deletion. None of the deletions or substitutions localized to putative 5' regulatory regions. The MYC first exon sequence was germ line in both alleles. These results demonstrate that alterations within the putative 5' MYC regulatory regions are not necessarily involved in MYC deregulation in T-cell leukemias, and they show that juxtaposition of the T-cell receptor α locus to a germ-line MYC oncogene results in MYC deregulation

  6. Skin fibroblasts from a D-deletion type retinoblastoma patient are abnormally X-ray sensitive

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Nove, J.; Little, J.B.

    1977-01-01

    Retinoblastoma is a rare malignant eye tumour that appears either spontaneously or in genetically predisposed persons. The latter group is composed of persons who inherit the tumour with a dominant mode of transmission (the familial type) and those who have a deletion in the long arm of chromosome 13 referred to as the D-deletion type. When this deletion is present it is observed in many somatic cells and is often associated with structural defects. Survivors of the genetic forms of retinoblastoma have an increased risk of the development of cancers at other sites. A single genetic locus is unlikely to predispose many somatic cells to tumour formation unless a fundamental molecular defect, possibly related to DNA repair, is present. In order to investigate this hypothesis a study was made of the in vitro X-ray sensitivity of skin fibroblasts derived from three retinoblastoma patients, comprising a pair of twins with the familial type accompanied by no gross chromosome abnormalities, and a patient with the D-deletion type. It was found that fibroblasts derived from the D-deletion patient were significantly more radiosensitive than those from the other two patients. X-ray survival curves are shown. It is concluded that skin fibroblasts derived from a patient with the D-deletion variant of retinoblastoma are abnormally radiosensitive. Future investigations may indicate a specific defect in molecular repair of DNA that will explain the predisposition of these patients to the development of other tumours. (U.K.)

  7. Detection of 1p36 deletion by clinical exome-first diagnostic approach.

    Science.gov (United States)

    Watanabe, Miki; Hayabuchi, Yasunobu; Ono, Akemi; Naruto, Takuya; Horikawa, Hideaki; Kohmoto, Tomohiro; Masuda, Kiyoshi; Nakagawa, Ryuji; Ito, Hiromichi; Kagami, Shoji; Imoto, Issei

    2016-01-01

    Although chromosome 1p36 deletion syndrome is considered clinically recognizable based on characteristic features, the clinical manifestations of patients during infancy are often not consistent with those observed later in life. We report a 4-month-old girl who showed multiple congenital anomalies and developmental delay, but no clinical signs of syndromic disease caused by a terminal deletion in 1p36.32-p36.33 that was first identified by targeted-exome sequencing for molecular diagnosis.

  8. Chromosomal abnormalities in a psychiatric population

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W. [Univ. of Pittsburgh Medical Center, PA (United States)

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  9. Age-related differences in 1p and 19q deletions in oligodendrogliomas

    Directory of Open Access Journals (Sweden)

    Del Bigio Marc R

    2003-12-01

    Full Text Available Abstract Background Recent reports indicate that anaplastic oligodendrogliomas frequently show allelic losses on chromosome arms 1p and 19q, and that these deletions are associated with better chemotherapeutic response and overall patient survival. Because of the diversified genetic makeup of the population and the centralized provincial referral system for brain tumor patients in Manitoba, the epidemiological features of such tumors sometimes differ from the published data acquired from non-community based settings. In this study, we assessed the prevalence of allelic deletions for chromosome arms 1p and 19q in anaplastic and in low-grade oligodendrogliomas in the Manitoba population. Methods Loss of heterozygosity (LOH analysis of brain tumors was carried out using 4 microsatellite markers (D1S508, D1S2734, D19S219 and D19S412 and a PCR based assay. The tumors were consecutively acquired during the period September 1999–March 2001 and a total of 63 tumors were assessed. Results We found that allelic loss of chromosome 1p and 19q was higher in oligodendrogliomas than in other diffuse gliomas and that for anaplastic oligodendrogliomas, younger patients exhibited significantly more deletions than older patients (>60 years of age. Conclusions These studies suggest that age may be a factor in the genetic alterations of oligodendrogliomas. In addition, these studies demonstrate that this assay can easily be carried out in a cost-effective manner in a small tertiary center.

  10. Childhood pre-B cell acute lymphoblastic leukemia with translocation t(1;19)(q21.1;p13.3) and two additional chromosomal aberrations involving chromosomes 1, 6, and 13: a case report.

    Science.gov (United States)

    Wafa, Abdulsamad; As'sad, Manar; Liehr, Thomas; Aljapawe, Abdulmunim; Al Achkar, Walid

    2017-04-07

    The translocation t(1;19)(q23;p13), which results in the TCF3-PBX1 chimeric gene, is one of the most frequent rearrangements observed in B cell acute lymphoblastic leukemia. It appears in both adult and pediatric patients with B cell acute lymphoblastic leukemia at an overall frequency of 3 to 5%. Most cases of pre-B cell acute lymphoblastic leukemia carrying the translocation t(1;19) have a typical immunophenotype with homogeneous expression of CD19, CD10, CD9, complete absence of CD34, and at least diminished CD20. Moreover, the translocation t(1;19) correlates with known clinical high risk factors, such as elevated white blood cell count, high serum lactate dehydrogenase levels, and central nervous system involvement; early reports indicated that patients with translocation t(1;19) had a poor outcome under standard treatment. We report the case of a 15-year-old Syrian boy with pre-B cell acute lymphoblastic leukemia with abnormal karyotype with a der(19)t(1;19)(q21.1;p13.3) and two yet unreported chromosomal aberrations: an interstitial deletion 6q12 to 6q26 and a der(13)t(1;13)(q21.1;p13). According to the literature, cases who are translocation t(1;19)-positive have a significantly higher incidence of central nervous system relapse than patients with acute lymphoblastic leukemia without the translocation. Of interest, central nervous system involvement was also seen in our patient. To the best of our knowledge, this is the first case of childhood pre-B cell acute lymphoblastic leukemia with an unbalanced translocation t(1;19) with two additional chromosomal aberrations, del(6)(q12q26) and t(1;13)(q21.3;p13), which seem to be recurrent and could influence clinical outcome. Also the present case confirms the impact of the translocation t(1;19) on central nervous system relapse, which should be studied for underlying mechanisms in future.

  11. Chromosomal Abnormalities Associated With Omphalocele

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-03-01

    Full Text Available Fetuses with omphalocele have an increased risk for chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with umbilical cord cysts, complexity of associated anomalies, and the contents of omphalocele. There is considerable evidence that genetics contributes to the etiology of omphalocele. This article provides an overview of chromosomal abnormalities associated with omphalocele and a comprehensive review of associated full aneuploidy such as trisomy 18, trisomy 13, triploidy, trisomy 21, 45,X, 47,XXY, and 47,XXX, partial aneuploidy such as dup(3q, dup(11p, inv(11, dup(1q, del(1q, dup(4q, dup(5p, dup(6q, del(9p, dup(15q, dup(17q, Pallister-Killian syndrome with mosaic tetrasomy 12p and Miller-Dieker lissencephaly syndrome with deletion of 17p13.3, and uniparental disomy (UPD such as UPD 11 and UPD 14. Omphalocele is a prominent marker for chromosomal abnormalities. Perinatal identification of omphalocele should alert chromosomal abnormalities and familial unbalanced translocations, and prompt thorough cytogenetic investigations and genetic counseling.

  12. Clinical Utility of Array Comparative Genomic Hybridization for Detection of Chromosomal Abnormalities in Pediatric Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Rabin, Karen R.; Man, Tsz-Kwong; Yu, Alexander; Folsom, Matthew R.; Zhao, Yi-Jue; Rao, Pulivarthi H.; Plon, Sharon E.; Naeem, Rizwan C.

    2014-01-01

    Background Accurate detection of recurrent chromosomal abnormalities is critical to assign patients to risk-based therapeutic regimens for pediatric acute lymphoblastic leukemia (ALL). Procedure We investigated the utility of array comparative genomic hybridization (aCGH) for detection of chromosomal abnormalities compared to standard clinical evaluation with karyotype and fluorescent in-situ hybridization (FISH). Fifty pediatric ALL diagnostic bone marrows were analyzed by bacterial artificial chromosome (BAC) array, and findings compared to standard clinical evaluation. Results Sensitivity of aCGH was 79% to detect karyotypic findings other than balanced translocations, which cannot be detected by aCGH because they involve no copy number change. aCGH also missed abnormalities occurring in subclones constituting less than 25% of cells. aCGH detected 44 additional abnormalities undetected or misidentified by karyotype, 21 subsequently validated by FISH, including abnormalities in 4 of 10 cases with uninformative cytogenetics. aCGH detected concurrent terminal deletions of both 9p and 20q in three cases, in two of which the 20q deletion was undetected by karyotype. A narrow region of loss at 7p21 was detected in two cases. Conclusions An array with increased BAC density over regions important in ALL, combined with PCR for fusion products of balanced translocations, could minimize labor- and time-intensive cytogenetic assays and provide key prognostic information in the approximately 35% of cases with uninformative cytogenetics. PMID:18253961

  13. Refinement of genotype-phenotype correlation in 18 patients carrying a 1q24q25 deletion

    DEFF Research Database (Denmark)

    Chatron, Nicolas; Haddad, Véronique; Andrieux, Joris

    2015-01-01

    of different sizes (490 kb to 20.95 Mb) localized within chromosome bands 1q23.3-q31.2 (chr1:160797550-192912120, hg19). The 490 kb deletion is the smallest deletion reported to date associated with this phenotype. We delineated three regions that may contribute to the phenotype: a proximal one (chr1...

  14. Detailed clinical and molecular study of 20 females with Xq deletions with special reference to menstruation and fertility.

    Science.gov (United States)

    Mercer, Catherine L; Lachlan, Katherine; Karcanias, Alexandra; Affara, Nabeel; Huang, Shuwen; Jacobs, Patricia A; Thomas, N Simon

    2013-01-01

    Integrity of the long arm of the X chromosome is important for maintaining female fertility and several critical regions for normal ovarian function have been proposed. In order to understand further the importance of specific areas of the X chromosome, we describe a series of 20 previously unreported patients missing part of Xq in whom detailed phenotypic information has been gathered as well as precise chromosome mapping using array Comparative Genomic Hybridization. Features often associated with Turner syndrome were not common in our study and excluding puberty, menarche and menstruation, the phenotypes observed were present in only a minority of women and were not specific to the X chromosome. The most frequently occurring phenotypic features in our patients were abnormalities of menstruation and fertility. Larger terminal deletions were associated with a higher incidence of primary ovarian failure, occurring at a younger age; however patients with similar or even identical deletions had discordant menstrual phenotypes, making accurate genetic counselling difficult. Nevertheless, large deletions are likely to be associated with complete skewing of X inactivation so that the resulting phenotypes are relatively benign given the amount of genetic material missing, even in cases with unbalanced X;autosome translocations. Some degree of ovarian dysfunction is highly likely, especially for terminal deletions extending proximal to Xq27. In conjunction with patient data from the literature, our study suggests that loss of Xq26-Xq28 has the most significant effect on ovarian function. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Complex distal 10q rearrangement in a girl with mild intellectual disability: follow up of the patient and review of the literature of non-acrocentric satellited chromosomes.

    Science.gov (United States)

    Sarri, Catherine; Douzgou, Sofia; Gyftodimou, Yolanda; Tümer, Zeynep; Ravn, Kirstine; Pasparaki, Angela; Sarafidou, Theologia; Kontos, Harry; Kokotas, Haris; Karadima, Georgia; Grigoriadou, Maria; Pandelia, Effie; Theodorou, Virginia; Moschonas, Nicholas K; Petersen, Michael B

    2011-11-01

    We report on an intellectually disabled girl with a de novo satellited chromosome 10 (10qs) and performed a review of the literature of the non-acrocentric satellited chromosomes (NASC). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited non-acrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is, to our knowledge, the third report of a 10qs chromosome. The phenotype observed in the proband prompted a search for a structural rearrangement of chromosome 10q. By microsatellite analysis we observed a 4 Mb deletion on the long arm of chromosome 10, approximately 145 kb from the telomere. FISH and array CGH analyses revealed a complex rearrangement involving in range from the centromere to the telomere: A 9.64 Mb 10q26.11-q26.2 duplication, a 1.3 Mb region with no copy number change, followed by a 5.62 Mb 10q26.2-q26.3 deletion and a translocation of satellite material. The homology between the repeat sequences at 10q subtelomere region and the sequences on the acrocentric short arms may explain the origin of the rearrangement and it is likely that the submicroscopic microdeletion and microduplication are responsible for the abnormal phenotype in our patient. The patient presented here, with a 15-year follow-up, manifests a distinct phenotype different from the 10q26 pure distal monosomy and trisomy syndromes. Copyright © 2011 Wiley Periodicals, Inc.

  16. Genetics Home Reference: ring chromosome 14 syndrome

    Science.gov (United States)

    ... be something about the ring structure itself that causes epilepsy. Seizures may occur because certain genes on the ... mapping of telomeric 14q32 deletions: search for the cause of seizures. Am J Med Genet A. ... L, Elia M, Vigevano F. Epilepsy in ring 14 chromosome syndrome. Epilepsy Behav. 2012 ...

  17. R3-R4 deletion in the PRNP gene is associated with Creutzfeldt-Jakob disease (CJD)

    Energy Technology Data Exchange (ETDEWEB)

    Cervenakova, L.; Brown, P.; Nagle, J. [and others

    1994-09-01

    There are conflicting reports on the association of deletions in the PRNP gene on chromosome 20 with CJD, a rapidly progressive fatal spongiform encephalopathy. We accumulated data suggesting that a deletion of R3-R4 type (parts of the third and fourth repeats are deleted from the area of four repeating 24 bp sequences in the 5{prime} region of the gene) is causing CJD. Screening of 129 unaffected control individuals demonstrated presence of a deletion of R2 type in four (1.55% of the studied chromosomes), but none of them had the R3-R4 type. Of 181 screened patients with spongiform encephalopathies, two had a deletion of R3-R4 type with no other mutations in the coding sequence. Both patients had a classical rapidly progressive dementing disease and diffuse spongiform degeneration, and both cases were apparently sporadic. The same R3-R4 type of deletion was detected in three additional neuropathologically confirmed spongiform encephalopathy patients, of which two had other known pathogenic mutations in the PRNP gene: at codon 178 on the methionine allele exhibiting the phenotype of fatal familial insomnia, and codon 200 causing CJD with severe dementia; the third was a patient with iatrogenic CJD who developed the disease after treatment with growth hormone extracted from cadaveric human pituitary glands. In all cases the deletion coincided with a variant sequence at position 129 coding for methionine.

  18. Chromosome 13q deletion and IgH abnormalities may be both masked by near-tetraploidy in a high proportion of multiple myeloma patients: a combined morphology and I-FISH analysis.

    Science.gov (United States)

    Koren-Michowitz, Maya; Hardan, Izhar; Berghoff, Janina; Yshoev, Galina; Amariglio, Ninette; Rechavi, Gideon; Nagler, Arnon; Trakhtenbrot, Luba

    2007-10-08

    Ploidy status and chromosomal aberrations involving chromosome 13q and the immunoglobulin heavy chain locus (IgH) are important prognostic features in multiple myeloma (MM). However, conventional cytogenetic studies are often not reveling and determination of plasma cells (PC) ploidy status in MM is technically difficult. We have used a combined cell morphology and interphase FISH (I-FISH) analysis in 184 consecutive BM samples from 136 MM patients for the diagnosis of chromosome 13q deletion [del (13q)] and IgH abnormalities. We have found a high prevalence (37%) of near-tetraploid (NT) PC in the BM samples studied. NT status of PC was verified with DNA index (DI) measurements. del (13q) was found in 69% and a total absence of one IgH copy (loss of IgH) in 20% of NT samples. We have shown that the presence of del (13q) and loss of IgH can be masked in NT cases: in 12 NT samples originally identified as normal for del (13q) the abnormality was obscured in the majority of plasma cells due to the presence of NT. Similarly, loss of IgH was masked in four samples with a large population of NT cells. Moreover, in one case the appearance of a 100% tetraploidy during disease progression masked the presence of del (13q), originally present, and could therefore falsely appear as disappearance of this prognostic marker. In conclusion, we have shown that a combination of three abnormalities, i.e., del (13q), loss of IgH and NT, all of potential prognostic significance, can be overlooked unless NT is specifically searched for and ruled out. Therefore, we suggest that a search for NT should be added to the routine BM assessment in MM patients.

  19. Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: additional evidence of autoimmunity or IDDM gene(s) on chromosome 18

    OpenAIRE

    Dacou-Voutetakis, C; Sertedaki, A; Maniatis-Christid..., M; Sarri, C; Karadima, G; Petersen, M; Xaidara, A; Kanariou, M; Nicolaidou, P

    1999-01-01

    A 4 year 3 month old boy with insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, slight mental retardation, facial dysmorphism, and a de novo ring chromosome 18 (deletion 18q22.3-18qter) is described. This unique association of defects could represent a chance association. Alternatively, the clinical features could be the result of the chromosomal aberration. If so, one could speculate that a gene or genes on chromosome 18 might act as a suppressor or activator of the autoimm...

  20. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Castanos-Velez Esmeralda

    2006-09-01

    Full Text Available Abstract Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.

  1. Chromosome aberrations in cultured skin cells obtained from atomic bomb survivors

    International Nuclear Information System (INIS)

    Honda, Takeo; Sadamori, Naoki.

    1989-01-01

    Skin specimens were obtained from 11 A-bomb survivors, 10 of whom had been exposed at ≤2300 m from the hypocenter, and 7 non-exposed controls. There was a higher frequency (12%, 147/1222 cells) of chromosome aberrations in the exposed group compared with 1.2% (4/341 cells) in the control group. This suggests that aberrant cells are still present in the skin tissue 40 years or more after the bombing. Of 147 cells, 136 cells (91.3%) showed translocation of chromosome. Other aberrations, such as inversion, deletion, dicentric chromosome and acentric fragment, were observed in only 3.8%. These aberrant cells tended to be observed in A-bomb survivors exposed to high doses and with a history of severe acute symptoms. One hundred and twenty two (83%) of 136 aberrant cells were obtained from 3 A-bomb survivors, which has important implications for marked proliferation of specific clone cells. In an analysis by B-band staining technique for the 122 cells, band sites of break point were found to correspond to loci of protooncogenes, suggesting the involvement in aggressive proliferation of clone cells. (Namekawa, K)

  2. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    Directory of Open Access Journals (Sweden)

    Xiaohong Gong

    Full Text Available Intellectual disability (ID is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%, while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  3. 17q12 Deletion in a patient with Williams syndrome: Case report and review of the literature.

    Science.gov (United States)

    Cohen, Lilian; Samanich, Joy; Pan, Quilu; Mehta, Lakshmi; Marion, Robert

    2012-06-01

    Williams syndrome (WS) is a complex genomic disorder entailing distinctive facial dysmorphism, cardiovascular abnormalities, intellectual disabilities, unusual behavioral features, and a specific cognitive profile with considerable variability. Additional symptoms include endocrine abnormalities, renal anomalies and connective tissue disorders. We report a monozygotic twin patient with WS who presented with multicystic kidneys in the newborn period, and, in addition to the typical WS deletion at 7q11.23, was found to have a de novo 1.7 Mb deletion in the 17q12 region on microarray comparative genomic hybridization. The co-twin was selectively terminated at 23 wk of gestation after being diagnosed with bilateral multicystic dysplastic kidneys and anhydramnios. Review of the literature shows that deletion of chromosome 17q12, encompassing hepatocyte nuclear factor 1beta gene, is associated with cystic renal disease and is the first recurrent genomic deletion associated with maturity onset diabetes of the young. In addition, reports of female reproductive tract malformations and patients with neurocognitive or psychiatric phenotypes have recently been described. This review of the literature summarizes 47 other cases involving 17q12 deletions with wide variability in phenotype, possibly suggesting a contiguous gene syndrome. It is likely that the additional 17q12 deletion has played a role in modifying the phenotype in our patient. This case highlights the importance of using array comparative genomic hybridization in the clinical setting to uncover the etiology of atypical findings in individuals with known microdeletion syndromes.

  4. Genetic Analysis of a Mammalian Chromosomal Origin of Replication

    National Research Council Canada - National Science Library

    Altman, Amy

    2002-01-01

    .... We have shown that a 5.8 kb DNA fragment containing the initiation region (IR) DHFR ori-beta is active at ectopic chromosomal locations in hamster cells and that deletion of three specific elements in ori-beta reduced initiation activity...

  5. Acquired retinal pigmentary degeneration in a child with 13q deletion syndrome.

    Science.gov (United States)

    Aguilera, Zenia P; Belin, Peter J; Cavuoto, Kara M; Jayakar, Parul; McKeown, Craig A

    2015-10-01

    Orbeli syndrome, or 13q deletion syndrome, is a rare condition caused by a distal deletion in the long arm of chromosome 13. The syndrome is characterized by severe physical malformations and developmental delays and has been associated with numerous ocular manifestations. We report the case of a 10-year-old boy with 13q deletion syndrome, who was evaluated for impaired vision and found to have bilateral retinal pigmentary changes resembling those seen in retinitis pigmentosa. There has only been one other case of retinal pigment variation in association with 13q deletion syndrome; however, this represents the first case of bilateral symmetric retinal pigmentary changes with corresponding rod and cone dysfunction on electroretinography. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  6. De novo unbalanced translocation (4p duplication/8p deletion) in a patient with autism, OCD, and overgrowth syndrome.

    Science.gov (United States)

    Sagar, Angela; Pinto, Dalila; Najjar, Fedra; Guter, Stephen J; Macmillan, Carol; Cook, Edwin H

    2017-06-01

    Chromosomal abnormalities, such as unbalanced translocations and copy number variants (CNVs), are found in autism spectrum disorders (ASDs) [Sanders et al. (2011) Neuron 70: 863-885]. Many chromosomal abnormalities, including sub microscopic genomic deletions and duplications, are missed by G-banded karyotyping or Fragile X screening alone and are picked up by chromosomal microarrays [Shen et al. (2010) Pediatrics 125: e727-735]. Translocations involving chromosomes 4 and 8 are possibly the second most frequent translocation in humans and are often undetected in routine cytogenetics [Giglio et al. (2002) Circulation 102: 432-437]. Deletions of 4p16 have been associated with Wolf-Hirschhorn syndrome while 4p16 duplications have been associated with an overgrowth syndrome and mild to moderate mental retardation [Partington et al. (1997) Journal of Medical Genetics 34: 719-728]. The 8p23.3 region contains the autism candidate gene DLGAP2, which can contribute to autism when disrupted [Marshall et al. (2008) The American Journal of Human Genetics 82: 477-488] . There has been a case report of a family with autism spectrum disorder (ASD), prominent obsessional behavior, and overgrowth in patients with der (8) t (4;8) p (16;23) [Partington et al. (1997)]. This is an independent report of a male patient with autism, obsessive compulsive disorder (OCD), attention-deficit hyperactivity disorder (ADHD), and an overgrowth syndrome, whose de novo unbalanced translocation der (8) t (4;8) p (16.1→ter; 23.1→ter) was initially missed by routine cytogenetics but detected with SNP microarray, allowing higher resolution of translocation breakpoints. © 2017 Wiley Periodicals, Inc.

  7. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. I. Results obtained after hybridization of human cells carrying reciprocal translocations involving chromosome 1.

    Science.gov (United States)

    Jongsma, A P; Burgerhout, W G

    1977-01-01

    Regional localization studies of genes coding for human PGD, PPH1, PGM1, UGPP, GuK1, Pep-C, and FH, which have been assigned to chromosome 1, were performed with man-Chinese hamster somatic cell hybrids, Informative hybrids that retained fragments of the human chromosome 1 were produced by fusion of hamster cells with human cells carrying reciprocal translocations involving chromosome 1. Analysis of the hybrids that retained one of the translocation chromosomes or de novo rearrangements involving the human 1 revealed the following gene positions: PGD and PPH1 in 1pter leads to 1p32, PGM1 in 1p32 leads to 1p22, UGPP and GuK1 in 1q21 leads to 1q42, FH in 1qter leads to 1q42, and Pep-C probably in 1q42.

  8. Submicroscopic duplication of the Wolf-Hirschhorn critical region with a 4p terminal deletion.

    Science.gov (United States)

    Roselló, M; Monfort, S; Orellana, C; Ferrer-Bolufer, I; Quiroga, R; Oltra, S; Martínez, F

    2009-01-01

    Chromosomal rearrangements in the short arm of chromosome 4 can result in 2 different clinical entities: Wolf-Hirschhorn syndrome (WHS), characterized by severe growth delay, mental retardation, microcephaly, 'Greek helmet' facies, and closure defects, or partial 4p trisomy, associated with multiple congenital anomalies, mental retardation, and facial dysmorphisms. We present clinical and laboratory findings in a patient who showed a small duplication in 4p16.3 associated with a subtle terminal deletion in the same chromosomal region. GTG-banding analyses, multiplex ligation-dependent probe amplification analyses, and studies by array-based comparative genomic hybridization were performed. The results of the analyses revealed a de novo 1.3 Mb deletion of the terminal 4p and a 1.1 Mb duplication in our patient, encompassing the WHS critical region. Interestingly, this unusual duplication/deletion rearrangement results in an intermediate phenotype that shares characteristics of the WHS and the 4p trisomy syndrome. The use of novel technologies in the genetic diagnosis leads to the description of new clinical syndromes; there is a growing list of microduplication syndromes. Therefore, we propose that overexpression of candidate genes in WHS (WHSC1, WHSC2 and LETM1) due to a duplication causes a clinical entity different to both the WHS and 4p trisomy syndrome. (c) 2009 S. Karger AG, Basel.

  9. Application of molecular cytogenetic techniques to clarify apparently balanced complex chromosomal rearrangements in two patients with an abnormal phenotype: case report

    Directory of Open Access Journals (Sweden)

    Rongen Michel A

    2009-07-01

    Full Text Available Abstract Background Complex chromosomal rearrangements (CCR are rare cytogenetic findings that are difficult to karyotype by conventional cytogenetic analysis partially because of the relative low resolution of this technique. High resolution genotyping is necessary in order to identify cryptic imbalances, for instance near the multiple breakpoints, to explain the abnormal phenotype in these patients. We applied several molecular techniques to elucidate the complexity of the CCRs of two adult patients with abnormal phenotypes. Results Multicolour fluorescence in situ hybridization (M-FISH showed that in patient 1 the chromosomes 1, 10, 15 and 18 were involved in the rearrangement whereas for patient 2 the chromosomes 5, 9, 11 and 13 were involved. A 250 k Nsp1 SNP-array analysis uncovered a deletion in chromosome region 10p13 for patient 1, harbouring 17 genes, while patient 2 showed no pathogenic gains or losses. Additional FISH analysis with locus specific BAC-probes was performed, leading to the identification of cryptic interstitial structural rearrangements in both patients. Conclusion Application of M-FISH and SNP-array analysis to apparently balanced CCRs is useful to delineate the complex chromosomal rearrangement in detail. However, it does not always identify cryptic imbalances as an explanation for the abnormal phenotype in patients with a CCR.

  10. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    2010-08-01

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  11. Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: additional evidence of autoimmunity or IDDM gene(s) on chromosome 18.

    Science.gov (United States)

    Dacou-Voutetakis, C; Sertedaki, A; Maniatis-Christidis, M; Sarri, C; Karadima, G; Petersen, M B; Xaidara, A; Kanariou, M; Nicolaidou, P

    1999-02-01

    A 4 year 3 month old boy with insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, slight mental retardation, facial dysmorphism, and a de novo ring chromosome 18 (deletion 18q22.3-18qter) is described. This unique association of defects could represent a chance association. Alternatively, the clinical features could be the result of the chromosomal aberration. If so, one could speculate that a gene or genes on chromosome 18 might act as a suppressor or activator of the autoimmune process by itself or in concert with other IDDM loci.

  12. Molecular genetic characterization of a prenatally detected de novo interstitial deletion of chromosome 2q (2q31.1-q32.1 encompassing HOXD13, ZNF385B and ZNF804A associated with syndactyly and increased first-trimester nuchal translucency

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2017-06-01

    Conclusion: Fetuses with an interstitial deletion of 2q31.1-q32.1 may be associated with increased first-trimester NT. Haploinsufficiency of HOXD13 is associated with syndactyly. Genomic microarray is useful in detecting subtle chromosomal abnormalities in fetuses with increased NT and normal karyotype.

  13. [Diagnosis of a case with Williams-Beuren syndrome with nephrocalcinosis using chromosome microarray analysis].

    Science.gov (United States)

    Jin, S J; Liu, M; Long, W J; Luo, X P

    2016-12-02

    Objective: To explore the clinical phenotypes and the genetic cause for a boy with unexplained growth retardation, nephrocalcinosis, auditory anomalies and multi-organ/system developmental disorders. Method: Routine G-banding and chromosome microarray analysis were applied to a child with unexplained growth retardation, nephrocalcinosis, auditory anomalies and multi-organ/system developmental disorders treated in the Department of Pediatrics of Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology in September 2015 and his parents to conduct the chromosomal karyotype analysis and the whole genome scanning. Deleted genes were searched in the Decipher and NCBI databases, and their relationships with the clinical phenotypes were analyzed. Result: A six-month-old boy was refered to us because of unexplained growth retardation and feeding intolerance.The affected child presented with abnormal manifestation such as special face, umbilical hernia, growth retardation, hypothyroidism, congenital heart disease, right ear sensorineural deafness, hypercalcemia and nephrocalcinosis. The child's karyotype was 46, XY, 16qh + , and his parents' karyotypes were normal. Chromosome microarray analysis revealed a 1 436 kb deletion on the 7q11.23(72701098_74136633) region of the child. This region included 23 protein-coding genes, which were reported to be corresponding to Williams-Beuren syndrome and its certain clinical phenotypes. His parents' results of chromosome microarray analysis were normal. Conclusion: A boy with characteristic manifestation of Williams-Beuren syndrome and rare nephrocalcinosis was diagnosed using chromosome microarray analysis. The deletion on the 7q11.23 might be related to the clinical phenotypes of Williams-Beuren syndrome, yet further studies are needed.

  14. Deletion of 7q34-q36.2 in two siblings with mental retardation, language delay, primary amenorrhea, and dysmorphic features

    DEFF Research Database (Denmark)

    Sehested, Line T; Møller, Rikke S; Bache, Iben

    2010-01-01

    We describe a chromosome rearrangement, ins(7;13)(q32q34;q32), which segregates in a three generation family, giving rise to three individuals with an unbalanced rearrangement. Two of the individuals, a sister and a brother, were investigated further in this study. They had minor facial dysmorphi...... patients with previously reported patients, supports that haploinsuffiency of CNTNAP2 can result in language delay and/or autism spectrum disorder. Furthermore, we report on the second women with a deletion involving NOBOX who is affected by primary amenorrhea.......We describe a chromosome rearrangement, ins(7;13)(q32q34;q32), which segregates in a three generation family, giving rise to three individuals with an unbalanced rearrangement. Two of the individuals, a sister and a brother, were investigated further in this study. They had minor facial dysmorphism...... and neuropsychiatric disorders including mental retardation, language delay and epilepsy. The sister had primary amenorrhea. Array CGH revealed a 12.2¿Mb deletion at 7q34-q36.2 including more than 60 genes where CNTNAP2 and NOBOX are of special interest. Comparison of the clinical and cytogenetic findings of our...

  15. Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis.

    Science.gov (United States)

    Rachinger, Michael; Bauch, Melanie; Strittmatter, Axel; Bongaerts, Johannes; Evers, Stefan; Maurer, Karl-Heinz; Daniel, Rolf; Liebl, Wolfgang; Liesegang, Heiko; Ehrenreich, Armin

    2013-09-20

    Conjugative shuttle vectors of the pKVM series, based on an IncP transfer origin and the pMAD vector with a temperature sensitive replication were constructed to establish a markerless gene deletion protocol for Bacilli without natural competence such as the exoenzyme producer Bacillus licheniformis. The pKVM plasmids can be conjugated to strains of B. licheniformis and B. subtilis. For chromosomal gene deletion, regions flanking the target gene are fused and cloned in a pKVM vector prior to conjugative transfer from Escherichia coli to B. licheniformis. Appropriate markers on the vector backbone allow for the identification of the integration at the target locus and thereafter the vector excision, both events taking place via homologous recombination. The functionality of the deletion system was demonstrated with B. licheniformis by a markerless 939 bp in-frame deletion of the yqfD gene and the deletion of a 31 kbp genomic segment carrying a PBSX-like prophage. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Novel interstitial deletion of 10q24.3-25.1 associated with multiple congenital anomalies including lobar holoprosencephaly, cleft lip and palate, and hypoplastic kidneys.

    Science.gov (United States)

    Peltekova, Iskra T; Hurteau-Millar, Julie; Armour, Christine M

    2014-12-01

    Chromosome 10q deletions are rare and phenotypically diverse. Such deletions differ in length and occur in numerous regions on the long arm of chromosome 10, accounting for the wide clinical variability. Commonly reported findings include dysmorphic facial features, microcephaly, developmental delay, and genitourinary abnormalities. Here, we report on a female patient with a novel interstitial 5.54 Mb deletion at 10q24.31-q25.1. This patient had findings in common with a previously reported patient with an overlapping deletion, including renal anomalies and an orofacial cleft, but also demonstrated lobar holoprosencephaly and a Dandy-Walker malformation, features which have not been previously reported with 10q deletions. An analysis of the region deleted in our patient showed numerous genes, such as KAZALD1, PAX2, SEMA4G, ACTRA1, INA, and FGF8, whose putative functions may have played a role in the phenotype seen in our patient. © 2014 Wiley Periodicals, Inc.

  17. The frequency of previously undetectable deletions involving 3' Exons of the PMS2 gene.

    Science.gov (United States)

    Vaughn, Cecily P; Baker, Christine L; Samowitz, Wade S; Swensen, Jeffrey J

    2013-01-01

    Lynch syndrome is characterized by mutations in one of four mismatch repair genes, MLH1, MSH2, MSH6, or PMS2. Clinical mutation analysis of these genes includes sequencing of exonic regions and deletion/duplication analysis. However, detection of deletions and duplications in PMS2 has previously been confined to Exons 1-11 due to gene conversion between PMS2 and the pseudogene PMS2CL in the remaining 3' exons (Exons 12-15). We have recently described an MLPA-based method that permits detection of deletions of PMS2 Exons 12-15; however, the frequency of such deletions has not yet been determined. To address this question, we tested for 3' deletions in 58 samples that were reported to be negative for PMS2 mutations using previously available methods. All samples were from individuals whose tumors exhibited loss of PMS2 immunohistochemical staining without concomitant loss of MLH1 immunostaining. We identified seven samples in this cohort with deletions in the 3' region of PMS2, including three previously reported samples with deletions of Exons 13-15 (two samples) and Exons 14-15. Also detected were deletions of Exons 12-15, Exon 13, and Exon 14 (two samples). Breakpoint analysis of the intragenic deletions suggests they occurred through Alu-mediated recombination. Our results indicate that ∼12% of samples suspected of harboring a PMS2 mutation based on immunohistochemical staining, for which mutations have not yet been identified, would benefit from testing using the new methodology. Copyright © 2012 Wiley Periodicals, Inc.

  18. Identification of a novel large intragenic deletion in a family with Fanconi anemia: first molecular report from India and review of literature.

    Science.gov (United States)

    Shukla, Pallavi; Rao, Anita; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2013-04-15

    We report here an Indian case with Fanconi anemia (FA) presented with fever, pallor, short stature, hyperpigmentation and upper limb anomaly. Chromosome breakage analysis together with FANCD2 Western blot monoubiquitination assay confirmed the diagnosis as FA. Multiplex ligation-dependent probe amplification (MLPA) revealed a novel homozygous large intragenic deletion (exons 8-27 del) in the FANCA gene in the proband. His sib and parents were also analyzed and found to be heterozygous for the same mutation. We also reviewed the literature of FANCA large intragenic deletions found in FA patients from different countries and the mechanism involved in the formation of these deletions. To the best of our knowledge, this is the first molecular report from India on FA. The finding expands the mutation spectrum of the FANCA gene. Identification of the mutation confirms the diagnosis of FA at DNA level and helps in providing proper genetic counseling to the family. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Genotype call for chromosomal deletions using read-depth from whole genome sequence variants in cattle

    DEFF Research Database (Denmark)

    Mesbah-Uddin, Md; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2018-01-01

    We presented a deletion genotyping (copy-number estimation) method that leverages population-scale whole genome sequence variants data from 1K bull genomes project (1KBGP) to build reference panel for imputation. To estimate deletion-genotype likelihood, we extracted read-depth (RD) data of all...

  20. Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites

    Directory of Open Access Journals (Sweden)

    Pierce Levi CT

    2009-01-01

    Full Text Available Abstract Background Gene rearrangements such as chromosomal translocations have been shown to contribute to cancer development. Human chromosomal fragile sites are regions of the genome especially prone to breakage, and have been implicated in various chromosome abnormalities found in cancer. However, there has been no comprehensive and quantitative examination of the location of fragile sites in relation to all chromosomal aberrations. Results Using up-to-date databases containing all cancer-specific recurrent translocations, we have examined 444 unique pairs of genes involved in these translocations to determine the correlation of translocation breakpoints and fragile sites in the gene pairs. We found that over half (52% of translocation breakpoints in at least one gene of these gene pairs are mapped to fragile sites. Among these, we examined the DNA sequences within and flanking three randomly selected pairs of translocation-prone genes, and found that they exhibit characteristic features of fragile DNA, with frequent AT-rich flexibility islands and the potential of forming highly stable secondary structures. Conclusion Our study is the first to examine gene pairs involved in all recurrent chromosomal translocations observed in tumor cells, and to correlate the location of more than half of breakpoints to positions of known fragile sites. These results provide strong evidence to support a causative role for fragile sites in the generation of cancer-specific chromosomal rearrangements.

  1. Genotype-Phenotype Analysis, Neuropsychological Assessment, and Growth Hormone Response in a Patient with 18p Deletion Syndrome.

    Science.gov (United States)

    Sun, Huihui; Wan, Naijun; Wang, Xinli; Chang, Liang; Cheng, Dazhi

    2018-01-01

    18p deletion syndrome is a rare chromosomal disease caused by deletion of the short arm of chromosome 18. By using cytogenetic and SNP array analysis, we identified a girl with 18p deletion syndrome exhibiting craniofacial anomalies, intellectual disability, and short stature. G-banding analysis of metaphase cells revealed an abnormal karyotype 46,XX,del(18)(p10). Further, SNP array detected a 15.3-Mb deletion at 18p11.21p11.32 (chr18:12842-15375878) including 61 OMIM genes. Genotype-phenotype correlation analysis showed that clinical manifestations of the patient were correlated with LAMA1, TWSG1, and GNAL deletions. Her neuropsychological assessment test demonstrated delay in most cognitive functions including impaired mathematics, linguistic skills, visual motor perception, respond speed, and executive function. Meanwhile, her integrated visual and auditory continuous performance test (IVA-CPT) indicated a severe comprehensive attention deficit. At age 7 and 1/12 years, her height was 110.8 cm (-2.5 SD height for age). Growth hormone (GH) treatment was initiated. After 27 months treatment, her height was increased to 129.6 cm (-1.0 SD height for age) at 9 and 4/12 years, indicating an effective response to GH treatment. © 2018 S. Karger AG, Basel.

  2. Periventricular heterotopia and white matter abnormalities in a girl with mosaic ring chromosome 6.

    Science.gov (United States)

    Nishigaki, Satsuki; Hamazaki, Takashi; Saito, Mika; Yamamoto, Toshiyuki; Seto, Toshiyuki; Shintaku, Haruo

    2015-01-01

    Ring chromosome 6 is a rare chromosome abnormality that arises typically de novo. The phenotypes can be highly variable, ranging from almost normal to severe malformations and neurological defects. We report a case of a 3-year-old girl with mosaic ring chromosome 6 who presented with being small for gestational age and intellectual disability, and whose brain MRI later revealed periventricular heterotopia and white matter abnormalities. Mosaicism was identified in peripheral blood cells examined by standard G-bands, mos 46,XX,r(6)(p25q27)[67]/45,XX,-6[25]/46,XX,dic r(6:6)(p25q27:p25q27)[6]/47,XX,r(6)(p25q27) × 2[2]. Using array-comparative genomic hybridization, we identified terminal deletion of 6q27 (1.5 Mb) and no deletion on 6p. To our knowledge, this is the first report of periventricular heterotopia and white matter abnormalities manifested in a patient with ring chromosome 6. These central nervous system malformations are further discussed in relation to molecular genetics.

  3. Deletion of GOLGA2P3Y but not GOLGA2P2Y is a risk factor for oligozoospermia.

    Science.gov (United States)

    Sen, Sanjukta; Agarwal, Rupesh; Ambulkar, Prafulla; Hinduja, Indira; Zaveri, Kusum; Gokral, Jyotsna; Pal, Asoke; Modi, Deepak

    2016-02-01

    The AZFc locus on the human Y chromosome harbours several multicopy genes, some of which are required for spermatogenesis. It is believed that deletion of one or more copies of these genes is a cause of infertility in some men. GOLGA2LY is one of the genes in the AZFc locus and it exists in two copies, GOLGA2P2Y and GOLGA2P3Y. The involvement of GOLGA2LY gene copy deletions in male infertility, however, is unknown. This study aimed to investigate the association of deletions of GOLGA2P2Y and GOLGA2P3Y gene copies with male infertility and with sperm concentration and motility. The frequency of GOLGA2P3Y deletion was significantly higher in oligozoospermic men compared with normozoospermic men (7.7% versus 1.2%; P = 0.0001), whereas the frequency of GOLGA2P2Y deletion was comparable between oligozoospermic and normozoospermic men (10.3% versus 11.3%). The deletion of GOLGA2P3Y but not GOLGA2P2Y was significantly higher (P = 0.03) in men with gr/gr rearrangements, indicating that GOLGA2P3Y deletions increase the susceptibility of men with gr/gr rearrangements to oligozoospermia. Furthermore, men with GOLGA2P3Y deletion had reduced sperm concentration and motility compared with men without deletion or with deletion of GOLGA2P2Y. These findings indicate GOLGA2P3Y gene copy may be candidate AZFc gene for male infertility. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Mandatory chromosomal segment balance in aneuploid tumor cells

    International Nuclear Information System (INIS)

    Kost-Alimova, Maria; Stanbridge, Eric; Klein, George; Imreh, Stefan; Darai-Ramqvist, Eva; Yau, Wing Lung; Sandlund, Agneta; Fedorova, Ludmila; Yang, Ying; Kholodnyuk, Irina; Cheng, Yue; Li Lung, Maria

    2007-01-01

    Euploid chromosome balance is vitally important for normal development, but is profoundly changed in many tumors. Is each tumor dependent on its own structurally and numerically changed chromosome complement that has evolved during its development and progression? We have previously shown that normal chromosome 3 transfer into the KH39 renal cell carcinoma line and into the Hone1 nasopharyngeal carcinoma line inhibited their tumorigenicity. The aim of the present study was to distinguish between a qualitative and a quantitative model of this suppression. According to the former, a damaged or deleted tumor suppressor gene would be restored by the transfer of a normal chromosome. If so, suppression would be released only when the corresponding sequences of the exogenous normal chromosome are lost or inactivated. According to the alternative quantitative model, the tumor cell would not tolerate an increased dosage of the relevant gene or segment. If so, either a normal cell derived, or, a tumor derived endogenous segment could be lost. Fluorescence in Situ Hybridization based methods, as well as analysis of polymorphic microsatellite markers were used to follow chromosome 3 constitution changes in monochromosomal hybrids. In both tumor lines with introduced supernumerary chromosomes 3, the copy number of 3p21 or the entire 3p tended to fall back to the original level during both in vitro and in vivo growth. An exogenous, normal cell derived, or an endogenous, tumor derived, chromosome segment was lost with similar probability. Identification of the lost versus retained segments showed that the intolerance for increased copy number was particularly strong for 3p14-p21, and weaker for other 3p regions. Gains in copy number were, on the other hand, well tolerated in the long arm and particularly the 3q26-q27 region. The inability of the cell to tolerate an experimentally imposed gain in 3p14-p21 in contrast to the well tolerated gain in 3q26-q27 is consistent with the

  5. Analysis of 22q11.2 deletions by FISH in a series of velocardiofacial syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Ravnan, J.B.; Golabi, M.; Lebo, R.V. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    Deletions in chromosome 22 band q11.2 have been associated with velocardiofacial (VCF or Shprintzen) syndrome and the DiGeorge anomaly. A study of VCF patients evaluated at the UCSF Medical Center was undertaken to correlate disease phenotype with presence or absence of a deletion. Patients referred for this study had at least two of the following: dysmorphic facial features, frequent ear infections or hearing loss, palate abnormalities, thymic hypoplasia, hypocalcemia, congenital heart defect, hypotonia, and growth or language delay. Fluorescence in situ hybridization (FISH) using the DiGeorge critical region probe N25 was used to classify patients according to the presence or absence of a deletion in 22q11.2, and the results were compared to clinical characteristics. We have completed studies on 58 patients with features of VCF. Twenty-one patients (36%) were found to have a deletion in 22q11.2 by FISH. A retrospective study of archived slides from 14 patients originally studied only by prometaphase GTG banding found six patients had a deletion detected by FISH; of these, only two had a microscopically visible chromosome deletion. Our study of 11 sets of parents of children with the deletion found two clinically affected mothers with the deletion, including one with three of three children clinically affected. A few patients who did not fit the classical VCF description had a 22q11.2 deletion detected by FISH. These included one patient with both cleft lip and palate, and another with developmental delay and typical facial features but no cardiac or palate abnormalities. Both patients with the DiGeorge anomaly as part of VCF had the deletion. On the other hand, a number of patients diagnosed clinically with classical VCF did not have a detectable deletion. This raises the question whether they represent a subset of patients with a defect of 22q11.2 not detected by the N25 probe, or whether they represent a phenocopy of VCF.

  6. Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenic forms of Burkitt lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Neri, A.; Barriga, F.; Knowles, D.M.; Magrath, I.T.; Dalla-Favera, R.

    1988-04-01

    The authors show that endemic (eBL), sporadic (sBL), and acquired immunodeficiency syndrome-associated (AIDS-BL) forms of Burkitt lymphoma (BL) carrying t(8; 14) chromosomal translocations display different breakpoints within the immunoglobulin heavy-chain locus (IGH) on chromosome 14. In sBL (7 out of 11) and AIDS-BL (5 out of 6), the breakpoints occurred within or near the IGH ..mu.. switch (S/sub mu/) region on chromosome 14 and within the c-myc locus (MYC) on chromosome 8. In most eBL (13 out of 16) the breakpoints were mapped within or 5' to the IGH joining J/sub H/ region on chromosome 14 and outside the MYC locus on chromosome 8. Cloning and sequencing of the (8; 14) chromosomal junctions from two eBL cell lines and one eBL biopsy sample show that the recombination do not involve IGH-specific recombination signals on chromosome 14 or homologous sequences on chromosome 8, suggesting that these events are not likely to be mediated by the same mechanisms or enzymes as in IGH rearrangements. In general, these data have implications for the timing of occurrence of chromosomal translocations during B-cell differentiation in different BL types.

  7. Role of Loss of Heterozygosity on Chromosomes 8 and 9 in the Development and Progression of Cancer Bladder

    International Nuclear Information System (INIS)

    Abdel Wahab, A.A.; El-Husseini, M.I.; Abo-Zeid, H.I.; Ismail, M.; El-Khor, A.M.

    2005-01-01

    Loss of heterozygosity (LOH) in tumor samples is believed to be a marker for the absence of a functional tumor suppressor gene. Non-random chromosome deletion and LOH at specific chromosomal regions are identified in a number of common human cancers including carcinoma of the bladder, which is considered the most predominant cancer in Egypt due to the prevalence of schistosomiasis. Purpose: The main objective of the present study is to clarify the role of chromosomes 8 and 9 in the establishment and/or progression of schistosomiasis-related bladder cancer through detection of LOH of 8 micro satellite markers on both chromosomes. It also aims to compare the LOH pattern of the tested markers between schistosomiasis-associated and non schistosomiasis-associated bladder cancer. Material and Methods: To achieve this purpose, DNA was extracted from the tumor specimens and the corresponding peripheral blood samples of 42 primary bladder cancer patients (schistosomal and non schistosomal). Twenty nine of these were diagnosed as squamous cell type (SCC), II were transitional (TCC), and 2 were adenocarcinoma (with different stages and grades). LOH at chromosomes 8 and 9 was evaluated for 8 highly polymorphic micro satellite markers distributed at different regions of both chromosomes using the dinucleotide repeat-PCR technique. The overall percentage of LOH in chromosome 8 was 74% in at least one marker. The highest incidence of LOH was recorded for D8S84 (41 %) followed by 37% for D8S87, 29% for D8S85, and 25% for D8S88. Deletions at chromosome 8 were shown to be associated with high grade of the tumor and LOH at D8S85 was associated with metastatic lymph nodes. The overall percentage of LOH in chromosome 9 was 54% and its highest incidence was for D9S 126 (36%), followed by 26%, 21 %, 19% for D9S166, D9S128 and D9S180, respectively. Fifty nine percent (59%) of the cases with LOH at 9q were diagnosed as squamous cell type (SCC), whereas 9% only were transitional cell type

  8. Sorting genomes by reciprocal translocations, insertions, and deletions.

    Science.gov (United States)

    Qi, Xingqin; Li, Guojun; Li, Shuguang; Xu, Ying

    2010-01-01

    The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome Pi into another genome Gamma, with the restriction that Pi and Gamma contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron's SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of Pi is a subset (or superset, respectively) of the gene set of Gamma, we present an approximation algorithm for transforming Pi into Gamma by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform Pi into Gamma; if Pi and Gamma have different genes but not containing each other, we give a heuristic to transform Pi into Gamma by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.

  9. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate.

    Science.gov (United States)

    Zhang, Z; Cavalier-Smith, T; Green, B R

    2001-08-01

    Chloroplast genes of several dinoflagellate species are located on unigenic DNA minicircular chromosomes. We have now completely sequenced five aberrant minicircular chromosomes from the dinoflagellate Heterocapsa triquetra. These probably nonfunctional DNA circles lack complete genes, with each being composed of several short fragments of two or three different chloroplast genes and a common conserved region with a tripartite 9G-9A-9G core like the putative replicon origin of functional single-gene circular chloroplast chromosomes. Their sequences imply that all five circles evolved by differential deletions and duplications from common ancestral circles bearing fragments of four genes: psbA, psbC, 16S rRNA, and 23S rRNA. It appears that recombination between separate unigenic chromosomes initially gave intermediate heterodimers, which were subsequently stabilized by deletions that included part or all of one putative replicon origin. We suggest that homologous recombination at the 9G-9A-9G core regions produced a psbA/psbC heterodimer which generated two distinct chimeric circles by differential deletions and duplications. A 23S/16S rRNA heterodimer more likely formed by illegitimate recombination between 16S and 23S rRNA genes. Homologous recombination between the 9G-9A-9G core regions of both heterodimers and additional differential deletions and duplications could then have yielded the other three circles. Near identity of the gene fragments and 9G-9A-9G cores, despite diverging adjacent regions, may be maintained by gene conversion. The conserved organization of the 9G-9A-9G cores alone favors the idea that they are replicon origins and suggests that they may enable the aberrant minicircles to parasitize the chloroplast's replication machinery as selfish circles.

  10. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    Science.gov (United States)

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  12. Localization of preferential sites of rearrangement within the BCR gene in Philadelphia chromosome-positive acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Denny, C.T.; Shah, N.P.; Ogden, S.; Willman, C.; McConnell, T.; Crist, W.; Carroll, A.; Witte, O.N.

    1989-01-01

    The Philadelphia chromosome associated with acute lymphoblastic leukemia (ALL) has been linked to a hybrid BCR/ABL protein product that differs from that found in chronic myelogenous leukemia. This implies that the molecular structures of the two chromosomal translocations also differ. Localization of translocation breakpoints in Philadelphia chromosome-positive ALL has been impeded due to the only partial characterization of the BCR locus. The authors have isolated the entire 130-kilobase BCR genomic locus from a human cosmid library. They have demonstrated that these breakpoints are all located at the 3' end of the intron around an unusual restriction fragment length polymorphism caused by deletion of a 1-kilobase fragment containing Alu family reiterated sequences. This clustering is unexpected in light of previous theories of rearrangement in Philadelphia chromosome-positive chronic myelogenous leukemia that would have predicted a random dispersion of breakpoints in the first intron in Philadelphia chromosome-positive ALL. The proximity of the translocation breakpoints to this constitutive deletion may indicate shared mechanisms of rearrangement or that such polymorphisms mark areas of the genome prone to recombination

  13. Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency.

    Science.gov (United States)

    Kotarska, Katarzyna; Galas, Jerzy; Przybyło, Małgorzata; Bilińska, Barbara; Styrna, Józefa

    2015-02-01

    It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus-oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency. © The Author(s) 2014.

  14. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  15. 22q11.2 deletion syndrome

    Science.gov (United States)

    McDonald-McGinn, Donna M.; Sullivan, Kathleen E.; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A. S.; Zackai, Elaine H.; Emanuel, Beverly S.; Vermeesch, Joris R.; Morrow, Bernice E.; Scambler, Peter J.; Bassett, Anne S.

    2016-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  16. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  17. Tetralogy of Fallot associated with deletion in the DiGeorge region of chromosome 22 (22q11)

    Energy Technology Data Exchange (ETDEWEB)

    D`Angelo, J.A.; Pillers, D.M.; Jett, P.L. [Oregon Health Sciences Univ. Portland, OR (United States)] [and others

    1994-09-01

    Cardiac conotruncal defects, such as Tetralogy of Fallot (TOF), are associated with DiGeorge syndrome which has been mapped to the q11 region of chromosome 22 and includes abnormalities of neural crest and branchial arch development. Patients with conotruncal defects and velo-cardio-facial syndrome may have defects in the 22q11 region but not show the complete DiGeorge phenotype consisting of cardiac, thymus, and parathyroid abnormalities. We report two neonates with TOF and small deletions in the DiGeorge region of chromosome 22 (46,XX,del(22)(q11.21q11.23) and 46,XY,del(22)(q11.2q11.2)) using both high-resolution cytogenetics and fluorescence in situ hybridization (FISH). The first patient is a female with TOF and a family history of congenital heart disease. The mother has pulmonic stenosis and a right-sided aortic arch, one brother has TOF, and a second brother has a large VSD. The patient had intrauterine growth retardation and had thrombocytopenia due to maternal IgG platelet-directed autoantibody. Lymphocyte populations, both T and B cells, were reduced in number but responded normally to stimulation. The findings were not attributed to a DiGeorge phenotype. Although she had transient neonatal hypocalcemia, her parathyroid hormone level was normal. The patient was not dysmorphic in the newborn period but her mother had features consistent with velo-cardio-facial syndrome. The second patient was a male with TOF who was not dysmorphic and had no other significant clinical findings and no family history of heart disease. Lymphocyte testing did not reveal a specific immunodeficiency. No significant postnatal hypocalcemia was noted. These cases illustrate that there is a wide spectrum of clinical features associated with defects of the 22q11 region. We recommend karyotype analysis, including FISH probes specific to the DiGeorge region, in any patient with conotruncal cardiac defects.

  18. Molecular analysis of recombination in a family with Duchenne muscular dystrophy and a large pericentric X chromosome inversion

    Energy Technology Data Exchange (ETDEWEB)

    Shashi, V.; Golden, W.L.; Allinson, P.S. [Univ. of Virginia Health Sciences Center, Charlottesville, VA (United States)] [and others

    1996-06-01

    It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion. 50 refs., 7 figs., 1 tab.

  19. A 590 kb deletion caused by non-allelic homologous recombination between two LINE-1 elements in a patient with mesomelia-synostosis syndrome.

    Science.gov (United States)

    Kohmoto, Tomohiro; Naruto, Takuya; Watanabe, Miki; Fujita, Yuji; Ujiro, Sae; Okamoto, Nana; Horikawa, Hideaki; Masuda, Kiyoshi; Imoto, Issei

    2017-04-01

    Mesomelia-synostoses syndrome (MSS) is a rare, autosomal-dominant, syndromal osteochondrodysplasia characterized by mesomelic limb shortening, acral synostoses, and multiple congenital malformations due to a non-recurrent deletion at 8q13 that always encompasses two coding-genes, SULF1 and SLCO5A1. To date, five unrelated patients have been reported worldwide, and MMS was previously proposed to not be a genomic disorder associated with deletions recurring from non-allelic homologous recombination (NAHR) in at least two analyzed cases. We conducted targeted gene panel sequencing and subsequent array-based copy number analysis in an 11-year-old undiagnosed Japanese female patient with multiple congenital anomalies that included mesomelic limb shortening and detected a novel 590 Kb deletion at 8q13 encompassing the same gene set as reported previously, resulting in the diagnosis of MSS. Breakpoint sequences of the deleted region in our case demonstrated the first LINE-1s (L1s)-mediated unequal NAHR event utilizing two distant L1 elements as homology substrates in this disease, which may represent a novel causative mechanism of the 8q13 deletion, expanding the range of mechanisms involved in the chromosomal rearrangements responsible for MSS. © 2017 Wiley Periodicals, Inc.

  20. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    Full Text Available Deletion of the 1.5-3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS, also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%, conotruncal defects of the heart (CHD; 70-80%, hypocalcemia (20-60%, and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS.

  1. Molecular cytogenetic and phenotypic characterization of ring chromosome 13 in three unrelated patients

    Science.gov (United States)

    Abdallah-Bouhjar, Inesse B.; Mougou-Zerelli, Soumaya; Hannachi, Hanene; Gmidène, Abir; Labalme, Audrey; Soyah, Najla; Sanlaville, Damien; Saad, Ali; Elghezal, Hatem

    2013-01-01

    We report on the cytogenetic and molecular investigations of constitutional de-novo ring chromosome 13s in three unrelated patients for better understanding and delineation of the phenotypic variability characterizing this genomic rearrangement. The patient’s karyotypes were as follows: 46,XY,r(13)(p11q34) dn for patients 1 and 2 and 46,XY,r(13)(p11q14) dn for patient 3, as a result of the deletion in the telomeric regions of chromosome 13. The patients were, therefore, monosomic for the segment 13q34 → 13qter; in addition, for patient 3, the deletion was larger, encompassing the segment 13q14 → 13qter. Fluorescence in situ hybridization confirmed these rearrangement and array CGH technique showed the loss of at least 2.9 Mb on the short arm and 4.7 Mb on the long arm of the chromosome 13 in patient 2. Ring chromosome 13 (r(13)) is associated with several phenotypic features like intellectual disability, marked short stature, brain and heart defects, microcephaly and genital malformations in males, including undescended testes and hypospadias. However, the hearing loss and speech delay that were found in our three patients have rarely been reported with ring chromosome 13. Although little is known about its etiology, there is interesting evidence for a genetic cause for the ring chromosome 13. We thus performed a genotype-phenotype correlation analysis to ascertain the contribution of ring chromosome 13 to the clinical features of our three cases. PMID:27625853

  2. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair

    Science.gov (United States)

    Gelincik, Ozkan; Blecua, Pedro; Edelmann, Winfried; Kucherlapati, Raju; Zhou, Kathy; Jasin, Maria; Gümüş, Zeynep H.; Lipkin, Steven M.

    2017-01-01

    Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression. PMID:29069730

  3. Chromosome 22q11 in a Xhosa schizophrenia population | Koen ...

    African Journals Online (AJOL)

    Chromosome 22q11 aberrations substantially increase the risk for developing schizophrenia. Although micro-deletions in this region have been extensively investigated in different populations across the world, little is known of their prevalence in African subjects with schizophrenia. We screened 110 African ...

  4. Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the x and an aberrant y chromosome.

    Science.gov (United States)

    Singh, L; Jones, K W

    1982-02-01

    Satellite DNA (Bkm) from the W sex-determining chromosome of snakes, which is related to sequences on the mouse Y chromosome, has been used to analyze the DNA and chromosomes of sex-reversed (Sxr) XXSxr male mice. Such mice exhibit a male-specific Southern blot Bkm hybridization pattern, consistent with the presence of Y-chromosome DNA. In situ hybridization of Bkm to chromosomes of XXSxr mice shows an aberrant concentration of related sequences on the distal terminus of a large mouse chromosome. The XYSxr carrier male, however, shows a pair of small chromosomes, which are presumed to be aberrant Y derivatives. Meiosis in the XYSxr mouse involves transfer of chromatin rich in Bkm-related DNA from the Y-Y1 complex to the X distal terminus. We suggest that this event is responsible for the transmission of the Sxr trait.

  5. Ring 2 chromosome associated with failure to thrive, microcephaly and dysmorphic facial features.

    Science.gov (United States)

    López-Uriarte, Arelí; Quintero-Rivera, Fabiola; de la Fuente Cortez, Beatriz; Puente, Viviana Gómez; Campos, María Del Roble Velazco; de Villarreal, Laura E Martínez

    2013-10-15

    We report here a child with a ring chromosome 2 [r(2)] associated with failure to thrive, microcephaly and dysmorphic features. The chromosomal aberration was defined by chromosome microarray analysis, revealing two small deletions of 2p25.3 (139 kb) and 2q37.3 (147 kb). We show the clinical phenotype of the patient, using a conventional approach and the molecular cytogenetics of a male with a history of prenatal intrauterine growth restriction (IUGR), failure to thrive, microcephaly and dysmorphic facial features. The phenotype is very similar to that reported in other clinical cases with ring chromosome 2. © 2013 Elsevier B.V. All rights reserved.

  6. Quantum deletion: Beyond the no-deletion principle

    International Nuclear Information System (INIS)

    Adhikari, Satyabrata

    2005-01-01

    Suppose we are given two identical copies of an unknown quantum state and we wish to delete one copy from among the given two copies. The quantum no-deletion principle restricts us from perfectly deleting a copy but it does not prohibit us from deleting a copy approximately. Here we construct two types of a 'universal quantum deletion machine' which approximately deletes a copy such that the fidelity of deletion does not depend on the input state. The two types of universal quantum deletion machines are (1) a conventional deletion machine described by one unitary operator and (2) a modified deletion machine described by two unitary operators. Here it is shown that the modified deletion machine deletes a qubit with fidelity 3/4, which is the maximum limit for deleting an unknown quantum state. In addition to this we also show that the modified deletion machine retains the qubit in the first mode with average fidelity 0.77 (approx.) which is slightly greater than the fidelity of measurement for two given identical states, showing how precisely one can determine its state [S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995)]. We also show that the deletion machine itself is input state independent, i.e., the information is not hidden in the deleting machine, and hence we can delete the information completely from the deletion machine

  7. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome evolution between two wheat cultivars

    KAUST Repository

    Thind, Anupriya Kaur

    2018-02-08

    Background: Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the evolutionary dynamics of wheat genomes on a megabase-scale. Results: Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes, the old landrace Chinese Spring and the elite Swiss spring wheat line CH Campala Lr22a. There was a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations revealed four large insertions/deletions (InDels) of >100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the evolutionary mechanisms that caused these InDels. Three of the large InDels affected copy number of NLRs, a gene family involved in plant immunity. Analysis of single nucleotide polymorphism (SNP) density revealed three haploblocks of 8 Mb, 9 Mb and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Conclusions: This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.

  8. Microgravitational effects on chromosome behavior (7-IML-1)

    Science.gov (United States)

    Bruschi, Carlo

    1992-01-01

    The effects of the two major space-related conditions, microgravity and radiation, on the maintenance and transmission of genetic information have been partially documented in many organisms. Specifically, microgravity acts at the chromosomal level, primarily on the structure and segregation of chromosomes, in producing major abberations such as deletions, breaks, nondisjunction, and chromosome loss, and to a lesser degree, cosmic radiation appears to affect the genic level, producing point mutations and DNA damage. To distinguish between the effects from microgravity and from radiation, it is necessary to monitor both mitotic and meiotic genetic damage in the same organism. The yeast Saccharomyces cerevisiae is used to monitor at high resolution the frequency of chromosome loss, nondisjunction, intergenic recombination, and gene mutation in mitotic and meiotic cells, to a degree impossible in other organisms. Because the yeast chromosomes are small, sensitive measurements can be made that can be extrapolated to higher organisms and man. The objectives of the research are: (1) to quantitate the effects of microgravity and its synergism with cosmic radiation on chromosomal integrity and transmission during mitosis and meiosis; (2) to discriminate between chromosomal processes sensitive to microgravity and/or radiation during mitosis and meiosis; and (3) to relate these findings to anomalous mitotic mating type switching and ascosporogenesis following meiosis.

  9. Conditional deletion of Pten causes bronchiolar hyperplasia.

    Science.gov (United States)

    Davé, Vrushank; Wert, Susan E; Tanner, Tiffany; Thitoff, Angela R; Loudy, Dave E; Whitsett, Jeffrey A

    2008-03-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.

  10. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study

    NARCIS (Netherlands)

    Campbell, Linda E.; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G. M.; Murphy, Kieran C.

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of

  11. Effect of 13q deletion on IL-6 production in patients with multiple myeloma: a hypothesis may hold true.

    Science.gov (United States)

    Neemat, Kassem; Rania, Khalifa; Tarek, Mohamed; Hamdy, Abdel Azim

    2014-01-01

    Numerous studies have shown a correlation between 13q deletion and poor prognosis in multiple myeloma (MM), but the mechanisms are not fully understood. Earlier studies suggest that this lesion involves large segments or the entire long arm involving the retinoblastoma (Rb) gene. In myeloma, Rb gene is believed to down regulate interleukin-6 (IL-6) which plays a central role in the pathogenesis of MM. Therefore, it has been hypothesized that loss of the Rb gene might be associated with very high expression of IL-6 and subsequent bad prognosis. Hence this study evaluates IL-6 production in MM patients with and without 13q deletions and assesses their response to conventional and new therapeutic regimens. Forty MM patients and 20 matched controls were included in this study. Interphase fluorescence in situ hybridization (FISH) analysis was performed using LSI 13q14-specific probe. Serum levels of IL-6 were determined by ELISA. All patients received conventional chemotherapy. Refractory patients received other therapeutic regimens of Thalidomide or Bortezomib. Significant increase (p < 0.001) of IL-6 production was recorded in patients with a 13q deletion compared to patients with normal chromosome 13q status. These patients were also refractory to conventional chemotherapy but showed striking response to Thalidomide or Bortezomib. This study suggests that 13q deletions are associated with increased production of IL-6 in MM and this could be a possible cause of the associated bad prognosis. In addition, the results also show the potential to improve responses in patients with refractory MM with the introduction of novel therapies.

  12. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  13. Deletion of the App-Runx1 region in mice models human partial monosomy 21

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2015-06-01

    Full Text Available Partial monosomy 21 (PM21 is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21. The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf. Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21.

  14. Deletion of the App-Runx1 region in mice models human partial monosomy 21.

    Science.gov (United States)

    Arbogast, Thomas; Raveau, Matthieu; Chevalier, Claire; Nalesso, Valérie; Dembele, Doulaye; Jacobs, Hugues; Wendling, Olivia; Roux, Michel; Duchon, Arnaud; Herault, Yann

    2015-06-01

    Partial monosomy 21 (PM21) is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21). The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf). Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21. © 2015. Published by The Company of Biologists Ltd.

  15. Novel contiguous gene deletion in peruvian girl with Trichothiodystrophy type 4 and glutaric aciduria type 3.

    Science.gov (United States)

    La Serna-Infantes, Jorge; Pastor, Miguel Chávez; Trubnykova, Milana; Velásquez, Félix Chavesta; Sotomayor, Flor Vásquez; Barriga, Hugo Abarca

    2018-02-05

    Trichothiodystrophy type 4 is a rare autosomal recessive and ectodermal disorder, characterized by dry, brittle, sparse and sulfur-deficient hair and other features like intellectual disability, ichthyotic skin and short stature, caused by a homozygous mutation in MPLKIP gene. Glutaric aciduria type 3 is caused by a homozygous mutation in SUGCT gene with no distinctive phenotype. Both genes are localized on chromosome 7 (7p14). We report an 8-year-old female with short stature, microcephaly, development delay, intellectual disability and hair characterized for dark, short, coarse, sparse and brittle associated to classical trichorrhexis microscopy pattern. Chromosome microarray analysis showed a 125 kb homozygous pathogenic deletion, which includes genes MPLKIP and SUGCT, not described before. This is the first case described in Peru of a novel contiguous gene deletion of Trichothiodystrophy type 4 and Glutaric aciduria type 3 performed by chromosome microarray analysis, highlighting the contribution and importance of molecular technologies on diagnosis of rare genetic conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Robin sequence associated with karyotypic mosaicism involving chromosome 22 abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, C.F.; Jastrzab, J.M.; Centu, E.S. [Medical Univ. of South Carolina, Charleston, SC (United States)

    1994-09-01

    Robin sequence is characterized by cleft palate, hypoplastic mandible, glossoptosis and respiratory difficulties. The Robin sequence may be observed as an isolated defect or as part of about 33 syndromes; however, to our knowledge, it has never been reported associated with chromosome 22 abnormalities. We examined a two-month-old black boy with a severe case of Robin sequence. Exam revealed a small child with hypoplastic mandible, glossoptosis, high palate and respiratory difficulty with continuous apnea episodes resulting in cyanotic lips and nails. In order to relieve the upper airway obstruction, his tongue was attached to the lower lip. Later a tracheostomy was performed. On follow-up exam, this patient was found to have developmental delay. Cytogenetic studies of both peripheral blood and fibroblast cells showed mosaicism involving chromosome 22 abnormalities which were designated as follows: 45,XY,-22/46,XY,-22,+r(22)/46,XY. Fluorescence in situ hybridization (FISH) studies confirmed the identity of the r(22) and showed the presence of the DiGeorge locus (D22575) but the absence of the D22539 locus which maps to 22q13.3. Reported cases of r(22) show no association with Robin sequence. However, r(22) has been associated with flat bridge of the nose, bulbous tip of the nose, epicanthus and high palate, all characteristics that we also observed in this case. These unusual cytogenetic findings may be causally related to the dysmorphology found in the patient we report.

  17. Pure Erythroleukemia (Variant Acute Myeloid Leukemia-vAML-M6) with Deletion of Chromosome 20, Mainly Presenting as Late Erythroblasts, a Unique Case Report with Review of Literature.

    Science.gov (United States)

    Rasool, Javid; Geelani, Sajad; Khursheed; Yasir; Lone, Mohd Suhail; Shaban, Mohd

    2014-03-01

    Acute erythroleukemia is characterized by a predominant immature erythroid population and accounts for approximately 2-5 % of all cases of acute leukemia. Two subtypes are recognized based on the presence or absence of a significant myeloid component: erythroleukemia and pure erythroid leukemia. Erythroleukemia is predominantly a disease of adults, while pure erythroid leukemia can be seen in any age including children. Here is a case of pure erythroleukemia presenting mainly as late erythroblasts which was diagnosed on bone marrow examination, cytochemistry and was confirmed on immunophenotyping. Possibly this is the only case so for demonstrating deletion of long arm of chromosome 20 in pure erythroleukemia.

  18. Occurrence of two different intragenic deletions in two male relatives affected with Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mostacciuolo, M.L.; Miorin, M.; Vitiello, L.; Rampazzo, A.; Fanin, M.; Angelini, C.; Danieli, G.A. [Univ. of Padua (Italy)

    1994-03-01

    The occurrence of 2 different intragenic deletions (exons 10-44 and exon 45, respectively) is reported in 2 male relatives affected with Duchenne muscular dystrophy, both showing the same haplotype for DNA markers not included in the deleted segment. The 2 different deletions seem to have occurred independently in the same X chromosome. This finding, together with other reports, suggests possibly an increased predisposition to mutations within the DMD locus in some families. Therefore, when dealing with prenatal diagnosis, the investigation on fetal DNA cannot be restricted only to the region in which a mutation was previously identified in the family. 14 refs., 1 fig.

  19. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.

    Science.gov (United States)

    Kloosterman, Wigard P; Tavakoli-Yaraki, Masoumeh; van Roosmalen, Markus J; van Binsbergen, Ellen; Renkens, Ivo; Duran, Karen; Ballarati, Lucia; Vergult, Sarah; Giardino, Daniela; Hansson, Kerstin; Ruivenkamp, Claudia A L; Jager, Myrthe; van Haeringen, Arie; Ippel, Elly F; Haaf, Thomas; Passarge, Eberhard; Hochstenbach, Ron; Menten, Björn; Larizza, Lidia; Guryev, Victor; Poot, Martin; Cuppen, Edwin

    2012-06-28

    Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Genetics Home Reference: proximal 18q deletion syndrome

    Science.gov (United States)

    ... characteristic features. Most cases of proximal 18q deletion syndrome are the result of a new (de novo) deletion and are not inherited from a ... J, Fox PT, Stratton RF, Perry B, Hale DE. Recurrent interstitial deletions of proximal 18q: a new syndrome involving expressive speech delay. Am J Med Genet ...

  1. Micro deletion in the y-chromosome of egyptian infertile men

    International Nuclear Information System (INIS)

    El-maghraby, T.; Hussein, A.H.; El-sayed, N.M.; Elghandor, T.

    2003-01-01

    The present investigation was designed to study the microdeletions in 5 different sites of azoospermia factor (AZF) in y-chromosome, SY 239, SY 254, SY 277, SY 283 in AZFc and SY 133 in AZFcb region using polymerase chain reactions. The present investigation included also measuring the levels of FSH, LH, testosterone and prolactin. Semen orgasm and cytogenetic analysis were also done. The study included 50 Egyptian men, 30 patients with azoospermia or oligospermia and 20 fertile men as control. Patients were classified into 2 groups, one having sertoli cells only (SCO) and the other suffering from maturation arrest (MA) according to testis biopsies. Three patients from SCO have been exposed to radiotherapy for different reasons. Results revealed that 13.3% of infertile men (SCO and MA) showed Y microdeletions (15% and 10% respectively). Moreover, SY 239 and SY 254 in DAZ gene were the common microdeletion sitesa more in patients of the present study. However, SY 133 microdeletion was detected in SCO patients only. As expected, there were highly significant increases in serum FSH and LH in SCO group compared with normal and MA groups. PCR based assay is important to detect microdeletions in AZF region of Y-chromosome in non-idiopathic infertile men

  2. Partial Gene Deletions of PMP22 Causing Hereditary Neuropathy with Liability to Pressure Palsies

    Directory of Open Access Journals (Sweden)

    Sun-Mi Cho

    2014-01-01

    Full Text Available Hereditary neuropathy with liability to pressure palsies (HNPP is an autosomal neuropathy that is commonly caused by a reciprocal 1.5 Mb deletion on chromosome 17p11.2, at the site of the peripheral myelin protein 22 (PMP22 gene. Other patients with similar phenotypes have been shown to harbor point mutations or small deletions, although there is some clinical variation across these patients. In this report, we describe a case of HNPP with copy number changes in exon or promoter regions of PMP22. Multiplex ligation-dependent probe analysis revealed an exon 1b deletion in the patient, who had been diagnosed with HNPP in the first decade of life using molecular analysis.

  3. Chromosome r(10(p15.3q26.12 in a newborn child: case report

    Directory of Open Access Journals (Sweden)

    Jonasson Jon

    2009-12-01

    Full Text Available Abstract Background Ring chromosome 10 is a rare cytogenetic finding. Of the less than 10 reported cases we have found in the literature, none was characterized using high-resolution microarray analysis. Ring chromosomes are frequently unstable due to sister chromatid exchanges and mitotic failures. When mosaicism is present, the interpretation of genotype-phenotype correlations becomes extremely difficult. Results We report on a newborn girl with growth retardation, microcephaly, congenital heart defects, dysmorphic features and psychomotor retardation. Karyotyping revealed a non-mosaic apparently stable ring chromosome 10 replacing one of the normal homologues in all analyzed metaphases. High-resolution oligonucleotide microarray analysis showed a de novo approximately 12.5 Mb terminal deletion 10q26.12 -> qter and a corresponding 285 kb terminal deletion of 10pter -> p15.3. Conclusion This case demonstrates that an increased nuchal translucency thickness detected by early ultrasonography should preferably lead to not only QF-PCR for the diagnosis of Down syndrome but also karyotyping. In the future, microarray analysis, which needs further evaluation, might become the method of choice. The clinical phenotype of our patient was in agreement with that of patients with a terminal 10q deletion. For the purpose of genotype-phenotype analysis, there seems to be no need for a "ring syndrome" concept.

  4. Mapping Breakpoints of Complex Chromosome Rearrangements Involving a Partial Trisomy 15q23.1-q26.2 Revealed by Next Generation Sequencing and Conventional Techniques.

    Directory of Open Access Journals (Sweden)

    Qiong Pan

    Full Text Available Complex chromosome rearrangements (CCRs, which are rather rare in the whole population, may be associated with aberrant phenotypes. Next-generation sequencing (NGS and conventional techniques, could be used to reveal specific CCRs for better genetic counseling. We report the CCRs of a girl and her mother, which were identified using a combination of NGS and conventional techniques including G-banding, fluorescence in situ hybridization (FISH and PCR. The girl demonstrated CCRs involving chromosomes 3 and 8, while the CCRs of her mother involved chromosomes 3, 5, 8, 11 and 15. HumanCytoSNP-12 Chip analysis identified a 35.4 Mb duplication on chromosome 15q21.3-q26.2 in the proband and a 1.6 Mb microdeletion at chromosome 15q21.3 in her mother. The proband inherited the rearranged chromosomes 3 and 8 from her mother, and the duplicated region on chromosome 15 of the proband was inherited from the mother. Approximately one hundred genes were identified in the 15q21.3-q26.2 duplicated region of the proband. In particular, TPM1, SMAD6, SMAD3, and HCN4 may be associated with her heart defects, and HEXA, KIF7, and IDH2 are responsible for her developmental and mental retardation. In addition, we suggest that a microdeletion on the 15q21.3 region of the mother, which involved TCF2, TCF12, ADMA10 and AQP9, might be associated with mental retardation. We delineate the precise structures of the derivative chromosomes, chromosome duplication origin and possible molecular mechanisms for aberrant phenotypes by combining NGS data with conventional techniques.

  5. Chromosomes in the genesis and progression of ependymomas

    DEFF Research Database (Denmark)

    Rogatto, S R; Casartelli, C; Rainho, C A

    1993-01-01

    chromosomes in three cases. Structural rearrangements of chromosome 2 were a finding for all cases and involved loss of material at 2q32-34. Other structural chromosome abnormalities detected involved chromosomes 4, 6, 10, 11, 12, and X. We also reviewed data on 22 cases previously reported....

  6. Genomic deletions in OPA1 in Danish patients with autosomal dominant optic atrophy

    DEFF Research Database (Denmark)

    Almind, Gitte J; Grønskov, Karen; Milea, Dan

    2011-01-01

    Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89% of cases. Although deletions of OPA1 were recently reported...

  7. Impact of 9p deletion and p16, Cyclin D1, and Myc hyperexpression on the outcome of anaplastic oligodendrogliomas.

    Directory of Open Access Journals (Sweden)

    Karine Michaud

    Full Text Available To study the presence of 9p deletion and p16, cyclin D1 and Myc expression and their respective diagnostic and prognostic interest in oligodendrogliomas.We analyzed a retrospective series of 40 consecutive anaplastic oligodendrogliomas (OIII from a single institution and compared them to a control series of 10 low grade oligodendrogliomas (OII. Automated FISH analysis of chromosome 9p status and immunohistochemistry for p16, cyclin D1 and Myc was performed for all cases and correlated with clinical and histological data, event free survival (EFS and overall survival (OS.Chromosome 9p deletion was observed in 55% of OIII (22/40 but not in OII. Deletion was highly correlated to EFS (median = 29 versus 53 months, p<0.0001 and OS (median = 48 versus 83 months, p<0.0001 in both the total cohort and the OIII population. In 9p non-deleted oligodendrogliomas, p16 hyperexpression correlated with a shorter OS (p = 0.02 in OII and p = 0.0001 in OIII whereas lack of p16 expression was correlated to a shorter EFS and OS in 9p deleted OIII (p = 0.001 and p = 0.0002 respectively. Expression of Cyclin D1 was significantly higher in OIII (median expression 45% versus 14% for OII, p = 0.0006 and was correlated with MIB-1 expression (p<0.0001, vascular proliferation (p = 0.002, tumor necrosis (p = 0.04 and a shorter EFS in the total cohort (p = 0.05. Hyperexpression of Myc was correlated to grade (median expression 27% in OII versus 35% in OIII, p = 0.03, and to a shorter EFS in 9p non-deleted OIII (p = 0.01.Chromosome 9p deletion identifies a subset of OIII with significantly worse prognosis. The combination of 9p status and p16 expression level identifies two distinct OIII populations with divergent prognosis. Hyperexpression of Bcl1 and Myc appears highly linked to anaplasia but the prognostic value is unclear and should be investigated further.

  8. Molecular cytogenetic characterization of the first reported case of an inv dup (4p)(p15.1-pter) with a concomitant 4q35.1-qter deletion and normal parents.

    Science.gov (United States)

    Tassano, E; Alpigiani, M G; Salvati, P; Gimelli, S; Lorini, R; Gimelli, G

    2012-12-15

    Inverted duplications associated with terminal deletions are complex anomalies described in an increasing of chromosome ends. We report on the cytogenetic characterization of the first de novo inv dup del(4) with partial 4p duplication and 4q deletion in a girl with clinical signs consistent with "recombinant 4 syndrome". This abnormality was suspected by banding, but high-resolution molecular cytogenetic investigations allowed us to define the breakpoints of the rearrangement. The terminal duplicated region extending from 4p15.1 to the telomere was estimated to be 29.27 Mb, while the size of the terminal deletion was 3.114 Mb in the 4q35.1 region. Until now, 10 patients with duplicated 4p14-p15 and deleted 4q35 chromosome 4 have been described. In all cases the abnormal chromosome 4 was derived from a pericentric inversion inherited from one of the parents. In conclusion, we have identified the first case of inv dup del(4) with normal parents suggesting that, often, terminal duplications or terminal deletions mask complex rearrangements. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome....... The absence of the initiation cascade in Dam- cells is proposed to account for this observation of apparent incompatibility between plasmid and chromosomal copies of oriC. Studies using oriC-pBR322 chimeric plasmids and their deletion derivatives indicated that the incompatibility determinant is an intact...

  10. Detection of genomic deletions in rice using oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Bordeos Alicia

    2009-03-01

    Full Text Available Abstract Background The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL. However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. Results We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations http://irfgc.irri.org/cgi-bin/gbrowse/IR64_deletion_mutants/. Conclusion We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a

  11. Molecular analysis of aniridia patients for deletions involving the Wilms' tumor gene

    NARCIS (Netherlands)

    Drechsler, M.; Meijers-Heijboer, E. J.; Schneider, S.; Schurich, B.; Grond-Ginsbach, C.; Tariverdian, G.; Kantner, G.; Blankenagel, A.; Kaps, D.; Schroeder-Kurth, T.

    1994-01-01

    A human aniridia candidate (AN) gene on chromosome 11p13 has been cloned and characterized. The AN gene is the second cloned gene of the contiguous genes syndrome WAGR (Wilms' tumor, aniridia, genitourinary malformations, mental retardation) on chromosome 11p13, WT1 being the first gene cloned.

  12. [Involvement of distal fragment of chromosome 13 in the regulation of sensitivity to ethanol in mice].

    Science.gov (United States)

    Bazovkina, D V; Kulikov, A V

    2015-01-01

    The role of the fragment 57-65 cM of mouse chromosome 13 was studied in the regulation of ethanol action on locomotor activity, anxiety and sensitivity to hypnotic and hypothermic effects of ethanol. We used male mice of recombinant lines AKR/J and AKR.CBA-D13Mit76C, differing only in this fragment. After acute administration of ethanol only AKR mice showed the increase in the length of traveled distance in the open-field test (p mice demonstrated the increase the time spent in the center of open-field arena (p mice. The results suggest the involvement of the distal fragment 57-65 cM of chromosome 13 in the mechanisms of ethanol action in mice.

  13. Prevalence of chromosomal abnormalities and Y chromosome microdeletion among men with severe semen abnormalities and its correlation with successful sperm retrieval

    Directory of Open Access Journals (Sweden)

    Mariano Mascarenhas

    2016-01-01

    Full Text Available AIM: To estimate the prevalence of chromosomal abnormalities and Y chromosome microdeletion among men with azoospermia and severe oligozoospermia and its correlation with successful surgical sperm retrieval. SETTING AND DESIGN: A prospective study in a tertiary level infertility unit. MATERIALS AND METHODS: In a prospective observation study, men with azoospermia and severe oligozoospermia (concentration <5 million/ml attending the infertility center underwent genetic screening. Peripheral blood karyotype was done by Giemsa banding. Y chromosome microdeletion study was performed by a multiplex polymerase chain reaction. RESULTS: The study group consisted of 220 men, 133 of whom had azoospermia and 87 had severe oligozoospermia. Overall, 21/220 (9.5% men had chromosomal abnormalities and 13/220 (5.9% men had Y chromosome microdeletions. Chromosomal abnormalities were seen in 14.3% (19/133 of azoospermic men and Y chromosome microdeletions in 8.3% (11/133. Of the 87 men with severe oligozoospermia, chromosomal abnormalities and Y chromosome microdeletions were each seen in 2.3% (2/87. Testicular sperm aspiration was done in 13 men and was successful in only one, who had a deletion of azoospermia factor c. CONCLUSIONS: Our study found a fairly high prevalence of genetic abnormality in men with severe semen abnormalities and a correlation of genetic abnormalities with surgical sperm retrieval outcomes. These findings support the need for genetic screening of these men prior to embarking on surgical sperm retrieval and assisted reproductive technology intracytoplasmic sperm injection.

  14. Radiation-induced chromosome aberrations in bone marrow cells leading to acute myeloid leukemia in mouse

    International Nuclear Information System (INIS)

    Nobuhiko Ban; Tomoko Kusama

    1996-01-01

    It is well known that radiation-induced acute myeloid leukemia (RI-AML) in mice is charaterized by deletion and/or rearrangement of chromosome 2. While chromosome 2 has been suspected to be a target of RI-AML, radiation-sensitive site of the chromosome might be implicated in the leukemogenesis. There were few cytogenetical studies, however, focusing on chromosomal rearrangements shortly after irradiation, and little was known about the frequency and pattern of chromosome 2 aberrations during the early period. In this study, metaphase samples were prepared from whole-body irradiated mice 24 hours after irradiation, most of the cells considered to be in the first mitotic stage. Distribution of chromosomal breakpoints on the metaphase samples were analyzed to study the relationship between chromosome aberrations and RI-AML. (author)

  15. Mapping EBNA-1 Domains Involved in Binding to Metaphase Chromosomes

    Science.gov (United States)

    Marechal, Vincent; Dehee, Axelle; Chikhi-Brachet, Roxane; Piolot, Tristan; Coppey-Moisan, Maité; Nicolas, Jean-Claude

    1999-01-01

    The Epstein-Barr virus (EBV) genome can persist in dividing human B cells as multicopy circular episomes. Viral episomes replicate in synchrony with host cell DNA and are maintained at a relatively constant copy number for a long time. Only two viral elements, the replication origin OriP and the EBNA-1 protein, are required for the persistence of viral genomes during latency. EBNA-1 activates OriP during the S phase and may also contribute to the partition and/or retention of viral genomes during mitosis. Indeed, EBNA-1 has been shown to interact with mitotic chromatin. Moreover, viral genomes are noncovalently associated with metaphase chromosomes. This suggests that EBNA-1 may facilitate the anchorage of viral genomes on cellular chromosomes, thus ensuring proper partition and retention. In the present paper, we have investigated the chromosome-binding activity of EBV EBNA-1, herpesvirus papio (HVP) EBNA-1, and various derivatives of EBV EBNA-1, fused to a variant of the green fluorescent protein. The results show that binding to metaphase chromosomes is a common property of EBV and HVP EBNA-1. Further studies indicated that at least three independent domains (CBS-1, -2, and -3) mediate EBNA-1 binding to metaphase chromosomes. In agreement with the anchorage model, two of these domains mapped to a region that has been previously demonstrated to be required for the long-term persistence of OriP-containing plasmids. PMID:10196336

  16. Descriptive evaluation of chromosome aberrations in blood lymphocytes due to gamma-irradiation

    International Nuclear Information System (INIS)

    Medina III, F.S.; Gregorio, J.S.; Vinoya, P.C.; Panlaque, C.A.

    1983-01-01

    To induce and evaluate the effect of radiation among Filipinos, frequencies and types of ν-ray induced chromosome aberrations were studied with peripheral lymphocytes from 19 donors. Peripheral blood samples were irradiated at 0 Gray, 500 mGy, 1 Gy, 2 Gy, 3 Gy and 4 Gy. Irradiated blood samples were cultured by the same standard technique as that commonly used for human blood lymphocytes. Our observations showed that irradiation causes chromosomal aberration similar to effects observed in Caucasians. Our study confirm that irradiation causes an increase of the chromosome aberrations types normally found in the control (gaps, chromatid breaks and chromosome fragments) and can induce aberrations which are rarely observed in non-exposed individual (deletions, translocations, polycentrics, rings, and despiralizations). (author)

  17. P chromosomes involved in intergenomic rearrangements of ...

    Indian Academy of Sciences (India)

    2014-04-08

    Apr 8, 2014 ... [Wang Q., Han H., Gao A., Yang X. and Li L. 2014 P chromosomes ... Y, were affected predominantly by ecological factors and altitude in nine populations of Kengyilia thoroldiana (Wang et al. 2012). To investigate the effects of different altitudes on .... AB51 0LX, UK) for improving the article linguistically.

  18. Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion.

    Science.gov (United States)

    Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun

    2010-01-01

    Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.

  19. Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

    Science.gov (United States)

    Abdallah, Joseph F; Okoth, Sheila Akinyi; Fontecha, Gustavo A; Torres, Rosa Elena Mejia; Banegas, Engels I; Matute, María Luisa; Bucheli, Sandra Tamara Mancero; Goldman, Ira F; de Oliveira, Alexandre Macedo; Barnwell, John W; Udhayakumar, Venkatachalam

    2015-01-21

    Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites. Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection. It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other. The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however

  20. The effect of the CCR5-delta32 deletion on global gene expression considering immune response and inflammation

    Directory of Open Access Journals (Sweden)

    Hütter Gero

    2011-10-01

    Full Text Available Abstract Background The natural function of the C-C chemokine receptor type 5 (CCR5 is poorly understood. A 32 base pair deletion in the CCR5 gene (CCR5-delta32 located on chromosome 3 results in a non-functional protein. It is supposed that this deletion causes an alteration in T-cell response to inflammation. For example, the presence of the CCR5-delta32 allele in recipients of allografts constitutes as an independent and protective factor associated with a decreased risk of graft-versus-host disease (GVHD and graft rejection. However, the mechanism of this beneficial effect of the deletion regarding GVHD is unknown. In this survey we searched for a CCR5-delta32 associated regulation of critical genes involved in the immune response and the development of GVHD. Methods We examined CD34+ hematopoietic progenitor cells derived from bone marrow samples from 19 healthy volunteers for the CCR5-delta32 deletion with a genomic PCR using primers flanking the site of the deletion. Results 12 individuals were found to be homozygous for CCR5 WT and 7 carried the CCR5-delta32 deletion heterozygously. Global gene expression analysis led to the identification of 11 differentially regulated genes. Six of them are connected with mechanisms of immune response and control: LRG1, CXCR2, CCRL2, CD6, CD7, WD repeat domain, and CD30L. Conclusions Our data indicate that the CCR5-delta32 mutation may be associated with differential gene expression. Some of these genes are critical for immune response, in the case of CD30L probably protective in terms of GVHD.

  1. Frontonasal malformation with tetralogy of Fallot associated with a submicroscopic deletion of 22q11

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, R.F. [South Texas Genetics Center, San Antonio, TX (United States); Payne, R.M. [Central Texas Genetics Center, Austin, TX (United States)

    1997-03-31

    We report on a 14-month-old girl with bifid nasal tip and tetralogy of Fallot. Several similar patients have been described with CNS or eye abnormalities. Chromosome analysis with FISH, using Oncor DiGeorge probes, confirmed a submicroscopic deletion of 22q11. Many patients with Shprintzen (velo-cardio-facial) syndrome have a similar deletion with conotruncal cardiac defects and an abnormal nasal shape, suggesting that a gene in this area, possibly affecting neural crest cells, influences facial and other midline development. 13 refs., 1 fig.

  2. SNORD116 deletions cause Prader-Willi syndrome with a mild phenotype and macrocephaly.

    Science.gov (United States)

    Fontana, P; Grasso, M; Acquaviva, F; Gennaro, E; Galli, M L; Falco, M; Scarano, F; Scarano, G; Lonardo, F

    2017-10-01

    Prader-Willi syndrome is a complex condition caused by lack of expression of imprinted genes in the paternally derived region of chromosome 15 (15q11q13). A small number of patients with Prader-Willi phenotype have been discovered to have narrow deletions, not encompassing the whole critical region, but only the SNORD116 cluster, which includes genes codifying for small nucleolar RNAs. This kind of deletion usually is not detected by the classic DNA methylation analysis test. We present the case of a male patient with a mild Prader-Willi phenotype and a small deletion including SNORD116, diagnosed by methylation-sensitive multiplex ligation-dependent probe amplification (MLPA. The patient showed neonatal hypotonia, hyperphagia, obesity, central hypogonadism, hypothyroidism, strabismus. Stature and intellectual development are within the normal range. The presence of macrocephaly, observed in other cases of SNORD116 deletions as well, is uncommon for the classic phenotype of the syndrome. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. HHV-6A/B Integration and the Pathogenesis Associated with the Reactivation of Chromosomally Integrated HHV-6A/B.

    Science.gov (United States)

    Collin, Vanessa; Flamand, Louis

    2017-06-26

    Unlike other human herpesviruses, human herpesvirus 6A and 6B (HHV-6A/B) infection can lead to integration of the viral genome in human chromosomes. When integration occurs in germinal cells, the integrated HHV-6A/B genome can be transmitted to 50% of descendants. Such individuals, carrying one copy of the HHV-6A/B genome in every cell, are referred to as having inherited chromosomally-integrated HHV-6A/B (iciHHV-6) and represent approximately 1% of the world's population. Interestingly, HHV-6A/B integrate their genomes in a specific region of the chromosomes known as telomeres. Telomeres are located at chromosomes' ends and play essential roles in chromosomal stability and the long-term proliferative potential of cells. Considering that the integrated HHV-6A/B genome is mostly intact without any gross rearrangements or deletions, integration is likely used for viral maintenance into host cells. Knowing the roles played by telomeres in cellular homeostasis, viral integration in such structure is not likely to be without consequences. At present, the mechanisms and factors involved in HHV-6A/B integration remain poorly defined. In this review, we detail the potential biological and medical impacts of HHV-6A/B integration as well as the possible chromosomal integration and viral excision processes.

  4. Detecting 22q11.2 deletions by use of multiplex ligation-dependent probe amplification on DNA from neonatal dried blood spot samples

    DEFF Research Database (Denmark)

    Sørensen, Karina M; Agergaard, Peter; Olesen, Charlotte

    2010-01-01

    The 22q11 deletion syndrome, which is caused by a 1.5- to 3.0-megabase hemizygous deletion in chromosome 22q11.2, has a prevalence of 1/2000 to 1/4000. However, the syndrome presents with highly variable phenotypes and thus may be underestimated among Danish newborns. To establish a true incidenc...

  5. Overview of recurrent chromosomal losses in retinoblastoma detected by low coverage next generation sequencing

    Science.gov (United States)

    García-Chequer, A.J.; Méndez-Tenorio, A.; Olguín-Ruiz, G.; Sánchez-Vallejo, C.; Isa, P.; Arias, C.F.; Torres, J.; Hernández-Angeles, A.; Ramírez-Ortiz, M.A.; Lara, C.; Cabrera-Muñoz, M.L.; Sadowinski-Pine, S.; Bravo-Ortiz, J.C.; Ramón-García, G.; Diegopérez-Ramírez, J.; Ramírez-Reyes, G.; Casarrubias-Islas, R.; Ramírez, J.; Orjuela, M.A.; Ponce-Castañeda, M.V.

    2016-01-01

    Genes are frequently lost or gained in malignant tumors and the analysis of these changes can be informative about the underlying tumor biology. Retinoblastoma is a pediatric intraocular malignancy, and since deletions in chromosome 13 have been described in this tumor, we performed genome wide sequencing with the Illumina platform to test whether recurrent losses could be detected in low coverage data from DNA pools of Rb cases. An in silico reference profile for each pool was created from the human genome sequence GRCh37p5; a chromosome integrity score and a graphics 40 Kb window analysis approach, allowed us to identify with high resolution previously reported non random recurrent losses in all chromosomes of these tumors. We also found a pattern of gains and losses associated to clear and dark cytogenetic bands respectively. We further analyze a pool of medulloblastoma and found a more stable genomic profile and previously reported losses in this tumor. This approach facilitates identification of recurrent deletions from many patients that may be biological relevant for tumor development. PMID:26883451

  6. Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster.

    Science.gov (United States)

    Johansson, Anna-Mia; Stenberg, Per; Bernhardsson, Carolina; Larsson, Jan

    2007-05-02

    Drosophila melanogaster exhibits two expression-regulating systems that target whole, specific chromosomes: the dosage compensation system whereby the male-specific lethal complex doubles transcription of genes on the male X-chromosome and the chromosome 4-specific protein Painting of fourth, POF. POF is the first example of an autosome-specific protein and its presence raises the question of the universality of chromosome-specific regulation. Here we show that POF and heterochromatin protein 1 (HP1) are involved in the global regulation of the 4th chromosome. Contrary to previous conclusions, Pof is not essential for survival of diplo-4th karyotype flies. However, Pof is essential for survival of haplo-4th individuals and expression of chromosome 4 genes in diplo-4th individuals is decreased in the absence of Pof. Mapping of POF using chromatin immunoprecipitation suggested that it binds within genes. Furthermore, we show that POF binding is dependent on heterochromatin and that POF and HP1 bind interdependently to the 4th chromosome. We propose a balancing mechanism involving POF and HP1 that provides a feedback system for fine-tuning expression status of genes on the 4th chromosome.

  7. Increased production of biomass-degrading enzymes by double deletion of creA and creB genes involved in carbon catabolite repression in Aspergillus oryzae.

    Science.gov (United States)

    Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2018-02-01

    In a previous study, we reported that a double gene deletion mutant for CreA and CreB, which constitute the regulatory machinery involved in carbon catabolite repression, exhibited improved production of α-amylase compared with the wild-type strain and single creA or creB deletion mutants in Aspergillus oryzae. Because A. oryzae can also produce biomass-degrading enzymes, such as xylolytic and cellulolytic enzymes, we examined the production levels of those enzymes in deletion mutants in this study. Xylanase and β-glucosidase activities in the wild-type were hardly detected in submerged culture containing xylose as the carbon source, whereas those enzyme activities were significantly increased in the single creA deletion (ΔcreA) and double creA and creB deletion (ΔcreAΔcreB) mutants. In particular, the ΔcreAΔcreB mutant exhibited >100-fold higher xylanase and β-glucosidase activities than the wild-type. Moreover, in solid-state culture, the β-glucosidase activity of the double deletion mutant was >7-fold higher than in the wild-type. These results suggested that deletion of both creA and creB genes could also efficiently improve the production levels of biomass-degrading enzymes in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Variability in a three-generation family with Pierre Robin sequence, acampomelic campomelic dysplasia, and intellectual disability due to a novel ∼1 Mb deletion upstream of SOX9, and including KCNJ2 and KCNJ16.

    Science.gov (United States)

    Castori, Marco; Bottillo, Irene; Morlino, Silvia; Barone, Chiara; Cascone, Piero; Grammatico, Paola; Laino, Luigi

    2016-01-01

    Campomelic dysplasia and acampomelic campomelic dysplasia (ACD) are allelic disorders due to heterozygous mutations in or around SOX9. Translocations and deletions involving the SOX9 5' regulatory region are rare causes of these disorders, as well as Pierre Robin sequence (PRS) and 46,XY gonadal dysgenesis. Genotype-phenotype correlations are not straightforward due to the complex epigenetic regulation of SOX9 expression during development. We report a three-generation pedigree with a novel ∼1 Mb deletion upstream of SOX9 and including KCNJ2 and KCNJ16, and ascertained for dominant transmission of PRS. Further characterization of the family identified subtle appendicular anomalies and a variable constellation of axial skeletal features evocative of ACD in several members. Affected males showed learning disability. The identified deletion was smaller than all other chromosome rearrangements associated with ACD. Comparison with other reported translocations and deletions involving this region allowed further refining of genotype-phenotype correlations and an update of the smallest regions of overlap associated with the different phenotypes. Intrafamilial variability in this pedigree suggests a phenotypic continuity between ACD and PRS in patients carrying mutations in the SOX9 5' regulatory region. © 2015 Wiley Periodicals, Inc.

  9. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  10. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    Czech Academy of Sciences Publication Activity Database

    Balcárková, Barbora; Frenkel, Z.; Škopová, Monika; Abrouk, Michael; Kumar, A.; Chao, S.; Kianian, S. F.; Akhunov, E.; Korol, A.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 7, JAN 10 (2017), č. článku 2063. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * bread wheat * high-density * agronomic traits * tetraploid wheat * hexaploid wheat * polyploid wheat * genetic maps * genomes * recombination * endosperm radiation hybrid panel * radiation hybrid map * wheat chromosome 4A * chromosome deletion bin map * Triticum aestivum * SNP iSelect array Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  11. Case report: cytogenetic and molecular analysis of proximal interstitial deletion of 4p, review of the literature and comparison with wolf-hirschhorn syndrome.

    Science.gov (United States)

    Bailey, Nathanael G; South, Sarah T; Hummel, Marybeth; Wenger, Sharon L

    2010-01-01

    We report on a two-year-old female with a de novo proximal interstitial deletion of the short arm of chromosome 4 and a tetralogy of Fallot malformation. The patient had a karyotype of 46,XX,del(4)(p14p15.33) that was further characterized by array comparative genomic hybridization (aCGH). Phenotypic abnormalities for our patient are compared with those of previously reported patients with similar proximal 4p deletions as well as more distal deletions. The functions of genes that are deleted within this segment are reviewed.

  12. Falência ovariana precoce associada a deleção no braço longo do cromossomo: relato de dois casos e revisão da literatura Premature ovarian failure with a deletion in the long arm of chromosome: report of two cases and review of the literature

    Directory of Open Access Journals (Sweden)

    Mariangela Badalotti

    2006-09-01

    Full Text Available Falência ovariana prematura pode ser idiopática ou estar associada a várias distúrbios auto-imunes ou genéticos, como as deleções do cromossomo X. Relatamos dois novos casos de deleções do braço longo do cromossomo X, em pacientes nuligrávidas apresentando amenorréia secundária e infertilidade. Nenhuma paciente referia história familiar de falência ovariana prematura e relatavam desenvolvimento puberal normal. A avaliação genética mostrou deleção distal no braço longo do cromossomo X, sendo os resultados 46,X,del(Xq22 e 46,X,del(Xq13q28, respectivamente. Após o diagnóstico as pacientes optaram por fertilização in vitro com óvulos doados.Premature ovarian failure may be idiopathic or associated with several autoimmune and genetic disorders as X chromosome deletions. We report two cases of preamture ovarian failure associated with a deletion in the long arm of X chromosome. Both patients were nulligravidas presenting secondary amenorrhea and complaints of infertility, without family history of premature ovarian failure and reporting normal puberal development. Their karyotypes showed deletions of the distal long arm of all X chromosomes and were 46,X, del(Xq22 and 46,X, del(Xq13q28, respectively. After the diagnosis the patients decided to be submitted to an in vitro fertilization with egg donation.

  13. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  14. Molecular Mechanisms and Diagnosis of Chromosome 22q11.2 Rearrangements

    Science.gov (United States)

    Emanuel, Beverly S.

    2008-01-01

    Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster…

  15. Clinical spectrum associated with recurrent genomic rearrangements in chromosome 17q12.

    Science.gov (United States)

    Nagamani, Sandesh Chakravarthy Sreenath; Erez, Ayelet; Shen, Joseph; Li, Chumei; Roeder, Elizabeth; Cox, Sarah; Karaviti, Lefkothea; Pearson, Margret; Kang, Sung-Hae L; Sahoo, Trilochan; Lalani, Seema R; Stankiewicz, Pawel; Sutton, V Reid; Cheung, Sau Wai

    2010-03-01

    Deletions in chromosome 17q12 encompassing the HNF1 beta gene cause cystic renal disease and maturity onset diabetes of the young, and have been recently described as the first recurrent genomic deletion leading to diabetes. Earlier reports of patients with this microdeletion syndrome have suggested an absence of cognitive impairment, differentiating it from most other contiguous gene deletion syndromes. The reciprocal duplication of 17q12 is rare and has been hypothesized to be associated with an increased risk of epilepsy and mental retardation. We conducted a detailed clinical and molecular characterization of four patients with a deletion and five patients with a reciprocal duplication of this region. Our patients with deletion of 17q12 presented with cognitive impairment, cystic renal disease, seizures, and structural abnormalities of the brain. Patients with reciprocal duplications manifest with cognitive impairment and behavioral abnormalities, but not with seizures. Our findings expand the phenotypic spectrum associated with rearrangements of 17q12 and show that cognitive impairment is a part of the phenotype of individuals with deletions of 17q12.

  16. Mapping of 5q35 chromosomal rearrangements within a genomically unstable region

    DEFF Research Database (Denmark)

    Buysse, Karen; Crepel, An; Menten, Björn

    2008-01-01

    these rearrangements. METHODS: We analysed a series of patients with breakpoints clustering within chromosome band 5q35. Using high density arrays and subsequent quantitative polymerase chain reaction (qPCR), we characterised the breakpoints of four interstitial deletions (including one associated with an unbalanced...

  17. Distinctive phenotype in 9 patients with deletion of chromosome 1q24-q25.

    Science.gov (United States)

    Burkardt, Deepika D'Cunha; Rosenfeld, Jill A; Helgeson, Maria L; Angle, Brad; Banks, Valerie; Smith, Wendy E; Gripp, Karen W; Moline, Jessica; Moran, Rocio T; Niyazov, Dmitriy M; Stevens, Cathy A; Zackai, Elaine; Lebel, Robert Roger; Ashley, Douglas G; Kramer, Nancy; Lachman, Ralph S; Graham, John M

    2011-06-01

    Reports of individuals with deletions of 1q24→q25 share common features of prenatal onset growth deficiency, microcephaly, small hands and feet, dysmorphic face and severe cognitive deficits. We report nine individuals with 1q24q25 deletions, who show distinctive features of a clinically recognizable 1q24q25 microdeletion syndrome: prenatal-onset microcephaly and proportionate growth deficiency, severe cognitive disability, small hands and feet with distinctive brachydactyly, single transverse palmar flexion creases, fifth finger clinodactyly and distinctive facial features: upper eyelid fullness, small ears, short nose with bulbous nasal tip, tented upper lip, and micrognathia. Radiographs demonstrate disharmonic osseous maturation with markedly delayed bone age. Occasional features include cleft lip and/or palate, cryptorchidism, brain and spinal cord defects, and seizures. Using oligonucleotide-based array comparative genomic hybridization, we defined the critical deletion region as 1.9 Mb at 1q24.3q25.1 (chr1: 170,135,865-172,099,327, hg18 coordinates), containing 13 genes and including CENPL, which encodes centromeric protein L, a protein essential for proper kinetochore function and mitotic progression. The growth deficiency in this syndrome is similar to what is seen in other types of primordial short stature with microcephaly, such as Majewski osteodysplastic primordial dwarfism, type II (MOPD2) and Seckel syndrome, which result from loss-of-function mutations in genes coding for centrosomal proteins. DNM3 is also in the deleted region and expressed in the brain, where it participates in the Shank-Homer complex and increases synaptic strength. Therefore, DNM3 is a candidate for the cognitive disability, and CENPL is a candidate for growth deficiency in this 1q24q25 microdeletion syndrome. Copyright © 2011 Wiley-Liss, Inc.

  18. LETM1, a novel gene encoding a putative EF-hand Ca(2+)-binding protein, flanks the Wolf-Hirschhorn syndrome (WHS) critical region and is deleted in most WHS patients.

    Science.gov (United States)

    Endele, S; Fuhry, M; Pak, S J; Zabel, B U; Winterpacht, A

    1999-09-01

    Deletions within human chromosome 4p16.3 cause Wolf-Hirschhorn syndrome (WHS), which is characterized by severe mental and developmental defects. It is thought that haploinsufficiency of more than one gene contributes to the complex phenotype. We have cloned and characterized a novel gene (LETM1) that is deleted in nearly all WHS patients. LETM1 encodes a putative member of the EF-hand family of Ca(2+)-binding proteins. The protein contains two EF-hands, a transmembrane domain, a leucine zipper, and several coiled-coil domains. On the basis of its possible Ca(2+)-binding property and involvement in Ca(2+) signaling and/or homeostasis, we propose that haploinsufficiency of LETM1 may contribute to the neuromuscular features of WHS patients. Copyright 1999 Academic Press.

  19. Characteristic face: a key indicator for direct diagnosis of 22q11.2 deletions in Chinese velocardiofacial syndrome patients.

    Science.gov (United States)

    Wu, Dandan; Chen, Yang; Xu, Chen; Wang, Ke; Wang, Huijun; Zheng, Fengyun; Ma, Duan; Wang, Guomin

    2013-01-01

    Velocardiofacial syndrome (VCFS) is a disease in human with an expansive phenotypic spectrum and diverse genetic mechanisms mainly associated with copy number variations (CNVs) on 22q11.2 or other chromosomes. However, the correlations between CNVs and phenotypes remain ambiguous. This study aims to analyze the types and sizes of CNVs in VCFS patients, to define whether correlations exist between CNVs and clinical manifestations in Chinese VCFS patients. In total, 55 clinically suspected Chinese VCFS patients and 100 normal controls were detected by multiplex ligation-dependent probe amplification (MLPA). The data from MLPA and all the detailed clinical features of the objects were documented and analyzed. A total of 44 patients (80.0%) were diagnosed with CNVs on 22q11.2. Among them, 43 (78.2%) presented with 22q11.2 heterozygous deletions, of whom 40 (93.0%) had typical 3-Mb deletion, and 3 (7.0%) exhibited proximal 1.5-Mb deletion; no patient was found with atypical deletion on 22q11.2. One patient (1.8%) presented with a 3-Mb duplication mapping to the typical 3-Mb region on 22q11.2, while none of the chromosomal abnormalities in the MLPA kit were found in the other 11 patients and 100 normal controls. All the 43 patients with 22q11.2 deletions displayed characteristic face and palatal anomalies; 37 of them (86.0%) had cognitive or behavioral disorders, and 23 (53.5%) suffered from immune deficiencies; 10 patients (23.3%) manifested congenital heart diseases. Interestingly, all patients with the characteristic face had 22q11.2 heterozygous deletions, but no difference in phenotypic spectrum was observed between 3-Mb and 1.5-Mb deletions. Our data suggest that the characteristic face can be used as a key indicator for direct diagnosis of 22q11.2 deletions in Chinese VCFS patients.

  20. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10 5 copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G 0 , the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes

  1. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster

    OpenAIRE

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-01-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding seque...

  2. Gene expression meta-analysis identifies chromosomal regions involved in ovarian cancer survival

    DEFF Research Database (Denmark)

    Thomassen, Mads; Jochumsen, Kirsten M; Mogensen, Ole

    2009-01-01

    the relation of gene expression and chromosomal position to identify chromosomal regions of importance for early recurrence of ovarian cancer. By use of *Gene Set Enrichment Analysis*, we have ranked chromosomal regions according to their association to survival. Over-representation analysis including 1...... using death (P = 0.015) and recurrence (P = 0.002) as outcome. The combined mutation score is strongly associated to upregulation of several growth factor pathways....

  3. Genetic control of chromosome instability in Aspergillus nidulans as a means for gene amplification in eukaryotic microorganisms

    International Nuclear Information System (INIS)

    Parag, Y.; Roper, J.A.

    1975-01-01

    A haploid strain of Aspergillus nidulans carrying I-II duplication homozygous for the leaky mutation adE20 shows improved growth on minimal medium. The duplication, though more stable than disomics, still shows instability. Several methods were used for detecting genetic control of improved stability. a) visual selection, using a duplicated strain which is very unstable due to UV sensitivity, (adE20, biAl/dp yA2; uvsB). One stable strain showed a deletion (or a lethal mutation) distal to biA on the segment at the original position (on chromosome I). This deletion reduces crossing-over frequency detween the two homologous segments. As the deletion of the non-translated segment (yellow sectors) must be preceded by crossing-over, the above reduces the frequency of yellow sectors. A deletion of the translocated segment (green sectors) results in non-viability due to the deletion, and such sectors do not appear. The net result is a stable duplication involving only 12 C.O. units carrying the gene in concern. b) Suppressors of UV sensitivity (su-uvsB) were attempted using the above uvs duplicated strain. Phenotypic revertants were easily obtained, but all were back mutations at the uvsB locus. c) Mutations for UV resistance higher than that of the wild type were not obtained, in spite of the strong selective pressure inserted. d) Recombination deficient mutations (rec), six altogether, all uvs + , did not have any effect on stability. (orig.) [de

  4. Incompatibility between X chromosome factor and pericentric heterochromatic region causes lethality in hybrids between Drosophila melanogaster and its sibling species.

    Science.gov (United States)

    Cattani, M Victoria; Presgraves, Daven C

    2012-06-01

    The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F(1) hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F(1) hybrid females with D. melanogaster. As F(1) hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhl(mau). The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin.

  5. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    1996-01-01

    We provide a molecular description of key intermediates in the deletion of two internal eliminated sequences (IES elements), the M and R regions, during macronuclear development in Tetrahymena thermophila. Using a variety of PCR-based methods in vivo, double-strand breaks are detected that are generated by hydrolytic cleavage and correspond closely to the observed chromosomal junctions left behind in the macronuclei. The breaks exhibit a temporal and structural relationship to the deletion reaction that provides strong evidence that they are intermediates in the deletion pathway. Breaks in the individual strands are staggered by 4 bp, producing a four nucleotide 5' extension. Evidence is presented that breaks do not occur simultaneously at both ends. The results are most consistent with a deletion mechanism featuring initiation by double-strand cleavage at one end of the deleted element, followed by transesterification to generate the macronuclear junction on one DNA strand. An adenosine residue is found at all the nucleophilic 3' ends used in the postulated transesterification step. Evidence for the transesterification step is provided by detection of a 3' hydroxyl that would be liberated by such a step at a deletion boundary where no other DNA strand ends are detected. Images PMID:8654384

  6. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements

    NARCIS (Netherlands)

    Demaerel, Wolfram; Hestand, Matthew S.; Vergaelen, Elfi; Swillen, Ann; López-Sánchez, Marcos; Pérez-Jurado, Luis A.; McDonald-Mcginn, Donna M.; Zackai, Elaine; Emanuel, Beverly S.; Morrow, Bernice E.; Breckpot, Jeroen; Devriendt, Koenraad; Vermeesch, Joris R.; Antshel, Kevin M.; Arango, Celso; Armando, Marco; Bassett, Anne S.; Bearden, Carrie E.; Boot, Erik; Bravo-Sanchez, Marta; Breetvelt, Elemi; Busa, Tiffany; Butcher, Nancy J.; Campbell, Linda E.; Carmel, Miri; Chow, Eva W C; Crowley, T. Blaine; Cubells, Joseph; Cutler, David; Demaerel, Wolfram; Digilio, Maria Cristina; Duijff, Sasja; Eliez, Stephan; Emanuel, Beverly S.; Epstein, Michael P.; Evers, Rens; Fernandez Garcia-Moya, Luis; Fiksinski, Ania; Fraguas, David; Fremont, Wanda; Fritsch, Rosemarie; Garcia-Minaur, Sixto; Golden, Aaron; Gothelf, Doron; Guo, Tingwei; Gur, Ruben C.; Gur, Raquel E.; Heine-Suner, Damian; Hestand, Matthew; Hooper, Stephen R.; Kates, Wendy R.; Kushan, Leila; Laorden-Nieto, Alejandra; Maeder, Johanna; Marino, Bruno; Marshall, Christian R.; McCabe, Kathryn; McDonald-Mcginn, Donna M.; Michaelovosky, Elena; Morrow, Bernice E.; Moss, Edward; Mulle, Jennifer; Murphy, Declan; Murphy, Kieran C.; Murphy, Clodagh M.; Niarchou, Maria; Ornstein, Claudia; Owen, Michael J; Philip, Nicole; Repetto, Gabriela M.; Schneider, Maude; Shashi, Vandana; Simon, Tony J.; Swillen, Ann; Tassone, Flora; Unolt, Marta; Van Amelsvoort, Therese; van den Bree, Marianne B M; Van Duin, Esther; Vergaelen, Elfi; Vermeesch, Joris R.; Vicari, Stefano; Vingerhoets, Claudia; Vorstman, Jacob; Warren, Steve; Weinberger, Ronnie; Weisman, Omri; Weizman, Abraham; Zackai, Elaine; Zhang, Zhengdong; Zwick, Michael

    2017-01-01

    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have

  7. Deletion of Late Cornified Envelope 3B and 3C Genes Is Not Associated with Atopic Dermatitis

    NARCIS (Netherlands)

    Bergboer, Judith G. M.; Zeeuwen, Patrick L. J. M.; Irvine, Alan D.; Weidinger, Stephan; Giardina, Emiliano; Novelli, Giuseppe; Den Heijer, Martin; Rodriguez, Elke; Illig, Thomas; Riveira-Munoz, Eva; Campbell, Linda E.; Tyson, Jess; Dannhauser, Emma N.; O'Regan, Grainne M.; Galli, Elena; Klopp, Norman; Koppelman, Gerard H.; Novak, Natalija; Estivill, Xavier; McLean, W. H. Irwin; Postma, Dirkje S.; Armour, John A. L.; Schalkwijk, Joost

    Atopic dermatitis (AD) and psoriasis are common skin diseases characterized by cutaneous inflammation and disturbed epidermal differentiation. Genome-wide analyses have shown overlapping susceptibility loci, such as the epidermal differentiation complex on chromosome 1q21. Recently, a deletion on

  8. Deletion of Late Cornified Envelope 3B and 3C genes is not associated with atopic dermatitis.

    NARCIS (Netherlands)

    Bergboer, J.G.M.; Zeeuwen, P.L.J.M.; Irvine, A.D.; Weidinger, S.; Giardina, E.; Novelli, G.; Heijer, M. den; Rodriguez, E.; Illig, T.; Riveira-Munoz, E.; Campbell, L.E.; Tyson, J.; Dannhauser, E.N.; O'Regan, G.M.; Galli, E.; Klopp, N.; Koppelman, G.H.; Novak, N.; Estivill, X.; McLean, W.H.I.; Postma, D.S.; Armour, J.A.; Schalkwijk, J.

    2010-01-01

    Atopic dermatitis (AD) and psoriasis are common skin diseases characterized by cutaneous inflammation and disturbed epidermal differentiation. Genome-wide analyses have shown overlapping susceptibility loci, such as the epidermal differentiation complex on chromosome 1q21. Recently, a deletion on

  9. Mathematical Learning Disabilities in Children with 22q11.2 Deletion Syndrome: A Review

    Science.gov (United States)

    De Smedt, Bert; Swillen, Ann; Verschaffel, Lieven; Ghesquiere, Pol

    2009-01-01

    Mathematical learning disabilities (MLD) occur frequently in children with specific genetic disorders, like Turner syndrome, fragile X syndrome and neurofibromatosis. This review focuses on MLD in children with chromosome 22q11.2 deletion syndrome (22q11DS). This syndrome is the most common known microdeletion syndrome with a prevalence of at…

  10. Chromosomal aberrations as etiological factors of intrauterine growth retardation

    Directory of Open Access Journals (Sweden)

    Petrović Bojana

    2008-01-01

    Full Text Available Background/Aim. Intrauterine growth retardation (IUGR is a pathological condition of pregnancy characterised by birth weight below the 10th centile. A number of fetal, placental and maternal causes can lead to IUGR; although, in most cases no specific causes can be identified. The aim of this study was to determine the part of chromosomal abnormalities in IUGR etiology. Methods. Fetal blood karyotype taken by cordocentesis from 168 fetuses with diagnosed IUGR was analyzed. Results. Chromosomal rearrangements both numerical and structural were detected in 14 cases (12.2%. Two cases were triploid. Patau syndrome, Edwards syndrome and Down syndrome were found in two cases each. There was one case of trisomy 7 (47, XY, +7 and one case of trisomy 16 (47, XX, +16; one translocation, 46, XY, t (2; 14(q23; q32 and a deletion 46, XYdel (12 (p12 as well as two cases of sex chromosomes abnormalities, 45, X (Turner syndrome and 47, XYY. Conclusion. These findings suggest that a consistent number of symmetrical IUGR cases (about 12% can be associated with chromosomal rearrangements. Chromosomal aberrations that cause IUGR are heterogeneous, aberration of autosomes, mostly autosomal trisomies, being the most common.

  11. Systematic hybrid LOH: a new method to reduce false positives and negatives during screening of yeast gene deletion libraries

    DEFF Research Database (Denmark)

    Alvaro, D.; Sunjevaric, I.; Reid, R. J.

    2006-01-01

    We have developed a new method, systematic hybrid loss of heterozygosity, to facilitate genomic screens utilizing the yeast gene deletion library. Screening is performed using hybrid diploid strains produced through mating the library haploids with strains from a different genetic background......, to minimize the contribution of unpredicted recessive genetic factors present in the individual library strains. We utilize a set of strains where each contains a conditional centromere construct on one of the 16 yeast chromosomes that allows the destabilization and selectable loss of that chromosome. After...... complementation of any spurious recessive mutations in the library strain, facilitating attribution of the observed phenotype to the documented gene deletion and dramatically reducing false positive results commonly obtained in library screens. The systematic hybrid LOH method can be applied to virtually any...

  12. 4p16.1-p15.31 duplication and 4p terminal deletion in a 3-years old Chinese girl: Array-CGH, genotype-phenotype and neurological characterization.

    Science.gov (United States)

    Piccione, Maria; Salzano, Emanuela; Vecchio, Davide; Ferrara, Dante; Malacarne, Michela; Pierluigi, Mauro; Ferrara, Ines; Corsello, Giovanni

    2015-07-01

    Microscopically chromosome rearrangements of the short arm of chromosome 4 include the two known clinical entities: partial trisomy 4p and deletions of the Wolf-Hirschhorn critical regions 1 and 2 (WHSCR-1 and WHSCR-2, respectively), which cause cranio-facial anomalies, congenital malformations and developmental delay/intellectual disability. We report on clinical findings detected in a Chinese patient with a de novo 4p16.1-p15.32 duplication in association with a subtle 4p terminal deletion of 6 Mb in size. This unusual chromosome imbalance resulted in WHS classical phenotype, while clinical manifestations of 4p trisomy were practically absent. This observation suggests the hypothesis that haploinsufficiency of sensitive dosage genes with regulatory function placed in WHS critical region, is more pathogenic than concomitant 4p duplicated segment. Additionally clinical findings in our patient confirm a variable penetrance of major malformations and neurological features in Chinese children despite of WHS critical region's deletion. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  13. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    International Nuclear Information System (INIS)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-01-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome [rec(X)] derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 → Xqter and a deletion of Xp22.3 → Xpter and was interpreted to be Xqter → Xq26.3::Xp22.3 → Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 → qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state

  14. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Science.gov (United States)

    2012-01-01

    Background Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone

  15. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  16. PREVALENCE OF Y CHROMOSOME MICRODELETIONS IN IRANIAN INFERTILE MEN

    Directory of Open Access Journals (Sweden)

    F. Akbari Asbagh

    2003-07-01

    Full Text Available This study was designed to determine the frequency of Y chromosome AZF (Azoospermia Factor subregions, microdeletions in patients with idiopathic nonobstructive azoospermia and severe oligozoospermia. Subjects included 40 men who had been referred to infertility clinics for assisted reproduction, 37 were azoospermic and 3 had severe oligospermia. Medical history and physical exam revealed no evidence of infection, obstruction of seminal tract, endocrine failure or chromosomal anomalies. Hormonal study was performed for all patients. Twenty six men had biopsies of the testes including 11 patients with hypospermatogenesis, 9 patients with maturation arrest, 4 patients with sertoli cell only syndrome and 2 patients with tubular sclerosis. In 14 men who did not have a testicular biopsy multiple, epididymal and testicular sperm aspirations under anesthesia failed and testicular sperm extraction was subsequently performed for ICSI. DNA was isolated from blood samples. Polymerase chain reaction (PCR amplification of 11 loci spanning the AZFa, AZFb and AZFc subregions of the Y chromosome using sY81, sY83, sY127, sY130, sY131, sY147, sY149, sY157, sY158, sY254 and sY276 was performed. Microdeletions of the Y chromosome were found in two of the patients (5%, who had azoospermia. Deletions were restricted to DAZ (deleted in azoospermia locus in AZFc subregion. One of the patients had a history of cryptorchidism and the second had undergone a left side varicocelectomy. Testicular pathology showed sertoli cell only syndrome in both of them. Our experience adds to the current logic that men with azoospermia or severe oligospermia should be evaluated for Yq11 microdeletions before deciding to operate varicoceles or else scheduling them for assisted reproductive techniques.

  17. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Venken, Koen J. T.; Popodi, Ellen; Holtzman, Stacy L.; Schulze, Karen L.; Park, Soo; Carlson, Joseph W.; Hoskins, Roger A.; Bellen, Hugo J.; Kaufman, Thomas C.

    2010-07-22

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using C31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  18. A familial pericentric inversion of chromosome 11 associated with a microdeletion of 163 kb and microduplication of 288 kb at 11p13 and 11q22.3 without aniridia or eye anomalies.

    Science.gov (United States)

    Balay, Lara; Totten, Ellen; Okada, Luna; Zell, Sidney; Ticho, Benjamin; Israel, Jeannette; Kogan, Jillene

    2016-01-01

    Interstitial deletions of 11p13 involving MPPED2, DCDC5, DCDC1, DNAJC24, IMMP1L, and ELP4 are previously reported to have downstream transcriptional effects on the expression of PAX6, due to a downstream regulatory region (DRR). Currently, no clear genotype-phenotype correlations have been established allowing for conclusive information regarding the exact location of the PAX6 DRR, though its location has been approximated in mouse models to be within the Elp4 gene. Of the clinical reports currently published examining patients with intact PAX6 genes but harboring deletions identified in genes downstream of PAX6, 100% indicate phenotypes which include aniridia, whereas approximately half report additional eye deformities, autism, or intellectual disability. In this clinical report, we present a 12-year-old male patient, his brother, and mother with pericentric inversions of chromosome 11 associated with submicroscopic interstitial deletions of 11p13 and duplications of 11q22.3. The inversions were identified by standard cytogenetic analysis; microarray and FISH detected the chromosomal imbalance. The patient's phenotype includes intellectual disability, speech abnormalities, and autistic behaviors, but interestingly neither the patient, his brother, nor mother have aniridia or other eye anomalies. To the best of our knowledge, these findings in three family members represent the only reported cases with 11p13 deletions downstream of PAX6 not demonstrating phenotypic characteristics of aniridia or abnormal eye development. Although none of the deleted genes are obvious candidates for the patient's phenotype, the absence of aniridia in the presence of this deletion in all three family members further delineates the location of the DRR for PAX6. © 2015 Wiley Periodicals, Inc.

  19. The mouse small eye mutant, Del(2)Sey3H, which deletes the putative tumor suppressor region of the radiation-induced acute myeloid leukemia is susceptible to radiation

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Yoshida, Kazuko; Tanaka, Kimio; Peters, Jo; Cattanach, Bruce M.

    2003-01-01

    Radiation-induced murine acute myeloid leukemia (AML) is characterized by the chromosome 2 deletions. Standing on the hypothesis that an AML suppressor gene would locate on the chromosome 2, a deletion-wide screen was performed on radiation-induced AMLs by the fluorescence in situ hybridization (FISH) method. The hemizugous deletion of the D2Mit15, a marker DNA at the 49.0cM region from the centromere, associated with the AMLs in 97 out of the 105 cases (92.4%). As the deletion region was close to the region of human WAGR syndrome (MIM194072), the mouse small eye mutants could be the animal model for radiation-induced AMLs. The mutant, Del(2)Sey3H (Sey3H) was found to delete around the 49.0cM region by the allelic loss mapping. The Sey3H showed high susceptibility to radiation to develop tumors including the myeloid leukemia with shorter latency. These finding support the existence of a putative tumor suppressor gene responsible for the radiation-leukemogenesis near the D2Mit15 region. (author)

  20. Deletions at chromosome regions 7q11.23 and 7q36 in a patient with Williams syndrome

    NARCIS (Netherlands)

    Wouters, C. H.; Meijers-Heijboer, H. J.; Eussen, B. J.; van der Heide, A. A.; van Luijk, R. B.; van Drunen, E.; Beverloo, B. B.; Visscher, F.; van Hemel, J. O.

    2001-01-01

    We report on a patient with Williams syndrome and a complex de novo chromosome rearrangement, including microdeletions at 7q11.23 and 7q36 and additional chromosomal material at 7q36. The nature of this additional material was elucidated by spectral karyotyping and first assigned to chromosome 22.

  1. Spontaneous and mutagen-induced deletions: mechanistic studies in Salmonella tester strain TA102

    International Nuclear Information System (INIS)

    Levin, D.E.; Marnett, L.J.; Ames, B.N.

    1984-01-01

    Salmonella tester strain TA102 carries the hisG428 ochre mutation on the multicopy plasmid pAQ1. DNA sequence analysis of 45 spontaneous revertants of hisG428 on the chromosome in the presence of pKM101 (strain TA103) indicates that hisG428 revertants fall into three major categories: (i) small, in-frame deletions (3 or 6 base pairs) that remove part or all of the ochre triplet; (ii) base substitution mutations at the ochre site; (iii) extragenic ochre suppressors. Deletion revertants are identified in a simple phenotypic screen by their resistance to the inhibitory histidine analog thiazolealanine, which feedback inhibits the wild-type hisG enzyme but not the enzyme resulting from the deletions. The effect of various genetic backgrounds on the generation of spontaneous deletion revertants was examined. The presence of a uvrB mutation or a recA mutation suppressed the generation of spontaneous deletion revertants to approximately 1/2.5. When hisG428 was in multiple copies on pAQ1, the frequency of spontaneous deletion revertants increased by 40-fold, which is the approximate copy number of pAQ1. Mutagenic agents that induce single-strand breaks in DNA (e.g., x-rays, bleomycin, and nalidixic acid) induced deletion revertants in TA102. These agents induced deletion revertants only in hisG428 on pAQ1 and only in the presence of pKM101. Deletion revertants were not induced by frameshift mutagens (i.e., ICR-191 and 9aminoacridine). These results indicate that different pathways exist for the generation of spontaneous and mutagen-induced deletion revertants of hisG428. 41 references, 2 figures, 3 tables

  2. A new resource for characterizing X-linked genes in Drosophila melanogaster: systematic coverage and subdivision of the X chromosome with nested, Y-linked duplications.

    Science.gov (United States)

    Cook, R Kimberley; Deal, Megan E; Deal, Jennifer A; Garton, Russell D; Brown, C Adam; Ward, Megan E; Andrade, Rachel S; Spana, Eric P; Kaufman, Thomas C; Cook, Kevin R

    2010-12-01

    Interchromosomal duplications are especially important for the study of X-linked genes. Males inheriting a mutation in a vital X-linked gene cannot survive unless there is a wild-type copy of the gene duplicated elsewhere in the genome. Rescuing the lethality of an X-linked mutation with a duplication allows the mutation to be used experimentally in complementation tests and other genetic crosses and it maps the mutated gene to a defined chromosomal region. Duplications can also be used to screen for dosage-dependent enhancers and suppressors of mutant phenotypes as a way to identify genes involved in the same biological process. We describe an ongoing project in Drosophila melanogaster to generate comprehensive coverage and extensive breakpoint subdivision of the X chromosome with megabase-scale X segments borne on Y chromosomes. The in vivo method involves the creation of X inversions on attached-XY chromosomes by FLP-FRT site-specific recombination technology followed by irradiation to induce large internal X deletions. The resulting chromosomes consist of the X tip, a medial X segment placed near the tip by an inversion, and a full Y. A nested set of medial duplicated segments is derived from each inversion precursor. We have constructed a set of inversions on attached-XY chromosomes that enable us to isolate nested duplicated segments from all X regions. To date, our screens have provided a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. These duplication chromosomes will be valuable resources for rescuing and mapping X-linked mutations and identifying dosage-dependent modifiers of mutant phenotypes.

  3. Male infertility associated with de novo pericentric inversion of chromosome 1.

    Science.gov (United States)

    Balasar, Özgür; Zamani, Ayşe Gül; Balasar, Mehmet; Acar, Hasan

    2017-12-01

    Inversion occurs after two breaks in a chromosome have happened and the segment rotates 180° before reinserting. Inversion carriers have produced abnormal gametes if there is an odd number crossing- over between the inverted and the normal homologous chromosomes causing a duplication or deletion. Reproductive risks such as infertility, abortion, stillbirth and birth of malformed child would be expected in that case. A 54-year- old male patient was consulted to our clinic for primary infertility. The routine chromosome study were applied using peripheral blood lymphocyte cultures and analyzed by giemsa-trypsin-giemsa (GTG) banding, and centromer banding (C-banding) stains. Y chromosome microdeletions in the azoospermia factor (AZF) regions were analyzed with polymerase chain reaction. Additional test such as fluorescence in situ hybridization (FISH) was used to detect the sex-determining region of the Y chromosome (SRY). Semen analysis showed azoospermia. A large pericentric inversion of chromosome 1 46,XY, inv(1) (p22q32) was found in routine chromosome analysis. No microdeletions were seen in AZF regions. In our patient the presence of SRY region was observed by using FISH technique with SRY-specific probe. Men who have pericentric inversion of chromosome 1, appear to be at risk for infertility brought about by spermatogenic breakdown. The etiopathogenic relationship between azoospermia and pericentric inversion of chromosome 1 is discussed.

  4. Inactivation of human α-globin gene expression by a de novo deletion located upstream of the α-globin gene cluster

    International Nuclear Information System (INIS)

    Liebhaber, S.A.; Weiss, I.; Cash, F.E.; Griese, E.U.; Horst, J.; Ayyub, H.; Higgs, D.R.

    1990-01-01

    Synthesis of normal human hemoglobin A, α 2 β 2 , is based upon balanced expression of genes in the α-globin gene cluster on chromosome 15 and the β-globin gene cluster on chromosome 11. Full levels of erythroid-specific activation of the β-globin cluster depend on sequences located at a considerable distance 5' to the β-globin gene, referred to as the locus-activating or dominant control region. The existence of an analogous element(s) upstream of the α-globin cluster has been suggested from observations on naturally occurring deletions and experimental studies. The authors have identified an individual with α-thalassemia in whom structurally normal α-globin genes have been inactivated in cis by a discrete de novo 35-kilobase deletion located ∼30 kilobases 5' from the α-globin gene cluster. They conclude that this deletion inactivates expression of the α-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the α-globin genes

  5. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas Portmann

    2014-05-01

    Full Text Available A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−. We found elevated numbers of striatal medium spiny neurons (MSNs expressing the dopamine D2 receptor (Drd2+ and fewer dopamine-sensitive (Drd1+ neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.

  6. Method of detecting genetic deletions identified with chromosomal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  7. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    Science.gov (United States)

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  8. Rapid change of chromomeric and pairing patterns of polytene chromosome tips in D. melanogaster: migration of polytene-nonpolytene transition zone?

    Science.gov (United States)

    Roberts, P A

    1979-07-01

    The high variability of chromomeric patterns in near-terminal regions of polytene chromosome arms has been explored in a number of races, strains and hybrids of Drosophila melanogaster. Traditional explanations for tip differences between strains (differential compaction of chromatin, somatic or germinal deletion) are examined and, in the light of the reported observations, rejected. The range of polytene tip variability and rates of change in wild races are greater than has been supposed: strains formerly considered to be terminally deleted appear to gain terminal bands; others, formerly considered normal, appear to have lost them. Strains with high cell-to-cell tip variability are also described. Cell-to-cell variations, as well as much of the observed rapid changes in tip appearance, are probably due to heritable differences in the location of an abrupt transition zone between polytene and nonpolytene chromatin. A quantitative relationship between the amount of certain subterminal bands present and the frequency of tip association of nonhomologous chromosomes is shown and its possible significance for chromosome is shown and its possible for chromosome pairing discussed.

  9. Chromosome Aberrations of East Asian Bullfrog (Hoplobatrachus rugulosus around a Gold Mine Area with Arsenic Contamination

    Directory of Open Access Journals (Sweden)

    Atidtaya Suttichaiya

    2016-01-01

    Full Text Available The objectives of this study are to investigate the chromosome aberrations of the East Asian Bullfrog (Hoplobatrachus rugulosus in the gold mine area compared to an unaffected area. Three H. rugulosus were collected, and chromosome aberrations were studied using bone marrow. The level of arsenic was measured in water, sediment and H. rugulosus samples. The average concentrations of arsenic in the water and sediment samples from the gold mine and unaffected areas were 0.03 ± 0.003 mg/l and not detected in water as well as 351.59 ± 5.73 and 1.37 ± 1.07 mg/kg in sediment, respectively. The gold mine values were higher than the permissible limit of the water and soil quality standards, but the arsenic concentrations in the samples from the unaffected area were within prescribed limit. The average concentrations of arsenic in H. rugulosus samples from the gold mine and unaffected areas were 0.39 ± 0.30 and 0.07 ± 0.01 mg/kg, respectively, which were both lower than the standard of arsenic contamination in food. The diploid chromosome number of H. rugulosus in both areas was 2n=26, and the percentage of chromosome breakages of H. rugulosus in the gold mine area were higher than the unaffected area. There were eight types of chromosome aberrations, including a single chromatid gap, isochromatid gap, single chromatid break, isochromatid break, centric fragmentation, deletion, fragmentation and translocation. The most common chromosome aberration in the samples from the affected area was deletion. The difference in the percentage of chromosome breakages in H. rugulosus from both areas was statistically significant (p<0.05.

  10. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  11. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: implication in the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Aliev, Gjumrakch; Gasimov, Eldar; Obrenovich, Mark E; Fischbach, Kathryn; Shenk, Justin C; Smith, Mark A; Perry, George

    2008-01-01

    The pathogenesis that is primarily responsible for Alzheimer's disease (AD) and cerebrovascular accidents (CVA) appears to involve chronic hypoperfusion. We studied the ultrastructural features of vascular lesions and mitochondria in brain vascular wall cells from human AD biopsy samples and two transgenic mouse models of AD, yeast artificial chromosome (YAC) and C57B6/SJL Tg (+), which overexpress human amyloid beta precursor protein (AbetaPP). In situ hybridization using probes for normal and 5 kb deleted human and mouse mitochondrial DNA (mtDNA) was performed along with immunocytochemistry using antibodies against the Abeta peptide processed from AbetaPP, 8-hydroxy-2'-guanosine (8OHG), and cytochrome c oxidase (COX). More amyloid deposition, oxidative stress markers as well as mitochondrial DNA deletions and structural abnormalities were present in the vascular walls of the human AD samples and the AbetaPP-YAC and C57B6/SJL Tg (+) transgenic mice compared to age-matched controls. Ultrastructural damage in perivascular cells highly correlated with endothelial lesions in all samples. Therefore, pharmacological interventions, directed at correcting the chronic hypoperfusion state, may change the natural course of the development of dementing neurodegeneration.

  12. TTY2 genes deletions as genetic risk factor of male infertility.

    Science.gov (United States)

    Shaveisi-Zadeh, F; Alibakhshi, R; Asgari, R; Rostami-Far, Z; Bakhtiari, M; Abdi, H; Movafagh, A; Mirfakhraie, R

    2017-02-28

    Y chromosome has a number of genes that are expressed in testis and have a role in spermatogenesis. TTY2L12A and TTY2L2A are the members of testis transcript Y2 (TTY2) that are Y linked multi-copy gene families, located on Yp11 and Yq11 loci respectively. The aim of this study was to investigate frequency of TTY2L12A and TTY2L2A deletions in azoospermic patients compared with fertile males. This study was performed on 45 infertile males with idiopathic azoospermia without any AZF micro deletions (group A), 33 infertile males with azoospermia which do not screened for AZF micro deletions (group B) and 65 fertile males (group C), from October 2013 to April 2015 in west of Iran. Polymerase chain reaction (PCR) method was used for detection of TTY2L12A and TTY2L2A gene deletions in studied groups. No deletions were detected in normal fertile males of group C. 1 out of 45 azoospermic males of group A (2.22%) and 3 out of 33 azoospermic males of group B (9.09%) had TTY2L2A deletion (p= 0.409 and p= 0.036 respectively), also 1 out of 45 azoospermic males of group A (2.22%) and 4 out of 33 azoospermic males of group B (12.12%) had TTY2L12A deletion (p= 0.409 and p= 0.011 respectively).  None of azoospermic males in Group A and B had deletions in both genes. Our data showed significant correlation between non-obstructive azoospermia and TTY2L12A and TTY2L2A deletions. Thus, it seems that TTY2L12A and TTY2L2A deletions can consider as one of the genetic risk factors for non-obstructive azoospermia.

  13. A novel growth hormone receptor gene deletion mutation in a patient with primary growth hormone insensitivity syndrome (Laron syndrome).

    Science.gov (United States)

    Yamamoto, Hiroyasu; Kouhara, Haruhiko; Iida, Keiji; Chihara, Kazuo; Kasayama, Soji

    2008-04-01

    Growth hormone (GH) insensitivity syndrome (Laron syndrome) is known to be caused by genetic disorders of the GH-IGF-1 axis. Although many mutations in the GH receptor have been identified, there have been only a few reports of deletions of the GH receptor gene. A Japanese adult female patient with Laron syndrome was subjected to chromosome analysis with basic G-banding and also with a high accuracy technique. Each exon of the GH receptor gene was amplified by means of PCR. Since this patient was diagnosed with osteoporosis, the effects of alendronate on bone mineral density (BMD) were also examined. The chromosome analysis with the high accuracy technique demonstrated a large deletion of the short arm in one allele of chromosome 5 from p11 to p13.1 [46, XX, del (5) (p11-p13.1)]. PCR amplification of exons of the GH receptor gene showed that only exons 2 and 3 were amplified. Low-dose IGF-1 administration (30microg/kg body weight) failed to increase her BMD, whereas alendronate administration resulted in an increase associated with a decrease in urinary deoxypyridinoline (DPD) and serum osteocalcin concentrations. The GH receptor gene of the patient was shown to lack exons 4-10. To the best of our knowledge, this is the third case report of Laron syndrome with large GH receptor deletion. Alendronate was effective for the enhancement of BMD.

  14. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  15. Characterization of a large deletion in the {beta}-globin gene cluster in a newborn with hemoglobin FE

    Energy Technology Data Exchange (ETDEWEB)

    Louie, E.; Dietz, L.; Shafer, F. [Children`s Hosptial, Oakland, CA (United States)] [and others

    1994-09-01

    A sample on a newborn with hemoglobin FE screen results was obtained to investigate whether E/E or B/{beta}{degrees} thalassemia was present using polymerase chain reaction (PCR) methodology. The newborn appeared homozygous for the hemoglobin E mutation in our initial study, but the parents` genotypes did not support this diagnosis. The father is homozygous for the absence of the hemoglobin E mutation (non E/non E) and the mother is heterozygous (E/non E) for this mutation. The limitation of PCR analysis is an assumption that the amplification of the two {beta}-globin alleles is equivalent. A large deletion on one {beta}-globin gene, which would produce E/{beta}{degrees} thalassemia, would be missed if it included part or the entire region subjected to amplification. The family results were consistent with either non-paternity, sample mix-up or such a deletion of the {beta}-globin gene in the father and child. To rule out the possibility of non-paternity, two polymorphic loci (HLA on chromosome 6 and a VNTR system of chromosome 17) that are outside of the {beta}-globin gene were analyzed and show that inheritance is consistent and the likelihood of a sample mix-up is then reduced. We therefore believe there is a gene deletion in this family. At the present time, analyses of the RFLPs that are 5{prime} of the {beta}-globin gene cluster show that the polymorphisms most distal from the 5{prime} {beta}-globin gene are not being inherited as expected. These results support our interpretation that a deletion exists in the father and was inherited by the child. The father`s clinical picture of possible HPFH (the father has 12% hemoglobin F) also supports the interpretation of a deletion in this family. Deletions of the {beta}-globin gene within this ethnic group are rare. Currently, Southern blots on the family are being probed to determine the extent of the putative deletion.

  16. Birth seasonality in Korean Prader-Willi syndrome with chromosome 15 microdeletion

    Directory of Open Access Journals (Sweden)

    Aram Yang

    2015-03-01

    Full Text Available PurposePrader-Willi syndrome (PWS is a well-known genetic disorder, and microdeletion on chromosome 15 is the most common causal mechanism. Several previous studies have suggested that various environmental factors might be related to the pathogenesis of microdeletion in PWS. In this study, we investigated birth seasonality in Korean PWS.MethodsA total of 211 PWS patients born from 1980 to 2014 were diagnosed by methylation polymerase chain reaction at Samsung Medical Center. Of the 211 patients, 138 were born from 2000-2013. Among them, the 74 patients of a deletion group and the 22 patients of a maternal uniparental disomy (UPD group were compared with general populations born from 2000 using the Walter and Elwood method and cosinor analysis.ResultsThere was no statistical significance in seasonal variation in births of the total 211 patients with PWS (χ2=7.2522, P=0.2982. However, a significant difference was found in the monthly variation between PWS with the deletion group and the at-risk general population (P<0.05. In the cosinor model, the peak month of birth for PWS patients in the deletion group was January, while the nadir occurred in July, with statistical significance (amplitude=0.23, phase=1.2, low point=7.2. The UPD group showed the peak birth month in spring; however, this result was not statistically significant (χ2=3.39, P=0.1836.ConclusionCorrelation with birth seasonality was identified in a deletion group of Korean PWS patients. Further studies are required to identify the mechanism related to seasonal effects of environmental factors on microdeletion on chromosome 15.

  17. The htpAB operon of Legionella pneumophila cannot be deleted in the presence of the groE chaperonin operon of Escherichia coli.

    Science.gov (United States)

    Nasrallah, Gheyath K; Gagnon, Elizabeth; Orton, Dennis J; Garduño, Rafael A

    2011-11-01

    HtpB, the chaperonin of the intracellular bacterial pathogen Legionella pneumophila , displays several virulence-related functions in vitro. To confirm HtpB's role in vivo, host infections with an htpB deletion mutant would be required. However, we previously reported that the htpAB operon (encoding co-chaperonin and chaperonin) is essential. We attempted here to delete htpAB in a L. pneumophila strain carrying the groE operon (encoding the Escherichia coli co-chaperonin and chaperonin). The groE operon was inserted into the chromosome of L. pneumophila Lp02, and then allelic replacement of htpAB with a gentamicin resistance cassette was attempted. Although numerous potential postallelic replacement transformants showed a correct selection phenotype, we still detected htpAB by PCR and full-size HtpB by immunoblot. Southern blot and PCR analysis indicated that the gentamicin resistance cassette had apparently integrated in a duplicated htpAB region. However, we showed by Southern blot that strain Lp02, and the Lp02 derivative carrying the groE operon, have only one copy of htpAB. These results confirmed that the htpAB operon cannot be deleted, not even in the presence of the groE operon, and suggested that attempts to delete htpAB under strong phenotypic selection result in aberrant genetic recombinations that could involve duplication of the htpAB locus.

  18. Social cognitive training in adolescents with chromosome 22q11.2 deletion syndrome: feasibility and preliminary effects of the intervention.

    Science.gov (United States)

    Shashi, V; Harrell, W; Eack, S; Sanders, C; McConkie-Rosell, A; Keshavan, M S; Bonner, M J; Schoch, K; Hooper, S R

    2015-10-01

    Children with chromosome 22q11.2 deletion syndrome (22q11DS) often have deficits in social cognition and social skills that contribute to poor adaptive functioning. These deficits may be of relevance to the later occurrence of serious psychiatric illnesses such as schizophrenia. Yet, there are no evidence-based interventions to improve social cognitive functioning in children with 22q11DS. Using a customised social cognitive curriculum, we conducted a pilot small-group-based social cognitive training (SCT) programme in 13 adolescents with 22q11DS, relative to a control group of nine age- and gender-matched adolescents with 22q11DS. We found the SCT programme to be feasible, with high rates of compliance and satisfaction on the part of the participants and their families. Our preliminary analyses indicated that the intervention group showed significant improvements in an overall social cognitive composite index. SCT in a small-group format for adolescents with 22q11DS is feasible and results in gains in social cognition. A larger randomised controlled trial would permit assessment of efficacy of this promising novel intervention. © 2015 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  19. 9q22 Deletion - First Familial Case

    Directory of Open Access Journals (Sweden)

    Yamamoto Toshiyuki

    2011-06-01

    Full Text Available Abstract Background Only 29 cases of constitutional 9q22 deletions have been published and all have been sporadic. Most associate with Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS, MIM #109400 due to haploinsufficiency of the PTCH1 gene (MIM *601309. Methods and Results We report two mentally retarded female siblings and their cognitively normal father, all carrying a similar 5.3 Mb microdeletion at 9q22.2q22.32, detected by array CGH (244 K. The deletion does not involve the PTCH1 gene, but instead 30 other gene,s including the ROR2 gene (MIM *602337 which causing both brachydactyly type 1 (MIM #113000 and Robinow syndrome (MIM #268310, and the immunologically active SYK gene (MIM *600085. The deletion in the father was de novo and FISH analysis of blood lymphocytes did not suggest mosaicism. All three patients share similar mild dysmorphic features with downslanting palpebral fissures, narrow, high bridged nose with small nares, long, deeply grooved philtrum, ears with broad helix and uplifted lobuli, and small toenails. All have significant dysarthria and suffer from continuous middle ear and upper respiratory infections. The father also has a funnel chest and unilateral hypoplastic kidney but the daughters have no malformations. Conclusions This is the first report of a familial constitutional 9q22 deletion and the first deletion studied by array-CGH which does not involve the PTCH1 gene. The phenotype and penetrance are variable and the deletion found in the cognitively normal normal father poses a challenge in genetic counseling.

  20. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome.

    Science.gov (United States)

    Shen, Yue; Wang, Yun; Chen, Tai; Gao, Feng; Gong, Jianhui; Abramczyk, Dariusz; Walker, Roy; Zhao, Hongcui; Chen, Shihong; Liu, Wei; Luo, Yisha; Müller, Carolin A; Paul-Dubois-Taine, Adrien; Alver, Bonnie; Stracquadanio, Giovanni; Mitchell, Leslie A; Luo, Zhouqing; Fan, Yanqun; Zhou, Baojin; Wen, Bo; Tan, Fengji; Wang, Yujia; Zi, Jin; Xie, Zexiong; Li, Bingzhi; Yang, Kun; Richardson, Sarah M; Jiang, Hui; French, Christopher E; Nieduszynski, Conrad A; Koszul, Romain; Marston, Adele L; Yuan, Yingjin; Wang, Jian; Bader, Joel S; Dai, Junbiao; Boeke, Jef D; Xu, Xun; Cai, Yizhi; Yang, Huanming

    2017-03-10

    Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain. Copyright © 2017, American Association for the Advancement of Science.

  1. Constitutional chromosomal events at 22q11 and 15q26 in a child with a pilocytic astrocytoma of the spinal cord.

    Science.gov (United States)

    Mascelli, Samantha; Severino, Mariasavina; Raso, Alessandro; Nozza, Paolo; Tassano, Elisa; Morana, Giovanni; De Marco, Patrizia; Merello, Elisa; Milanaccio, Claudia; Pavanello, Marco; Rossi, Andrea; Cama, Armando; Garrè, Maria Luisa; Capra, Valeria

    2014-01-01

    We report on a 9-years-old patient with mild intellectual disability, facial dimorphisms, bilateral semicircular canal dysplasia, periventricular nodular heterotopias, bilateral hippocampal malrotation and abnormal cerebellar foliation, who developed mild motor impairment and gait disorder due to a pilocytic astrocytoma of the spinal cord. Array-CGH analysis revealed two paternal inherited chromosomal events: a 484.3 Kb duplication on chromosome 15q26.3 and a 247 Kb deletion on 22q11.23. Further, a second de novo 1.5 Mb deletion on 22q11.21 occurred. Chromosome 22 at q11.2 and chromosome 15 at q24q26 are considered unstable regions subjected to copy number variations, i.e. structural alterations of genome, mediated by low copy repeat sequences or segmental duplications. The link between some structural CNVs, which compromise fundamental processes controlling DNA stability, and genomic disorders suggest a plausible scenario for cancer predisposition. Evaluation of the genes at the breakpoints cannot account simultaneously for the phenotype and tumour development in this patient. The two paternal inherited CNVs arguably are not pathogenic and do not contribute to the clinical manifestations. Similarly, although the de novo large deletion at 22q11.21 overlaps with the Di George (DGS) critical region and results in haploinsufficiency of genes compromising critical processes for DNA stability, this case lacks several hallmarks of DGS.

  2. Cyclin dependent kinase inhibitor 2A/B gene deletions are markers of poor prognosis in Indian children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Agarwal, Manisha; Bakhshi, Sameer; Dwivedi, Sadanand N; Kabra, Madhulika; Shukla, Rashmi; Seth, Rachna

    2018-06-01

    Cyclin dependent kinase inhibitor 2A/B (CDKN2A/B) genes are implicated in many malignancies including acute lymphoblastic leukemia (ALL). These tumor suppressor genes, with a key regulatory role in cell cycle are located on chromosome 9p21.3. Previous studies involving CDKN2A/B gene deletions have shown mixed associations with survival outcome in childhood ALL. Hundred and four newly diagnosed children with ALL (1-14 years) were enrolled in this study. Genomic DNA from pretreatment bone marrow/peripheral blood samples of these children was investigated for copy number alterations in CDKN2A/B genes using multiplex ligation dependent probe amplification assay. Immunophenotype subtyping and cytogenetic and molecular analysis of ALL was performed at start of induction chemotherapy in all children. Children were monitored for response to prednisolone (Day 8), complete morphological remission, and minimal residual disease at the end of induction. The minimum postinduction follow-up period was 6 months. CDKN2A/B deletions were seen in 19.8% (18/91) of B lineage acute lymphoblastic leukemia (B-ALL) and 38.5% (5/13) of T lineage acute lymphoblastic leukemia (T-ALL). Monoallelic CDKN2A/B deletions were found in 61.1% of total deletions in B-ALL while all the children with T-ALL harbored biallelic deletions. The prevalence of CDKN2A/B gene deletions was found to be significantly higher in older children (P = 0.002), in those with higher leukocyte count (P = 0.037), and in National Cancer Institute high risk group patients (P = 0.001) in the B-ALL subgroup. Hazard ratio was significantly high for children with CDKN2A/B deletions in total cohort (P = 0.004). Children with CDKN2A/B deletion had significantly lesser event free survival (P = 0.03). CDKN2A/B deletions were significantly more prevalent in T-ALL subgroup and were found to have higher hazard ratio and lesser event free survival in total cohort in our study. © 2018 Wiley Periodicals, Inc.

  3. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    Science.gov (United States)

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Genesis by meiotic unequal crossover of a de novo deletion that contributes to steroid 21-hydroxylase deficiency

    International Nuclear Information System (INIS)

    Sinnott, P.; Collier, S.; Dyer, P.A.; Harris, R.; Strachan, T.; Costigan, C.

    1990-01-01

    The HLA-linked human steroid 21-hydroxylase gene CYP21B and its closely homologous pseudogene CYP21A are each normally located centromeric to a fourth component of complement (C4) gene, C4B and C4A, respectively, in an organization suggesting tandem duplication of a ca. 30-kilobase DNA unit containing a CYP21 gene and a C4 gene. Such an organization has been considered to facilitate gene deletion and addition events by unequal crossover between the tandem repeats. The authors have identified a steroid 21-hydroxylase deficiency patient who has a maternally inherited disease haplotype that carries a de novo deletion of a ca. 30-kilobase repeat unit including the CYP21B gene and associated C4B gene. This disease haplotype appears to have been generated as a result of meiotic unequal crossover between maternal homologous chromosomes. One of the maternal haplotypes is the frequently occurring HLA-DR3,B8,A1 haplotype that normally carries a deletion of a ca. 30-kilobase unit including the CYP21A gene and C4A gene. Haplotypes of this type may possible act as premutations, increasing the susceptibility of developing a 21-hydroxylase deficiency mutation by facilitating unequal chromosome pairing

  5. Using Bacterial Artificial Chromosomes in Leukemia Research: The Experience at the University Cytogenetics Laboratory in Brest, France

    Directory of Open Access Journals (Sweden)

    Etienne De Braekeleer

    2011-01-01

    Full Text Available The development of the bacterial artificial chromosome (BAC system was driven in part by the human genome project in order to construct genomic DNA libraries and physical maps for genomic sequencing. The availability of BAC clones has become a valuable tool for identifying cancer genes. We report here our experience in identifying genes located at breakpoints of chromosomal rearrangements and in defining the size and boundaries of deletions in hematological diseases. The methodology used in our laboratory consists of a three-step approach using conventional cytogenetics followed by FISH with commercial probes, then BAC clones. One limitation to the BAC system is that it can only accommodate inserts of up to 300 kb. As a consequence, analyzing the extent of deletions requires a large amount of material. Array comparative genomic hybridization (array-CGH using a BAC/PAC system can be an alternative. However, this technique has limitations also, and it cannot be used to identify candidate genes at breakpoints of chromosomal rearrangements such as translocations, insertions, and inversions.

  6. 18q deletion in a cystic fibrosis infant, increased morbidity and challenge for correct treatment choices: a case report

    OpenAIRE

    Dester Silvia; Fogazzi Annalisa; Timpano Silviana; Spinelli Elide; Milianti Susanna; Padoan Rita

    2011-01-01

    Abstract Cystic Fibrosis (CF) is the most frequent recessive disease of Caucasian patients. Association with other diseases or syndromes has previously been reported. Co-morbidity may be a challenge for clinicians, who have to face more severe problems. We have described a CF infant, F508del homozygote, diagnosed by neonatal screening, who also had a chromosome 18q terminal deletion [del (18)(q22-qter)]. Some clinical features of the 18q deletion: e.g., cardiopathy, gastro-oesophageal reflux ...

  7. Using 3-color chromosome painting to decide between chromosome aberration models

    International Nuclear Information System (INIS)

    Lucas, J.N.; Sachs, R.K.

    1993-01-01

    Ionizing radiation produces chromosome aberrations when DNA double strand breaks (DSB) interact pairwise. For more than 30 years there have been two main, competing theories of such binary DSB interactions. The classical theory asserts that an unrepaired DSB makes two ends which separate, with each end subsequently able to join any similar (non-telomeric) end. The exchange theory asserts that the two DSB ends remain associated until repair or a reciprocal chromosome exchange involving a second DSB occurs. The authors conducted an experiment to test these models, using 3-color chromosome painting. After in vitro irradiation of resting human lymphocytes, they observed cells with three-color triplets at first metaphase: three derivative chromosomes having permuted colors, as if three broken chromosomes had played musical chairs. On the exchange model in its standard form such 3-color triplets cannot occur. On the classical model the expected frequency can be calculated. They report data and computer calculations which exclude the exchange model and favor the classical model

  8. IKAROS Gene Deleted B-Cell Acute Lymphoblastic Leukemia in Mexican Mestizos: Observations in Seven Patients and a Short Review of the Literature.

    Science.gov (United States)

    Ruiz-Delgado, Guillermo José; Cantero-Fortiz, Yahveth; León-Peña, Andrés Aurelio; León-González, Mónica; Nuñez-Cortés, Ana Karen; Ruiz-Argüelles, Guillermo José

    2016-01-01

    In B-cell acute lymphoblastic leukemia, one of the most frequent cytogenetic alterations is the presence of the Philadelphia chromosome. Recently, newly identified genetic alterations have been studied, among them the IKZF1 deletion. IKZF1 encodes IKAROS, a zinc finger protein that plays an important role in hematopoiesis involving the regulation process of adhesion, cellular migration, and as a tumor suppressor. We aimed to study the impact of IKAROS deletion in the evolution and prognosis of B-cell acute lymphoblastic leukemia. At a single center we prospectively studied patients diagnosed with B-cell acute lymphoblastic leukemia and screened for IKZF1 deletion using the multiplex ligation-dependent probe amplification method. We did a descriptive analysis of patients positive for the IKZF1 deletion to determine its impact on the evolution of the disease and survival rate. Between 2010 and 2015, 16 Mexican mestizo patients with B-cell acute lymphoblastic leukemia were prospectively screened for IKZF1 deletion; seven (43%) were positive and were included for further analysis. The age range of patients was 13-60 years; six were males and one female. All cases had type B acute lymphoblastic leukemia. Of the seven patients, two died, three were lost to follow-up, and two continue in complete remission with treatment. Results are worse than those in a group of patients with non-mutated IKAROS B-cell acute lymphoblastic leukemia previously studied in our center. Although this is a small sample, the presence of IKAROS deletion in acute lymphoblastic leukemia patients could represent a poor-prognosis marker and was probably related to therapy failure. It is also possible that this variant of leukemia may be more prevalent in Mexico. More studies are needed to define the role of IKZF1 deletion in acute lymphoblastic leukemia and the real prevalence of the disease in different populations.

  9. Stage specificity and dose-response relationships for chromosome aberrations induced in mouse primary spermatocytes following X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Y.; Tobari, I.; Utsugi, T.

    1986-05-01

    In this study, dose-response relationships were examined for chromosome aberrations observed at diakinesis-metaphase I of spermatocytes with X-irradiation at various stages of meiosis (diplotene, mid-pachytene, zygotene and leptotene). The frequencies of cells with X-ray-induced chromosome aberrations increased with dose at all stages in the applied range of 0.5-3.0 Gy and tended to increase as the irradiated stages descended after leptotene stage. In three stages, the frequencies increased exponentially with dose, but the rates of induction of chromosome breaks were markedly different depending on the stages at which spermatocytes were irradiated with X-rays. The rate of induction was the highest at diplotene and the lowest at leptotene, suggesting that diplotene spermatocytes had the highest radiosensitivity to the induction of chromosome breaks, followed by pachytene, zygotene and leptotene spermatocytes in that order. The dose-response relationships fitted well to linear equations for deletion-type aberrations at each stage, and to linear-quadratic equations for exchange-type aberrations at all stages except for leptotene. At leptotene, the chromatid exchanges were hardly observed, the aberrations being mainly consisted of iso-chromatid fragments. On the contrary, chromatid exchanges and iso-chromatide deletions were mainly observed at later stages (zygotene-diplotene).

  10. Discrimination of Deletion and Duplication Subtypes of the Deleted in Azoospermia Gene Family in the Context of Frequent Interloci Gene Conversion

    Science.gov (United States)

    Vaszkó, Tibor; Papp, János; Krausz, Csilla; Casamonti, Elena; Géczi, Lajos; Olah, Edith

    2016-01-01

    Due to its palindromic setup, AZFc (Azoospermia Factor c) region of chromosome Y is one of the most unstable regions of the human genome. It contains eight gene families expressed mainly in the testes. Several types of rearrangement resulting in changes in the cumulative copy number of the gene families were reported to be associated with diseases such as male infertility and testicular germ cell tumors. The best studied AZFc rearrangement is gr/gr deletion. Its carriers show widespread phenotypic variation from azoospermia to normospermia. This phenomenon was initially attributed to different gr/gr subtypes that would eliminate distinct members of the affected gene families. However, studies conducted to confirm this hypothesis have brought controversial results, perhaps, in part, due to the shortcomings of the utilized subtyping methodology. This proof-of-concept paper is meant to introduce here a novel method aimed at subtyping AZFc rearrangements. It is able to differentiate the partial deletion and partial duplication subtypes of the Deleted in Azoospermia (DAZ) gene family. The keystone of the method is the determination of the copy number of the gene family member-specific variant(s) in a series of sequence family variant (SFV) positions. Most importantly, we present a novel approach for the correct interpretation of the variant copy number data to determine the copy number of the individual DAZ family members in the context of frequent interloci gene conversion.Besides DAZ1/DAZ2 and DAZ3/DAZ4 deletions, not yet described rearrangements such as DAZ2/DAZ4 deletion and three duplication subtypes were also found by the utilization of the novel approach. A striking feature is the extremely high concordance among the individual data pointing to a certain type of rearrangement. In addition to being able to identify DAZ deletion subtypes more reliably than the methods used previously, this approach is the first that can discriminate DAZ duplication subtypes as well

  11. Are there ethnic differences in deletions in the dystrophin gene?

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.; Verma, I.C. [All India Inst. of Medical Sciences, New Delhi (India)

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  12. Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency.

    Science.gov (United States)

    Bhargava, Ragini; Carson, Caree R; Lee, Gabriella; Stark, Jeremy M

    2017-01-24

    A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.

  13. Rare genome-wide copy number variation and expression of schizophrenia in 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Bassett, Anne S.; Lowther, Chelsea; Merico, Daniele; Costain, Gregory; Chow, Eva W C; Van Amelsvoort, Therese; McDonald-Mcginn, Donna M.; Gur, Raquel E.; Swillen, Ann; van den Bree, Marianne B M; Murphy, Kieran C.; Gothelf, Doron; Bearden, Carrie E.; Eliez, Stephan; Kates, Wendy R.; Philip, Nicole; Sashi, Vandana; Campbell, Linda E.; Vorstman, Jacob; Cubells, Joseph; Repetto, Gabriela M.; Simon, Tony J.; Boot, Erik; Heung, Tracy; Evers, Rens; Vingerhoets, Claudia; Van Duin, Esther; Zackai, Elaine; Vergaelen, Elfi; Devriendt, Koen; Vermeesch, Joris R.; Owen, Michael J; Murphy, Clodagh M.; Michaelovosky, Elena; Kushan, Leila; Schneider, Maude; Fremont, Wanda; Busa, Tiffany; Hooper, Stephen R.; McCabe, Kathryn; Duijff, Sasja; Isaev, Karin; Pellecchia, Giovanna; Wei, John; Gazzellone, Matthew J.; Scherer, Stephen W.; Emanuel, Beverly S.; Guo, Tingwei; Morrow, Bernice E.; Marshall, Christian R.

    2017-01-01

    Objective: Chromosome 22q11.2 deletion syndrome (22q11.2DS) is associated with a more than 20-fold increased risk for developing schizophrenia. The aim of this studywas to identify additional genetic factors (i.e., "second hits") that may contribute to schizophrenia expression. Method: Through an

  14. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster.

    Science.gov (United States)

    Venken, Koen J T; Popodi, Ellen; Holtzman, Stacy L; Schulze, Karen L; Park, Soo; Carlson, Joseph W; Hoskins, Roger A; Bellen, Hugo J; Kaufman, Thomas C

    2010-12-01

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using ΦC31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  15. Chromosomal instability in women with primary ovarian insufficiency.

    Science.gov (United States)

    Katari, Sunita; Aarabi, Mahmoud; Kintigh, Angela; Mann, Susan; Yatsenko, Svetlana A; Sanfilippo, Joseph S; Zeleznik, Anthony J; Rajkovic, Aleksandar

    2018-02-07

    What is the prevalence of somatic chromosomal instability among women with idiopathic primary ovarian insufficiency (POI)? A subset of women with idiopathic POI may have functional impairment in DNA repair leading to chromosomal instability in their soma. The formation and repair of DNA double-strand breaks during meiotic recombination are fundamental processes of gametogenesis. Oocytes with compromised DNA integrity are susceptible to apoptosis which could trigger premature ovarian aging and accelerated wastage of the human follicle reserve. Genomewide association studies, as well as whole exome sequencing, have implicated multiple genes involved in DNA damage repair. However, the prevalence of defective DNA damage repair in the soma of women with POI is unknown. In total, 46 women with POI and 15 family members were evaluated for excessive mitomycin-C (MMC)-induced chromosome breakage. Healthy fertile females (n = 20) and two lymphoblastoid cell lines served as negative and as positive controls, respectively. We performed a pilot functional study utilizing MMC to assess chromosomal instability in the peripheral blood of participants. A high-resolution array comparative genomic hybridization (aCGH) was performed on 16 POI patients to identify copy number variations (CNVs) for a set of 341 targeted genes implicated in DNA repair. Array CGH revealed three POI patients (3/16, 18.8%) with pathogenic CNVs. Excessive chromosomal breakage suggestive of a constitutional deficiency in DNA repair was detected in one POI patient with the 16p12.3 duplication. In two patients with negative chromosome breakage analysis, aCGH detected a Xq28 deletion comprising the Centrin EF-hand Protein 2 (CETN2) and HAUS Augmin Like Complex Subunit 7 (HAUS7) genes essential for meiotic DNA repair, and a duplication in the 3p22.2 region comprising a part of the ATPase domain of the MutL Homolog 1 (MLH1) gene. Peripheral lymphocytes, used as a surrogate tissue to quantify induced chromosome

  16. Osteopathia striata congenita with cranial sclerosis and intellectual disability due to contiguous gene deletions involving the WTX locus

    DEFF Research Database (Denmark)

    Holman, Sk; Morgan, T; Baujat, G

    2013-01-01

    Osteopathia striata congenita with cranial sclerosis (OSCS) is a skeletal dysplasia caused by germline deletions of or truncating point mutations in the X-linked gene WTX (FAM123B, AMER1). Females present with longitudinal striations of sclerotic bone along the long axis of long bones and cranial...... sclerosis, with a high prevalence of cleft palate and hearing loss. Intellectual disability or neurodevelopmental delay is not observed in females with point mutations in WTX leading to OSCS. One female has been described with a deletion spanning multiple neighbouring genes suggesting that deletion of some...... neighbouring loci may result in abnormal neurodevelopment. In this cohort of 13 females with OSCS resulting from deletions of WTX, a relationship is observed where deletion of ARHGEF9 and/or MTMR8 in conjunction with WTX results in an additional neurodevelopmental phenotype whereas deletion of ASB12 along...

  17. Deep functional analysis of synII, a 770 kb synthetic yeast chromosome

    Science.gov (United States)

    Gao, Feng; Gong, Jianhui; Abramczyk, Dariusz; Walker, Roy; Zhao, Hongcui; Chen, Shihong; Liu, Wei; Luo, Yisha; Müller, Carolin A.; Paul-Dubois-Taine, Adrien; Alver, Bonnie; Stracquadanio, Giovanni; Mitchell, Leslie A.; Luo, Zhouqing; Fan, Yanqun; Zhou, Baojin; Wen, Bo; Tan, Fengji; Wang, Yujia; Zi, Jin; Xie, Zexiong; Li, Bingzhi; Yang, Kun; Richardson, Sarah M.; Jiang, Hui; French, Christopher E.; Nieduszynski, Conrad A.; Koszul, Romain; Marston, Adele L.; Yuan, Yingjin; Wang, Jian; Bader, Joel S.; Dai, Junbiao; Boeke, Jef D.; Xu, Xun; Cai, Yizhi; Yang, Huanming

    2017-01-01

    Herein we report the successful design, construction and characterization of a 770 kb synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels, including phenomics, transcriptomics, proteomics, chromosome segregation and replication analysis to provide a thorough and comprehensive analysis of a synthetic chromosome. Our “Trans-Omics” analyses reveal a modest but potentially significant pervasive up-regulation of translational machinery observed in synII is mainly caused by the deletion of 13 tRNAs. By both complementation assays and SCRaMbLE, we targeted and debuged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the HOG response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain. PMID:28280153

  18. Exceptional Complex Chromosomal Rearrangements in Three Generations

    Directory of Open Access Journals (Sweden)

    Hannie Kartapradja

    2015-01-01

    Full Text Available We report an exceptional complex chromosomal rearrangement (CCR found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband’s mother, which was confirmed using the whole chromosome painting (WCP FISH. High resolution whole genome microarray analysis of DNA from the proband’s mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother’s and grandmother’s CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  19. Structural and functional organization of the HF.10 human zinc finger gene (ZNF35) located on chromosome 3p21-p22

    DEFF Research Database (Denmark)

    Lanfrancone, L; Pengue, G; Pandolfi, P P

    1992-01-01

    We report the structural and functional characterization of the HF.10 zinc finger gene (ZNF35) in normal human cells, as well as a processed pseudogene. The HF.10 gene spans about 13 kb and it is interrupted by three introns. All 11 zinc finger DNA-binding domains are contiguously encoded within...... and partial nucleotide sequencing of the HF.10 pseudogene indicated that it has arisen by retroposition of spliced HF.10 mRNA. In situ hybridization experiments revealed that both the functional locus and the pseudogene map to chromosome 3p21p22, a region that is frequently deleted in small cell lung...... and renal carcinomas. Hybridization of the HF.10 gene and the HF.10 pseudogene DNA probes to metaphases from a small cell lung carcinoma cell line with the 3p deletion revealed that both loci are part of the deleted chromosome region....

  20. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster

    Science.gov (United States)

    Adrion, Jeffrey R.; Song, Michael J.; Schrider, Daniel R.; Hahn, Matthew W.

    2017-01-01

    Abstract Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species. PMID:28338986

  1. Deletion of the multidrug resistance protein MRP1 gene in acute myeloid leukemia : the impact on MRP activity

    NARCIS (Netherlands)

    Vellenga, E; van der Veen, AY; Noordhoek, L; Timmer-Bosscha, H; Ossenkoppele, GJ; Raymakers, RA; Muller, M; van den Berg, E; de Vries, EGE

    2000-01-01

    Deletion of the multidrug resistance gene MRP1 has been demonstrated in acute myeloid leukemia (AML) patients with inversion of chromosome 16 (inv[16]), These AML patients are known to have a relatively favorable prognosis, which suggests that MRP1 might play an important role In determining

  2. The contribution of p53 and Y chromosome long arm genes to regulation of apoptosis in mouse testis.

    Science.gov (United States)

    Lech, Tomasz; Styrna, Józefa; Kotarska, Katarzyna

    2018-03-01

    Apoptosis of excessive or defective germ cells is a natural process occurring in mammalian testes. Tumour suppressor protein p53 is involved in this process both in developing and adult male gonads. Its contribution to testicular physiology is known to be modified by genetic background. The aim of this study was to evaluate the combined influence of the p53 and Y chromosome long arm genes on male germ cell apoptosis. Knockout of the transformation related protein 53 (Trp53) gene was introduced into congenic strains: B10.BR (intact Y chromosome) and B10.BR-Ydel (Y chromosome with a deletion in the long arm). The level of apoptosis in the testes of 19-day-old and 3-month-old male mice was determined using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick-end labelling (TUNEL) method. The study revealed that although p53 is involved in germ cell apoptosis in peripubertal testes, this process can also be mediated by p53-independent mechanisms. However, activation of p53-independent apoptotic pathways in the absence of the p53 protein requires engagement of the multicopy Yq genes and was not observed in gonads of B10.BR-Ydel-p53-/- males. The role of Yq genes in the regulation of testicular apoptosis seems to be restricted to the initial wave of spermatogenesis and is not evident in adult gonads. The study confirmed, instead, that p53 does participate in spontaneous apoptosis in mature testes.

  3. Interclonal variations in the molecular karyotype of Trypanosoma cruzi: chromosome rearrangements in a single cell-derived clone of the G strain.

    Science.gov (United States)

    Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco

    2013-01-01

    Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure.

  4. Clinical, cytogenetic and molecular investigation in a fetus with Wolf-Hirschhorn syndrome with paternally derived 4p deletion. Case report and review of the literature.

    Science.gov (United States)

    Dietze, Ilona; Fritz, Barbara; Huhle, Dagmar; Simoens, Wouter; Piecha, Ernestine; Rehder, Helga

    2004-01-01

    Wolf-Hirschhorn (4p-) syndrome (WHS), caused by partial deletion of the short arm of chromosome 4, has been extensively described in children and young adults. Knowledge on fetuses with WHS is still limited due to the small number of published cases. We report on a fetus with prenatally diagnosed severe intrauterine growth retardation, reduced thoracal diameter, clubfeet deformity and midface hypoplasia including slight microretrognathia indicative for fetal karyotyping. Chromosome analysis after amniocentesis revealed a de novo terminal deletion of chromosome 4p [karyotype: 46,XX,del(4) (p16)] which was confirmed by FISH. Analyses of a set of polymorphic markers mapping in 4pter->4p15.3 showed absence of paternal haplotypes. These observations corroborate the preferential paternal origin of the de novo 4p deletion in WHS patients. Furthermore, the distal breakpoint could be narrowed to band 4p16.1. At autopsy, the fetus showed typical craniofacial dysmorphic signs of WHS, severe IUGR and delayed bone age. This report suggests the possibility of recognising the particular phenotype of WHS in utero by prenatal ultrasound and emphasises the importance of karyotyping fetuses with severe IUGR, especially when the amount of amniotic fluid is normal. Copyright 2004 S. Karger AG, Basel

  5. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes.

    Science.gov (United States)

    Heinzen, Erin L; Radtke, Rodney A; Urban, Thomas J; Cavalleri, Gianpiero L; Depondt, Chantal; Need, Anna C; Walley, Nicole M; Nicoletti, Paola; Ge, Dongliang; Catarino, Claudia B; Duncan, John S; Kasperaviciūte, Dalia; Tate, Sarah K; Caboclo, Luis O; Sander, Josemir W; Clayton, Lisa; Linney, Kristen N; Shianna, Kevin V; Gumbs, Curtis E; Smith, Jason; Cronin, Kenneth D; Maia, Jessica M; Doherty, Colin P; Pandolfo, Massimo; Leppert, David; Middleton, Lefkos T; Gibson, Rachel A; Johnson, Michael R; Matthews, Paul M; Hosford, David; Kälviäinen, Reetta; Eriksson, Kai; Kantanen, Anne-Mari; Dorn, Thomas; Hansen, Jörg; Krämer, Günter; Steinhoff, Bernhard J; Wieser, Heinz-Gregor; Zumsteg, Dominik; Ortega, Marcos; Wood, Nicholas W; Huxley-Jones, Julie; Mikati, Mohamad; Gallentine, William B; Husain, Aatif M; Buckley, Patrick G; Stallings, Ray L; Podgoreanu, Mihai V; Delanty, Norman; Sisodiya, Sanjay M; Goldstein, David B

    2010-05-14

    Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. Large deletions (> 100 kb) at 16p13.11 were observed in 23 patients, whereas no control had a deletion greater than 16 kb. Patients, even those with identically sized 16p13.11 deletions, presented with highly variable epilepsy phenotypes. For a subset of patients with a 16p13.11 deletion, we show a consistent reduction of expression for included genes, suggesting that haploinsufficiency might contribute to pathogenicity. We also investigated another possible mechanism of pathogenicity by using hybridization-based capture and next-generation sequencing of the homologous chromosome for ten 16p13.11-deletion patients to look for unmasked recessive mutations. Follow-up genotyping of suggestive polymorphisms failed to identify any convincing recessive-acting mutations in the homologous interval corresponding to the deletion. The observation that two of the 16p13.11 deletions were larger than 2 Mb in size led us to screen for other large deletions. We found 12 additional genomic regions harboring deletions > 2 Mb in epilepsy patients, and none in controls. Additional evaluation is needed to characterize the role of these exceedingly large, non-locus-specific deletions in epilepsy. Collectively, these data implicate 16p13.11 and possibly other large deletions as risk factors for a wide range of epilepsy disorders, and they appear to point toward haploinsufficiency as a contributor to the pathogenicity of deletions. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Interstitial deletion 1p as a result of a de novo reciprocal 1p;2p translocation

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Jensen, P H

    1985-01-01

    A 5-month-old female patient with psychomotor retardation and minor dysmorphisms is described. Cytogenetic analysis using high-resolution banding technique revealed an interstitial deletion of the short arm of one chromosome 1 (p21----p22.2) resulting from a de novo translocation t(1;2)(p22;p25)....

  7. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome

    Science.gov (United States)

    Harrison, CJ; Moorman, AV; Schwab, C; Carroll, AJ; Raetz, EA; Devidas, M; Strehl, S; Nebral, K; Harbott, J; Teigler-Schlegel, A; Zimmerman, M; Dastuge, N; Baruchel, A; Soulier, J; Auclerc, M-F; Attarbaschi, A; Mann, G; Stark, B; Cazzaniga, G; Chilton, L; Vandenberghe, P; Forestier, E; Haltrich, I; Raimondi, SC; Parihar, M; Bourquin, J-P; Tchinda, J; Haferlach, C; Vora, A; Hunger, SP; Heerema, NA; Haas, OA

    2014-01-01

    Intrachromosomal amplification of chromosome 21 (iAMP21) defines a distinct cytogenetic subgroup of childhood B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). To date, fluorescence in situ hybridisation (FISH), with probes specific for the RUNX1 gene, provides the only reliable detection method (five or more RUNX1 signals per cell). Patients with iAMP21 are older (median age 9 years) with a low white cell count. Previously, we demonstrated a high relapse risk when these patients were treated as standard risk. Recent studies have shown improved outcome on intensive therapy. In view of these treatment implications, accurate identification is essential. Here we have studied the cytogenetics and outcome of 530 iAMP21 patients that highlighted the association of specific secondary chromosomal and genetic changes with iAMP21 to assist in diagnosis, including the gain of chromosome X, loss or deletion of chromosome 7, ETV6 and RB1 deletions. These iAMP21 patients when treated as high risk showed the same improved outcome as those in trial-based studies regardless of the backbone chemotherapy regimen given. This study reinforces the importance of intensified treatment to reduce the risk of relapse in iAMP21 patients. This now well-defined patient subgroup should be recognised by World Health Organisation (WHO) as a distinct entity of BCP-ALL. PMID:24166298

  8. Wolf-Hirschhorn Syndrome with Epibulbar Dermoid: An Unusual Association in a Patient with 4p Deletion and Functional Xp Disomy.

    Science.gov (United States)

    Bragagnolo, Silvia; Colovati, Mileny E S; Guilherme, Roberta S; Dantas, Anelisa G; de Souza, Malú Zamariolli; de Soares, Maria F; Melaragno, Maria I; Perez, Ana B

    2016-01-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene and multiple malformation syndrome that results from a deletion in the 4p16.3 region. We describe here a 6-month-old girl that presented with WHS features but also displayed unusual findings, such as epibulbar dermoid in the left eye, ear tags, and left microtia. Although on G-banding her karyotype appeared to be normal, chromosomal microarray analysis revealed an ∼13-Mb 4p16.3p15.33 deletion and an ∼9-Mb Xp22.33p22.31 duplication, resulting from a balanced maternal t(X;4)(p22.31;p15.33) translocation. The patient presented with functional Xp disomy due to an unbalanced X-autosome translocation, a rare cytogenetic finding in females with unbalanced rearrangements. Sequencing of both chromosome breakpoints detected no gene disruption. To the best of our knowledge, this is the first patient described in the literature with WHS and epibulbar dermoid, a typical characteristic of the oculoauriculovertebral spectrum (OAVS). Our data suggest that possible candidate genes for OAVS may have been deleted along with the WHS critical region. © 2016 S. Karger AG, Basel.

  9. 16p11.2 Deletion Mice Display Cognitive Deficits in Touchscreen Learning and Novelty Recognition Tasks

    Science.gov (United States)

    Yang, Mu; Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2…

  10. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1.

    Science.gov (United States)

    Uga, Yusaku; Kitomi, Yuka; Yamamoto, Eiji; Kanno, Noriko; Kawai, Sawako; Mizubayashi, Tatsumi; Fukuoka, Shuichi

    2015-01-01

    Root growth angle (RGA) is an important trait that influences the ability of rice to avoid drought stress. DEEPER ROOTING 1 (DRO1), which is a major quantitative trait locus (QTL) for RGA, is responsible for the difference in RGA between the shallow-rooting cultivar IR64 and the deep-rooting cultivar Kinandang Patong. However, the RGA differences between these cultivars cannot be fully explained by DRO1. The objective of this study was to identify new QTLs for RGA explaining the difference in RGA between these cultivars. By crossing IR64 (which has a non-functional allele of DRO1) with Kinandang Patong (which has a functional allele of DRO1), we developed 26 chromosome segment substitution lines (CSSLs) that carried a particular chromosome segment from Kinandang Patong in the IR64 genetic background. Using these CSSLs, we found only one chromosomal region that was related to RGA: on chromosome 9, which includes DRO1. Using an F2 population derived from a cross between Kinandang Patong and the Dro1-NIL (near isogenic line), which had a functional DRO1 allele in the IR64 genetic background, we identified a new QTL for RGA (DRO3) on the long arm of chromosome 7. DRO3 may only affect RGA in plants with a functional DRO1 allele, suggesting that DRO3 is involved in the DRO1 genetic pathway.

  11. Chromosomal abnormalities and environmental exposures in acute nonlymphocytic leukemia

    International Nuclear Information System (INIS)

    Crane, M.M.; Keating, M.J.; Trujillo, J.M.; Labarthe, D.R.

    1988-01-01

    Chromosomal abnormalities are present in bone marrow of approximately 50% of newly diagnostic acute nonlymphatic leukemia (ANLL) patients, but their etiologic significance, if any, is unclear. The frequency of environmental exposures, gathered by questionnaire from patients or relatives, was compared in 127 newly diagnosed ANLL patients with marrow abnormalities (AA) and 109 ANLL patients with cytogenetically normal marrow. These represented 73% of de novo patients treated at M. D. Anderson Hospital between 1976 and 1983. AA patients were more likely than NN patients to: report cytotoxic treatment for prior medical conditions, smoke cigarettes, drink alcoholic beverages, and work at occupations with possible exposure to mutagens. No statistically significant associations between aneuploidy and use of other tobacco, avocational exposure to chemicals or exposure to animals were present. Associations between specific abnormalities and prior cytotoxic therapy (deletion of chromosome 7), smoking (extra chromosome 8, inversion chromosome 16), and occupation at the time of diagnosis (translocation between chromosomes 8 and 21) were noted. No association between occupational exposure to benzene or ionizing radiation and the 6 most common chromosomal abnormalities in ANLL patients were noted, although these agents are known to be leukemogenic. Problems with interpreting the above associations, including the high nonresponse rate, a high proportion of surrogate respondents, and the large number of significance tests that were performed, are discussed. These results are consistent with those from previously reported series, and suggest that tumor-specific markers may be present for some exposures in this disease

  12. HRAS1-selected chromosome transfer generates markers that colocalize aniridia- and genitourinary dysplasia-associated translocation breakpoints and the Wilms tumor gene within band 11p13.

    OpenAIRE

    Porteous, D J; Bickmore, W; Christie, S; Boyd, P A; Cranston, G; Fletcher, J M; Gosden, J R; Rout, D; Seawright, A; Simola, K O

    1987-01-01

    We show that chromosome-mediated gene transfer can provide an enriched source of DNA markers for predetermined, subchromosomal regions of the human genome. Forty-four human DNA recombinants isolated from a HRAS1-selected chromosome-mediated gene transformant map exclusively to chromosome 11, with several sublocalizing to the Wilms tumor region at 11p13. We present a detailed molecular map of the deletion chromosomes 11 from five WAGR (Wilms tumor/aniridia/genitourinary abnormalities/mental re...

  13. The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients.

    NARCIS (Netherlands)

    Buggenhout, G.J.C.M. van; Ravenswaaij-Arts, C.M.A. van; Maas, N.; Thoelen, R.; Vogels, A.; Smeets, D.F.C.M.; Salden, I.; Matthijs, G.; Fryns, J.P.; Vermeesch, J.

    2005-01-01

    We report four patients with an interstitial deletion of chromosome 2q32-->2q33. They presented similar clinical findings including pre- and postnatal growth retardation, distinct facial dysmorphism, thin and sparse hair and fair built, micrognathia, cleft or high palate, relative macroglossia,

  14. The complex translocation (9;14;14) involving IGH and CEBPE genes suggests a new subgroup in B-lineage acute lymphoblastic leukemia.

    Science.gov (United States)

    Zerrouki, Rachid; Benhassine, Traki; Bensaada, Mustapha; Lauzon, Patricia; Trabzi, Anissa

    2016-03-01

    Many subtypes of acute lymphoblastic leukemia (ALL) are associated with specific chromosomal rearrangements. The complex translocation t(9;14;14), a variant of the translocation (14;14)(q11;q32), is a rare but recurrent chromosomal abnormality involving the immunoglobulin heavy-chain (IGH) and CCAAT enhancer-binding protein (CEBPE) genes in B-lineage ALL (B-ALL) and may represent a new B-ALL subgroup. We report here the case of a 5-year-old girl with B-ALL, positive for CD19, CD38 and HLA-DR. A direct technique and G-banding were used for chromosomal analysis and fluorescentin situ hybridization (FISH) with BAC probes was used to investigate a possible rearrangement of the IGH andCEBPE genes. The karyotype exhibit the chromosomal aberration 46,XX,del(9)(p21),t(14;14)(q11;q32). FISH with dual-color break-apartIGH-specific and CEPBE-specific bacterial artificial chromosome (BAC) probes showed a complex t(9;14;14) associated with a deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A) and paired box gene 5 (PAX5) at 9p21-13 and duplication of the fusion gene IGH-CEBPE.

  15. Loss of chromosome 1p/19q in oligodendroglial tumors: refinement of chromosomal critical regions and evaluation of internexin immunostaining as a surrogate marker.

    LENUS (Irish Health Repository)

    Buckley, Patrick G

    2011-03-01

    Loss of chromosome 1p\\/19q in oligodendrogliomas represents a powerful predictor of good prognosis. Expression of internexin (INA), a neuronal specific intermediate filament protein, has recently been proposed as a surrogate marker for 1p\\/19q deletion based on the high degree of correlation between both parameters in oligodendrogliomas. The aim of this study was to assess further the diagnostic utility of INA expression in a set of genetically well-characterized oligodendrogliomas. On the basis of a conservative approach for copy number determination, using both comparative genomic hybridization and fluorescent in situ hybridization, INA expression as a surrogate marker for 1p\\/19q loss had both reduced specificity (80%) and sensitivity (79%) compared with respective values of 86% and 96% reported in the previous report. The histologic interpretation and diagnostic value of INA expression in oligodendrogliomas should therefore be assessed with greater caution when compared with 1p\\/19q DNA copy number analysis. In addition, DNA copy number aberrations of chromosomes 10, 16, and 17 were detected exclusively in 1p\\/19q codeleted samples, suggesting that other regions of the genome may contribute to the 1p\\/19q-deleted tumor phenotype inthese samples.

  16. Condensin-driven remodelling of X chromosome topology during dosage compensation

    Science.gov (United States)

    Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.

    2015-07-01

    The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using

  17. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus

    DEFF Research Database (Denmark)

    Gresham, D.; Usaite, Renata; Germann, S.M.

    2010-01-01

    and deletions at the GAP1 locus. GAP1 encodes the general amino acid permease, which transports amino acids across the plasma membrane. We identified a self-propagating extrachromosomal circular DNA molecule that results from intrachromosomal recombination between long terminal repeats (LTRs) flanking GAP1....... Extrachromosomal DNA circles (GAP1(circle)) contain GAP1, the replication origin ARS1116, and a single hybrid LTR derived from recombination between the two flanking LTRs. Formation of the GAP1(circle) is associated with deletion of chromosomal GAP1 (gap1 Delta) and production of a single hybrid LTR at the GAP1...

  18. Linkage group-chromosome correlations in Sordaria macrospora: Chromosome identification by three dimensional reconstruction of their synaptonemal complex.

    Science.gov (United States)

    Zickler, D; Leblon, G; Haedens, V; Collard, A; Thuriaux, P

    1984-01-01

    Reconstruction of serially sectioned zygotene and pachytene nuclei has allowed, by measuring the lengths of synaptonemal complexes, an assignment of the 7 linkage (LG) groups to the 7 chromosomes in the fungus Sordaria macrospora. The 7 LG have been established using 19 mutants showing low second division segregation frequencies. Eight chromosomal rearrangements mapped on the 7 LG were used to identify the chromosomes involved. The following one to one assignment of the 7 LG to specific chromosomes was obtained: LG a: chromosome (chr) 1, LG b: chr5, LG c: chr6, LG d: chr7, LG e: chr4, LG f: chr3 and LG g: chr2 (the chromosome carrying the nucleolus organizer region).

  19. Analysis of Y chromosome microdeletions and CFTR gene mutations as genetic markers of infertility in Serbian men

    Directory of Open Access Journals (Sweden)

    Dinić Jelena

    2007-01-01

    Full Text Available Background/Aim. Impaired fertility of a male partner is the main cause of infertility in up to one half of all infertile couples. At the genetic level, male infertility can be caused by chromosome aberrations or gene mutations. The presence and types of Y chromosome microdeletions and cystic fybrosis transmembrane conductance regulator (CFTR gene mutations as genetic cause of male infertility was tested in Serbian men. The aim of this study was to analyze CFTR gene mutations and Y chromosome microdelations as potential causes of male infertility in Serbian patients, as well as to test the hypothesis that CFTR mutations in infertile men are predominantly located in the several last exons of the gene. Methods. This study has encompassed 33 men with oligo- or azoospermia. The screening for Y chromosome microdeletions in the azoospermia factor (AZF region was performed by multiplex PCR analysis. The screening of the CFTR gene was performed by denaturing gradient gel electrophoresis (DGGE method. Results. Deletions on Y chromosome were detected in four patients, predominantly in AZFc region (four of total six deletions. Mutations in the CFTR gene were detected on eight out of 66 analyzed chromosomes of infertile men. The most common mutation was F508del (six of total eight mutations. Conclusion. This study confirmed that both Y chromosome microdeletions and CFTR gene mutations played important role in etiology of male infertility in Serbian infertile men. Genetic testing for Y chromosome microdeletions and CFTR gene mutations has been introduced in routine diagnostics and offered to couples undergoing assisted reproduction techniques. Considering that both the type of Y chromosome microdeletion and the type of CFTR mutation have a prognostic value, it is recommended that AZF and CFTR genotyping should not only be performed in patients with reduced sperm quality before undergoing assisted reproduction, but also for the purpose of preimplantation and

  20. Chromosome aberrations and oncogene alterations in atomic bomb related leukemias - different mechanisms from de novo leukemias

    International Nuclear Information System (INIS)

    Tanaka, K.; Tanaka, H.; Kamada, N.

    2003-01-01

    It is well known that leukemia occurred more frequently among atomic bomb survivors. In 132 atomic bomb related ( AB- related) leukemia patients during 1978-1999, 33 acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) patients had their exposure doses of more than 1Gy (DS86). Chromosome aberrations of the 33 patients were compared with those from 588 de novo AML/MDS patients who had been bone before August 1945 as control. No FAB M3 patient was observed in the exposed group. Most AB-related AML preceded a long term of MDS stage. Twenty seven of the 33 patients showed complex types of chromosome aberrations with more than three chromosomes involving chromosomes 5,7 and 11. The number of chromosomes abnormality per cell in the AB-related leukemia was 3.78 while 0.92 in de novo leukemia. Only one of the 33 patients had normal karyotype, while 44.1% in de novo leukemia patients. Translocations of chromosome 11 at 11q13 to 11q23 and deletion/ loss of chromosome 20 were frequently observed in AB-related leukemia. No leukemia-type specific translocations such as t(8;21),t(15;17) and 11q23 were found in the 33 AB-related leukemia patients. Furthermore, molecular analyses using FISH and PCR-SSCP revealed the presence of breakpoint located outside of MLL gene in the patients with translocations at 11q22-23 and DNA base derangements of RUNT domain of AML1(CBF β 2)gene with AML/MDS patients without t(8;21) and with a high dose of exposure. These results suggest that AB-related leukemia derives from an exposed pluripotent hematopoietic stem cell which has been preserved for a long time in the bone marrow, expressing high genetic instability such as microsatellite instability. On the other hand, de novo leukemia develops from a committed hematopoietic stem cell and shows simple and leukemia-type specific chromosome aberrations. These findings are important for understanding mechanisms for radiation-induced leukemia

  1. Two siblings with alternate unbalanced recombinants derived from a large cryptic maternal pericentric inversion of chromosome 20.

    Science.gov (United States)

    Descipio, Cheryl; Morrissette, Jennifer D; Conlin, Laura K; Clark, Dinah; Kaur, Maninder; Coplan, James; Riethman, Harold; Spinner, Nancy B; Krantz, Ian D

    2010-02-01

    Two brothers, with dissimilar clinical features, were each found to have different abnormalities of chromosome 20 by subtelomere fluorescence in situ hybridization (FISH). The proband had deletion of 20p subtelomere and duplication of 20q subtelomere, while his brother was found to have a duplication of 20p subtelomere and deletion of 20q subtelomere. Parental cytogenetic studies were initially thought to be normal, both by G-banding and by subtelomere FISH analysis. Since chromosome 20 is a metacentric chromosome and an inversion was suspected, we used anchored FISH to assist in identifying a possible inversion. This approach employed concomitant hybridization of a FISH probe to the short (p) arm of chromosome 20 with the 20q subtelomere probe. We identified a cytogenetically non-visible, mosaic pericentric inversion of one of the maternal chromosome 20 homologs, providing a mechanistic explanation for the chromosomal abnormalities present in these brothers. Array comparative genomic hybridization (CGH) with both a custom-made BAC and cosmid-based subtelomere specific array (TEL array) and a commercially available SNP-based array confirmed and further characterized these rearrangements, identifying this as the largest pericentric inversion of chromosome 20 described to date. TEL array data indicate that the 20p breakpoint is defined by BAC RP11-978M13, approximately 900 kb from the pter; SNP array data reveal this breakpoint to occur within BAC RP11-978M13. The 20q breakpoint is defined by BAC RP11-93B14, approximately 1.7 Mb from the qter, by TEL array; SNP array data refine this breakpoint to within a gap between BACs on the TEL array (i.e., between RP11-93B14 and proximal BAC RP11-765G16). Copyright 2010 Wiley-Liss, Inc.

  2. Effects of Spirulina platensis on DNA damage and chromosomal aberration against cadmium chloride-induced genotoxicity in rats.

    Science.gov (United States)

    Aly, Fayza M; Kotb, Ahmed M; Hammad, Seddik

    2018-04-01

    Todays, bioactive compounds extracted from Spirulina platensis have been intensively studied for their therapeutical values. Therefore, in the present study, we aimed to evaluate the effects of S. platensis extract on DNA damage and chromosomal aberrations induced by cadmium in rats. Four groups of male albino rats (n = 7 rats) were used. The first group served as a control group and received distilled water. The second group was exposed intraperitoneally to cadmium chloride (CdCl 2 ) (3.5 mg/kg body weight dissolved in 2 ml distilled water). The third group included the rats that were orally treated with S. platensis extract (1 g/kg dissolved in 5 ml distilled water, every other day for 30 days). The fourth group included the rats that were intraperitoneally and orally exposed to cadmium chloride and S. platensis, respectively. The experiment in all groups was extended for 60 days. The results of cadmium-mediated toxicity revealed significant genetic effects (DNA fragmentation, deletion or disappearance of some base pairs of DNA, and appearance of few base pairs according to ISSR-PCR analysis). Moreover, chromosomes showed structural aberrations such as reduction of chromosomal number, chromosomal ring, chromatid deletions, chromosomal fragmentations, and dicentric chromosomes. Surprisingly, S. platensis extract plus CdCl 2 -treated group showed less genetic effects compared with CdCl 2 alone. Further, S. platensis extract upon CdCl 2 toxicity was associated with less chromosomal aberration number and nearly normal appearance of DNA fragments as indicated by the bone marrow and ISSR-PCR analysis, respectively. In conclusion, the present novel study showed that co-treatment with S. platensis extract could reduce the genotoxic effects of CdCl 2 in rats.

  3. Contiguous deletion of the NDP, MAOA, MAOB, and EFHC2 genes in a patient with Norrie disease, severe psychomotor retardation and myoclonic epilepsy.

    Science.gov (United States)

    Rodriguez-Revenga, L; Madrigal, I; Alkhalidi, L S; Armengol, L; González, E; Badenas, C; Estivill, X; Milà, M

    2007-05-01

    Norrie disease (ND) is an X-linked disorder, inherited as a recessive trait that, therefore, mostly affects males. The gene responsible for ND, called NDP, maps to the short arm of chromosome X (Xp11.4-p11.3). We report here an atypical case of ND, consisting of a patient harboring a large submicroscopic deletion affecting not only the NDP gene but also the MAOA, MAOB, and EFHC2 genes. Microarray comparative genomic hybridization (CGH) analysis showed that 11 consecutive bacterial artificial chromosome (BAC) clones, mapping around the NDP gene, were deleted. These clones span a region of about 1 Mb on Xp11.3. The deletion was ascertained by fluorescent in situ hybridization (FISH) analysis with different BAC clones located within the region. Clinical features of the proband include bilateral retinal detachment, microcephaly, severe psychomotor retardation without verbal language skills acquired, and epilepsy. The identification and molecular characterization of this case reinforces the idea of a new contiguous gene syndrome that would explain the complex phenotype shared by atypical ND patients.

  4. Radiation-induced chromosome breakages in bread wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Larik, A.S.

    1975-01-01

    Meiosis and pollen fertility were studied in the M 2 generation in four varieties of hexaploid wheat. Meiosis was characterized by the formation of interchange configurations, such as rings and chains of four chromosomes in several cells. Chromosomal aberrations showed linear relationship with gamma irradiation; 45 kR dose induced the highest chromosomal abnormalities. Most multivalents were interchange rings of four chromosomes. Translocations involving two pairs of homologous or nonhomologous chromosomes seemed to be higher in frequency than those involving more than two pairs of chromosomes. Anaphase abnormalities, such as laggards, bridges and fragments and unequal segregation of chromosomes, were frequently observed. Pollen fertility was considerably reduced in the M 2 plants arising form the treatments of higher doses of gamma rays because of the induced chromosome interchanges. (author)

  5. Developmental phenotype in Phelan-McDermid (22q13.3 deletion) syndrome : A systematic and prospective study in 34 children

    NARCIS (Netherlands)

    Zwanenburg, Renée J; Ruiter, Selma A J; van den Heuvel, Edwin R; Flapper, Boudien C T; Van Ravenswaaij-Arts, Conny M A

    2016-01-01

    Background: Phelan- McDermid syndrome (PMS) or 22q13.3 deletion syndrome is characterized by global developmental delay, cognitive deficits, and behaviour in the autism spectrum. Knowledge about developmental and behavioural characteristics of this rare chromosomal disorder is still limited despite

  6. Developmental phenotype in Phelan- McDermid (22q13.3 deletion) syndrome : a systematic and prospective study in 34 children

    NARCIS (Netherlands)

    Zwanenburg, R.J.; Ruiter, S.A.J.; Van Den Heuvel, E.R.; Flapper, B.C.T.; Van Ravenswaaij-Arts, C.M.A.

    2016-01-01

    Background: Phelan-McDermid syndrome (PMS) or 22q13.3 deletion syndrome is characterized by global developmental delay, cognitive deficits, and behaviour in the autism spectrum. Knowledge about developmental and behavioural characteristics of this rare chromosomal disorder is still limited despite a

  7. Physical Mapping of Bread Wheat Chromosome 5A: An Integrated Approach

    Directory of Open Access Journals (Sweden)

    Delfina Barabaschi

    2015-11-01

    Full Text Available The huge size, redundancy, and highly repetitive nature of the bread wheat [ (L.] genome, makes it among the most difficult species to be sequenced. To overcome these limitations, a strategy based on the separation of individual chromosomes or chromosome arms and the subsequent production of physical maps was established within the frame of the International Wheat Genome Sequence Consortium (IWGSC. A total of 95,812 bacterial artificial chromosome (BAC clones of short-arm chromosome 5A (5AS and long-arm chromosome 5A (5AL arm-specific BAC libraries were fingerprinted and assembled into contigs by complementary analytical approaches based on the FingerPrinted Contig (FPC and Linear Topological Contig (LTC tools. Combined anchoring approaches based on polymerase chain reaction (PCR marker screening, microarray, and sequence homology searches applied to several genomic tools (i.e., genetic maps, deletion bin map, neighbor maps, BAC end sequences (BESs, genome zipper, and chromosome survey sequences allowed the development of a high-quality physical map with an anchored physical coverage of 75% for 5AS and 53% for 5AL with high portions (64 and 48%, respectively of contigs ordered along the chromosome. In the genome of grasses, [ (L. Beauv.], rice ( L., and sorghum [ (L. Moench] homologs of genes on wheat chromosome 5A were separated into syntenic blocks on different chromosomes as a result of translocations and inversions during evolution. The physical map presented represents an essential resource for fine genetic mapping and map-based cloning of agronomically relevant traits and a reference for the 5A sequencing projects.

  8. Oncogenic activation of v-kit involves deletion of a putative tyrosine-substrate interaction site.

    Science.gov (United States)

    Herbst, R; Munemitsu, S; Ullrich, A

    1995-01-19

    The transforming gene of the Hardy-Zuckerman-4 strain of feline sarcoma virus, v-kit, arose by transduction of the cellular c-kit gene, which encodes the receptor tyrosine kinase (RTK) p145c-kit. To gain insight into the molecular basis of the v-kit transforming potential, we characterized the feline c-kit by cDNA cloning. Comparison of the feline v-kit and c-kit sequences revealed, in addition to deletions of the extracellular and transmembrane domains, three additional mutations in the v-kit oncogene product: deletion of tyrosine-569 and valine-570, the exchange of aspartate at position 761 to glycine, and replacement of the C-terminal 50 amino acids by five unrelated residues. Examinations of individual v-kit mutations in the context of chimeric receptors yielded inhibitory effects for some mutants on both autophosphorylation and substrate phosphorylation functions. In contrast, deletion of tyrosine-569 and valine-570 significantly enhanced transforming and mitogenic activities of p145c-kit, while the other mutations had no significant effects. Conservation in subclass III RTKs and the identification of the corresponding residue in beta PDGF-R, Y579, as a binding site for src family tyrosine kinases suggests an important role for Y568 in kit signal regulation and the definition of its oncogenic potential. Repositioning of Y571 by an inframe two codon deletion may be the crucial alteration resulting in enhancement of v-kit oncogenic activity.

  9. Analysis of time of death of prenatally lethal Steeloid mutations

    International Nuclear Information System (INIS)

    Rinchik, E.M.; Cummings, C.C.; Bangham, J.W.; Hunsicker, P.R.; Phipps, E.L.; Stelzner, K.F.

    1987-01-01

    Deletion mutations have been extremely useful in initiating the functional and molecular dissections of regions of the mouse genome. For the d-se and c regions, for example, it was observed that radiation mutations carrying lethal factors separable, by complementation analysis, from the primary d, se, or c mutation itself, could often be associated at both the genetic and molecular levels with multilocus chromosomal deletions. Since many of the Oak Ridge Sld mutations arose in radiation mutagenesis experiments, a substantial number may carry chromosomal deletions that involve the Sl locus in chromosome 10. Because of the great value of deletion mutations for the genetic and molecular analysis of chromosomal regions and complex genetic loci, they have initiated a series of experiments designed to test whether radiation-induced Sld mutations carry other lethal factors, in addition to the lethality caused by severe alleles of the Sl locus itself, as one prescreen for identifying Sld's that are caused by deletions

  10. Genomic regulatory landscapes and chromosomal rearrangements

    DEFF Research Database (Denmark)

    Ladegaard, Elisabete L Engenheiro

    2008-01-01

    The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes is that they ......The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes...... the complex spatio-temporal expression of the associated trans-dev gene. Rare chromosomal breakpoints that disrupt the integrity of these regulatory landscapes may be used as a tool, not only to make genotype-phenotype associations, but also to link the associated phenotype with the position and tissue...... specificity of the individual CNEs. In this PhD study I have studied several chromosomal rearrangements with breakpoints in the vicinity of trans-dev genes. This included chromosomal rearrangements compatible with known phenotype-genotype associations (Rieger syndrome-PITX2, Mowat-Wilson syndrome-ZEB2...

  11. Diagnosis of Familial Wolf-Hirschhorn Syndrome due to a Paternal Cryptic Chromosomal Rearrangement by Conventional and Molecular Cytogenetic Techniques

    Science.gov (United States)

    Venegas-Vega, Carlos A.; Zepeda, Luis M.; Garduño-Zarazúa, Luz M.; Berumen, Jaime; Kofman, Susana; Cervantes, Alicia

    2013-01-01

    The use of conventional cytogenetic techniques in combination with fluorescent in situ hybridization (FISH) and single-nucleotide polymorphism (SNP) microarrays is necessary for the identification of cryptic rearrangements in the diagnosis of chromosomal syndromes. We report two siblings, a boy of 9 years and 9 months of age and his 7-years- and 5-month-old sister, with the classic Wolf-Hirschhorn syndrome (WHS) phenotype. Using high-resolution GTG- and NOR-banding karyotypes, as well as FISH analysis, we characterized a pure 4p deletion in both sibs and a balanced rearrangement in their father, consisting in an insertion of 4p material within a nucleolar organizing region of chromosome 15. Copy number variant (CNV) analysis using SNP arrays showed that both siblings have a similar size of 4p deletion (~6.5 Mb). Our results strongly support the need for conventional cytogenetic and FISH analysis, as well as high-density microarray mapping for the optimal characterization of the genetic imbalance in patients with WHS; parents must always be studied for recognizing cryptic balanced chromosomal rearrangements for an adequate genetic counseling. PMID:23484094

  12. Abnormal proliferation of CD4- CD8+ gammadelta+ T cells with chromosome 6 anomaly: role of Fas ligand expression in spontaneous regression of the cells.

    Science.gov (United States)

    Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K

    1999-04-01

    We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.

  13. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid.

    Science.gov (United States)

    Song, Li; Cui, Hongyu; Tang, Lijie; Qiao, Xinyuan; Liu, Min; Jiang, Yanping; Cui, Wen; Li, Yijing

    2014-07-01

    Integration plasmids are often used in constructing chromosomal mutations, as it enables the alternation of genes at any location by integration or replacement. Food-grade integration vectors can integrate into the host genome without introducing any selectable markers or residual bases, and the recombination often happens in non-coding region. In this study we used the temperature-sensitive pWV01 replicon to construct 2 chloramphenicol-resistant integration plasmids (pGBHC32-upp) containing the uracil phosphoribosyl transferase (upp) gene as a counterselective marker for Lactobacillus casei (L. casei) ATCC393 and Lactococcus lactis (L. lactis) MG1363. We then ligated the designed homologous arms to the pGBHC32-upp plasmids to allow their integration to the bacterial chromosome, and selected upp deletion mutants of L. casei ATCC393 and L. lactis MG1363 in the presence of 5-fluorouracil (5-FU). Analysis of genetic stability, growth curve, carbon utilization and scanning electronic microscopy showed that, except for 5-FU resistance, there were no significant differences between the wild type and mutant lactic acid bacteria. The integration system and the upp deletion strains could be used in the insertion or deletion of genes at any location of the chromosome of both L. casei ATCC 393 and L. lactis MG1363, and the homologous recombination would not introduce any selectable markers or residual bases. These mutant strains can be further investigated for heterologous protein expression and construction of a live mucosal vaccine carrier. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines.

    Science.gov (United States)

    van den Broeck, Hetty C; van Herpen, Teun W J M; Schuit, Cees; Salentijn, Elma M J; Dekking, Liesbeth; Bosch, Dirk; Hamer, Rob J; Smulders, Marinus J M; Gilissen, Ludovicus J W J; van der Meer, Ingrid M

    2009-04-07

    Gluten proteins can induce celiac disease (CD) in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4+ T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum) (AABBDD). The effects of deleting individual gluten loci on both the level of T-cell stimulatory epitopes in the gluten proteome and the technological properties of the flour were analyzed using a set of deletion lines of Triticum aestivum cv. Chinese Spring. The reduction of T-cell stimulatory epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten proteins. The deletion lines were technologically tested with respect to dough mixing properties and dough rheology. The results show that removing the alpha-gliadin locus from the short arm of chromosome 6 of the D-genome (6DS) resulted in a significant decrease in the presence of T-cell stimulatory epitopes but also in a significant loss of technological properties. However, removing the omega-gliadin, gamma-gliadin, and LMW-GS loci from the short arm of chromosome 1 of the D-genome (1DS) removed T-cell stimulatory epitopes from the proteome while maintaining technological properties. The consequences of these data are discussed with regard to reducing the load of T-cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties.

  15. Monogenic and chromosomal causes of isolated speech and language impairment.

    Science.gov (United States)

    Barnett, C P; van Bon, B W M

    2015-11-01

    The importance of a precise molecular diagnosis for children with intellectual disability, autism spectrum disorder and epilepsy has become widely accepted and genetic testing is an integral part of the diagnostic evaluation of these children. In contrast, children with an isolated speech or language disorder are not often genetically evaluated, despite recent evidence supporting a role for genetic factors in the aetiology of these disorders. Several chromosomal copy number variants and single gene disorders associated with abnormalities of speech and language have been identified. Individuals without a precise genetic diagnosis will not receive optimal management including interventions such as early testosterone replacement in Klinefelter syndrome, otorhinolaryngological and audiometric evaluation in 22q11.2 deletion syndrome, cardiovascular surveillance in 7q11.23 duplications and early dietary management to prevent obesity in proximal 16p11.2 deletions. This review summarises the clinical features, aetiology and management options of known chromosomal and single gene disorders that are associated with speech and language pathology in the setting of normal or only mildly impaired cognitive function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. The Role of the Y-Chromosome in the Establishment of Murine Hybrid Dysgenesis and in the Analysis of the Nucleotide Sequence Organization, Genetic Transmission and Evolution of Repeated Sequences.

    Science.gov (United States)

    Nallaseth, Ferez Soli

    The Y-chromosome presents a unique cytogenetic framework for the evolution of nucleotide sequences. Alignment of nine Y-chromosomal fragments in their increasing Y-specific/non Y-specific (male/female) sequence divergence ratios was directly and inversely related to their interspersion on these two respective genomic fractions. Sequence analysis confirmed a direct relationship between divergence ratios and the Alu, LINE-1, Satellite and their derivative oligonucleotide contents. Thus their relocation on the Y-chromosome is followed by sequence divergence rather than the well documented concerted evolution of these non-coding progenitor repeated sequences. Five of the nine Y-chromosomal fragments are non-pseudoautosomal and transcribed into heterogeneous PolyA^+ RNA and thus can be retrotransposed. Evolutionary and computer analysis identified homologous oligonucleotide tracts in several human loci suggesting common and random mechanistic origins. Dysgenic genomes represent the accelerated evolution driving sequence divergence (McClintock, 1984). Sex reversal and sterility characterizing dysgenesis occurs in C57BL/6JY ^{rm Pos} but not in 129/SvY^{rm Pos} derivative strains. High frequency, random, multi-locus deletion products of the feral Y^{ rm Pos}-chromosome are generated in the germlines of F1(C57BL/6J X 129/SvY^{ rm Pos})(male) and C57BL/6JY ^{rm Pos}(male) but not in 129/SvY^{rm Pos}(male). Equal, 10^{-1}, 10^ {-2}, and 0 copies (relative to males) of Y^{rm Pos}-specific deletion products respectively characterize C57BL/6JY ^{rm Pos} (HC), (LC), (T) and (F) females. The testes determining loci of inactive Y^{rm Pos}-chromosomes in C57BL/6JY^{rm Pos} HC females are the preferentially deleted/rearranged Y ^{rm Pos}-sequences. Disruption of regulation of plasma testosterone and hepatic MUP-A mRNA levels, TRD of a 4.7 Kbp EcoR1 fragment suggest disruption of autosomal/X-chromosomal sequences. These data and the highly repeated progenitor (Alu, GATA, LINE-1

  17. A 45 X male patient with 7q distal deletion and rearrangement with SRY gene translocation: a case report.

    Science.gov (United States)

    Bilen, S; Okten, A; Karaguzel, G; Ikbal, M; Aslan, Y

    2013-01-01

    Here we present a male newborn with multiple congenital anomalies who also has an extremely rare form of testicular disorder of sex development (DSD). His karyotype was 45X, without any mosaicism. SRY gene was positive by polymerase chain reaction (PCR), and rearranged on distal part of the 7th chromosome by fluorescence in situ hybridization (FISH) analysis. SRY, normally located on the Y chromosome, is the most important gene that plays a role in the development of male sex. SRY gen may be translocated onto another chromosome, mostly X chromosome in the XX testicular DSD. On the other hand very few cases of 45 X testicular DSD were published to date. Other clinical manifestations of our patient were compatible with distal 7 q deletion syndrome. To the best of our knowledge this is the first case of 45 X testicular DSD with SRY gene rearranged on the 7th autosomal chromosome.

  18. Homozygous deletion of six genes including corneodesmosin on chromosome 6p21.3 is associated with generalized peeling skin disease.

    Science.gov (United States)

    Teye, Kwesi; Hamada, Takahiro; Krol, Rafal P; Numata, Sanae; Ishii, Norito; Matsuda, Mitsuhiro; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-07-01

    Peeling skin syndrome (PSS) is a rare autosomal recessive form of ichthyosis showing skin exfoliation. PSS is divided into acral and generalized PSS, and the latter is further classified into non-inflammatory type (PSS type A) and inflammatory type (PSS type B). PSS type B is now called peeling skin disease (PSD). Different loss-of-function mutations in the corneodesmosin (CDSN) gene have been reported to cause PSD. The aim of this study was to determine genetic basis of disease in a 14-year-old Japanese patient with PSD. Immunohistochemical study showed lack of corneodesmosin (CDSN) in the skin, and standard PCR for genomic DNA failed to amplify CDSN product, suggesting CDSN defect. Multiplex ligation-dependent probe amplification and genomic quantitative real-time PCR analyses detected large homozygous deletion of 59,184bp extending from 40.6kb upstream to 13.2kb downstream of CDSN, which included 6 genes (TCF19, CCHCR1, PSORS1C2, PSORS1C1, CDSN and C6orf15). The continuous gene lost did not result in additional clinical features. Inverted repeats with 85% similarity flanking the deletion breakpoint were considered to mediate the deletion by non-homologous end joining or fork stalling and template switching/microhomology-mediated break-induced replication. Parents were clinically unaffected and were heterozygote carriers of the same deletion, which was absent in 284 ethnically matched control alleles. We also developed simple PCR method, which is useful for detection of this deletion. Although 5 other genes were also deleted, homozygous deletion of CDSN was considered to be responsible for this PSD. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Formation of radiation induced chromosome aberrations: involvement of telomeric sequences and telomerase

    International Nuclear Information System (INIS)

    Pirzio, L.

    2004-07-01

    As telomeres are crucial for chromosome integrity; we investigated the role played by telomeric sequences in the formation and in the transmission of radio-induced chromosome rearrangements in human cells. Starting from interstitial telomeric sequences (ITS) as putative region of breakage, we showed that the radiation sensitivity is not equally distributed along chromosomes and. is not affected by ITS. On the contrary, plasmid integration sites are prone to radio-induced breaks, suggesting a possible integration at sites already characterized by fragility. However plasmids do not preferentially insert at radio-induced breaks in human cells immortalized by telomerase. These cells showed remarkable karyotype stability even after irradiation, suggesting a role of telomerase in the genome maintenance despite functional telomeres. Finally, we showed that the presence of more breaks in a cell favors the repair, leading to an increase of transmissible rearrangements. (author)

  20. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    International Nuclear Information System (INIS)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela; Martinelli, Diego; Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella; Dionisi-Vici, Carlo; Nobili, Valerio; Francalanci, Paola; Boldrini, Renata; Callea, Francesco; Santorelli, Filippo Maria; Bertini, Enrico

    2011-01-01

    Highlights: ► Expanded array of mtDNA deletions. ► Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. ► Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. ► Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.