WorldWideScience

Sample records for deletion mutant virus

  1. Deletions of the hypervariable region (HVR) in open reading frame 1 of hepatitis E virus do not abolish virus infectivity: evidence for attenuation of HVR deletion mutants in vivo.

    Science.gov (United States)

    Pudupakam, R S; Huang, Y W; Opriessnig, T; Halbur, P G; Pierson, F W; Meng, X J

    2009-01-01

    Hepatitis E virus (HEV) is an important human pathogen, although little is known about its biology and replication. Comparative sequence analysis revealed a hypervariable region (HVR) with extensive sequence variations in open reading frame 1 of HEV. To elucidate the role of the HVR in HEV replication, we first constructed two HVR deletion mutants, hHVRd1 and hHVRd2, with in-frame deletion of amino acids (aa) 711 to 777 and 747 to 761 in the HVR of a genotype 1 human HEV replicon. Evidence of HEV replication was detected in Huh7 cells transfected with RNA transcripts from mutant hHVRd2, as evidenced by expression of enhanced green fluorescent protein. To confirm the in vitro results, we constructed three avian HEV mutants with various HVR deletions: mutants aHVRd1, with deletion of aa 557 to 585 (Delta557-585); aHVRd2 (Delta612-641); and aHVRd3 (Delta557-641). Chickens intrahepatically inoculated with capped RNA transcripts from mutants aHVRd1 and aHVRd2 developed active viral infection, as evidenced by seroconversion, viremia, and fecal virus shedding, although mutant aHVRd3, with complete HVR deletion, was apparently attenuated in chickens. To further verify the results, we constructed four additional HVR deletion mutants using the genotype 3 swine HEV as the backbone. Mutants sHVRd2 (Delta722-781), sHVRd3 (Delta735-765), and sHVRd4 (Delta712-765) were shown to tolerate deletions and were infectious in pigs intrahepatically inoculated with capped RNA transcripts from the mutants, whereas mutant sHVRd1 (Delta712-790), with a nearly complete HVR deletion, exhibited an attenuation phenotype in infected pigs. The data from these studies indicate that deletions in HVR do not abolish HEV infectivity in vitro or in vivo, although evidence for attenuation was observed for HEV mutants with a larger or nearly complete HVR deletion.

  2. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology

    International Nuclear Information System (INIS)

    Geller, A.I.; Keyomarsi, K.; Bryan, J.; Pardee, A.B.

    1990-01-01

    The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli β-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; ts mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses β-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system

  3. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    International Nuclear Information System (INIS)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J.; Chen, Han; Zhou, You; Belshan, Michael

    2014-01-01

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release

  4. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Chen, Han [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, You [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Nebraska Center for Virology, Lincoln, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Nebraska Center for Virology, Lincoln, NE (United States)

    2014-11-15

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release.

  5. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Science.gov (United States)

    2012-01-01

    Background Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone

  6. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice.

    Science.gov (United States)

    Varela, Mariana; Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong; Palmarini, Massimo

    2016-06-01

    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc

  7. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    Science.gov (United States)

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional

  8. Widely Used Herpes Simplex Virus 1 ICP0 Deletion Mutant Strain dl1403 and Its Derivative Viruses Do Not Express Glycoprotein C Due to a Secondary Mutation in the gC Gene.

    Directory of Open Access Journals (Sweden)

    Cristina W Cunha

    Full Text Available Herpes simplex virus 1 (HSV-1 ICP0 is a multi-functional phosphoprotein expressed with immediate early kinetics. An ICP0 deletion mutant, HSV-1 dl1403, has been widely used to study the roles of ICP0 in the HSV-1 replication cycle including gene expression, latency, entry and assembly. We show that HSV-1 dl1403 virions lack detectable levels of envelope protein gC, and that gC is not synthesized in infected cells. Sequencing of the gC gene from HSV-1 dl1403 revealed a single amino acid deletion that results in a frameshift mutation. The HSV-1 dl1403 gC gene is predicted to encode a polypeptide consisting of the original 62 N-terminal amino acids of the gC protein followed by 112 irrelevant, non-gC residues. The mutation was also present in a rescuant virus and in two dl1403-derived viruses, D8 and FXE, but absent from the parental 17+, suggesting that the mutation was introduced during the construction of the dl1403 virus, and not as a result of passage in culture.

  9. Coat protein deletion mutants elicit more severe symptoms than wild-type virus in multiple cereal hosts

    Science.gov (United States)

    The coat protein (CP) of Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) tolerates deletion of amino acids 36 to 84 for efficient systemic infection of wheat. This study demonstrates that deletion of CP amino acids 58 to 84, but not 36 to 57, from WSMV genome induced severe ...

  10. E4orf1 Limits the Oncolytic Potential of the E1B-55K Deletion Mutant Adenovirus▿

    Science.gov (United States)

    Thomas, Michael A.; Broughton, Robin S.; Goodrum, Felicia D.; Ornelles, David A.

    2009-01-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G1 phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3′-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function. PMID:19129452

  11. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus.

    Science.gov (United States)

    Thomas, Michael A; Broughton, Robin S; Goodrum, Felicia D; Ornelles, David A

    2009-03-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G(1) phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G(1) restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3'-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.

  12. Mutants of alfalfa mosaic virus

    International Nuclear Information System (INIS)

    Roosien, J.

    1983-01-01

    In this thesis the isolation and characterization of a number of mutants of alfalfa mosaic virus, a plant virus with a coat protein dependent genome, is described. Thermo-sensitive (ts) mutants were selected since, at least theoretically, ts mutations can be present in all virus coded functions. It was found that a high percentage of spontaneous mutants, isolated because of their aberrant symptoms, were ts. The majority of these isolates could grow at the non-permissive temperature in the presence of a single wild type (wt) component. To increase the mutation rate virus preparations were treated with several mutagens. After nitrous acid treatment or irradiation with ultraviolet light, an increase in the level of mutations was observed. UV irradiation was preferred since it did not require large amounts of purified viral components. During the preliminary characterization of potential ts mutants the author also obtained one structural and several symptom mutants which were analysed further (chapter 7, 8 and 9). The properties of the ts mutants are described in chapter 3-7. (Auth.)

  13. Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness In Vivo and Display Enhanced Zoonotic Characteristics.

    Science.gov (United States)

    Peacock, Thomas P; Benton, Donald J; James, Joe; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; Barclay, Wendy S; Iqbal, Munir

    2017-07-15

    H9N2 avian influenza viruses are enzootic in poultry across Asia and North Africa, where they pose a threat to human health as both zoonotic agents and potential pandemic candidates. Poultry vaccination against H9N2 viruses has been employed in many regions; however, vaccine effectiveness is frequently compromised due to antigenic drift arising from amino acid substitutions in the major influenza virus antigen hemagglutinin (HA). Using selection with HA-specific monoclonal antibodies, we previously identified H9N2 antibody escape mutants that contained deletions of amino acids in the 220 loop of the HA receptor binding sites (RBSs). Here we analyzed the impact of these deletions on virus zoonotic infection characteristics and fitness. We demonstrated that mutant viruses with RBS deletions are able to escape polyclonal antiserum binding and are able to infect and be transmitted between chickens. We showed that the deletion mutants have increased binding to human-like receptors and greater replication in primary human airway cells; however, the mutant HAs also displayed reduced pH and thermal stability. In summary, we infer that variant influenza viruses with deletions in the 220 loop could arise in the field due to immune selection pressure; however, due to reduced HA stability, we conclude that these viruses are unlikely to be transmitted from human to human by the airborne route, a prerequisite for pandemic emergence. Our findings underscore the complex interplay between antigenic drift and viral fitness for avian influenza viruses as well as the challenges of predicting which viral variants may pose the greatest threats for zoonotic and pandemic emergence. IMPORTANCE Avian influenza viruses, such as H9N2, cause disease in poultry as well as occasionally infecting humans and are therefore considered viruses with pandemic potential. Many countries have introduced vaccination of poultry to try to control the disease burden; however, influenza viruses are able to

  14. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Directory of Open Access Journals (Sweden)

    Guocai Li

    Full Text Available Neisseria gonorrhoeae (N. gonorrhoeae outer membrane protein reduction modifiable protein (Rmp has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  15. Genomic analysis and pathogenic characteristics of Type 2 porcine reproductive and respiratory syndrome virus nsp2 deletion strains isolated in Korea.

    Science.gov (United States)

    Choi, Hwan-Won; Nam, Eeuri; Lee, Yoo Jin; Noh, Yun-Hee; Lee, Seung-Chul; Yoon, In-Joong; Kim, Hyun-Soo; Kang, Shien-Young; Choi, Young-Ki; Lee, Changhee

    2014-06-04

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally ubiquitous swine virus that exhibits genetic and pathogenic heterogeneity among isolates. The present study was conducted to determine the complete genome sequence and pathogenicity of two Korean type 2 PRRSV nonstructural protein 2 (nsp2) deletion mutants, CA-2 and KNU-12-KJ4. The full-length genomes of CA-2 and KNU-12-KJ4 were determined to be 15,018 and 15,019 nucleotides in length, excluding the poly(A) tail, respectively, which were 393- or 392-nucleotide shorter than that of the type 2 NA prototype strain VR-2332 due to the presence of notable large deletions within the nsp2 gene. The genomes of CA-2 and KNU-12-KJ4 consisted of a 189- or 190-nucleotide 5' untranslated region (UTR), a 14,677-nucleotide protein-coding region, and a 151-nucleotide 3' UTR. Whole genome evaluation revealed that the nucleotide sequences of CA-2 and KNU-12-KJ4 are most similar to each other (10.7% sequence divergence), and then to the Korean strain CA-1 (11.3% sequence divergence) and the US strain MN184C (13.1% sequence divergence), respectively. To evaluate the in vitro immunity of nsp2 deletion variants, we sought to explore alteration of inflammatory cytokine and chemokine expression in PAM-pCD163 cells infected with each virus strain using quantitative real-time RT-PCR. Cytokine genes including IL-8, IL-10, and TNF-α, and chemokines such as MCP-1 and RANTES were found to be significantly elevated in nsp2 deletion virus-infected PAM cells. In contrast, expression of interferons (IFN-β, γ, and λ) and antiviral genes including ISG-15, -54, and -56 were unchanged or down-regulated in PAM cells infected with the nsp2 deletion mutants. Animal studies to assess the pathogenicity of nsp2 deletion PRRSVs demonstrated that both CA-2 and KNU-12-KJ4 strains notably produce weight loss in infected pigs. Furthermore, the nsp2 deletion mutants replicated well in pigs with significantly increased and prolonged

  16. Epstein-Barr virus (EBV) recombinants: use of positive selection markers to rescue mutants in EBV-negative B-lymphoma cells.

    OpenAIRE

    Wang, F; Marchini, A; Kieff, E

    1991-01-01

    The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recove...

  17. Selection of Mycoplasma hominis PG21 deletion mutants by cultivation in the presence of monoclonal antibody 552

    DEFF Research Database (Denmark)

    Jensen, L T; Ladefoged, S; Birkelund, S

    1995-01-01

    characterized. The mutants showed deletions of a various number of repeats. The deletions were accompanied by a decrease in size of the proteins. With increasing size of deletions, agglutination and growth inhibition by MAb 552 became less pronounced. Spontaneous aggregation of the mutant M. hominis cells...

  18. Analysis of human HPRT- deletion mutants by the microarray-CGH (comparative genomic hybridization)

    International Nuclear Information System (INIS)

    Kodaira, M.; Sasaki, K.; Tagawa, H.; Omine, H.; Kushiro, J.; Takahashi, N.; Katayama, H.

    2003-01-01

    We are trying to evaluate genetic effects of radiation on human using mutation frequency as an indicator. For the efficient detection of mutations, it is important to understand the mechanism and the characteristics of radiation-induced mutations. We have started the analysis of hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutants induced by X-ray in order to clarify the deletion size and the mutation-distribution. We analyzed 39 human X-ray induced HPRT-deletion mutants by using the microarray-CGH. The array for this analysis contains 57 BAC clones covering as much as possible of the 4Mb of the 5' side and 10Mb of the 3' side of the HPRT gene based on the NCBI genome database. DNA from parent strain and each HPRT-mutant strain are labeled with Cy5 and Cy3 respectively, and were mixed and hybridized on the array. Fluorescent intensity ratio of the obtained spots was analyzed using software we developed to identify clones corresponding to the deletion region. The deletion in these strains ranged up to 3.5 Mb on the 5' side and 6 Mb on the 3' side of the HPRT gene. Deletions in 13 strains ended around BAC clones located at about 3 Mb on the 5' side. On the 3' side, deletions extended up to the specific clones located at 1.5 Mb in 11 strains. The mutations seem to be complex on the 3' end of deletion; some accompanied duplications with deletions and others could not be explained by one mutation event. We need to confirm these results, taking into account the experimental reproducibility and the accuracy of the published genetic map. The results of the research using the microarray-CGH help us to search the regions where deletions are easily induced and to identify the factors affecting the range of deletions

  19. Deletion map of CYC1 mutants and its correspondence to mutationally altered iso-1-cytochromes c of yeast

    International Nuclear Information System (INIS)

    Sherman, F.; Jackson, M.; Liebman, S.W.; Schweingruber, A.M.; Stewart, J.W.

    1975-01-01

    Mutants arising spontaneously from sporulated cultures of certain strains of yeast, Saccharomyces cerevisiae, contained deletions of the CYC1 gene which controls the primary structure of iso-1-cytochrome c. At least 60 different kinds of deletions were uncovered among the 104 deletions examined and these ranged in length from those encompassing only two adjacent point mutants to those encompassing at least the entire CYC1 gene. X-ray-induced recombination rates of crosses involving these deletions and cyc1 point mutants resulted in the assignment of 211 point mutants to 47 mutational sites and made it possible to unambiguously order 40 of these 47 sites. Except for one mutant, cyc1-15, there was a strict colinear relationship between the deletion map and the positions of 13 sites that were previously determined by amino acid alterations in iso-1-cytochromes c from intragenic revertants

  20. Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant

    International Nuclear Information System (INIS)

    Whitt, M.A.; Chong, L.; Rose, J.K.

    1989-01-01

    The authors have used transient expression of the wild-type vesicular stomatitis virus (VSV) glycoprotein (G protein) from cloned cDNA to rescue a temperature-sensitive G protein mutant of VSV in cells at the nonpermissive temperature. Using cDNAs encoding G proteins with deletions in the normal 29-amino-acid cytoplasmic domain, they determined that the presence of either the membrane-proximal 9 amino acids or the membrane-distal 12 amino acids was sufficient for rescue of the temperature-sensitive mutant. G proteins with cytoplasmic domains derived from other cellular or viral G proteins did not rescue the mutant, nor did G proteins with one or three amino acids of the normal cytoplasmic domain. Rescue correlated directly with the ability of the G proteins to be incorporated into virus particles. This was shown by analysis of radiolabeled particles separated on sucrose gradients as well as by electron microscopy of rescued virus after immunogold labeling. Quantitation of surface expression showed that all of the mutated G proteins were expressed less efficiently on the cell surface than was wild-type G protein. However, they were able to correct for differences in rescue efficiency resulting from differences in the level of surface expression by reducing wild-type G protein expression to levels equivalent to those observed for the mutated G proteins. The results provide evidence that at least a portion of the cytoplasmic domain is required for efficient assembly of the VSV G protein into virions during virus budding

  1. Deletion mutants of region E1 a of AD12 E1 plasmids: Effect on oncogenic transformation

    NARCIS (Netherlands)

    Bos, J.L.; Jochemsen, A.G.; Bernards, R.A.; Schrier, P.I.; Ormondt, H. van; Eb, A.J. van der

    1983-01-01

    Plasmids containing the El region of Ad12 DNA can transform certain rodent cells into oncogenic cells. To study the role of the Ela subregion in the process of oncogenic transformation, Ad12 region El mutants carrying deletions in the Ela region were constructed. Deletion mutants pR7 and pR8 affect

  2. Intracistronic complementation in the simian virus 40 A gene.

    Science.gov (United States)

    Tornow, J; Cole, C N

    1983-01-01

    A set of eight simian virus 40 mutants was constructed with lesions in the A gene, which encodes the large tumor (T) antigen. These mutants have small deletions (3-20 base pairs) at either 0.497, 0.288, or 0.243 map units. Mutants having both in-phase and frameshift mutations at each site were isolated. Neither plaque formation nor replication of the mutant DNAs could be detected after transfection of monkey kidney cells. Another nonviable mutant, dlA2459, had a 14-base-pair deletion at 0.193 map unit and was positive for viral DNA replication. Each of the eight mutants were tested for ability to form plaques after cotransfection with dlA2459 DNA. The four mutants that had in-phase deletions were able to complement dlA2459. The other four, which had frameshift deletions, did not. No plaques were formed after cotransfection of cells with any other pair of group A mutants. This suggests that the defect in dlA2459 defines a distinct functional domain of simian virus 40 T antigen. Images PMID:6312452

  3. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  4. Temperature-sensitive host range mutants of herpes simplex virus type 2

    International Nuclear Information System (INIS)

    Koment, R.W.; Rapp, F.

    1975-01-01

    Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblast cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties

  5. A Population of Deletion Mutants and an Integrated Mapping and Exome-seq Pipeline for Gene Discovery in Maize

    Science.gov (United States)

    Jia, Shangang; Li, Aixia; Morton, Kyla; Avoles-Kianian, Penny; Kianian, Shahryar F.; Zhang, Chi; Holding, David

    2016-01-01

    To better understand maize endosperm filling and maturation, we used γ-irradiation of the B73 maize reference line to generate mutants with opaque endosperm and reduced kernel fill phenotypes, and created a population of 1788 lines including 39 Mo17 × F2s showing stable, segregating, and viable kernel phenotypes. For molecular characterization of the mutants, we developed a novel functional genomics platform that combined bulked segregant RNA and exome sequencing (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. To exemplify the utility of the mutants and provide proof-of-concept for the bioinformatics platform, we present detailed characterization of line 937, an opaque mutant harboring a 6203 bp in-frame deletion covering six exons within the Opaque-1 gene. In addition, we describe mutant line 146 which contains a 4.8 kb intragene deletion within the Sugary-1 gene and line 916 in which an 8.6 kb deletion knocks out a Cyclin A2 gene. The publically available algorithm developed in this work improves the identification of causative deletions and its corresponding gaps within mapping peaks. This study demonstrates the utility of γ-irradiation for forward genetics in large nondense genomes such as maize since deletions often affect single genes. Furthermore, we show how this classical mutagenesis method becomes applicable for functional genomics when combined with state-of-the-art genomics tools. PMID:27261000

  6. ALIX Rescues Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in Ebola Virus Egress.

    Science.gov (United States)

    Han, Ziying; Madara, Jonathan J; Liu, Yuliang; Liu, Wenbo; Ruthel, Gordon; Freedman, Bruce D; Harty, Ronald N

    2015-10-01

    Ebola (EBOV) is an enveloped, negative-sense RNA virus belonging to the family Filoviridae that causes hemorrhagic fever syndromes with high-mortality rates. To date, there are no licensed vaccines or therapeutics to control EBOV infection and prevent transmission. Consequently, the need to better understand the mechanisms that regulate virus transmission is critical to developing countermeasures. The EBOV VP40 matrix protein plays a central role in late stages of virion assembly and egress, and independent expression of VP40 leads to the production of virus-like particles (VLPs) by a mechanism that accurately mimics budding of live virus. VP40 late (L) budding domains mediate efficient virus-cell separation by recruiting host ESCRT and ESCRT-associated proteins to complete the membrane fission process. L-domains consist of core consensus amino acid motifs including PPxY, P(T/S)AP, and YPx(n)L/I, and EBOV VP40 contains overlapping PPxY and PTAP motifs whose interactions with Nedd4 and Tsg101, respectively, have been characterized extensively. Here, we present data demonstrating for the first time that EBOV VP40 possesses a third L-domain YPx(n)L/I consensus motif that interacts with the ESCRT-III protein Alix. We show that the YPx(n)L/I motif mapping to amino acids 18-26 of EBOV VP40 interacts with the Alix Bro1-V fragment, and that siRNA knockdown of endogenous Alix expression inhibits EBOV VP40 VLP egress. Furthermore, overexpression of Alix Bro1-V rescues VLP production of the budding deficient EBOV VP40 double PTAP/PPEY L-domain deletion mutant to wild-type levels. Together, these findings demonstrate that EBOV VP40 recruits host Alix via a YPx(n)L/I motif that can function as an alternative L-domain to promote virus egress. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  8. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    International Nuclear Information System (INIS)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M.

    2007-01-01

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli β-galactosidase induced durable β-gal-specific IgG and CD8 + T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes

  9. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    International Nuclear Information System (INIS)

    Sparger, Ellen E.; Dubie, Robert A.; Shacklett, Barbara L.; Cole, Kelly S.; Chang, W.L.; Luciw, Paul A.

    2008-01-01

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-γ enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus

  10. Internally deleted WNV genomes isolated from exotic birds in New Mexico: function in cells, mosquitoes, and mice.

    Science.gov (United States)

    Pesko, Kendra N; Fitzpatrick, Kelly A; Ryan, Elizabeth M; Shi, Pei-Yong; Zhang, Bo; Lennon, Niall J; Newman, Ruchi M; Henn, Matthew R; Ebel, Gregory D

    2012-05-25

    Most RNA viruses exist in their hosts as a heterogeneous population of related variants. Due to error prone replication, mutants are constantly generated which may differ in individual fitness from the population as a whole. Here we characterize three WNV isolates that contain, along with full-length genomes, mutants with large internal deletions to structural and nonstructural protein-coding regions. The isolates were all obtained from lorikeets that died from WNV at the Rio Grande Zoo in Albuquerque, NM between 2005 and 2007. The deletions are approximately 2kb, in frame, and result in the elimination of the complete envelope, and portions of the prM and NS-1 proteins. In Vero cell culture, these internally deleted WNV genomes function as defective interfering particles, reducing the production of full-length virus when introduced at high multiplicities of infection. In mosquitoes, the shortened WNV genomes reduced infection and dissemination rates, and virus titers overall, and were not detected in legs or salivary secretions at 14 or 21 days post-infection. In mice, inoculation with internally deleted genomes did not attenuate pathogenesis relative to full-length or infectious clone derived virus, and shortened genomes were not detected in mice at the time of death. These observations provide evidence that large deletions may occur within flavivirus populations more frequently than has generally been appreciated and suggest that they impact population phenotype minimally. Additionally, our findings suggest that highly similar mutants may frequently occur in particular vertebrate hosts. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    Science.gov (United States)

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  12. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Directory of Open Access Journals (Sweden)

    Mary B Crabtree

    Full Text Available BACKGROUND: Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. METHODOLOGY AND PRINCIPAL FINDINGS: Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. CONCLUSIONS/SIGNIFICANCE: In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  13. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Science.gov (United States)

    Crabtree, Mary B; Kent Crockett, Rebekah J; Bird, Brian H; Nichol, Stuart T; Erickson, Bobbie Rae; Biggerstaff, Brad J; Horiuchi, Kalanthe; Miller, Barry R

    2012-01-01

    Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  14. Crystal structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit

    DEFF Research Database (Denmark)

    Ermakova, Inessa; Boldyreff, Brigitte; Issinger, Olaf-Georg

    2003-01-01

    structure of a C-terminal deletion mutant of human CK2alpha was solved and refined to 2.5A resolution. In the crystal the CK2alpha mutant exists as a monomer in agreement with the organization of the subunits in the CK2 holoenzyme. The refined structure shows the helix alphaC and the activation segment, two...

  15. Three Herpes Simplex Virus Type 1 Latency-Associated Transcript Mutants with Distinct and Asymmetric Effects on Virulence in Mice Compared with Rabbits

    Science.gov (United States)

    Perng, Guey-Chuen; Esmaili, Daniel; Slanina, Susan M.; Yukht, Ada; Ghiasi, Homayon; Osorio, Nelson; Mott, Kevin R.; Maguen, Barak; Jin, Ling; Nesburn, Anthony B.; Wechsler, Steven L.

    2001-01-01

    Herpes simplex virus type 1 latency-associated transcript (LAT)-null mutants have decreased reactivation but normal virulence in rabbits and mice. We report here on dLAT1.5, a mutant with LAT nucleotides 76 to 1667 deleted. Following ocular infection of rabbits, dLAT1.5 reactivated at a lower rate than its wild-type parent McKrae (6.1 versus 11.8%; P = 0.0025 [chi-square test]). Reactivation was restored in the marker-rescued virus dLAT1.5R (12.6%; P = 0.53 versus wild type), confirming the importance of the deleted region in spontaneous reactivation. Compared with wild-type or marker-rescued virus, dLAT1.5 had similar or slightly reduced virulence in rabbits (based on survival following ocular infection). In contrast, in mice, dLAT1.5 had increased virulence (P Wechsler, J. Virol. 73:920–929, 1999), had decreased virulence in mice (P = 0.03). In addition, we also found that dLAT371, a LAT mutant that we previously reported to have wild-type virulence in rabbits (G. C. Perng, S. M. Slanina, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 70:2014–2018, 1996), had decreased virulence in mice (P < 0.05). Thus, these three mutants, each of which encodes a different LAT RNA, have different virulence phenotypes. dLAT1.5 had wild-type virulence in rabbits but increased virulence in mice. In contrast, LAT2.9A had increased virulence in rabbits but decreased virulence in mice, and dLAT371 had wild-type virulence in rabbits but decreased virulence in mice. Taken together, these results suggest that (i) the 5′ end of LAT and/or a gene that overlaps part of this region is involved in viral virulence, (ii) this virulence appears to have species-specific effects, and (iii) regulation of this virulence may be complex. PMID:11533165

  16. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    Science.gov (United States)

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  17. Construction of an infectious cDNA clone of genotype 1 avian hepatitis E virus: characterization of its pathogenicity in broiler breeders and demonstration of its utility in studying the role of the hypervariable region in virus replication.

    Science.gov (United States)

    Park, Soo-Jeong; Lee, Byung-Woo; Moon, Hyun-Woo; Sung, Haan Woo; Yoon, Byung-Il; Meng, Xiang-Jin; Kwon, Hyuk Moo

    2015-05-01

    A full-length infectious cDNA clone of the genotype 1 Korean avian hepatitis E virus (avian HEV) (pT11-aHEV-K) was constructed and its infectivity and pathogenicity were investigated in leghorn male hepatoma (LMH) chicken cells and broiler breeders. We demonstrated that capped RNA transcripts from the pT11-aHEV-K clone were translation competent when transfected into LMH cells and infectious when injected intrahepatically into the livers of chickens. Gross and microscopic pathological lesions underpinned the avian HEV infection and helped characterize its pathogenicity in broiler breeder chickens. The avian HEV genome contains a hypervariable region (HVR) in ORF1. To demonstrate the utility of the avian HEV infectious clone, several mutants with various deletions in and beyond the known HVR were derived from the pT11-aHEV-K clone. The HVR-deletion mutants were replication competent in LMH cells, although the deletion mutants extending beyond the known HVR were non-viable. By using the pT11-aHEV-K infectious clone as the backbone, an avian HEV luciferase reporter replicon and HVR-deletion mutant replicons were also generated. The luciferase assay results of the reporter replicon and its mutants support the data obtained from the infectious clone and its derived mutants. To further determine the effect of HVR deletion on virus replication, the capped RNA transcripts from the wild-type pT11-aHEV-K clone and its mutants were injected intrahepatically into chickens. The HVR-deletion mutants that were translation competent in LMH cells displayed in chickens an attenuation phenotype of avian HEV infectivity, suggesting that the avian HEV HVR is important in modulating the virus infectivity and pathogenicity. © 2015 The Authors.

  18. Meiotic UV-sensitive mutant that causes deletion of duplications in neurospora

    International Nuclear Information System (INIS)

    Newmeyer, D.; Galeazzi, D.R.

    1978-01-01

    The meiotic-3 (mei-3) mutant of Neurospora crassa has several effects: (1) when homozygous, it almost completely blocks meiosis and ascospore formation, (2) it is sensitive to uv, (3) its growth is inhibited by histidine, and (4) it increases the instability of nontandem duplications. This was shown for duplications produced by five different rearrangements and was demonstrated by two different criteria. The effects on meiosis and duplication instability are expressed strongly at 25 0 ; the effects on sensitivity to uv and to histidine are expressed strongly at 38.5 0 but only slightly at 25 0 . Nevertheless, all four effects were shown to be due to a single gene. Mei-3 is not allelic with previously reported uv-sensitive mutants. Two other results were obtained that are not necessarily due to mei-3: (1) a cross involving mei-3 produced a new unlinked meiotic mutant, mei-4, which is not sensitive to uv or histidine, and (2) a burst of several new mutants occurred in a different mei-3 stock, including a partial revertant to mei-3. Mei-3 has previously been shown to cause frequent complete loss of a terminal duplicate segment, beginning exactly at the original rearrangement breakpoint. Possible mechanisms are discussed by which a uv-sensitive mutant could cause such precise deletions

  19. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus.

    Science.gov (United States)

    Field, H J; Darby, G; Wildy, P

    1980-07-01

    Mutants of HSV which are resistant to acyclovir (acycloguanosine) have been isolated following serial passages of several herpes simplex virus (HSV) strains in the presence of the drug. The majority of the mutants isolated are defective in induction of thymidine kinase (TK) and this is consistent with the observation that independently isolated TK- viruses are naturally resistant to ACV. One mutant is described (SC16 R9C2) which is resistant in biochemically transformed cells which express HSV TK. This suggests that its resistance resides at a level other than TK. It is also resistant to phosphonoacetic acid, suggesting that the DNA polymerase locus may be involved. A further mutant is described [Cl (101) P2C5] which induces normal levels of TK, although the nature of resistance of this virus is not yet elucidated.

  20. Attenuation of monkeypox virus by deletion of genomic regions

    Science.gov (United States)

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  1. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    Science.gov (United States)

    Field, H J; Wildy, P

    1978-10-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.

  2. The effect of miR-338-3p on HBx deletion-mutant (HBx-d382 mediated liver-cell proliferation through CyclinD1 regulation.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Fu

    Full Text Available Hepatitis B Virus (HBV DNA integration and HBV X (HBx deletion mutation occurs in HBV-positive liver cancer patients, and C-terminal deletion in HBx gene mutants are highly associated with hepatocarcinogenesis. Our previous study found that the HBx-d382 deletion mutant (deleted at nt 382-400 can down-regulate miR-338-3p expression in HBx-expressing cells. The aim of the present study is to examine the role of miR-338-3p in the HBx-d382-mediated liver-cell proliferation.We established HBx-expressing LO2 cells by Lipofectamine 2000 transfection. A miR-338-3p mimics or inhibitor was transfected into LO2/HBx-d382 and LO2/HBx cells using miR-NC as a control miRNA. In silico analysis of potential miR-338-3p targets revealed that miR-338-3p could target the cell cycle regulatory protein CyclinD1. To confirm that CyclinD1 is negatively regulated by miR-338-3p, we constructed luciferase reporters with wild-type and mutated CyclinD1-3'UTR target sites for miR-338-3p binding. We examined the CyclinD1 expression by real-time PCR and western blot, and proliferation activity by flow cytometric cell cycle analysis, Edu incorporation, and soft agar colony.HBx-d382 exhibited enhanced proliferation and CyclinD1 expression in LO2 cells. miR-338-3p expression inhibited cell proliferation in LO2/HBx-d382 cells (and LO2/HBx cells, and also negatively regulated CyclinD1 protein expression. Of the two putative miR-338-3p binding sites in the CyclinD1-3'UTR region, the effect of miR-338-3p on the second binding site (nt 2397-2403 was required for the inhibition.miR-338-3p can directly regulate CyclinD1 expression through binding to the CyclinD1-3'UTR region, mainly at nt 2397-2403. Down-regulation of miR-338-3p expression is required for liver cell proliferation in both LO2/HBx and LO2/HBx-d382 mutant cells, although the effect is more pronounced in LO2/HBx-d382 cells. Our study elucidated a novel mechanism, from a new miRNA-regulation perspective, underlying the

  3. Elimination of A-type inclusion formation enhances cowpox virus replication in mice: implications for orthopoxvirus evolution.

    Science.gov (United States)

    Kastenmayer, Robin J; Maruri-Avidal, Liliana; Americo, Jeffrey L; Earl, Patricia L; Weisberg, Andrea S; Moss, Bernard

    2014-03-01

    Some orthopoxviruses including cowpox virus embed virus particles in dense bodies, comprised of the A-type inclusion (ATI) protein, which may provide long-term environmental protection. This strategy could be beneficial if the host population is sparse or spread is inefficient or indirect. However, the formation of ATI may be neutral or disadvantageous for orthopoxviruses that rely on direct respiratory spread. Disrupted ATI open reading frames in orthopoxviruses such as variola virus, the agent of smallpox, and monkeypox virus suggests that loss of this feature provided positive selection. To test this hypothesis, we constructed cowpox virus mutants with deletion of the ATI gene or another gene required for embedding virions. The ATI deletion mutant caused greater weight loss and higher replication in the respiratory tract than control viruses, supporting our hypothesis. Deletion of the gene for embedding virions had a lesser effect, possibly due to known additional functions of the encoded protein. Published by Elsevier Inc.

  4. Nature of mutants induced by ionizing radiation in cultured hamster cells. III. Molecular characterization of HPRT-deficient mutants induced by. gamma. -rays or. cap alpha. -particles showing that the majority have deletions of all or part of the hprt gene

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, J

    1986-05-01

    DNA from 58 independent HPRT-deficient mutants of V79 hamster cells induced by ionizing radiation was analysed by Southern blot hybridization to a full-length hamster hprt cDNA. About half of the ..gamma..-ray-induced mutants (20/43) were apparently total gene deletions, because they lacked all functional hprt gene sequences hybridizing to the cDNA probe. Another 10 mutants showed various partial deletions and/or rearrangements of the hprt gene. The remaining 13 mutants showed no detectable change in comparison to the structure of the normal gene, which correlated well with previous characterization of these mutants indicating that most carry point mutations in the hprt gene. Thus, 70% or more of radiation-induced HPRT-deficient mutants arise through large genetic changes, especially deletions of all or part of the hprt gene. 16 references, 4 figures, 1 table.

  5. Pathogenetical Characterization of MHV-76: a Spontaneous 9.5-Kilobase-Deletion Mutant of Murine Lymphotropic Gammaherpesvirus 68

    Directory of Open Access Journals (Sweden)

    A. Chalupková

    2008-01-01

    Full Text Available Murid gammaherpesvirus 4 (MuHV-4 provides a small animal model for the study of animal gammaherpesviruses. MHV-76 is a spontaneous deletion mutant as compared to the prototype strain of MuHV-4 (MHV-68. The MHV-76 genome lacks at least 12 ORFs at the 5'-end including the M1, M2, M3 and M4 genes and the eight viral t-RNA-like genes. During 27 months of experimental infection of BALB/c mice we followed their pathogenesis, immunology and oncogenic properties. After intranasal infection with MHV-76, the infectious virus was detected in the blood, thymus, lungs, heart, liver, spleen, bone marrow, peritoneal macrophages, lymph nodes, kidneys, mammary glands, brain and small intestine. The acute phase of infection was attenuated, but the chronic phase of infection was accompanied with long persistence of virus not only in the lymphatic, but in the neural and glandular tissue, as well. In comparison with the prototype strain, splenomegaly and lymphocytosis was very low. Surprisingly, during 27 months the BALB/c mice infected with MHV-76 did not develop lymphoproliferative disorders like infectious mononucleosis, leukaemia or lymphomas. We hypothesize that the M4 gene, present in all oncogenic MHV isolates, might be related (directly or indirectly to their transforming properties.

  6. Functional analyses of GB virus B p13 protein: development of a recombinant GB virus B hepatitis virus with a p7 protein

    DEFF Research Database (Denmark)

    Takikawa, Shingo; Engle, Ronald E; Emerson, Suzanne U

    2006-01-01

    GB virus B (GBV-B), which infects tamarins, is the virus most closely related to hepatitis C virus (HCV). HCV has a protein (p7) that is believed to form an ion channel. It is critical for viability. In vitro studies suggest that GBV-B has an analogous but larger protein (p13). We found...... plus part of p7) was nonviable. However, a mutant lacking amino acid 614-669 (p6) produced high titer viremia and acute resolving hepatitis; viruses recovered from both animals lacked the deleted sequence and had no other mutations. Thus, p6 was dispensable but p7 was essential for infectivity...... processing at both sites, suggesting that p13 is processed into two components (p6 and p7). Mutants with substitution at amino acid 669 or 681 were viable in vivo, but the recovered viruses had changes at amino acid 669 and 681, respectively, which restored cleavage. A mutant lacking amino acid 614-681 (p6...

  7. Functional analyses of GB virus B p13 protein: Development of a recombinant GB virus B hepatitis virus with a p7 protein

    DEFF Research Database (Denmark)

    Takikawa, Shingo; Engle, Ronald E; Emerson, Suzanne U

    2006-01-01

    GB virus B (GBV-B), which infects tamarins, is the virus most closely related to hepatitis C virus (HCV). HCV has a protein (p7) that is believed to form an ion channel. It is critical for viability. In vitro studies suggest that GBV-B has an analogous but larger protein (p13). We found...... plus part of p7) was nonviable. However, a mutant lacking amino acid 614-669 (p6) produced high titer viremia and acute resolving hepatitis; viruses recovered from both animals lacked the deleted sequence and had no other mutations. Thus, p6 was dispensable but p7 was essential for infectivity...... processing at both sites, suggesting that p13 is processed into two components (p6 and p7). Mutants with substitution at amino acid 669 or 681 were viable in vivo, but the recovered viruses had changes at amino acid 669 and 681, respectively, which restored cleavage. A mutant lacking amino acid 614-681 (p6...

  8. Characterization of a thymidine kinase-deficient mutant of equine herpesvirus 4 and in vitro susceptibility of the virus to antiviral agents.

    Science.gov (United States)

    Azab, Walid; Tsujimura, Koji; Kato, Kentaro; Arii, Jun; Morimoto, Tomomi; Kawaguchi, Yasushi; Tohya, Yukinobu; Matsumura, Tomio; Akashi, Hiroomi

    2010-02-01

    Equine herpesvirus 4 (EHV-4) is an important equine pathogen that causes respiratory tract disease among horses worldwide. A thymidine kinase (TK)-deletion mutant has been generated by using bacterial artificial chromosome (BAC) technology to investigate the role of TK in pathogenesis. Deletion of TK had virtually no effect on the growth characteristics of WA79DeltaTK in cell culture when compared to the parent virus. Also, virus titers and plaque formation were unaffected in the absence of the TK gene. The sensitivity of EHV-4 to inhibition by acyclovir (ACV) and ganciclovir (GCV) was studied by means of a plaque reduction assay. GCV proved to be more potent and showed a superior anti-EHV-4 activity. On the other hand, ACV showed very poor ability to inhibit EHV-4 replication. As predicted, WA79DeltaTK was insensitive to GCV. Although EHV-4 is normally insensitive to ACV, it showed >20-fold increase in sensitivity when the equine herpesvirus-1 (EHV-1) TK was supplied in trans. Furthermore, both ACV and GCV resulted in a significant reduction of plaque size induced by EHV-4 and 1. Taken together, these data provided direct evidence that GCV is a potent selective inhibitor of EHV-4 and that the virus-encoded TK is an important determinant of the virus susceptibility to nucleoside analogues. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Kinetic characterization of tissue-type plasminogen activator (t-PA) and t-PA deletion mutants

    NARCIS (Netherlands)

    de Vries, C. [=Carlie J. M.; Veerman, H.; Nesheim, M. E.; Pannekoek, H.

    1991-01-01

    The binding of t-PA to fibrin is mediated both by its "finger" (F) and its "kringle 2" (K2) domain. In addition, these domains are involved in the stimulation of t-PA activity by fibrin. We analyzed the kinetic characteristics of Glu-plasminogen activation by t-PA and a set of t-PA deletion mutants

  10. Human T-Cell Leukemia Virus I Tax Protein Sensitizes p53-Mutant Cells to DNA Damage

    Science.gov (United States)

    Mihaylova, Valia T.; Green, Allison M.; Khurgel, Moshe; Semmes, Oliver J.; Kupfer, Gary M.

    2018-01-01

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53–containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective. PMID:18559532

  11. Radiation susceptibility of the mouse smalleye mutants, Del(2)Sey3Hpax6 and Del(2)Sey4Hpax6, which delete the chromosome 2 middle regions

    International Nuclear Information System (INIS)

    Nitta, Y.; Hoshi, M.; Yoshida, K.; Yamate, J.; Peters, J.; Cattanach, B.M.

    2003-01-01

    Full text: LOH at the chromosome 2 middle regions is common in the radiation-induced mouse acute myeloid leukemia (AML). To identify the suppressor or the modifier gene of AML at this region, the mouse deletion mutants, Del(2)Sey3H pax6 and Del(2)Sey3H pax6 could be the good models, as they deleted the chromosome 2 middle regions hemizygously. The allele of the partially deleted chromosome 2 was paternally generated and maintained hemizygously. The exact deleted regions of the two mutants were mapped by the PCR-based detection of polymorphism of the STS markers. The length of the deletions was 3.01Mb and 10.11MB for Del(2)Sey3H pax6 and Del(2)Sey3H pax6 , respectively. For the induction of tumors, a radiation, 3.0Gy of Co-60 and a chemical carcinogen, N-methyl-N-nitrosourea were applied to the mutants. Their tumorigenicity was compared with those of control as well as normal sibs by the Kaplan-Meier analysis. Both mutants were found to predispose to small intestinal tumors. Intestinal tumors developed spontaneously with the incidence of 30%. The radiation and the chemical accelerated the malignancy and increased the incidence of the intestinal tumors. Radiation shortened the latency of AML development in the Del(2)Sey3H pax6 mutant but not in the Del(2)Sey3H pax6 . Spontaneous AML has not been observed, nor any increase in the incidence of induced AMLs. The commonly deleted region of the two mutants, the 3.01Mb region, must be critical for the development of tumors and the high susceptibility to radiation. The role of Pax6 gene should be considered in the intestinal tumorigenesis, as the Pax6 gene plays an important role in the pancreas development during the embryogenesis. The Wt1, a tumor suppressor gene, which is deleted hemizygously in these mutants as well. The screening of homozygous deletion has been started using the induced as well as spontaneously developed tumors

  12. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene.

    Science.gov (United States)

    Ikegami, Tetsuro; Won, Sungyong; Peters, C J; Makino, Shinji

    2006-03-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.

  13. Mutational analysis of the hypervariable region of hepatitis e virus reveals its involvement in the efficiency of viral RNA replication.

    Science.gov (United States)

    Pudupakam, R S; Kenney, Scott P; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A; Leroith, Tanya; Pierson, F William; Meng, Xiang-Jin

    2011-10-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication.

  14. Targeted Genome Sequencing Reveals Varicella-Zoster Virus Open Reading Frame 12 Deletion.

    Science.gov (United States)

    Cohrs, Randall J; Lee, Katherine S; Beach, Addilynn; Sanford, Bridget; Baird, Nicholas L; Como, Christina; Graybill, Chiharu; Jones, Dallas; Tekeste, Eden; Ballard, Mitchell; Chen, Xiaomi; Yalacki, David; Frietze, Seth; Jones, Kenneth; Lenac Rovis, Tihana; Jonjić, Stipan; Haas, Jürgen; Gilden, Don

    2017-10-15

    The neurotropic herpesvirus varicella-zoster virus (VZV) establishes a lifelong latent infection in humans following primary infection. The low abundance of VZV nucleic acids in human neurons has hindered an understanding of the mechanisms that regulate viral gene transcription during latency. To overcome this critical barrier, we optimized a targeted capture protocol to enrich VZV DNA and cDNA prior to whole-genome/transcriptome sequence analysis. Since the VZV genome is remarkably stable, it was surprising to detect that VZV32, a VZV laboratory strain with no discernible growth defect in tissue culture, contained a 2,158-bp deletion in open reading frame (ORF) 12. Consequently, ORF 12 and 13 protein expression was abolished and Akt phosphorylation was inhibited. The discovery of the ORF 12 deletion, revealed through targeted genome sequencing analysis, points to the need to authenticate the VZV genome when the virus is propagated in tissue culture. IMPORTANCE Viruses isolated from clinical samples often undergo genetic modifications when cultured in the laboratory. Historically, VZV is among the most genetically stable herpesviruses, a notion supported by more than 60 complete genome sequences from multiple isolates and following multiple in vitro passages. However, application of enrichment protocols to targeted genome sequencing revealed the unexpected deletion of a significant portion of VZV ORF 12 following propagation in cultured human fibroblast cells. While the enrichment protocol did not introduce bias in either the virus genome or transcriptome, the findings indicate the need for authentication of VZV by sequencing when the virus is propagated in tissue culture. Copyright © 2017 American Society for Microbiology.

  15. Mutational Analysis of the Hypervariable Region of Hepatitis E Virus Reveals Its Involvement in the Efficiency of Viral RNA Replication ▿

    Science.gov (United States)

    Pudupakam, R. S.; Kenney, Scott P.; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A.; LeRoith, Tanya; Pierson, F. William; Meng, Xiang-Jin

    2011-01-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication. PMID:21775444

  16. Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets.

    Science.gov (United States)

    Hou, Yixuan; Lin, Chun-Ming; Yokoyama, Masaru; Yount, Boyd L; Marthaler, Douglas; Douglas, Arianna L; Ghimire, Shristi; Qin, Yibin; Baric, Ralph S; Saif, Linda J; Wang, Qiuhong

    2017-07-15

    We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity. IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region

  17. Initial characterization of Vaccinia Virus B4 suggests a role in virus spread

    Energy Technology Data Exchange (ETDEWEB)

    Burles, Kristin; Irwin, Chad R.; Burton, Robyn-Lee [Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2 (Canada); Schriewer, Jill [Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO (United States); Evans, David H. [Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2 (Canada); Buller, R. Mark [Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO (United States); Barry, Michele, E-mail: michele.barry@ualberta.ca [Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2 (Canada)

    2014-05-15

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a natural mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus.

  18. Initial characterization of Vaccinia Virus B4 suggests a role in virus spread

    International Nuclear Information System (INIS)

    Burles, Kristin; Irwin, Chad R.; Burton, Robyn-Lee; Schriewer, Jill; Evans, David H.; Buller, R. Mark; Barry, Michele

    2014-01-01

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a natural mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus

  19. PBP deletion mutants of Escherichia coli exhibit irregular distribution of MreB at the deformed zones.

    Science.gov (United States)

    Vijayan, Saptha; Mallick, Sathi; Dutta, Mouparna; Narayani, M; Ghosh, Anindya S

    2014-02-01

    MreB is a cytoskeletal protein, which is responsible for maintaining proper cellular morphology and is essential for cell survival. Likewise, penicillin-binding protein 5 (PBP5) helps in maintaining cell shape, though non-essential for survival. The contradicting feature of these two proteins paves the way for this study, wherein we attempt to draw a relation on the nature of distribution of MreB in PBP deletion mutants. The study revealed that the uniform MreB helices/patches were destabilized/disturbed at the zone of deformities of the PBP mutants, whereas the helical patterns were retained at the regions maintaining a rod shape. We interpret that MreB remains functional irrespective of its distribution being misguided by the aberrant shapes of PBP mutants.

  20. An RNA secondary structure bias for non-homologous reverse transcriptase-mediated deletions in vivo

    DEFF Research Database (Denmark)

    Duch, Mogens; Carrasco, Maria L; Jespersen, Thomas

    2004-01-01

    Murine leukemia viruses harboring an internal ribosome entry site (IRES)-directed translational cassette are able to replicate, but undergo loss of heterologous sequences upon continued passage. While complete loss of heterologous sequences is favored when these are flanked by a direct repeat......, deletion mutants with junction sites within the heterologous cassette may also be retrieved, in particular from vectors without flanking repeats. Such deletion mutants were here used to investigate determinants of reverse transcriptase-mediated non-homologous recombination. Based upon previous structural...... result from template switching during first-strand cDNA synthesis and that the choice of acceptor sites for non-homologous recombination are guided by non-paired regions. Our results may have implications for recombination events taking place within structured regions of retroviral RNA genomes...

  1. Cell lines that support replication of a novel herpes simplex virus 1 UL31 deletion mutant can properly target UL34 protein to the nuclear rim in the absence of UL31

    International Nuclear Information System (INIS)

    Liang Li; Tanaka, Michiko; Kawaguchi, Yasushi; Baines, Joel D.

    2004-01-01

    Previous results indicated that the herpes simplex virus 1 (HSV-1) U L 31 gene is necessary and sufficient for localization of the U L 34 protein exclusively to the nuclear membrane of infected Hep2 cells. In the current studies, a bacterial artificial chromosome containing the entire HSV-1 strain F genome was used to construct a recombinant viral genome in which a gene encoding kanamycin resistance was inserted in place of 262 codons of the 306 codon U L 31 open reading frame. The deletion virus produced virus titers approximately 10- to 50-fold lower in rabbit skin cells, more than 2000-fold lower in Vero cells, and more than 1500-fold lower in CV1 cells, compared to a virus bearing a restored U L 31 gene. The replication of the U L 31 deletion virus was restored on U L 31-complementing cell lines derived either from rabbit skin cells or CV1 cells. Confocal microscopy indicated that the majority of U L 34 protein localized aberrantly in the cytoplasm and nucleoplasm of Vero cells and CV1 cells, whereas U L 34 protein localized at the nuclear membrane in rabbit skin cells, and U L 31 complementing CV1 cells infected with the U L 31 deletion virus. We conclude that rabbit skin cells encode a function that allows proper localization of U L 34 protein to the nuclear membrane. We speculate that this function partially complements that of U L 31 and may explain why U L 31 is less critical for replication in rabbit skin cells as opposed to Vero and CV1 cells

  2. Temperature-Sensitive Mutants of Mouse Hepatitis Virus Strain A59: Isolation, Characterization and Neuropathogenic Properties.

    NARCIS (Netherlands)

    M.J.M. Koolen (Marck); A.D.M.E. Osterhaus (Albert); G. van Steenis (Bert); M.C. Horzinek; B.A.M. van der Zeijst (Ben)

    1983-01-01

    textabstractTwenty 5-fluorouracil-induced temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59 were isolated from 1284 virus clones. Mutants were preselected on the basis of their inability to induce syncytia in infected cells at the restrictive temperature (40 degrees) vs the

  3. Complementation and recombination between alfalfa mosaic virus RNA3 mutants in tobacco plants

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    Deletions were made in an infectious cDNA clone of alfalfa mosaic virus (AIMV) RNA3 and the replication of RNA transcripts of these cDNAs was studied in tobacco plants transformed with AIMV replicase genes (P12 plants). Previously, we found that deletions in the P3 gene did not affect accumulation

  4. Identification and characterization of the pseudorabies virus UL43 protein

    International Nuclear Information System (INIS)

    Klupp, Barbara G.; Altenschmidt, Jan; Granzow, Harald; Fuchs, Walter; Mettenleiter, Thomas C.

    2005-01-01

    Among the least characterized herpesvirus membrane proteins are the homologs of UL43 of herpes simplex virus 1 (HSV-1). To identify and characterize the UL43 protein of pseudorabies virus (PrV), part of the open reading frame was expressed in Escherichia coli and used for immunization of a rabbit. The antiserum recognized in Western blots a 34-kDa protein in lysates of PrV infected cells and purified virions, demonstrating that the UL43 protein is a virion component. In indirect immunofluorescence analysis, the antiserum labeled vesicular structures in PrV infected cells which also contained glycoprotein B. To functionally analyze UL43, a deletion mutant was constructed lacking amino acids 23-332 of the 373aa protein. This mutant was only slightly impaired in replication as assayed by one-step growth kinetics, measurement of plaque sizes, and electron microscopy. Interestingly, the PrV UL43 protein was able to inhibit fusion induced by PrV glycoproteins in a transient expression-fusion assay to a similar extent as gM. Double mutant viruses lacking, in addition to UL43, the multiply membrane spanning glycoproteins K or M did not show a phenotype beyond that observed in the gK and gM single deletion mutants

  5. Detection of genomic deletions in rice using oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Bordeos Alicia

    2009-03-01

    Full Text Available Abstract Background The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL. However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. Results We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations http://irfgc.irri.org/cgi-bin/gbrowse/IR64_deletion_mutants/. Conclusion We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a

  6. Prestress strengthens the shell of Norwalk virus nanoparticles.

    NARCIS (Netherlands)

    Baclayon, Marian; Shoemaker, Glen K; Uetrecht, Charlotte; Crawford, Sue E; Estes, Mary K; Prasad, B V Venkataram; Heck, Albert J R; Wuite, Gijs J L; Roos, Wouter H

    2011-01-01

    We investigated the influence of the protruding domain of Norwalk virus-like particles (NVLP) on its overall structural and mechanical stability. Deletion of the protruding domain yields smooth mutant particles and our AFM nanoindentation measurements show a surprisingly altered indentation response

  7. The low-pH stability discovered in neuraminidase of 1918 pandemic influenza A virus enhances virus replication.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available The "Spanish" pandemic influenza A virus, which killed more than 20 million worldwide in 1918-19, is one of the serious pathogens in recorded history. Characterization of the 1918 pandemic virus reconstructed by reverse genetics showed that PB1, hemagglutinin (HA, and neuraminidase (NA genes contributed to the viral replication and virulence of the 1918 pandemic influenza virus. However, the function of the NA gene has remained unknown. Here we show that the avian-like low-pH stability of sialidase activity discovered in the 1918 pandemic virus NA contributes to the viral replication efficiency. We found that deletion of Thr at position 435 or deletion of Gly at position 455 in the 1918 pandemic virus NA was related to the low-pH stability of the sialidase activity in the 1918 pandemic virus NA by comparison with the sequences of other human N1 NAs and sialidase activity of chimeric constructs. Both amino acids were located in or near the amino acid resides that were important for stabilization of the native tetramer structure in a low-pH condition like the N2 NAs of pandemic viruses that emerged in 1957 and 1968. Two reverse-genetic viruses were generated from a genetic background of A/WSN/33 (H1N1 that included low-pH-unstable N1 NA from A/USSR/92/77 (H1N1 and its counterpart N1 NA in which sialidase activity was converted to a low-pH-stable property by a deletion and substitutions of two amino acid residues at position 435 and 455 related to the low-pH stability of the sialidase activity in 1918 NA. The mutant virus that included "Spanish Flu"-like low-pH-stable NA showed remarkable replication in comparison with the mutant virus that included low-pH-unstable N1 NA. Our results suggest that the avian-like low-pH stability of sialidase activity in the 1918 pandemic virus NA contributes to the viral replication efficiency.

  8. Sporulation-specific cell division defects in ylmE mutants of Streptomyces coelicolor are rescued by additional deletion of ylmD.

    Science.gov (United States)

    Zhang, Le; Willemse, Joost; Hoskisson, Paul A; van Wezel, Gilles P

    2018-05-09

    Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects.

  9. Simian virus 40 small t antigen is not required for the maintenance of transformation but may act as a promoter (cocarcinogen) during establishment of transformation in resting rat cells.

    Science.gov (United States)

    Seif, R; Martin, R G

    1979-12-01

    Simian virus 40 deletion mutants affecting the 20,000-dalton (20K) t antigen and tsA mutants rendering the 90K T antigen temperature sensitive, as well as double mutants containing both mutations, induced host DNA synthesis in resting rat cells at the restrictive temperature. Nonetheless, the deletion mutants and double mutants did not induce transformation in resting cells even at the permissive temperature. On the other hand, the deletion mutants did induce full transformants when actively growing rat cells were infected; the transformants grew efficiently in agar and to high saturation densities on platic. The double mutants did not induce T-antigen-independent (temperature-insensitive) transformants which were shown previously to arise preferentially from resting cells. Thus, small t antigen was dispensable for the maintenance of the transformed phenotype in T-antigen-dependent rat transformants (transformants derived from growing cells) and may play a role in the establishment of T-antigen-independent transformants. We attempt to establish a parallel between transformation induced by chemical carcinogens and simian virus 40-induced transformation.

  10. Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells.

    Science.gov (United States)

    van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J

    2017-06-15

    Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.

  11. Catalytic properties of ADAM12 and its domain deletion mutants

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Visse, Robert; Sørensen, Hans Peter

    2008-01-01

    of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits...... restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most...... active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower...

  12. Counteracting quasispecies adaptability: extinction of a ribavirin-resistant virus mutant by an alternative mutagenic treatment.

    Directory of Open Access Journals (Sweden)

    Celia Perales

    Full Text Available BACKGROUND: Lethal mutagenesis, or virus extinction promoted by mutagen-induced elevation of mutation rates of viruses, may meet with the problem of selection of mutagen-resistant variants, as extensively documented for standard, non-mutagenic antiviral inhibitors. Previously, we characterized a mutant of foot-and-mouth disease virus that included in its RNA-dependent RNA polymerase replacement M296I that decreased the sensitivity of the virus to the mutagenic nucleoside analogue ribavirin. METHODOLOGY AND PRINCIPAL FINDINGS: Replacement M296I in the viral polymerase impedes the extinction of the mutant foot-and-mouth disease virus by elevated concentrations of ribavirin. In contrast, wild type virus was extinguished by the same ribavirin treatment and, interestingly, no mutants resistant to ribavirin were selected from the wild type populations. Decreases of infectivity and viral load of the ribavirin-resistant M296I mutant were attained with a combination of the mutagen 5-fluorouracil and the non-mutagenic inhibitor guanidine hydrocloride. However, extinction was achieved with a sequential treatment, first with ribavirin, and then with a minimal dose of 5-fluorouracil in combination with guanidine hydrochloride. Both, wild type and ribavirin-resistant mutant M296I exhibited equal sensitivity to this combination, indicating that replacement M296I in the polymerase did not confer a significant cross-resistance to 5-fluorouracil. We discuss these results in relation to antiviral designs based on lethal mutagenesis. CONCLUSIONS: (i When dominant in the population, a mutation that confers partial resistance to a mutagenic agent can jeopardize virus extinction by elevated doses of the same mutagen. (ii A wild type virus, subjected to identical high mutagenic treatment, need not select a mutagen-resistant variant, and the population can be extinguished. (iii Extinction of the mutagen-resistant variant can be achieved by a sequential treatment of a

  13. Immunization against Genital Herpes with a Vaccine Virus That has Defects in Productive and Latent Infection

    Science.gov (United States)

    da Costa, Xavier J.; Jones, Cheryl A.; Knipe, David M.

    1999-06-01

    An effective vaccine for genital herpes has been difficult to achieve because of the limited efficacy of subunit vaccines and the safety concerns about live viruses. As an alternative approach, mutant herpes simplex virus strains that are replication-defective can induce protective immunity. To increase the level of safety and to prove that replication was not needed for immunization, we constructed a mutant herpes simplex virus 2 strain containing two deletion mutations, each of which eliminated viral replication. The double-mutant virus induces protective immunity that can reduce acute viral shedding and latent infection in a mouse genital model, but importantly, the double-mutant virus shows a phenotypic defect in latent infection. This herpes vaccine strain, which is immunogenic but has defects in both productive and latent infection, provides a paradigm for the design of vaccines and vaccine vectors for other sexually transmitted diseases, such as AIDS.

  14. Purification, crystallization and preliminary X-ray analysis of a deletion mutant of a major buckwheat allergen

    International Nuclear Information System (INIS)

    Kezuka, Yuichiro; Itagaki, Takashi; Satoh, Rie; Teshima, Reiko; Nonaka, Takamasa

    2009-01-01

    A 16 kDa buckwheat protein (BWp16) is a major allergen responsible for immediate hypersensitivity reactions including anaphylaxis. An immunologically active mutant of BWp16 was prepared and a three-wavelength MAD data set was collected from a crystal of selenomethionine-labelled mutant protein. A 16 kDa buckwheat protein (BWp16) is a major allergen responsible for immediate hypersensitivity reactions including anaphylaxis. A deletion mutant of BWp16 (rBWp16ΔN) was overproduced and purified and was shown to be immunologically active. A three-wavelength MAD data set was collected from a crystal of selenomethionine-labelled rBWp16ΔN. The crystal belonged to the triclinic space group P1, with unit-cell parameters a = 28.39, b = 31.54, c = 32.20 Å, α = 111.92, β = 108.91, γ = 98.74°. One monomer was expected to be present in the asymmetric unit based on the calculated Matthews coefficient of 1.76 Å 3 Da −1

  15. Complex mosaic CDKL5 deletion with two distinct mutant alleles in a 4-year-old girl.

    Science.gov (United States)

    Boutry-Kryza, Nadia; Ville, Dorothée; Labalme, Audrey; Calender, Alain; Dupont, Jean-Michel; Touraine, Renaud; Edery, Patrick; des Portes, Vincent; Sanlaville, Damien; Lesca, Gaetan

    2014-08-01

    Mutations of the CDKL5 gene cause early epileptic encephalopathy. Patients manifest refractory epilepsy, beginning before the age of 3 months, which is associated with severe psychomotor delay and features that overlap with Rett syndrome. We report here a patient with mosaicism for CDKL5 exonic deletion, with the presence of two mutant alleles. The affected 4-year-old girl presented with infantile spasms, beginning at the age of 9 months, but subsequent progression of the disease was consistent with the classical CDKL5-related phenotype. A deletion of exons 17 and 18 was suspected on the basis of Multiplex Ligation Probe Amplification analysis, but unexpected results for cDNA analysis, which showed the presence of an abnormal transcript with the deletion of exon 18 only, led us to suspect that two distinct events might have occurred. We used custom array-CGH to determine the size and breakpoints of these deletions. Exon 18 was deleted from one of the abnormal alleles, and exon 17 was deleted from the other. A Fork Stalling and Template Switching (FoSTeS) mechanism was proposed to explain the two events, given the presence of regions of microhomology at the breakpoints. We propose here an original involvement of the FoSTeS mechanism to explain the co-occurrence of these two events in the CDKL5 gene in a single patient. This patient highlights the difficulties involved in the detection of such abnormalities, particularly when they occur in a mosaic state and involve two distinct mutational events in a single gene. © 2014 Wiley Periodicals, Inc.

  16. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  17. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid.

    Science.gov (United States)

    Song, Li; Cui, Hongyu; Tang, Lijie; Qiao, Xinyuan; Liu, Min; Jiang, Yanping; Cui, Wen; Li, Yijing

    2014-07-01

    Integration plasmids are often used in constructing chromosomal mutations, as it enables the alternation of genes at any location by integration or replacement. Food-grade integration vectors can integrate into the host genome without introducing any selectable markers or residual bases, and the recombination often happens in non-coding region. In this study we used the temperature-sensitive pWV01 replicon to construct 2 chloramphenicol-resistant integration plasmids (pGBHC32-upp) containing the uracil phosphoribosyl transferase (upp) gene as a counterselective marker for Lactobacillus casei (L. casei) ATCC393 and Lactococcus lactis (L. lactis) MG1363. We then ligated the designed homologous arms to the pGBHC32-upp plasmids to allow their integration to the bacterial chromosome, and selected upp deletion mutants of L. casei ATCC393 and L. lactis MG1363 in the presence of 5-fluorouracil (5-FU). Analysis of genetic stability, growth curve, carbon utilization and scanning electronic microscopy showed that, except for 5-FU resistance, there were no significant differences between the wild type and mutant lactic acid bacteria. The integration system and the upp deletion strains could be used in the insertion or deletion of genes at any location of the chromosome of both L. casei ATCC 393 and L. lactis MG1363, and the homologous recombination would not introduce any selectable markers or residual bases. These mutant strains can be further investigated for heterologous protein expression and construction of a live mucosal vaccine carrier. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Detection of three-base deletion by exciplex formation with perylene derivatives.

    Science.gov (United States)

    Kashida, Hiromu; Kondo, Nobuyo; Sekiguchi, Koji; Asanuma, Hiroyuki

    2011-06-14

    Here, we synthesized fluorescent DNA probes labeled with two perylene derivatives for the detection of a three-base deletion mutant. One such probe discriminated the three-base deletion mutant from the wild-type sequence by exciplex emission, and the deletion mutant was identifiable even by the naked eye. This journal is © The Royal Society of Chemistry 2011

  19. Escape from R-peptide deletion in a γ-retrovirus

    International Nuclear Information System (INIS)

    Schneider, Irene C.; Eckhardt, Manon; Brynza, Julia; Collins, Mary K.; Cichutek, Klaus; Buchholz, Christian J.

    2011-01-01

    The R peptide in the cytoplasmic tail (C-tail) of γ-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrast to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in γ-retrovirus infected cells.

  20. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  1. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells

    DEFF Research Database (Denmark)

    Jensen, Helle Lone; Norrild, Bodil

    2003-01-01

    Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus...

  2. A Herpes Simplex Virus Type 1 Mutant Expressing a Baculovirus Inhibitor of Apoptosis Gene in Place of Latency-Associated Transcript Has a Wild-Type Reactivation Phenotype in the Mouse

    Science.gov (United States)

    Jin, Ling; Perng, Guey-Chuen; Mott, Kevin R.; Osorio, Nelson; Naito, Julia; Brick, David J.; Carpenter, Dale; Jones, Clinton; Wechsler, Steven L.

    2005-01-01

    The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse. PMID:16160155

  3. Temperature-sensitive mutants of fowl plague virus: isolation and genetic characterization

    International Nuclear Information System (INIS)

    Almond, J.W.; McGeoch, D.; Barry, R.D.

    1979-01-01

    Forty-nine temperature-sensitive mutants of fowl plague virus (FPV) strain Rostock and four ts mutants of FPV-strain Dobson were isolated by utilizing two methods of plaque screening, after either spontaneous or chemically induced mutagenesis. Twenty-nine of the FPV-Rostock mutants were further characterized by genetic recombination studies and were found to fall into six high frequency recombination groups. The genome segment carrying the ts mutation in each group was identified by analyzing the gene composition of ts + recombinants generated from crosses between representatives of each group and ts mutants of FPV-Dobson. It was concluded that the six groups correspond to mutations in six different genome segments, namely, those coding for the P 1 , P 2 , P 3 , HA, NP, and NS proteins

  4. Progress toward an enhanced vaccine: Eight marked attenuated viruses to porcine reproductive and respiratory disease virus.

    Science.gov (United States)

    Spear, Allyn; Wang, Feng-Xue; Kappes, Matthew A; Das, Phani B; Faaberg, Kay S

    2018-03-01

    Recombinant viruses of strain Ingelvac® PRRS porcine reproductive and respiratory syndrome virus (PRRSV) modified live virus vaccine were produced with two individual small in-frame deletions in nonstructural protein 2 (nsp2; Δ23 and Δ87) and also the same deletions supplanted with foreign tags (Δ23-V5, Δ23-FLAG, Δ23-S, Δ87-V5, Δ87-FLAG, Δ87-S). The viruses, but one (Δ87-FLAG), were stable for 10 passages and showed minimal effects on in vitro growth. Northern hybridization showed that the Δ23-tagged probe detected intracellular viral genome RNA as well as shorter RNAs that may represent heteroclite species, while the Δ87-tagged probe detected predominantly only genome length RNAs. When the tagged viruses were used to probe nsp2 protein in infected cells, perinuclear localization similar to native nsp2 was seen. Dual infection of Δ23-S and Δ87-S viruses allowed some discrimination of individual tagged nsp2 protein, facilitating future research. The mutants could potentially also be used to differentiate infected from vaccinated animals. Published by Elsevier Inc.

  5. Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle

    DEFF Research Database (Denmark)

    Fowler, Veronica; Bashiruddin, John B.; Belsham, Graham

    2014-01-01

    Previous work in cattle illustrated the protective efficacy and negative marker potential of a A serotype foot-and-mouth disease virus (FMDV) vaccine prepared from a virus lacking a significant portion of the VP1 G-H loop (termed A(−)). Since this deletion also includes the arginine-glycine-aspar......Previous work in cattle illustrated the protective efficacy and negative marker potential of a A serotype foot-and-mouth disease virus (FMDV) vaccine prepared from a virus lacking a significant portion of the VP1 G-H loop (termed A(−)). Since this deletion also includes the arginine...

  6. Deletion mutant defines DQ beta variants with DR4 positive DQw3 positive haplotypes

    International Nuclear Information System (INIS)

    Nepom, B.S.; Kim, S.J.; Nepom, G.T.

    1986-01-01

    We describe the production of an HLA deletion mutation by radiation mutagenesis of a DR4- and DQw3-homozygous, Dw4- and Dw14-heterozygous cell line designed to analyze polymorphisms associated with DR4 and DQw3. Southern blot analysis confirms a deletion of class I and class II genes on one haplotype. Variation in DQ beta alleles associated with DQw3 was previously described by characteristic RFLP patterns for a DQ beta bene. One pattern, which correlated precisely with A-10-83 monoclonal antibody reactivity (TA10), defined an allele which we call DQ''3.1''. The mutant cell line has lost the polymorphic bands on Southern blots corresponding to the DQ''3.1'' allele, while the intact Dw14 haplotype retains the alternate allele at DQ beta which is DQw-3 positive. TA10-negative. These data demonstrate the segregation of two DQw3 positive DQ beta allelic variants, both associated with DR4, which can be distinguished on the basis of both RFLP and monoclonal antibody reactivity

  7. Deletion Mutagenesis and Identification of Causative Mutations in Maize.

    Science.gov (United States)

    Jia, Shangang; Li, Aixia; Zhang, Chi; Holding, David

    2018-01-01

    We describe a method for gamma-irradiation of mature maize seeds to generate mutants with opaque endosperm and reduced kernel fill phenotypes. We also describe methods for mapping mutants and identifying causal gene mutations. Using this method, a population of 1788M2 families and 47 Mo17 × F2s showing stable, segregating, and viable kernel phenotypes was developed. For molecular characterization of the mutants, we utilized a novel functional genomics platform that combines separate Bulked Segregant RNA and exome sequencing data sets (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. We also describe the use of exome capture sequencing of F2 mutant and normal pools to perform mapping and candidate gene identification without the need for separate RNA-seq (BSEx-seq). To exemplify the utility of the deletion mutants for functional genomics and provide proof-of-concept for the bioinformatics platform, we summarize the identification of the causative deletion in two mutants. Mutant 937, which was characterized by BSREx-seq, harbors a 6203-bp in-frame deletion covering six exons within the Opaque-1 gene on chromosome 4. Preliminary investigation of opaque mutant 1486 with BSEx-seq shows a tight mapping interval and associated deletion on chromosome 10.

  8. IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu; Xing, Zhen; She, Dejun; Yang, Xiefeng; Zheng, Yingyan; Xiao, Zebin; Cao, Dairong [First Affiliated Hospital of Fujian Medical University, Department of Radiology, Fuzhou, Fujian (China); Wang, Xingfu [First Affiliated Hospital of Fujian Medical University, Department of Pathology, Fuzhou (China)

    2017-06-15

    Currently, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion are proven diagnostic biomarkers for both grade II and III oligodendrogliomas (ODs). Non-invasive diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) are widely used to provide physiological information (cellularity, hemorrhage, calcifications, and angiogenesis) of neoplastic histology and tumor grade. However, it is unclear whether DWI, SWI, and DSC-PWI are able to stratify grades of IDH-mutant and 1p/19q co-deleted ODs. We retrospectively reviewed the conventional MRI (cMRI), DWI, SWI, and DSC-PWI obtained on 33 patients with IDH-mutated and 1p/19q co-deleted ODs. Features of cMRI, normalized ADC (nADC), intratumoral susceptibility signals (ITSSs), normalized maxim CBV (nCBV), and normalized maximum CBF (nCBF) were compared between low-grade ODs (LGOs) and high-grade ODs (HGOs). Receiver operating characteristic curve and logistic regression were applied to determine diagnostic performances. HGOs tended to present with prominent edema and enhancement. nADC, ITSSs, nCBV, and nCBF were significantly different between groups (all P < 0.05). The combination of SWI and DSC-PWI for grading resulted in sensitivity and specificity of 100.00 and 93.33%, respectively. IDH-mutant and 1p/19q co-deleted ODs can be stratified by grades using cMRI and advanced magnetic resonance imaging techniques including DWI, SWI, and DSC-PWI. Combined ITSSs with nCBV appear to be a promising option for grading molecularly defined ODs in clinical practice. (orig.)

  9. Epstein-Barr virus (EBV) recombinants: use of positive selection markers to rescue mutants in EBV-negative B-lymphoma cells.

    Science.gov (United States)

    Wang, F; Marchini, A; Kieff, E

    1991-04-01

    The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative

  10. E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox

    Directory of Open Access Journals (Sweden)

    Asisa Volz

    2018-01-01

    Full Text Available The highly attenuated Modified Vaccinia virus Ankara (MVA lacks most of the known vaccinia virus (VACV virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L. Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.

  11. The mouse small eye mutant, Del(2)Sey3H, which deletes the putative tumor suppressor region of the radiation-induced acute myeloid leukemia is susceptible to radiation

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Yoshida, Kazuko; Tanaka, Kimio; Peters, Jo; Cattanach, Bruce M.

    2003-01-01

    Radiation-induced murine acute myeloid leukemia (AML) is characterized by the chromosome 2 deletions. Standing on the hypothesis that an AML suppressor gene would locate on the chromosome 2, a deletion-wide screen was performed on radiation-induced AMLs by the fluorescence in situ hybridization (FISH) method. The hemizugous deletion of the D2Mit15, a marker DNA at the 49.0cM region from the centromere, associated with the AMLs in 97 out of the 105 cases (92.4%). As the deletion region was close to the region of human WAGR syndrome (MIM194072), the mouse small eye mutants could be the animal model for radiation-induced AMLs. The mutant, Del(2)Sey3H (Sey3H) was found to delete around the 49.0cM region by the allelic loss mapping. The Sey3H showed high susceptibility to radiation to develop tumors including the myeloid leukemia with shorter latency. These finding support the existence of a putative tumor suppressor gene responsible for the radiation-leukemogenesis near the D2Mit15 region. (author)

  12. Effect of gamma rays at the dihydrofolate reductase locus: deletions and inversions

    International Nuclear Information System (INIS)

    Urlaub, G.; Mitchell, P.J.; Kas, E.; Chasin, L.A.; Funanage, V.L.; Myoda, T.T.; Hamlin, J.

    1986-01-01

    A series 11 gamma-ray-induced mutants at the dihydrofolate reductase (dhfr) locus in Chinese hamster ovary cells has been examined for the types of DNA sequence change brought about by this form of ionizing radiation. All 11 mutants were found to have suffered major structural changes affecting the dhfr gene. In eight of the mutants, all or part of the dhfr gene has been deleted. The extent of these deletions was examined in seven of these mutants and, for comparison, in two deletion mutants that were induced by UV irradiation. For this purpose, probes from an overlapping set of cosmids that span 210 kb of DNA in this region were used. Three of seven gamma-ray-induced mutants and one UV-induced mutant were shown to have deleted the entire 210-kb region. In the remaining mutants, endpoints ranging from within the dhfr gene to 100 kb downstream were observed. No upstream endpoints were detected, so that an upper limit on the size of these large deletions could not be assigned. Three of the 11 gamma-ray-induced mutants contained an interruption in the dhfr gene without any detectable loss of sequence. Restriction analysis of these interrupted mutants showed that at least 8-14 kb of foreign DNA sequence became joined to the gene at the point of disruption. Cytogenetic analysis of these mutants showed that in two cases an inversion of the banding pattern on chromosome Z-2 had taken place. The inverted dhfr mutants contain very low amounts of dhfr RNA sequences, and the 5' end of an inversion mutant gene exhibits the same pattern of DNA methylation and DNase I-hypersensitivity as the wild-type gene. Our results suggest that ionizing radiation causes primarily, if not exclusively, large deletions and inversions in mammalian cells

  13. KV4.3 N-terminal deletion mutant Δ2–39

    Science.gov (United States)

    Hovind, Laura J; Skerritt, Matthew R

    2011-01-01

    Gating transitions in the KV4.3 N-terminal deletion mutant Δ2–39 were characterized in the absence and presence of KChIP2b. We particularly focused on gating characteristics of macroscopic (open state) versus closed state inactivation (CSI) and recovery. In the absence of KChIP2b Δ2–39 did not significantly alter the steady-state activation “a4” relationship or general CSI characteristics, but it did slow the kinetics of deactivation, macroscopic inactivation and macroscopic recovery. Recovery kinetics (for both WT KV4.3 and Δ2–39) were complicated and displayed sigmoidicity, a process which was enhanced by Δ2–39. Deletion of the proximal N-terminal domain therefore appeared to specifically slow mechanisms involved in regulating gating transitions occurring after the channel open state(s) had been reached. In the presence of KChIP2b Δ2–39 recovery kinetics (from both macroscopic and CSI) were accelerated, with an apparent reduction in initial sigmoidicity. Hyperpolarizing shifts in both “a4” and isochronal inactivation “i” were also produced. KChIP2b-mediated remodeling of KV4.3 gating transitions was therefore not obligatorily dependent upon an intact N-terminus. To account for these effects we propose that KChIP2 regulatory domains exist in KV4.3 α subunit regions outside of the proximal N-terminal. In addition to regulating macroscopic inactivation, we also propose that the KV4.3 N-terminus may act as a novel regulator of deactivation-recovery coupling. PMID:21057209

  14. Deletion analysis of cis- and trans-acting elements involved in replication of alfalfa mosaic virus RNA 3 in vivo

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    DNA copies of alfalfa mosaic virus (AIMV) RNA 3 were transcribed in vitro into RNA molecules with deletions in coding and noncoding sequences. The replication of these transcripts was studied in protoplasts from transgenic tobacco plants expressing DNA copies of AIMV RNAs 1 and 2. Deletions in the

  15. An inactivated gE-deleted pseudorabies vaccine provides complete clinical protection and reduces virus shedding against challenge by a Chinese pseudorabies variant.

    Science.gov (United States)

    Wang, Jichun; Guo, Rongli; Qiao, Yongfeng; Xu, Mengwei; Wang, Zhisheng; Liu, Yamei; Gu, Yiqi; Liu, Chang; Hou, Jibo

    2016-12-07

    Since the end of 2011 an outbreak of pseudorabies affected Chinese pig herds that had been vaccinated with the commercial vaccine made of Bartha K61 strain. It is now clear that the outbreak was caused by an emergent PRV variant. Even though vaccines made of PRV Bartha K61 strain can confer certain cross protection against PRV variants based on experimental data, less than optimal clinical protection and virus shedding reduction were observed, making the control or eradication of this disease difficult. An infectious clone of PRV AH02LA strain was constructed to generate a gE deletion mutant PRV(LA-A B ) strain. PRV(LA-A B ) strain can reach a titer of 10 8.43 TCID 50 /mL (50% tissue culture infectious dose) on BHK-21 cells. To evaluate the efficiency of the inactivated vaccine made of PRV(LA-A B ) strain, thirty 3-week-old PRV-negative piglets were divided randomly into six groups for vaccination and challenge test. All five piglets in the challenge control showed typical clinical symptoms of pseudorabies post challenge. Sneezing and nasal discharge were observed in four and three piglets in groups C(vaccinated with inactivated PRV Bartha K61 strain vaccine) and D(vaccinated with live PRV Bartha K61 strain vaccine) respectively. In contrast, piglets in both groups A(vaccinated with inactivated PRV LA-AB strain vaccine) and B(vaccinated with inactivated PRV LA-A B strain vaccine with adjuvant) presented mild or no clinical symptoms. Moreover, viral titers detected via nasal swabs were approximately 100 times lower in group B than in the challenge control, and the duration of virus shedding (3-4 days) was shorter than in either the challenge control (5-10 days) or groups C and D (5-6 days). The infectious clone constructed in this study harbors the whole genome of the PRV variant AH02LA strain. The gE deletion mutant PRV(LA-A B )strain generated from PRV AH02LA strain can reach a high titer on BHK-21 cells. An inactivated vaccine of PRV LA-A B provides clinical

  16. Amino-acid composition after loop deletion drives domain swapping.

    Science.gov (United States)

    Nandwani, Neha; Surana, Parag; Udgaonkar, Jayant B; Das, Ranabir; Gosavi, Shachi

    2017-10-01

    Rational engineering of a protein to enable domain swapping requires an understanding of the sequence, structural and energetic factors that favor the domain-swapped oligomer over the monomer. While it is known that the deletion of loops between β-strands can promote domain swapping, the spliced sequence at the position of the loop deletion is thought to have a minimal role to play in such domain swapping. Here, two loop-deletion mutants of the non-domain-swapping protein monellin, frame-shifted by a single residue, were designed. Although the spliced sequence in the two mutants differed by only one residue at the site of the deletion, only one of them (YEIKG) promoted domain swapping. The mutant containing the spliced sequence YENKG was entirely monomeric. This new understanding that the domain swapping propensity after loop deletion may depend critically on the chemical composition of the shortened loop will facilitate the rational design of domain swapping. © 2017 The Protein Society.

  17. The 96th Amino Acid of the Coat Protein of Cucumber Green Mottle Mosaic Virus Affects Virus Infectivity

    Directory of Open Access Journals (Sweden)

    Zhenwei Zhang

    2017-12-01

    Full Text Available Cucumber green mottle mosaic virus (CGMMV is one of the most devastating viruses infecting members of the family Cucurbitaceae. The assembly initiation site of CGMMV is located in the coding region of the coat protein, which is not only involved in virion assembly but is also a key factor determining the long-distance movement of the virus. To understand the effect of assembly initiation site and the adjacent region on CGMMV infectivity, we created a GTT deletion mutation in the GAGGTTG assembly initiation site of the infectious clone of CGMMV, which we termed V97 (deletion mutation at residue 97 of coat protein, followed by the construction of the V94A and T104A mutants. We observed that these three mutations caused mosaic after Agrobacterium-mediated transformation in Nicotiana benthamiana, albeit with a significant delay compared to the wild type clone. The mutants also had a common spontaneous E96K mutation in the coat protein. These results indicated that the initial assembly site and the sequence of the adjacent region affected the infectivity of the virus and that E96 might play an essential role in this process. We constructed two single point mutants—E96A and E96K—and three double mutants—V94A-E96K, V97-E96K and T104A-E96K—to further understand the role of E96 in CGMMV pathogenesis. After inoculation in N. benthamiana, E96A showed delayed systemic symptoms, but the E96K and three double mutants exhibited typical symptoms of mosaic at seven days post-infection. Then, sap from CGMMV-infected N. benthamiana leaves was mechanically inoculated on watermelon plants. We confirmed that E96 affected CGMMV infection using double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA, reverse transcription-polymerase chain reaction (RT-PCR, and sequencing, which further confirmed the successful infection of the related mutants, and that E96K can compensate the effect of the V94, V97, and T104 mutations on virus infectivity. In

  18. Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Carmen Elena Gómez

    2017-12-01

    Full Text Available An HIV-1 vaccine continues to be a major target to halt the AIDS pandemic. The limited efficacy of the RV144 phase III clinical trial with the canarypox virus-based vector ALVAC and a gp120 protein component led to the conclusion that improved immune responses to HIV antigens are needed for a more effective vaccine. In non-human primates, the New York vaccinia virus (NYVAC poxvirus vector has a broader immunogenicity profile than ALVAC and has been tested in clinical trials. We therefore analysed the HIV immune advantage of NYVAC after removing viral genes that act on several signalling pathways (Toll-like receptors—TLR—interferon, cytokines/chemokines, as well as genes of unknown immune function. We generated a series of NYVAC deletion mutants and studied immune behaviour (T and B cell to HIV antigens and to the NYVAC vector in mice. Our results showed that combined deletion of selected vaccinia virus (VACV genes is a valuable strategy for improving the immunogenicity of NYVAC-based vaccine candidates. These immune responses were differentially modulated, positive or negative, depending on the combination of gene deletions. The deletions also led to enhanced antigen- or vector-specific cellular and humoral responses. These findings will facilitate the development of optimal NYVAC-based vaccines for HIV and other diseases.

  19. Mutations in matrix and SP1 repair the packaging specificity of a Human Immunodeficiency Virus Type 1 mutant by reducing the association of Gag with spliced viral RNA

    Directory of Open Access Journals (Sweden)

    Ristic Natalia

    2010-09-01

    Full Text Available Abstract Background The viral genome of HIV-1 contains several secondary structures that are important for regulating viral replication. The stem-loop 1 (SL1 sequence in the 5' untranslated region directs HIV-1 genomic RNA dimerization and packaging into the virion. Without SL1, HIV-1 cannot replicate in human T cell lines. The replication restriction phenotype in the SL1 deletion mutant appears to be multifactorial, with defects in viral RNA dimerization and packaging in producer cells as well as in reverse transcription of the viral RNA in infected cells. In this study, we sought to characterize SL1 mutant replication restrictions and provide insights into the underlying mechanisms of compensation in revertants. Results HIV-1 lacking SL1 (NLΔSL1 did not replicate in PM-1 cells until two independent non-synonymous mutations emerged: G913A in the matrix domain (E42K on day 18 postinfection and C1907T in the SP1 domain (P10L on day 11 postinfection. NLΔSL1 revertants carrying either compensatory mutation showed enhanced infectivity in PM-1 cells. The SL1 revertants produced significantly more infectious particles per nanogram of p24 than did NLΔSL1. The SL1 deletion mutant packaged less HIV-1 genomic RNA and more cellular RNA, particularly signal recognition particle RNA, in the virion than the wild-type. NLΔSL1 also packaged 3- to 4-fold more spliced HIV mRNA into the virion, potentially interfering with infectious virus production. In contrast, both revertants encapsidated 2.5- to 5-fold less of these HIV-1 mRNA species. Quantitative RT-PCR analysis of RNA cross-linked with Gag in formaldehyde-fixed cells demonstrated that the compensatory mutations reduced the association between Gag and spliced HIV-1 RNA, thereby effectively preventing these RNAs from being packaged into the virion. The reduction of spliced viral RNA in the virion may have a major role in facilitating infectious virus production, thus restoring the infectivity of NLΔSL1

  20. Intracellular localization and movement phenotypes of alfalfa mosaic virus movement protein mutants

    NARCIS (Netherlands)

    Huang, M.; Jongejan, L.; Zheng, H.; Zhang, L.; Bol, J. F.

    2001-01-01

    Thirteen mutations were introduced in the movement protein (MP) gene of Alfalfa mosaic virus (AMV) fused to the green fluorescent protein (GFP) gene and the mutant MP-GFP fusions were expressed transiently in tobacco protoplasts, tobacco suspension cells, and epidermal cells of tobacco leaves. In

  1. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    Science.gov (United States)

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  2. Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: influences of viral replication in monocytes/macrophages and virulence in cats.

    Science.gov (United States)

    Takano, Tomomi; Tomiyama, Yoshika; Katoh, Yasuichiroh; Nakamura, Michiyo; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-03-01

    We previously prepared neutralizing monoclonal antibody (MAb)-resistant (mar) mutant viruses using a laboratory strain feline infectious peritonitis virus (FIPV) 79-1146 (Kida et al., 1999). Mar mutant viruses are mutated several amino acids of the neutralizing epitope of Spike protein, compared with the parent strain, FIPV 79-1146. We clarified that MAb used to prepare mar mutant viruses also lost its activity to enhance homologous mar mutant viruses, strongly suggesting that neutralizing and antibody-dependent enhancing epitopes are present in the same region in the strain FIPV 79-1146. We also discovered that amino acid mutation in the neutralizing epitope reduced viral replication in monocytes/macrophages. We also demonstrated that the mutation or deletion of two nucleotides in 7b gene abrogate the virulence of strain FIPV 79-1146. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses.

    Science.gov (United States)

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen

    2017-11-24

    To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus , family Closteroviridae ) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana . Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.

  4. The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant

    Directory of Open Access Journals (Sweden)

    Ivona Pavkova

    2017-12-01

    Full Text Available The DsbA homolog of Francisella tularensis was previously demonstrated to be required for intracellular replication and animal death. Disruption of the dsbA gene leads to a pleiotropic phenotype that could indirectly affect a number of different cellular pathways. To reveal the broad effects of DsbA, we compared fractions enriched in membrane proteins of the wild-type FSC200 strain with the dsbA deletion strain using a SILAC-based quantitative proteomic analysis. This analysis enabled identification of 63 proteins with significantly altered amounts in the dsbA mutant strain compared to the wild-type strain. These proteins comprise a quite heterogeneous group including hypothetical proteins, proteins associated with membrane structures, and potential secreted proteins. Many of them are known to be associated with F. tularensis virulence. Several proteins were selected for further studies focused on their potential role in tularemia's pathogenesis. Of them, only the gene encoding glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolytic pathway, was found to be important for full virulence manifestations both in vivo and in vitro. We next created a viable mutant strain with deleted gapA gene and analyzed its phenotype. The gapA mutant is characterized by reduced virulence in mice, defective replication inside macrophages, and its ability to induce a protective immune response against systemic challenge with parental wild-type strain. We also demonstrate the multiple localization sites of this protein: In addition to within the cytosol, it was found on the cell surface, outside the cells, and in the culture medium. Recombinant GapA was successfully obtained, and it was shown that it binds host extracellular serum proteins like plasminogen, fibrinogen, and fibronectin.

  5. Effect of the deletion of genes encoding proteins of the extracellular virion form of vaccinia virus on vaccine immunogenicity and protective effectiveness in the mouse model.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available Antibodies to both infectious forms of vaccinia virus, the mature virion (MV and the enveloped virion (EV, as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.

  6. Modelling Hepatitis B Virus Antiviral Therapy and Drug Resistant Mutant Strains

    Science.gov (United States)

    Bernal, Julie; Dix, Trevor; Allison, Lloyd; Bartholomeusz, Angeline; Yuen, Lilly

    Despite the existence of vaccines, the Hepatitis B virus (HBV) is still a serious global health concern. HBV targets liver cells. It has an unusual replication process involving an RNA pre-genome that the reverse transcriptase domain of the viral polymerase protein translates into viral DNA. The reverse transcription process is error prone and together with the high replication rates of the virus, allows the virus to exist as a heterogeneous population of mutants, known as a quasispecies, that can adapt and become resistant to antiviral therapy. This study presents an individual-based model of HBV inside an artificial liver, and associated blood serum, undergoing antiviral therapy. This model aims to provide insights into the evolution of the HBV quasispecies and the individual contribution of HBV mutations in the outcome of therapy.

  7. Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) mutant using the in vivo mouse UV-B model of induced reactivation

    Science.gov (United States)

    BenMohamed, Lbachir; Osorio, Nelson; Srivastava, Ruchi; Khan, Arif A.; Simpson, Jennifer L.; Wechsler, Steven L.

    2015-01-01

    Blinding ocular herpetic disease in humans is due to herpes simplex virus type 1 (HSV-1) reactivations from latency, rather than to primary acute infection. The cellular and molecular mechanisms that control the HSV-1 latency-reactivation cycle remain to be fully elucidated. The aim of this study was to determine if reactivation of the HSV-1 latency associated transcript (LAT) deletion mutant (dLAT2903) was impaired in this model, as it is in the rabbit model of induced and spontaneous reactivation and in the explant TG induced reactivation model in mice. The eyes of mice latently infected with wild type HSV-1 strain McKrae (LAT(+) virus) or dLAT2903 (LAT(−) virus) were irradiated with UV-B and reactivation was determined. We found that compared to LAT(−) virus, LAT(+) virus reactivated at a higher rate as determined by shedding of virus in tears on days 3 to 7 after UV-B treatment. Thus, the UV-B induced reactivation model of HSV-1 appears to be a useful small animal model for studying the mechanisms involved in how LAT enhances the HSV-1 reactivation phenotype. The utility of the model for investigating the immune evasion mechanisms regulating the HSV-1 latency/reactivation cycle and for testing the protective efficacy of candidate therapeutic vaccines and drugs are discussed. PMID:26002839

  8. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    National Research Council Canada - National Science Library

    Mossman, Karen

    2005-01-01

    .... Briefly, the goals of the proposal were to characterize the oncolytic capacity of Herpes simplex virus type 1 ICPO mutants in prostate cancer cells given the relationship between ICPO and two tumor...

  9. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    National Research Council Canada - National Science Library

    Mossman, Karen

    2006-01-01

    .... Briefly, the goals of the proposal were to characterize the oncolytic capacity of Herpes simplex virus type 1 ICP0 mutants in prostate cancer cells given the relationship between ICP0 and two tumor...

  10. Effect of uv-irradiation on genetic recombination of Simian virus 40 mutants

    International Nuclear Information System (INIS)

    Gentil, A.; Margot, A.; Sarasin, A.

    1983-01-01

    Genetic recombination in monkey kidney cells has been studied using Simian virus 40 (SV40) as a molecular probe. Control or uv-irradiated cells have been co-infected with two thermosensitive mutants of SV40, tsA58 and tsA30. Recombination between the two viral genomes gives rise to a wild type virus phenotype, able to grow at the restrictive temperature of 41 0 C, which was taken as a measure of the recombination activity of the host cells. Results show that recombination takes place at a low frequency when viruses are not uv-irradiated. Irradiation of one or both viruses increases drastically recombination frequency. Pretreatment of the host cells with uv-light or mitomycin C 24 hours before being infected does not increase recombination frequency measured in our experimental conditions. 23 references, 5 tables

  11. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    Science.gov (United States)

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  12. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    Directory of Open Access Journals (Sweden)

    Yuanyuan Guo

    2017-05-01

    Full Text Available The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219 strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219 mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219 mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  13. Mutational analysis of foot and mouth disease virus nonstructural polyprotein 3AB-coding region to design a negative marker virus.

    Science.gov (United States)

    Bhatt, Mukesh; Mohapatra, Jajati K; Pandey, Laxmi K; Mohanty, Nihar N; Das, Biswajit; Prusty, Bikash R; Pattnaik, Bramhadev

    2018-01-02

    Inactivated purified whole virus vaccines are used for control of foot and mouth disease (FMD). ELISAs detecting antibodies to the nonstructural proteins (NSP), a marker of infection, are primarily used to differentiate FMD virus (FMDV) infected from vaccinated animals (DIVA). However, such DIVA assays have a limitation to their specificity since residual NSPs present in the relatively impure vaccines are suspected to induce an NSP-antibody response in the repeatedly vaccinated animals. Epitope-deleted negative marker vaccine strategy seems to have an advantage over the conventional vaccines in identifying the infected animals with accuracy. NSP 3AB contains an abundance of immunodominant B-cell epitopes of diagnostic importance. This study addresses the feasibility of producing 3AB-truncated FMDV mutant as a potential negative marker vaccine candidate. An infectious cDNA clone of FMDV serotype Asia 1 strain was used to engineer an array of deletion mutations in the established antigenic domain of 3AB. The maximum length of deletion tolerated by the virus was found to be restricted to amino acid residues 87-144 in the C-terminal half of 3A protein along with deletion of the first two copies of 3B peptide. The 3AB-truncated marker virus (Asia 1 IND 491/1997Δ3A 87-144 3B 1,2 +FLAG) demonstrated infectivity titres comparable to that of the parental virus in BHK-21 (log 10 7.42 TCID 50 /ml) and LFBK-α V β 6 (log 10 8.30 TCID 50 /ml) cell monolayer culture. The protein fragment corresponding to the viable deletion in the 3AB region was expressed in a prokaryotic system to standardize a companion assay (3A 87-153 3B 1,2 I-ELISA) for the negative marker virus which showed reasonably high diagnostic sensitivity (96.9%) and specificity (100% for naïve and 97.1% for uninfected vaccinated samples). The marker virus and its companion ELISA designed in this study provide a basis to devise a marker vaccine strategy for FMD control. Copyright © 2017 Elsevier B.V. All rights

  14. Mutational Analysis of the Hypervariable Region of Hepatitis E Virus Reveals Its Involvement in the Efficiency of Viral RNA Replication ▿

    OpenAIRE

    Pudupakam, R. S.; Kenney, Scott P.; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A.; LeRoith, Tanya; Pierson, F. William; Meng, Xiang-Jin

    2011-01-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication...

  15. Characterization of Bombyx mori nucleopolyhedrovirus orf68 gene that encodes a novel structural protein of budded virus.

    Science.gov (United States)

    Iwanaga, Masashi; Kurihara, Masaaki; Kobayashi, Masahiko; Kang, WonKyung

    2002-05-25

    All lepidopteran baculovirus genomes sequenced to date encode a homolog of the Bombyx mori nucleopolyhedrovirus (BmNPV) orf68 gene, suggesting that it performs an important role in the virus life cycle. In this article we describe the characterization of BmNPV orf68 gene. Northern and Western analyses demonstrated that orf68 gene was expressed as a late gene and encoded a structural protein of budded virus (BV). Immunohistochemical analysis by confocal microscopy showed that ORF68 protein was localized mainly in the nucleus of infected cells. To examine the function of orf68 gene, we constructed orf68 deletion mutant (BmD68) and characterized it in BmN cells and larvae of B. mori. BV production was delayed in BmD68-infected cells. The larval bioassays also demonstrated that deletion of orf68 did not reduce the infectivity, but mutant virus took 70 h longer to kill the host than wild-type BmNPV. In addition, dot-blot analysis showed viral DNA accumulated more slowly in mutant infected cells. Further examination suggested that BmD68 was less efficient in entry and budding from cells, although it seemed to possess normal attachment ability. These results suggest that ORF68 is a BV-associated protein involved in secondary infection from cell-to-cell. (c) 2002 Elsevier Science (USA).

  16. T135I substitution in the nonstructural protein 2C enhances foot-and-mouth disease virus replication.

    Science.gov (United States)

    Yuan, Tiangang; Wang, Haiwei; Li, Chen; Yang, Decheng; Zhou, Guohui; Yu, Li

    2017-12-01

    The foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays an important role in viral replication, virulence, and host range. It has been shown that deletions of 10 or 19-20 amino acids in the C-terminal half of 3A attenuate serotype O and C FMDVs, which replicate poorly in bovine cells but normally in porcine-derived cells, and the C-terminal half of 3A is not essential for serotype Asia1 FMDV replication in BHK-21 cells. In this study, we constructed a 3A deletion FMDV mutant based on a serotype O FMDV, the wild-type virus O/YS/CHA/05, with a 60-amino acid deletion in the 3A protein sequence, between residues 84 and 143. The rescued virus O/YS/CHA/05-Δ3A exhibited slower growth kinetics and formed smaller plaques compared to O/YS/CHA/05 in both BHK-21 and IBRS-2 cells, indicating that the 60-amino acid deletion in the 3A protein impaired FMDV replication. After 14 passages in BHK-21 cells, the replication capacity of the passaged virus O/YS/CHA/05-Δ3A-P14 returned to a level similar to the wild-type virus, suggesting that amino acid substitutions responsible for the enhanced replication capacity occurred in the genome of O/YS/CHA/05-Δ3A-P14. By sequence analysis, two amino acid substitutions, P153L in VP1 and T135I in 2C, were found in the O/YS/CHA/05-Δ3A-P14 genome compared to the O/YS/CHA/05-Δ3A genome. Subsequently, the amino acid substitutions VP1 P153L and 2C T135I were separately introduced into O/YS/CHA/05-Δ3A to rescue mutant viruses for examining their growth kinetics. Results showed that the 2C T135I instead of the VP1 P153L enhanced the virus replication capacity. The 2C T135I substitution also improved the replication of the wild-type virus, indicating that the effect of 2C T135I substitution on FMDV replication is not associated with the 3A deletion. Furthermore, our results showed that the T135I substitution in the nonstructural protein 2C enhanced O/YS/CHA/05 replication through promoting viral RNA synthesis.

  17. Deletion of Smgpi1 encoding a GPI-anchored protein suppresses sterility of the STRIPAK mutant ΔSmmob3 in the filamentous ascomycete Sordaria macrospora.

    Science.gov (United States)

    Frey, Stefan; Lahmann, Yasmine; Hartmann, Thomas; Seiler, Stephan; Pöggeler, Stefanie

    2015-08-01

    The striatin interacting phosphatase and kinase (STRIPAK) complex, which is composed of striatin, protein phosphatase PP2A and kinases, is required for fruiting-body development and cell fusion in the filamentous ascomycete Sordaria macrospora. Here, we report on the interplay of the glycosylphosphatidylinositol (GPI)-anchored protein SmGPI1 with the kinase activator SmMOB3, a core component of human and fungal STRIPAK complexes. SmGPI1 is conserved among filamentous ascomycetes and was first identified in a yeast two-hybrid screen using SmMOB3 as bait. The physical interaction of SmMOB3 and SmGPI1 was verified by co-immunoprecipitation. In vivo localization and differential centrifugation revealed that SmGPI1 is predominantly secreted and attached to the cell wall but is also associated with mitochondria and appears to be a dual-targeted protein. Deletion of Smgpi1 led to an increased number of fruiting bodies that were normally shaped but reduced in size. In addition, Smmob3 and Smgpi1 genetically interact. In the sterile ΔSmmob3 background deletion of Smgpi1 restores fertility, vegetative growth as well as hyphal-fusion defects. The suppression effect was specific for the ΔSmmob3 mutant as deletion of Smgpi1 in other STRIPAK mutants does not restore fertility. © 2015 John Wiley & Sons Ltd.

  18. Establishment of screening technique for mutant cell and analysis of base sequence in the mutation

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Nomi, Takehiko; Yamada, Masami; Masumura, Kenichi

    2000-01-01

    This research project aimed to establish an easy and quick detection method for radiation-induced mutation using molecular-biological techniques and an effective analyzing method for the molecular changes in base sequence. In this year, Spi mutants derived from γ-radiation exposed mouse were analyzed by PCR method and DNA sequence method. Male transgenic mice were exposed to γ-ray at 5,10, 50 Gy and the transgene was taken out from the genome DNA from the spleen in vivo packaging method. Spi mutant plaques were obtained by infecting the recovered phage to E. coli. Sequence analysis for the mutants was made using ALFred DNA sequencer and SequiTherm TM Long-Red Cycle sequencing kit. Sequence analysis was carried out for 41 of 50 independent Spi mutants obtained. The deletions were classified into 4 groups; Group 1 included 15 mutants that were characterized with a large deletion (43 bp-10 kb) with a short homologous sequence. Group 2 included 11 mutants of a large deletion having no homologous sequence at the connecting region. Group 3 included 11 mutants having a short deletion of less than 20 bp, which occurred in the non-repetitive sequence of gam gene and possibly caused by oxidative breakage of DNA or recombination of DNA fragment produced by the breakage. Group 4 included 4 mutants having deletions as short as 20 bp or less in the repetitive sequence of gam gene, resulting in an alteration of the reading frame. Thus, the synthesis of Gam protein was terminated by the appearance of TGA between code 13 and 14 of redB gene, leading to inactivation of gam gene and redBA gene. These results indicated that most of Spi mutants had a deletion in red/gam region and the deletions in more than half mutants occurred in homologous sequences as short as 8 bp. (M.N.)

  19. Purification and functional motifs of the recombinant ATPase of orf virus.

    Science.gov (United States)

    Lin, Fong-Yuan; Chan, Kun-Wei; Wang, Chi-Young; Wong, Min-Liang; Hsu, Wei-Li

    2011-10-01

    Our previous study showed that the recombinant ATPase encoded by the A32L gene of orf virus displayed ATP hydrolysis activity as predicted from its amino acids sequence. This viral ATPase contains four known functional motifs (motifs I-IV) and a novel AYDG motif; they are essential for ATP hydrolysis reaction by binding ATP and magnesium ions. The motifs I and II correspond with the Walker A and B motifs of the typical ATPase, respectively. To examine the biochemical roles of these five conserved motifs, recombinant ATPases of five deletion mutants derived from the Taiping strain were expressed and purified. Their ATPase functions were assayed and compared with those of two wild type strains, Taiping and Nantou isolated in Taiwan. Our results showed that deletions at motifs I-III or IV exhibited lower activity than that of the wild type. Interestingly, deletion of AYDG motif decreased the ATPase activity more significantly than those of motifs I-IV deletions. Divalent ions such as magnesium and calcium were essential for ATPase activity. Moreover, our recombinant proteins of orf virus also demonstrated GTPase activity, though weaker than the original ATPase activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus

    International Nuclear Information System (INIS)

    Bruggemann, E.; Handwerger, K.; Essex, C.; Storz, G.

    1996-01-01

    Ionizing radiation is expected to produce mutants with deletions or other chromosomal rearrangements. These mutants are useful for a variety of purposes, such as creating null alleles and cloning genes whose existence is known only from their mutant phenotype; however, only a few mutations generated by ionizing radiation have been characterized at the molecular level in Arabidopsis thaliana. Twenty fast neutron-generated alleles of the Arabidopsis HY4 locus, which encodes a blue light receptor, CRY1, were isolated and characterized. Nine of the mutant alleles displayed normal genetic behavior. The other 11 mutant alleles were poorly transmitted through the male gametophyte and were lethal in homozygous plants. Southern blot analysis demonstrated that alleles of the first group generally contain small or moderate-sized deletions at HY4, while alleles of the second group contain large deletions at this locus. These results demonstrate that fast neutrons can produce a range of deletions at a single locus in Arabidopsis. Many of these deletions would be suitable for cloning by genomic subtraction or representational difference analysis. The results also suggest the presence of an essential locus adjacent to HY4. (author)

  1. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response.

    Science.gov (United States)

    Dedeurwaerder, Annelike; Olyslaegers, Dominique A J; Desmarets, Lowiese M B; Roukaerts, Inge D M; Theuns, Sebastiaan; Nauwynck, Hans J

    2014-02-01

    The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.

  2. Contribution of insertions and deletions to the variability of hepatitis C virus populations.

    Science.gov (United States)

    Torres-Puente, Manuela; Cuevas, José M; Jiménez-Hernández, Nuria; Bracho, María A; García-Robles, Inmaculada; Carnicer, Fernando; del Olmo, Juan; Ortega, Enrique; Moya, Andrés; González-Candelas, Fernando

    2007-08-01

    Little is known about the potential effects of insertions and deletions (indels) on the evolutionary dynamics of hepatitis C virus (HCV). In fact, the consequences of indels on antiviral treatment response are a field of investigation completely unexplored. Here, an extensive sequencing project was undertaken by cloning and sequencing serum samples from 25 patients infected with HCV subtype 1a and 48 patients with subtype 1b. For 23 patients, samples obtained after treatment with alpha interferon plus ribavirin were also available. Two genome fragments containing the hypervariable regions in the envelope 2 glycoprotein and the PKR-BD domain in NS5A were sequenced, yielding almost 16 000 sequences. Our results show that insertions are quite rare, but they are often present in biologically relevant domains of the HCV genome. Moreover, their frequency distributions between different time samples reflect the quasispecies dynamics of HCV populations. Deletions seem to be subject to negative selection.

  3. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    International Nuclear Information System (INIS)

    Ruel, Nancy; Zago, Anna; Spear, Patricia G.

    2006-01-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity

  4. [Changes of biological behavioral of E. coli K1 after ppk1 gene deletion].

    Science.gov (United States)

    Peng, Liang; Pan, Jiayun; Luo, Su; Yang, Zhenghui; Huang, Mufang; Cao, Hong

    2014-06-01

    To study the changes in biological behaviors of meningitis E. coli K1 strain E44 after deletion of polyphosphate kinase 1 (ppk1) gene and explore the role of ppk1 in the pathogenesis of E. coli K1-induced meningitis. The wild-type strain E. coli K1 and ppk1 deletion mutant were exposed to heat at 56 degrees celsius; for 6 min, and their survival rates were determined. The adhesion and invasion of the bacteria to human brain microvascular endothelial cells (HBMECs) were observed using electron microscopy and quantitative tests. HBMECs were co-incubated with wild-type strain or ppk1 deletion mutant, and the cytoskeleton rearrangement was observed under laser scanning confocal microscope. The survival rate of the ppk1 deletion mutant was significantly lower than that of the wild-type strain after heat exposure. The ppk1 deletion mutant also showed lowered cell adhesion and invasion abilities and weakened ability to induce cytoskeleton rearrangement in HBMECs. ppk1 gene is important for E.coli K1 for heat resistance, cell adhesion and invasion, and for inducing cytoskeletal rearrangement in HBMECs.

  5. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles.

    Science.gov (United States)

    Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2014-02-01

    How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.

  6. The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Moonil Son

    2016-08-01

    Full Text Available The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1 strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence of its fungal host. To characterize function(s of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s in FgV1 induced phenotype alteration such as delayed vegetative growth.

  7. Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583

    Directory of Open Access Journals (Sweden)

    Marta Perez

    2016-09-01

    Full Text Available The species Enterococcus faecalis is able to catabolise the amino acid tyrosine into the biogenic amine tyramine by the tyrosine decarboxilase (TDC pathway Ladero et al. (2012 [1]. The TDC cluster comprises four genes: tyrS, an aminoacyl-tRNA synthetase-like gene; tdcA, which encodes the tyrosine decarboxylase; tyrP, a tyrosine/tyramine exchanger gene and nhaC-2, which encodes an Na+/H+ antiporter and whose role in the tyramine biosynthesis remains unknown [2]. In E. faecalis V583 the last three genes are co-transcribed as a single polycistronic mRNA forming the catabolic operon, while tyrS is transcribed independently of the catabolic genes as a monocistronic mRNA [2]. The catabolic operon is transcriptionally induced by tyrosine and acidic pH. On the opposite, the tyrS expression is repressed by tyrosine concentrations [2]. In this work we report the transcriptional profiling of the TDC cluster deletion mutant (E. faecalis V583 ΔTDC [2] compared to the wild-type strain, both grown in M17 medium supplemented with tyrosine. The transcriptional profile data of TDC cluster-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE77864.

  8. Chromosomal deletion unmasking a recessive disease: 22q13 deletion syndrome and metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Bisgaard, A-M; Kirchhoff, M; Nielsen, J E

    2008-01-01

    A deletion on one chromosome and a mutant allele on the other may cause an autosomal recessive disease. We report on two patients with mental retardation, dysmorphic features and low catalytic activity of arylsulfatase A. One patient had a pathogenic mutation in the arylsulfatase A gene (ARSA......) and succumbed to metachromatic leukodystrophy (MLD). The other patient had a pseudoallele, which does not lead to MLD. The presenting clinical features and low arylsulfatase A activity were explained, in each patients, by a deletion of 22q13 and, thereby, of one allele of ARSA....

  9. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins.

    Science.gov (United States)

    Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard

    2017-08-01

    The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into

  10. A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar

    Directory of Open Access Journals (Sweden)

    Jamie A. O'Rourke

    2013-06-01

    Full Text Available A small fast neutron mutant population has been established from Phaseolus vulgaris cv. Red Hawk. We leveraged the available P. vulgaris genome sequence and high throughput next generation DNA sequencing to examine the genomic structure of five Phaseolus vulgaris cv. Red Hawk fast neutron mutants with striking visual phenotypes. Analysis of these genomes identified three classes of structural variation; between cultivar variation, natural variation within the fast neutron mutant population, and fast neutron induced mutagenesis. Our analyses focused on the latter two classes. We identified 23 large deletions (>40 bp common to multiple individuals, illustrating residual heterogeneity and regions of structural variation within the common bean cv. Red Hawk. An additional 18 large deletions were identified in individual mutant plants. These deletions, ranging in size from 40 bp to 43,000 bp, are potentially the result of fast neutron mutagenesis. Six of the 18 deletions lie near or within gene coding regions, identifying potential candidate genes causing the mutant phenotype.

  11. Prestress Strengthens the Shell of Norwalk Virus Nanoparticles

    Science.gov (United States)

    Baclayon, Marian; Shoemaker, Glen K.; Uetrecht, Charlotte; Crawford, Sue E.; Estes, Mary K.; Prasad, B. V. Venkataram; Heck, Albert J. R.; Wuite, Gijs J. L.; Roos, Wouter H.

    2014-01-01

    We investigated the influence of the protruding domain of Norwalk virus-like particles (NVLP) on its overall structural and mechanical stability. Deletion of the protruding domain yields smooth mutant particles and our AFM nanoindentation measurements show a surprisingly altered indentation response of these particles. Notably, the brittle behavior of the NVLP as compared to the plastic behavior of the mutant reveals that the protruding domain drastically changes the capsid’s material properties. We conclude that the protruding domain introduces prestress, thereby increasing the stiffness of the NVLP and effectively stabilizing the viral nanoparticles. Our results exemplify the variety of methods that nature has explored to improve the mechanical properties of viral capsids, which in turn provides new insights for developing rationally designed, self-assembled nanodevices. PMID:21967663

  12. Could a deletion in neuraminidase stalk strengthen human tropism of the novel avian influenza virus H7N9 in China, 2013?

    Science.gov (United States)

    Chen, Liang; Zhu, Feng; Xiong, Chenglong; Zhang, Zhijie; Jiang, Lufang; Chen, Yue; Zhao, Genming; Jiang, Qingwu

    2015-01-20

    Objective. A novel avian influenza A virus (AIV) H7N9 subtype which emerged in China in 2013 caused worldwide concern. Deletion of amino-acids 69 to 73 in the neuraminidase stalk was its most notable characteristic. This study is aimed to discuss the tropism and virulence effects of this deletion. Neuraminidase gene sequences of N9 subtype were collected from NCBI and GISAID. MEGA6.0, Stata12.0, and UCSF Chimera were employed for sequence aligning, significance testing, and protein tertiary structure homology modeling. A total of 736 sequences were obtained; there were 81 human isolates of the novel AIV H7N9, of which 79 had the deletion. Among all the 654 avian origin sequences, only 43 had the deletion (p deletion obviously changed the spatial direction of neuraminidase. The deletion in neuraminidase stalk could have strengthened human tropism of the novel AIV H7N9, as well as its virulence.

  13. Effects of the deletion of early region 4 (E4 open reading frame 1 (orf1, orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Michael A Thomas

    Full Text Available The global health burden engendered by human immunodeficiency virus (HIV-induced acquired immunodeficiency syndrome (AIDS is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1 through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and

  14. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Science.gov (United States)

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  15. Prevalence of precore-defective mutant of hepatitis B virus in HBV carriers.

    Science.gov (United States)

    Niitsuma, H; Ishii, M; Saito, Y; Miura, M; Kobayashi, K; Ohori, H; Toyota, T

    1995-08-01

    Two hundred and seventy-three serum specimens from hepatitis B virus (HBV) carriers were examined for the presence of a characteristic one point mutation at nucleotide (nt) 1896 from the EcoRI site of the HBV genome in the precore region (the preC mutant) using restriction fragment length polymorphism (RFLP) analysis. This assay approach could detect preC mutants or wild-type sequences when either form constituted more than 10% of the total sample. Overall, 65.5% (76/116) of HBeAg-positive carriers had only the preC wild-type. All HBeAg-positive asymptomatic carriers (n = 14) had only the preC wild-type. In patients with chronic hepatitis B and in anti-HBe-positive asymptomatic carriers, increased prevalence of the preC mutant was associated with the development of anti-HBe antibodies and normalization of the serum alanine aminotransferase concentration. Furthermore, 27 (29.0%) of 93 HBeAg-negative carriers had unexpectedly preC wild-type sequences only. Direct sequencing of the HBV precore region of HBV specimens from 24 patients revealed no mutation at nt 1896, supporting the specificity of the RFLP analysis. These results suggest that RFLP analysis was accurate for the detection of the preC mutation and that the absence of serum HBeAg cannot be explained solely by the dominance of the preC mutant.

  16. Temporal and spatial alterations in mutant swarm size of St. Louis encephalitis virus in mosquito hosts.

    Science.gov (United States)

    Ciota, Alexander T; Koch, Evan M; Willsey, Graham G; Davis, Lauren J; Jerzak, Greta V S; Ehrbar, Dylan J; Wilke, Claus O; Kramer, Laura D

    2011-03-01

    St. Louis encephalitis virus (SLEV; Flaviviridae; Flavivirus) is a member of the Japanese encephalitis serocomplex and a close relative of West Nile virus (WNV). Although SLEV remains endemic to the US, both levels of activity and geographical dispersal are relatively constrained when compared to the widespread distribution of WNV. In recent years, WNV appears to have displaced SLEV in California, yet both viruses currently coexist in Texas and several other states. It has become clear that viral swarm characterization is required if we are to fully evaluate the relationship between viral genomes, viral evolution, and epidemiology. Mutant swarm size and composition may be particularly important for arboviruses, which require replication not only in diverse tissues but also divergent hosts. In order to evaluate temporal, spatial, and host-specific patterns in the SLEV mutant swarm, we determined the size, composition, and phylogeny of the intrahost swarm within primary mosquito isolates from both Texas and California. Results indicate a general trend of decreasing intrahost diversity over time in both locations, with recent isolates being highly genetically homogeneous. Additionally, phylogenic analyses provide detailed information on the relatedness of minority variants both within and among strains and demonstrate how both geographic isolation and seasonal maintenance have shaped the viral swarm. Overall, these data generally provide insight into how time, space, and unique transmission cycles influence the SLEV mutant swarm and how understanding these processes can ultimately lead to a better understanding of arbovirus evolution and epidemiology. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. UV irradiation analysis of complementation between, and replication of, RNA-negative temperature-sensitivie mutants of Newcastle disease virus

    International Nuclear Information System (INIS)

    Peeples, M.E.; Bratt, M.A.

    1982-01-01

    Random uv irradiation-induced lesions destroy the infectivity of Newcastle disease virus (NDV) by blocking downstream transcription from the single viral promoter. The nucleocapsid-associated polypeptides most likely to be involved in RNA synthesis are located at the extreme ends of the genome: NP and P are promoter proximal genes, and L is the most distal gene. We attempted to order the two temperature-sensitive (ts) RNA-negative (RNA-) mutant groups of NDV by determining the uv target sizes for the complementing abilities of mutants A1 and E1. After uv irradiation, E1 was unable to complement A1, a result compatible with the A mutation lying in the L gene. In contrast, after uv irradiation A1 was able to complement E1 for both virus production and viral protein synthesis, with a target size most consistent with the E mutation lying in the P gene. UV-irradiated virus was unable to replicate as indicated by its absence in the yields of multiply infected cells, either as infectious virus or as particles with complementing activity. After irradiation, ts mutant B1ΔP, with a non-ts mutation affecting the electrophoretic mobility of the P protein, complemented E1 in a manner similar to A1, but it did not amplify the expression of ΔP in infected cells. This too is consistent with irradiated virus being unable to replicate despite the presence of the components needed for replication of E1. At high uv doses, A1 was able to complement E1 in a different, uv-resistant manner, probably by direct donation of input polypeptides. Multiplicity reactivation has previously been observed at high-multiplicity infection by uv-irradiated paramyxoviruses. In this case, virions which are noninfectious because they lack a protein component may be activated by a protein from irradiated virions

  18. Construction of a psb C deletion strain in Synechocystis 6803.

    Science.gov (United States)

    Goldfarb, N; Knoepfle, N; Putnam-Evans, C

    1997-01-01

    Synechocystis 6803 is a cyanobacterium that carries out-oxygenic photosynthesis. We are interested in the introduction of mutations in the large extrinsic loop region of the CP43 protein of Photosystem II (PSII). CP43 appears to be required for the stable assembly of the PSII complex and also appears to play a role in photosynthetic oxygen evolution. Deletion of short segments of the large extrinsic loop results in mutants incapable of evolving oxygen. Alterations in psbC, the gene encoding CP43, are introduced into Synechocystis 6803 by transformation and homologous recombination. Specifically, plasmid constructs bearing the site-directed mutations are introduced into a deletion strain where the portion of the gene encoding the area of mutation has been deleted and replaced by a gene conferring antibiotic resistance. We have constructed a deletion strain of Synechocystis appropriate for the introduction of mutations in the large extrinsic loop of CP43 and have used it successfully to produce site-directed mutants.

  19. Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis.

    Science.gov (United States)

    Sander, Peter; Clark, Simon; Petrera, Agnese; Vilaplana, Cristina; Meuli, Michael; Selchow, Petra; Zelmer, Andrea; Mohanan, Deepa; Andreu, Nuria; Rayner, Emma; Dal Molin, Michael; Bancroft, Gregory J; Johansen, Pål; Cardona, Pere-Joan; Williams, Ann; Böttger, Erik C

    2015-03-10

    Having demonstrated previously that deletion of zinc metalloprotease zmp1 in Mycobacterium bovis BCG increased immunogenicity of BCG vaccines, we here investigated the protective efficacy of BCG zmp1 deletion mutants in a guinea pig model of tuberculosis infection. zmp1 deletion mutants of BCG provided enhanced protection by reducing the bacterial load of tubercle bacilli in the lungs of infected guinea pigs. The increased efficacy of BCG due to zmp1 deletion was demonstrated in both BCG Pasteur and BCG Denmark indicating that the improved protection by zmp1 deletion is independent from the BCG sub-strain. In addition, unmarked BCG Δzmp1 mutant strains showed a better safety profile in a CB-17 SCID mouse survival model than the parental BCG strains. Together, these results support the further development of BCG Δzmp1 for use in clinical trials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  1. Inflammatory response of TLR4 deficient spleen macrophages (CRL 2471) to Brucella abortus S19 and an isogenic ΔmglA deletion mutant.

    Science.gov (United States)

    Jacob, Jens; Makou, Patricia; Finke, Antje; Mielke, Martin

    2016-05-01

    Brucellosis is a worldwide distributed zoonosis caused by members of the genus Brucella. One of them, Brucella abortus, is the etiological agent of bovine brucellosis. With the attenuated strain B. abortus S19 a vaccine is available. However, both, virulence (safety) and the ability to induce a protective B and T cell response (efficacy) have to be tested in suitable assays before successful use in the field. For this purpose, several macrophage cell lines of various origins have been used while splenic macrophages are the preferred host cells in vivo. We here characterized the in vitro response of the murine splenic macrophage cell line CRL 2471(I-13.35) to B. abortus. This cell line still depends on the presence of colony-stimulating factor 1 (CSF1) and is derived from LPS resistant (TLR4 deficient) C3H/HeJ mice. For infection the vaccine strain B. abortus S19A as well as the formerly described isogenic deletion mutant B. abortus S19A ΔmglA 3.14 were used. While numbers of viable bacteria did not differ significantly between the vaccine strain and the deletion mutant at 6h post infection, a higher bacterial load was measured in case of the mutant at 24h and 48h after infection. This was also true, when IFNγ was used for macrophage activation. A comprehensive gene expression profile of macrophages was analysed 6 and 24h after infection by means of an RT-PCR based gene expression array. The mutant strain B. abortus S19A ΔmglA 3.14 elicited a stronger cellular response of the splenic macrophages as compared to the parental vaccine strain. This was most prominent for the pro-inflammatory cytokines IL-1α, IL-1β, TNF-α and IL6 as well as for the chemokine ligands CXCL1, CXCL2, CXCL10, CCL2, CCL5, CCL7, CCL17 and the co-stimulatory molecules CD40 and ICAM1. While these differences were also present in IFNγ-stimulated macrophages, an addition of IFNγ after infection not only resulted in a dramatic increase of the translation of the afore mentioned genes but also

  2. Indel-II region deletion sizes in the white spot syndrome virus genome correlate with shrimp disease outbreaks in southern Vietnam

    NARCIS (Netherlands)

    Tran Thi Tuyet, H.; Zwart, M.P.; Phuong, N.T.; Oanh, D.T.H.; Jong, de M.C.M.; Vlak, J.M.

    2012-01-01

    Sequence comparisons of the genomes of white spot syndrome virus (WSSV) strains have identified regions containing variable-length insertions/deletions (i.e. indels). Indel-I and Indel-II, positioned between open reading frames (ORFs) 14/15 and 23/24, respectively, are the largest and the most

  3. Peramivir analogues bearing hydrophilic side chains exhibit higher activities against H275Y mutant than wild-type influenza virus.

    Science.gov (United States)

    Chiu, Din-Chi; Lin, Tzu-Chen; Huang, Wen-I; Cheng, Ting-Jen; Tsai, Keng-Chang; Fang, Jim-Min

    2017-11-29

    Peramivir is an effective anti-influenza drug in the clinical treatment of influenza, but its efficacy toward the H275Y mutant is reduced. The previously reported cocrystal structures of inhibitors in the mutant neuraminidase (NA) suggest that the hydrophobic side chain should be at the origin of reduced binding affinity. In contrast, zanamivir having a hydrophilic glycerol side chain still possesses high affinity toward the H275Y NA. We thus designed five peramivir analogues (5-9) carrying hydrophilic glycol or glycerol side chains, and evaluated their roles in anti-influenza activity, especially for the H275Y mutant. The synthetic sequence involves a key step of (3 + 2) cycloaddition reactions between alkenes and nitrile oxides to construct the scaffold of peramivir carrying the desired hydrophilic side chains and other appropriate functional groups. The molecular docking experiments reveal that the hydrophilic side chain can provide extra hydrogen bonding with the translocated Glu-276 residue in the H275Y NA active site. Thus, the H275Y mutant may be even more sensitive than wild-type virus toward the peramivir analogues bearing hydrophilic side chains. Notably, the peramivir analogue bearing a glycerol side chain inhibits the H275Y mutant with an IC 50 value of 35 nM, which is better than the WSN virus by 9 fold.

  4. Association of hepatitis B virus pre-S deletions with the development of hepatocellular carcinoma in Qidong, China.

    Directory of Open Access Journals (Sweden)

    Li-Shuai Qu

    Full Text Available BACKGROUND/AIM: To investigate the roles of mutations in pre-S and S regions of hepatitis B virus (HBV on the progression of hepatocellular carcinoma (HCC in Qidong, China. METHODS: We conducted an age matched case-control study within a cohort of 2387 male HBV carriers who were recruited from August, 1996. The HBV DNA sequence in pre-S/S regions was successfully determined in 96 HCC cases and 97 control subjects. In addition, a consecutive series of samples from 11 HCC cases were employed to evaluate the pre-S deletion patterns before and after the occurrence of HCC. RESULTS: After adjustment for age, history of cigarette smoking and alcohol consumption, HBeAg positivity, pre-S deletions, pre-S2 start codon mutations, and T53C mutation were significantly associated with HCC, showing adjusted odds ratios (ORs from 1.914 to 3.199. HCC patients also had a lower frequency of T31C mutation in pre-S2 gene, compared with control subjects (0.524; 95% CI 0.280-0.982. HBV pre-S deletions were clustered mainly in the 5' end of pre-S2 region. Multivariate analysis showed that pre-S deletions and pre-S2 start codon mutations were independent risk factors for HCC. The OR (95% CI were 2.434 (1.063-5.573 and 3.065 (1.099-8.547, respectively. The longitudinal observation indicated that the pre-S deletion mutations were not acquired at the beginning of HBV infection, but that the mutations occurred during the long course of liver disease. CONCLUSION: Pre-S deletions and pre-S2 start codon mutations were independently associated with the development of HCC. The results also provided direct evidence that pre-S deletion mutations were not acquired from the beginning of infection but arose de novo during the progression of liver disease.

  5. Identification of a basic helix-loop-helix-type transcription regulator gene in Aspergillus oryzae by systematically deleting large chromosomal segments.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-09-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We constructed 12 mutants harboring deletions that spanned 16- to 150-kb segments of chromosome 7 and scored phenotypic changes in the resulting mutants. Among the deletion mutants, strains designated Delta5 and Delta7 displayed clear phenotypic changes involving growth and conidiation. In particular, the Delta5 mutant exhibited vigorous growth and conidiation, potentially beneficial characteristics for certain industrial applications. Further deletion analysis allowed identification of the AO090011000215 gene as the gene responsible for the Delta5 mutant phenotype. The AO090011000215 gene was predicted to encode a helix-loop-helix binding protein belonging to the bHLH family of transcription factors. These results illustrate the potential of the approach for identifying novel functional genes.

  6. Ku80-deleted cells are defective at base excision repair

    International Nuclear Information System (INIS)

    Li, Han; Marple, Teresa; Hasty, Paul

    2013-01-01

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H 2 O 2 and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs

  7. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  8. Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Schrijver Iris

    2001-10-01

    Full Text Available Abstract Background Mutations in the fibrillin -1 gene (FBN1 cause Marfan syndrome (MFS, an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. Methods We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons Results Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5th LTBP (8-cysteine domain and the adjacent 25th calcium-binding EGF-like (6-cysteine domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. Conclusions Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly.

  9. Feline infectious peritonitis virus with a large deletion in the 5'-terminal region of the spike gene retains its virulence for cats.

    Science.gov (United States)

    Terada, Yutaka; Shiozaki, Yuto; Shimoda, Hiroshi; Mahmoud, Hassan Youssef Abdel Hamid; Noguchi, Keita; Nagao, Yumiko; Shimojima, Masayuki; Iwata, Hiroyuki; Mizuno, Takuya; Okuda, Masaru; Morimoto, Masahiro; Hayashi, Toshiharu; Tanaka, Yoshikazu; Mochizuki, Masami; Maeda, Ken

    2012-09-01

    In this study, the Japanese strain of type I feline infectious peritonitis virus (FIPV), C3663, was found to have a large deletion of 735 bp within the gene encoding the spike (S) protein, with a deduced loss of 245 aa of the N-terminal region of the S protein. This deletion is similar to that observed in porcine respiratory coronavirus (PRCoV) when compared to transmissible gastroenteritis virus, which correlates with reduced virulence. By analogy to PRCoV, we expected that the pathogenicity of C3663 may be attenuated in cats. However, two of four cats inoculated with C3663 died of FIP, and a third C3663-inoculated cat showed FIP lesions at 91 days after challenge. These results indicate that the 5'-terminal region of the S gene is not essential for the development of FIP.

  10. Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry

    Science.gov (United States)

    Moller-Tank, Sven; Albritton, Lorraine M.; Rennert, Paul D.

    2014-01-01

    ABSTRACT T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral

  11. Deletion of HAPS_2096 Increases Sensitivity to Cecropin B in Haemophilus parasuis.

    Science.gov (United States)

    Chen, Fanjie; Hu, Han; Li, Zhonghua; Huang, Jiacheng; Cai, Xuwang; Wang, Chunmei; He, Qigai; Cao, Jiyue

    2015-01-01

    Cecropin B (CB) is a very effective natural antimicrobial peptide that has shown great potential for future antimicrobial drug development. HAPS_2096 is a Haemophilus parasuis gene that encodes the periplasmic substrate-binding protein of an ATP-binding cassette-type amino acid transporter. In this research, we constructed and verified an HAPS_2096 deletion mutant and a complementary HAPS_2096 mutant of H. parasuis JS0135. A bactericidal assay revealed that the HAPS_2096 deletion mutant was significantly more sensitive than the wild-type strain to 0.25-0.5 µg/ml CB. However, the gene complementation alleviated the CB sensitivity of the mutant. Immunoelectron microscopy observation following a 30-min treatment with a sublethal concentration of CB (0.25 μg/ml) revealed more extensive morphological damage in the mutant strain than in the wild-type strain. Hence, our results suggest that the HAPS_2096 gene contributes to H. parasuis resistance to CB. © 2015 S. Karger AG, Basel.

  12. Use of bioreporters and deletion mutants reveals ionic silver and ROS to be equally important in silver nanotoxicity.

    Science.gov (United States)

    Joshi, Nimisha; Ngwenya, Bryne T; Butler, Ian B; French, Chris E

    2015-04-28

    The mechanism of antibacterial action of silver nanoparticles (AgNp) was investigated by employing a combination of microbiology and geochemical approaches to contribute to the realistic assessment of nanotoxicity. Our studies showed that suspending AgNp in media with different levels of chloride relevant to environmental conditions produced low levels of ionic silver thereby suggesting that dissolution of silver ions from nanoparticulate surface could not be the sole mechanism of toxicity. An Escherichia coli based bioreporter strain responsive to silver ions together with mutant strains of E. coli lacking specific protective systems were tested against AgNp. Deletion mutants lacking silver ion efflux systems and resistance mechanisms against oxidative stress showed an increased sensitivity to AgNp. However, the bioreporter did not respond to silver nanoparticles. Our results suggest that oxidative stress is a major toxicity mechanism and that this is at least partially associated with ionic silver, but that bulk dissolution of silver into the medium is not sufficient to account for the observed effects. Chloride ions do not appear to offer significant protection, indicating that chloride in receiving waters will not necessarily protect environmental bacteria from the toxic effects of nanoparticles in effluents. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Further characterization of a highly attenuated Yersinia pestis CO92 mutant deleted for the genes encoding Braun lipoprotein and plasminogen activator protease in murine alveolar and primary human macrophages.

    Science.gov (United States)

    van Lier, Christina J; Tiner, Bethany L; Chauhan, Sadhana; Motin, Vladimir L; Fitts, Eric C; Huante, Matthew B; Endsley, Janice J; Ponnusamy, Duraisamy; Sha, Jian; Chopra, Ashok K

    2015-03-01

    We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune

  14. Increased production of biomass-degrading enzymes by double deletion of creA and creB genes involved in carbon catabolite repression in Aspergillus oryzae.

    Science.gov (United States)

    Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2018-02-01

    In a previous study, we reported that a double gene deletion mutant for CreA and CreB, which constitute the regulatory machinery involved in carbon catabolite repression, exhibited improved production of α-amylase compared with the wild-type strain and single creA or creB deletion mutants in Aspergillus oryzae. Because A. oryzae can also produce biomass-degrading enzymes, such as xylolytic and cellulolytic enzymes, we examined the production levels of those enzymes in deletion mutants in this study. Xylanase and β-glucosidase activities in the wild-type were hardly detected in submerged culture containing xylose as the carbon source, whereas those enzyme activities were significantly increased in the single creA deletion (ΔcreA) and double creA and creB deletion (ΔcreAΔcreB) mutants. In particular, the ΔcreAΔcreB mutant exhibited >100-fold higher xylanase and β-glucosidase activities than the wild-type. Moreover, in solid-state culture, the β-glucosidase activity of the double deletion mutant was >7-fold higher than in the wild-type. These results suggested that deletion of both creA and creB genes could also efficiently improve the production levels of biomass-degrading enzymes in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Foot-and-mouth disease virus 5'-terminal S fragment is required for replication and modulation of the innate immune response in host cells.

    Science.gov (United States)

    Kloc, Anna; Diaz-San Segundo, Fayna; Schafer, Elizabeth A; Rai, Devendra K; Kenney, Mary; de Los Santos, Teresa; Rieder, Elizabeth

    2017-12-01

    The S fragment of the FMDV 5' UTR is predicted to fold into a long stem-loop structure and it has been implicated in virus-host protein interactions. In this study, we report the minimal S fragment sequence required for virus viability and show a direct correlation between the extent of the S fragment deletion mutations and attenuated phenotypes. Furthermore, we provide novel insight into the role of the S fragment in modulating the host innate immune response. Importantly, in an FMDV mouse model system, all animals survive the inoculation with the live A 24 FMDV-S 4 mutant, containing a 164 nucleotide deletion in the upper S fragment loop, at a dose 1000 higher than the one causing lethality by parental A 24 FMDV, indicating that the A 24 FMDV-S 4 virus is highly attenuated in vivo. Additionally, mice exposed to high doses of live A 24 FMDV-S 4 virus are fully protected when challenged with parental A 24 FMDV virus. Published by Elsevier Inc.

  16. Hypervariable region 1 deletion and required adaptive envelope mutations confer decreased dependency on scavenger receptor class B type I and low-density lipoprotein receptor for hepatitis C virus

    DEFF Research Database (Denmark)

    Prentoe, Jannick; Serre, Stéphanie B N; Ramirez, Santseharay

    2014-01-01

    -deleted viruses. Apolipoprotein E (ApoE)-specific HCV neutralization was similar for H77, J6, and S52 viruses with and without HVR1. In conclusion, HVR1 and HVR1-related adaptive envelope mutations appeared to be involved in LDLr and SR-BI dependency, respectively. Also, LDLr served Apo....../S733F), S52(ΔHVR1/A369V), and S52(A369V), but not for J6(ΔHVR1). Low-density lipoprotein receptor (LDLr) dependency was decreased for HVR1-deleted viruses, but not for H77(N476D/S733F) and S52(A369V). Soluble LDLr neutralization revealed strong inhibition of parental HCV but limited effect against HVR1...

  17. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation.

    Science.gov (United States)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-12-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RTCter) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RTCter. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Identification and molecular characterization of a naturally occurring RNA virus mutant defective in the initiation of host recovery

    International Nuclear Information System (INIS)

    Xin Hongwu; Ding Shouwei

    2003-01-01

    The host recovery response is characterized by the disappearance of disease symptoms and activation of the RNA silencing virus resistance in the new growth following an initial symptomatic infection. However, it is not clear what triggers the initiation of recovery, which occurs naturally only in some virus-host interactions. Here we report the identification and characterization of a spontaneous mutant of Tobacco streak virus (TSV) that became defective in triggering recovery in tobacco plants. Infectious full-length cDNA clones corresponding to the tripartite RNA genome were constructed from both the wild-type and the nonrecovery mutant of TSV (TSVnr), the first sets of infectious cDNA clones from an Ilarvirus. Genetic and molecular analyses identified an A → G mutation in the TSVnr genome that was sufficient to confer nonrecovery when introduced into TSV. The mutation was located in the intergenic region of RNA 3 upstream of the mapped transcriptional start site of the coat protein mRNA. Intriguingly, induction of recovery by TSV was not accompanied by virus clearance and TSV consistently accumulated to significantly higher levels than TSVnr did even though TSVnr-infected plants displayed severe symptoms throughout the course of infection. Thus, our findings indicate that recovery of host can be initiated by minimal genetic changes in a viral genome and may occur in the absence of virus clearance. Mechanisms possibly involved in the initiation of host recovery are discussed

  19. Neutralization escape mutants define a dominant immunogenic neutralization site on hepatitis A virus

    International Nuclear Information System (INIS)

    Stapleton, J.T.; Lemon, S.M.

    1987-01-01

    Hepatitis A virus is an hepatotrophic human picornavirus which demonstrates little antigenic variability. To topologically map immunogenic sites on hepatitis A virus which elicit neutralizing antibodies, eight neutralizing monoclonal antibodies were evaluated in competition immunoassays employing radiolabeled monoclonal antibodies and HM-175 virus. Whereas two antibodies (K3-4C8 and K3-2F2) bound to intimately overlapping epitopes, the epitope bound by a third antibody (B5-B3) was distinctly different as evidenced by a lack of competition between antibodies for binding to the virus. The other five antibodies variably blocked the binding of both K3-4C8-K3-2F2 and B5-B3, suggesting that these epitopes are closely spaced and perhaps part of a single neutralization immunogenic site. Several combinations of monoclonal antibodies blocked the binding of polyclonal human convalescent antibody by greater than 96%, indicating that the neutralization epitopes bound by these antibodies are immunodominant in humans. Spontaneously arising HM-175 mutants were selected for resistance to monoclonal antibody-mediated neutralization. Neutralization resistance was associated with reduced antibody binding. These results suggest that hepatitis A virus may differ from poliovirus in possessing a single, dominant neutralization immunogenic site and therefore may be a better candidate for synthetic peptide or antiidiotype vaccine development

  20. The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes.

    Science.gov (United States)

    Dedeurwaerder, Annelike; Desmarets, Lowiese M; Olyslaegers, Dominique A J; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-03-23

    The ability to productively infect monocytes/macrophages is the most important difference between the low virulent feline enteric coronavirus (FECV) and the lethal feline infectious peritonitis virus (FIPV). In vitro, the replication of FECV in peripheral blood monocytes always drops after 12h post inoculation, while FIPV sustains its replication in the monocytes from 45% of the cats. The accessory proteins of feline coronaviruses have been speculated to play a prominent role in virulence as deletions were found to be associated with attenuated viruses. Still, no functions have been ascribed to them. In order to investigate if the accessory proteins of FIPV are important for sustaining its replication in monocytes, replication kinetics were determined for FIPV 79-1146 and its deletion mutants, lacking either accessory protein open reading frame 3abc (FIPV-Δ3), 7ab (FIPV-Δ7) or both (FIPV-Δ3Δ7). Results showed that the deletion mutants FIPV-Δ7 and FIPV-Δ3Δ7 could not maintain their replication, which was in sharp contrast to wt-FIPV. FIPV-Δ3 could still sustain its replication, but the percentage of infected monocytes was always lower compared to wt-FIPV. In conclusion, this study showed that ORF7 is crucial for FIPV replication in monocytes/macrophages, giving an explanation for its importance in vivo, its role in the development of FIP and its conservation in field strains. The effect of an ORF3 deletion was less pronounced, indicating only a supportive role of ORF3 encoded proteins during the infection of the in vivo target cell by FIPVs. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Mapping the end points of large deletions affecting the hprt locus in human peripheral blood cells and cell lines

    International Nuclear Information System (INIS)

    Nelson, S.L.; Grosovsky, A.J.; Jones, I.M.; Burkhart-Schultz, K.; Fuscoe, J.C.

    1995-01-01

    We have examined the extent of of HPRT - total gene deletions in three mutant collections: spontaneous and X-ray-induced deletions in TK6 human B lymphoblasts, and HPRT - deletions arising in vivo in T cells. A set of 13 Xq26 STS markers surrounding hprt and spanning approximately 3.3 Mb was used. Each marker used was observed to be missing in at least one of the hprt deletion mutants analyzed. The largest deletion observed encompassed at least 3 Mb. Nine deletions extended outside of the mapped region in the centromeric direction (>1.7 Mb). In contrast, only two telomeric deletions extended to marker 342R (1.26 Mb), and both exhibited slowed or limited cell growth. These data suggest the existence of a gene, within the vicinity of 342R, which establishes the telomeric limit of recoverable deletions. Most (25/41) X-ray-induced total gene deletion mutants exhibited marker loss, but only 1/8 of the spontaneous deletions encompassed any Xq26 markers (P = 0.0187). Furthermore, nearly half (3/8) of the spontaneous 3' total deletion breakpoints were within 14 kb of the hprt coding sequence. In contrast, 40/41 X-ray-induced HPRT - total deletions extended beyond this point (P = 0.011). Although the overall representation of total gene deletions in the in vivo spectrum is low, 4/5 encompass Xq26 markers flanking hprt. This pattern differs significantly from spontaneous HPRT - large deletions occurring in vitro (P = 0.032) but resembles the spectrum of X-ray-induced deletions. 24 refs., 6 figs., 1 tab

  2. Mutation induction in γ-irradiated primary human bronchial epithelial cells and molecular analysis of the HPRT- mutants

    International Nuclear Information System (INIS)

    Suzuki, Keiji; Hei, Tom K.

    1996-01-01

    We have examined various radiobiological parameters using commercially-available primary normal human bronchial epithelial (NHBE) cells, which can be subcultured more than 20 population doublings, and have established the mutation system in order to characterize the molecular changes in γ-irradiated primary cells. The survival curve, obtained after irradiation of cells with 137 Cs γ-rays, indicates that the D 0 , D q , and n values are 1.34 Gy, 1.12 Gy, and 2.3, respectively. The induction of HPRT - mutation was dose-dependent and the mutant fraction increased in a non-linear fashion. Since the doubling number of NHBE cells is limited, DNA was extracted directly from the single mutant colonies and alteration in the HPRT gene locus was analyzed using multiplex PCR technique. Among spontaneous mutants, the proportion with total and partial deletions of the gene was 10.0% (2/20) and 60.0% (12/20), respectively, while 30.0% (6/20) did not have any detectable changes in the nine exons examined. On the other hand, the fraction of total deletion increased by more than 2-fold among mutants induced by γ-rays in that 26.3% (10/38) of them showed the total gene deletions. Twenty-five out of 38 γ-induced mutants (65.8%) had partial deletions and 3 mutants (7.9%) had no detectable alteration. The present results showed that γ-irradiation efficiently induced HPRT gene mutation in primary human epithelial cells and that most of the induced mutants suffered larger deletions compared to that observed in spontaneous mutants. This system provides a useful tool for determination of mutagenicity and understanding the molecular mechanisms of environmental carcinogens in primary human bronchial cells

  3. Location of the binding domains for the RNA polymerase L and the ribonucleocapsid template within different halves of the NS phosphoprotein of vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Emerson, S.U.; Schubert, M.

    1987-01-01

    Recombinant DNA techniques were used to delete regions of a cDNA clone of the phosphoprotein NS gene of vesicular stomatitis virus. The complete NS gene and four mutant genes containing internal or terminal deletions were inserted into a modified pGem4 vector under the transcriptional control of the page T7 promoter. Run-off transcripts were synthesized and translated in vitro to provide [ 35 S]methionine-labeled complete NS or deletion mutant NS proteins. Immune coprecipitation assays involving these proteins were developed to map the regions of the NS protein responsible for binding to the structural viral nucleocapsid protein N and the catalytic RNA polymerase protein L. The data indicate the NS protein is a bivalent protein consisting of two discrete functional domains. Contrary to previous suggestions, the negatively charged amino-terminal half of NS protein binds to L protein, while the carboxyl-terminal half of NS protein binds to both soluble recombinant nucleocapsid protein N and viral ribonucleocapsid template

  4. Bivalent vaccination against pneumonic pasteurellosis in domestic sheep and goats with modified-live in-frame lktA deletion mutants of Mannheimia haemolytica.

    Science.gov (United States)

    Briggs, Robert E; Hauglund, Melissa J; Maheswaran, Samuel K; Tatum, Fred M

    2013-11-01

    A temperature-sensitive shuttle vector, pBB80C, was utilized to generate in-frame deletion mutants of the leukotoxin structural gene (lktA) of Mannheimia haemolytica serotypes 1, 2, 5, 6, 7, 8, 9, and 12. Culture supernatants from the mutants contained a truncated protein with an approximate molecular weight of 66 kDa which was reactive to anti-leukotoxin monoclonal antibody. No protein reactive to anti-LktA monoclonal antibody was detected at the molecular weight 100-105 kDa of native LktA. Sheep and goats vaccinated intramuscularly with a mixture of serotypes 5 and 6 mutants were resistant to virulent challenge with a mixture of the wild-type parent strains. These vaccinates responded serologically to both vaccine serotypes and exhibited markedly-reduced lung lesion volume and pulmonary infectious load compared to control animals. Control animals yielded a mixture of serotypes from lung lobes, but the proportion even within an individual animal varied widely from 95% serotype 5-95% serotype 6. Cultures recovered from liver were homogeneous, but two animals yielded serotype 5 and the other two yielded serotype 6 in pure culture. Published by Elsevier Ltd.

  5. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.

    Directory of Open Access Journals (Sweden)

    Lance D Eckerle

    2010-05-01

    Full Text Available Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN in nonstructural protein 14 (nsp14 of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication

  6. Oncogenic activation of v-kit involves deletion of a putative tyrosine-substrate interaction site.

    Science.gov (United States)

    Herbst, R; Munemitsu, S; Ullrich, A

    1995-01-19

    The transforming gene of the Hardy-Zuckerman-4 strain of feline sarcoma virus, v-kit, arose by transduction of the cellular c-kit gene, which encodes the receptor tyrosine kinase (RTK) p145c-kit. To gain insight into the molecular basis of the v-kit transforming potential, we characterized the feline c-kit by cDNA cloning. Comparison of the feline v-kit and c-kit sequences revealed, in addition to deletions of the extracellular and transmembrane domains, three additional mutations in the v-kit oncogene product: deletion of tyrosine-569 and valine-570, the exchange of aspartate at position 761 to glycine, and replacement of the C-terminal 50 amino acids by five unrelated residues. Examinations of individual v-kit mutations in the context of chimeric receptors yielded inhibitory effects for some mutants on both autophosphorylation and substrate phosphorylation functions. In contrast, deletion of tyrosine-569 and valine-570 significantly enhanced transforming and mitogenic activities of p145c-kit, while the other mutations had no significant effects. Conservation in subclass III RTKs and the identification of the corresponding residue in beta PDGF-R, Y579, as a binding site for src family tyrosine kinases suggests an important role for Y568 in kit signal regulation and the definition of its oncogenic potential. Repositioning of Y571 by an inframe two codon deletion may be the crucial alteration resulting in enhancement of v-kit oncogenic activity.

  7. Deletion of C7L and K1L genes leads to significantly decreased virulence of recombinant vaccinia virus TianTan.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available The vaccinia virus TianTan (VTT has been modified as an HIV vaccine vector in China and has shown excellent performance in immunogenicity and safety. However, its adverse effects in immunosuppressed individuals warrant the search for a safer vector in the following clinic trails. In this study, we deleted the C7L and K1L genes of VTT and constructed six recombinant vaccinia strains VTT△C7L, VTT△K1L, VTT△C7LK1L, VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag. The pathogenicity and immunogenicity of these recombinants were evaluated in mouse and rabbit models. Comparing to parental VTT, VTT△C7L and VTT△K1L showed significantly decreased replication capability in CEF, Vero, BHK-21 and HeLa cell lines. In particular, replication of VTT△C7LK1L decreased more than 10-fold in all four cell lines. The virulence of all these mutants were decreased in BALB/c mouse and rabbit models; VTT△C7LK1L once again showed the greatest attenuation, having resulted in no evident damage in mice and erythema of only 0.4 cm diameter in rabbits, compared to 1.48 cm for VTT. VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag elicited as strong cellular and humoral responses against HIV genes as did VTKgpe, while humoral immune response against the vaccinia itself was reduced by 4-8-fold. These data show that deletion of C7L and K1L genes leads to significantly decreased virulence without compromising animal host immunogenicity, and may thus be key to creating a more safe and effective HIV vaccine vector.

  8. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis.

    Science.gov (United States)

    Marty, Caroline; Pecquet, Christian; Nivarthi, Harini; El-Khoury, Mira; Chachoua, Ilyas; Tulliez, Micheline; Villeval, Jean-Luc; Raslova, Hana; Kralovics, Robert; Constantinescu, Stefan N; Plo, Isabelle; Vainchenker, William

    2016-03-10

    Frameshift mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and myelofibrosis patients. To address the contribution of the CALR mutants to the pathogenesis of myeloproliferative neoplasms, we engrafted lethally irradiated recipient mice with bone marrow cells transduced with retroviruses expressing these mutants. In contrast to wild-type CALR, CALRdel52 (type I) and, to a lesser extent, CALRins5 (type II) induced thrombocytosis due to a megakaryocyte (MK) hyperplasia. Disease was transplantable into secondary recipients. After 6 months, CALRdel52-, in contrast to rare CALRins5-, transduced mice developed a myelofibrosis associated with a splenomegaly and a marked osteosclerosis. Monitoring of virus-transduced populations indicated that CALRdel52 leads to expansion at earlier stages of hematopoiesis than CALRins5. However, both mutants still specifically amplified the MK lineage and platelet production. Moreover, a mutant deleted of the entire exon 9 (CALRdelex9) did not induce a disease, suggesting that the oncogenic property of CALR mutants was related to the new C-terminus peptide. To understand how the CALR mutants target the MK lineage, we used a cell-line model and demonstrated that the CALR mutants, but not CALRdelex9, specifically activate the thrombopoietin (TPO) receptor (MPL) to induce constitutive activation of Janus kinase 2 and signal transducer and activator of transcription 5/3/1. We confirmed in c-mpl- and tpo-deficient mice that expression of Mpl, but not of Tpo, was essential for the CALR mutants to induce thrombocytosis in vivo, although Tpo contributes to disease penetrance. Thus, CALR mutants are sufficient to induce thrombocytosis through MPL activation. © 2016 by The American Society of Hematology.

  9. Hepatitis C Virus Resistance to Carbohydrate-Binding Agents.

    Directory of Open Access Journals (Sweden)

    Laure Izquierdo

    Full Text Available Carbohydrate binding agents (CBAs, including natural lectins, are more and more considered as broad-spectrum antivirals. These molecules are able to directly inhibit many viruses such as Human Immunodeficiency Virus (HIV, Hepatitis C Virus (HCV, Dengue Virus, Ebola Virus or Severe Acute Respiratory Syndrome Coronavirus through binding to envelope protein N-glycans. In the case of HIV, it has been shown that CBAs select for mutant viruses with N-glycosylation site deletions which are more sensitive to neutralizing antibodies. In this study we aimed at evaluating the HCV resistance to CBAs in vitro. HCV was cultivated in the presence of increasing Galanthus nivalis agglutinin (GNA, Cyanovirin-N, Concanavalin-A or Griffithsin concentrations, during more than eight weeks. At the end of lectin exposure, the genome of the isolated strains was sequenced and several potential resistance mutations in the E1E2 envelope glycoproteins were identified. The effect of these mutations on viral fitness as well as on sensitivity to inhibition by lectins, soluble CD81 or the 3/11 neutralizing antibody was assessed. Surprisingly, none of these mutations, alone or in combination, conferred resistance to CBAs. In contrast, we observed that some mutants were more sensitive to 3/11 or CD81-LEL inhibition. Additionally, several mutations were identified in the Core and the non-structural proteins. Thus, our results suggest that in contrast to HIV, HCV resistance to CBAs is not directly conferred by mutations in the envelope protein genes but could occur through an indirect mechanism involving mutations in other viral proteins. Further investigations are needed to completely elucidate the underlying mechanisms.

  10. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Science.gov (United States)

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman W; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K; Craigen, William J; Schmitt, Eric S; Wong, Lee-Jun C

    2010-12-20

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.

  11. Improved α-amylase production by Aspergillus oryzae after a double deletion of genes involved in carbon catabolite repression.

    Science.gov (United States)

    Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2014-01-01

    In filamentous fungi, the expression of secretory glycoside hydrolase encoding genes, such as those for amylases, cellulases, and xylanases, is generally repressed in the presence of glucose. CreA and CreB have been observed to be regulating factors for carbon catabolite repression. In this study, we generated single and double deletion creA and/or creB mutants in Aspergillus oryzae. The α-amylase activities of each strain were compared under various culture conditions. For the wild-type strain, mRNA levels of α-amylase were markedly decreased in the later stage of submerged culture under inducing conditions, whereas this reduced expression was not observed for single creA and double creA/creB deletion mutants. In addition, α-amylase activity of the wild-type strain was reduced in submerged culture containing high concentrations of inducing sugars, whereas all constructed mutants showed higher α-amylase activities. In particular, the α-amylase activity of the double deletion mutant in a medium containing 5% starch was >10-fold higher than that of the wild-type strain under the same culture conditions. In solid-state cultures using wheat bran as a substrate, the α-amylase activities of single creA and double deletion mutants were >2-fold higher than that of the wild-type strain. These results suggested that deleting both creA and creB resulted in dramatic improvements in the production of secretory glycoside hydrolases in filamentous fungi.

  12. Sequence characterisation of deletion breakpoints in the dystrophin gene by PCR

    Energy Technology Data Exchange (ETDEWEB)

    Abbs, S.; Sandhu, S.; Bobrow, M. [Guy`s Hospital, London (United Kingdom)

    1994-09-01

    Partial deletions of the dystrophin gene account for 65% of cases of Duchenne muscular dystrophy. A high proportion of these structural changes are generated by new mutational events, and lie predominantly within two `hotspot` regions, yet the underlying reasons for this are not known. We are characterizing and sequencing the regions surrounding deletion breakpoints in order to: (i) investigate the mechanisms of deletion mutation, and (ii) enable the design of PCR assays to specifically amplify mutant and normal sequences, allowing us to search for the presence of somatic mosaicism in appropriate family members. Using this approach we have been able to demonstrate the presence of somatic mosaicism in a maternal grandfather of a DMD-affected male, deleted for exons 49-50. Three deletions, namely of exons 48-49, 49-50, and 50, have been characterized using a PCR approach that avoids any cloning procedures. Breakpoints were initially localized to within regions of a few kilobases using Southern blot restriction analyses with exon-specific probes and PCR amplification of exonic and intronic loci. Sequencing was performed directly on PCR products: (i) mutant sequences were obtained from long-range or inverse-PCR across the deletion junction fragments, and (ii) normal sequences were obtained from the products of standard PCR, vectorette PCR, or inverse-PCR performed on YACs. Further characterization of intronic sequences will allow us to amplify and sequence across other deletion breakpoints and increase our knowledge of the mechanisms of mutation in the dystophin gene.

  13. Mutations within Four Distinct Gag Proteins Are Required To Restore Replication of Human Immunodeficiency Virus Type 1 after Deletion Mutagenesis within the Dimerization Initiation Site

    Science.gov (United States)

    Liang, Chen; Rong, Liwei; Quan, Yudong; Laughrea, Michael; Kleiman, Lawrence; Wainberg, Mark A.

    1999-01-01

    Human immunodeficiency virus type 1 (HIV-1) genomic RNA segments at nucleotide (nt) positions +240 to +274 are thought to form a stem-loop secondary structure, termed SL1, that serves as a dimerization initiation site for viral genomic RNA. We have generated two distinct deletion mutations within this region, termed BH10-LD3 and BH10-LD4, involving nt positions +238 to +253 and +261 to +274, respectively, and have shown that each of these resulted in significant diminutions in levels of viral infectiousness. However, long-term culture of each of these viruses in MT-2 cells resulted in a restoration of infectiousness, due to a series of compensatory point mutations within four distinct proteins that are normally cleaved from the Gag precursor. In the case of BH10-LD3, these four mutations were MA1, CA1, MP2, and MNC, and they involved changes of amino acid Val-35 to Ile within the matrix protein (MA), Ile-91 to Thr within the capsid (CA), Thr-12 to Ile within p2, and Thr-24 to Ile within the nucleocapsid (NC). The order in which these mutations were acquired by the mutated BH10-LD3 was MNC > CA1 > MP2 > MA1. The results of site-directed mutagenesis studies confirmed that each of these four substitutions contributed to the increased viability of the mutated BH10-LD3 viruses and that the MNC substitution, which was acquired first, played the most important role in this regard. Three point mutations, MP2, MNC, and MA2, were also shown to be sequentially acquired by viruses that had emerged in culture from the BH10-LD4 deletion. The first two of these were identical to those described above, while the last involved a change of Val-35 to Leu. All three of these substitutions were necessary to restore the infectiousness of mutated BH10-LD4 viruses to wild-type levels, although the MP2 mutation alone, but neither of the other two substitutions, was able to confer some viability on BH10-LD4 viruses. Studies of viral RNA packaging showed that the BH10-LD4 deletion only

  14. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Science.gov (United States)

    del Rio, Beatriz; Linares, Daniel M.; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P.; Ladero, Victor; Alvarez, Miguel A.

    2015-01-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514. PMID:26697381

  15. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Directory of Open Access Journals (Sweden)

    Beatriz del Rio

    2015-12-01

    Full Text Available Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14 is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine into the biogenic amine putrescine by the agmatine deiminase (AGDI pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC [1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC [2], which is also transcriptionally regulated by carbon catabolic repression (CCR via glucose, but not by other sugars such as lactose and galactose [1,3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE59514.

  16. Rapid genotyping assays for the 4-base pair deletion of canine MDR1/ABCB1 gene and low frequency of the mutant allele in Border Collie dogs.

    Science.gov (United States)

    Mizukami, Keijiro; Chang, Hye-Sook; Yabuki, Akira; Kawamichi, Takuji; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Yamato, Osamu

    2012-01-01

    P-glycoprotein, encoded by the MDR1 or ABCB1 gene, is an integral component of the blood-brain barrier as an efflux pump for xenobiotics crucial in limiting drug uptake into the central nervous system. Dogs homozygous for a 4-base pair deletion of the canine MDR1 gene show altered expression or function of P-glycoprotein, resulting in neurotoxicosis after administration of the substrate drugs. In the present study, the usefulness of microchip electrophoresis for genotyping assays detecting this deletion mutation was evaluated. Mutagenically separated polymerase chain reaction (MS-PCR) and real-time PCR assays were newly developed and evaluated. Furthermore, a genotyping survey was carried out in a population of Border Collies dogs in Japan to determine the allele frequency in this breed. Microchip electrophoresis showed advantages in detection sensitivity and time saving over other modes of electrophoresis. The MS-PCR assay clearly discriminated all genotypes. Real-time PCR assay was most suitable for a large-scale survey due to its high throughput and rapidity. The genotyping survey demonstrated that the carrier and mutant allele frequencies were 0.49% and 0.25%, respectively, suggesting that the mutant allele frequency in Border Collies is markedly low compared to that in the susceptible dog breeds such as rough and smooth Collies.

  17. An Fgf8 Mouse Mutant Phenocopies Human 22q11 Deletion Syndrome

    OpenAIRE

    Frank, Deborah U.; Fotheringham, Lori K.; Brewer, Judson A.; Muglia, Louis J.; Tristani-Firouzi, Martin; Capecchi, Mario R.; Moon, Anne M.

    2002-01-01

    Deletion of chromosome 22q11, the most common microdeletion detected in humans, is associated with a life-threatening array of birth defects. Although 90% of affected individuals share the same three megabase deletion, their phenotype is highly variable and includes craniofacial and cardiovascular anomalies, hypoplasia or aplasia of the thymus with associated deficiency of T cells, hypocalcemia with hypoplasia or aplasia of the parathyroids, and a variety of central nervous system abnormaliti...

  18. Hepatitis B surface gene 145 mutant as a minor population in hepatitis B virus carriers

    Directory of Open Access Journals (Sweden)

    Komatsu Haruki

    2012-01-01

    Full Text Available Abstract Background Hepatitis B virus (HBV can have mutations that include the a determinant, which causes breakthrough infection. In particular, a single mutation at amino acid 145 of the surface protein (G145 is frequently reported in the failure of prophylactic treatment. The aim of this study was to evaluate the frequency of the a determinant mutants, especially the G145 variant, in Japan, where universal vaccination has not been adopted. Methods The present study was a retrospective study. The study cohorts were defined as follows: group 1, children with failure to prevent mother-to-child transmission despite immunoprophylaxis (n = 18, male/female = 8/10, age 1-14 years; median 6 years; group 2, HBV carriers who had not received vaccination or hepatitis B immunoglobulin (n = 107, male/female = 107, age 1-52 years; median 16 years. To detect the G145R and G145A mutants in patients, we designed 3 probes for real-time PCR. We also performed direct sequencing and cloning of PCR products. Results By mutant-specific real-time PCR, one subject (5.6% was positive for the G145R mutant in group 1, while the G145 mutant was undetectable in group 2. The a determinant mutants were detected in one (5.6% of the group 1 subjects and 10 (9.3% of the group 2 subjects using direct sequencing, but direct sequencing did not reveal the G145 mutant as a predominant strain in the two groups. However, the subject who was positive according to the mutant-specific real-time PCR in group 1 had overlapped peaks at nt 587 in the electropherogram. In group 2, 11 patients had overlapped peaks at nt 587 in the electropherogram. Cloning of PCR products allowed detection of the G145R mutant as a minor strain in 7 (group 1: 1 subject, group 2: 6 subjects of 12 subjects who had overlapped peaks at nt 587 in the electropherogram. Conclusions The frequency of the a determinant mutants was not high in Japan. However, the G145R mutant was often present as a minor population in

  19. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development.

    Science.gov (United States)

    Puckette, Michael; Clark, Benjamin A; Smith, Justin D; Turecek, Traci; Martel, Erica; Gabbert, Lindsay; Pisano, Melia; Hurtle, William; Pacheco, Juan M; Barrera, José; Neilan, John G; Rasmussen, Max

    2017-11-15

    The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production. Copyright © 2017 Puckette et al.

  20. Microclones derived from the mouse chromosome 7 D-E bands map within the proximal region of the c14CoS deletion in albino mutant mice

    International Nuclear Information System (INIS)

    Toenjes, R.R.W.; Weith, A.; Rinchik, E.M.; Winking, H.; Carnwath, J.W.; Kaliner, B.; Paul, D.

    1991-01-01

    A group of radiation-induced perinatal-lethal deletions that include the albino (c) locus on mouse chromosome 7 causes failure of expression of various hepatocyte-specific genes when homozygous. The transcription of such genes could be controlled in trans by a regulatory gene(s) located within the proximal region of the C14CoS deletion. To identify this potential regulatory gene, a microclone library was established from microdissected D and E bands of chromosome 7. Three nonoverlapping microclones (E305, E336B, and E453B) hybridizing with wildtype but not with C14CoS/C14CoS DNA were isolated. E336B represents a single-copy DNA fragment, whereas E305 and E453B hybridized with 3 and 10 EcoRI DNA restriction fragments, respectively. All fragments map exclusively within the deletion. The microclones hybridized to DNA of viable C6H/C14CoS deletion heterozygotes but not to DNA of homozygotes for the lethal mutation c10R75M, which belongs to the same complementation group as c14CoS. DNA of viable homozygous mutant C62DSD, which carries a deletion breakpoint proximal to that of c6H, hybridized only with E453B. This microclone identified 6 EcoRI restriction fragments in C62DSD/C62DSD DNA. The results demonstrate that of the isolated microclones, E453B identifies a locus (D7RT453B) that maps closest to the hsdr-1 (hepatocyte-specific developmental regulation) locus, which maps between the proximal breakpoints of deletions c10R75M and c62DSD

  1. Mutant lines of currant tomato, valuable germplasm with multiple disease resistance

    International Nuclear Information System (INIS)

    Govorova, G.F.; Khrustaleva, V.V.; Shcherbakov, V.K.

    1987-01-01

    Studies were carried out for two years on eight mutant lines of currant tomato at the Krymsk Experimental Breeding Station of the N.I. Vavilov All-Union Scientific Research Institute of Plant-Growing (VIR). The station is situated in an area of commercial field tomato growing (Krasnodar region). The mutant lines of currant tomato (VIR specimen No. k-4053) were obtained through chronic gamma-irradiation. A disease resistance evaluation of the mutants was carried out for Verticillium wilt (Verticillium albo-atrum Rein. and Berth.), for black bacterial spotting (Xanthomonas vesicatoria Dows.), for tobacco mosaic virus Nicotiana 1 Smith), for streak virus (Nicotiana 1), for the combination TMV with X and Y potato viruses, for cucumber virus (Cucumis 1), and also for top rot. Fifty plants of each mutant line were evaluated and checks were made three times in each season. A comparison of the currant tomato mutants with the standard tomato varieties demonstrates the better resistance shown by the mutant germplasm to the main pathogens. The degree to which some currant tomato mutants were affected by Verticillium was lower than that of the most VerticiIlium-resistant samples of tomato evaluated between 1975 and 1981. The mutants of currant tomato should therefore be of interest as germplasm in breeding tomatoes for improved multiple disease resistance

  2. Sensitivity of HIV-1 to neutralization by antibodies against O-linked carbohydrate epitopes despite deletion of O-glycosylation signals in the V3 loop

    DEFF Research Database (Denmark)

    Hansen, J E; Jansson, B; Gram, G J

    1996-01-01

    It has been suggested that threonine or serine residues in the V3 loop of HIV-1 gp120 are glycosylated with the short-chain O-linked oligosaccharides Tn or sialosyl-Tn that function as epitopes for broadly neutralizing carbohydrate specific antibodies. In this study we examined whether mutation....... Additionally, one of these T-A mutants (T308A) also abrogated the signal for N-glycosylation at N306 inside the V3-loop. The mutant clones were compared with the wild type virus as to sensitivity to neutralization with monoclonal and polyclonal antibodies specific for the tip of the V3 loop of BRU or for the O......-linked oligosaccharides Tn or sialosyl-Tn. Deletion of the N-linked oligosaccharide at N306 increased the neutralization sensitivity to antibodies specific for the tip of the loop, which indicates that N-linked glycosylation modulates the accessibility to this immunodominant epitope. However, none of the mutants...

  3. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    Directory of Open Access Journals (Sweden)

    Bianca Schmid

    2015-12-01

    Full Text Available Dengue virus (DENV is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

  4. Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection [version 2; referees: 1 approved, 3 approved with reservations

    Directory of Open Access Journals (Sweden)

    Peter Wild

    2018-02-01

    Full Text Available Background: Herpesvirus capsids are assembled in the nucleus, translocated to the perinuclear space by budding, acquiring tegument and envelope, or released to the cytoplasm via impaired nuclear envelope. One model proposes that envelopment, “de-envelopment” and “re-envelopment” is essential for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the “primary” envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of alternative exit routes. Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1 or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1 by transmission and scanning electron microscopy, employing freezing technique protocols. Results:  The Golgi complex is a compact entity in a juxtanuclear position covered by a membrane on the cis face. Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced. Conclusions: The data suggest that virions derived by budding at nuclear membranes are intraluminally transported from the perinuclear space via Golgi -endoplasmic reticulum transitions into Golgi cisternae for packaging. Virions derived by budding at nuclear membranes are infective like Us3 deletion mutants, which  accumulate in the perinuclear space. Therefore, i de-envelopment followed by re-envelopment is not essential for production of infective progeny virus, ii the process taking place at the outer nuclear

  5. Efficacy of hepatitis B vaccine against antiviral drug-resistant hepatitis B virus mutants in the chimpanzee model.

    Science.gov (United States)

    Kamili, Saleem; Sozzi, Vitini; Thompson, Geoff; Campbell, Katie; Walker, Christopher M; Locarnini, Stephen; Krawczynski, Krzysztof

    2009-05-01

    Hepatitis B virus (HBV) mutants resistant to treatment with nucleoside or nucleotide analogs and those with the ability to escape from HBV-neutralizing antibody have the potential to infect HBV-vaccinated individuals. To address this potential serious public health challenge, we tested the efficacy of immunity induced by a commercial hepatitis B vaccine against a tissue culture-derived, clonal HBV polymerase mutant in HBV seronegative chimpanzees. The polymerase gene mutant contained a combination of three mutations (rtV173L, rtL180M, rtM204V), two of which resulted in changes to the overlapping viral envelope of the hepatitis B surface antigen (sE164D, sI195M). Prior to the HBV mutant challenge of vaccinated chimpanzees, we established virologic, serologic, and pathologic characteristics of infections resulting from intravenous inoculation of the HBV polymerase gene mutant and the sG145R vaccine-escape surface gene mutant. Cloning and sequencing experiments determined that the three mutations in the polymerase gene mutant remained stable and that the single mutation in the surface gene mutant reverted to the wild-type sequence. Immunological evidence of HBV replication was observed in the vaccinated chimpanzees after challenge with the polymerase gene mutant as well as after rechallenge with serum-derived wild-type HBV (5,000 chimpanzee infectious doses administered intravenously), despite robust humoral and cellular anti-HBV immune responses after hepatitis B vaccination. Our data showing successful experimental infection by HBV mutants despite the presence of high anti-HBs levels considered protective in the vaccinated host are consistent with clinical reports on breakthrough infection in anti-HBs-positive patients infected with HBV mutants. In the absence of a protective humoral immunity, adaptive cellular immune responses elicited by infection may limit HBV replication and persistence.

  6. Crystallization of mutants of Turnip yellow mosaic virus protease/ubiquitin hydrolase designed to prevent protease self-recognition.

    Science.gov (United States)

    Ayach, Maya; Bressanelli, Stéphane

    2015-04-01

    Processing of the polyprotein of Turnip yellow mosaic virus is mediated by the protease PRO. PRO cleaves at two places, one of which is at the C-terminus of the PRO domain of another polyprotein molecule. In addition to this processing activity, PRO possesses an ubiquitin hydrolase (DUB) activity. The crystal structure of PRO has previously been reported in its polyprotein-processing mode with the C-terminus of one PRO inserted into the catalytic site of the next PRO, generating PRO polymers in the crystal packing of the trigonal space group. Here, two mutants designed to disrupt specific PRO-PRO interactions were generated, produced and purified. Crystalline plates were obtained by seeding and cross-seeding from initial `sea urchin'-like microcrystals of one mutant. The plates diffracted to beyond 2 Å resolution at a synchrotron source and complete data sets were collected for the two mutants. Data processing and analysis indicated that both mutant crystals belonged to the same monoclinic space group, with two molecules of PRO in the asymmetric unit.

  7. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Science.gov (United States)

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  8. Potential complications when developing gene deletion clones in Xylella fastidiosa.

    Science.gov (United States)

    Johnson, Kameka L; Cursino, Luciana; Athinuwat, Dusit; Burr, Thomas J; Mowery, Patricia

    2015-04-16

    The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce's disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.

  9. Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis.

    Science.gov (United States)

    Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk

    2011-02-01

    Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.

  10. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    Science.gov (United States)

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  11. Structural and Functional Consequences of Chaperone Site Deletion in αA-Crystallin

    Science.gov (United States)

    Santhoshkumar, Puttur; Karmakar, Srabani; Sharma, Krishna K.

    2016-01-01

    The chaperone-like activity of αA-crystallin has an important role in maintaining lens transparency. Previously we identified residues 70–88 as a chaperone site in αA-crystallin. In this study, we deleted the chaperone site residues to generate αAΔ70–76 and αAΔ70–88 mutants and investigated if there are additional substrate-binding sites in αA-crystallin. Both mutant proteins when expressed in E. coli formed inclusion bodies, and on solubilizing and refolding, they exhibited similar structural properties, with a 2- to 3-fold increase in molar mass compared to the molar mass of wild-type protein. The deletion mutants were less stable than the wild-type αA-crystallin. Functionally αAΔ70–88 was completely inactive as a chaperone, while αAΔ70–76 demonstrated a 40–50% reduction in anti-aggregation activity against alcohol dehydrogenase (ADH). Deletion of residues 70–88 abolished the ADH binding sites in αA-crystallin at physiological temperature. At 45 °C, cryptic ADH binding site(s) became exposed, which contributed subtly to the chaperone-like activity of αAΔ70–88. Both of the deletion mutants were completely inactive in suppressing aggregation of βL-crystallin at 53 °C. The mutants completely lost the anti-apoptotic property that αA-crystallin exhibits while they protected ARPE-19 (a human retinal pigment epithelial cell line) and primary human lens epithelial (HLE) cells from oxidative stress. Our studies demonstrate that residues 70–88 in αA-crystallin act as a primary substrate binding site and account for the bulk of the total chaperone activity. The β3 and β4 strands in αA-crystallin comprising 70–88 residues play an important role in maintenance of the structure and in preventing aggregation of denaturing proteins. PMID:27524665

  12. [Gene deletion and functional analysis of the heptyl glycosyltransferase (waaF) gene in Vibrio parahemolyticus O-antigen cluster].

    Science.gov (United States)

    Zhao, Feng; Meng, Songsong; Zhou, Deqing

    2016-02-04

    To construct heptyl glycosyltransferase gene II (waaF) gene deletion mutant of Vibrio parahaemolyticus, and explore the function of the waaF gene in Vibrio parahaemolyticus. The waaF gene deletion mutant was constructed by chitin-based transformation technology using clinical isolates, and then the growth rate, morphology and serotypes were identified. The different sources (O3, O5 and O10) waaF gene complementations were constructed through E. coli S17λpir strains conjugative transferring with Vibrio parahaemolyticus, and the function of the waaF gene was further verified by serotypes. The waaF gene deletion mutant strain was successfully constructed and it grew normally. The growth rate and morphology of mutant were similar with the wild type strains (WT), but the mutant could not occurred agglutination reaction with O antisera. The O3 and O5 sources waaF gene complementations occurred agglutination reaction with O antisera, but the O10 sources waaF gene complementations was not. The waaF gene was related with O-antigen synthesis and it was the key gene of O-antigen synthesis pathway in Vibrio parahaemolyticus. The function of different sources waaF gene were not the same.

  13. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4+ and CD8+ T Cells

    Science.gov (United States)

    Retamal-Díaz, Angello R.; Kalergis, Alexis M.; Bueno, Susan M.; González, Pablo A.

    2017-01-01

    Herpes simplex virus type 2 (HSV-2) is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses. PMID:28848543

  14. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4+ and CD8+ T Cells

    Directory of Open Access Journals (Sweden)

    Angello R. Retamal-Díaz

    2017-08-01

    Full Text Available Herpes simplex virus type 2 (HSV-2 is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses.

  15. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line

    International Nuclear Information System (INIS)

    Nakamura, Yohko; Ozaki, Toshinori; Niizuma, Hidetaka; Ohira, Miki; Kamijo, Takehiko; Nakagawara, Akira

    2007-01-01

    p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53ΔC) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53ΔC was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain

  16. Characterization of Saccharomyces cerevisiae suppressor mutants devoid of the membrane lipid phosphatidylcholine

    NARCIS (Netherlands)

    Bao, X.

    2018-01-01

    Phosphatidylcholine (PC) is the most abundant membrane lipid in most eukaryotes and considered essential. The yeast double deletion mutant cho2opi3 lacks the methyltransferases converting phosphatidylethanolamine (PE) to PC. As a consequence, the cho2opi3 mutant is a choline auxotroph that relies on

  17. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene

    International Nuclear Information System (INIS)

    Shitsukawa, N.; Ikari, C.; Shimada, S.; Kitagawa, S.; Sakamoto, K.; Saito, H.; Ryuto, H.; Fukunishi, N.; Abe, T.; Takumi, S.; Nasuda, S.; Murai, K.

    2007-01-01

    The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1

  18. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  19. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France); Chapuis, Sophie [Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l’Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg (France); Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France); Revers, Frédéric [INRA, Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon (France); Ziegler-Graff, Véronique [Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l’Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg (France); Brault, Véronique, E-mail: veronique.brault@colmar.inra.fr [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France)

    2015-12-15

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT{sub Cter}) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RT{sub Cter}. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT{sub Cter} in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.

  20. The Yeast Deletion Collection: A Decade of Functional Genomics

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  1. Deletion of the M2-2 gene from avian metapneumovirus subgroup C impairs virus replication and immunogenicity in Turkeys.

    Science.gov (United States)

    Yu, Qingzhong; Estevez, Carlos N; Roth, Jason P; Hu, Haixia; Zsak, Laszlo

    2011-06-01

    The second matrix (M2) gene of avian metapneumovirus subgroup C (aMPV-C) contains two overlapping open reading frames (ORFs), encoding two putative proteins, M2-1 and M2-2. Both proteins are believed to be involved in viral RNA transcription or replication. To further characterize the function of the M2-2 protein in virus replication, the non-overlapping region of the M2-2 ORF was deleted from an infectious cDNA clone of the aMPV-C strain, and a viable virus was rescued by using reverse genetics technology. The recombinant virus, raMPV-C ΔM2-2, was characterized in vitro and in vivo. In Vero cells, raMPV-C ΔM2-2 replicated slightly less efficiently than the parental virus, 10-fold reduction at 48-h post-infection. The raMPV-C ΔM2-2 virus induced typical cytopathic effects (CPE) that were indistinguishable from those seen with the parental virus infection. In specific-pathogen-free (SPF) turkeys, raMPV-C ΔM2-2 was attenuated and caused no clinical signs of disease. Less than 20% of the inoculated birds shed detectable virus in tracheal tissue during the first 5 days post-infection, and no virus shedding was detected afterward. Forty percent of infected birds produced a weak antibody response at 14 days post-infection. Upon challenge with a virulent aMPV-C strain, more than 80% of the raMPV-C ΔM2-2-inoculated birds showed typical disease signs and virus shedding in tracheal tissue. These results suggest that the M2-2 protein of aMPV-C virus is not essential for virus replication in vitro, but is required for sufficient virus replication to maintain pathogenicity and immunogenicity in the natural host.

  2. Oncolytic Replication of E1b-Deleted Adenoviruses

    Directory of Open Access Journals (Sweden)

    Pei-Hsin Cheng

    2015-11-01

    Full Text Available Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption.

  3. ac18 is not essential for the propagation of Autographa californica multiple nucleopolyhedrovirus

    International Nuclear Information System (INIS)

    Wang Yanjie; Wu Wenbi; Li Zhaofei; Yuan Meijin; Feng Guozhong; Yu Qian; Yang Kai; Pang Yi

    2007-01-01

    orf18 (ac18) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this study, an ac18 knockout AcMNPV bacmid was generated to determine the role of ac18 in baculovirus life cycle. After transfection of Sf-9 cells, the ac18-null mutant showed similar infection pattern to the parent virus and the ac18 repair virus with respect to the production of infectious budded virus, occlusion bodies, or the formation of nucleocapsids as visualized by electron microscopy. The deletion mutant did not reduce AcMNPV infectivity for Trichoplusia ni in LD 50 bioassay; however, it did take 24 h longer for deleted mutant to kill T. ni larvae than wild-type virus in LT 50 bioassay. Our results demonstrate that ac18 is not essential for viral propagation both in vitro and in vivo, but it may play a role in efficient virus infection in T. ni larvae

  4. Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia guyanensis.

    Directory of Open Access Journals (Sweden)

    Rubens Monte-Neto

    2015-02-01

    Full Text Available Antimony resistance complicates the treatment of infections caused by the parasite Leishmania.Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1. Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion.This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites.

  5. Molecular and biochemical analyses of spontaneous and X-ray-induced mutants in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Liber, H L; Call, K M; Little, J B

    1987-05-01

    The authors have isolated a series of 14 spontaneously arising and 28 X-ray-induced mutants at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in human lymphoblastoid cells. Among the spontaneous mutants, 5/14 (36%) had detectable alterations in their restriction fragment pattern after hybridization with a human cDNA probe for hgprt. Of the 10 remaining mutants, 4 had partial HGPRT enzyme activity, which suggested that they contained point mutations. Among the 28 mutants induced by 150 rad of X-rays, 15 (54%) had deletions of part or all of the hgprt gene. Of the remaining 13 (18% overall) 5 had partial HGPRT enzyme activity, which suggested that they contained point mutations. These data imply that in this human cell system, X-rays induce both point mutants which have residual enzyme activity as well as mutations involving relatively large deletions of DNA. 48 reference, 1 figure, 4 tables.

  6. Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus

    International Nuclear Information System (INIS)

    Papadopoulo, D.; Guillouf, C.; Moustacchi, E.; Mohrenweiser, H.

    1990-01-01

    Fanconi anemia (FA) is an inherited human disorder associated with a predisposition to cancer and characterized by anomalies in the processing of DNA cross-links and certain monoadducts. The authors reported previously that the frequency of psoralen-photoinduced mutations at the HPRT locus is lower in FA cells than in normal cells. This hypomutability is shown here to be associated with an increased frequency of deletions in the HPRT gene when either a mixture of cross-links and monoadducts or monoadducts alone are induced. Molecular analysis of mutants in the HPRT gene was carried out. In normal cells the majority of spontaneous and induced mutants are point mutations whereas in FA deletion mutations predominate. In that case a majority of mutants were found to lack individual exons or small clusters of exons whereas in normal cells large (complete or major gene loss) and small deletions are almost equally represented. Thus they propose that the FA defect lies in a mutagenic pathway that, in normal cells, involves by passing lesions and subsequent gap filling by a recombinational process during replication

  7. Telomeric 1p36.3 deletion and Ki-67 expression in B-Non-Hodgkin's Lymphoma patients associated with chronic hepatitis C virus infection.

    Science.gov (United States)

    Mosad, E; Said Abd El-Rahman Allam, M; Moustafa, H M; Mohammed, A Eliaw; El kebeer, A M; Abdel-Moneim, S S

    2014-12-01

    The hepatitis C virus (HCV) core protein is able to accumulate genetic p53 mutations and may be considered co-oncogenic. This study investigates 1p36.3 telomere deletion in B-non-Hodgkin's lymphoma (NHL) patients with chronic HCV infection using fluorescence in situ hybridization (FISH) in relation to survival to assess Ki-67 antigen expression. A study group and a control group of 100 patients with B-NHL (50 HCV positive and 50 HCV negative) and 60 control bone marrow biopsies were subjected to FISH for the detection of 1P36.3 deletion and to immunohistochemical staining with Ki-67 antigens. 1p36.3 deletion by FISH was detected in 40% of the study group, and Ki-67 was expressed in approximately 74% of patients. A significant difference was found between positive and negative HCV patients in their overall survival, the qualitative expression of Ki-67 and the quantitative detection of 1p36.3 deletion by FISH. The overall survival was shorter with the presence of an 1p36 deletion by FISH and HCV positive. We concluded that the coexistence of Ki-67 positivity, HCV positivity and 1p36.3 deletion may contribute to infection-related cancers at the 1p36.3 locus. © 2014 John Wiley & Sons Ltd.

  8. Replication-dependent 65R→K reversion in human immunodeficiency virus type 1 reverse transcriptase double mutant K65R + L74V

    International Nuclear Information System (INIS)

    Sharma, Prem L.; Nurpeisov, Viktoria; Lee, Kimberly; Skaggs, Sara; Di San Filippo, Christina Amat; Schinazi, Raymond F.

    2004-01-01

    Understanding of the mechanisms of interaction among nucleoside reverse transcriptase inhibitor (NRTI)-selected mutations in the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) coding sequence is essential for the design of newer drugs and for enhancing our vision of the structure function relationship among amino acids of the polymerase domain of HIV-1. Although several nucleoside reverse transcriptase inhibitors select RT mutations K65R and L74V, the combination of 65R + 74V is rare in clinics. A novel NRTI (-)-β-D-dioxolane-guanosine (DXG) is known to select in vitro either the 65R or 74V mutant virus (Antimicrob. Agents Chemother. 44 (2000) 1783). These mutations were not selected together during repeated passaging of the HIV-1 in the presence of this drug. To analyze the impact of these RT mutations on viral replication, a double mutant containing K65R + L74V was created by site-directed mutagenesis in a pNL4-3 background. Replication kinetic assays revealed that the mutant K65R + L74V is unstable, and 65R→K reversion occurs during replication of virus in phytohemagglutinin (PHA)-stimulated human peripheral blood mononuclear (PBM) cells in the absence of selection pressure. Replication kinetic assays in MT-2 cells demonstrated that double mutant 65R + 74V is highly attenuated for replication and the initiation of reversion is related to the increase in RT activity. Additionally, the suppression of viral replication in the presence of DXG or under suboptimal human recombinant interleukin-2 leads to minimal or no 65R→K reversion. These observations provide evidence that 65R→K reversion in the double mutant 65R + 74V is dependent on a specific rate of viral replication in a pNL4-3 background. A similar phenomenon may occur in vivo, which may have implications for treatment management strategies

  9. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.

    Science.gov (United States)

    Baba, Tomoya; Ara, Takeshi; Hasegawa, Miki; Takai, Yuki; Okumura, Yoshiko; Baba, Miki; Datsenko, Kirill A; Tomita, Masaru; Wanner, Barry L; Mori, Hirotada

    2006-01-01

    We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants-the 'Keio collection'-provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).

  10. Spontaneous and radiation-induced leukemogenesis of the mouse small eye mutant, Pax6Sey3H

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Satoh, Kenichi; Yoshida, Kazuko; Senba, Kei; Nakagata, Naomi; Peters, J.; Cattanach, B.M.

    2004-01-01

    Allelic loss on the chromosome 2 is associated with radiation-induced murine acute myeloid leukemia. However, the gene, which contributes mainly to the leukemogenesis has not yet been identified. Expecting any predisposition to acute myeloid leukemia, we performed a radiation leukemogenesis experiment with Pax6 SeY3H , one of the small eye mutants carrying a congenital hemizygosity of the chromosome 2 middle region. A deletion mapping of Pax6 SeY3H with 50 sequence-tagged site (STS) markers indicated that the deleted segment extended between the 106.00 and 111.47 Mb site from the centromere with a length of 5.47 Mb. In the deleted segment, 6 known and 17 novel genes were located. Pax6 SeY3H mutants that crossed back into C3H/He did not develop myeloid leukemia spontaneously, but they did when exposed to gamma-rays. The final incidence of myeloid leukemia in mutants (25.8%) was as high as that in normal sibs (21.4%). Survival curves of leukemia-bearing mutants shifted toward the left (p=0.043 by the Log rank test). F1 hybrids of Pax6 SeY3H with JF1 were less susceptible to radiation than Pax6 SeY3H onto C3H/He in regard to survival (p=0.003 and p<0.00001 for mutants and normal sibs, respectively, by a test of the difference between two proportions). Congenital deletion of the 5.47 Mb segment at the middle region on chromosome 2 alone did not trigger myeloid stem cells to expand clonally in vivo; however, the deletion shortcut the latency of radiation-induced myeloid leukemia. (author)

  11. Studies on the Nucleotide Sequence, Transcription and Deletion Analysis of the BmNPV Protein Kinase Gene.

    Science.gov (United States)

    Zhang, Chuan-Xi; Hu, Cui; Wu, Xiang-Fu

    1998-01-01

    The coding region of BmvPK-1 gene of Bombyx mori NPV (Strain ZJ8) is 828 nt long and encodes a 276 aa polypeptide with predicted molecular mass of 32 kD. Dot blot analysis showed its mRNA to be gene is first detectable at 18 h p.i. and reaching the highest transcriptional level at 48 h p.i. The result suggested that BmvPK-1 gene is a late or very late gene. The most conserved 365 bp of the BmvPK-1 gene was deleted in a transfer vector (pUCPK-lac), and a report gene (lacZ) was inserted in the deleted position. Cotransfection of BmN cells with pUCPK-lac DNA and BmNPV DNA resulted in the recombinant virus which expressed detectable product of lacZ gene. But the virus with the deleted BmvPK-1 gene could not be isolated from the wild BmNPV by plaque purification method. The result showed that the BmvPK-1 gene deleted virus can multiply only with the help of the product of this gene from the wild type virus, and the gene is necessary for the virus to finish its life cycle in the cultured cells.

  12. Influence of minor displacements in loops of the porcine parvovirus VP2 capsid on virus-like particles assembly and the induction of antibody responses.

    Science.gov (United States)

    Pan, Qunxing; He, Kongwang; Wang, Yongshan; Wang, Xiaoli; Ouyang, Wei

    2013-06-01

    An antigen-delivery system based on hybrid virus-like particles (VLPs) formed by the self-assembly of the capsid VP2 protein of porcine parvovirus (PPV) and expressing foreign peptides offers an alternative method for vaccination. In this study, the three-dimensional structure of the PPV capsid protein and surface loops deletion mutants were analyzed to define essential domains in PPV VP2 for the assembly of VLPs. Electron microscopic analysis and SDS-PAGE analysis confirmed the presence of abundant VLPs in a loop2 deletion mutant of expected size and appropriate morphology. Loop4 and loop2-loop4 deletion mutants, however, resulted in a lower number of particles and the morphology of the particles was not well preserved. Furthermore, the green fluorescent protein (gfp) gene was used as a model. GFP was observed at the same level in displacements mutants. However, GFP displacement mutants in loop2 construct allowed better adaptation for the fusion GFP to be further displayed on the surface of the capsid-like structure. Immunogenicity study showed that there is no obvious difference in mice inoculated with rAd-VP2(Δloop2), rAd-VP2(Δloop4), rAd-VP2(Δloop2-Δloop4), and PPV inactivated vaccine. The results suggested the possibility of inserting simultaneously B and T cell epitopes in the surface loop2 and the N-terminus. The combination of different types of epitopes (B, CD4+, and CD8+) in different positions of the PPV particles opens the way to the development of highly efficient vaccines, able to stimulate at the same time the different branches of the immune system.

  13. Agrobacterium-mediated transformation of grapefruit with the wild-type and mutant RNA-dependent RNA polymerase genes of Citrus tristeza virus

    Science.gov (United States)

    Citrus paradisi Macf. cv. Duncan was transformed with constructs coding for the wild-type and mutant RNA-dependent RNA polymerase (RdRp) of Citrus tristeza virus (CTV) for exploring replicase-mediated pathogen-derived resistance (RM-PDR). The RdRp gene was amplified from CTV genome and used to gener...

  14. Disruption of M-T5, a novel myxoma virus gene member of poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits.

    Science.gov (United States)

    Mossman, K; Lee, S F; Barry, M; Boshkov, L; McFadden, G

    1996-07-01

    Myxoma virus is a pathogenic poxvirus that induces a lethal myxomatosis disease profile in European rabbits, which is characterized by fulminating lesions at the primary site of inoculation, rapid dissemination to secondary internal organs and peripheral external sites, and supervening gram-negative bacterial infection. Here we describe the role of a novel myxoma virus protein encoded by the M-T5 open reading frame during pathogenesis. The myxoma virus M-T5 protein possesses no significant sequence homology to nonviral proteins but is a member of a larger poxviral superfamily designated host range proteins. An M-T5- mutant virus was constructed by disruption of both copies of the M-T5 gene followed by insertion of the selectable marker p7.5Ecogpt. Although the M-T5- deletion mutant replicated with wild-type kinetics in rabbit fibroblasts, infection of a rabbit CD4+ T-cell line (RL5) with the myxoma virus M-T5- mutant virus resulted in the rapid and complete cessation of both host and viral protein synthesis, accompanied by the manifestation of all the classical features of programmed cell death. Infection of primary rabbit peripheral mononuclear cells with the myxoma virus M-T5-mutant virus resulted in the apoptotic death of nonadherent lymphocytes but not adherent monocytes. Within the European rabbit, disruption of the M-T5 open reading frame caused a dramatic attenuation of the rapidly lethal myxomatosis infection, and none of the infected rabbits displayed any of the characteristic features of myxomatosis. The two most significant histological observations in rabbits infected with the M-T5-mutant virus were (i) the lack of progression of the infection past the primary site of inoculation, coupled with the establishment of a rapid and effective inflammatory reaction, and (ii) the inability of the virus to initiate a cellular reaction within secondary immune organs. We conclude that M-T5 functions as a critical virulence factor by allowing productive infection of

  15. Significance of Coronavirus Mutants in Feces and Diseased Tissues of Cats Suffering from Feline Infectious Peritonitis

    Directory of Open Access Journals (Sweden)

    Niels C. Pedersen

    2009-08-01

    Full Text Available The internal FECV→FIPV mutation theory and three of its correlates were tested in four sibs/half-sib kittens, a healthy contact cat, and in four unrelated cats that died of FIP at geographically disparate regions. Coronavirus from feces and extraintestinal FIP lesions from the same cat were always >99% related in accessory and structural gene sequences. SNPs and deletions causing a truncation of the 3c gene product were found in almost all isolates from the diseased tissues of the eight cats suffering from FIP, whereas most, but not all fecal isolates from these same cats had intact 3c genes. Other accessory and structural genes appeared normal in both fecal and lesional viruses. Deliterious mutations in the 3c gene were unique to each cat, indicating that they did not originate in one cat and were subsequently passed horizontally to the others. Compartmentalization of the parental and mutant forms was not absolute; virus of lesional type was sometimes found in feces of affected cats and virus identical to fecal type was occasionally identified in diseased tissues. Although 3c gene mutants in this study were not horizontally transmitted, the parental fecal virus was readily transmitted by contact from a cat that died of FIP to its housemate. There was a high rate of mutability in all structural and accessory genes both within and between cats, leading to minor genetic variants. More than one variant could be identified in both diseased tissues and feces of the same cat. Laboratory cats inoculated with a mixture of two closely related variants from the same FIP cat developed disease from one or the other variant, but not both. Significant genetic drift existed between isolates from geographically distinct regions of the Western US.

  16. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis.

    Science.gov (United States)

    Pedersen, Niels C; Liu, Hongwei; Dodd, Kimberly A; Pesavento, Patricia A

    2009-09-01

    The internal FECV→FIPV mutation theory and three of its correlates were tested in four sibs/half-sib kittens, a healthy contact cat, and in four unrelated cats that died of FIP at geographically disparate regions. Coronavirus from feces and extraintestinal FIP lesions from the same cat were always >99% related in accessory and structural gene sequences. SNPs and deletions causing a truncation of the 3c gene product were found in almost all isolates from the diseased tissues of the eight cats suffering from FIP, whereas most, but not all fecal isolates from these same cats had intact 3c genes. Other accessory and structural genes appeared normal in both fecal and lesional viruses. Deliterious mutations in the 3c gene were unique to each cat, indicating that they did not originate in one cat and were subsequently passed horizontally to the others. Compartmentalization of the parental and mutant forms was not absolute; virus of lesional type was sometimes found in feces of affected cats and virus identical to fecal type was occasionally identified in diseased tissues. Although 3c gene mutants in this study were not horizontally transmitted, the parental fecal virus was readily transmitted by contact from a cat that died of FIP to its housemate. There was a high rate of mutability in all structural and accessory genes both within and between cats, leading to minor genetic variants. More than one variant could be identified in both diseased tissues and feces of the same cat. Laboratory cats inoculated with a mixture of two closely related variants from the same FIP cat developed disease from one or the other variant, but not both. Significant genetic drift existed between isolates from geographically distinct regions of the Western US.

  17. Subcellular localization of hepatitis E virus (HEV) replicase

    International Nuclear Information System (INIS)

    Rehman, Shagufta; Kapur, Neeraj; Durgapal, Hemlata; Panda, Subrat Kumar

    2008-01-01

    Hepatitis E virus (HEV) is a hepatotropic virus with a single sense-strand RNA genome of ∼ 7.2 kb in length. Details of the intracellular site of HEV replication can pave further understanding of HEV biology. In-frame fusion construct of functionally active replicase-enhanced green fluorescent protein (EGFP) gene was made in eukaryotic expression vector. The functionality of replicase-EGFP fusion protein was established by its ability to synthesize negative-strand viral RNA in vivo, by strand-specific anchored RT-PCR and molecular beacon binding. Subcellular co-localization was carried out using organelle specific fluorophores and by immuno-electron microscopy. Fluorescence Resonance Energy Transfer (FRET) demonstrated the interaction of this protein with the 3' end of HEV genome. The results show localization of replicase on the endoplasmic reticulum membranes. The protein regions responsible for membrane localization was predicted and identified by use of deletion mutants. Endoplasmic reticulum was identified as the site of replicase localization and possible site of replication

  18. A deletion within glycoprotein L of Marek's disease virus (MDV) field isolates correlates with a decrease in bivalent MDV vaccine efficacy in contact-exposed chickens.

    Science.gov (United States)

    Tavlarides-Hontz, Phaedra; Kumar, Pankaj M; Amortegui, Juliana Rojas; Osterrieder, Nikolaus; Parcells, Mark S

    2009-06-01

    We examined the functional role of a naturally occurring deletion within the glycoprotein L (gL) gene of Marek's disease virus (MDV) field isolates. We previously showed that this mutation incrementally increased the virulence of an MDV in contact-exposed SPF leghorn chickens, when chickens shedding this virus were co-infected with herpesvirus of turkeys (HVT). In our present study, we examined this mutation using two stocks of the very virulent plus (vv+)MDV strain TK, one of which harbored this deletion (TK1a) while the other did not (TK2a). We report that TK1a replicating in vaccinated chickens overcame bivalent (HVT/SB1) vaccine protection in contact-exposed chickens. Treatment groups exposed to vaccinated chickens inoculated with a 1:1 mix of TK1a and TK2a showed decreased bivalent vaccine efficacy, and this decrease correlated with the prevalence of the gL deletion indicative of TK1a. These results were also found using quadruplicate treatment groups and bivalently vaccinated chickens obtained from a commercial hatchery. As this deletion was found in 25 out of 25 recent field isolates from Delaware, Maryland, North Carolina, Pennsylvania, and Virginia, we concluded that there is a strong selection for this mutation, which appears to have evolved in HVT or bivalently vaccinated chickens. This is the first report of a mutation in a vv+MDV field strain for which a putative biological phenotype has been discerned. Moreover, this mutation in gL has apparently been selected in MDV field isolates through Marek's disease vaccination.

  19. Reduction of Aspergillus niger Virulence in Apple Fruits by Deletion of the Catalase Gene cpeB.

    Science.gov (United States)

    Zhang, Meng-Ke; Tang, Jun; Huang, Zhong-Qin; Hu, Kang-Di; Li, Yan-Hong; Han, Zhuo; Chen, Xiao-Yan; Hu, Lan-Ying; Yao, Gai-Fang; Zhang, Hua

    2018-05-30

    Aspergillus niger, a common saprophytic fungus, causes rot in many fruits. We studied the role of a putative catalase-peroxidase-encoding gene, cpeB, in oxidative stress and virulence in fruit. The cpeB gene was deleted in A. niger by homologous recombination, and the Δ cpeB mutant showed decreased CAT activity compared with that of the wild type. The cpeB gene deletion caused increased sensitivity to H 2 O 2 stress, and spore germination was significantly reduced; in addition, the reactive-oxygen-species (ROS) metabolites superoxide anions (·O 2 - ), hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) accumulated in the Δ cpeB mutant during H 2 O 2 stress. Furthermore, ROS metabolism in A. niger infected apples was determined, and our results showed that the Δ cpeB mutant induced an attenuated response in apple fruit during the fruit-pathogen interaction; the cpeB gene deletion significantly reduced the development of lesions, suggesting that the cpeB gene in A. niger is essential for full virulence in apples.

  20. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Attempts to induce mutants resistant or tolerant to golden mosaic virus in dry beans (Phaseolus vulgaris)

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Ando, A.; Costa, A.S.

    1977-01-01

    The golden mosaic of dry beans (Phaseolus vulgaris L.) that is present in the tropical parts of the American continent has become a major hindrance for the cultivation of this food legume of great importance to many Latin America countries. Good control measures are not known and bean germ plasm resistant or tolerant to this virus disease is not yet available. Attempts to induce bean mutants with this desirable characteristic were made using gamma radiation and chemical mutagen. Some M 2 plants from one progeny of the cultivar Carioca treated with 0.48% ethyl methane sulphonate (EMS), 6 hours of treatment at 20 0 C, showed milder symptoms than the control progenies, and at the same time they showed a tendency to recover. This mutant is being tested under field conditions and used in crosses with other bean types that show a certain degree of tolerance, aiming at adding the favourable characters of both parents. Seeds of the hybrids, as well as those of the parent types, are also being further submitted to mutagenic treatments in order to obtain still better mutants that will be satisfactory for direct or indirect control of bean golden mosaic. (author)

  2. Herpes Simplex Virus 1 Us3 Deletion Mutant is Infective Despite Impaired Capsid Translocation to the Cytoplasm

    Directory of Open Access Journals (Sweden)

    Peter Wild

    2015-01-01

    Full Text Available Herpes simplex virus 1 (HSV-1 capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i The number of R7041(∆US3 capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii The mean number of R7041(∆US3 virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii 98% of R7041(∆US3 virions were in the perinuclear space; (iv The number of R7041(∆US3 capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3 yields were 2.37 × 108 and HSV-1 yields 1.57 × 108 PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3 virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.

  3. Ire1 mediated mRNA splicing in a C-terminus deletion mutant of Drosophila Xbp1.

    Directory of Open Access Journals (Sweden)

    Dina S Coelho

    Full Text Available The Unfolded Protein Response is a homeostatic mechanism that permits eukaryotic cells to cope with Endoplasmic Reticulum (ER stress caused by excessive accumulation of misfolded proteins in the ER lumen. The more conserved branch of the UPR relies on an ER transmembrane enzyme, Ire1, which, upon ER stress, promotes the unconventional splicing of a small intron from the mRNA encoding the transcription factor Xbp1. In mammals, two specific regions (the hydrophobic region 2--HR2--and the C-terminal translational pausing site present in the Xbp1unspliced protein mediate the recruitment of the Xbp1 mRNA-ribosome-nascent chain complex to the ER membrane, so that Xbp1 mRNA can be spliced by Ire1. Here, we generated a Drosophila Xbp1 deletion mutant (Excision101 lacking both HR2 and C-terminal region, but not the Ire1 splicing site. We show that Ire1-dependent splicing of Xbp1 mRNA is reduced, but not abolished in Excision101. Our results suggest the existence of additional mechanisms for ER membrane targeting of Xbp1 mRNA that are independent of the C-terminal domain of Drosophila Xbp1unspliced.

  4. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation

    International Nuclear Information System (INIS)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-01-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT_C_t_e_r) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RT_C_t_e_r. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT_C_t_e_r in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.

  5. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    Science.gov (United States)

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2017-06-15

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism. Experimental Design: We used EGFR -mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR. Results: EGFR -mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR -mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR -T790M mutations. Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR -mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139-49. ©2016 AACR . ©2016 American Association for Cancer Research.

  6. Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation.

    Science.gov (United States)

    Toyama, H; Anthony, C; Lidstrom, M E

    1998-09-01

    Methylobacterium extorquens AM1 is a pink-pigmented facultative methylotroph which is widely used for analyzing pathways of C1 metabolism with biochemical and molecular biological techniques. To facilitate this approach, we have applied a new method to construct insertion or disruption mutants with drug resistance genes by electroporation. By using this method, mutants were obtained in four genes present in the mxa methylotrophy gene cluster for which the functions were unknown, mxaR, mxaS, mxaC and mxaD. These mutants were unable to grow on methanol except the mutant of mxaD, which showed reduced growth on methanol.

  7. Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells

    Directory of Open Access Journals (Sweden)

    Yan Mylene L

    2011-08-01

    Full Text Available Abstract Background Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1 gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. Results Five commercially available animal-component free, serum-free media (SFM were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. Conclusions We describe for the

  8. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae.

    Science.gov (United States)

    Zhang, Silai; Ban, Akihiko; Ebara, Naoki; Mizutani, Osamu; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2017-04-01

    In this study, we developed a self-excising Cre/loxP-mediated marker recycling system with mutated lox sequences to introduce a number of biosynthetic genes into Aspergillus oryzae. To construct the self-excising marker cassette, both the selectable marker, the Aspergillus nidulans adeA gene, and the Cre recombinase gene (cre), conditionally expressed by the xylanase-encoding gene promoter, were designed to be located between the mutant lox sequences, lox66 and lox71. However, construction of the plasmid failed, possibly owing to a slight expression of cre downstream of the fungal gene promoter in Escherichia coli. Hence, to avoid the excision of the cassette in E. coli, a 71-bp intron of the A. oryzae xynG2 gene was inserted into the cre gene. The A. oryzae adeA deletion mutant was transformed with the resulting plasmid in the presence of glucose, and the transformants were cultured in medium containing xylose as the sole carbon source. PCR analysis of genomic DNA from resultant colonies revealed the excision of both the marker and Cre expression construct, indicating that the self-excising marker cassette was efficient at removing the selectable marker. Using the marker recycling system, hyperproduction of kojic acid could be achieved in A. oryzae by the introduction of two genes that encode oxidoreductase and transporter. Furthermore, we also constructed an alternative marker recycling cassette bearing the A. nidulans pyrithiamine resistant gene (ptrA) as a dominant selectable marker. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. The smt-0 mutation which abolishes mating-type switching in fission yeast is a deletion

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1993-01-01

    Mating-type switching in the fission yeast, S. pombe, is initiated by a DNA double-strand break (DSB) between the mat1 cassette and the H1 homology box. The mat1-cis-acting mutant, smt-0, abolishes mating-type switching and is shown here to be a 263-bp deletion. This deletion starts in the middle...

  10. Two Novel Motifs of Watermelon Silver Mottle Virus NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity.

    Science.gov (United States)

    Huang, Chung-Hao; Hsiao, Weng-Rong; Huang, Ching-Wen; Chen, Kuan-Chun; Lin, Shih-Shun; Chen, Tsung-Chi; Raja, Joseph A J; Wu, Hui-Wen; Yeh, Shyi-Dong

    2015-01-01

    The NSs protein of Watermelon silver mottle virus (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in Nicotiana benthamiana plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) ((109)KFTMHNQ(117)), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal β-sheet motif ((397)IYFL(400)) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated Zucchini yellow mosaic virus vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism.

  11. Mutation of mapped TIA-1/TIAR binding sites in the 3' terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification.

    Science.gov (United States)

    Emara, Mohamed M; Liu, Hsuan; Davis, William G; Brinton, Margo A

    2008-11-01

    Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.

  12. Role of Bunyamwera Orthobunyavirus NSs protein in infection of mosquito cells.

    Science.gov (United States)

    Szemiel, Agnieszka M; Failloux, Anna-Bella; Elliott, Richard M

    2012-01-01

    Bunyamwera orthobunyavirus is both the prototype and study model of the Bunyaviridae family. The viral NSs protein seems to contribute to the different outcomes of infection in mammalian and mosquito cell lines. However, only limited information is available on the growth of Bunyamwera virus in cultured mosquito cells other than the Aedes albopictus C6/36 line. To determine potential functions of the NSs protein in mosquito cells, replication of wild-type virus and a recombinant NSs deletion mutant was compared in Ae. albopictus C6/36, C7-10 and U4.4 cells, and in Ae. aegypti Ae cells by monitoring N protein production and virus yields at various times post infection. Both viruses established persistent infections, with the exception of NSs deletion mutant in U4.4 cells. The NSs protein was nonessential for growth in C6/36 and C7-10 cells, but was important for productive replication in U4.4 and Ae cells. Fluorescence microscopy studies using recombinant viruses expressing green fluorescent protein allowed observation of three stages of infection, early, acute and late, during which infected cells underwent morphological changes. In the absence of NSs, these changes were less pronounced. An RNAi response efficiently reduced virus replication in U4.4 cells transfected with virus specific dsRNA, but not in C6/36 or C7/10 cells. Lastly, Ae. aegypti mosquitoes were exposed to blood-meal containing either wild-type or NSs deletion virus, and at various times post-feeding, infection and disseminated infection rates were measured. Compared to wild-type virus, infection rates by the mutant virus were lower and more variable. If the NSs deletion virus was able to establish infection, it was detected in salivary glands at 6 days post-infection, 3 days later than wild-type virus. Bunyamwera virus NSs is required for efficient replication in certain mosquito cell lines and in Ae. aegypti mosquitoes.

  13. Deletion analysis of the expression of rRNA genes and associated tRNA genes carried by a lambda transducing bacteriophage

    International Nuclear Information System (INIS)

    Morgan, E.A.; Nomura, M.

    1979-01-01

    Transducing phage lambda ilv5 carries genes for rRNA's, spacer tRNA's (tRNA 1 /sup Ile/ and tRNA/sub 1B//sup Ala/), and two other tRNA's (tRNA 1 /sup Asp/ and tRNA/sup Trp/). We have isolated a mutant of lambda ilv5, lambda ilv5su7, which carries an amber suppressor mutation in the tRNA/sup Trp/ gene. A series of deletion mutants were isolated from the lambda ilv5su7 phage. Genetic and biochemical analyses of these deletion mutants have confirmed our previous conclusion that the genes for tRNA 1 /sup Asp/ and tRNA/sup Trp/ located at the distal end of the rRNA operon (rrnC) are cotranscribed with other rRNA genes in that operon. In addition, these deletions were used to define roughly the physical location of the promoter(s) of the rRNA operon carried by the lambda ilv5su7 transducing phage

  14. A novel inactivated gE/gI deleted pseudorabies virus (PRV) vaccine completely protects pigs from an emerged variant PRV challenge.

    Science.gov (United States)

    Gu, Zhenqing; Dong, Jing; Wang, Jichun; Hou, Chengcai; Sun, Haifeng; Yang, Wenping; Bai, Juan; Jiang, Ping

    2015-01-02

    A highly virulent and antigenic variant of pseudorabies virus (PRV) broke out in China at the end of 2011 and caused great economic loss in the pig industry. In this study, an infectious bacterial artificial chromosome (BAC) clone containing the full-length genome of the emerged variant PRV ZJ01 strain was generated. The BAC-derived viruses, vZJ01-GFPΔgE/gI (gE/gI deleted strain, and exhibiting green autofluorescence), vZJ01ΔgE/gI (gE/gI deleted strain), and vZJ01gE/gI-R (gE/gI revertant strain), showed similar in vitro growth to their parent strain. In pigs, inactivated vZJ01ΔgE/gI vaccine generated significantly high levels of neutralizing antibodies against ZJ01 compared with Bartha-K61 live vaccine (pvaccine group survived without exhibiting any clinical sings, but two of five animals exhibited central nervous signs in the Bartha-K61 group. Meanwhile, all the non-vaccinated control animals died at 7 days post-challenge. This indicates that the inactivated vZJ01ΔgE/gI vaccine is a promising vaccine candidate for controlling the variant strains of PRV now circulating in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Binding of cetuximab to the EGFRvIII deletion mutant and its biological consequences in malignant glioma cells

    International Nuclear Information System (INIS)

    Jutten, Barry; Dubois, Ludwig; Li Younan; Aerts, Hugo; Wouters, Bradly G.; Lambin, Philippe; Theys, Jan; Lammering, Guido

    2009-01-01

    Background and purpose: Despite the clinical use of cetuximab, a chimeric antibody against EGFR, little is known regarding its interaction with EGFRvIII, a frequently expressed deletion mutant of EGFR. Therefore, we investigated the interaction and the functional consequences of cetuximab treatment on glioma cells stably expressing EGFRvIII. Materials and methods: The human glioma cell line U373 genetically modified to express EGFRvIII was used to measure the binding of cetuximab and its internalization using flow cytometry and confocal microscopy. Proliferation and cell survival were analyzed by cell growth and clonogenic survival assays. Results: Cetuximab is able to bind to EGFRvIII and causes an internalization of the receptor and decreases its expression levels. Furthermore, in contrast to EGF, cetuximab was able to activate EGFRvIII which was evidenced by multiple phosphorylation sites and its downstream signaling targets. Despite this activation, the growth rate and the radiosensitivity of the EGFRvIII-expressing glioma cells were not modulated. Conclusions: Cetuximab binds to EGFRvIII and leads to the initial activation, internalization and subsequent downregulation of EGFRvIII, but it does not seem to modulate the proliferation or radiosensitivity of EGFRvIII-expressing glioma cells. Thus, approaches to treat EGFRvIII-expressing glioma cells should be evaluated more carefully.

  16. Deletion analysis of susy-sl promoter for the identification of optimal promoter sequence

    International Nuclear Information System (INIS)

    Bacha, S.; Khatoon, A.; Asif, M.; Bshir, A.

    2015-01-01

    The promoter region of sucrose synthase (susy-Sl) was identified and isolated from tomato. The 5? deletion analysis was carried out for the identification of minimum optimal promoter. Transgenic lines of Arabidopsis thaliana were developed by floral dip method incorporating various promoter deletion cassettes controlling GUS reporter gene. GUS assay of transgenic tissues indicated that full length susy-Sl promoter and its deletion mutants were constitutively expressed in vegetative and floral tissues of A. thaliana. The expression was observed in roots, shoots and flowers of A. thaliana. Analysis of 5? deletion series of susy-Sl promoter showed that a minimum of 679 bp fragment of the promoter was sufficient to drive expression of GUS reporter gene in the major tissues of transgenic A. thaliana. (author)

  17. Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle.

    Science.gov (United States)

    Fowler, Veronica; Bashiruddin, John B; Belsham, Graham J; Stenfeldt, Carolina; Bøtner, Anette; Knowles, Nick J; Bankowski, Bartlomiej; Parida, Satya; Barnett, Paul

    2014-02-21

    Previous work in cattle illustrated the protective efficacy and negative marker potential of a A serotype foot-and-mouth disease virus (FMDV) vaccine prepared from a virus lacking a significant portion of the VP1 G-H loop (termed A(-)). Since this deletion also includes the arginine-glycine-aspartate (RGD) motif required for virus attachment to the host cell in vivo, it was hypothesised that this virus would be attentuated in naturally susceptible animals. The A(-) virus was passaged three times in cattle via needle inoculation of virus suspension delivered into the intradermal space of the tongue (intradermolingual: IDL). Included in the study were three direct contact cattle, two of which were used for the third cattle passage (by inoculation) after direct contact exposure for three days. Cattle were monitored for clinical signs and samples were collected for sequencing as well as antibody and viral genome detection by ELISA and qRT-PCR. Following needle inoculation with the A(-) virus, naïve cattle developed typical clinical signs of FMDV infection, diagnostic assays also provided positive serological and virological results. However, the contact cattle did not develop clinical signs or generate serological or virological markers indicative of FMDV infection even when the cattle were subsequently needle inoculated with 10(5) TCID50 A(-) FMDV delivered IDL following three days of direct contact exposure. The results suggest that the A(-) virus is not attentuated in cattle when inoculated IDL. This virus could be useful as a tool to understand further the natural pathogenesis, receptor usage and internalisation pathways of FMDV. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene 9GL (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge.

    Science.gov (United States)

    O'Donnell, Vivian; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Carlson, Jolene; Sanford, Brenton; Alfano, Marialexia; Kramer, Edward; Lu, Zhiqiang; Arzt, Jonathan; Reese, Bo; Carrillo, Consuelo; Risatti, Guillermo R; Borca, Manuel V

    2015-08-01

    African swine fever virus (ASFV) is the etiological agent of an often lethal disease of domestic pigs. Disease control strategies have been hampered by the unavailability of vaccines against ASFV. Since its introduction in the Republic of Georgia, a highly virulent virus, ASFV Georgia 2007 (ASFV-G), has caused an epizootic that spread rapidly into Eastern European countries. Currently no vaccines are available or under development to control ASFV-G. In the past, genetically modified ASFVs harboring deletions of virulence-associated genes have proven attenuated in swine, inducing protective immunity against challenge with homologous parental viruses. Deletion of the gene 9GL (open reading frame [ORF] B119L) in highly virulent ASFV Malawi-Lil-20/1 produced an attenuated phenotype even when administered to pigs at 10(6) 50% hemadsorption doses (HAD50). Here we report the construction of a genetically modified ASFV-G strain (ASFV-G-Δ9GLv) harboring a deletion of the 9GL (B119L) gene. Like Malawi-Lil-20/1-Δ9GL, ASFV-G-Δ9GL showed limited replication in primary swine macrophages. However, intramuscular inoculation of swine with 10(4) HAD50 of ASFV-G-Δ9GL produced a virulent phenotype that, unlike Malawi-Lil-20/1-Δ9GL, induced a lethal disease in swine like parental ASFV-G. Interestingly, lower doses (10(2) to 10(3) HAD50) of ASFV-G-Δ9GL did not induce a virulent phenotype in swine and when challenged protected pigs against disease. A dose of 10(2) HAD50 of ASFV-G-Δ9GLv conferred partial protection when pigs were challenged at either 21 or 28 days postinfection (dpi). An ASFV-G-Δ9GL HAD50 of 10(3) conferred partial and complete protection at 21 and 28 dpi, respectively. The information provided here adds to our recent report on the first attempts toward experimental vaccines against ASFV-G. The main problem for controlling ASF is the lack of vaccines. Studies on ASFV virulence lead to the production of genetically modified attenuated viruses that induce protection

  19. Structural characterization of respiratory syncytial virus fusion inhibitor escape mutants: homology model of the F protein and a syncytium formation assay

    International Nuclear Information System (INIS)

    Morton, Craig J.; Cameron, Rachel; Lawrence, Lynne J.; Lin Bo; Lowe, Melinda; Luttick, Angela; Mason, Anthony; McKimm-Breschkin, Jenny; Parker, Michael W.; Ryan, Jane; Smout, Michael; Sullivan, Jayne; Tucker, Simon P.; Young, Paul R.

    2003-01-01

    Respiratory syncytial virus (RSV) is a ubiquitous human pathogen and the leading cause of lower respiratory tract infections in infants. Infection of cells and subsequent formation of syncytia occur through membrane fusion mediated by the RSV fusion protein (RSV-F). A novel in vitro assay of recombinant RSV-F function has been devised and used to characterize a number of escape mutants for three known inhibitors of RSV-F that have been isolated. Homology modeling of the RSV-F structure has been carried out on the basis of a chimera derived from the crystal structures of the RSV-F core and a fragment from the orthologous fusion protein from Newcastle disease virus (NDV). The structure correlates well with the appearance of RSV-F in electron micrographs, and the residues identified as contributing to specific binding sites for several monoclonal antibodies are arranged in appropriate solvent-accessible clusters. The positions of the characterized resistance mutants in the model structure identify two promising regions for the design of fusion inhibitors

  20. Clonal deleted latent membrane protein 1 variants of Epstein-Barr virus are predominant in European extranodal NK/T lymphomas and disappear during successful treatment.

    Science.gov (United States)

    Halabi, Mohamad Adnan; Jaccard, Arnaud; Moulinas, Rémi; Bahri, Racha; Al Mouhammad, Hazar; Mammari, Nour; Feuillard, Jean; Ranger-Rogez, Sylvie

    2016-08-15

    Extranodal natural killer/T-cell lymphomas (NK/TL), rare in Europe, are Epstein-Barr virus (EBV) associated lymphomas with poor outcomes. Here, we determined the virus type and analyzed the EBV latent membrane protein-1 (LMP1) gene sequence in NK/TL from French patients. Six clones of viral LMP1 were sequenced by Sanger technology in blood from 13 patients before treatment with an l-asparaginase based regimen and, for 8 of them, throughout the treatment. Blood LMP1 sequences from 21 patients without any known malignancy were tested as controls. EBV Type A was identified for 11/13 patients and for all controls. Before treatment, a clonal LMP1 gene containing a 30 bp deletion (del30) was found in 46.1% of NK/TL and only in 4.8% of controls. Treatment was less effective in these patients who died more rapidly than the others. Patients with a deleted strain evolving toward a wild-type strain during treatment reached complete remission. The LMP1 gene was sequenced by highly sensitive next-generation sequencing technology in five NK/TL nasopharyngeal biopsies, two of them originating from the previous patients. Del30 was present in 100% of the biopsies; two viruses at least coexisted in three biopsies. These results suggest that del30 may be associated with poor prognosis NK/TL and that strain evolution could be used as a potential marker to monitor treatment. © 2016 UICC.

  1. Systematic deletion of homeobox genes in Podospora anserina uncovers their roles in shaping the fruiting body.

    Directory of Open Access Journals (Sweden)

    Evelyne Coppin

    Full Text Available Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures.

  2. Systematic deletion of homeobox genes in Podospora anserina uncovers their roles in shaping the fruiting body.

    Science.gov (United States)

    Coppin, Evelyne; Berteaux-Lecellier, Véronique; Bidard, Frédérique; Brun, Sylvain; Ruprich-Robert, Gwenaël; Espagne, Eric; Aït-Benkhali, Jinane; Goarin, Anne; Nesseir, Audrey; Planamente, Sara; Debuchy, Robert; Silar, Philippe

    2012-01-01

    Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures.

  3. The different phenotypes of phot- photosynthetic deficient mutants in Euglena gracilis: the frequency of production by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Nicolas, Paul; Heizmann, Philippe; Nigon, Victor

    1982-01-01

    In Euglena gracilis, pigment-less mutants appear spontaneously with a frequency of about 2-5x10 -3 . Ultraviolet-irradiation increases the proportion of chlorophyll-less colonies to an upper limit where green colonies represent 4x10 -4 of the surviving ones. This limit might indicate the occurrence of processes involving repair of the chloroplastic DNA. Most of the photosynthetic-deficient (phot - ) mutants induced by ultraviolet irradiation are characterized by the presence of a reduced number of chloroplast DNA molecules showing deletions (phi - class). Most of the phi - mutants present the phenotype phi - chlo - car - , where neither chlorophyll nor carotenoids are obvious: the phi - chlo - car + mutants, devoid of chlorophyll but containing carotenoids, are obtained among the phi - strains with a frequency lower than 10 -3 . The phot - mutants which belong to the cp - class are characterized by the maintenance of a great number of chloroplastic DNA molecules, where large deletions are absent: their occurrence after ultraviolet irradiation is low [fr

  4. Dimerization of BTas is required for the transactivational activity of bovine foamy virus

    International Nuclear Information System (INIS)

    Tan Juan; Qiao Wentao; Xu Fengwen; Han Hongqi; Chen Qimin; Geng Yunqi

    2008-01-01

    The BTas protein of bovine foamy virus (BFV) is a 249-amino-acid nuclear regulatory protein which transactivates viral gene expression directed by the long terminal repeat promoter (LTR) and the internal promoter (IP). Here, we demonstrate the BTas protein forms a dimeric complex in mammalian cells by using mammalian two hybrid systems and cross-linking assay. Functional analyses with deletion mutants reveal that the region of 46-62aa is essential for dimer formation. Furthermore, our results show that deleting the dimerization region of BTas did not affect the localization of BTas, but that it did result in the loss of its transactivational activity on the LTR and IP. Furthermore, BTas (Δ46-62aa) retained binding ability to the LTR and IP similar to that of the wild-type BTas. These data suggest the dimerization region is necessary for the transactivational function of BTas and is crucial to the replication of BFV

  5. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes.

    Directory of Open Access Journals (Sweden)

    Laura J Marinelli

    Full Text Available Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED, in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.

  6. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham

    2012-01-01

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, cDNAs corresponding to the wild type (wt) or mutant forms of the IRES of CSFV strain Paderborn were...... in vitro and electroporated into porcine PK15 cells. Rescued mutant viruses were obtained from RNAs that contained mutations within domain IIIf which retained more than 75% of wt translation efficiency. Sequencing of cDNA generated from these rescued viruses verified the maintenance of the introduced...... changes within the IRES. The growth characteristics of each rescued mutant virus were compared to that of the wt virus. It was shown that viable mutant viruses with reduced translation initiation efficiency can be designed and generated and that viruses containing mutations within domain IIIf of the IRES...

  7. PE2 cleavage mutants of Sindbis virus : Correlation between viral infectivity and pH-dependent membrane fusion activation of the spike heterodimer

    NARCIS (Netherlands)

    Smit, JM; Klimstra, WB; Ryman, KD; Bittman, R; Johnston, RE; Wilschut, J

    2001-01-01

    The spike glycoprotein E2 of Sindbis virus (SIN) is synthesized in the infected cell as a PE2 precursor protein, which matures through cleavage by a cellular furin-like protease. Previous work has shown that SIN mutants impaired in PE2 cleavage are noninfectious on BHK-21 cells, the block in

  8. First report of a deletion encompassing an entire exon in the homogentisate 1,2-dioxygenase gene causing alkaptonuria.

    Science.gov (United States)

    Zouheir Habbal, Mohammad; Bou-Assi, Tarek; Zhu, Jun; Owen, Renius; Chehab, Farid F

    2014-01-01

    Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD). Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb), one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.

  9. First report of a deletion encompassing an entire exon in the homogentisate 1,2-dioxygenase gene causing alkaptonuria.

    Directory of Open Access Journals (Sweden)

    Mohammad Zouheir Habbal

    Full Text Available Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD. Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb, one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.

  10. Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells

    OpenAIRE

    ZHAO, XIAOMIN; OH, SOON-HWAN; HOYER, LOIS L.

    2007-01-01

    C. albicans yeast forms deleted for ALS5, ALS6 or ALS7 are more adherent than a relevant control strain to human vascular endothelial cell monolayers and buccal epithelial cells. In the buccal and vaginal reconstituted human epithelium (RHE) disease models, however, mutant and control strains caused a similar degree of tissue destruction. Deletion of ALS5 or ALS6 significantly slowed growth of the mutant strain; this phenotype was not affected by addition of excess uridine to the culture medi...

  11. Quantum deletion: Beyond the no-deletion principle

    International Nuclear Information System (INIS)

    Adhikari, Satyabrata

    2005-01-01

    Suppose we are given two identical copies of an unknown quantum state and we wish to delete one copy from among the given two copies. The quantum no-deletion principle restricts us from perfectly deleting a copy but it does not prohibit us from deleting a copy approximately. Here we construct two types of a 'universal quantum deletion machine' which approximately deletes a copy such that the fidelity of deletion does not depend on the input state. The two types of universal quantum deletion machines are (1) a conventional deletion machine described by one unitary operator and (2) a modified deletion machine described by two unitary operators. Here it is shown that the modified deletion machine deletes a qubit with fidelity 3/4, which is the maximum limit for deleting an unknown quantum state. In addition to this we also show that the modified deletion machine retains the qubit in the first mode with average fidelity 0.77 (approx.) which is slightly greater than the fidelity of measurement for two given identical states, showing how precisely one can determine its state [S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995)]. We also show that the deletion machine itself is input state independent, i.e., the information is not hidden in the deleting machine, and hence we can delete the information completely from the deletion machine

  12. Deletions induced by gamma rays in the genome of Escherichia coli

    International Nuclear Information System (INIS)

    Raha, Manidipa; Hutchinson, Franklin

    1991-01-01

    An Escherichia coli lysogen was constructed with a lambda phage bearing a lacZ gene surrounded by about 100 x 10 3 base-pairs of dispensable DNA. The lacZ mutants induced by gamma rays in this lysogen were more than 10% large deletions, ranging in size from 0.6 x 10 -3 to 70 x 10 3 base-pairs. These deletions were centered, not on lacZ, but on a ColE1 origin of DNA replication located 1.2 x 10 3 bases downstream from lacZ, suggesting that this origin of replication was involved in the process by which deletions were formed. In agreement with this hypothesis, a lysogen of the same phage without the ColE1 origin showed a very much lower percentage of radiation-induced deletions, as did a second lysogen of a lambda phage without any known plasmid origin of replication. Indirect evidence is presented for radiation-induced deletions centered on the lambda origin of DNA replication in a lysogen. (author)

  13. Molecular evidence for the induction of large interstitial deletions on mouse chromosome 8 by ionizing radiation

    International Nuclear Information System (INIS)

    Turker, Mitchell S.; Pieretti, Maura; Kumar, Sudha

    1997-01-01

    The P19H22 mouse embryonal carcinoma cell line is characterized by a hemizygous deficiency for the chromosome 8 encoded aprt (adenine phosphoribosyltransferase) gene and heterozygosity for many chromosome 8 loci. We have previously demonstrated that this cell line is suitable for mutational studies because it is permissive of events ranging in size from base-pair substitutions at the aprt locus to apparent loss of chromosome 8. Large mutational events, defined by loss of the remaining aprt allele, were found to predominate in spontaneous mutants and those induced by ionizing radiation. In this study we have used a PCR based assay to screen for loss of heterozygosity at microsatellite loci both proximal and distal to aprt in 137 Cs-induced and spontaneous aprt mutants. This approach allowed us to distinguish apparent interstitial deletional events from apparent recombinational events. Significantly, 32.5% (26 of 80) of the mutational events induced by 137 Cs appeared to be interstitial deletions as compared with 7.7% (6 of 78) in the spontaneous group. This difference was statistically significant (p 137 Cs caused a significant number of deletion mutations. Most 137 Cs-induced interstitial deletions were larger than 6 cM, whereas none of the spontaneous deletions were larger than 6 cM. These results provide further support for the notion that ionizing radiation induces deletion mutations and validate the use of the P19H22 cell line for the study of events induced by ionizing radiation

  14. Prolonged protection against Intranasal challenge with influenza virus following systemic immunization or combinations of mucosal and systemic immunizations with a heat-labile toxin mutant.

    Science.gov (United States)

    Zhou, Fengmin; Goodsell, Amanda; Uematsu, Yasushi; Vajdy, Michael

    2009-04-01

    Seasonal influenza virus infections cause considerable morbidity and mortality in the world, and there is a serious threat of a pandemic influenza with the potential to cause millions of deaths. Therefore, practical influenza vaccines and vaccination strategies that can confer protection against intranasal infection with influenza viruses are needed. In this study, we demonstrate that using LTK63, a nontoxic mutant of the heat-labile toxin from Escherichia coli, as an adjuvant for both mucosal and systemic immunizations, systemic (intramuscular) immunization or combinations of mucosal (intranasal) and intramuscular immunizations protected mice against intranasal challenge with a lethal dose of live influenza virus at 3.5 months after the second immunization.

  15. Construction and growth properties of bovine herpesvirus type 5 recombinants defective in the glycoprotein E or thymidine kinase gene or both

    Directory of Open Access Journals (Sweden)

    M.C.S. Brum

    2010-02-01

    Full Text Available Bovine herpesvirus type 5 (BoHV-5 is an important pathogen of cattle in South America. We describe here the construction and characterization of deletion mutants defective in the glycoprotein E (gE or thymidine kinase (TK gene or both (gE/TK from a highly neurovirulent and well-characterized Brazilian BoHV-5 strain (SV507/99. A gE-deleted recombinant virus (BoHV-5 gE∆ was first generated in which the entire gE open reading frame was replaced with a chimeric green fluorescent protein gene. A TK-deleted recombinant virus (BoHV-5 TK∆ was then generated in which most of the TK open reading frame sequences were deleted and replaced with a chimeric β-galactosidase gene. Subsequently, using the BoHV-5 gE∆ virus as backbone, a double gene-deleted (TK plus gE BoHV-5 recombinant (BoHV-5 gE/TK∆ was generated. The deletion of the gE and TK genes was confirmed by immunoblotting and PCR, respectively. In Madin Darby bovine kidney (MDBK cells, the mutants lacking gE (BoHV-5 gE∆ and TK + gE (BoHV-5 gE/TK∆ produced small plaques while the TK-deleted BoHV-5 produced wild-type-sized plaques. The growth kinetics and virus yields in MDBK cells for all three recombinants (BoHV-5 gE∆, BoHV-5 TK∆ and BoHV-5 gE/TK∆ were similar to those of the parental virus. It is our belief that the dual gene-deleted recombinant (BoHV-5 gE/TK∆ produced on the background of a highly neurovirulent Brazilian BoHV-5 strain may have potential application in a vaccine against BoHV-5.

  16. Generation of herpesvirus entry mediator (HVEM)-restricted herpes simplex virus type 1 mutant viruses: resistance of HVEM-expressing cells and identification of mutations that rescue nectin-1 recognition.

    Science.gov (United States)

    Uchida, Hiroaki; Shah, Waris A; Ozuer, Ali; Frampton, Arthur R; Goins, William F; Grandi, Paola; Cohen, Justus B; Glorioso, Joseph C

    2009-04-01

    Both initial infection and cell-to-cell spread by herpes simplex virus type 1 (HSV-1) require the interaction of the viral glycoprotein D (gD) with an entry receptor on the cell surface. The two major HSV entry receptors, herpesvirus entry mediator (HVEM) and nectin-1, mediate infection independently but are coexpressed on a variety of cells. To determine if both receptors are active in these instances, we have established mutant viruses that are selectively impaired for recognition of one or the other receptor. In plaque assays, these viruses showed approximately 1,000-fold selectivity for the matched receptor over the mismatched receptor. Separate assays showed that each virus is impaired for both infection and spread through the mismatched receptor. We tested several human tumor cell lines for susceptibility to these viruses and observed that HT29 colon carcinoma cells are susceptible to infection by nectin-1-restricted virus but are highly resistant to HVEM-restricted virus infection, despite readily detectable HVEM expression on the cell surface. HVEM cDNA isolated from HT29 cells rendered HSV-resistant cells permissive for infection by the HVEM-restricted virus, suggesting that HT29 cells lack a cofactor for HVEM-mediated infection or express an HVEM-specific inhibitory factor. Passaging of HVEM-restricted virus on nectin-1-expressing cells yielded a set of gD missense mutations that each restored functional recognition of nectin-1. These mutations identify residues that likely play a role in shaping the nectin-1 binding site of gD. Our findings illustrate the utility of these receptor-restricted viruses in studying the early events in HSV infection.

  17. Carbon and energy metabolism of atp mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole

    1992-01-01

    strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming......The membrane-bound H+-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth...... rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion...

  18. Base substitutions, frameshifts, and small deletions constitute ionizing radiation-induced point mutations in mammalian cells

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; de Boer, J.G.; de Jong, P.J.; Drobetsky, E.A.; Glickman, B.W.

    1988-01-01

    The relative role of point mutations and large genomic rearrangements in ionizing radiation-induced mutagenesis has been an issue of long-standing interest. Recent studies using Southern blotting analysis permit the partitioning of ionizing radiation-induced mutagenesis in mammalian cells into detectable deletions and major genomic rearrangements and into point mutations. The molecular nature of these point mutations has been left unresolved; they may include base substitutions as well as small deletions, insertions, and frame-shifts below the level of resolution of Southern blotting analysis. In this investigation, we have characterized a collection of ionizing radiation-induced point mutations at the endogenous adenine phosphoribosyltransferase (aprt) locus of Chinese hamster ovary cells at the DNA sequence level. Base substitutions represented approximately equal to 2/3 of the point mutations analyzed. Although the collection of mutants is relatively small, every possible type of base substitution event has been recovered. These mutations are well distributed throughout the coding sequence with only one multiple occurrence. Small deletions represented the remainder of characterized mutants; no insertions have been observed. Sequence-directed mechanisms mediated by direct repeats could account for some of the observed deletions, while others appear to be directly attributable to radiation-induced strand breakage

  19. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@qst.go.jp [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nozawa, Shigeki [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Narumi, Issay [Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193 (Japan); Oono, Yutaka [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2017-01-15

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or {sup 60}Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30–110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  20. Porcine, murine and human sialoadhesin (Sn/Siglec-1/CD169): portals for porcine reproductive and respiratory syndrome virus entry into target cells.

    Science.gov (United States)

    Van Breedam, Wander; Verbeeck, Mieke; Christiaens, Isaura; Van Gorp, Hanne; Nauwynck, Hans J

    2013-09-01

    Porcine sialoadhesin (pSn; a sialic acid-binding lectin) and porcine CD163 (pCD163) are molecules that facilitate infectious entry of porcine reproductive and respiratory syndrome virus (PRRSV) into alveolar macrophages. In this study, it was shown that murine Sn (mSn) and human Sn (hSn), like pSn, can promote PRRSV infection of pCD163-expressing cells. Intact sialic acid-binding domains are crucial, since non-sialic acid-binding mutants of pSn, mSn and hSn did not promote infection. Endodomain-deletion mutants of pSn, mSn and hSn promoted PRRSV infection less efficiently, but also showed markedly reduced expression levels, making further research into the potential role of the Sn endodomain in PRRSV receptor activity necessary. These data further complement our knowledge on Sn as an important PRRSV receptor, and suggest - in combination with other published data - that species differences in the main PRRSV entry mediators Sn and CD163 do not account for the strict host species specificity displayed by the virus.

  1. Role of the CipA Scaffoldin Protein in Cellulose Solubilization, as Determined by Targeted Gene Deletion and Complementation in Clostridium thermocellum

    Science.gov (United States)

    Olson, Daniel G.; Giannone, Richard J.; Hettich, Robert L.

    2013-01-01

    The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact, necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene deletion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was eventually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA expressed from a replicating plasmid. In this strain, Avicelase activity was restored, although the rate was 2-fold lower than that in the wild type and the duration of the lag phase was increased. The cipA coding sequence is located at the beginning of a gene cluster containing several other genes thought to be responsible for the structural organization of the cellulosome, including olpB, orf2p, and olpA. Tandem mass spectrometry revealed a 10-fold reduction in the expression of olpB, which may explain the lower growth rate. This deletion experiment adds further evidence that CipA plays a key role in cellulose solubilization by C. thermocellum, and it raises interesting questions about the differential roles of the anchor scaffoldin proteins OlpB, Orf2p, and SdbA. PMID:23204466

  2. Determining mutant spectra of three RNA viral samples using ultra-deep sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H

    2012-06-06

    RNA viruses have extremely high mutation rates that enable the virus to adapt to new host environments and even jump from one species to another. As part of a viral transmission study, three viral samples collected from naturally infected animals were sequenced using Illumina paired-end technology at ultra-deep coverage. In order to determine the mutant spectra within the viral quasispecies, it is critical to understand the sequencing error rates and control for false positive calls of viral variants (point mutantations). I will estimate the sequencing error rate from two control sequences and characterize the mutant spectra in the natural samples with this error rate.

  3. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element.

    OpenAIRE

    Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J

    1996-01-01

    The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the...

  4. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    Directory of Open Access Journals (Sweden)

    Xiaohong Gong

    Full Text Available Intellectual disability (ID is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%, while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  5. The N-terminus of Bunyamwera orthobunyavirus NSs protein is essential for interferon antagonism

    OpenAIRE

    Van Knippenberg, Ingeborg Christine; Carlton-Smith, Charles; Elliott, Richard Michael

    2010-01-01

    This work is supported by UK MRC and BBRC Bunyamwera virus NSs protein is involved in the inhibition of cellular transcription and the interferon (IFN) response, and it interacts with the Med8 component of Mediator. A spontaneous mutant of a recombinant NSs-deleted Bunyamwera virus (rBUNdelNSs2) was identified and characterized. This mutant virus, termed mBUNNSs22, expresses a 21 aa N-terminally truncated form of NSs. Like rBUNdelNSs2, mBUNNSs22 is attenuated in IFN-deficient cells, and to...

  6. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism.

    Directory of Open Access Journals (Sweden)

    Martina Gsell

    Full Text Available In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE depletion caused by deletion of the mitochondrial (M phosphatidylserine decarboxylase 1 (PSD1 (Gsell et al., 2013, PLoS One. 8(10:e77380. doi: 10.1371/journal.pone.0077380. Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC, triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism.

  7. The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype

    Directory of Open Access Journals (Sweden)

    Shevchenko J. I.

    2014-11-01

    Full Text Available Aim. To estimate WaaL ligase contribution in the lipopolysaccharide (LPS phenotype profile formation of Y. enterocolitica O:3 (YeO3 bacteria. Methods. The waaL-knock-out mutants were created by an allelic exchange strategy. The LPS phenotypes of created mutants were visualized by silver-stained DOC-PAGE and immunoblotting with specific outer core (core oligosaccharide, hexasaccharide, OC and O-polysaccharide (OPS or O-Ag monoclonal antibodies. Results. Deletion of waaLOS gene from YeO3 genome has a marked effect on OC ligation in either single or double mutants. The waaLPS deletion has an opposite effect on the OPS ligation – barely detected increasing of OPS bands. Conclusions. The LPS ligases of YeO3 exhibit relaxed donor substrate specificity. Under given conditions the effect of WaaLOS ligase is more significant for OC and OPS ligation onto lipid A than that of WaaLPS.

  8. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Muzammel; Stanfield, Brent; Kousoulas, Konstantin G.

    2016-12-15

    We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealed that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1. -- Highlights: •Glycoprotein K(gK) is conserved among alphaherpesviruses and serves similar functions. •The bovine herpesvirus-1 gK and UL20 proteins physically interact in a similar manner to herpes simplex virus type 1 and equine herpesvirus-1. •The bovine herpesvirus-1 (BoHV-1) gK interacts with UL20 and is essential for virus replication and spread.

  9. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production

    International Nuclear Information System (INIS)

    Haque, Muzammel; Stanfield, Brent; Kousoulas, Konstantin G.

    2016-01-01

    We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealed that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1. -- Highlights: •Glycoprotein K(gK) is conserved among alphaherpesviruses and serves similar functions. •The bovine herpesvirus-1 gK and UL20 proteins physically interact in a similar manner to herpes simplex virus type 1 and equine herpesvirus-1. •The bovine herpesvirus-1 (BoHV-1) gK interacts with UL20 and is essential for virus replication and spread.

  10. Analysis of AVR4 promoter by sequential response-element deletion ...

    African Journals Online (AJOL)

    An Avr4 promoter region ligated to chloramphenicol acetyltransferase plasmid vector (pBLCAT2) to produce recombinant plasmid Avr4pBLCAT2 was sequentially deleted to produce five distinct mutants: Avr4pBLCAT2907-176, Avr4pBLCAT2809-176, Avr4pBLCAT2789-176, Avr4pBLCAT2429-176 and Avr4pBLCAT2 ...

  11. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    International Nuclear Information System (INIS)

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms

  12. Involvement of C4 protein of beet severe curly top virus (family Geminiviridae in virus movement.

    Directory of Open Access Journals (Sweden)

    Kunling Teng

    Full Text Available BACKGROUND: Beet severe curly top virus (BSCTV is a leafhopper transmitted geminivirus with a monopartite genome. C4 proteins encoded by geminivirus play an important role in virus/plant interaction. METHODS AND FINDINGS: To understand the function of C4 encoded by BSCTV, two BSCTV mutants were constructed by introducing termination codons in ORF C4 without affecting the amino acids encoded by overlapping ORF Rep. BSCTV mutants containing disrupted ORF C4 retained the ability to replicate in Arabidopsis protoplasts and in the agro-inoculated leaf discs of N. benthamiana, suggesting C4 is not required for virus DNA replication. However, both mutants did not accumulate viral DNA in newly emerged leaves of inoculated N. benthamiana and Arabidopsis, and the inoculated plants were asymptomatic. We also showed that C4 expression in plant could help C4 deficient BSCTV mutants to move systemically. C4 was localized in the cytosol and the nucleus in both Arabidopsis protoplasts and N. benthamiana leaves and the protein appeared to bind viral DNA and ds/ssDNA nonspecifically, displaying novel DNA binding properties. CONCLUSIONS: Our results suggest that C4 protein in BSCTV is involved in symptom production and may facilitate virus movement instead of virus replication.

  13. Construction and characterization of a glycoprotein E deletion mutant of bovine herpesvirus type 1.2 strain isolated in Brazil

    NARCIS (Netherlands)

    Franco, A.C.; Rijsewijk, F.A.M.; Flores, E.F.; Weiblen, R.; Roehe, P.M.

    2002-01-01

    This paper describes the construction and characterization of a Brazilian strain of bovine herpesvirus type 1.2a (BoHV-1.2a) with a deletion of the glycoprotein E (gE) gene. The deletion was introduced by co-transfection of a deletion fragment containing the 5´and 3´gE flanking regions and genomic

  14. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    International Nuclear Information System (INIS)

    Huang, Claire Y.-H.; Butrapet, Siritorn; Moss, Kelly J.; Childers, Thomas; Erb, Steven M.; Calvert, Amanda E.; Silengo, Shawn J.; Kinney, Richard M.; Blair, Carol D.; Roehrig, John T.

    2010-01-01

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.

  15. Biological characterization of bovine herpesvirus 1 recombinants possessing the vaccine glycoprotein E negative phenotype.

    Science.gov (United States)

    Muylkens, Benoît; Meurens, François; Schynts, Frédéric; de Fays, Katalin; Pourchet, Aldo; Thiry, Julien; Vanderplasschen, Alain; Antoine, Nadine; Thiry, Etienne

    2006-03-31

    Intramolecular recombination is a frequent event during the replication cycle of bovine herpesvirus 1 (BoHV-1). Recombinant viruses frequently arise and survive in cattle after concomitant nasal infections with two BoHV-1 mutants. The consequences of this process, related to herpesvirus evolution, have to be assessed in the context of large use of live marker vaccines based on glycoprotein E (gE) gene deletion. In natural conditions, double nasal infections by vaccine and wild-type strains are likely to occur. This situation might generate virulent recombinant viruses inducing a serological response indistinguishable from the vaccine one. This question was addressed by generating in vitro BoHV-1 recombinants deleted in the gE gene from seven wild-type BoHV-1 strains and one mutant strain deleted in the genes encoding gC and gE. In vitro growth properties were assessed by virus production, one step growth kinetics and plaque size assay. Heterogeneity in the biological properties was shown among the investigated recombinant viruses. The results demonstrated that some recombinants, in spite of their gE minus phenotype, have biological characteristics close to wild-type BoHV-1.

  16. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA.

    Directory of Open Access Journals (Sweden)

    Matthew G Cottingham

    2008-02-01

    Full Text Available The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415-20. The genomic BAC clone was 'rescued' back to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA, now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A46R or B7R did not significantly affect CD8(+ T cell immunogenicity in BALB/c mice, but deletion of B15R enhanced specific CD8(+ T cell responses to one of two endogenous viral epitopes (from the E2 and F2 proteins, in accordance with published work (Staib et al., 2005, J. Gen. Virol.86, 1997-2006. In addition, we found a higher frequency of triple-positive IFN-gamma, TNF-alpha and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8(+ T cells against an epitope from Plasmodium berghei was created using GalK counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof-of-concept experiments that MVA-BAC recombineering is a viable route to more rapid and efficient generation of new candidate mutant and recombinant

  17. Generation of mutant Uukuniemi viruses lacking the nonstructural protein NSs by reverse genetics indicates that NSs is a weak interferon antagonist.

    Science.gov (United States)

    Rezelj, Veronica V; Överby, Anna K; Elliott, Richard M

    2015-05-01

    Uukuniemi virus (UUKV) is a tick-borne member of the Phlebovirus genus (family Bunyaviridae) and has been widely used as a safe laboratory model to study aspects of bunyavirus replication. Recently, a number of new tick-borne phleboviruses have been discovered, some of which, like severe fever with thrombocytopenia syndrome virus and Heartland virus, are highly pathogenic in humans. UUKV could now serve as a useful comparator to understand the molecular basis for the different pathogenicities of these related viruses. We established a reverse-genetics system to recover UUKV entirely from cDNA clones. We generated two recombinant viruses, one in which the nonstructural protein NSs open reading frame was deleted from the S segment and one in which the NSs gene was replaced with green fluorescent protein (GFP), allowing convenient visualization of viral infection. We show that the UUKV NSs protein acts as a weak interferon antagonist in human cells but that it is unable to completely counteract the interferon response, which could serve as an explanation for its inability to cause disease in humans. Uukuniemi virus (UUKV) is a tick-borne phlebovirus that is apathogenic for humans and has been used as a convenient model to investigate aspects of phlebovirus replication. Recently, new tick-borne phleboviruses have emerged, such as severe fever with thrombocytopenia syndrome virus in China and Heartland virus in the United States, that are highly pathogenic, and UUKV will now serve as a comparator to aid in the understanding of the molecular basis for the virulence of these new viruses. To help such investigations, we have developed a reverse-genetics system for UUKV that permits manipulation of the viral genome. We generated viruses lacking the nonstructural protein NSs and show that UUKV NSs is a weak interferon antagonist. In addition, we created a virus that expresses GFP and thus allows convenient monitoring of virus replication. These new tools represent a

  18. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K

    2011-09-01

    Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.

  19. Three types of preS1 start codon deletion variants in the natural course of chronic hepatitis B infection.

    Science.gov (United States)

    Choe, Won Hyeok; Kim, Hong; Lee, So-Young; Choi, Yu-Min; Kwon, So Young; Moon, Hee Won; Hur, Mina; Kim, Bum-Joon

    2017-12-12

    Naturally occurring hepatitis B virus variants carrying a deletion in the preS1 start codon region may evolve during long-lasting virus-host interactions in chronic hepatitis B (CHB). The aim of this study was to determine the immune phase-specific prevalent patterns of preS1 start codon deletion variants and related factors during the natural course of CHB. A total of 399 CHB patients were enrolled. Genotypic analysis of three different preS1 start codon deletion variants (classified by deletion size: 15-base pair [bp], 18-bp, and 21-bp deletion variants) was performed. PreS1 start codon deletion variants were detected in 155 of 399 patients (38.8%). The predominant variant was a 15-bp deletion in the immune-tolerance phase (18/50, 36%) and an 18-bp deletion in the immune-clearance phase (69/183, 37.7%). A 21-bp deletion was the predominant variant in the low replicative phase (3/25, 12.0%) and reactivated hepatitis Be antigen (HBeAg)-negative phase (22/141, 15.6%). The 15-bp and 18-bp deletion variants were more frequently found in HBeAg-positive patients (P start codon deletion variants changes according to the immune phases of CHB infection, and each variant type is associated with different clinical parameters. PreS1 start codon deletion variants might interact with the host immune response differently according to their variant types. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  20. Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression.

    Science.gov (United States)

    de Ronde, Dryas; Pasquier, Adrien; Ying, Su; Butterbach, Patrick; Lohuis, Dick; Kormelink, Richard

    2014-02-01

    Recently, Tomato spotted wilt virus (TSWV) nonstructural protein NSs has been identified unambiguously as an avirulence (Avr) determinant for Tomato spotted wilt (Tsw)-based resistance. The observation that NSs from two natural resistance-breaking isolates had lost RNA silencing suppressor (RSS) activity and Avr suggested a link between the two functions. To test this, a large set of NSs mutants was generated by alanine substitutions in NSs from resistance-inducing wild-type strains (NSs(RI) ), amino acid reversions in NSs from resistance-breaking strains (NSs(RB)), domain deletions and swapping. Testing these mutants for their ability to suppress green fluorescent protein (GFP) silencing and to trigger a Tsw-mediated hypersensitive response (HR) revealed that the two functions can be separated. Changes in the N-terminal domain were found to be detrimental for both activities and indicated the importance of this domain, additionally supported by domain swapping between NSs(RI) and NSs(RB). Swapping domains between the closely related Tospovirus Groundnut ringspot virus (GRSV) NSs and TSWV NSs(RI) showed that Avr functionality could not simply be transferred between species. Although deletion of the C-terminal domain rendered NSs completely dysfunctional, only a few single-amino-acid mutations in the C-terminus affected both functions. Mutation of a GW/WG motif (position 17/18) rendered NSs completely dysfunctional for RSS and Avr activity, and indicated a putative interaction between NSs and Argonaute 1 (AGO1), and its importance in TSWV virulence and viral counter defence against RNA interference. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  1. Markerless deletion of putative alanine dehydrogenase genes in Bacillus licheniformis using a codBA-based counterselection technique.

    Science.gov (United States)

    Kostner, David; Rachinger, Michael; Liebl, Wolfgang; Ehrenreich, Armin

    2017-11-01

    Bacillus licheniformis strains are used for the large-scale production of industrial exoenzymes from proteinaceous substrates, but details of the amino acid metabolism involved are largely unknown. In this study, two chromosomal genes putatively involved in amino acid metabolism of B. licheniformis were deleted to clarify their role. For this, a convenient counterselection system for markerless in-frame deletions was developed for B. licheniformis. A deletion plasmid containing up- and downstream DNA segments of the chromosomal deletion target was conjugated to B. licheniformis and integrated into the genome by homologous recombination. Thereafter, the counterselection was done by using a codBA cassette. The presence of cytosine deaminase and cytosine permease exerted a conditionally lethal phenotype on B. licheniformis cells in the presence of the cytosine analogue 5-fluorocytosine. Thereby clones were selected that lost the integrated vector sequence and the anticipated deletion target after a second recombination step. This method allows the construction of markerless mutants in Bacillus strains in iterative cycles. B. licheniformis MW3 derivatives lacking either one of the ORFs BL03009 or BL00190, encoding a putative alanine dehydrogenase and a similar putative enzyme, respectively, retained the ability to grow in minimal medium supplemented with alanine as the carbon source. In the double deletion mutant MW3 ΔBL03009 ΔBL00190, however, growth on alanine was completely abolished. These data indicate that the two encoded enzymes are paralogues fulfilling mutually replaceable functions in alanine utilization, and suggest that in B. licheniformis MW3 alanine utilization is initiated by direct oxidative transamination to pyruvate and ammonium.

  2. Association between BIM deletion polymorphism and clinical outcome of EGFR-mutated NSCLC patient with EGFR-TKI therapy: A meta-analysis.

    Science.gov (United States)

    Ma, Ji-Yong; Yan, Hai-Jun; Gu, Wei

    2015-01-01

    BIM deletion polymorphism was deemed to be associated with downregulation of BIM, resulting in a decreased apoptosis induced by epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in EGFR mutation-positive non-small cell lung cancer (NSCLC). However, accumulating evidences concerning the association between BIM deletion polymorphism and efficacy of EGFR-TKI and survival in EGFR-mutation-driven NSCLC patient reported contradictory results. A meta-analysis was conducted by combing six original eligible studies including 871 NSCLC patients. Our study showed that BIM deletion polymorphism was significantly associated with poor response to EGFR-TKI therapy in mutant EGFRNSCLC patients (P(h) = 0.309, P(z) = 0.001, OR = 0.39, 95% confidence interval (CI) = 0.23-0.67). Disease control rate (DCR) in mutant EGFRNSCLC patient with treatment of EGFR-TKI was significantly decreased in patients with BIM deletion polymorphism comparing to patients harbored BIM wild variant (P(h) = 0.583, P(Z) = 0.007, OR = 0.46, 95%CI = 0.25-0.85). EGFR mutation-derived NSCLC patient carrying BIM deletion polymorphism had a shorter progression-free survival (PFS; P(h) deletion polymorphism might be a cause that contributes to primary EGFR-TKI resistance, and it could be used as a genetic predictor for EGFR-TKI outcome and an independent prognostic factor of EGFR mutation-driven NSCLC patient.

  3. Iron metabolism mutant hbd mice have a deletion in Sec15l1, which has homology to a yeast gene for vesicle docking.

    Science.gov (United States)

    White, Robert A; Boydston, Leigh A; Brookshier, Terri R; McNulty, Steven G; Nsumu, Ndona N; Brewer, Brandon P; Blackmore, Krista

    2005-12-01

    Defects in iron absorption and utilization lead to iron deficiency and anemia. While iron transport by transferrin receptor-mediated endocytosis is well understood, it is not completely clear how iron is transported from the endosome to the mitochondria where heme is synthesized. We undertook a positional cloning project to identify the causative mutation for the hemoglobin-deficit (hbd) mouse mutant, which suffers from a microcytic, hypochromic anemia apparently due to defective iron transport in the endocytosis cycle. As shown by previous studies, reticulocyte iron accumulation in homozygous hbd/hbd mice is deficient despite normal binding of transferrin to its receptor and normal transferrin uptake in the cell. We have identified a strong candidate gene for hbd, Sec15l1, a homologue to yeast SEC15, which encodes a key protein in vesicle docking. The hbd mice have an exon deletion in Sec15l1, which is the first known mutation of a SEC gene homologue in mammals.

  4. Exploration of methods to localize DNA sequences missing from c-locus deletions

    International Nuclear Information System (INIS)

    Albritton, L.M.; Russell, L.B.; Montgomery, C.S.

    1987-01-01

    The authors have earlier characterized a large number of radiation-induced mutations at the c locus (on Chromosome 7) through genetic analysis, including extensive complementation tests. Based on this work, they have postulated that many of these mutations are deletions of various lengths, overlapping at c (the marker used in the mutation-rate experiments that generated the mutants). It was possible to apportion these deletions among 13 complementation groups and to fit them to a linear map of 8 functional units. Collectively, the deletions extend from a point between tp and c to one between sh-1 and Hbb, i.e., a genetic distance of from 6 to 10 cM, corresponding to at least 10 4 Kb of DNA. This year, the authors completed a pilot study designed to explore methods for finding DNA sequences that map to the region covered by the various c-deletions. The general plan was to probe DNA with clones derived from Chromosome-7-enriched libraries or with sequences known (or suspected) to reside in Chromosome 7. Three methods were explored for deriving the c-region-deficient DNA: (a) from mouse-hamster somatic-cell hydrids retaining a deleted mouse Chromosome 7, but no homologue; (b) from F 1 hybrids of M. musculus domesticus (carrying a c-locus deletion) by M. spretus; and (c) from F 1 hybrids of M. domesticus stocks carrying complementing deletions

  5. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru

    In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CS L ), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPC R ), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPC R (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CS L (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CS L mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD 660 ) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.

  6. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  7. Identification of an essential virulence gene of cyprinid herpesvirus 3.

    Science.gov (United States)

    Boutier, Maxime; Gao, Yuan; Vancsok, Catherine; Suárez, Nicolás M; Davison, Andrew J; Vanderplasschen, Alain

    2017-09-01

    The genus Cyprinivirus consists of a growing list of phylogenetically related viruses, some of which cause severe economic losses to the aquaculture industry. The archetypal member, cyprinid herpesvirus 3 (CyHV-3) causes mass mortalities worldwide in koi and common carp. A CyHV-3 mutant was described previously that is attenuated in vivo by a deletion affecting two genes (ORF56 and ORF57). The relative contributions of ORF56 and ORF57 to the safety and efficacy profile of this vaccine candidate have now been assessed by analysing viruses individually deleted for ORF56 or ORF57. Inoculation of these viruses into carp demonstrated that the absence of ORF56 did not affect virulence, whereas the absence of ORF57 led to an attenuation comparable to, though slightly less than, that of the doubly deleted virus. To demonstrate further the role of ORF57 as a key virulence factor, a mutant retaining the ORF57 region but unable to express the ORF57 protein was produced by inserting multiple in-frame stop codons into the coding region. Analysis of this virus in vivo revealed a safety and efficacy profile comparable to that of the doubly deleted virus. These findings show that ORF57 encodes an essential CyHV-3 virulence factor. They also indicate that ORF57 orthologues in other cypriniviruses may offer promising targets for the rational design of attenuated recombinant vaccines. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Evolution of Soybean mosaic virus-G7 molecularly cloned genome in Rsv1-genotype soybean results in emergence of a mutant capable of evading Rsv1-mediated recognition

    International Nuclear Information System (INIS)

    Hajimorad, M.R.; Eggenberger, A.L.; Hill, J.H.

    2003-01-01

    Plant resistance (R) genes direct recognition of pathogens harboring matching avirluent signals leading to activation of defense responses. It has long been hypothesized that under selection pressure the infidelity of RNA virus replication together with large population size and short generation times results in emergence of mutants capable of evading R-mediated recognition. In this study, the Rsv1/Soybean mosaic virus (SMV) pathosystem was used to investigate this hypothesis. In soybean line PI 96983 (Rsv1), the progeny of molecularly cloned SMV strain G7 (pSMV-G7) provokes a lethal systemic hypersensitive response (LSHR) with up regulation of a defense-associated gene transcript (PR-1). Serial passages of a large population of the progeny in PI 96983 resulted in emergence of a mutant population (vSMV-G7d), incapable of provoking either Rsv1-mediated LSHR or PR-1 protein gene transcript up regulation. An infectious clone of the mutant (pSMV-G7d) was synthesized whose sequences were very similar but not identical to the vSMV-G7d population; however, it displayed a similar phenotype. The genome of pSMV-G7d differs from parental pSMV-G7 by 17 substitutions, of which 10 are translationally silent. The seven amino acid substitutions in deduced sequences of pSMV-G7d differ from that of pSMV-G7 by one each in P1 proteinase, helper component-proteinase, and coat protein, respectively, and by four in P3. To the best of our knowledge, this is the first demonstration in which experimental evolution of a molecularly cloned plant RNA virus resulted in emergence of a mutant capable of evading an R-mediated recognition

  9. Dystrophin Hot-Spot Mutants Leading to Becker Muscular Dystrophy Insert More Deeply into Membrane Models than the Native Protein.

    Science.gov (United States)

    Ameziane-Le Hir, Sarah; Paboeuf, Gilles; Tascon, Christophe; Hubert, Jean-François; Le Rumeur, Elisabeth; Vié, Véronique; Raguénès-Nicol, Céline

    2016-07-26

    Dystrophin (DYS) is a membrane skeleton protein whose mutations lead to lethal Duchenne muscular dystrophy or to the milder Becker muscular dystrophy (BMD). One third of BMD "in-frame" exon deletions are located in the region that codes for spectrin-like repeats R16 to R21. We focused on four prevalent mutated proteins deleted in this area (called RΔ45-47, RΔ45-48, RΔ45-49, and RΔ45-51 according to the deleted exon numbers), analyzing protein/membrane interactions. Two of the mutants, RΔ45-48 and RΔ45-51, led to mild pathologies and displayed a similar triple coiled-coil structure as the full-length DYS R16-21, whereas the two others, RΔ45-47 and RΔ45-49, induced more severe pathologies and showed "fractional" structures unrelated to the normal one. To explore lipid packing, small unilamellar liposomes (SUVs) and planar monolayers were used at various initial surface pressures. The dissociation constants determined by microscale thermophoresis (MST) were much higher for the full-length DYS R161-21 than for the mutants; thus the wild type protein has weaker SUV binding. Comparing surface pressures after protein adsorption and analysis of atomic force microscopy images of mixed protein/lipid monolayers revealed that the mutants insert more into the lipid monolayer than the wild type does. In fact, in both models every deletion mutant showed more interactions with membranes than the full-length protein did. This means that mutations in the R16-21 part of dystrophin disturb the protein's molecular behavior as it relates to membranes, regardless of whether the accompanying pathology is mild or severe.

  10. Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling.

    Science.gov (United States)

    Mundell, S J; Matharu, A-L; Nisar, S; Palmer, T M; Benovic, J L; Kelly, E

    2010-02-01

    We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A(2B) adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5'-(N-ethylcarboxamido)-adenosine. The trafficking of the wild type A(2B) adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. The wild type A(2B) adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln(325)-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu(330)-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln(325)-stop, Ser(326)-stop and Phe(328)-stop receptors. Following internalization, the wild type A(2B) adenosine receptor recycled rapidly to the cell surface, whereas the Gln(325)-stop receptor did not recycle. Deletion of the COOH-terminus of the A(2B) adenosine receptor beyond Leu(330) switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A(2B) adenosine receptor following prolonged agonist addition.

  11. Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague.

    Science.gov (United States)

    Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L; Erova, Tatiana E; Popov, Vsevolod L; Baze, Wallace B; van Lier, Christina J; Ponnusamy, Duraisamy; Andersson, Jourdan A; Motin, Vladimir L; Chauhan, Sadhana; Chopra, Ashok K

    2015-04-01

    Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a

  12. Hepatitis B virus X protein mutant HBxΔ127 promotes proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fabao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); You, Xiaona [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Chi, Xiumei [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Wang, Tao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Niu, Junqi, E-mail: junqiniu@yahoo.com.cn [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-02-07

    Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.

  13. Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    Full Text Available Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.

  14. The Epstein-Barr Virus BART miRNA Cluster of the M81 Strain Modulates Multiple Functions in Primary B Cells

    Science.gov (United States)

    Lin, Xiaochen; Tsai, Ming-Han; Shumilov, Anatoliy; Poirey, Remy; Bannert, Helmut; Middeldorp, Jaap M.; Feederle, Regina; Delecluse, Henri-Jacques

    2015-01-01

    The Epstein-Barr virus (EBV) is a B lymphotropic virus that infects the majority of the human population. All EBV strains transform B lymphocytes, but some strains, such as M81, also induce spontaneous virus replication. EBV encodes 22 microRNAs (miRNAs) that form a cluster within the BART region of the virus and have been previously been found to stimulate tumor cell growth. Here we describe their functions in B cells infected by M81. We found that the BART miRNAs are downregulated in replicating cells, and that exposure of B cells in vitro or in vivo in humanized mice to a BART miRNA knockout virus resulted in an increased proportion of spontaneously replicating cells, relative to wild type virus. The BART miRNAs subcluster 1, and to a lesser extent subcluster 2, prevented expression of BZLF1, the key protein for initiation of lytic replication. Thus, multiple BART miRNAs cooperate to repress lytic replication. The BART miRNAs also downregulated pro- and anti-apoptotic mediators such as caspase 3 and LMP1, and their deletion did not sensitize B-cells to apoptosis. To the contrary, the majority of humanized mice infected with the BART miRNA knockout mutant developed tumors more rapidly, probably due to enhanced LMP1 expression, although deletion of the BART miRNAs did not modify the virus transforming abilities in vitro. This ability to slow cell growth could be confirmed in non-humanized immunocompromized mice. Injection of resting B cells exposed to a virus that lacks the BART miRNAs resulted in accelerated tumor growth, relative to wild type controls. Therefore, we found that the M81 BART miRNAs do not enhance B-cell tumorigenesis but rather repress it. The repressive effects of the BART miRNAs on potentially pathogenic viral functions in infected B cells are likely to facilitate long-term persistence of the virus in the infected host. PMID:26694854

  15. Generation and characterization of koi herpesvirus recombinants lacking viral enzymes of nucleotide metabolism.

    Science.gov (United States)

    Fuchs, Walter; Fichtner, Dieter; Bergmann, Sven M; Mettenleiter, Thomas C

    2011-06-01

    Koi herpesvirus (KHV) causes a fatal disease in koi and common carp, but no reliable and genetically characterized vaccines are available up to now. Therefore, we generated KHV recombinants possessing deletions within the viral ribonucleotide reductase (RNR), thymidine kinase (TK), dUTPase, or TK and dUTPase genes, and their corresponding rescuants. All KHV mutants were replication competent in cultured cells. Whereas plaque sizes and titers of RNR-negative KHV were reduced, replication of the other mutants was not affected. Experimental infection of carp indicated attenuation of TK- or dUTPase-deleted KHV, and PCR analysis of tissue samples permitted differentiation of mutant from wild-type virus.

  16. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    2010-08-01

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  17. Deletion mutagenesis identifies a haploinsufficient role for gamma-zein in opaque-2 endosperm modification

    Science.gov (United States)

    Quality Protein Maize (QPM) is a hard kernel variant of the high-lysine mutant, opaque-2. Using gamma irradiation, we created opaque QPM variants to identify opaque-2 modifier genes and to investigate deletion mutagenesis combined with Illumina sequencing as a maize functional genomics tool. A K0326...

  18. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    Science.gov (United States)

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  19. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.).

    Science.gov (United States)

    Hanzawa, Eiko; Sasaki, Kazuhiro; Nagai, Shinsei; Obara, Mitsuhiro; Fukuta, Yoshimichi; Uga, Yusaku; Miyao, Akio; Hirochika, Hirohiko; Higashitani, Atsushi; Maekawa, Masahiko; Sato, Tadashi

    2013-11-20

    Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

  20. Functional Analysis of Glycosylation of Zika Virus Envelope Protein.

    Science.gov (United States)

    Fontes-Garfias, Camila R; Shan, Chao; Luo, Huanle; Muruato, Antonio E; Medeiros, Daniele B A; Mays, Elizabeth; Xie, Xuping; Zou, Jing; Roundy, Christopher M; Wakamiya, Maki; Rossi, Shannan L; Wang, Tian; Weaver, Scott C; Shi, Pei-Yong

    2017-10-31

    Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. SARS virus

    Indian Academy of Sciences (India)

    ... consequence.Protein spike similar. HE gene absent. 2787 nucleotides. Largest genome. Jumps species by genetic deletion. < 300 compounds screened. Glycyrrhizin (liquorics/mullatha) seems attractive. Antivirals not effective. Vaccines – animal model only in monkeys. Killed corona or knockout weakened virus as targets.

  2. [Construction and Function Verification of a Novel Shuttle Vector Containing a Marker Gene Self-deletion System].

    Science.gov (United States)

    Li, Lili; Wang, Zhan; Zhou, Yubai; Zhang, Fang; Shen, Sisi; Li, Zelin; Zeng, Yi

    2015-09-01

    For rapid and accurate screening of recombinant modified vaccinia virus Ankara (rMVA) that satisfied the quality standards of clinical trials, a novel shuttle vector that can delete the marker gene automatically during virus propagation was construted: pZL-EGFP. To construct the pZL-EGFP, the original shuttle vector pSC11 was modified by replacing the LacZ marker gene with enhanced green fluorescent protein (EGFP) and then inserting homologous sequences of TKL into the flank regions of EGFP. Baby hamster kidney (BHK)-21 cells were cotransfected with pZL-EGFP and MVA, and underwent ten passages and one plaque screening to obtain the EGFP-free rMVA carrying the exogenous gene. Resulting rMVA was tested by polymerase chain reaction and western blotting to verify pZL-EGFP function. A novel shuttle vector pZL-EGFP containing an EGFP marker gene which could be deleted automatically was constructed. This gene deletion had no effect on the activities of rMVA, and the exogenous gene could be expressed stably. These results suggest that rMVA can be packaged efficiently by homologous recombination between pZL-EGFP and MVA in BHK-21 cells, and that the carried EGFP gene can be removed automatically by intramolecular homologous recombination during virus passage. Meanwhile, the gene deletion had no influence on the activities of rMVA and the expression of exogenous target gene. This study lays a solid foundation for the future research.

  3. Autographa californica multiple nucleopolyhedrovirus ac66 is required for the efficient egress of nucleocapsids from the nucleus, general synthesis of preoccluded virions and occlusion body formation

    International Nuclear Information System (INIS)

    Ke Jianhao; Wang Jinwen; Deng Riqiang; Wang Xunzhang

    2008-01-01

    Although orf66 (ac66) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is conserved in all sequenced lepidopteran baculovirus genomes, its function is not known. This paper describes generation of an ac66 knockout AcMNPV bacmid mutant and analyses of the influence of ac66 deletion on the virus replication in Sf-9 cells so as to determine the role of ac66 in the viral life cycle. Results indicated that budded virus (BV) yields were reduced over 99% in ac66-null mutant infected cells in comparison to that in wild-type virus infected cells. Optical microscopy revealed that occlusion body synthesis was significantly reduced in the ac66 knockout bacmid-transfected cells. In addition, ac66 deletion interrupted preoccluded virion synthesis. The mutant phenotype was rescued by an ac66 repair bacmid. On the other hand, real-time PCR analysis indicated that ac66 deletion did not affect the levels of viral DNA replication. Electron microscopy revealed that ac66 is not essential for nucleocapsid assembly, but for the efficient transport of nucleocapsids from the nucleus to the cytoplasm. These results suggested that ac66 plays an important role for the efficient exit of nucleocapsids from the nucleus to the cytoplasm for BV synthesis as well as for preoccluded virion and occlusion synthesis

  4. CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication

    Directory of Open Access Journals (Sweden)

    Renée L. Finnen

    2018-05-01

    Full Text Available Studies from multiple laboratories using different strains or species of herpes simplex virus (HSV with deletions in UL21 have yielded conflicting results regarding the necessity of pUL21 in HSV infection. To resolve this discrepancy, we utilized CRISPR/Cas9 mutagenesis to isolate pUL21 deficient viruses in multiple HSV backgrounds, and performed a side-by-side comparison of the cell-to-cell spread and replication phenotypes of these viruses. These analyses confirmed previous studies implicating the involvement of pUL21 in cell-to-cell spread of HSV. Cell-to-cell spread of HSV-2 was more greatly affected by the lack of pUL21 than HSV-1, and strain-specific differences in the requirement for pUL21 in cell-to-cell spread were also noted. HSV-2 strain 186 lacking pUL21 was particularly crippled in both cell-to-cell spread and viral replication in non-complementing cells, in comparison to other HSV strains lacking pUL21, suggesting that the strict requirement for pUL21 by strain 186 may not be representative of the HSV-2 species as a whole. This work highlights CRISPR/Cas9 technology as a useful tool for rapidly constructing deletion mutants of alphaherpesviruses, regardless of background strain, and should find great utility whenever strain-specific differences need to be investigated.

  5. Molecular characterization of amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87.

    Science.gov (United States)

    Esmaelizad, Majid; Jelokhani-Niaraki, Saber; Hashemnejad, Khadije; Kamalzadeh, Morteza; Lotfi, Mohsen

    2011-12-01

    The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3D(pol)) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3D(pol) coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp(26)→Glu substitution in a beta sheet located within a small groove of the 3D(pol) protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment.

  6. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.

    Directory of Open Access Journals (Sweden)

    Adrian W R Serohijos

    2008-02-01

    Full Text Available The absence of a functional ATP Binding Cassette (ABC protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR from apical membranes of epithelial cells is responsible for cystic fibrosis (CF. Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1. Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of

  7. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Directory of Open Access Journals (Sweden)

    Ayako Kumagai

    2014-12-01

    Full Text Available Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

  8. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Science.gov (United States)

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  9. The chloroplasts membrane phospholipids of Chlamydomonas reinhardii mutant not forming the Photosystem 2

    International Nuclear Information System (INIS)

    Trusova, V.M.; Ladygin, V.G.; Mezentsev, V.V.; Molchanov, M.I.

    1987-01-01

    Study on a component composition and physical state of photosynthetic membranes of Chlamydomonas chloroplasts of the wild type and mutant A-110 with disturbance of electron transfer chain in the photosystem 2 region permitted to conclude that 170 A diameter particles localized on the internal hydrophobic surface of membrane chips are deleted with respect to phosphatidylglycerin. The results obtained permit to suggest that the formation of protein-lipid complexes containing phosphatidylglycerins is suppressed in mutant A-110 which is not capable of the lamellar system differentation in

  10. Deletion mutants of the Escherichia coli K-12 mannitol permease: dissection of transport-phosphorylation, phospho-exchange, and mannitol-binding activities.

    Science.gov (United States)

    Grisafi, P L; Scholle, A; Sugiyama, J; Briggs, C; Jacobson, G R; Lengeler, J W

    1989-05-01

    We have constructed a series of deletion mutations of the cloned Escherichia coli K-12 mtlA gene, which encodes the mannitol-specific enzyme II of the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system. This membrane-bound permease consists of 637 amino acid residues and is responsible for the concomitant transport and phosphorylation of D-mannitol in E. coli. Deletions into the 3' end of mtlA were constructed by exonuclease III digestion. Restriction mapping of the resultant plasmids identified several classes of deletions that lacked approximately 5% to more than 75% of the gene. Immunoblotting experiments revealed that many of these plasmids expressed proteins within the size range predicted by the restriction analyses, and all of these proteins were membrane localized, which demonstrated that none of the C-terminal half of the permease is required for membrane insertion. Functional analyses of the deletion proteins, expressed in an E. coli strain deleted for the chromosomal copy of mtlA, showed that all but one of the strains containing confirmed deletions were inactive in transport and PEP-dependent phosphorylation of mannitol, but deletions removing up to at least 117 amino acid residues from the C terminus of the permease were still active in catalyzing phospho exchange between mannitol 1-phosphate and mannitol. A deletion protein that lacked 240 residues from the C terminus of the permease was inactive in phospho exchange but still bound mannitol with high affinity. These experiments localize sites important for transport and PEP-dependent phosphorylation to the extreme C terminus of the mannitol permease, sites important for phospho exchange to between residues 377 and 519, and sites necessary for mannitol binding to the N-terminal 60% of the molecule. The results are discussed with respect to the fact that the mannitol permease consists of structurally independent N- and C-terminal domains.

  11. Functional Analysis of Glycosylation of Zika Virus Envelope Protein

    Directory of Open Access Journals (Sweden)

    Camila R. Fontes-Garfias

    2017-10-01

    Full Text Available Summary: Zika virus (ZIKV infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. : Zika virus (ZIKV causes devastating congenital abnormities and Guillain-Barré syndrome. Fontes-Garfias et al. showed that the glycosylation of ZIKV envelope protein plays an important role in infecting mosquito vectors and pathogenesis in mouse. Keywords: Zika virus, glycosylation, flavivirus entry, mosquito transmission, vaccine

  12. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production.

    Directory of Open Access Journals (Sweden)

    Ann L Wozniak

    2010-09-01

    Full Text Available The hepatitis C virus (HCV p7 protein is critical for virus production and an attractive antiviral target. p7 is an ion channel when reconstituted in artificial lipid bilayers, but channel function has not been demonstrated in vivo and it is unknown whether p7 channel activity plays a critical role in virus production. To evaluate the contribution of p7 to organelle pH regulation and virus production, we incorporated a fluorescent pH sensor within native, intracellular vesicles in the presence or absence of p7 expression. p7 increased proton (H(+ conductance in vesicles and was able to rapidly equilibrate H(+ gradients. This conductance was blocked by the viroporin inhibitors amantadine, rimantadine and hexamethylene amiloride. Fluorescence microscopy using pH indicators in live cells showed that both HCV infection and expression of p7 from replicon RNAs reduced the number of highly acidic (pH<5 vesicles and increased lysosomal pH from 4.5 to 6.0. These effects were not present in uninfected cells, sub-genomic replicon cells not expressing p7, or cells electroporated with viral RNA containing a channel-inactive p7 point mutation. The acidification inhibitor, bafilomycin A1, partially restored virus production to cells electroporated with viral RNA containing the channel inactive mutation, yet did not in cells containing p7-deleted RNA. Expression of influenza M2 protein also complemented the p7 mutant, confirming a requirement for H(+ channel activity in virus production. Accordingly, exposure to acid pH rendered intracellular HCV particles non-infectious, whereas the infectivity of extracellular virions was acid stable and unaffected by incubation at low pH, further demonstrating a key requirement for p7-induced loss of acidification. We conclude that p7 functions as a H(+ permeation pathway, acting to prevent acidification in otherwise acidic intracellular compartments. This loss of acidification is required for productive HCV infection

  13. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  14. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    Science.gov (United States)

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients. © 2013 Wiley Periodicals, Inc.

  15. Evaluation of the G145R Mutant of the Hepatitis B Virus as a Minor Strain in Mother-to-Child Transmission.

    Directory of Open Access Journals (Sweden)

    Haruki Komatsu

    Full Text Available The role of the hepatitis B virus (HBV mutant G145R, with a single change in amino acid 145 of the surface protein, as a minor population remains unknown in mother-to-child transmission. The minor strain as well as the major strain of the G145R mutant were evaluated in three cohorts using a locked nucleic acid probe-based real-time PCR. The breakthrough cohort consisted of children who were born to HBV carrier mothers and became HBV carriers despite immnoprophylaxis (n = 25. The control cohort consisted of HBV carriers who had no history of receiving the hepatitis B vaccine, hepatitis B immunoglobulin or antiviral treatment (n = 126. The pregnant cohort comprised pregnant women with chronic HBV infection (n = 31. In the breakthrough cohort, 6 showed positive PCR results (major, 2; minor, 4. In the control cohort, 13 showed positive PCR results (major, 0; minor, 13. HBeAg-positive patients were prone to have the G145R mutant as a minor population. Deep sequencing was performed in a total of 32 children (PCR positive, n = 13; negative, n = 19. In the breakthrough cohort, the frequency of the G145R mutant ranged from 0.54% to 6.58%. In the control cohort, the frequency of the G145R mutant ranged from 0.42% to 4.1%. Of the 31 pregnant women, 4 showed positive PCR results (major, n = 0; minor, n = 4. All of the pregnant women were positive for HBeAg and showed a high viral load. Three babies born to 3 pregnant women with the G145R mutant were evaluated. After the completion of immunoprophylaxis, 2 infants became negative for HBsAg. The remaining infant became negative for HBsAg after the first dose of HB vaccine. G145R was detected in one-fourth of the children with immunoprophylaxis failure. However, the pre-existence of the G145R mutant as a minor population in pregnant women does not always cause breakthrough infection in infants.

  16. Fitness and virulence of a coxsackievirus mutant that can circumnavigate the need for phosphatidylinositol 4-kinase class III beta

    NARCIS (Netherlands)

    Thibaut, Hendrik Jan; van der Schaar, Hilde M; Lanke, Kjerstin H W; Verbeken, Erik; Andrews, Martin; Leyssen, Pieter; Neyts, Johan; van Kuppeveld, Frank J M

    2014-01-01

    Coxsackieviruses require phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) for replication but can bypass this need by an H57Y mutation in protein 3A (3A-H57Y). We show that mutant coxsackievirus is not outcompeted by wild-type virus during 10 passages in vitro. In mice, the mutant virus proved as

  17. Construction of a hepatitis B virus neutralizing chimeric monoclonal antibody recognizing escape mutants of the viral surface antigen (HBsAg).

    Science.gov (United States)

    Golsaz-Shirazi, Forough; Amiri, Mohammad Mehdi; Farid, Samira; Bahadori, Motahareh; Bohne, Felix; Altstetter, Sebastian; Wolff, Lisa; Kazemi, Tohid; Khoshnoodi, Jalal; Hojjat-Farsangi, Mohammad; Chudy, Michael; Jeddi-Tehrani, Mahmood; Protzer, Ulrike; Shokri, Fazel

    2017-08-01

    Hepatitis B virus (HBV) infection is a global burden on the health-care system and is considered as the tenth leading cause of death in the world. Over 248 million patients are currently suffering from chronic HBV infection worldwide and annual mortality rate of this infection is 686000. The "a" determinant is a hydrophilic region present in all antigenic subtypes of hepatitis B surface antigen (HBsAg), and antibodies against this region can neutralize the virus and are protective against all subtypes. We have recently generated a murine anti-HBs monoclonal antibody (4G4), which can neutralize HBV infection in HepaRG cells and recognize most of the escape mutant forms of HBsAg. Here, we describe the production and characterization of the chimeric human-murine antibody 4G4 (c-4G4). Variable region genes of heavy and light chains of the m-4G4 were cloned and fused to constant regions of human kappa and IgG1 by splice overlap extension (SOE) PCR. The chimeric antibody was expressed in Chinese Hamster Ovary (CHO)-K1 cells and purified from culture supernatant. Competition ELISA proved that both antibodies bind the same epitope within HBsAg. Antigen-binding studies using ELISA and Western blot showed that c-4G4 has retained the affinity and specificity of the parental murine antibody, and displayed a similar pattern of reactivity to 13 escape mutant forms of HBsAg. Both, the parental and c-4G4 showed a comparably high HBV neutralization capacity in cell culture even at the lowest concentration (0.6μg/ml). Due to the ability of c-4G4 to recognize most of the sub-genotypes and escape mutants of HBsAg, this antibody either alone or in combination with other anti-HBs antibodies could be considered as a potent alternative for Hepatitis B immune globulin (HBIG) as an HBV infection prophylactic or for passive immunotherapy against HBV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Both structural and non-structural forms of the readthrough protein of cucurbit aphid-borne yellows virus are essential for efficient systemic infection of plants.

    Directory of Open Access Journals (Sweden)

    Sylvaine Boissinot

    Full Text Available Cucurbit aphid-borne yellows virus (CABYV is a polerovirus (Luteoviridae family with a capsid composed of the major coat protein and a minor component referred to as the readthrough protein (RT. Two forms of the RT were reported: a full-length protein of 74 kDa detected in infected plants and a truncated form of 55 kDa (RT* incorporated into virions. Both forms were detected in CABYV-infected plants. To clarify the specific roles of each protein in the viral cycle, we generated by deletion a polerovirus mutant able to synthesize only the RT* which is incorporated into the particle. This mutant was unable to move systemically from inoculated leaves inferring that the C-terminal half of the RT is required for efficient long-distance transport of CABYV. Among a collection of CABYV mutants bearing point mutations in the central domain of the RT, we obtained a mutant impaired in the correct processing of the RT which does not produce the RT*. This mutant accumulated very poorly in upper non-inoculated leaves, suggesting that the RT* has a functional role in long-distance movement of CABYV. Taken together, these results infer that both RT proteins are required for an efficient CABYV movement.

  19. Both structural and non-structural forms of the readthrough protein of cucurbit aphid-borne yellows virus are essential for efficient systemic infection of plants.

    Science.gov (United States)

    Boissinot, Sylvaine; Erdinger, Monique; Monsion, Baptiste; Ziegler-Graff, Véronique; Brault, Véronique

    2014-01-01

    Cucurbit aphid-borne yellows virus (CABYV) is a polerovirus (Luteoviridae family) with a capsid composed of the major coat protein and a minor component referred to as the readthrough protein (RT). Two forms of the RT were reported: a full-length protein of 74 kDa detected in infected plants and a truncated form of 55 kDa (RT*) incorporated into virions. Both forms were detected in CABYV-infected plants. To clarify the specific roles of each protein in the viral cycle, we generated by deletion a polerovirus mutant able to synthesize only the RT* which is incorporated into the particle. This mutant was unable to move systemically from inoculated leaves inferring that the C-terminal half of the RT is required for efficient long-distance transport of CABYV. Among a collection of CABYV mutants bearing point mutations in the central domain of the RT, we obtained a mutant impaired in the correct processing of the RT which does not produce the RT*. This mutant accumulated very poorly in upper non-inoculated leaves, suggesting that the RT* has a functional role in long-distance movement of CABYV. Taken together, these results infer that both RT proteins are required for an efficient CABYV movement.

  20. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility.

    Science.gov (United States)

    Geber, A; Hitchcock, C A; Swartz, J E; Pullen, F S; Marsden, K E; Kwon-Chung, K J; Bennett, J E

    1995-01-01

    We have cloned and sequenced the structural genes encoding the delta 5,6 sterol desaturase (ERG3 gene) and the 14 alpha-methyl sterol demethylase (ERG11 gene) from Candida glabrata L5 (leu2). Single and double mutants of these genes were created by gene deletion. The phenotypes of these mutants, including sterol profiles, aerobic viabilities, antifungal susceptibilities, and generation times, were studied. Strain L5D (erg3 delta::LEU2) accumulated mainly ergosta-7,22-dien-3 beta-ol, was aerobically viable, and remained susceptible to antifungal agents but had a slower generation time than its parent strain. L5LUD (LEU2 erg11 delta::URA3) strains required medium supplemented with ergosterol and an anaerobic environment for growth. A spontaneous aerobically viable mutant, L5LUD40R (LEU erg11 delta::URA3), obtained from L5LUD (LEU2 erg11 delta::URA3), was found to accumulate lanosterol and obtusifoliol, was resistant to azole antifungal agents, demonstrated some increase in resistance to amphotericin B, and exhibited a 1.86-fold increase in generation time in comparison with L5 (leu2). The double-deletion mutant L5DUD61 (erg3 delta::LEU2 erg11 delta::URA3) was aerobically viable, produced mainly 14 alpha-methyl fecosterol, and had the same antifungal susceptibility pattern as L5LUD40R (LEU2 erg11 delta::URA3), and its generation time was threefold greater than that of L5 (leu2). Northern (RNA) analysis revealed that the single-deletion mutants had a marked increase in message for the undeleted ERG3 and ERG11 genes. These results indicate that differences in antifungal susceptibilities and the restoration of aerobic viability exist between the C. glabrata ergosterol mutants created in this study and those sterol mutants with similar genetic lesions previously reported for Saccharomyces cerevisiae. PMID:8593007

  1. The Orf virus E3L homologue is able to complement deletion of the vaccinia virus E3L gene in vitro but not in vivo

    International Nuclear Information System (INIS)

    Vijaysri, Sangeetha; Talasela, Latha; Mercer, Andrew A.; Mcinnes, Colin J.; Jacobs, Bertram L.; Langland, Jeffrey O.

    2003-01-01

    Orf virus (OV), the prototypic parapoxvirus, is resistant to the effects of interferon (IFN) and this function of OV has been mapped to the OV20.0L gene. The protein product of this gene shares 31% amino acid identity to the E3L-encoded protein of vaccinia virus (VV) that is required for the broad host range and IFN-resistant phenotype of VV in cells in culture and for virulence of the virus in vivo. In this study we investigated whether the distantly related OV E3L homologue could complement the deletion of E3L in VV. The recombinant VV (VV/ORF-E3L) expressing the OV E3L homologue in place of VV E3L was indistinguishable from wt VV in its cell-culture phenotype. But VV/ORF-E3L was over a 1000-fold less pathogenic than wt VV (LD 50 > 5 x 10 6 PFU, compared to LD 50 of wtVV = 4 x 10 3 PFU) following intranasal infection of mice. While wt VV spread to the lungs and brain and replicated to high titers in the brain of infected mice, VV/ORF-E3L could not be detected in the lungs or brain following intranasal infection. VV/ORF-E3L was at least 100,000-fold less pathogenic than wt VV on intracranial injection. Domain swap experiments demonstrate that the difference in pathogenesis maps to the C-terminal domain of these proteins. This domain has been shown to be required for the dsRNA binding function of the VV E3L

  2. Effects of Point Mutations in the Major Capsid Protein of Beet Western Yellows Virus on Capsid Formation, Virus Accumulation, and Aphid Transmission

    Science.gov (United States)

    Brault, V.; Bergdoll, M.; Mutterer, J.; Prasad, V.; Pfeffer, S.; Erdinger, M.; Richards, K. E.; Ziegler-Graff, V.

    2003-01-01

    Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected ∼90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a “reverse” substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid. PMID:12584348

  3. Real-time RPA assay for rapid detection and differentiation of wild-type pseudorabies and gE-deleted vaccine viruses.

    Science.gov (United States)

    Wang, Jianchang; Liu, Libing; Wang, Jinfeng; Pang, Xiaoyu; Yuan, Wanzhe

    2018-02-15

    The objective of this study was to develop a dual real-time recombinase polymerase amplification (RPA) assay using exo probes for the detection and differentiation of pseudorabies virus (PRV). Specific RPA primers and probes were designed for gB and gE genes of PRV within the conserved region of viral genome. The reaction process can be completed in 20 min at 39 °C. The dual real-time RPA assay performed in the single tube was capable of specific detecting and differentiating of the wild-type PRV and gE-deleted vaccine strains, without cross-reactions with other non-targeted pig viruses. The analytical sensitivity of the assay was 10 2 copies for gB and gE genes. The dual real-time RPA demonstrated a 100% diagnostic agreement with the real-time PCR on 4 PRV strains and 37 clinical samples. Through the linear regression analysis, the R 2 value of the real-time RPA and the real-time PCR for gB and gE was 0.983 and 0.992, respectively. The dual real-time RPA assay provides an alternative useful tool for rapid, simple, and reliable detection and differentiation of PRV, especially in remote and rural areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    OpenAIRE

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F. M.; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates f...

  5. The membrane-proximal tryptophan-rich region in the transmembrane glycoprotein ectodomain of feline immunodeficiency virus is important for cell entry

    International Nuclear Information System (INIS)

    Giannecchini, Simone; Bonci, Francesca; Pistello, Mauro; Matteucci, Donatella; Sichi, Olimpia; Rovero, Paolo; Bendinelli, Mauro

    2004-01-01

    The mechanisms whereby feline immunodeficiency virus (FIV) adsorbs and enters into susceptible cells are poorly understood. Here, we investigated the role exerted in such functions by the tryptophan (Trp)-rich motif present membrane-proximally in the ectodomain of the FIV transmembrane glycoprotein. Starting from p34TF10, which encodes the entire genome of FIV Petaluma, we produced 11 mutated clones having the Trp-rich motif scrambled or variously deleted or substituted. All mutated progenies adsorbed normally to cells, but the ones with severe disruptions of the motif failed to generate proviral DNA. In the latter mutants, proviral DNA formation was restored by providing an independent source of intact FIV envelope glycoproteins or by addition of the fusing agent polyethylene glycol, thus clearly indicating that their defect resided primarily at the level of cell entry. In addition, the replication-competent mutants exhibited a generally enhanced susceptibility to selected entry inhibitory synthetic peptides, suggestive of a reduced efficiency of the entry step

  6. Shallow Boomerang-shaped Influenza Hemagglutinin G13A Mutant Structure Promotes Leaky Membrane Fusion*

    Science.gov (United States)

    Lai, Alex L.; Tamm, Lukas K.

    2010-01-01

    Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788

  7. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement.

    Science.gov (United States)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesús-Angel; Saurí, Ana; Mingarro, Ismael; Pallás, Vicente

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.

  8. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    International Nuclear Information System (INIS)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana; Mingarro, Ismael; Pallas, Vicente

    2005-01-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed

  9. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems

    DEFF Research Database (Denmark)

    Gutu, Alina D; Sgambati, Nicole; Strasbourger, Pnina

    2013-01-01

    Pseudomonas aeruginosa can develop resistance to polymyxin as a consequence of mutations in the PhoPQ regulatory system, mediated by covalent lipid A modification. Transposon mutagenesis of a polymyxin-resistant phoQ mutant defined 41 novel loci required for resistance, including two regulatory s......, indicate that addition of 4-amino-L-arabinose to lipid A is not the only PhoPQ-regulated biochemical mechanism required for resistance, and demonstrate that colRS and cprS mutations can contribute to high-level clinical resistance....... with the known role of this modification in polymyxin resistance. Surprisingly, tandem deletion of colRS or cprRS in the ΔphoQ mutant or individual deletion of cprR or cprS failed to suppress 4-amino-L-arabinose addition to lipid A, indicating that this modification alone is not sufficient for Pho...

  10. Oncogenic Signaling by Leukemia-Associated Mutant Cbl Proteins

    Science.gov (United States)

    Nadeau, Scott; An, Wei; Palermo, Nick; Feng, Dan; Ahmad, Gulzar; Dong, Lin; Borgstahl, Gloria E. O.; Natarajan, Amarnath; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2013-01-01

    Members of the Cbl protein family (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that have emerged as critical negative regulators of protein tyrosine kinase (PTK) signaling. This function reflects their ability to directly interact with activated PTKs and to target them as well as their associated signaling components for ubiquitination. Given the critical roles of PTK signaling in driving oncogenesis, recent studies in animal models and genetic analyses in human cancer have firmly established that Cbl proteins function as tumor suppressors. Missense mutations or small in-frame deletions within the regions of Cbl protein that are essential for its E3 activity have been identified in nearly 5% of leukemia patients with myelodysplastic/myeloproliferative disorders. Based on evidence from cell culture studies, in vivo models and clinical data, we discuss the potential signaling mechanisms of mutant Cbl-driven oncogenesis. Mechanistic insights into oncogenic Cbl mutants and associated animal models are likely to enhance our understanding of normal hematopoietic stem cell homeostasis and provide avenues for targeted therapy of mutant Cbl-driven cancers. PMID:23997989

  11. Repair and mutagenesis of herpes simplex virus in UV-irradiated monkey cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Goddard, J.G.; Lin, C.H.

    1980-01-01

    Mutagenic repair in mammalian cells was investigated by determining the mutagenesis of UV-irradiated or unirradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cells. These results were compared with the results for UV-enhanced virus reactivation (UVER) in the same experimental situation. High and low multiplicities of infection were used to determine the effects of multiplicity reactivation (MR). UVER and MR were readily demonstrable and were approximately equal in amount in an infectious center assay. For this study, a forward-mutation assay was developed to detect virus mutants resistant to iododeoxycytidine (ICdR), probably an indication of the mutant virus being defective at its thymidine kinase locus. ICdR-resistant mutants did not have a growth advantage over wild-type virus in irradiated or unirradiated cells. Thus, higher fractions of mutant virus indicated greater mutagenesis during virus repair and/or replication. The data showed that: (1) unirradiated virus was mutated in unirradiated cells, providing a background level of mutagenesis; (2) unirradiated virus was mutated about 40% more in irradiated cells, indicating that virus replication (DNA synthesis) became more mutagenic as a result of cell irradiation; (3) irradiated virus was mutated much more (about 6-fold) than unirradiated virus, even in unirradiated cells; (4) cell irradiation did not change the mutagenesis of irradiated virus except at high multiplicity of infection. High multiplicity of infection did not demonstrate UVER or MR alone to be either error-free or error-prone. When the two processes were present simultaneously, they were mutagenic. (orig.)

  12. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.

    Science.gov (United States)

    Maeda, K; Izawa, M; Nakajima, Y; Jin, Q; Hirose, T; Nakamura, T; Koshino, H; Kanamaru, K; Ohsato, S; Kamakura, T; Kobayashi, T; Yoshida, M; Kimura, M

    2017-11-01

    Histone deacetylases (HDACs) play an important role in the regulation of chromatin structure and gene expression. We found that dark pigmentation of Magnaporthe oryzae (anamorph Pyricularia oryzae) ΔMohda1, a mutant strain in which an orthologue of the yeast HDA1 was disrupted by double cross-over homologous recombination, was significantly stimulated in liquid culture. Analysis of metabolites in a ΔMohda1 mutant culture revealed that the accumulation of shunt products of the 1,8-dihydroxynaphthalene melanin and ergosterol pathways were significantly enhanced compared to the wild-type strain. Northern blot analysis of the ΔMohda1 mutant revealed transcriptional activation of three melanin genes that are dispersed throughout the genome of M. oryzae. The effect of deletion of the yeast HDA1 orthologue was also observed in Fusarium asiaticum from the Fusarium graminearum species complex; the HDF2 deletion mutant produced increased levels of nivalenol-type trichothecenes. These results suggest that histone modification via HDA1-type HDAC regulates the production of natural products in filamentous fungi. Natural products of fungi have significant impacts on human welfare, in both detrimental and beneficial ways. Although HDA1-type histone deacetylase is not essential for vegetative growth, deletion of the gene affects the expression of clustered secondary metabolite genes in some fungi. Here, we report that such phenomena are also observed in physically unlinked genes required for melanin biosynthesis in the rice blast fungus. In addition, production of Fusarium trichothecenes, previously reported to be unaffected by HDA1 deletion, was significantly upregulated in another Fusarium species. Thus, the HDA1-inactivation strategy may be regarded as a general approach for overproduction and/or discovery of fungal metabolites. © 2017 The Society for Applied Microbiology.

  13. Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of Bat aminotransferases.

    Science.gov (United States)

    Zhang, Cui-Ying; Qi, Ya-Nan; Ma, Hong-Xia; Li, Wei; Dai, Long-Hai; Xiao, Dong-Guang

    2015-04-01

    An appropriate level of higher alcohols produced by yeast during the fermentation is one of the most important factors influencing Chinese rice wine quality. In this study, BAT1 and BAT2 single- and double-gene-deletion mutant strains were constructed from an industrial yeast strain RY1 to decrease higher alcohols during Chinese rice wine fermentation. The results showed that the BAT2 single-gene-deletion mutant strain produced best improvement in the production of higher alcohols while remaining showed normal growth and fermentation characteristics. Furthermore, a BAT2 single-gene-deletion diploid engineered strain RY1-Δbat2 was constructed and produced low levels of isobutanol and isoamylol (isoamyl alcohol and active amyl alcohol) in simulated fermentation of Chinese rice wine, 92.40 and 303.31 mg/L, respectively, which were 33.00 and 14.20 % lower than those of the parental strain RY1. The differences in fermentation performance between RY1-Δbat2 and RY1 were minor. Therefore, construction of this yeast strain is important in future development in Chinese wine industry and provides insights on generating yeast strains for other fermented alcoholic beverages.

  14. [Prevalence of transmission of zidovudine-resistant viruses in Switzerland. l'Etude suisse de cohorte VIH].

    Science.gov (United States)

    Yerly, S; Rakik, A; Kinloch-de-Loes, S; Erb, P; Vernazza, P; Hirschel, B; Perrin, L

    1996-10-26

    Zidovudine (ZDV) was the most widely used anti-HIV drug between 1987 and 1995, and, as already reported, transmission of ZDV-resistant viruses occurs. Several mutations of the reverse transcriptase gene have been identified; one of them affects the 215 codon and is associated with a high degree of resistance. We have determined, using selective PCR, the prevalence of transmission of 215 mutant isolates in 134 patients with primary HIV infection (PHI) and have identified 8 patients with 215 mutant virus between 1989 and 1995 in Switzerland. Mutant resistant viruses have been isolated from patients treated with most antiviral drugs. A systematic search for mutant viruses may provide useful information for the adaptation of treatment strategies.

  15. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    Directory of Open Access Journals (Sweden)

    Xueyong Zhu

    2015-11-01

    Full Text Available Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA mutants from ferret-transmissible H5N1 viruses of A/Vietnam/1203/2004 and A/Indonesia/5/2005 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6-linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3-linked sialosides. Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogs reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.

  16. Transcriptomic profiling-based mutant screen reveals three new transcription factors mediating menadione resistance in Neurospora crassa.

    Science.gov (United States)

    Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie

    2013-06-01

    To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner

  17. Deletion of exons 9 and 10 of the Presenilin 1 gene in a patient with Early-onset Alzheimer Disease generates longer amyloid seeds.

    Science.gov (United States)

    Le Guennec, Kilan; Veugelen, Sarah; Quenez, Olivier; Szaruga, Maria; Rousseau, Stéphane; Nicolas, Gaël; Wallon, David; Fluchere, Frédérique; Frébourg, Thierry; De Strooper, Bart; Campion, Dominique; Chávez-Gutiérrez, Lucía; Rovelet-Lecrux, Anne

    2017-08-01

    Presenilin 1 (PSEN1) mutations are the main cause of autosomal dominant Early-onset Alzheimer Disease (EOAD). Among them, deletions of exon 9 have been reported to be associated with a phenotype of spastic paraparesis. Using exome data from a large sample of 522 EOAD cases and 584 controls to search for genomic copy-number variations (CNVs), we report here a novel partial, in-frame deletion of PSEN1, removing both exons 9 and 10. The patient presented with memory impairment associated with spastic paraparesis, both starting from the age of 56years. He presented a positive family history of EOAD. We performed functional analysis to elucidate the impact of this novel deletion on PSEN1 activity as part of the γ-secretase complex. The deletion does not affect the assembly of a mature protease complex but has an extreme impact on its global endopeptidase activity. The mutant carboxypeptidase-like activity is also strongly impaired and the deleterious mutant effect leads to an incomplete digestion of long Aβ peptides and enhances the production of Aβ43, which has been shown to be potently amyloidogenic and neurotoxic in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability.

    Science.gov (United States)

    Scott, Katherine A; Kotecha, Abhay; Seago, Julian; Ren, Jingshan; Fry, Elizabeth E; Stuart, David I; Charleston, Bryan; Maree, Francois F

    2017-05-15

    Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for

  19. X-ray survival characteristics and genetic analysis for nineSaccharomyces deletion mutants that affect radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2006-07-21

    We examine ionizing radiation (IR) sensitivity and epistasisrelationships of several Saccharomyces mutants affectingpost-translational modifications of histones H2B and H3. Mutantsbre1delta, lge1delta, and rtf1delta, defective in histone H2B lysine 123ubiquitination, show IR sensitivity equivalent to that of the dot1deltamutant that we reported on earlier, consistent with published findingsthat Dot1p requires H2B K123 ubiquitination to fully methylate histone H3K79. This implicates progressive K79 methylation rather thanmono-methylation in IR resistance. The set2delta mutant, defective in H3K36 methylation, shows mild IR sensitivity whereas mutants that abolishH3 K4 methylation resemble wild type. The dot1delta, bre1delta, andlge1delta mutants show epistasis for IR sensitivity. The paf1deltamutant, also reportedly defective in H2B K123 ubiquitination, confers nosensitivity. The rad6delta, rad51null, rad50delta, and rad9deltamutations are epistatic to bre1? and dot1delta, but rad18delta andrad5delta show additivity with bre1delta, dot1delta, and each other. Thebre1delta rad18delta double mutant resembles rad6delta in sensitivity;thus the role of Rad6p in ubiquitinating H2B accounts for its extrasensitivity compared to rad18delta. We conclude that IR resistanceconferred by BRE1 and DOT1 is mediated through homologous recombinationalrepair, not postreplication repair, and confirm findings of a G1checkpoint role for the RAD6/BRE1/DOT1 pathway.

  20. Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato Virus Y.

    Science.gov (United States)

    Takakura, Yoshimitsu; Udagawa, Hisashi; Shinjo, Akira; Koga, Kazuharu

    2018-04-06

    Eukaryotic translation-initiation factors eIF4E and eIF(iso)4E in plants play key roles in infection by potyviruses and other plant RNA viruses. Mutations in the genes encoding these factors reduce susceptibility to the viruses, and are the basis of several recessive virus-resistance genes widely used in plant breeding. Because virus variants occasionally break such resistance, the molecular basis for this process must be elucidated. Although deletion mutants of eIF4E1-S of tobacco (Nicotiana tabacum L.) resist Potato virus Y (PVY; the type member of the genus Potyvirus), resistance-breaking strains of PVY threaten tobacco production worldwide. Here, we used RNA interference technology to knock down tobacco eIF4E2-S and eIF4E2-T genes or eIF(iso)4E-S and eIF(iso)4E-T genes. Transgenic plants with reduced transcript levels of both eIF(iso)4E-S and eIF(iso)4E-T showed reduced susceptibility to a resistance-breaking PVY strain with a K105E mutation in the viral genome-associated protein (VPg). By screening a population of chemically-induced mutants of eIF(iso)4E-S and eIF(iso)4E-T, we showed that plants with a nonsense mutation in eIF(iso)4E-T, but not eIF(iso)4E-S, showed reduced susceptibility to the resistance-breaking PVY strain. In a yeast two-hybrid assay, VPg of the resistance-breaking strain, but not wild-type PVY, physically interacted with the eIF(iso)4E-T protein. Thus, eIF4E1-S is required for infection by PVY, but eIF(iso)4E-T is required for infection by the resistance-breaking strain. Our study provides the first evidence for the involvement of a host eukaryotic translation-initiation factor in the infection cycle of a resistance-breaking virus strain. The eIF(iso)4E-T mutants will be useful in tobacco breeding to introduce resistance against resistance-breaking PVY strains. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  1. A cataract-causing connexin 50 mutant is mislocalized to the ER due to loss of the fourth transmembrane domain and cytoplasmic domain.

    Science.gov (United States)

    Somaraju Chalasani, Madhavi Latha; Muppirala, Madhavi; G Ponnam, Surya Prakash; Kannabiran, Chitra; Swarup, Ghanshyam

    2013-01-01

    Mutations in the eye lens gap junction protein connexin 50 cause cataract. Earlier we identified a frameshift mutant of connexin 50 (c.670insA; p.Thr203AsnfsX47) in a family with autosomal recessive cataract. The mutant protein is smaller and contains 46 aberrant amino acids at the C-terminus after amino acid 202. Here, we have analysed this frameshift mutant and observed that it localized to the endoplasmic reticulum (ER) but not in the plasma membrane. Moreover, overexpression of the mutant resulted in disintegration of the ER-Golgi intermediate compartment (ERGIC), reduction in the level of ERGIC-53 protein and breakdown of the Golgi in many cells. Overexpression of the frameshift mutant partially inhibited the transport of wild type connexin 50 to the plasma membrane. A deletion mutant lacking the aberrant sequence showed predominant localization in the ER and inhibited anterograde protein transport suggesting, therefore, that the aberrant sequence is not responsible for improper localization of the frameshift mutant. Further deletion analysis showed that the fourth transmembrane domain and a membrane proximal region (231-294 amino acids) of the cytoplasmic domain are needed for transport from the ER and localization to the plasma membrane. Our results show that a frameshift mutant of connexin 50 mislocalizes to the ER and causes disintegration of the ERGIC and Golgi. We have also identified a sequence of connexin 50 crucial for transport from the ER and localization to the plasma membrane.

  2. High Inter-Individual Diversity of Point Mutations, Insertions, and Deletions in Human Influenza Virus Nucleoprotein-Specific Memory B Cells.

    Directory of Open Access Journals (Sweden)

    Sven Reiche

    Full Text Available The diversity of virus-specific antibodies and of B cells among different individuals is unknown. Using single-cell cloning of antibody genes, we generated recombinant human monoclonal antibodies from influenza nucleoprotein-specific memory B cells in four adult humans with and without preceding influenza vaccination. We examined the diversity of the antibody repertoires and found that NP-specific B cells used numerous immunoglobulin genes. The heavy chains (HCs originated from 26 and the kappa light chains (LCs from 19 different germ line genes. Matching HC and LC chains gave rise to 43 genetically distinct antibodies that bound influenza NP. The median lengths of the CDR3 of the HC, kappa and lambda LC were 14, 9 and 11 amino acids, respectively. We identified changes at 13.6% of the amino acid positions in the V gene of the antibody heavy chain, at 8.4% in the kappa and at 10.6 % in the lambda V gene. We identified somatic insertions or deletions in 8.1% of the variable genes. We also found several small groups of clonal relatives that were highly diversified. Our findings demonstrate broadly diverse memory B cell repertoires for the influenza nucleoprotein. We found extensive variation within individuals with a high number of point mutations, insertions, and deletions, and extensive clonal diversification. Thus, structurally conserved proteins can elicit broadly diverse and highly mutated B-cell responses.

  3. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    KAUST Repository

    Belfield, E.J.; Gan, X.; Mithani, A.; Brown, C.; Jiang, C.; Franklin, K.; Alvey, E.; Wibowo, A.; Jung, M.; Bailey, K.; Kalwani, S.; Ragoussis, J.; Mott, R.; Harberd, N.P.

    2012-01-01

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.

  4. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    KAUST Repository

    Belfield, E.J.

    2012-04-12

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.

  5. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections.

    Science.gov (United States)

    Yu, Jisuk; Lee, Kyung-Mi; Cho, Won Kyong; Park, Ju Yeon; Kim, Kook-Hyung

    2018-05-01

    The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum ( FgDICER-2 and FgAGO-1 ) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1 , FgDICER-2 , and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum , that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearum IMPORTANCE To increase our understanding of how RNAi components in Fusarium

  6. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  7. Selection of Mycoplasma hominis PG21 deletion mutants by cultivation in the presence of monoclonal antibody 552

    DEFF Research Database (Denmark)

    Jensen, Lise Torp; Ladefoged, Søren; Birkelund, Svend

    1995-01-01

    monoclonal antibody (MAb) 552. The epitope for MAb 552 was localized at the repeated part of the protein. The gene encoding Lmp1 is part of a transcriptional complex that contains 9.5 direct repeats of 471 bp each. Pure cultures of mutant strains were obtained by subcloning, and three mutants were...

  8. Comparison of the nucleotide sequence of wild-type hepatitis - A virus and its attenuated candidate vaccine derivative

    International Nuclear Information System (INIS)

    Cohen, J.I.; Rosenblum, B.; Ticehurst, J.R.; Daemer, R.; Feinstone, S.; Purcell, R.H.

    1987-01-01

    Development of attenuated mutants for use as vaccines is in progress for other viruses, including influenza, rotavirus, varicella-zoster, cytomegalovirus, and hepatitis-A virus (HAV). Attenuated viruses may be derived from naturally occurring mutants that infect human or nonhuman hosts. Alternatively, attenuated mutants may be generated by passage of wild-type virus in cell culture. Production of attenuated viruses in cell culture is a laborious and empiric process. Despite previous empiric successes, understanding the molecular basis for attenuation of vaccine viruses could facilitate future development and use of live-virus vaccines. Comparison of the complete nucleotide sequences of wild-type (virulent) and vaccine (attenuated) viruses has been reported for polioviruses and yellow fever virus. Here, the authors compare the nucleotide sequence of wild-type HAV HM-175 with that of a candidate vaccine derivative

  9. Construction and symbiotic competence of a luxA-deletion mutant of Vibrio fischeri.

    Science.gov (United States)

    Visick, K G; Ruby, E G

    1996-10-10

    Bioluminescence by the squid Euprymna scolopes requires colonization of its light organ by the symbiotic luminous bacterium Vibrio fischeri. Investigation of the genetic determinants underlying bacterial symbiotic competence in this system has necessitated the continuing establishment and application of molecular genetic techniques in V. fischeri. We developed a procedure for the introduction of plasmid DNA into V. fischeri by electroporation, and isolated a mutant strain that overcame the apparent restriction barrier between V. fischeri and Escherichia coli. Using the technique of electroporation in combination with that of gene replacement, we constructed a non-luminous strain of V. fischeri (delta luxA::erm). In addition, we used the transducing phage rp-1 for the first time to transfer a chromosomal antibiotic resistance marker to another strain of V. fischeri. The luxA mutant was able to colonize E. scolopes as quickly and to the same extent as wild type. This result suggested that, at least during the initial stages of colonization, luminescence per se is not an essential factor for the symbiotic infection.

  10. A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans

    Directory of Open Access Journals (Sweden)

    Chin Kara

    2007-03-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA mutations are of increasing interest due to their involvement in aging, disease, fertility, and their role in the evolution of the mitochondrial genome. The presence of reactive oxygen species and the near lack of repair mechanisms cause mtDNA to mutate at a faster rate than nuclear DNA, and mtDNA deletions are not uncommon in the tissues of individuals, although germ-line mtDNA is largely lesion-free. Large-scale deletions in mtDNA may disrupt multiple genes, and curiously, some large-scale deletions persist over many generations in a heteroplasmic state. Here we examine the phenotypic effects of one such deletion, uaDf5, in Caenorhabditis elegans (C. elegans. Our study investigates the phenotypic effects of this 3 kbp deletion. Results The proportion of uaDf5 chromosomes in worms was highly heritable, although uaDf5 content varied from worm to worm and within tissues of individual worms. We also found an impact of the uaDf5 deletion on metabolism. The deletion significantly reduced egg laying rate, defecation rate, and lifespan. Examination of sperm bearing the uaDf5 deletion revealed that sperm crawled more slowly, both in vitro and in vivo. Conclusion Worms harboring uaDf5 are at a selective disadvantage compared to worms with wild-type mtDNA. These effects should lead to the rapid extinction of the deleted chromosome, but it persists indefinitely. We discuss both the implications of this phenomenon and the possible causes of a shortened lifespan for uaDf5 mutant worms.

  11. Cortical GluN2B deletion attenuates punished suppression of food reward-seeking.

    Science.gov (United States)

    Radke, Anna K; Nakazawa, Kazu; Holmes, Andrew

    2015-10-01

    Compulsive behavior, which is a hallmark of psychiatric disorders such as addiction and obsessive-compulsive disorder, engages corticostriatal circuits. Previous studies indicate a role for corticostriatal N-methyl-D-aspartate receptors (NMDARs) in mediating compulsive-like responding for drugs of abuse, but the specific receptor subunits controlling reward-seeking in the face of punishment remain unclear. The current study assessed the involvement of corticostriatal GluN2B-containing NMDARs in measures of persistent and punished food reward-seeking. Mice with genetic deletion of GluN2B in one of three distinct neuronal populations, cortical principal neurons, forebrain interneurons, or striatal medium spiny neurons, were tested for (1) sustained food reward-seeking when reward was absent, (2) reward-seeking under a progressive ratio schedule of reinforcement, and (3) persistent reward-seeking after a footshock punishment. Mutant mice with genetic deletion of GluN2B in cortical principal neurons demonstrated attenuated suppression of reward-seeking during punishment. These mice performed normally on other behavioral measures, including an assay for pain sensitivity. Mutants with interneuronal or striatal GluN2B deletions were normal on all behavioral assays. Current findings offer novel evidence that loss of GluN2B-containing NMDARs expressed on principal neurons in the cortex results in reduced punished food reward-seeking. These data support the involvement of GluN2B subunit in cortical circuits regulating cognitive flexibility in a variety of settings, with implications for understanding the basis of inflexible behavior in neuropsychiatric disorders including obsessive-compulsive disorders (OCD) and addictions.

  12. Effect of the deletion of qmoABC and the promoter distal gene encoding a hypothetical protein on sulfate-reduction in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zane, Grant M.; Yen, Huei-chi Bill; Wall, Judy D.

    2010-03-18

    The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion of Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo complex (quinone-interacting membrane-bound oxidoreductase) is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5?phosphosulfate (APS) reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for DVU0851. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as terminal electron acceptor. Complementation of the D(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate-reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking.

  13. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.; Donis, Ruben O.; Stevens, James (CDC)

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avian receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.

  14. Structures of receptor complexes of a North American H7N2 influenza hemagglutinin with a loop deletion in the receptor binding site.

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2010-09-01

    Full Text Available Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107, including complexes with an avian receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb. Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type (alpha2-3 receptor binding profile, with only moderate binding to human-type (alpha2-6 receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.

  15. Ultra Deep Sequencing of a Baculovirus Population Reveals Widespread Genomic Variations

    Directory of Open Access Journals (Sweden)

    Aurélien Chateigner

    2015-07-01

    Full Text Available Viruses rely on widespread genetic variation and large population size for adaptation. Large DNA virus populations are thought to harbor little variation though natural populations may be polymorphic. To measure the genetic variation present in a dsDNA virus population, we deep sequenced a natural strain of the baculovirus Autographa californica multiple nucleopolyhedrovirus. With 124,221X average genome coverage of our 133,926 bp long consensus, we could detect low frequency mutations (0.025%. K-means clustering was used to classify the mutations in four categories according to their frequency in the population. We found 60 high frequency non-synonymous mutations under balancing selection distributed in all functional classes. These mutants could alter viral adaptation dynamics, either through competitive or synergistic processes. Lastly, we developed a technique for the delimitation of large deletions in next generation sequencing data. We found that large deletions occur along the entire viral genome, with hotspots located in homologous repeat regions (hrs. Present in 25.4% of the genomes, these deletion mutants presumably require functional complementation to complete their infection cycle. They might thus have a large impact on the fitness of the baculovirus population. Altogether, we found a wide breadth of genomic variation in the baculovirus population, suggesting it has high adaptive potential.

  16. Functional requirements of the yellow fever virus capsid protein.

    Science.gov (United States)

    Patkar, Chinmay G; Jones, Christopher T; Chang, Yu-hsuan; Warrier, Ranjit; Kuhn, Richard J

    2007-06-01

    Although it is known that the flavivirus capsid protein is essential for genome packaging and formation of infectious particles, the minimal requirements of the dimeric capsid protein for virus assembly/disassembly have not been characterized. By use of a trans-packaging system that involved packaging a yellow fever virus (YFV) replicon into pseudo-infectious particles by supplying the YFV structural proteins using a Sindbis virus helper construct, the functional elements within the YFV capsid protein (YFC) were characterized. Various N- and C-terminal truncations, internal deletions, and point mutations of YFC were analyzed for their ability to package the YFV replicon. Consistent with previous reports on the tick-borne encephalitis virus capsid protein, YFC demonstrates remarkable functional flexibility. Nearly 40 residues of YFC could be removed from the N terminus while the ability to package replicon RNA was retained. Additionally, YFC containing a deletion of approximately 27 residues of the C terminus, including a complete deletion of C-terminal helix 4, was functional. Internal deletions encompassing the internal hydrophobic sequence in YFC were, in general, tolerated to a lesser extent. Site-directed mutagenesis of helix 4 residues predicted to be involved in intermonomeric interactions were also analyzed, and although single mutations did not affect packaging, a YFC with the double mutation of leucine 81 and valine 88 was nonfunctional. The effects of mutations in YFC on the viability of YFV infection were also analyzed, and these results were similar to those obtained using the replicon packaging system, thus underscoring the flexibility of YFC with respect to the requirements for its functioning.

  17. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    Science.gov (United States)

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  18. Herpes Simplex Virus Type 1 Glycoprotein B Requires a Cysteine Residue at Position 633 for Folding, Processing, and Incorporation into Mature Infectious Virus Particles

    Science.gov (United States)

    Laquerre, Sylvie; Anderson, Dina B.; Argnani, Rafaela; Glorioso, Joseph C.

    1998-01-01

    Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) resides in the virus envelope in an oligomeric form and plays an essential role in virus entry into susceptible host cells. The oligomerizing domain is a movable element consisting of amino acids 626 to 653 in the gB external domain. This domain contains a single cysteine residue at position 633 (Cys-633) that is predicted to form an intramolecular disulfide bridge with Cys-596. In this study, we examined gB oligomerization, processing, and incorporation into mature virus during infection by two mutant viruses in which either the gB Cys-633 [KgB(C633S)] or both Cys-633 and Cys-596 [KgB(C596S/C633S)] residues were mutated to serine. The result of immunofluorescence studies and analyses of released virus particles showed that the mutant gB molecules were not transported to the cell surface or incorporated into mature virus envelopes and thus infectious virus was not produced. Immunoprecipitation studies revealed that the mutant gB molecules were in an oligomeric configuration and that these mutants produced hetero-oligomers with a truncated form of gB consisting of residues 1 to 43 and 595 to 904, the latter containing the oligomerization domain. Pulse-chase experiments in combination with endoglycosidase H treatment determined that the mutant molecules were improperly processed, having been retained in the endoplasmic reticulum (ER). Coimmunoprecipitation experiments revealed that the cysteine mutations resulted in gB misfolding and retention by the molecular chaperones calnexin, calreticulin, and Grp78 in the ER. The altered conformation of the gB mutant glycoproteins was directly detected by a reduction in monoclonal antibody recognition of two previously defined distinct antigenic sites located within residues 381 to 441 and 595 to 737. The misfolded molecules were not transported to the cell surface as hetero-oligomers with wild-type gB, suggesting that the conformational change could not be corrected by

  19. A novel mouse Fgfr2 mutant, hobbyhorse (hob, exhibits complete XY gonadal sex reversal.

    Directory of Open Access Journals (Sweden)

    Pam Siggers

    Full Text Available The secreted molecule fibroblast growth factor 9 (FGF9 plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob, which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6 genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected.

  20. Patchwork structure-function analysis of the Sendai virus matrix protein.

    Science.gov (United States)

    Mottet-Osman, Geneviève; Miazza, Vincent; Vidalain, Pierre-Olivier; Roux, Laurent

    2014-09-01

    Paramyxoviruses contain a bi-lipidic envelope decorated by two transmembrane glycoproteins and carpeted on the inner surface with a layer of matrix proteins (M), thought to bridge the glycoproteins with the viral nucleocapsids. To characterize M structure-function features, a set of M domains were mutated or deleted. The genes encoding these modified M were incorporated into recombinant Sendai viruses and expressed as supplemental proteins. Using a method of integrated suppression complementation system (ISCS), the functions of these M mutants were analyzed in the context of the infection. Cellular membrane association, localization at the cell periphery, nucleocapsid binding, cellular protein interactions and promotion of viral particle formation were characterized in relation with the mutations. At the end, lack of nucleocapsid binding go together with lack of cell surface localization and both features definitely correlate with loss of M global function estimated by viral particle production. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A speculated ribozyme site in the herpes simplex virus type 1 latency-associated transcript gene is not essential for a wild-type reactivation phenotype

    Science.gov (United States)

    Carpenter, Dale; Singh, Sukhpreet; Osorio, Nelson; Hsiang, Chinhui; Jiang, Xianzhi; Jin, Ling; Jones, Clinton; Wechsler, Steven L

    2010-01-01

    During herpes simplex virus-1 (HSV-1) latency in sensory neurons, LAT (latency-associated transcript) is the only abundantly expressed viral gene. LAT plays an important role in the HSV-1 latency-reactivation cycle, because LAT deletion mutants have a significantly decreased reactivation phenotype. Based solely on sequence analysis, it was speculated that LAT encodes a ribozyme that plays an important role in how LAT enhances the virus’ reactivation phenotype. Because LAT ribozyme activity has never been reported, we decided to test the converse hypothesis, namely, that this region of LAT does not encode a ribozyme function important for LAT’s ability to enhance the reactivation phenotype. We constructed a viral mutant (LAT-Rz) in which the speculated ribozyme consensus sequence was altered such that no ribozyme was encoded. We report here that LAT-Rz had a wild-type reactivation phenotype in mice, confirming the hypothesis that the speculated LAT ribozyme is not a dominant factor in stimulating the latency-reactivation cycle in mice. PMID:18982533

  2. Secretion and activation of the Serratia marcescens hemolysin by structurally defined ShlB mutants.

    Science.gov (United States)

    Pramanik, Avijit; Könninger, Ulrich; Selvam, Arun; Braun, Volkmar

    2014-05-01

    The ShlA hemolysin of Serratia marcescens is secreted across the outer membrane by the ShlB protein; ShlB belongs to the two-partner secretion system (type Vb), a subfamily of the Omp85 outer membrane protein assembly and secretion superfamily. During secretion, ShlA is converted from an inactive non-hemolytic form into an active hemolytic form. The structure of ShlB is predicted to consist of the N-terminal α-helix H1, followed by the two polypeptide-transport-associated domains POTRA P1 and P2, and the β-barrel of 16 β-strands. H1 is inserted into the pore of the β-barrel in the outer membrane; P1 and P2 are located in the periplasm. To obtain insights into the secretion and activation of ShlA by ShlB, we isolated ShlB mutants impaired in secretion and/or activation. The triple H1 P1 P2 mutant did not secrete ShlA. The P1 and P2 deletion derivatives secreted reduced amounts of ShlA, of which P1 showed some hemolysis, whereas P2 was inactive. Deletion of loop 6 (L6), which is conserved among exporters of the Omp85 family, compromised activation but retained low secretion. Secretion-negative mutants generated by random mutagenesis were located in loop 6. The inactive secreted ShlA derivatives were complemented in vitro to active ShlA by an N-terminal ShlA fragment (ShlA242) secreted by ShlB. Deletion of H1 did not impair secretion of hemolytic ShlA. The study defines domains of ShlB which are important for ShlA secretion and activation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate.

    Science.gov (United States)

    Bao, Yanqing; Tian, Mingxing; Li, Peng; Liu, Jiameng; Ding, Chan; Yu, Shengqing

    2017-04-04

    Brucellosis, caused by Brucella spp., is an important zoonosis worldwide. Vaccination is an effective strategy for protection against Brucella infection in livestock in developing countries and in wildlife in developed countries. However, current vaccine strains including S19 and RB51 are pathogenic to humans and pregnant animals, limiting their use. In this study, we constructed the Brucella abortus (B. abortus) S2308 mutant strain Δ22915, in which the putative lytic transglycosylase gene BAB_RS22915 was deleted. The biological properties of mutant strain Δ22915 were characterized and protection of mice against virulent S2308 challenge was evaluated. The mutant strain Δ22915 showed reduced survival within RAW264.7 cells and survival in vivo in mice. In addition, the mutant strain Δ22915 failed to escape fusion with lysosomes within host cells, and caused no observable pathological damage. RNA-seq analysis indicated that four genes associated with amino acid/nucleotide transport and metabolism were significantly upregulated in mutant strain Δ22915. Furthermore, inoculation of ∆22915 at 10 5 colony forming units induced effective host immune responses and long-term protection of BALB/c mice. Therefore, mutant strain ∆22915 could be used as a novel vaccine candidate in the future to protect animals against B. abortus infection.

  4. Data on quantification of signaling pathways activated by KIT and PDGFRA mutants

    Directory of Open Access Journals (Sweden)

    Christelle Bahlawane

    2016-12-01

    Full Text Available The present data are related to the article entitled “Insights into ligand stimulation effects on gastro-intestinal stromal tumors signaling” (C. Bahlawane, M. Schmitz, E. Letellier, K. Arumugam, N. Nicot, P.V. Nazarov, S. Haan, 2016 [1]. Constitutive and ligand-derived signaling pathways mediated by KIT and PDGFRA mutated proteins found in gastrointestinal stromal tumors (GIST were compared. Expression of mutant proteins was induced by doxycycline in an isogenic background (Hek293 cells. Kit was identified by FACS at the cell surface and found to be quickly degraded or internalized upon SCF stimulation for both Kit Wild type and Kit mutant counterparts. Investigation of the main activated pathways in GIST unraveled a new feature specific for oncogenic KIT mutants, namely their ability to be further activated by Kit ligand, the stem cell factor (scf. We were also able to identify the MAPK pathway as the most prominent target for a common inhibition of PDGFRA and KIT oncogenic signaling. Western blotting and micro-array analysis were applied to analyze the capacities of the mutant to induce an effective STATs response. Among all Kit mutants, only Kit Ex11 deletion mutant was able to elicit an effective STATs response whereas all PDGFRA were able to do so.

  5. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains.

    Science.gov (United States)

    Tong, Wu; Li, Guoxin; Liang, Chao; Liu, Fei; Tian, Qing; Cao, Yanyun; Li, Lin; Zheng, Xuchen; Zheng, Hao; Tong, Guangzhi

    2016-06-01

    Emerging pseudorabies virus (PRV) variant have led to pseudorabies outbreaks in Chinese pig farms. The commercially available PRV vaccine provides poor protection against the PRV variant. In this study, a gE/gI deleted PRV strain JS-2012-△gE/gI was generated from a PRV variant strain using homologous DNA recombination. Compared to the parental strain JS-2012, JS-2012-△gE/gI grew slowly and showed small plaque morphology on Vero cells. The safety and immunological efficacy of JS-2012-△gE/gI was evaluated as a vaccine candidate. JS-2012-△gE/gI was avirulent to suckling piglets, but was able to provide full protection for young piglets against challenge with both the classical virulent PRV and the emerging PRV variant. After sows were vaccinated with the gE/gI-deleted strain, their suckling offspring were resistant to an otherwise lethal challenge with the classical and the variant PRVs. Piglets inoculated with JS-2012-△gE/gI did not develop PRV-specific gE-ELISA antibodies. Thus, JS-2012-△gE/gI appears to be a promising marker vaccine candidate to control PRV variant circulating in pig farms in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Filament-producing mutants of influenza A/Puerto Rico/8/1934 (H1N1 virus have higher neuraminidase activities than the spherical wild-type.

    Directory of Open Access Journals (Sweden)

    Jill Seladi-Schulman

    Full Text Available Influenza virus exhibits two morphologies - spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1 [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo.

  7. Characterization of Lactococcus lactis mutants with improved performance at high temperatures and potential dairy applications

    DEFF Research Database (Denmark)

    Chen, Jun

    microarray analysis revealed apparent differences in the transcriptional response to heat between the mutant and parent. It was found that SNPs preceding gene groESL and ribU resulted in over-expression of chaperone proteins GroES-GroEL, and membrane associated riboflavin transporter protein RibU in TM29......, respectively. Moreover, a large deletion in TM29 caused the inactivation of 10 genes (llmg_1349-llmg_1358). Through allelic replacement and gene knockout followed by fitness assessment, four main positive mutations were eventually discovered. The SNP preceding groESL and deletion of llmg_1349-llmg_1358...

  8. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    International Nuclear Information System (INIS)

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  9. Deletion of Lytic Transglycosylases Increases Beta-Lactam Resistance in Shewanella oneidensis

    Science.gov (United States)

    Yin, Jianhua; Sun, Yiyang; Sun, Yijuan; Yu, Zhiliang; Qiu, Juanping; Gao, Haichun

    2018-01-01

    Production of chromosome-encoded β-lactamases confers resistance to β-lactams in many Gram-negative bacteria. Some inducible β-lactamases, especially the class C β-lactamase AmpC in Enterobacteriaceae, share a common regulatory mechanism, the ampR-ampC paradigm. Induction of ampC is intimately linked to peptidoglycan recycling, and the LysR-type transcriptional regulator AmpR plays a central role in the process. However, our previous studies have demonstrated that the expression of class D β-lactamase gene blaA in Shewanella oneidensis is distinct from the established paradigm since an AmpR homolog is absent and major peptidoglycan recycling enzymes play opposite roles in β-lactamase expression. Given that lytic transglycosylases (LTs), a class of peptidoglycan hydrolases cleaving the β-1,4 glycosidic linkage in glycan strands of peptidoglycan, can disturb peptidoglycan recycling, and thus may affect induction of blaA. In this study, we investigated impacts of such enzymes on susceptibility to β-lactams. Deletion of three LTs (SltY, MltB and MltB2) increased β-lactam resistance, while four other LTs (MltD, MltD2, MltF, and Slt2) seemed dispensable to β-lactam resistance. The double LT mutants ΔmltBΔmltB2 and ΔsltYΔmltB2 had β-lactam resistance stronger than any of the single mutants. Deletion of ampG (encoding permease AmpG) and mrcA (encoding penicillin binding protein 1a, PBP1a) from both double LT mutants further increased the resistance to β-lactams. Notably, all increased β-lactam resistance phenotypes were in accordance with enhanced blaA expression. Although significant, the increase in β-lactamase activity after inactivating LTs is much lower than that produced by PBP1a inactivation. Our data implicate that LTs play important roles in blaA expression in S. oneidensis. PMID:29403465

  10. Identification of the second mutation of BADH2 gene derived from rice mutant lines induced by gamma rays

    International Nuclear Information System (INIS)

    I Ishak

    2016-01-01

    The BADH2 gene acts as suppressor of 2-acetyl-1-pyrolline (2AP) biosynthesis in plants. 2AP is the volatile compound which provides fragrance in rice. Biosynthesis of 2AP occurs when BADH2 loses its function as suppressor gene. Aromatic rice cultivars naturally incur mutation of BADH2 gene at 8 bp. In this experiment, aromatic mutant rice lines derived from irradiation of Sintanur cultivar by gamma rays with dose of 100 Gy were studied in molecular level. These mutant lines were characterized at the M10 plantgeneration under the assumption that genetically these aromatic mutant rice lines were homozygotic. Several primers related to aroma in rice have been used for polymerase chain reaction (PCR) in a thermal cycler instrument. Gel electrophoreses were carried out using 1.5% agarose in TAE buffer. DNA fragments at 254 bp and 355 bp (base pair) were taken and amplified by primer for nucleotide sequencing of these fragments. Molecular identification and characterization after electrophoresis showed that the mutant line from AR1020 can be differentiated from AR.1080 at 254 bp. Nucleotide sequence data from of these DNA fragments showed that point mutations (deletions and substitutions) occurred at the BADH2 gene in exon 7; those are called second mutation and were caused by gamma rays effects. The Sintanur variety was used as check cultivar and its DNA sequence was compared to that of the AR.1020 mutant line. The results from both DNA sequences (from cv. Sintanur and AR.1020) derived from fragments at 254 bp show that point mutations occurred within exon 7 and earlier stop codon occurred in the AR.1020 mutant rice line. Further, the use of EA primer in PCR resulted in detection of deletion and substitution of nucleotides in the AR.1020 mutant line. (author)

  11. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    Science.gov (United States)

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  12. A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation.

    Science.gov (United States)

    Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Do, Loc Thi Binh Xuan; Mai, Linh Thi Dam; Pham, Duc-Ngoc; Tran, Huyen Thi Thanh; Le, Diep Hong; Nguyen, Huy Quang; Tran, Van-Tuan

    2017-06-01

    Aspergillus oryzae is a filamentous fungus widely used in food industry and as a microbial cell factory for recombinant protein production. Due to the inherent resistance of A. oryzae to common antifungal compounds, genetic transformation of this mold usually requires auxotrophic mutants. In this study, we show that Agrobacterium tumefaciens-mediated transformation (ATMT) method is very efficient for deletion of the pyrG gene in different Aspergillus oryzae wild-type strains to generate uridine/uracil auxotrophic mutants. Our data indicated that all the obtained uridine/uracil auxotrophic transformants, which are 5- fluoroorotic acid (5-FOA) resistant, exist as the pyrG deletion mutants. Using these auxotrophic mutants and the pyrG selectable marker for genetic transformation via A. tumefaciens, we could get about 1060 transformants per 10 6 fungal spores. In addition, these A. oryzae mutants were also used successfully for expression of the DsRed fluorescent reporter gene under control of the A. oryzae amyB promoter by the ATMT method, which resulted in obvious red transformants on agar plates. Our work provides a new and effective approach for constructing the uridine/uracil auxotrophic mutants in the importantly industrial fungus A. oryzae. This strategy appears to be applicable to other filamentous fungi to develop similar genetic transformation systems based on auxotrophic/nutritional markers for food-grade recombinant applications.

  13. Immunogenicity in African Green Monkeys of M Protein Mutant Vesicular Stomatitis Virus Vectors and Contribution of Vector-Encoded Flagellin

    Directory of Open Access Journals (Sweden)

    Marlena M. Westcott

    2018-03-01

    Full Text Available Recombinant vesicular stomatitis virus (VSV is a promising platform for vaccine development. M51R VSV, an attenuated, M protein mutant strain, is an effective inducer of Type I interferon and dendritic cell (DC maturation, which are desirable properties to exploit for vaccine design. We have previously evaluated M51R VSV (M51R and M51R VSV that produces flagellin (M51R-F as vaccine vectors using murine models, and found that flagellin enhanced DC activation and VSV-specific antibody production after low-dose vaccination. In this report, the immunogenicity of M51R vectors and the adjuvant effect of virus-produced flagellin were evaluated in nonhuman primates following high-dose (108 pfu and low-dose (105 pfu vaccination. A single intramuscular vaccination of African green monkeys with M51R or M51R-F induced VSV-specific, dose-dependent humoral immune responses. Flagellin induced a significant increase in antibody production (IgM, IgG and neutralizing antibody at the low vaccination dose. A VSV-specific cellular response was detected at 6 weeks post-vaccination, but was neither dose-dependent nor enhanced by flagellin; similar numbers of VSV-specific, IFNγ-producing cells were detected in lymph node and spleen of all animals. These results indicate that virus-directed, intracellular flagellin production may improve VSV-based vaccines encoding heterologous antigens by lowering the dose required to achieve humoral immunity.

  14. Targeting an Oncolytic Influenza A Virus to Tumor Tissue by Elastase

    Directory of Open Access Journals (Sweden)

    Irina Kuznetsova

    2017-12-01

    Full Text Available Oncolytic viruses are currently established as a novel type of immunotherapy. The challenge is to safely target oncolytic viruses to tumors. Previously, we have generated influenza A viruses (IAVs containing deletions in the viral interferon antagonist. Those deletions have attenuated the virus in normal tissue but allowed replication in tumor cells. IAV entry is mediated by hemagglutinin (HA, which needs to be activated by a serine protease, for example, through trypsin. To further target the IAV to tumors, we have changed the trypsin cleavage site to an elastase cleavage site. We chose this cleavage site because elastase is expressed in the tumor microenvironment. Moreover, the exchange of the cleavage site previously has been shown to attenuate viral growth in lungs. Newly generated elastase-activated influenza viruses (AE viruses grew to similar titers in tumor cells as the trypsin-activated counterparts (AT viruses. Intratumoral injection of AE viruses into syngeneic B16f1 melanoma-derived tumors in mice reduced tumor growth similar to AT viruses and had a better therapeutic effect in heterologous human PANC-1-derived tumors. Therefore, the introduction of the attenuation marker “elastase cleavage site” in viral HA allows for safe, effective oncolytic virus therapy.

  15. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication.

    Science.gov (United States)

    Duan, Zhiqiang; Chen, Jian; Xu, Haixu; Zhu, Jie; Li, Qunhui; He, Liang; Liu, Huimou; Hu, Shunlin; Liu, Xiufan

    2014-03-01

    The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Hypervariable Region 1 Shielding of Hepatitis C Virus Is a Main Contributor to Genotypic Differences in Neutralization Sensitivity

    DEFF Research Database (Denmark)

    Prentoe, Jannick; Velazquez-Moctezuma, Rodrigo; Foung, Steven K. H.

    2016-01-01

    protective HCV vaccines. Using cultured viruses expressing the E1/E2 complex of isolates H77 (genotype 1a), J6 (2a), or S52 (3a), with and without HVR1, we tested HVR1-mediated neutralization occlusion in vitro against a panel of 12 well-characterized human monoclonal antibodies (HMAbs) targeting diverse E1...... correlation for HVR1-deleted viruses but not for parental viruses retaining HVR1. The intergenotype neutralization sensitivity of the parental viruses to HMAb antigenic region (AR) 2A, AR3A, AR4A, AR5A, HC84.26, and HC33.4 varied greatly (>24-fold to >130-fold differences in 50% inhibitory concentration...... values). However, except for AR5A, these differences decreased to less than 6.0-fold when comparing the corresponding HVR1-deleted viruses. Importantly, this simplified pattern of neutralization sensitivity in the absence of HVR1 was also demonstrated in a panel of HVR1-deleted viruses of genotypes 1a, 2...

  17. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague.

    Science.gov (United States)

    van Lier, Christina J; Sha, Jian; Kirtley, Michelle L; Cao, Anthony; Tiner, Bethany L; Erova, Tatiana E; Cong, Yingzi; Kozlova, Elena V; Popov, Vsevolod L; Baze, Wallace B; Chopra, Ashok K

    2014-06-01

    Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.

  18. Sexual dimorphism in white campion: deletion on the Y chromosome results in a floral asexual phenotype

    International Nuclear Information System (INIS)

    Farbos, I.; Veuskens, J.; Vyskot, B.; Oliveira, M.; Hinnisdaels, S.; Aghmir, A.; Mouras, A.; Negrutiu, I.

    1999-01-01

    White campion is a dioecious plant with heteromorphic X and Y sex chromosomes. In male plants, a filamentous structure replaces the pistil, while in female plants the stamens degenerate early in flower development. Asexual (asx) mutants, cumulating the two developmental defects that characterize the sexual dimorphism in this species, were produced by gamma ray irradiation of pollen and screening in the M1 generation. The mutants harbor a novel type of mutation affecting an early function in sporogenous/parietal cell differentiation within the anther. The function is called stamen-promoting function (SPF). The mutants are shown to result from interstitial deletions on the Y chromosome. We present evidence that such deletions tentatively cover the central domain on the (p)-arm of the Y chromosome (Y2 region). By comparing stamen development in wild-type female and asx mutant flowers we show that they share the same block in anther development, which results in the production of vestigial anthers. The data suggest that the SPF, a key function(s) controlling the sporogenous/parietal specialization in premeiotic anthers, is genuinely missing in females (XX constitution). We argue that this is the earliest function in the male program that is Y-linked and is likely responsible for ''male dimorphism'' (sexual dimorphism in the third floral whorl) in white campion. More generally, the reported results improve our knowledge of the structural and functional organization of the Y chromosome and favor the view that sex determination in this species results primarily from a trigger signal on the Y chromosome (Y1 region) that suppresses female development. The default state is therefore the ancestral hermaphroditic state

  19. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins

    Science.gov (United States)

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann

    2017-01-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. PMID:28338950

  20. Detection of EGFR somatic mutations in non-small cell lung cancer (NSCLC) using a novel mutant-enriched liquidchip (MEL) technology.

    Science.gov (United States)

    Zhang, Li; Yang, Huiyi; Zhao, Yanwei; Liu, Wenchao; Wu, Shiyang; He, Jiaying; Luo, Xiaodi; Zhu, Zeyao; Xu, Jiasen; Zhou, Qinghua; Ren-Heidenreich, Lifen

    2012-09-01

    We have developed and standardized a novel technology, mutant-enriched liquidchip (MEL), for clinical detection of EGFR mutations. The MEL integrates a mutant-enriched PCR procedure with liquidchip technology for detections of EGFR exon 19 deletions and L858R mutation on both formalin-fixed and paraffin-embedded (FFPE) slides and plasma samples from patients with non-small cell lung cancer (NSCLC). The detection sensitivity was 0.1% of mutant DNA in the presence of its wild-type DNA. The cross-reaction rate was lower than 5%. To evaluate the MEL platform, the EGFR mutation status of 59 patients with advanced NSCLC treated with EGFRTKIs (Tyrosine Kinase Inhibitors) were tested on their FFPE samples. EGFR exon 19 deletions and L858R were detected in 21 patients (21/59) and 76.2% (16/21) of them had partial response to the EGFR-TKIs, while by sequencing method, only 4 (4/59) mutations were detected. Plasma samples from 627 patients with various stages of NSCLC were examined with the MEL and 22% of EGFR exon 19 deletions and L858R were detected. Furthermore, in patients with advanced disease there are more mutations detected in plasma samples than in patients with less advanced disease. In conclusion, the MEL is a sensitive, stable, and robust technology for detecting EGFR DNA mutations from both FFPE and plasma samples from patients with NSCLC and is now routinely used for clinical diagnosis.

  1. Mutagenesis-mediated virus extinction: virus-dependent effect of viral load on sensitivity to lethal defection.

    Directory of Open Access Journals (Sweden)

    Héctor Moreno

    Full Text Available BACKGROUND: Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI on progeny production of several RNA viruses under enhanced mutagenesis. RESULTS: The effect of the mutagenic base analogue 5-fluorouracil (FU on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI, or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV, but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV and encephalomyocarditis virus (EMCV. The increase in mutation frequency and Shannon entropy (mutant spectrum complexity as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. CONCLUSIONS: (i Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development.

  2. Myeloablation-associated deletion of ORF4 in a human coronavirus 229E infection.

    Science.gov (United States)

    Greninger, Alexander L; Pepper, Gregory; Shean, Ryan C; Cent, Anne; Palileo, Isabel; Kuypers, Jane M; Schiffer, Joshua T; Jerome, Keith R

    2017-01-01

    We describe metagenomic next-generation sequencing (mNGS) of a human coronavirus 229E from a patient with AML and persistent upper respiratory symptoms, who underwent hematopoietic cell transplantation (HCT). mNGS revealed a 548-nucleotide deletion, which comprised the near entirety of the ORF4 gene, and no minor allele variants were detected to suggest a mixed infection. As part of her pre-HCT conditioning regimen, the patient received myeloablative treatment with cyclophosphamide and 12 Gy total body irradiation. Iterative sequencing and RT-PCR confirmation of four respiratory samples over the 4-week peritransplant period revealed that the pre-conditioning strain contained an intact ORF4 gene, while the deletion strain appeared just after conditioning and persisted over a 2.5-week period. This sequence represents one of the largest genomic deletions detected in a human RNA virus and describes large-scale viral mutation associated with myeloablation for HCT.

  3. Deletion of the topoisomerase III gene in the hyperthermophilic archaeon Sulfolobus islandicus results in slow growth and defects in cell cycle control

    DEFF Research Database (Denmark)

    Li, Xiyang; Guo, Li; Deng, Ling

    2011-01-01

    Topoisomerase III (topo III), a type IA topoisomerase, is widespread in hyperthermophilic archaea. In order to interrogate the in vivo role of archaeal topo III, we constructed and characterized a topo III gene deletion mutant of Sulfolobus islandicus. The mutant was viable but grew more slowly...... results suggest that the enzyme may serve roles in chromosomal segregation and control of the level of supercoiling in the cell....

  4. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene.

    Science.gov (United States)

    Oka, Tomoichiro; Saif, Linda J; Marthaler, Douglas; Esseili, Malak A; Meulia, Tea; Lin, Chun-Ming; Vlasova, Anastasia N; Jung, Kwonil; Zhang, Yan; Wang, Qiuhong

    2014-10-10

    The highly contagious and deadly porcine epidemic diarrhea virus (PEDV) first appeared in the US in April 2013. Since then the virus has spread rapidly nationwide and to Canada and Mexico causing high mortality among nursing piglets and significant economic losses. Currently there are no efficacious preventive measures or therapeutic tools to control PEDV in the US. The isolation of PEDV in cell culture is the first step toward the development of an attenuated vaccine, to study the biology of PEDV and to develop in vitro PEDV immunoassays, inactivation assays and screen for PEDV antivirals. In this study, nine of 88 US PEDV strains were isolated successfully on Vero cells with supplemental trypsin and subjected to genomic sequence analysis. They differed genetically mainly in the N-terminal S protein region as follows: (1) strains (n=7) similar to the highly virulent US PEDV strains; (2) one similar to the reportedly US S INDEL PEDV strain; and (3) one novel strain most closely related to highly virulent US PEDV strains, but with a large (197aa) deletion in the S protein. Representative strains of these three genetic groups were passaged serially and grew to titers of ∼5-6log10 plaque forming units/mL. To our knowledge, this is the first report of the isolation in cell culture of an S INDEL PEDV strain and a PEDV strain with a large (197aa) deletion in the S protein. We also designed primer sets to detect these genetically diverse US PEDV strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A Domain of Herpes Simplex Virus pUL33 Required To Release Monomeric Viral Genomes from Cleaved Concatemeric DNA.

    Science.gov (United States)

    Yang, Kui; Dang, Xiaoqun; Baines, Joel D

    2017-10-15

    Monomeric herpesvirus DNA is cleaved from concatemers and inserted into preformed capsids through the actions of the viral terminase. The terminase of herpes simplex virus (HSV) is composed of three subunits encoded by U L 15, U L 28, and U L 33. The U L 33-encoded protein (pU L 33) interacts with pU L 28, but its precise role in the DNA cleavage and packaging reaction is unclear. To investigate the function of pU L 33, we generated a panel of recombinant viruses with either deletions or substitutions in the most conserved regions of U L 33 using a bacterial artificial chromosome system. Deletion of 11 amino acids (residues 50 to 60 or residues 110 to 120) precluded viral replication, whereas the truncation of the last 10 amino acids from the pU L 33 C terminus did not affect viral replication or the interaction of pU L 33 with pU L 28. Mutations that replaced the lysine at codon 110 and the arginine at codon 111 with alanine codons failed to replicate, and the pU L 33 mutant interacted with pU L 28 less efficiently. Interestingly, genomic termini of the large (L) and small (S) components were detected readily in cells infected with these mutants, indicating that concatemeric DNA was cleaved efficiently. However, the release of monomeric genomes as assessed by pulsed-field gel electrophoresis was greatly diminished, and DNA-containing capsids were not observed. These results suggest that pU L 33 is necessary for one of the two viral DNA cleavage events required to release individual genomes from concatemeric viral DNA. IMPORTANCE This paper shows a role for pU L 33 in one of the two DNA cleavage events required to release monomeric genomes from concatemeric viral DNA. This is the first time that such a phenotype has been observed and is the first identification of a function of this protein relevant to DNA packaging other than its interaction with other terminase components. Copyright © 2017 Yang et al.

  6. EMS mutant spectra generated by multi-parameter flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Keysar, Stephen B. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Fox, Michael H., E-mail: michael.fox@colostate.edu [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO (United States)

    2009-12-01

    The CHO A{sub L} cell line contains a single copy of human chromosome 11 that encodes several cell surface proteins including glycosyl phosphatidylinositol (GPI) linked CD59 and CD90, as well as CD98, CD44 and CD151 which are not GPI-linked. The flow cytometry mutation assay (FCMA) measures mutations of the CD59 gene by the absence of fluorescence when stained with antibodies against the CD59 cell surface protein. We have measured simultaneous mutations in CD59, CD44, CD90, CD98 and CD151 to generate a mutant spectrum for ionizing radiation. After treatment with ethyl methanesulfonate (EMS) many cells have an intermediate level of CD59 staining. Single cells were sorted from CD59{sup -} regions with varying levels of fluorescence and the resulting clonal populations had a stable phenotype for CD59 expression. Mutant spectra were generated by flow cytometry using the isolated clones and nearly all clones were mutated in CD59 only. Interestingly, about 60% of the CD59 negative clones were actually GPI mutants determined by staining with the GPI specific fluorescently labeled bacterial toxin aerolysin (FLAER). The GPI negative cells are most likely caused by mutations in the X-linked pigA gene important in GPI biosynthesis. Small mutations of pigA and CD59 were expected for the alkylating agent EMS and the resulting spectra are significantly different than the large deletions found when analyzing radiation mutants. After analyzing the CD59{sup -} clonal populations we have adjusted the FCMA mutant regions from 1% to 10% of the mean of the CD59 positive peak to include the majority of CD59 mutants.

  7. The Epstein-Barr virus nuclear antigen-6 protein co-localizes with EBNA-3 and survival of motor neurons protein

    International Nuclear Information System (INIS)

    Krauer, Kenia G.; Buck, Marion; Belzer, Deanna K.; Flanagan, James; Chojnowski, Grace M.; Sculley, Tom B.

    2004-01-01

    The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6

  8. Chaperone protein HYPK interacts with the first 17 amino acid region of Huntingtin and modulates mutant HTT-mediated aggregation and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Kamalika Roy [Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Centre for Neuroscience, Indian Institute of Science, Bangalore 560012 (India); Bhattacharyya, Nitai P., E-mail: nitai_sinp@yahoo.com [Biomedical Genomics Centre, PG Polyclinic Building, 5, Suburbun Hospital Road, Kolkata 700020 (India)

    2015-01-02

    Highlights: • HYPK reduces mutant HTT-mediated aggregate formation and cytotoxicity. • Interaction of HYPK with HTT requires N-terminal 17 amino acid of HTT (HTT-N17). • Deletion of HTT-N17 leads to SDS-soluble, smaller, nuclear aggregates. • These smaller aggregates do not associate with HYPK and are more cytotoxic. • Maybe, interaction of HYPK with amphipathic HTT-N17 block HTT aggregate formation. - Abstract: Huntington’s disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK.

  9. Recombination Phenotypes of Escherichia coli greA Mutants

    Directory of Open Access Journals (Sweden)

    Poteete Anthony R

    2011-03-01

    Full Text Available Abstract Background The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination. Results Escherichia coli mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A greA mutant and a greA deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination. Conclusion These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.

  10. Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15.

    Directory of Open Access Journals (Sweden)

    Artur Brandt

    Full Text Available We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT in conjunction with a novel thermolabile mutant (U19dl89-97tsA58 of SV40 large T antigen (LT. This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells.

  11. Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15

    Science.gov (United States)

    Brandt, Artur; Löhers, Katharina; Beier, Manfred; Leube, Barbara; de Torres, Carmen; Mora, Jaume; Arora, Parineeta; Jat, Parmjit S.; Royer-Pokora, Brigitte

    2016-01-01

    We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD) limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD) 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT) in conjunction with a novel thermolabile mutant (U19dl89-97tsA58) of SV40 large T antigen (LT). This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells. PMID:27213811

  12. Chemical Genomic Screening of a Saccharomyces cerevisiae Genomewide Mutant Collection Reveals Genes Required for Defense against Four Antimicrobial Peptides Derived from Proteins Found in Human Saliva

    Science.gov (United States)

    Bhatt, Sanjay; Schoenly, Nathan E.; Lee, Anna Y.; Nislow, Corey; Bobek, Libuse A.

    2013-01-01

    To compare the effects of four antimicrobial peptides (MUC7 12-mer, histatin 12-mer, cathelicidin KR20, and a peptide containing lactoferricin amino acids 1 to 11) on the yeast Saccharomyces cerevisiae, we employed a genomewide fitness screen of combined collections of mutants with homozygous deletions of nonessential genes and heterozygous deletions of essential genes. When an arbitrary fitness score cutoffs of 1 (indicating a fitness defect, or hypersensitivity) and −1 (indicating a fitness gain, or resistance) was used, 425 of the 5,902 mutants tested exhibited altered fitness when treated with at least one peptide. Functional analysis of the 425 strains revealed enrichment among the identified deletions in gene groups associated with the Gene Ontology (GO) terms “ribosomal subunit,” “ribosome biogenesis,” “protein glycosylation,” “vacuolar transport,” “Golgi vesicle transport,” “negative regulation of transcription,” and others. Fitness profiles of all four tested peptides were highly similar, particularly among mutant strains exhibiting the greatest fitness defects. The latter group included deletions in several genes involved in induction of the RIM101 signaling pathway, including several components of the ESCRT sorting machinery. The RIM101 signaling regulates response of yeasts to alkaline and neutral pH and high salts, and our data indicate that this pathway also plays a prominent role in regulating protective measures against all four tested peptides. In summary, the results of the chemical genomic screens of S. cerevisiae mutant collection suggest that the four antimicrobial peptides, despite their differences in structure and physical properties, share many interactions with S. cerevisiae cells and consequently a high degree of similarity between their modes of action. PMID:23208710

  13. Mutant quantity and quality in mammalian cells (A{sub L}) exposed to cesium-137 gamma radiation: Effect of caffeine

    Energy Technology Data Exchange (ETDEWEB)

    McGuinness, S.M.; Shibuya, M.L.; Ueno, A.M. [Colorado State Univ., Fort Collins, CO (United States)] [and others

    1995-06-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian A{sub L} human-hamster hybrid cells exposed to {sup 137}Cs {gamma} radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1{sup {minus}} mutants by {sup 137}Cs {gamma} radiation. Molecular analysis of 235 S1{sup {minus}} mutants using a series of DNA probes mapped to the human chromosome 11 in the A{sub L} hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, {sup 137}Cs {gamma} rays alone or {sup 137}Cs {gamma} rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These {open_quotes}complex{close_quotes} mutations were rare for {sup 137}Cs {gamma} irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by {sup 137}Cs {gamma} irradiation. 62 refs., 3 figs., 3 tabs.

  14. Evaluation of vaccine candidate potential of deltaaroA, deltahtrA and deltaaroAdeltahtrA mutants of Salmonella enterica subspecies enterica serovar Abortusequi in guinea pigs.

    Science.gov (United States)

    Singh, Bhoj Raj; Chandra, Mudit; Hansda, Dhananjoy; Alam, Javed; Babu, Narayanan; Siddiqui, Mehtab Z; Agrawal, Ravi K; Sharma, Gautam

    2013-04-01

    Salmonella enterica subspecies enterica serovar Abortusequi (S. Abortusequi), a host adapted Salmonella causes abortions, still births and foal mortality in equids. Though known since more than 100 years, it is still a problem in many of the developing countries including India. There is dearth of really good vaccine affording immunity lasting at least for one full gestation. In search of a potential vaccine candidate, three defined deletion mutants (deltaaroA, deltahtrA and deltaaroAdeltahtrA) of S. Abortusequi were tested in guinea pig model for attenuation, safety, immunogenicity, humoral immune response, protective efficacy and persistence in host. The deltahtrA and deltaaroAdeltahtrA mutants were found to be safe on oral inoculation in doses as high as 4.2 x 10(9) cfu/animal. Also through subcutaneous inoculation deltaaroAdeltahtrA mutant did not induce any abortion in pregnant guinea pigs. All the three mutants did not induce any illness or death in 1-2 week-old baby guinea pigs except deltahtrA mutant which caused mortality on intraperitoneal inoculation. Inoculation with mutants protected against challenge and increased breeding efficiency of guinea pigs. After >4.5 months of mutant inoculation, guinea pigs were protected against abortifacient dose of wild type S. Abortusequi and mother guinea pigs also conferred resistance to their babies to the similar challenge. Early humoral immune response of S. Abortusequi mutants was characteristic. Faecal excretion of deltaaroA and htrA mutants was detected up to 45 days of inoculation in guinea pigs while deltaaroAdeltahtrA mutant could not be detected after 21 days of inoculation. The results indicated that the double deletion mutant (deltaaroAdeltahtrA) was the most effective and safe candidate for vaccination against S. Abortusequi through mucosal route of inoculation.

  15. Mutations that abrogate transactivational activity of the feline leukemia virus long terminal repeat do not affect virus replication

    International Nuclear Information System (INIS)

    Abujamra, Ana L.; Faller, Douglas V.; Ghosh, Sajal K.

    2003-01-01

    The U3 region of the LTR of oncogenic Moloney murine leukemia virus (Mo-MuLV) and feline leukemia viruses (FeLV) have been previously reported to activate expression of specific cellular genes in trans, such as MHC class I, collagenase IV, and MCP-1, in an integration-independent manner. It has been suggested that transactivation of these specific cellular genes by leukemia virus U3-LTR may contribute to the multistage process of leukemogenesis. The U3-LTR region, necessary for gene transactivational activity, also contains multiple transcription factor-binding sites that are essential for normal virus replication. To dissect the promoter activity and the gene transactivational activity of the U3-LTR, we conducted mutational analysis of the U3-LTR region of FeLV-A molecular clone 61E. We identified minimal nucleotide substitution mutants on the U3 LTR that did not disturb transcription factor-binding sites but abrogated its ability to transactivate the collagenase gene promoter. To determine if these mutations actually have altered any uncharacterized important transcription factor-binding site, we introduced these U3-LTR mutations into the full-length infectious molecular clone 61E. We demonstrate that the mutant virus was replication competent but could not transactivate cellular gene expression. These results thus suggest that the gene transactivational activity is a distinct property of the LTR and possibly not related to its promoter activity. The cellular gene transactivational activity-deficient mutant FeLV generated in this study may also serve as a valuable reagent for testing the biological significance of LTR-mediated cellular gene activation in the tumorigenesis caused by leukemia viruses

  16. Brucella abortusΔcydCΔcydD and ΔcydCΔpurD double-mutants are highly attenuated and confer long-term protective immunity against virulent Brucella abortus.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Kim, Kiju; Hahn, Tae-Wook

    2016-01-04

    We constructed double deletion (ΔcydCΔcydD and ΔcydCΔpurD) mutants from virulent Brucella abortus biovar 1 field isolate (BA15) by deleting the genes encoding an ATP-binding cassette-type transporter (cydC and cydD genes) and a phosphoribosylamine-glycine ligase (purD). Both BA15ΔcydCΔcydD and BA15ΔcydCΔpurD double-mutants exhibited significant attenuation of virulence when assayed in murine macrophages or in BALB/c mice. Both double-mutants were readily cleared from spleens by 4 weeks post-inoculation even when inoculated at the dose of 10(8) CFU per mouse. Moreover, the inoculated mice showed no splenomegaly, which indicates that the mutants are highly attenuated. Importantly, the attenuation of in vitro and in vivo growth did not impair the ability of these mutants to confer long-term protective immunity in mice against challenge with B. abortus strain 2308. Vaccination of mice with either mutant induced humoral and cell-mediated immune responses, and provided significantly better protection than commercial B. abortus strain RB51 vaccine. These results suggest that highly attenuated BA15ΔcydCΔcydD and BA15ΔcydCΔpurD mutants can be used effectively as potential live vaccine candidates against bovine brucellosis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Enhanced oxygen consumption in Herbaspirillum seropedicae fnr mutants leads to increased NifA mediated transcriptional activation.

    Science.gov (United States)

    Batista, Marcelo Bueno; Wassem, Roseli; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Dixon, Ray; Monteiro, Rose Adele

    2015-05-07

    Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.

  18. Phenotype and envelope gene diversity of nef-deleted HIV-1 isolated from long-term survivors infected from a single source

    Directory of Open Access Journals (Sweden)

    Sullivan John S

    2007-07-01

    Full Text Available Abstract Background The Sydney blood bank cohort (SBBC of long-term survivors consists of multiple individuals infected with attenuated, nef-deleted variants of human immunodeficiency virus type 1 (HIV-1 acquired from a single source. Long-term prospective studies have demonstrated that the SBBC now comprises slow progressors (SP as well as long-term nonprogressors (LTNP. Convergent evolution of nef sequences in SBBC SP and LTNP indicates the in vivo pathogenicity of HIV-1 in SBBC members is dictated by factors other than nef. To better understand mechanisms underlying the pathogenicity of nef-deleted HIV-1, we examined the phenotype and env sequence diversity of sequentially isolated viruses (n = 2 from 3 SBBC members. Results The viruses characterized here were isolated from two SP spanning a three or six year period during progressive HIV-1 infection (subjects D36 and C98, respectively and from a LTNP spanning a two year period during asymptomatic, nonprogressive infection (subject C18. Both isolates from D36 were R5X4 phenotype and, compared to control HIV-1 strains, replicated to low levels in peripheral blood mononuclear cells (PBMC. In contrast, both isolates from C98 and C18 were CCR5-restricted. Both viruses isolated from C98 replicated to barely detectable levels in PBMC, whereas both viruses isolated from C18 replicated to low levels, similar to those isolated from D36. Analysis of env by V1V2 and V3 heteroduplex tracking assay, V1V2 length polymorphisms, sequencing and phylogenetic analysis showed distinct intra- and inter-patient env evolution. Conclusion Independent evolution of env despite convergent evolution of nef may contribute to the in vivo pathogenicity of nef-deleted HIV-1 in SBBC members, which may not necessarily be associated with changes in replication capacity or viral coreceptor specificity.

  19. Transcriptional Responses of the Bdtf1-Deletion Mutant to the Phytoalexin Brassinin in the Necrotrophic Fungus Alternaria brassicicola

    Directory of Open Access Journals (Sweden)

    Yangrae Cho

    2014-07-01

    Full Text Available Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription factor, Bdtf1, essential for the detoxification of brassinin and full virulence. To discover genes that encode putative brassinin-digesting enzymes, we compared gene expression profiles between a mutant strain of the transcription factor and wild-type A. brassicicola under two different experimental conditions. A total of 170 and 388 genes were expressed at higher levels in the mutants than the wild type during the infection of host plants and saprophytic growth in the presence of brassinin, respectively. In contrast, 93 and 560 genes were expressed, respectively, at lower levels in the mutant than the wild type under the two conditions. Fifteen of these genes were expressed at lower levels in the mutant than in the wild type under both conditions. These genes were assumed to be important for the detoxification of brassinin and included Bdtf1 and 10 putative enzymes. This list of genes provides a resource for the discovery of enzyme-coding genes important in the chemical modification of brassinin.

  20. The Chilo iridescent virus DNA polymerase promoter contains an essential AAAAT motif

    NARCIS (Netherlands)

    Nalcacioglu, R.; Ince, I.A.; Vlak, J.M.; Demirbag, Z.; Oers, van M.M.

    2007-01-01

    The delayed-early DNA polymerase promoter of Chilo iridescent virus (CIV), officially known as Invertebrate iridescent virus, was fine mapped by constructing a series of increasing deletions and by introducing point mutations. The effects of these mutations were examined in a luciferase reporter

  1. The conserved His8 of the Moloney murine leukemia virus Env SU subunit directs the activity of the SU-TM disulphide bond isomerase

    International Nuclear Information System (INIS)

    Li Kejun; Zhang, Shujing; Kronqvist, Malin; Ekstroem, Maria; Wallin, Michael; Garoff, Henrik

    2007-01-01

    Murine leukemia virus (MLV) fusion is controlled by isomerization of the disulphide bond between the receptor-binding surface (SU) and fusion-active transmembrane subunits of the Env-complex. The bond is in SU linked to a CXXC motif. This carries a free thiol that upon receptor binding can be activated (ionized) to attack the disulphide and rearrange it into a disulphide isomer within the motif. To find out whether His8 in the conserved SPHQ sequence of Env directs thiol activation, we analyzed its ionization in MLV vectors with wtEnv and Env with His8 deleted or substituted for Tyr or Arg, which partially or completely arrests fusion. The ionization was monitored by following the pH effect on isomerization in vitro by Ca 2+ depletion or in vivo by receptor binding. We found that wtEnv isomerized optimally at slightly basic pH whereas the partially active mutant required higher and the inactive mutants still higher pH. This suggests that His8 directs the ionization of the CXXC thiol

  2. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49.

    Science.gov (United States)

    Ghezelbash, Gholam Reza; Nahvi, Iraj; Emamzadeh, Rahman

    2014-08-01

    The purpose of the present investigation was to produce erythritol by Yarrowia lipolytica mutant without any by-products. Mutants of Y. lipolytica were generated by ultra-violet for enhancing erythrose reductase (ER) activity and erythritol production. The mutants showing the highest ER activity were screened by triphenyl tetrazolium chloride agar plate assay. Productivity of samples was analyzed by thin-layer chromatography and high-performance liquid chromatography equipped with the refractive index detector. One of the mutants named as mutant 49 gave maximum erythritol production without any other by-products (particularly glycerol). Erythritol production and specific ER activity in mutant 49 increased to 1.65 and 1.47 times, respectively, in comparison with wild-type strain. The ER gene of wild and mutant strains was sequenced and analyzed. A general comparison of wild and mutant gene sequences showed the replacement of Asp(270) with Glu(270) in ER protein. In order to enhance erythritol production, we used a three component-three level-one response Box-Behnken of response surface methodology model. The optimum medium composition for erythritol production was found to be (g/l) glucose 279.49, ammonium sulfate 9.28, and pH 5.41 with 39.76 erythritol production.

  3. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    Directory of Open Access Journals (Sweden)

    Joel Bozue

    Full Text Available Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  4. Genome sequence of foot-and-mouth disease virus outside the 3A region is also responsible for virus replication in bovine cells.

    Science.gov (United States)

    Ma, Xueqing; Li, Pinghua; Sun, Pu; Lu, Zengjun; Bao, Huifang; Bai, Xingwen; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin

    2016-07-15

    The deletion of residues 93-102 in non-structure protein 3A of foot-and-mouth disease virus (FMDV) is associated with the inability of FMDV to grow in bovine cells and attenuated virulence in cattle.Whereas, a previously reported FMDV strain O/HKN/21/70 harboring 93-102 deletion in 3A protein grew equally well in bovine and swine cells. This suggests that changes inFMDV genome sequence, in addition to 93-102 deletion in 3A, may also affectthe viral growth phenotype in bovine cellsduring infection and replication.However, it is nuclear that changes in which region (inside or outside of 3A region) influences FMDV growth phenotype in bovine cells.In this study, to determine the region in FMDV genomeaffecting viral growth phenotype in bovine cells, we constructed chimeric FMDVs, rvGZSB-HKN3A and rvHN-HKN3A, by introducing the 3A coding region of O/HKN/21/70 into the context of O/SEA/Mya-98 strain O/GZSB/2011 and O Cathay topotype strain O/HN/CHA/93, respectively, since O/GZSB/2011 containing full-length 3A protein replicated well in bovine and swine cells, and O/HN/CHA/93 harboring 93-102 deletion in 3A protein grew poorly in bovine cells.The chimeric virusesrvGZSB-HKN3A and rvHN-HKN3A displayed growth properties and plaque phenotypes similar to those of the parental virus rvGZSB and rv-HN in BHK-21 and primary fetal porcine kidney (FPK) cells. However, rvHN-HKN3A and rv-HN replicated poorly in primary fetal bovine kidney (FBK) cells with no visible plaques, and rvGZSB-HKN3A exhibited lower growth rate and smaller plaque size phenotypes than those of the parental virus in FBK cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the difference present in FMDV genome sequence outside the 3A coding region also have influence on FMDV replication ability in bovine cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    Science.gov (United States)

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  7. Abnormal trafficking of endogenously expressed BMPR2 mutant allelic products in patients with heritable pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Andrea L Frump

    Full Text Available More than 200 heterozygous mutations in the type 2 BMP receptor gene, BMPR2, have been identified in patients with Heritable Pulmonary Arterial Hypertension (HPAH. More severe clinical outcomes occur in patients with BMPR2 mutations by-passing nonsense-mediated mRNA decay (NMD negative mutations. These comprise 40% of HPAH mutations and are predicted to express BMPR2 mutant products. However expression of endogenous NMD negative BMPR2 mutant products and their effect on protein trafficking and signaling function have never been described. Here, we characterize the expression and trafficking of an HPAH-associated NMD negative BMPR2 mutation that results in an in-frame deletion of BMPR2 EXON2 (BMPR2ΔEx2 in HPAH patient-derived lymphocytes and in pulmonary endothelial cells (PECs from mice carrying the same in-frame deletion of Exon 2 (Bmpr2 (ΔEx2/+ mice. The endogenous BMPR2ΔEx2 mutant product does not reach the cell surface and is retained in the endoplasmic reticulum. Moreover, chemical chaperones 4-PBA and TUDCA partially restore cell surface expression of Bmpr2ΔEx2 in PECs, suggesting that the mutant product is mis-folded. We also show that PECs from Bmpr2 (ΔEx2/+ mice have defects in the BMP-induced Smad1/5/8 and Id1 signaling axis, and that addition of chemical chaperones restores expression of the Smad1/5/8 target Id1. These data indicate that the endogenous NMD negative BMPRΔEx2 mutant product is expressed but has a folding defect resulting in ER retention. Partial correction of this folding defect and restoration of defective BMP signaling using chemical chaperones suggests that protein-folding agents could be used therapeutically in patients with these NMD negative BMPR2 mutations.

  8. Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Horie, Ryo; Yoneda, Misako, E-mail: yone@ims.u-tokyo.ac.jp; Uchida, Shotaro; Sato, Hiroki; Kai, Chieko

    2016-10-15

    Nipah virus (NiV) causes severe encephalitis in humans, with high mortality. NiV nonstructural C protein (NiV-C) is essential for its pathogenicity, but its functions are unclear. In this study, we focused on NiV-C trafficking in cells and found that it localizes predominantly in the cytoplasm but partly in the nucleus. An analysis of NiV-C mutants showed that amino acids 2, 21–24 and 110–139 of NiV-C are important for its localization in the cytoplasm. Inhibitor treatment indicates that the nuclear export determinant is not a classical CRM1-dependent nuclear export signal. We also determined that amino acids 60–75 and 72–75 were important for nuclear localization of NiV-C. Furthermore, NiV-C mutants that had lost their capacity for nuclear localization inhibited the interferon (IFN) response more strongly than complete NiV-C. These results indicate that the IFN-antagonist activity of NiV-C occurs in the cytoplasm. -- Highlights: •Nipah virus (NiV) infection resulted in high mortality, but effective treatment has not been established. •Several reports revealed that NiV nonstructural C protein (NiV-C) was essential for NiV pathogenicity, however, whole of NiV-C function is still unknown. •Although nonstructural C proteins of other Paramyxoviruses are expressed in similar mechanism and exert similar activity, subcellular localization and cellular targets are different. In this study, we evaluated the subcellular localization of NiV-C. •To our knowledge, this is the first report showing that NiV-C shuttles between the nucleus and cytoplasm. We also clarified that NiV-C has nuclear export signal and nuclear localization signal using NiV-C deleted, alanine substitution mutants and enhanced green fluorescent protein (EGFP) fused proteins. •And we also showed that interferon (IFN) antagonist activity of NiV-C related to its subcellular localization. Our results indicate that NiV-C exert IFN antagonist activity in the cytoplasm.

  9. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins.

    Science.gov (United States)

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann; Becher, Paul

    2017-04-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus.

    Science.gov (United States)

    Deschamps, Thibaut; Kalamvoki, Maria

    2017-05-01

    Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2'3'-cyclic GAMP (2'3'-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets

  11. Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle.

    Science.gov (United States)

    Arzt, Jonathan; Pacheco, Juan M; Stenfeldt, Carolina; Rodriguez, Luis L

    2017-05-02

    Understanding the mechanisms of attenuation and virulence of foot-and-mouth disease virus (FMDV) in the natural host species is critical for development of next-generation countermeasures such as live-attenuated vaccines. Functional genomics analyses of FMDV have identified few virulence factors of which the leader proteinase (L pro ) is the most thoroughly investigated. Previous work from our laboratory has characterized host factors in cattle inoculated with virulent FMDV and attenuated mutant strains with transposon insertions within L pro . In the current study, the characteristics defining virulence of FMDV in cattle were further investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). The only difference between the two viruses was an insertion mutation in the inter-AUG region of the leader proteinase of FMDV-Mut. All cattle were infected by simulated-natural, aerosol inoculation. Both viruses were demonstrated to establish primary infection in the nasopharyngeal mucosa with subsequent dissemination to the lungs. Immunomicroscopic localization of FMDV antigens indicated that both viruses infected superficial epithelial cells of the nasopharynx and lungs. The critical differences between the two viruses were a more rapid establishment of infection by FMDV-WT and quantitatively greater virus loads in secretions and infected tissues compared to FMDV-Mut. The slower replicating FMDV-Mut established a subclinical infection that was limited to respiratory epithelial sites, whereas the faster replication of FMDV-WT facilitated establishment of viremia, systemic dissemination of infection, and clinical disease. The mutant FMDV was capable of achieving all the same early pathogenesis landmarks as FMDV-WT, but was unable to establish systemic infection. The precise mechanism of attenuation remains undetermined; but current data suggests that the impaired replication

  12. PrkC-mediated phosphorylation of overexpressed YvcK protein regulates PBP1 protein localization in Bacillus subtilis mreB mutant cells.

    Science.gov (United States)

    Foulquier, Elodie; Pompeo, Frédérique; Freton, Céline; Cordier, Baptiste; Grangeasse, Christophe; Galinier, Anne

    2014-08-22

    The YvcK protein has been shown to be necessary for growth under gluconeogenic conditions in Bacillus subtilis. Amazingly, its overproduction rescues growth and morphology defects of the actin-like protein MreB deletion mutant by restoration of PBP1 localization. In this work, we observed that YvcK was phosphorylated at Thr-304 by the protein kinase PrkC and that phosphorylated YvcK was dephosphorylated by the cognate phosphatase PrpC. We show that neither substitution of this threonine with a constitutively phosphorylated mimicking glutamic acid residue or a phosphorylation-dead mimicking alanine residue nor deletion of prkC or prpC altered the ability of B. subtilis to grow under gluconeogenic conditions. However, we observed that a prpC mutant and a yvcK mutant were more sensitive to bacitracin compared with the WT strain. In addition, the bacitracin sensitivity of strains in which YvcK Thr-304 was replaced with either an alanine or a glutamic acid residue was also affected. We also analyzed rescue of the mreB mutant strain by overproduction of YvcK in which the phosphorylation site was substituted. We show that YvcK T304A overproduction did not rescue the mreB mutant aberrant morphology due to PBP1 mislocalization. The same observation was made in an mreB prkC double mutant overproducing YvcK. Altogether, these data show that YvcK may have two distinct functions: 1) in carbon source utilization independent of its phosphorylation level and 2) in cell wall biosynthesis and morphogenesis through its phosphorylation state. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model.

    Science.gov (United States)

    Lin, Yi-Jiun; Huang, Li-Rung; Yang, Hung-Chih; Tzeng, Horng-Tay; Hsu, Ping-Ning; Wu, Hui-Lin; Chen, Pei-Jer; Chen, Ding-Shinn

    2010-05-18

    We recently developed a mouse model of hepatitis B virus (HBV) persistence, in which a single i.v. hydrodynamic injection of HBV DNA to C57BL/6 mice allows HBV replication and induces a partial immune response, so that about 20-30% of the mice carry HBV for more than 6 months. The model was used to identify the viral antigen crucial for HBV persistence. We knocked out individual HBV genes by introducing a premature termination codon to the HBV core, HBeAg, HBx, and polymerase ORFs. The specific-gene-deficient HBV mutants were hydrodynamically injected into mice and the HBV profiles of the mice were monitored. About 90% of the mice that received the HBcAg-mutated HBV plasmid exhibited high levels of hepatitis B surface antigenemia and maintained HBsAg expression for more than 6 months after injection. To map the region of HBcAg essential for viral clearance, we constructed a set of serial HBcAg deletion mutants for hydrodynamic injection. We localized the essential region of HBcAg to the carboxyl terminus, specifically to the 10 terminal amino acids (HBcAg176-185). The majority of mice receiving this HBV mutant DNA did not elicit a proper HBcAg-specific IFN-gamma response and expressed HBV virions for 6 months. These results indicate that the immune response triggered in mice by HBcAg during exposure to HBV is important in determining HBV persistence.

  14. Sexual dimorphism in white campion: complex control of carpel number is revealed by Y chromosome deletions

    International Nuclear Information System (INIS)

    Lardon, A.; Georgiev, S.; Aghmir, A.; Le Merrer, G.; Negrutiu, I.

    1999-01-01

    Sexual dimorphism in the dioecious plant white campion (Silene latifolia = Melandrium album) is under the control of two main regions on the Y chromosome. One such region, encoding the gynoecium-suppressing function (GSF), is responsible for the arrest of carpel initiation in male flowers. To generate chromosomal deletions, we used pollen irradiation in male plants to produce hermaphroditic mutants (bsx mutants) in which carpel development was restored. The mutants resulted from alterations in at least two GSF chromosomal regions, one autosomal and one located on the distal half of the (p)-arm of the Y chromosome. The two mutations affected carpel development independently, each mutation showing incomplete penetrance and variegation, albeit at significantly different levels. During successive meiotic generations, a progressive increase in penetrance and a reduction in variegation levels were observed and quantified at the level of the Y-linked GSF (GSF-Y). Possible mechanisms are proposed to explain the behavior of the bsx mutations: epigenetic regulation or/and second-site mutation of modifier genes. In addition, studies on the inheritance of the hermaphroditic trait showed that, unlike wild-type Y chromosomes, deleted Y chromosomes can be transmitted through both the male and the female lines. Altogether, these findings bring experimental support, on the one hand, to the existence on the Y chromosome of genic meiotic drive function(s) and, on the other hand, to models that consider that dioecy evolved through multiple mutation events. As such, the GSF is actually a system containing more than one locus and whose primary component is located on the Y chromosome

  15. Interaction of the host protein NbDnaJ with Potato virus X minus-strand stem-loop 1 RNA and capsid protein affects viral replication and movement.

    Science.gov (United States)

    Cho, Sang-Yun; Cho, Won Kyong; Sohn, Seong-Han; Kim, Kook-Hyung

    2012-01-06

    Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1 show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1, nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogeneous expression of NAL1 in fission yeast (Schizosaccharomyces pombe further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division.

  17. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.

    Science.gov (United States)

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2016-11-18

    Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  18. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-01-31

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  19. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation

    Directory of Open Access Journals (Sweden)

    Fresno Manuel

    2011-07-01

    Full Text Available Abstract Background Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. Results In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II, to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus, infected with mutant parasites did not develop any sign of pathology. Conclusions The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis.

  20. Molecular epidemiology of co-infection with hepatitis B virus and human immunodeficiency virus (HIV) among adult patients in Harare, Zimbabwe.

    Science.gov (United States)

    Baudi, Ian; Iijima, Sayuki; Chin'ombe, Nyasha; Mtapuri-Zinyowera, Sekesai; Murakami, Shuko; Isogawa, Masanori; Hachiya, Atsuko; Iwatani, Yasumasa; Tanaka, Yasuhito

    2017-02-01

    The objective of this study was to determine the prevalence of co-infection with hepatitis B virus (HBV) and human immunodeficiency virus (HIV) and the genetic characteristics of both viruses among pre-HIV-treatment patients in Harare, Zimbabwe. This cross-sectional survey involved 176 remnant plasma samples collected from consenting HIV patients (median age 35 [18-74]) between June and September 2014. HBV seromarkers were determined by high-sensitivity chemiluminescence assays. Molecular evolutionary analyses were conducted on the basal core promoter/precore (BCP/PC) and S regions of HBV, as well as part of the HIV pol region. Of the 176 participants (65.7% female), 19 (10.8%) were positive for HBsAg (median 0.033 IU/ml (IQR 0.01-415). The HBsAg incidence was higher in men than women (P = 0.009). HBsAg-positive subjects had lower median CD4 counts (P = 0.016). HBV DNA was detectable in 12 HBsAg-positive samples (median 3.36 log cp/ml (2.86-4.51), seven being amplified and sequenced. All isolates were subgenotype A1 without HBV drug resistance mutations but each had at least one BCP/PC mutation. PreS deletion mutants and small S antigen variants M133I/T and D144G were identified. Of the 164 HIV isolates successfully genotyped, 163 (99.4%) were HIV-1 subtype C and only one was HIV-1 subtype F1. Sixteen (9.8%) had at least one drug resistance mutation, predominantly non-nucleoside reverse transcriptase inhibitor-related mutations, observed mostly among female participants. This study shows that co-infection with HBV is present among HIV patients enrolling into HIV care in Zimbabwe, suggesting that HBV screening and monitoring programmes be strengthened in this context. J. Med. Virol. 89:257-266, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Generating Bona Fide Mammalian Prions with Internal Deletions.

    Science.gov (United States)

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Chapuis, Jérôme; Ciric, Danica; Igel-Egalon, Angelique; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel

    2016-08-01

    Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative

  2. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    2016-10-01

    Full Text Available Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs. The VRCs built by Tomato bushy stunt virus (TBSV are enriched with phosphatidylethanolamine (PE through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5-positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment.

  3. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes.

    Science.gov (United States)

    Dorin, Julia R

    2015-01-01

    β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.

  4. Selective silencing of full-length CD80 but not IgV-CD80 leads to impaired clonal deletion of self-reactive T cells and altered regulation of immune responses.

    Science.gov (United States)

    Bugeon, L; Hargreaves, R E; Crompton, T; Outram, S; Rahemtulla, A; Porter, A C; Dallman, M J

    2001-01-01

    Co-stimulation provided by the B7 family of proteins underpins the development of protective immunity. There are three identified members of this family: CD80, its splice variant IgV-CD80 and CD86. It has hitherto been difficult to analyze the expression and function of IgV-CD80 since there are no appropriate reagents capable of distinguishing it from CD80. We have generated mice, by gene targeting, the lack CD80 whilst maintaining expression of IgV-CD80. Mutant animals did not delete T cells bearing mammary tumor virus-reactive TCR as efficiently as wild-type animals. We also demonstrate the importance of IgV-CD80 in the responses of recently activated cells and reveal a role for CD80 in sustaining T cell responses. CD86, whilst critical to primary T cell activation, made only a minor contribution to re-activation of normal cells.

  5. Comprehensive detection of diverse exon 19 deletion mutations of EGFR in lung Cancer by a single probe set.

    Science.gov (United States)

    Bae, Jin Ho; Jo, Seong-Min; Kim, Hak-Sung

    2015-12-15

    Detection of exon 19 deletion mutation of EGFR, one of the most frequently occurring mutations in lung cancer, provides the crucial information for diagnosis and treatment guideline in non-small-cell lung cancer (NSCLC). Here, we demonstrate a simple and efficient method to detect various exon 19 deletion mutations of EGFR using a single probe set comprising of an oligo-quencher (oligo-Q) and a molecular beacon (MB). While the MB hybridizes to both the wild and mutant target DNA, the oligo-Q only binds to the wild target DNA, leading to a fluorescent signal in case of deletion mutation. This enables the comprehensive detection of the diverse exon 19 deletion mutations using a single probe set. We demonstrated the utility and efficiency of the approach by detecting the frequent exon 19 deletion mutations of EGFR through a real-time PCR and in situ fluorescence imaging. Our approach enabled the detection of genomic DNA as low as 0.02 ng, showing a detection limit of 2% in a heterogeneous DNA mixture, and could be used for detecting mutations in a single cell level. The present MB and oligo-Q dual probe system can be used for diagnosis and treatment guideline in NSCLC. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Species-specific deletion of the viral attachment glycoprotein of avian metapneumovirus.

    Science.gov (United States)

    Kong, Byung-Whi; Foster, Linda K; Foster, Douglas N

    2008-03-01

    The avian metapneumovirus (AMPV) genome encodes the fusion (F), small hydrophobic (SH), and attachment glycoprotein (G) as envelope glycoproteins. The F and G proteins mainly function to allow viral entry into host cells during the early steps of the virus life cycle. The highly variable AMPV G protein is a major determinant for distinguishing virus subtypes. Sequence analysis was used to determine if any differences between avian or mammalian cell propagated subtype C AMPV could be detected for the 1.8kb G gene. As a result, the complete 1.8kb G gene was found to be present when AMPV was propagated in our immortal turkey turbinate (TT-1) cell line regardless of passage number. Surprisingly, AMPV propagated for 15 or more passages in mammalian Vero cells revealed an essentially deleted G gene in the viral genome, resulting in no G gene mRNA expression. Although the Vero cell propagated AMPV genome contained a small 122 nucleotide fragment of the G gene, no other mRNA variants were detected from either mammalian or avian propagated AMPV. The G gene truncation might be caused by cellular molecular mechanisms that are species-specific. The lack of viral gene deletions suggests that avian cell propagated AMPV will provide a better alternative host for live recombinant vaccine development based on a reverse genetics system.

  7. Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established.

    Directory of Open Access Journals (Sweden)

    Nigel J Dimmock

    Full Text Available Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 µg 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1. Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes.

  8. Mutant spectra of irradiated CHO AL cells determined with multiple markers analyzed by flow cytometry

    International Nuclear Information System (INIS)

    Ross, Carley D.; French, C. Tenley; Keysar, Stephen B.; Fox, Michael H.

    2007-01-01

    We have previously developed a sensitive and rapid mammalian cell mutation assay which is based on a Chinese hamster ovary cell line that stably incorporates human chromosome 11 (CHO A L ) and uses flow cytometry to measure mutations in CD59. We now show that multiparameter flow cytometry may be used to simultaneously analyze irradiated CHO A L cells for mutations in five CD genes along chromosome 11 (CD59, CD44, CD90, CD98, CD151) and also a GPI-anchor gene. Using this approach, 19 different mutant clones derived from individual sorted mutant cells were analyzed to determine the mutant spectrum induced by ionizing radiation. All clones analyzed were negative for CD59 expression and PCR confirmed that at least CD59 exon 4 was also absent. As expected, ionizing radiation frequently caused large deletions along chromosome 11. This technology can readily be used to rapidly analyze the mutant yield as well as the spectrum of mutations caused by a variety of genotoxic agents and provide greater insight into the mechanisms of mutagenesis

  9. Properties of Cells Carrying the Herpes Simplex Virus Type 2 Thymidine Kinase Gene: Mechanisms of Reversion to a Thymidine Kinase-Negative Phenotype

    Science.gov (United States)

    Bastow, K. F.; Darby, G.; Wildy, P.; Minson, A. C.

    1980-01-01

    We have isolated cells with a thymidine kinase-negative (tk−) phenotype from cells which carry the herpes simplex virus type 2 tk gene by selection in 5-bromodeoxyuridine or 9-(2-hydroxyethoxymethyl)guanine. Both selection routines generated revertants with a frequency of 10−3 to 10−4, and resistance to either compound conferred simultaneous resistance to the other. tk− revertants fell into three classes: (i) cells that arose by deletion of all virus sequences, (ii) cells that had lost the virus tk gene but retained a nonselected virus-specific function and arose by deletion of part of the virus-specific sequence, and (iii) cells that retained the potential to express all of the virus-specific functions of the parental cells and retained all of the virus-specific DNA sequences. Images PMID:16789205

  10. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    International Nuclear Information System (INIS)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  11. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  12. An unusual insertion/deletion in the gene encoding the β-subunit of propionyl-CoA carboxylase is a frequent mutation in Caucasian propionic acidemia

    International Nuclear Information System (INIS)

    Tahara, T.; Kraus, J.P.; Rosenberg, L.E.

    1990-01-01

    Propionic acidemia is an inherited disorder of organic acid metabolism that is caused by deficiency of propionly-CoA carboxylase. Affected patients fall into two complementation groups, pccA and pccBC (subgroups B, C, and BC), resulting from deficiency of the nonidentical α and β subunits of PCC, respectively. The authors have detected an unusual insertion/deletion in the DNA of patients from the pccBC and pccC subgroups that replaces 14 nucleotides in the coding sequence of the β subunit with 12 nucleotides unrelated to this region of the gene. Among 14 unrelated Caucasian patients in the pccBc complementation group, this unique mutation was found in 8 of 28 mutant alleles examined. Mutant allele-specific oligonucleotide hybridization to amplified genomic DNAs revealed that the inserted 12 nucleotides do not originate in an ∼1000-bp region around the mutation. In the course of the investigation, they identified another mutation in the same exon: a 3-bp in-frame deletion that eliminates one of two isoleucine codons immediately preceding the Msp I site. Two unrelated patients were compound heterozygotes for this single-codon deletion and for the insertion/deletion described above. They conclude that either there is a propensity for the PCC β-subunit gene to undergo mutations of this sort at this position or, more likely, the mutations in all of the involved Caucasian patients have a common origin in preceding generations

  13. Elements in the transcriptional regulatory region flanking herpes simplex virus type 1 oriS stimulate origin function.

    Science.gov (United States)

    Wong, S W; Schaffer, P A

    1991-05-01

    Like other DNA-containing viruses, the three origins of herpes simplex virus type 1 (HSV-1) DNA replication are flanked by sequences containing transcriptional regulatory elements. In a transient plasmid replication assay, deletion of sequences comprising the transcriptional regulatory elements of ICP4 and ICP22/47, which flank oriS, resulted in a greater than 80-fold decrease in origin function compared with a plasmid, pOS-822, which retains these sequences. In an effort to identify specific cis-acting elements responsible for this effect, we conducted systematic deletion analysis of the flanking region with plasmid pOS-822 and tested the resulting mutant plasmids for origin function. Stimulation by cis-acting elements was shown to be both distance and orientation dependent, as changes in either parameter resulted in a decrease in oriS function. Additional evidence for the stimulatory effect of flanking sequences on origin function was demonstrated by replacement of these sequences with the cytomegalovirus immediate-early promoter, resulting in nearly wild-type levels of oriS function. In competition experiments, cotransfection of cells with the test plasmid, pOS-822, and increasing molar concentrations of a competitor plasmid which contained the ICP4 and ICP22/47 transcriptional regulatory regions but lacked core origin sequences resulted in a significant reduction in the replication efficiency of pOS-822, demonstrating that factors which bind specifically to the oriS-flanking sequences are likely involved as auxiliary proteins in oriS function. Together, these studies demonstrate that trans-acting factors and the sites to which they bind play a critical role in the efficiency of HSV-1 DNA replication from oriS in transient-replication assays.

  14. Comparative proteomics of a tor inducible Aspergillus fumigatus mutant reveals involvement of the Tor kinase in iron regulation.

    Science.gov (United States)

    Baldin, Clara; Valiante, Vito; Krüger, Thomas; Schafferer, Lukas; Haas, Hubertus; Kniemeyer, Olaf; Brakhage, Axel A

    2015-07-01

    The Tor (target of rapamycin) kinase is one of the major regulatory nodes in eukaryotes. Here, we analyzed the Tor kinase in Aspergillus fumigatus, which is the most important airborne fungal pathogen of humans. Because deletion of the single tor gene was apparently lethal, we generated a conditional lethal tor mutant by replacing the endogenous tor gene by the inducible xylp-tor gene cassette. By both 2DE and gel-free LC-MS/MS, we found that Tor controls a variety of proteins involved in nutrient sensing, stress response, cell cycle progression, protein biosynthesis and degradation, but also processes in mitochondria, such as respiration and ornithine metabolism, which is required for siderophore formation. qRT-PCR analyses indicated that mRNA levels of ornithine biosynthesis genes were increased under iron limitation. When tor was repressed, iron regulation was lost. In a deletion mutant of the iron regulator HapX also carrying the xylp-tor cassette, the regulation upon iron deprivation was similar to that of the single tor inducible mutant strain. In line, hapX expression was significantly reduced when tor was repressed. Thus, Tor acts either upstream of HapX or independently of HapX as a repressor of the ornithine biosynthesis genes and thereby regulates the production of siderophores. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Characterization of a family of gamma-ray-induced CHO mutants demonstrates that the ldlA locus is diploid and encodes the low-density lipoprotein receptor

    International Nuclear Information System (INIS)

    Sege, R.D.; Kozarsky, K.F.; Krieger, M.

    1986-01-01

    The ldlA locus is one of four Chinese hamster ovary (CHO) cell loci which are known to be required for the synthesis of functional low-density lipoprotein (LDL) receptors. Previous studies have suggested that the ldlA locus is diploid and encodes the LDL receptor. To confirm this assignment, we have isolated a partial genomic clone of the Chinese hamster LDL receptor gene and used this and other nucleic acid and antibody probes to study a family of ldlA mutants isolated after gamma-irradiation. Our analysis suggests that there are two LDL receptor alleles in wild-type CHO cells. Each of the three mutants isolated after gamma-irradiation had detectable deletions affecting one of the two LDL receptor alleles. One of the mutants also had a disruption of the remaining allele, resulting in the synthesis of an abnormal receptor precursor which was not subject to Golgi-associated posttranslational glycoprotein processing. The correlation of changes in the expression, structure, and function of LDL receptors with deletions in the LDL receptor genes in these mutants directly demonstrated that the ldlA locus in CHO cells is diploid and encodes the LDL receptor. In addition, our analysis suggests that CHO cells in culture may contain a partial LDL receptor pseudogene

  16. Characterization of the neutralization determinants of equine arteritis virus using recombinant chimeric viruses and site-specific mutagenesis of an infectious cDNA clone

    International Nuclear Information System (INIS)

    Balasuriya, Udeni B.R.; Dobbe, Jessika C.; Heidner, Hans W.; Smalley, Victoria L.; Navarrette, Andrea; Snijder, Eric J.; MacLachlan, N. James

    2004-01-01

    We have used an infectious cDNA clone of equine arteritis virus (EAV) and reverse genetics technology to further characterize the neutralization determinants in the GP5 envelope glycoprotein of the virus. We generated a panel of 20 recombinant viruses, including 10 chimeric viruses that each contained the ORF5 (which encodes GP5) of different laboratory, field, and vaccine strains of EAV, a chimeric virus containing the N-terminal ectodomain of GP5 of a European strain of porcine reproductive and respiratory syndrome virus, and 9 mutant viruses with site-specific substitutions in their GP5 proteins. The neutralization phenotype of each recombinant chimeric/mutant strain of EAV was determined with EAV-specific monoclonal antibodies and EAV strain-specific polyclonal equine antisera and compared to that of their parental viruses from which the substituted ORF5 was derived. The data unequivocally confirm that the GP5 ectodomain contains critical determinants of EAV neutralization. Furthermore, individual neutralization sites are conformationally interactive, and the interaction of GP5 with the unglycosylated membrane protein M is likely critical to expression of individual epitopes in neutralizing conformation. Substitution of individual amino acids within the GP5 ectodomain usually resulted in differences in neutralization phenotype of the recombinant viruses, analogous to differences in the neutralization phenotype of field strains of EAV and variants generated during persistent infection of EAV carrier stallions

  17. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    Science.gov (United States)

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  18. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    Directory of Open Access Journals (Sweden)

    Juliette Doumayrou

    2016-11-01

    Full Text Available Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  19. Separation of foot-and-mouth disease virus leader protein activities; identification of mutants that retain efficient self-processing activity but poorly induce eIF4G cleavage.

    Science.gov (United States)

    Guan, Su Hua; Belsham, Graham J

    2017-04-01

    Foot-and-mouth disease virus is a picornavirus and its RNA genome encodes a large polyprotein. The N-terminal part of this polyprotein is the leader protein, a cysteine protease, termed Lpro. The virus causes the rapid inhibition of host cell cap-dependent protein synthesis within infected cells. This results from the Lpro-dependent cleavage of the cellular translation initiation factor eIF4G. Lpro also releases itself from the virus capsid precursor by cleaving the L/P1 junction. Using site-directed mutagenesis of the Lpro coding sequence, we have investigated the role of 51 separate amino acid residues in the functions of this protein. These selected residues either are highly conserved or are charged and exposed on the protein surface. Using transient expression assays, within BHK-21 cells, it was found that residues around the active site (W52, L53 and A149) of Lpro and others located elsewhere (K38, K39, R44, H138 and W159) are involved in the induction of eIF4G cleavage but not in the processing of the L/P1 junction. Modified viruses, encoding such amino acid substitutions within Lpro, can replicate in BHK-21 cells but did not grow well in primary bovine thyroid cells. This study characterizes mutant viruses that are deficient in blocking host cell responses to infection (e.g. interferon induction) and can assist in the rational design of antiviral agents targeting this process and in the production of attenuated viruses.

  20. Immunological tolerance to lymphocytic choriomeningitis virus in neonatally infected virus carrier mice: evidence supporting a clonal inactivation mechanism

    International Nuclear Information System (INIS)

    Cihak, J.; Lehmann-Grube, F.

    1978-01-01

    Experiments are described aimed at analysing the mechanism responsible for the absence of cell-mediated immunity against LCM virus-infected cells in neonatally established LCM virus carrier mice. Virus-specific cell-mediated immunity was assessed by 51 Cr release and target cell reduction assays. Attempts to demonstrate cells in spleens of CBA/J carrier mice able to suppress in syngeneic recipients the induction or the effector phase of the cytotoxic T-cell response against LCM virus-infected cells were unsuccessful. Also, no factors were detected in CBA/J and C57BL/6J carrier mice, either spleen cell-associated or free in the circulation, which would block the activity of cytotoxic T-lymphocytes against LCM virus-infected syngeneic target cells. The results indicate that inability of LCM virus carrier mice to act immunologically against virus-infected target cells is due to deletion or irreversible inactivation of T lymphocytes carrying receptors for virally altered cell membrane antigens. (author)

  1. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants.

    Science.gov (United States)

    Kalbina, Irina; Lagerqvist, Nina; Moiane, Bélisario; Ahlm, Clas; Andersson, Sören; Strid, Åke; Falk, Kerstin I

    2016-11-01

    The zoonotic Rift Valley fever virus affects livestock and humans in Africa and on the Arabian Peninsula. The economic impact of this pathogen due to livestock losses, as well as its relevance to public health, underscores the importance of developing effective and easily distributed vaccines. Vaccines that can be delivered orally are of particular interest. Here, we report the expression in transformed plants (Arabidopsis thaliana) of Rift Valley fever virus antigens. The antigens used in this study were the N protein and a deletion mutant of the Gn glycoprotein. Transformed lines were analysed for specific mRNA and protein content by RT-PCR and Western blotting, respectively. Furthermore, the plant-expressed antigens were evaluated for their immunogenicity in mice fed the transgenic plants. After oral intake of fresh transgenic plant material, a proportion of the mice elicited specific IgG antibody responses, as compared to the control animals that were fed wild-type plants and of which none sero-converted. Thus, we show that transgenic plants can be readily used to express and produce Rift Valley Fever virus proteins, and that the plants are immunogenic when given orally to mice. These are promising findings and provide a basis for further studies on edible plant vaccines against the Rift Valley fever virus. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. VH gene expression and regulation in the mutant Alicia rabbit. Rescue of VHa2 allotype expression.

    Science.gov (United States)

    Chen, H T; Alexander, C B; Young-Cooper, G O; Mage, R G

    1993-04-01

    Rabbits of the Alicia strain, derived from rabbits expressing the VHa2 allotype, have a mutation in the H chain locus that has a cis effect upon the expression of VHa2 and VHa- genes. A small deletion at the most J-proximal (3') end of the VH locus leads to low expression of all the genes on the entire chromosome in heterozygous ali mutants and altered relative expression of VH genes in homozygotes. To study VH gene expression and regulation, we used the polymerase chain reaction to amplify the VH genes expressed in spleens of young and adult wild-type and mutant Alicia rabbits. The cDNA from reverse transcription of splenic mRNA was amplified and polymerase chain reaction libraries were constructed and screened with oligonucleotides from framework regions 1 and 3, as well as JH. Thirty-three VH-positive clones were sequenced and analyzed. We found that in mutant Alicia rabbits, products of the first functional VH gene (VH4a2), (or VH4a2-like genes) were expressed in 2- to 8-wk-olds. Expression of both the VHx and VHy types of VHa- genes was also elevated but the relative proportions of VHx and VHy, especially VHx, decreased whereas the relative levels of expression of VH4a2 or VH4a2-like genes increased with age. Our results suggest that the appearance of sequences resembling that of the VH1a2, which is deleted in the mutant ali rabbits, could be caused by alterations of the sequences of the rearranged VH4a2 genes by gene conversions and/or rearrangement of upstream VH1a2-like genes later in development.

  3. Global Proteome Response to Deletion of Genes Related to Mercury Methylation and Dissimilatory Metal Reduction Reveals Changes in Respiratory Metabolism in Geobacter sulfurreducens PCA.

    Science.gov (United States)

    Qian, Chen; Johs, Alexander; Chen, Hongmei; Mann, Benjamin F; Lu, Xia; Abraham, Paul E; Hettich, Robert L; Gu, Baohua

    2016-10-07

    Geobacter sulfurreducens PCA can reduce, sorb, and methylate mercury (Hg); however, the underlying biochemical mechanisms of these processes and interdependent metabolic pathways remain unknown. In this study, shotgun proteomics was used to compare global proteome profiles between wild-type G. sulfurreducens PCA and two mutant strains: a ΔhgcAB mutant, which is deficient in two genes known to be essential for Hg methylation and a ΔomcBESTZ mutant, which is deficient in five outer membrane c-type cytochromes and thus impaired in its ability for dissimilatory metal ion reduction. We were able to delineate the global response of G. sulfurreducens PCA in both mutants and identify cellular networks and metabolic pathways that were affected by the loss of these genes. Deletion of hgcAB increased the relative abundances of proteins implicated in extracellular electron transfer, including most of the c-type cytochromes, PilA-C, and OmpB, and is consistent with a previously observed increase in Hg reduction in the ΔhgcAB mutant. Deletion of omcBESTZ was found to significantly increase relative abundances of various methyltransferases, suggesting that a loss of dissimilatory reduction capacity results in elevated activity among one-carbon (C1) metabolic pathways and thus increased methylation. We show that G. sulfurreducens PCA encodes only the folate branch of the acetyl-CoA pathway, and proteins associated with the folate branch were found at lower abundance in the ΔhgcAB mutant strain than the wild type. This observation supports the hypothesis that the function of HgcA and HgcB is linked to C1 metabolism through the folate branch of the acetyl-CoA pathway by providing methyl groups required for Hg methylation.

  4. Fitness ranking of individual mutants drives patterns of epistatic interactions in HIV-1.

    Directory of Open Access Journals (Sweden)

    Javier P Martínez

    Full Text Available Fitness interactions between mutations, referred to as epistasis, can strongly impact evolution. For RNA viruses and retroviruses with their high mutation rates, epistasis may be particularly important to overcome fitness losses due to the accumulation of deleterious mutations and thus could influence the frequency of mutants in a viral population. As human immunodeficiency virus type 1 (HIV-1 resistance to azidothymidine (AZT requires selection of sequential mutations, it is a good system to study the impact of epistasis. Here we present a thorough analysis of a classical AZT-resistance pathway (the 41-215 cluster of HIV-1 variants by fitness measurements in single round infection assays covering physiological drug concentrations ex vivo. The sign and value of epistasis varied and did not predict the epistatic effect on the mutant frequency. This complex behavior is explained by the fitness ranking of the variants that strongly depends on environmental factors, i.e., the presence and absence of drugs and the host cells used. Although some interactions compensate fitness losses, the observed small effect on the relative mutant frequencies suggests that epistasis might be inefficient as a buffering mechanism for fitness losses in vivo. While the use of epistasis-based hypotheses to make general assumptions on the evolutionary dynamics of viral populations is appealing, our data caution their interpretation without further knowledge on the characteristics of the viral mutant spectrum under different environmental conditions.

  5. Deciphering the role of the Gag-Pol ribosomal frameshift signal in HIV-1 RNA genome packaging.

    Science.gov (United States)

    Nikolaitchik, Olga A; Hu, Wei-Shau

    2014-04-01

    A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5' untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5' end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1

  6. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  7. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma.

    Science.gov (United States)

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B; Wu, Chia-Chin; Akdemir, Kadir C; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T; Welch, Heidi C E; Garraway, Levi A; Chin, Lynda

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  8. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B.; Wu, Chia-Chin; Akdemir, Kadir C.; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T.; Welch, Heidi C. E.; Garraway, Levi A.; Chin, Lynda

    2016-01-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  9. Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses

    DEFF Research Database (Denmark)

    Mordstein, M; Kochs, G; Dumoutier, L

    2008-01-01

    Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-alpha, IFN-beta and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-lambda uses....... Mice lacking functional IFN-lambda receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-alpha/beta and IFN-lambda were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants...

  10. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes

    Directory of Open Access Journals (Sweden)

    Julia R Dorin

    2015-01-01

    Full Text Available β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.

  11. New insights from an old mutant: SPADIX4 governs fruiting body development but not hyphal fusion in Sordaria macrospora.

    Science.gov (United States)

    Teichert, Ines; Lutomski, Miriam; Märker, Ramona; Nowrousian, Minou; Kück, Ulrich

    2017-02-01

    During the sexual life cycle of filamentous fungi, multicellular fruiting bodies are generated for the dispersal of spores. The filamentous ascomycete Sordaria macrospora has a long history as a model system for studying fruiting body formation, and two collections of sterile mutants have been generated. However, for most of these mutants, the underlying genetic defect remains unknown. Here, we investigated the mutant spadix (spd) that was generated by X-ray mutagenesis in the 1950s and terminates sexual development after the formation of pre-fruiting bodies (protoperithecia). We sequenced the spd genome and found a 22 kb deletion affecting four genes, which we termed spd1-4. Generation of deletion strains revealed that only spd4 is required for fruiting body formation. Although sterility in S. macrospora is often coupled with a vegetative hyphal fusion defect, Δspd4 was still capable of fusion. This feature distinguishes SPD4 from many other regulators of sexual development. Remarkably, GFP-tagged SPD4 accumulated in the nuclei of vegetative hyphae and fruiting body initials, the ascogonial coils, but not in sterile tissue from the developing protoperithecium. Our results point to SPD4 as a specific determinant of fruiting body formation. Research on SPD4 will, therefore, contribute to understanding cellular reprogramming during initiation of sexual development in fungi.

  12. Deletion of creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity.

    Science.gov (United States)

    Hunter, A J; Morris, T A; Jin, B; Saint, C P; Kelly, J M

    2013-09-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes.

  13. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne; Friis, Martin Barfred; Fahnøe, Ulrik

    2016-01-01

    RNA could be detected. However, the animals inoculated with these mutant viruses seroconverted against CSFV. Thus, these mutant viruses were highly attenuated in vivo. All 4 rescued viruses were also passaged up to 20 times in cell culture. Using full genome sequencing, the same two adaptations within......Classical swine fever virus (CSFV) causes an economically important disease of swine. Four different viruses were rescued from full-length cloned cDNAs derived from the Paderborn strain of CSFV. Three of these viruses had been modified by mutagenesis (with 7 or 8 nt changes) within stem 2...... each of four independent virus populations were observed that restored the coding sequence to that of the parental field strain. These adaptations occurred with different kinetics. The combination of reverse genetics and in depth, full genome sequencing provides a powerful approach to analyse virus...

  14. Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis.

    Science.gov (United States)

    Ji, S H; Gururani, M A; Lee, J W; Ahn, B-O; Chun, S-C

    2014-03-01

    We have isolated a severe dwarf mutant derived from a Ds (Dissociation) insertion mutant rice (Oryza sativa var. japonica c.v. Dongjin). This severe dwarf phenotype, has short and dark green leaves, reduced shoot growth early in the seedling stage, and later severe dwarfism with failure to initiate flowering. When treated with bioactive GA3 , mutants are restored to the normal wild-type phenotype. Reverse transcription PCR analyses of 22 candidate genes related to the gibberellin (GA) biosynthesis pathway revealed that among 22 candidate genes tested, a dwarf mutant transcript was not expressed only in one OsKS2 gene. Genetic analysis revealed that the severe dwarf phenotype was controlled by recessive mutation of a single nuclear gene. The putative OsKS2 gene was a chromosome 4-located ent-kaurene synthase (KS), encoding the enzyme that catalyses an early step of the GA biosynthesis pathway. Sequence analysis revealed that osks2 carried a 1-bp deletion in the ORF region of OsKS2, which led to a loss-of-function mutation. The expression pattern of OsKS2 in wild-type cv Dongjin, showed that it is expressed in all organs, most prominently in the stem and floral organs. Morphological characteristics of the dwarf mutant showed dramatic modifications in internal structure and external morphology. We propose that dwarfism in this mutant is caused by a point mutation in OsKS2, which plays a significant role in growth and development of higher plants. Further investigation on OsKS2 and other OsKS-like proteins is underway and may yield better understanding of the putative role of OsKS in severe dwarf mutants. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Recombinant Marburg viruses containing mutations in the IID region of VP35 prevent inhibition of Host immune responses.

    Science.gov (United States)

    Albariño, César G; Wiggleton Guerrero, Lisa; Spengler, Jessica R; Uebelhoer, Luke S; Chakrabarti, Ayan K; Nichol, Stuart T; Towner, Jonathan S

    2015-02-01

    Previous in vitro studies have demonstrated that Ebola and Marburg virus (EBOV and MARV) VP35 antagonize the host cell immune response. Moreover, specific mutations in the IFN inhibitory domain (IID) of EBOV and MARV VP35 that abrogate their interaction with virus-derived dsRNA, lack the ability to inhibit the host immune response. To investigate the role of MARV VP35 in the context of infectious virus, we used our reverse genetics system to generate two recombinant MARVs carrying specific mutations in the IID region of VP35. Our data show that wild-type and mutant viruses grow to similar titers in interferon deficient cells, but exhibit attenuated growth in interferon-competent cells. Furthermore, in contrast to wild-type virus, both MARV mutants were unable to inhibit expression of various antiviral genes. The MARV VP35 mutants exhibit similar phenotypes to those previously described for EBOV, suggesting the existence of a shared immune-modulatory strategy between filoviruses. Published by Elsevier Inc.

  16. Influence of the Leader protein coding region of foot-and-mouth disease virus on virus replication

    DEFF Research Database (Denmark)

    Belsham, Graham

    2013-01-01

    The foot-and-mouth disease virus (FMDV) Leader (L) protein is produced in two forms, Lab and Lb, differing only at their amino-termini, due to the use of separate initiation codons, usually 84 nt apart. It has been shown previously, and confirmed here, that precise deletion of the Lab coding......, in the context of the virus lacking the Lb coding region, was also tolerated by the virus within BHK cells. However, precise loss of the Lb coding sequence alone blocked FMDV replication in primary bovine thyroid cells. Thus, the requirement for the Leader protein coding sequences is highly dependent...... on the nature and extent of the residual Leader protein sequences and on the host cell system used. FMDVs precisely lacking Lb and with the Lab initiation codon modified may represent safer seed viruses for vaccine production....

  17. Gene expression patterns of chicken neuregulin 3 in association with copy number variation and frameshift deletion.

    Science.gov (United States)

    Abe, Hideaki; Aoya, Daiki; Takeuchi, Hiro-Aki; Inoue-Murayama, Miho

    2017-07-21

    Neuregulin 3 (NRG3) plays a key role in central nervous system development and is a strong candidate for human mental disorders. Thus, genetic variation in NRG3 may have some impact on a variety of phenotypes in non-mammalian vertebrates. Recently, genome-wide screening for short insertions and deletions in chicken (Gallus gallus) genomes has provided useful information about structural variation in functionally important genes. NRG3 is one such gene that has a putative frameshift deletion in exon 2, resulting in premature termination of translation. Our aims were to characterize the structure of chicken NRG3 and to compare expression patterns between NRG3 isoforms. Depending on the presence or absence of the 2-bp deletion in chicken NRG3, 3 breeds (red junglefowl [RJF], Boris Brown [BB], and Hinai-jidori [HJ]) were genotyped using flanking primers. In the commercial breeds (BB and HJ), approximately 45% of individuals had at least one exon 2 allele with the 2-bp deletion, whereas there was no deletion allele in RJF. The lack of a homozygous mutant indicated the existence of duplicated NRG3 segments in the chicken genome. Indeed, highly conserved elements consisting of exon 1, intron 1, exon 2, and part of intron 2 were found in the reference RJF genome, and quantitative PCR detected copy number variation (CNV) between breeds as well as between individuals. The copy number of conserved elements was significantly higher in chicks harboring the 2-bp deletion in exon 2. We identified 7 novel transcript variants using total mRNA isolated from the amygdala. Novel isoforms were found to lack the exon 2 cassette, which probably harbored the premature termination codon. The relative transcription levels of the newly identified isoforms were almost the same between chick groups with and without the 2-bp deletion, while chicks with the deletion showed significant suppression of the expression of previously reported isoforms. A putative frameshift deletion and CNV in chicken

  18. Angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism is not a risk factor for hypertension in SLE nephritis.

    Science.gov (United States)

    Negi, Vir S; Devaraju, Panneer; Gulati, Reena

    2015-09-01

    SLE is a systemic autoimmune disease with high prevalence of hypertension. Around 40-75 % of SLE patients develop nephritis, a major cause of hypertension and mortality. Angiotensin-converting enzyme (ACE) maintains the blood pressure and blood volume homeostasis. An insertion/deletion (I/D) polymorphism in intron 16 of ACE gene was reported to influence the development of hypertension, nephritis, and cardiovascular diseases in different ethnic populations. Despite compelling evidence for the high prevalence of hypertension in individuals with SLE, underlying factors for its development are not well studied. With this background, we analyzed the influence of ACE insertion/deletion polymorphism on susceptibility to SLE, development of nephritis and hypertension, other clinical features and autoantibody phenotype in South Indian SLE patients. Three hundred patients with SLE and 460 age and sex similar ethnicity matched individuals were included as patients and healthy controls, respectively. The ACE gene insertion/deletion polymorphism was analyzed by PCR. Insertion (I) and deletion (D) alleles were observed to be equally distributed among patients (57 and 43 %) and controls (59 and 41 %), respectively. The mutant (D) allele did not confer significant risk for SLE (II vs. ID: p = 0.4, OR 1.15, 95 % CI 0.8-1.6; II vs. DD: p = 0.34, OR 1.22, 95 % CI 0.8-1.85). There was no association of the ACE genotype or the allele with development of lupus nephritis (II vs. ID: p = 0.19, OR 1.41, 95 % CI 0.84-2.36; II vs. DD: p = 0.41, OR 0.74, 95 % CI 0.38-1.41) or hypertension (II vs. ID: p = 0.85, OR 0.9, 95 % CI 0.43-1.8; II vs. DD: p = 0.66, OR 1.217, 95 % CI 0.5-2.8). The presence of mutant allele (D) was not found to influence any clinical features or autoantibody phenotype. The insertion/deletion polymorphism of the ACE gene is not a genetic risk factor for SLE and does not influence development of hypertension or lupus nephritis in South Indian

  19. Importance of the short cytoplasmic domain of the feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions

    International Nuclear Information System (INIS)

    Celma, Cristina C.P.; Paladino, Monica G.; Gonzalez, Silvia A.; Affranchino, Jose L.

    2007-01-01

    The mature form of the envelope (Env) glycoprotein of lentiviruses is a heterodimer composed of the surface (SU) and transmembrane (TM) subunits. Feline immunodeficiency virus (FIV) possesses a TM glycoprotein with a cytoplasmic tail of approximately 53 amino acids which is unusually short compared with that of the other lentiviral glycoproteins (more than 100 residues). To investigate the relevance of the FIV TM cytoplasmic domain to Env-mediated viral functions, we characterized the biological properties of a series of Env glycoproteins progressively shortened from the carboxyl terminus. All the mutant Env proteins were efficiently expressed in feline cells and processed into the SU and TM subunits. Deletion of 5 or 11 amino acids from the TM C-terminus did not significantly affect Env surface expression, fusogenic activity or Env incorporation into virions, whereas removal of 17 or 23 residues impaired Env-mediated cell-to-cell fusion. Further truncation of the FIV TM by 29 residues resulted in an Env glycoprotein that was poorly expressed at the cell surface, exhibited only 20% of the wild-type Env fusogenic capacity and was inefficiently incorporated into virions. Remarkably, deletion of the TM C-terminal 35 or 41 amino acids restored or even enhanced Env biological functions. Indeed, these mutant Env glycoproteins bearing cytoplasmic domains of 18 or 12 amino acids were found to be significantly more fusogenic than the wild-type Env and were efficiently incorporated into virions. Interestingly, truncation of the TM cytoplasmic domain to only 6 amino acids did not affect Env incorporation into virions but abrogated Env fusogenicity. Finally, removal of the entire TM cytoplasmic tail or deletion of as many as 6 amino acids into the membrane-spanning domain led to a complete loss of Env functions. Our results demonstrate that despite its relatively short length, the FIV TM cytoplasmic domain plays an important role in modulating Env-mediated viral functions

  20. The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication.

    Directory of Open Access Journals (Sweden)

    Patricia Resa-Infante

    Full Text Available The influenza virus polymerase is formed by the PB1, PB2 and PA subunits and is required for virus transcription and replication in the nucleus of infected cells. As PB2 is a relevant host-range determinant we expressed a TAP-tagged PB2 in human cells and isolated intracellular complexes. Alpha-importin was identified as a PB2-associated factor by proteomic analyses. To study the relevance of this interaction for virus replication we mutated the PB2 NLS and analysed the phenotype of mutant subunits, polymerase complexes and RNPs. While mutant PB2 proteins showed reduced nuclear accumulation, they formed polymerase complexes normally when co expressed with PB1 and PA. However, mutant RNPs generated with a viral CAT replicon showed up to hundred-fold reduced CAT accumulation. Rescue of nuclear localisation of mutant PB2 by insertion of an additional SV40 TAg-derived NLS did not revert the mutant phenotype of RNPs. Furthermore, determination of recombinant RNP accumulation in vivo indicated that PB2 NLS mutations drastically reduced virus RNA replication. These results indicate that, above and beyond its role in nuclear accumulation, PB2 interaction with alpha-importins is required for virus RNA replication. To ascertain whether PB2-alpha-importin binding could contribute to the adaptation of H5N1 avian viruses to man, their association in vivo was determined. Human alpha importin isoforms associated efficiently to PB2 protein of an H3N2 human virus but bound to diminished and variable extents to PB2 from H5N1 avian or human strains, suggesting that the function of alpha importin during RNA replication is important for the adaptation of avian viruses to the human host.

  1. Construction of an Unmarked Zymomonas mobilis Mutant Using a Site-Specific FLP Recombinase

    Directory of Open Access Journals (Sweden)

    Shao-Lan Zou

    2012-01-01

    Full Text Available Flippase expression was carried out in Zymomonas mobilis strain ZM4. The FRT-flanked selection marker gene was first integrated into the ZM4 chromosome by homologous recombination. The Saccharomyces cerevisiae flp gene was then introduced under the control of the ZM4 gap gene promoter (Pgap, encoding glyceraldehyde-3-phosphate dehydrogenase or the λ bacteriophage cI857-pR contained in the broad-host-range cloning vector pBBR1-MCS-2. This study demonstrated that flp was expressed and that the deletion frequency of the FRT-flanked marker gene was very high (approx. 100 %. In addition, the flp gene expression vector could be conveniently removed from the resulting unmarked Z. mobilis mutants by serially transferring the cells three times into antibiotic-free medium, thereby establishing an efficient method for constructing unmarked Z. mobilis mutants.

  2. Development of a Hepatitis B Virus Reporter System to Monitor the Early Stages of the Replication Cycle.

    Science.gov (United States)

    Nishitsuji, Hironori; Yamamoto, Hiromi; Shiina, Ritsuko; Harada, Keisuke; Ujino, Saneyuki; Shimotohno, Kunitada

    2017-02-01

    Currently, it is possible to construct recombinant forms of various viruses, such as human immunodeficiency virus 1 (HIV-1) and hepatitis C virus (HCV), that carry foreign genes such as a reporter or marker protein in their genomes. These recombinant viruses usually faithfully mimic the life cycle of the original virus in infected cells and exhibit the same host range dependence. The development of a recombinant virus enables the efficient screening of inhibitors and the identification of specific host factors. However, to date the construction of recombinant hepatitis B virus (HBV) has been difficult because of various experimental limitations. The main limitation is the compact genome size of HBV, and a fairly strict genome size that does not exceed 1.3 genome sizes, that must be packaged into virions. Thus, the size of a foreign gene to be inserted should be smaller than 0.4 kb if no deletion of the genome DNA is to be performed. Therefore, to overcome this size limitation, the deletion of some HBV DNA is required. Here, we report the construction of recombinant HBV encoding a reporter gene to monitor the early stage of the HBV replication cycle by replacing part of the HBV core-coding region with the reporter gene by deleting part of the HBV pol coding region. Detection of recombinant HBV infection, monitored by the reporter activity, was highly sensitive and less expensive than detection using the currently available conventional methods to evaluate HBV infection. This system will be useful for a number of applications including high-throughput screening for the identification of anti-HBV inhibitors, host factors and virus-susceptible cells.

  3. Mechanisms responsible for imipenem resistance among Pseudomonas aeruginosa clinical isolates exposed to imipenem concentrations within the mutant selection window.

    Science.gov (United States)

    Vassilara, Foula; Galani, Irene; Souli, Maria; Papanikolaou, Konstantinos; Giamarellou, Helen; Papadopoulos, Antonios

    2017-07-01

    The aim of this study was to determine the propensities of imipenem to select for resistant Pseudomonas aeruginosa mutants by determining the mutant prevention concentrations (MPCs) for 9 unrelated clinical isolates and the accession of any relationship with mechanisms of resistance development. The MPC/MIC ratios ranged from 4 to 16. Detection of resistance mechanisms in the mutant derivatives of the nine isolates mainly revealed inactivating mutations in the gene coding for outer membrane protein OprD. Point mutations leading to premature stop codons or amino acid substitution S278P, ≥1bp deletion leading to frameshift mutations and interruption of the oprD by an insertion sequence, were observed. MPC and mutant selection window (MSW) are unique parameters that may guide the implementation of antimicrobial treatment, providing useful information about the necessary imipenem concentration needed in the infection area, in order to avoid the emergence of resistance, especially in clinical situations with high bacterial load. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [Construction and characterization of enterohemorrhagic Escherichia coli O157:H7 ppk- deleted strain].

    Science.gov (United States)

    Han, Peng; Sun, Qi; Zhao, Suhui; Zhang, Qiwei; Wan, Chengsong

    2014-06-01

    To construct enterohemorrhagic Escherichia coli (EHEC) O157: H7 ppk gene deletion strains and study its biological characteristics. The gene fragment of kanamycin resistance was amplified using a pair of homologous arm primers whose 5' and 3' ends were homologous with ppk gene and kanamycin resistance gene, respectively. EHEC O157: H7 EDL933w competent strains were prepared and transformed via electroporation with the amplification products. The ppk gene was replaced by kanamycin resistance gene using pKD46-mediated Red recombination system. The recombinant strain was confirmed by PCR and sequencing, and its morphology, growth ability and adhesion were assessed using Gram staining, OD600 value and Giemsa staining. We established a ppk-deleted EHEC O157:H7 EDL933w strain with kanamycin resistance and compared the biological characteristics of the wild-type and mutant strains, which may facilitate further study of the regulatory mechanism of ppk gene.

  5. Phosphoribosyl diphosphate synthetase-independent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1996-01-01

    Phosphoribosyl diphosphate-lacking (Δprs) mutant strains of Escherichia coli require NAD, guanosine, uridine, histidine, and tryptophan for growth. NAD is required by phosphoribosyl diphosphate-lacking mutants because of lack of one of the substrates for the quinolinate phosphoribosyltransferase...... reaction, an enzyme of the NAD de novo pathway. Several NAD-independent mutants of a host from which prs had been deleted were isolated; all of them were shown to have lesions in the pstSCAB-phoU operon, in which mutations lead to derepression of the Pho regulon. In addition NAD-independent growth...... was dependent on a functional quinolinate phosphoribosyltransferase. The prs suppressor mutations led to the synthesis of a new phosphoryl compound that may act as a precursor for a new NAD biosynthetic pathway. This compound may be synthesized by the product of an unknown phosphate starvation-inducible gene...

  6. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1

    International Nuclear Information System (INIS)

    Jin Qingwen; Agrawal, Lokesh; VanHorn-Ali, Zainab; Alkhatib, Ghalib

    2006-01-01

    The human glucose transporter protein 1 (GLUT-1) functions as a receptor for human T cell leukemia virus (HTLV). GLUT-1 is a twelve-transmembrane cell surface receptor with six extracellular (ECL) and seven intracellular domains. To analyze HTLV-1 cytotropism, we utilized polyclonal antibodies to a synthetic peptide corresponding to the large extracellular domain of GLUT-1. The antibodies caused significant blocking of envelope (Env)-mediated fusion and pseudotyped virus infection of HeLa cells but had no significant effect on infection of U87 cells. This differential effect correlated with the detection of high-level surface expression of GLUT-1 on HeLa cells and very weak staining of U87 cells. To investigate this in terms of viral cytotropism, we cloned GLUT-1 cDNA from U87 cells and isolated two different versions of cDNA clones: the wild-type sequence (encoding 492 residues) and a mutant cDNA with a 5-base pair deletion (GLUT-1Δ5) between nucleotides 1329 and 1333. The deletion, also detected in genomic DNA, resulted in a frame-shift and premature termination producing a truncated protein of 463 residues. Transfection of the wild-type GLUT-1 but not GLUT-1Δ5 cDNA into CHO cells resulted in efficient surface expression of the human GLUT-1. Co-expression of GLUT-1 with GLUT-1Δ5 produces a trans-inhibition by GLUT-1Δ5 of GLUT-1-mediated HTLV-1 envelope (Env)-mediated fusion. Co-immunoprecipitation experiments demonstrated physical interaction of the wild-type and mutant proteins. Northern blot and RT-PCR analyses demonstrated lower GLUT-1 RNA expression in U87 cells. We propose two mechanisms to account for the impaired cell surface expression of GLUT-1 on U87 cells: low GLUT-1 RNA expression and the formation of GLUT-1/GLUT-1Δ5 heterodimers that are retained intracellularly. Significant RNAi-mediated reduction of endogenous GLUT-1 expression impaired HTLV-1 Env-mediated fusion with HeLa cells but not with U87 cells. We propose a GLUT-1-independent mechanism

  7. Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation.

    Science.gov (United States)

    Mostafa, Heba H; Thompson, Thornton W; Konen, Adam J; Haenchen, Steve D; Hilliard, Joshua G; Macdonald, Stuart J; Morrison, Lynda A; Davido, David J

    2018-04-01

    In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39 , which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo , we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39 mut ), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection. IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in

  8. Identification of Poxvirus Genome Uncoating and DNA Replication Factors with Mutually Redundant Roles.

    Science.gov (United States)

    Liu, Baoming; Panda, Debasis; Mendez-Rios, Jorge D; Ganesan, Sundar; Wyatt, Linda S; Moss, Bernard

    2018-04-01

    Genome uncoating is essential for replication of most viruses. For poxviruses, the process is divided into two stages: removal of the envelope, allowing early gene expression, and breaching of the core wall, allowing DNA release, replication, and late gene expression. Subsequent studies showed that the host proteasome and the viral D5 protein, which has an essential role in DNA replication, are required for vaccinia virus (VACV) genome uncoating. In a search for additional VACV uncoating proteins, we noted a report that described a defect in DNA replication and late expression when the gene encoding a 68-kDa ankyrin repeat/F-box protein (68k-ank), associated with the cellular SCF (Skp1, cullin1, F-box-containing complex) ubiquitin ligase complex, was deleted from the attenuated modified vaccinia virus Ankara (MVA). Here we showed that the 68k-ank deletion mutant exhibited diminished genome uncoating, formation of DNA prereplication sites, and degradation of viral cores as well as an additional, independent defect in DNA synthesis. Deletion of the 68k-ank homolog of VACV strain WR, however, was without effect, suggesting the existence of compensating genes. By inserting VACV genes into an MVA 68k-ank deletion mutant, we discovered that M2, a member of the poxvirus immune evasion (PIE) domain superfamily and a regulator of NF-κB, and C5, a member of the BTB/Kelch superfamily associated with cullin-3-based ligase complexes, independently rescued the 68k-ank deletion phenotype. Thus, poxvirus uncoating and DNA replication are intertwined processes involving at least three viral proteins with mutually redundant functions in addition to D5. IMPORTANCE Poxviruses comprise a family of large DNA viruses that infect vertebrates and invertebrates and cause diseases of medical and zoological importance. Poxviruses, unlike most other DNA viruses, replicate in the cytoplasm, and their large genomes usually encode 200 or more proteins with diverse functions. About 90 genes may

  9. The N-terminus of Bunyamwera orthobunyavirus NSs protein is essential for interferon antagonism.

    Science.gov (United States)

    van Knippenberg, Ingeborg; Carlton-Smith, Charlie; Elliott, Richard M

    2010-08-01

    Bunyamwera virus NSs protein is involved in the inhibition of cellular transcription and the interferon (IFN) response, and it interacts with the Med8 component of Mediator. A spontaneous mutant of a recombinant NSs-deleted Bunyamwera virus (rBUNdelNSs2) was identified and characterized. This mutant virus, termed mBUNNSs22, expresses a 21 aa N-terminally truncated form of NSs. Like rBUNdelNSs2, mBUNNSs22 is attenuated in IFN-deficient cells, and to a greater extent in IFN-competent cells. Both rBUNdelNSs2 and mBUNNSs22 are potent IFN inducers and their growth can be rescued by depleting cellular IRF3. Strikingly, despite encoding an NSs protein that contains the Med8 interaction domain, mBUNNSs22 fails to block RNA polymerase II activity during infection. Overall, our data suggest that both the interaction of NSs with Med8 and a novel unidentified function of the NSs N-terminus, seem necessary for Bunyamwera virus to counteract host antiviral responses.

  10. The fate of deleted DNA produced during programmed genomic deletion events in Tetrahymena thermophila.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    1994-01-01

    Thousands of DNA deletion events occur during macronuclear development in the ciliate Tetrahymena thermophila. In two deleted genomic regions, designated M and R, the eliminated sequences form circles that can be detected by PCR. However, the circles are not normal products of the reaction pathway. The circular forms occur at very low levels in conjugating cells, but are stable. Sequencing analysis showed that many of the circles (as many as 50% of those examined) reflected a precise deletion in the M and R regions. The remaining circles were either smaller or larger and contained varying lengths of sequences derived from the chromosomal DNA surrounding the eliminated region. The chromosomal junctions left behind after deletion were more precise, although deletions in either the M or R regions can generate any of several alternative junctions (1). Some new chromosomal junctions were detected in the present study. The results suggest that the deleted segment is released as a linear DNA species that is degraded rapidly. The species is only rarely converted to the stable circles we detect. The deletion mechanism is different from those proposed for deletion events in hypotrichous ciliates (2-4), and does not reflect a conservative site-specific recombination process such as that promoted by the bacteriophage lambda integrase (5). Images PMID:7838724

  11. Systematic Identification of Determinants for Single-Strand Annealing-Mediated Deletion Formation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maia Segura-Wang

    2017-10-01

    Full Text Available To ensure genomic integrity, living organisms have evolved diverse molecular processes for sensing and repairing damaged DNA. If improperly repaired, DNA damage can give rise to different types of mutations, an important class of which are genomic structural variants (SVs. In spite of their importance for phenotypic variation and genome evolution, potential contributors to SV formation in Saccharomyces cerevisiae (budding yeast, a highly tractable model organism, are not fully recognized. Here, we developed and applied a genome-wide assay to identify yeast gene knockout mutants associated with de novo deletion formation, in particular single-strand annealing (SSA-mediated deletion formation, in a systematic manner. In addition to genes previously linked to genome instability, our approach implicates novel genes involved in chromatin remodeling and meiosis in affecting the rate of SSA-mediated deletion formation in the presence or absence of stress conditions induced by DNA-damaging agents. We closely examined two candidate genes, the chromatin remodeling gene IOC4 and the meiosis-related gene MSH4, which when knocked-out resulted in gene expression alterations affecting genes involved in cell division and chromosome organization, as well as DNA repair and recombination, respectively. Our high-throughput approach facilitates the systematic identification of processes linked to the formation of a major class of genetic variation.

  12. Restoration of glycoprotein Erns dimerization via pseudoreversion partially restores virulence of classical swine fever virus.

    Science.gov (United States)

    Tucakov, Anna Katharina; Yavuz, Sabine; Schürmann, Eva-Maria; Mischler, Manjula; Klingebeil, Anne; Meyers, Gregor

    2018-01-01

    The classical swine fever virus (CSFV) represents one of the most important pathogens of swine. The CSFV glycoprotein E rns is an essential structural protein and an important virulence factor. The latter is dependent on the RNase activity of this envelope protein and, most likely, its secretion from the infected cell. A further important feature with regard to its function as a virulence factor is the formation of disulfide-linked E rns homodimers that are found in virus-infected cells and virions. Mutant CSFV lacking cysteine (Cys) 171, the residue responsible for intermolecular disulfide bond formation, were found to be attenuated in pigs (Tews BA, Schürmann EM, Meyers G. J Virol 2009;83:4823-4834). In the course of an animal experiment with such a dimerization-negative CSFV mutant, viruses were reisolated from pigs that contained a mutation of serine (Ser) 209 to Cys. This mutation restored the ability to form disulphide-linked E rns homodimers. In transient expression studies E rns mutants carrying the S209C change were found to form homodimers with about wt efficiency. Also the secretion level of the mutated proteins was equivalent to that of wt E rns . Virus mutants containing the Cys171Ser/Ser209Cys configuration exhibited wt growth rates and increased virulence when compared with the Cys171Ser mutant. These results provide further support for the connection between CSFV virulence and E rns dimerization.

  13. The L-L oligomerization domain resides at the very N-terminus of the sendai virus L RNA polymerase protein

    International Nuclear Information System (INIS)

    Cevik, Bayram; Smallwood, Sherin; Moyer, Sue A.

    2003-01-01

    The Sendai virus RNA-dependent RNA polymerase is composed of the L and P proteins. We previously showed that the L protein gives intragenic complementation and forms an oligomer where the L-L interaction site mapped to the N-terminal half of the protein (S. Smallwood et al., 2002, Virology, 00, 000-000). We now show that L oligomerization does not depend on P protein and progressively smaller N-terminal fragments of L from amino acids (aa) 1-1146 through aa 1-174 all bind wild-type L. C-terminal truncations up to aa 424, which bind L, can complement the transcription defect in an L mutant altered at aa 379, although these L truncation mutants do not bind P. The fragment of L comprising aa 1-895, furthermore, acts as a dominant-negative mutant to inhibit transcription of wild-type L. N-terminal deletions of aa 1-189 and aa 1-734 have lost the ability to form the L-L complex as well as the L-P complex, although they still bind C protein. These data are consistent with the L-L interaction site residing in aa 1-174. Site-directed mutations in the N-terminal 347 aa, of L which abolish P binding, do not affect L-L complex formation, so while the L and P binding sites on L are overlapping they are mediated by different amino acids. The N-terminal portions of L with aa 1-424, aa 1-381, and to a lesser extent aa 1-174, can complement the transcription defect in an L mutant altered at aa 77-81, showing their L-L interaction is functional

  14. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: Strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation.

    Science.gov (United States)

    Nakamura, Hidetoshi; Katayama, Takuya; Okabe, Tomoya; Iwashita, Kazuhiro; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi

    2017-07-11

    Numerous strains of Aspergillus oryzae are industrially used for Japanese traditional fermentation and for the production of enzymes and heterologous proteins. In A. oryzae, deletion of the ku70 or ligD genes involved in non-homologous end joining (NHEJ) has allowed high gene targeting efficiency. However, this strategy has been mainly applied under the genetic background of the A. oryzae wild strain RIB40, and it would be laborious to delete the NHEJ genes in many A. oryzae industrial strains, probably due to their low gene targeting efficiency. In the present study, we generated ligD mutants from the A. oryzae industrial strains by employing the CRISPR/Cas9 system, which we previously developed as a genome editing method. Uridine/uracil auxotrophic strains were generated by deletion of the pyrG gene, which was subsequently used as a selective marker. We examined the gene targeting efficiency with the ecdR gene, of which deletion was reported to induce sclerotia formation under the genetic background of the strain RIB40. As expected, the deletion efficiencies were high, around 60~80%, in the ligD mutants of industrial strains. Intriguingly, the effects of the ecdR deletion on sclerotia formation varied depending on the strains, and we found sclerotia-like structures under the background of the industrial strains, which have never been reported to form sclerotia. The present study demonstrates that introducing ligD mutation by genome editing is an effective method allowing high gene targeting efficiency in A. oryzae industrial strains.

  15. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12.

    Science.gov (United States)

    Oshima, Taku; Aiba, Hirofumi; Masuda, Yasushi; Kanaya, Shigehiko; Sugiura, Masahito; Wanner, Barry L; Mori, Hirotada; Mizuno, Takeshi

    2002-10-01

    We have systematically examined the mRNA profiles of 36 two-component deletion mutants, which include all two-component regulatory systems of Escherichia coli, under a single growth condition. DNA microarray results revealed that the mutants belong to one of three groups based on their gene expression profiles in Luria-Bertani broth under aerobic conditions: (i) those with no or little change; (ii) those with significant changes; and (iii) those with drastic changes. Under these conditions, the anaeroresponsive ArcB/ArcA system, the osmoresponsive EnvZ/OmpR system and the response regulator UvrY showed the most drastic changes. Cellular functions such as flagellar synthesis and expression of the RpoS regulon were affected by multiple two-component systems. A high correlation coefficient of expression profile was found between several two-component mutants. Together, these results support the view that a network of functional interactions, such as cross-regulation, exists between different two-component systems. The compiled data are avail-able at our website (http://ecoli.aist-nara.ac.jp/xp_analysis/ 2_components).

  16. Role of the vaccinia virus O3 protein in cell entry can be fulfilled by its Sequence flexible transmembrane domain

    Energy Technology Data Exchange (ETDEWEB)

    Satheshkumar, P.S.; Chavre, James; Moss, Bernard, E-mail: bmoss@nih.gov

    2013-09-15

    The vaccinia virus O3 protein, a component of the entry–fusion complex, is encoded by all chordopoxviruses. We constructed truncation mutants and demonstrated that the transmembrane domain, which comprises two-thirds of this 35 amino acid protein, is necessary and sufficient for interaction with the entry–fusion complex and function in cell entry. Nevertheless, neither single amino acid substitutions nor alanine scanning mutagenesis revealed essential amino acids within the transmembrane domain. Moreover, replication-competent mutant viruses were generated by randomization of 10 amino acids of the transmembrane domain. Of eight unique viruses, two contained only two amino acids in common with wild type and the remainder contained one or none within the randomized sequence. Although these mutant viruses formed normal size plaques, the entry–fusion complex did not co-purify with the mutant O3 proteins suggesting a less stable interaction. Thus, despite low specific sequence requirements, the transmembrane domain is sufficient for function in entry. - Highlights: • The 35 amino acid O3 protein is required for efficient vaccinia virus entry. • The transmembrane domain of O3 is necessary and sufficient for entry. • Mutagenesis demonstrated extreme sequence flexibility compatible with function.

  17. Characterization of PUD-1 and PUD-2, two proteins up-regulated in a long-lived daf-2 mutant.

    Science.gov (United States)

    Ding, Yue-He; Du, Yun-Guang; Luo, Shukun; Li, Yu-Xin; Li, Tie-Mei; Yoshina, Sawako; Wang, Xing; Klage, Karsten; Mitani, Shohei; Ye, Keqiong; Dong, Meng-Qiu

    2013-01-01

    C. elegans PUD-1 and PUD-2, two proteins up-regulated in daf-2(loss-of-function) (PUD), are homologous 17-kD proteins with a large abundance increase in long-lived daf-2 mutant animals of reduced insulin signaling. In this study, we show that both PUD-1 and PUD-2 are abundantly expressed in the intestine and hypodermis, and form a heterodimer. We have solved their crystal structure to 1.9-Å resolution and found that both proteins adopt similar β-sandwich folds in the V-shaped dimer. In contrast, their homologs PUD-3, PUD-4, PUDL-1 and PUDL-2 are all monomeric proteins with distinct expression patterns in C. elegans. Thus, the PUD-1/PUD-2 heterodimer probably has a function distinct from their family members. Neither overexpression nor deletion of pud-1 and pud-2 affected the lifespan of WT or daf-2 mutant animals, suggesting that their induction in daf-2 worms does not contribute to longevity. Curiously, deletion of pud-1 and pud-2 was associated with a protective effect against paralysis induced by the amyloid β-peptide (1-42), which further enhanced the protection conferred by daf-2(RNAi) against Aβ.

  18. Detection of rainbow trout antibodies against viral haemorrhagic septicaemia virus (VHSV) by neutralisation test is highly dependent on the virus isolate used

    DEFF Research Database (Denmark)

    Fregeneda-Grandes, J.M.; Olesen, Niels Jørgen

    2007-01-01

    with VHS but with no clinical signs of infection. When the sera were examined by 50%PNT using the VHSV reference isolate DK-F1 or the heat attenuated DK-F25 mutant strain, no neutralizing antibodies were found. In contrast, when one of the virus isolates from the farm (homologous virus) was used in the 50...

  19. Detecting exact breakpoints of deletions with diversity in hepatitis B viral genomic DNA from next-generation sequencing data.

    Science.gov (United States)

    Cheng, Ji-Hong; Liu, Wen-Chun; Chang, Ting-Tsung; Hsieh, Sun-Yuan; Tseng, Vincent S

    2017-10-01

    Many studies have suggested that deletions of Hepatitis B Viral (HBV) are associated with the development of progressive liver diseases, even ultimately resulting in hepatocellular carcinoma (HCC). Among the methods for detecting deletions from next-generation sequencing (NGS) data, few methods considered the characteristics of virus, such as high evolution rates and high divergence among the different HBV genomes. Sequencing high divergence HBV genome sequences using the NGS technology outputs millions of reads. Thus, detecting exact breakpoints of deletions from these big and complex data incurs very high computational cost. We proposed a novel analytical method named VirDelect (Virus Deletion Detect), which uses split read alignment base to detect exact breakpoint and diversity variable to consider high divergence in single-end reads data, such that the computational cost can be reduced without losing accuracy. We use four simulated reads datasets and two real pair-end reads datasets of HBV genome sequence to verify VirDelect accuracy by score functions. The experimental results show that VirDelect outperforms the state-of-the-art method Pindel in terms of accuracy score for all simulated datasets and VirDelect had only two base errors even in real datasets. VirDelect is also shown to deliver high accuracy in analyzing the single-end read data as well as pair-end data. VirDelect can serve as an effective and efficient bioinformatics tool for physiologists with high accuracy and efficient performance and applicable to further analysis with characteristics similar to HBV on genome length and high divergence. The software program of VirDelect can be downloaded at https://sourceforge.net/projects/virdelect/. Copyright © 2017. Published by Elsevier Inc.

  20. Hypervariable region 1 differentially impacts viability of hepatitis C virus strains of genotypes 1 to 6 and impairs virus neutralization

    DEFF Research Database (Denmark)

    Prentoe, Jannick; Jensen, Tanja B; Meuleman, Philip

    2011-01-01

    Hypervariable region 1 (HVR1) of hepatitis C virus (HCV) E2 envelope glycoprotein has been implicated in virus neutralization and persistence. We deleted HVR1 from JFH1-based HCV recombinants expressing Core/E1/E2/p7/NS2 of genotypes 1 to 6, previously found to grow efficiently in human hepatoma...... genetics studies revealed adaptive envelope mutations that rescued the infectivity of 1a(ΔHVR1), 1b(ΔHVR1), 2b(ΔHVR1), and 3a(ΔHVR1) recombinants. Thus, HVR1 might have distinct functional roles for different HCV isolates. Ultracentrifugation studies showed that deletion of HVR1 did not alter HCV RNA...... density distribution, whereas infectious particle density changed from a range of 1.0 to 1.1 g/ml to a single peak at ∼1.1 g/ml, suggesting that HVR1 was critical for low-density HCV particle infectivity. Using chronic-phase HCV patient sera, we found three distinct neutralization profiles...

  1. Hypervariable region 1 differentially impacts viability of hepatitis C virus strains of genotypes 1 to 6 and impairs virus neutralization

    DEFF Research Database (Denmark)

    Prentø, Jannick Cornelius; Jensen, Tanja Bertelsen; Meuleman, Philip

    2011-01-01

    Hypervariable region 1 (HVR1) of hepatitis C virus (HCV) E2 envelope glycoprotein has been implicated in virus neutralization and persistence. We deleted HVR1 from JFH1-based HCV recombinants expressing Core/E1/E2/p7/NS2 of genotypes 1 to 6, previously found to grow efficiently in human hepatoma...... genetics studies revealed adaptive envelope mutations that rescued the infectivity of 1a(¿HVR1), 1b(¿HVR1), 2b(¿HVR1), and 3a(¿HVR1) recombinants. Thus, HVR1 might have distinct functional roles for different HCV isolates. Ultracentrifugation studies showed that deletion of HVR1 did not alter HCV RNA...... density distribution, whereas infectious particle density changed from a range of 1.0 to 1.1 g/ml to a single peak at ~1.1 g/ml, suggesting that HVR1 was critical for low-density HCV particle infectivity. Using chronic-phase HCV patient sera, we found three distinct neutralization profiles...

  2. Maize rayado fino virus virus-like particles expressed in tobacco plants: A new platform for cysteine selective bioconjugation peptide display.

    Science.gov (United States)

    Natilla, Angela; Hammond, Rosemarie W

    2011-12-01

    Maize rayado fino virus (MRFV) virus-like-particles (VLPs) produced in tobacco plants were examined for their ability to serve as a novel platform to which a variety of peptides can be covalently displayed when expressed through a Potato virus X (PVX)-based vector. To provide an anchor for chemical modifications, three Cys-MRFV-VLPs mutants were created by substituting several of the amino acids present on the shell of the wild-type MRFV-VLPs with cysteine residues. The mutant designated Cys 2-VLPs exhibited, under native conditions, cysteine thiol reactivity in bioconjugation reactions with a fluorescent dye. In addition, this Cys 2-VLPs was cross-linked by NHS-PEG4-Maleimide to 17 (F) and 8 (HN) amino acid long peptides, corresponding to neutralizing epitopes of Newcastle disease virus (NDV). The resulting Cys 2-VLPs-F and Cys 2-VLPs-HN were recognized in Western blots by antibodies to MRFV as well as to F and HN. The results demonstrated that plant-produced MRFV-VLPs have the ability to function as a novel platform for the multivalent display of surface ligands. Published by Elsevier B.V.

  3. Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome.

    Science.gov (United States)

    Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter

    2016-03-01

    Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of

  4. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    Science.gov (United States)

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F. M.; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates for the enzymatic reaction. In this study, susceptibility of HIV mutations to drugs was evaluated by selective formation of three FL products after the enzymatic HIV-PR reaction. This proof-of-concept study indicates that the present HPLC-FL method could be an alternative to current phenotypic assays for the evaluation of HIV drug resistance. PMID:25988960

  5. Two novel partial deletions of LDL-receptor gene in Italian patients with familial hypercholesterolemia (FH Siracusa and FH Reggio Emilia).

    Science.gov (United States)

    Garuti, R; Lelli, N; Barozzini, M; Tiozzo, R; Ghisellini, M; Simone, M L; Li Volti, S; Garozzo, R; Mollica, F; Vergoni, W; Bertolini, S; Calandra, S

    1996-03-01

    In the present study we report two novel partial deletions of the LDL-R gene. The first (FH Siracusa), found in an FH-heterozygote, consists of a 20 kb deletion spanning from the 5' flanking region to the intron 2 of the LDL-receptor gene. The elimination of the promoter and the first two exons prevents the transcription of the deleted allele, as shown by Northern blot analysis of LDL-R mRNA isolated from the proband's fibroblasts. The second deletion (FH Reggio Emilia), which eliminates 11 nucleotides of exon 10, was also found in an FH heterozygote. The characterization of this deletion was made possible by a combination of techniques such as single strand conformation polymorphism (SSCP) analysis, direct sequence of exon 10 and cloning of the normal and deleted exon 10 from the proband's DNA. The 11 nt deletion occurs in a region of exon 10 which contains three triplets (CTG) and two four-nucleotides (CTGG) direct repeats. This structural feature might render this region more susceptible to a slipped mispairing during DNA duplication. Since this deletion causes a shift of the BamHI site at the 5' end of exon 10, a method has been devised for its rapid screening which is based on the PCR amplification of exon 10 followed by BamHI digestion. FH Reggio Emilia deletion produces a shift in the reading frame downstream from Lys458, leading to a sequence of 51 novel amino acids before the occurrence of a premature stop codon (truncated receptor). However, since RT-PCR failed to demonstrate the presence of the mutant LDL-R mRNA in proband fibroblasts, it is likely that the amount of truncated receptor produced in these cells is negligible.

  6. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams.

    Science.gov (United States)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-07-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar 'Sasanishiki') that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.

  7. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams

    International Nuclear Information System (INIS)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N.; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-01-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UVTolerantRice319), was isolated from a mutagenized population derived from 2500 M 1 seeds (of the UVB-resistant cultivar ‘Sasanishiki’) that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined

  8. Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast

    Directory of Open Access Journals (Sweden)

    Kozmin Stanislav G

    2005-06-01

    Full Text Available Abstract Background N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP and 2-amino-6-hydroxylaminopurine (AHA, are strong mutagens in various organisms due to their ambiguous base-pairing properties. The systems protecting cells from HAP and related noncanonical purines in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular systems protecting from AHA are unknown. In the present study, we performed a genome-wide search for genes whose deletions confer sensitivity to HAP and AHA in yeast. Results We screened the library of yeast deletion mutants for sensitivity to the toxic and mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization, and amino acid metabolism. Conclusion We developed a method for screening the yeast deletion library for sensitivity to the mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of protection from HAP. Three of them also protect from AHA.

  9. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Science.gov (United States)

    Epsztejn-Litman, Silvina; Cohen-Hadad, Yaara; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Levy-Lahad, Ephrat; Schonberger, Oshrat; Eldar-Geva, Talia; Zeligson, Sharon; Eiges, Rachel

    2015-01-01

    We report on the derivation of a diploid 46(XX) human embryonic stem cell (HESC) line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA) from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19), monitoring the expression of two parentally imprinted genes (SNRPN and H19) and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC) line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD) cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  10. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Directory of Open Access Journals (Sweden)

    Silvina Epsztejn-Litman

    Full Text Available We report on the derivation of a diploid 46(XX human embryonic stem cell (HESC line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19, monitoring the expression of two parentally imprinted genes (SNRPN and H19 and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  11. Partial deletion of chromosome 8 β-defensin cluster confers sperm dysfunction and infertility in male mice.

    Directory of Open Access Journals (Sweden)

    Yu S Zhou

    2013-10-01

    Full Text Available β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9 in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility.

  12. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  13. Bombyx mori nucleopolyhedrovirus ORF54, a viral desmoplakin gene, is associated with the infectivity of budded virions.

    Science.gov (United States)

    Zhang, Min-Juan; Tian, Cai-Hong; Fan, Xiao-Ying; Lou, Yi-Han; Cheng, Ruo-Lin; Zhang, Chuan-Xi

    2012-07-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) ORF54 (Bm54), a member of the viral desmoplakin N-terminus superfamily, is homologous to Autographa californica nucleopolyhedrovirus (AcMNPV) ORF66, which is required for the efficient egress of nucleocapsids from the nucleus and occlusion body formation. In this paper, we generated a bacmid with the Bm54 gene deleted via homologous recombination in Escherichia coli and characterized the mutant virus using a transfection-infection assay and transmission electron microscopy analysis. Our results demonstrated that the cells transfected with viral DNA lacking Bm54 produced non-infectious budded viruses (BVs). Electron microscopy showed that although the deletion of Bm54 did not affect assembly and release of nucleocapsids, it severely affected polyhedron formation. In conclusion, deletion of Bm54 resulted in non-infectious BV and defective polyhedra. Although the sequences of Bm54 and Ac66 are very similar, the two genes function quite differently in the regulation of viral life cycle.

  14. In Vivo Differences in the Virulence, Pathogenicity, and Induced Protective Immunity of wboA Mutants from Genetically Different Parent Brucella spp.

    Science.gov (United States)

    Wang, Zhen; Niu, Jianrui; Wang, Shuangshan

    2013-01-01

    To explore the effects of the genetic background on the characteristics of wboA gene deletion rough mutants generated from different parent Brucella sp. strains, we constructed the rough-mutant strains Brucella melitensis 16 M-MB6, B. abortus 2308-SB6, B. abortus S19-RB6, and B. melitensis NI-NB6 and evaluated their survival, pathogenicity, and induced protective immunity in mice and sheep. In mice, the survival times of the four mutants were very different in the virulence assay, from less than 6 weeks for B. abortus S19-RB6 to 11 weeks for B. abortus 2308-SB6 and B. melitensis NI-NB6. However, B. abortus S19-RB6 and B. melitensis 16 M-MB6, with a shorter survival time in mice, offered better protection against challenges with B. abortus 2308 in protection tests than B. abortus 2308-SB6 and B. melitensis NI-NB6. It seems that the induced protective immunity of each mutant might not be associated with its survival time in vivo. In the cross-protection assay, both B. melitensis 16 M-MB6 and B. abortus S19-RB6 induced greater protection against homologous challenges than heterologous challenges. When pregnant sheep were inoculated with B. abortus S19-RB6 and B. melitensis 16 M-MB6, B. abortus S19-RB6 did not induce abortion, whereas B. melitensis 16 M-MB6 did. These results demonstrated the differences in virulence, pathogenicity, and protective immunity in vivo in the wboA deletion mutants from genetically different parent Brucella spp. and also indicated that future rough vaccine strain development could be promising if suitable parent Brucella strains and/or genes were selected. PMID:23239800

  15. Cyclophilin A Levels Dictate Infection Efficiency of Human Immunodeficiency Virus Type 1 Capsid Escape Mutants A92E and G94D ▿

    Science.gov (United States)

    Ylinen, Laura M. J.; Schaller, Torsten; Price, Amanda; Fletcher, Adam J.; Noursadeghi, Mahdad; James, Leo C.; Towers, Greg J.

    2009-01-01

    Cyclophilin A (CypA) is an important human immunodeficiency virus type 1 (HIV-1) cofactor in human cells. HIV-1 A92E and G94D capsid escape mutants arise during CypA inhibition and in certain cell lines are dependent on CypA inhibition. Here we show that dependence on CypA inhibition is due to high CypA levels. Restricted HIV-1 is stable, and remarkably, restriction is augmented by arresting cell division. Nuclear entry is not inhibited. We propose that high CypA levels and capsid mutations combine to disturb uncoating, leading to poor infectivity, particularly in arrested cells. Our data suggest a role for CypA in uncoating the core of HIV-1 to facilitate integration. PMID:19073742

  16. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity

    DEFF Research Database (Denmark)

    Chen, Li-Mei; Blixt, Klas Ola; Stevens, James

    2012-01-01

    Acquisition of a2-6 sialoside receptor specificity by a2-3 specific highly-pathogenic avian influenza viruses (H5N1) is thought to be a prerequisite for efficient transmission in humans. By in vitro selection for binding a2-6 sialosides, we identified four variant viruses with amino acid....... Unlike the wild type H5N1, this mutant virus was transmitted by direct contact in the ferret model although not by airborne respiratory droplets. However, a reassortant virus with the mutant hemagglutinin, a human N2 neuraminidase and internal genes from an H5N1 virus was partially transmitted via...... respiratory droplets. The complex changes required for airborne transmissibility in ferrets suggest that extensive evolution is needed for H5N1 transmissibility in humans....

  17. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  18. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    International Nuclear Information System (INIS)

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RVΔG-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RVΔG-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RVΔG-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RVΔG-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  19. Genetic Variability of Myxoma Virus Genomes

    Science.gov (United States)

    Braun, Christoph; Thürmer, Andrea; Daniel, Rolf; Schultz, Anne-Kathrin; Bulla, Ingo; Schirrmeier, Horst; Mayer, Dietmar; Neubert, Andreas

    2016-01-01

    ABSTRACT Myxomatosis is a recurrent problem on rabbit farms throughout Europe despite the success of vaccines. To identify gene variations of field and vaccine strains that may be responsible for changes in virulence, immunomodulation, and immunoprotection, the genomes of 6 myxoma virus (MYXV) strains were sequenced: German field isolates Munich-1, FLI-H, 2604, and 3207; vaccine strain MAV; and challenge strain ZA. The analyzed genomes ranged from 147.6 kb (strain MAV) to 161.8 kb (strain 3207). All sequences were affected by several mutations, covering 24 to 93 open reading frames (ORFs) and resulted in amino acid substitutions, insertions, or deletions. Only strains Munich-1 and MAV revealed the deletion of 10 ORFs (M007L to M015L) and 11 ORFs (M007L to M008.1L and M149R to M008.1R), respectively. Major differences were observed in the 27 immunomodulatory proteins encoded by MYXV. Compared to the reference strain Lausanne, strains FLI-H, 2604, 3207, and ZA showed the highest amino acid identity (>98.4%). In strains Munich-1 and MAV, deletion of 5 and 10 ORFs, respectively, was observed, encoding immunomodulatory proteins with ankyrin repeats or members of the family of serine protease inhibitors. Furthermore, putative immunodominant surface proteins with homology to vaccinia virus (VACV) were investigated in the sequenced strains. Only strain MAV revealed above-average frequencies of amino acid substitutions and frameshift mutations. Finally, we performed recombination analysis and found signs of recombination in vaccine strain MAV. Phylogenetic analysis showed a close relationship of strain MAV and the MSW strain of Californian MYXV. However, in a challenge model, strain MAV provided full protection against lethal challenges with strain ZA. IMPORTANCE Myxoma virus (MYXV) is pathogenic for European rabbits and two North American species. Due to sophisticated strategies in immune evasion and oncolysis, MYXV is an important model virus for immunological and

  20. Enhanced tumor control of human Glioblastoma Multiforme xenografts with the concomitant use of radiotherapy and an attenuated herpes simplex-1 virus (ASTRO research fellowship)

    International Nuclear Information System (INIS)

    Song, Paul Y.; Sibley, Gregory S.; Advani, Sunil; Hallahan, Dennis; Hyland, John; Kufe, Donald W.; Chou, Joany; Roizman, Bernard; Weichselbaum, Ralph R.

    1996-01-01

    Purpose: Glioblastoma Multiforme remains one of the most incurable of human tumors. The current treatment outcomes are dismal. There are several recent reports which suggest that some human glioblastoma xenografts implanted in the brains of athymic mice may be potentially cured with the use of an attenuated herpes simplex-1 virus alone. We have chosen a replication competent, non-neurovirulent HSV-1 mutant, designated R3616 to determine whether there is an interactive cell killing and enhanced tumor control with radiotherapy in the treatment of a human glioblastoma xenograft. Materials and Methods: In vivo, 1 mm 3 pieces of U-87 human glioblastoma cell line xenografts were implanted into the right hind limb of athymic mice and grown to > 200 mm 3 . A total of 112 mice were then equally distributed within four treatment arms (see chart below) based upon tumor volume. Xenografts selected to receive virus as part of the therapy were inoculated with three injections of 2 x 10 7 plaque forming units (PFU) of R3616 virus given on day 1, 2, and 3 for a total dose of 6 x 10 7 PFU. R3616 is a non-neurovirulent HSV-1 mutant created by the deletion of the γ 34.5 gene. Local field irradiation was delivered on day 2 (20 Gy) and day 3 (25 Gy). The mice were then followed for 60 days during which time the xenografts were measured twice weekly. A clinically non-palpable tumor (< 10% original volume) was scored as a cure. In addition percent-fractional tumor volume (FTV) and mean tumor volume (MTV) were calculated for each group. Results: Conclusion: While our tumor control with R3616 alone is similar to that reported in the literature, we have seen significantly enhanced tumor control and cell killing with the addition of RT suggesting a synergistic interaction between an oncolytic virus and radiation in the treatment of human glioblastoma multiforme xenografts